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The random coupling model (RCM) can be used to characterize the electro-

magnetic coupling between multiple ports inside large complex enclosures. This

statistical model combines nonrandom parameters of the enclosure and ports with a

universally distributed random variable. A strong appeal of the RCM is the ability

to characterize a wide variety of enclosure configurations with a limited number

of parameters. However, in practical enclosures, these parameters can be difficult

to obtain. In the first part of dissertation, nonintrusive measurement methods are

developed that use the time gating technique to acquire the nonrandom system

parameters. Additionally, a problematic case of high loss antenna in enclosures is

addressed. For the high loss antenna case, the radiation impedance is very difficult

to obtain and difficult to use if obtained. For this reason, a modified random cou-

pling model is formulated to make use of the radiation efficiency of the antennas.

These methods have been successfully tested in multiple enclosures and ports. In

the second part of the dissertation, the limitation of applicability of the RCM at



lower frequencies is explored. The RCM assumes an overmoded cavity and that

the random plane wave hypothesis applies. The breakdown of these assumptions is

measured at lower frequencies and metrics are developed to determine the lowest

usable frequency of the RCM. Lastly, the concepts of the RCM and the tools of

microwave systems are used to experimentally validate the theory of regularization

of quantum tunneling rates in chaotic cavities. The theory is based on the random

plane wave hypothesis and can be studied in microwave cavities. The theory and

the validating experiments are presented.
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Chapter 1: Introduction

1.1 Motivation

Understanding wave propagation in geometrically irregular regions is a com-

mon challenge in science and engineering. The waves of interest may be classical elec-

tromagnetic waves [1, 2], quantum mechanical waves [3, 4], or acoustic waves [5–7].

In the case of acoustic waves, the interest is the distribution of the sound in a re-

verberant environment. A loud bang on one point inside an irregular enclosure,

such as submarine, can produce locations of very high peaks of sound energy due

to interference pattern within the enclosure. This is of great interest to designing

such enclosures. The nature of short wavelength electromagnetic radiation inside

complex enclosures is of interest to the electromagnetic compatibility (EMC) com-

munity, which studies the possibility of radiation from an electromagnetic source

coupling EM energy to other sensitive electronics [8]. This has become increas-

ingly important with the prevalence of electronic devices in enclosures and sources

of EM radiation [9]. Predictive models for the induced voltages and currents in

these devices are necessary to determine the potential for damage. The work in this

dissertation is aimed at improving the analytical models used to predict coupling

in reverberant enclosures. The types of enclosures for which the research in this
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dissertation is relevant include computer boxes, submarines, and avionics bay of

aircrafts, etc.

Any model used to characterize coupling in these enclosures must describe

two types of ports. One type of port is an antenna intended to couple EM into

the enclosures. A second type of port is an unintended port such as small openings

in the enclosure as well as exposed cables that, while are not designed to couple

EM radiation, but do so anyway. The latter is often of bigger concern because the

devices exposed to the EM radiation through unintended ports are not properly

shielded.

In order to characterize the coupling of electromagnetic energy, a deterministic

approach may seem appropriate, but there are several reasons a statistical approach

is preferred. For most irregular geometries, an analytical solution does not exist.

However, numerical algorithms are available in commercial software to determinis-

tically solve for the electromagnetic fields inside the enclosures. The EM fields will

depend of the geometry, the material properties of the enclosure and the frequency

of excitation. In the small wavelength limit, where the ratio of the enclosure di-

mensions to the wavelength is large, the numerical solver must mesh the geometry

covering it with a very large number of grid points. Even with the advancement of

modern computers, the amount of memory and computational power required to nu-

merically solve the problem can become impractical. In addition to this, the nature

of the waves in the complex enclosure is such that small changes to the boundary

conditions or the frequency dramatically change the wave dynamics, changing the

solution substantially. Moreover, any inaccuracy in modeling the material or the ge-
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ometry, will also lead to incorrect solutions. For these reasons, researchers studying

EM energy in complex enclosures have found it more useful to study the statistical

wave properties.

Random matrix theory (RMT), which is discussed in the next section, has been

a successful tool to describe the statistics of eigenvalues of the wave equation for

irregular enclosures in the small wavelength limit. However, in practical systems,

the results from RMT need to be combined with unique port characteristics to

form a complete statistical model of a multi-port enclosure. The Random Coupling

Model (RCM), developed at the University of Maryland is such a model. It has been

studied theoretically [10,11] and validated experimentally [12]. The RCM is a focus

point for the dissertation, but there are similar models in the literature such as one

by L.K. Warne et. al at Sandia National Laboratory [13] for which the work in this

dissertation is applicable. The primary motivation of the work in this dissertation

is to establish methods to retrieve the important “system specific” information of

practical systems, so that the model is useful in characterizing coupling statistics.

1.2 History

Much of the work in the EMC community involves ad hoc measurements of EM

fields in reverberation chambers. The measured fields are highly sensitive to small

changes in the orientation or location of the source, and the frequency of excitation.

However, the probability distributions of the field amplitudes are known to be much

less sensitive and can even be universal. Price et. al [2] were the first to ?characterize
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the distributions of the field amplitude. They claimed that it has a “universal”

distribution that is a function of less sensitive parameters such as the number of

modes simultaneously excited in the cavity. Others have subsequently studied this

phenomenon [14, 15]. The reason behind this universal distribution is addressed by

the University of Maryland wave chaos research group in the development of random

coupling model.

The random coupling model is rooted in the original work by Eugene P. Wigner

[16]. He was interested in the statistics of the energy levels of large nuclei. He found

that the probability distribution of the spacing between energy levels is the same as

the spacing between an eigenvalues of a random matrix with particular properties.

Two of the random matricies Wigner discusses are important for the RCM, the

Gaussian orthogonal ensemble (GOE) and the Gaussian unitary ensemble (GUE).

Each of which are applicable to different systems as described later in this section.

The elements of the matrices are independent Gaussian random variables with zero

mean. The elements of the GOE matricies are real with different variances for

the diagonal and off-diagonal elements. The main property of GOE matrices is

invariance under orthogonal transformation. That is, the probability distribution of

an ensemble of matrices has the property that P (H) = P (OHOT ) where O is an

arbitrary orthogonal matrix and the OT is its transpose. On the other hand, the

GUE matrices have elements of complex numbers, and the matrices are invariant

under unitary transformation such that P (H) = P (UHU †) where U is arbitrary

unitary matrix and U † is its conjugate traspose.

Others have shown that Wigner’s random matrices can be applied to find

4



the distributions of the resonant frequencies in a variety of wave systems including

complex electromagnetic enclosures [17,18]. A key quantity addressed is the spacing

between nearest neighbor frequencies of resonant modes (or energies in the case of

nuclei). The distribution of the spacing has universal properties that we exploit to

statistically characterize our systems. In the case of electromagnetic enclosures, we

focus on spacing between the resonant wavenumbers squared, k2n, where ωn = knc

is the resonant frequency. The mean mode spacing (∆k2 = 〈k2n+1 − k2n〉) can be

approximated by Weyl’s formula. For 3D electromagnetic enclosures, it is given by

∆k2 = 2π2/kV , where k = ω/c and V is the volume of the enclosure [19]. Thus, we

consider the distribution of

s =
k2n+1 − k2n

∆k2
. (1.1)

In the case where the system has time reversal symmetry, the probability distribution

of s takes the form [17].

PGOE(s) ∼=
π

2
se−πs

2/4. (1.2)

If time reversal symmetry is broken, for example if a ferrite is present, the probability

distribution has the form

PGUE(s) ∼=
32

π
s2exp(−4s2/π). (1.3)

The probability distributions apply to the eigenvalues of matrices that are from the

Gaussian orthogonal ensemble (GOE) or Gaussian unitary ensemble (GUE). These

have been shown to be applicable in enclosures that are “ray chaotic.” That is, in the

limit where the incident wave propagates like a point particle, the ray trajectories

are chaotic [20].
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In practical systems, however, the universal distribution described above need

to be combined with system specific parameters, which forms the random coupling

model. This is discussed in the next section.

1.3 System Specific and Universal Parameters

The random coupling model is a statistical model used to characterize the

impedance matrix of a multi-port, complex, overmoded electromagnetic cavity [10–

12]. It is based on a combination of the random plane wave approximation, in

which the fields at any point in the enclosure consist of the random superposition of

isotropically propagating plane waves with random phases, and the random matrix

theory which provides the statistical distributions. The main result from the random

coupling model [10] is that the random impedance, Z, at a port in a wave chaotic

cavity is given in terms of system specific deterministic quantities and a universally

distributed random quantity expressed in the following formula.

Z = jXrad + ξRrad, (1.4)

where Rrad and Xrad are the real and imaginary part of the radiation impedance

(Zrad), which is the impedance of the port excluding contributions from the cavity.

In other words, it is the impedance that would be measured if the cavity walls

were moved out to infinity. The quantity ξ is a complex random variable whose

probability distribution is fully characterized by a single loss parameter (α). It is

defined as

ξ = − j
π

∑
n

∆k2φnφ
T
n

k2 − k2n + jα∆k2
, (1.5)

6



where φn is a vector of independent and identically distributed, zero mean, unit vari-

ance Gaussian random variables [21]. k2n is also a random vector of the eigenmodes

of the system whose normalized distribution is described by random matrix theory.

A method to generate an ensemble of k2n is described in Appendix A of Ref. [22].

The loss parameter, α, characterizes the loss in the enclosure and is described in

detail in Chapter 2. This result can be extended to a multi-port cavity,

Z = jXrad + R
1/2
radξR

1/2
rad, (1.6)

where all the variables are now matrices. Therefore, the quantities Zrad and α are

the two system specific parameters necessary to apply the random coupling model

which allows us to predict the statistics of the impedance.

1.4 Outline of the Dissertation

Applying the random coupling model to real world enclosures presents chal-

lenges which I will discuss in the following chapters of the dissertation. The primary

goal of my research is to formulate a methodology that allows an engineer to obtain

the previously defined system specific parameters and to introduce additional pa-

rameters as necessary to characterize coupling statistics. In the following chapters

of this dissertation, I will discuss methods I’ve studied over the course of the past six

years to statistically characterize electromagnetic coupling in complex enclosures. In

Chapter 2, I discuss the time gating technique as a measurement method to obtain

the loss parameter and radiation impedance, but also as a tool to handle departures

from the RCM due to short ray paths from a transmitting to receiving antenna.
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In Chapter 3, I will discuss lossy antennas, a situation that was not previously ad-

dressed in the RCM. I will provide theoretical basis to allow another parameter,

the radiation efficiency, to be added to the RCM. Experimental validation is also

included. In Chapter 4, the limitation of the RCM are explored. The assumptions

of the RCM of random plane wave hypothesis and overmoded cavity breakdown

at low frequencies We discuss these limitations and the resulting lowest usable fre-

quency for the RCM. In Chapter 5, I discuss a project in which we use the methods

and tools established in the previous chapters to study the quantum mechanical

phenomenon of regularization of quantum tunneling rates in chaotic cavities. The

phenomenon is studied in an analogous system of microwave cavities. The theory

and the validating experimental results are discussed in this chapter. Finally, in

Chapter 6, I will provide a conclusion that ties together results of my research and

discusses a direction for future projects.
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Chapter 2: Extraction of the Coupling Impedance in Overmoded

Cavities

2.1 Introduction

The coupling of electromagnetic field energy into and out of enclosures such

as electronics cases, rooms and compartments, and reverberation chambers depends

sensitively on the details of the enclosure’s geometry and on the frequency of the

injected radiation. Because of this sensitive dependence, a statistical description

of the system’s response is often sought [1]. The random coupling model (RCM)

introduced for electromagnetic problems [10,11,13,23] and reviewed recently [21,22]

has been successfully demonstrated to describe the statistics of a system’s impedance

matrix relating the currents and voltages at identified ports. The RCM is based on

previous work in the theoretical physics literature [24–26]

There are certain assumptions that need to be met for RCM to apply. The first

assumption is that the enclosure is electrically large. In other words, the wavelength

of interest must be sufficiently small that the port excites many modes in the cavity.

Only then can a statistical approach such as the RCM be considered. Second, the

enclosure must have ray chaotic dynamics. This means that in the small wavelength

9



limit where the launched waves in the enclosure can be thought of as rays, the

dynamics are chaotic. By ”chaotic” we mean to say that if two rays are launched with

a very small difference in the launch angle or location the trajectories diverge from

one another exponentially. Typically, this requires the rays to strike a curved surface.

These assumptions ensure that the field distributions in the enclosure have the local

character of a random superposition of plane waves and that the resonant frequencies

have a characteristic distribution described by random matrix theory [27]. The third

assumption and the topic of this chapter is that the conditions of the ports are known

and can be treated deterministically. The random nature of the system dynamics

arise from the random scattering of rays in the enclosure itself, but not the ports.

For all the ports, either their exact geometry and material properties are known

such that the impedance of the ports under anechoic conditions can be computed

numerically or, more practically, the impedance can be measured.

In the random coupling model, the impedance of the port under anechoic

condition is called the radiation impedance (Zrad). This is the impedance that

would be measured at the port if there were no reflection from the enclosure’s

distant internal boundaries. The random coupling model allows one to statistically

characterize electromagnetic energy coupled from one port to another; and in the

simplest case from one port back to itself. According to the RCM, the values of the

impedance that are measured at a port of a cavity can be modeled by the random

variable

Zcav = Rradξ + jXrad, (2.1)
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where Rrad and Xrad are the real and imaginary part of the radiation impedance;

and ξ is a complex random variable obtained from random matrix theory whose

statistical properties are fully characterized by a single loss parameter. The loss

parameter is essentially the average Q-width of resonant modes in the cavity nor-

malized to the average spacing between modes. The dependence of ξ on this loss

parameter is described in Ref. [10]. In the lossless case it is purely imaginary and

Lorentzian distributed. As loss increases, the real part of ξ approaches unity with

small Gaussian fluctuations, and the imaginary part of ξ approaches zero with small

independent Gaussian fluctuations. Thus, in this limit the cavity impedance ap-

proaches the radiation impedance. Equation 2.1 applies to the case of a single port

and determines a scalar impedance. For a cavity with multiple ports there is a

simple matrix generalization of Eq. 2.1 in which the quantities are matrices and the

first term is written Rrad
1/2 ξRrad

1/2 .

There have been two methods suggested to measure the radiation impedance.

The first method is to line the enclosure walls with radiation absorbing material,

and is the method used by Hemmady et. al [23]. in experiments to validate the

RCM. This method can be time consuming and requires access to the interior of

the enclosure. Furthermore, this method requires assigning a portion of wall of

the enclosure in proximity to the port. This boundary where a port ends and the

enclosure begins may be difficult to determine. The other method is to use a mode

stirrer inside the enclosure and collect an ensemble of impedance measurements.

The average of a large ensemble of measurements will converge to the radiation

impedance. This requires that the mode stirrer sufficiently mixes the modes in the
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enclosure and that a large enough ensemble is sampled; both of which are difficult to

realize in practical enclosures. On the other hand, the time gating method described

in the following sections only requires a single measurement at the port. Access to

the interior of the enclosure is not required. The characteristic reflections from the

nearby enclosure walls can be adjusted by a single parameter: the gating time. The

implementation of the time gating method will be discussed in this chapter. The

chapter is organized as follows. The time gating method and it’s implementation to

measure the RCM parameters are described in sections 2.2 and 2.3. Results from

experimental validation of the method are presented in section 2.4. A discussion of

the potential sources of error in time gating and solutions including a treatment of

the localized power loss at the port are presented in section 2.5. Finally, the main

ideas are summarized in section 2.6.

2.2 Time Gating Method

Time-gating is a method by which a frequency domain measurement is effec-

tively averaged over a sliding window in the frequency domain. The method applies

the Fourier transform of the measured complex reflection coefficient to the time do-

main, gating it in time, and Fourier transforming back to the frequency domain. If

TG is the duration of gating, then T−1G is the effective width of the frequency window.

The purpose of the time gating presented here is the determination of the radiation

impedance of the port including the effect of nearby reflections and excluding the

effect of multiple far field reflections.
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Time gating has been used for decades to improve frequency domain measure-

ments [28]. In an antenna pattern measurement, the time-gating method (TGM)

is used to remove unwanted multipath reflections from structures near the an-

tenna [29, 30]. Ideally an antenna pattern is measured in an anechoic chamber

where reflections from the walls are suppressed by radiation absorbing material.

However, if an anechoic chamber is not available, or if the absorbers are not well

suited for the frequency range of interest, there will be unwanted reflections from

the walls. This is where the TGM can be used to suppress the reflections from the

walls. In addition to this, it is also used to characterize reverberant chambers [31].

In this case, the information that characterizes the reverberant chamber is found

in the difference between the ungated and the time gated measurement. In these

cases, the TGM has been a valuable tool.

The TGM is implemented in some modern vector network analyzers (VNA).

In a VNA, the reflection coefficient is measured in the frequency domain using a

swept CW source and a receiver that tracks the amplitude and the phase of the

received signal. The TGM method process is shown in Eq. 2.2.

S̄ (f)
F−1

−−→ s (t)

s (t) g (t)
F−→ S̄g (f)

(2.2)

The complex reflection coefficient S̄ (f) is transformed to the time domain using an

inverse fast Fourier transform (IFFT). This time domain signal s (t) is multiplied by

a gating window function g (t) to select the duration of the time window of interest

and suppress the rest. The gated time domain signal is Fourier transformed back

to the frequency domain to arrive at the desired result S̄g (f).
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Another way to implement the TGM, is to use the fact that multiplication in

the time domain is equivalent to a convolution in the frequency domain. The time

domain gating window is transformed to the frequency domain using a fast Fourier

transform (FFT) and convolved with the raw frequency domain measurement. The

result is the gated reflection coefficient. This can be expressed as,

S̄g (f) = S̄ (f)⊗ Ḡ (f) (2.3)

where S̄ (f) is the unprocessed frequency domain S-parameter measurement, g (t)

is the gating function in time and Ḡ (f) is its Fourier transform, and ⊗ is the

convolution operator.

One of the advantages of the TGM is the flexibility in being able to choose a

gating time and gating function to include the effect of prominent reflections. After

collecting reflection coefficient data over the frequency range of interest, we Fourier

transform the data into the time domain. A plot of the time domain data allows us

to visualize the dominant reflections along the signal path. For example, results of

a measurement of the reflection coefficient from an antenna radiating into a cavity

are shown in Fig. 2.1. In this example, an L-band helical antenna irradiates a 3

m3 aluminum cavity. We can see that there is a clear prompt reflection from the

antenna centered at t = 0 [ns]. This prompt reflection gives us valuable information

about the port; namely, how much power enters the cavity.

If we set the gating time to include only this peak, and transform back to

the frequency domain, we obtain a reflection coefficient that is window-averaged

over a broad frequency range. This window average eliminates important structure
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Figure 2.1: A power delay profile obtained by Fourier transforming the
reflection coefficient of the antenna radiating inside a reverberant enclo-
sure. The first peak comes from the antenna and subsequent peaks are
reflections from the enclosure walls.
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in the reflection coefficient associated with reflections from nearby walls [32, 33] .

Returning to the time domain, Fig. 2.1 for some time after the prompt reflection,

t > 5ns, there are many strong temporal peaks or reflections from the cavity that

give rise to systematic variations of the reflection coefficient with frequency. When

measuring the radiation impedance (associated with prompt reflection), these later

reflections are removed: for this example, we might choose a gating time to be 5ns,

however, if we desire to average over a smaller frequency range, and thus include

multiple reflections from the nearby walls, we can do so by further increasing the

gating time. This is addressed in section 2.3. Once we have decided on the gating

time, we need to select a gating function. If we use a rectangular windowing function

in time, then in the frequency domain the measurement is convolved with a sinc-

function, which has alternating positive and negative lobes. If we use a Gaussian

window, then the windowing function is a Gaussian and is always positive. For

simplicity, we will use a rectangular function in this chapter such that the gating is

given by,

g(t) =


1 : t < TG

0 : t ≥ TG

(2.4)

where TG is the gating time.

2.3 Determination of Zrad using TGM

We illustrate the time gating method by considering a particular antenna. We

measure the impedance of an L-band helical antenna in a mode stirred rectangular
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Figure 2.2: The measurement setup showing the rectangular enclosure,
the VNA to make the measurements, and the control PC to collect and
analyze the measurements.

reverberant chamber shown in Fig. 2.2. This aluminum enclosure has dimensions

1.37m x 1.22m x 1.83m for a volume of 3.06 cubic meters. The helical antenna is

made from quarter inch copper tube, 24.1 cm in length. The measurement is taken

over the frequency range of 1.5 GHz to 3.5 GHz, over which the RCM loss parameter

(α) is measured to be 2.8. The loss parameter is given by

α =
ω

2∆ωQ
(2.5)
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Figure 2.3: The power delay profile computed by Fourier transforming
the reflection coefficient. The slope is used to compute the energy decay
time constant (τ).

where ω, Q, ∆ω are the angular frequency and the quality factor and the average

mode spacing, respectively. The quality factor is measured from the energy decay

time constant (τ) for the enclosure from which

Q = ωτ. (2.6)

The energy decay time constant is obtained by Fourier transforming the mea-

sured reflection coefficient (S11) to the time domain, then squaring the result. The

squared result is referred to as the power delay profile. The power delay profile

from a single measurement as function of time is shown in Fig. 2.3. The slope is

computed during the 1 µs - 4 µs period by smoothing average of the power delay
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profile. The slope (-ν [dB/s]) is then used to compute time constant quantity factor

which in this case is measured to be 7980.

τ = 4.34/ν. (2.7)

The mean mode spacing, on the other hand, is determined theoretically using

Weyl’s formula [19] given by

∆ω =
π2c3

ω2V
, (2.8)

where c and V are the speed of light and the volume of the cavity, respectively. The

mode stirrer consists of a sheet of aluminum held at a 45 degree angle on shaft that

is rotated by a programmable stepper motor. We generate 50 cavity realizations for

50 distinct positions of the mode stirrer. Figure 2.4 displays three version of the

magnitude of the reflection coefficient, |S11|. Shown in light gray is the reflection

coefficient obtained from one position of the stirrer. Shown in red is the average

reflection coefficient obtained by averaging |S11| over the 50 stirrer positions. The

black solid curves and the black dashed line are the reflection coefficients obtained

using the TGM as follows.

To obtain the window averaged reflection coefficient using TGM one must

select a gating time. The effect of varying the gating time is to include or exclude

contributions to the reflection coefficient from the ray paths or orbits that leave the

antenna, bounce off a wall, and return. The effect of the orbits is specific to the

cavity under consideration and not included in the model impedance, Eq. 2.1. The

treatment of the orbits, called short orbits was addressed theoretically by Hart et

al. [33] and impelemented by Yeh et. al [32]. The approach is to replace Zrad in
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Figure 2.4: The radiation scattering parameter (Srad) obtained as fol-
lows: gray a single realization, red- averaging over an ensemble of 50
cavity realization obtained by rotating the stirrer, black obtained from
TGM (solid TG = 5 ns , dashed TG = 13 ns).
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Eq. 2.1 by Zavg where Zavg is a frequency window average of the raw impedance

matrix. In principle, there are mathematical formulas for Zavg involving summations

of contributions from a small number of ray paths [32,33]. To do this using TGM we

look at the power delay profile in Fig. 2.1. We set the delay window time to TG = 13

ns and inverse Fourier transform to obtain the TGM reflection coefficient shown as

the dashed curve in Fig. 2.4. For comparison, the reflection coefficient using a

windowing time of TG = 5 ns is also shown in Fig. 2.4. The reflection coefficient has

significantly less structure in frequency that either the ensemble average reflection

coefficient or the TGM, TG = 13 ns reflection coefficient. This will be of significance

when we characterize fluctuations about the average impedance in the next section.

2.4 Impedance Fluctuations

We measure frequency scans of the reflection coefficient for 50 positions of the

stirrer. In addition, we apply TGM to one of these scans using Eq. 2.3 with two

different gating times, TG = 5 ns and TG = 13 ns. We convert these frequency

dependent reflection coefficients to the frequency dependent impedances using,

Zcav
Z0

=
1 + S11

1− S11

(2.9)

where Z0 = 50Ω is the characteristic impedance of the transmission line feeding

the antenna. We then normalize the measured values of the impedance using the

formula implied by Eq. 2.1,

ξm =
Zcav − jX̄

R̄
, (2.10)
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where Zcav are the raw measurement of the input impedance at the port and Z̄ =

R̄+ jX̄ is either the radiation impedance Zrad (TG = 5 ns) or the TGM determined

impedance Zavg (TG = 13 ns).

According to RCM the values of ξm should behave as random variables with

a probability density function that depends on the loss parameter (α), which is

measured by the method discussed in section 2.3 to be 6 for the frequency range

of 3 GHz to 3.5 GHz. The quantity ξm is computed from the measured Zcav and

normalized by Zrad (TG = 5 ns). We compare the distribution of ξm with the RCM

prediction. The predicted distribution is obtained from the Monte Carlo simulation

described in Appendix A of [22]. The two distributions of the real and imaginary

part of the normalized impedance (ξ) are good agreement as shown in Fig. 2.5.

Over the frequency range 2.245 GHz and 2.265, The loss parameter α is 2.3. In

this 20 MHz window, as shown in Fig. 2.6, there is a significant difference between

the radiation impedance and the TGM acquired impedance with TG = 13 ns. This

will affect the distribution of ξm as given by Eq. 2.10. Three pdfs of the real and

imaginary part ξm using Eq. 2.10 are shown in Fig. 2.6. The pdf that is in best

agreement with the predicted pdf is obtained from ξm that is normalized with the

TGM determined impedance using a time window that includes short orbits (TG =

13 ns). The agreement with its prediction is better than the impedance normalized

with the radiation impedance (TG = 5 ns). These results confirm the RCM statistical

model can be applied provided that the appropriate average impedance is used in

Eq. 2.10 to normalize the measured values of cavity impedance.
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Figure 2.5: A comparison of the real (top) and imaginary (bottom)
part of the measured and computed normalized impedances over the
frequency range 3 GHz 3.5 GHz.
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Figure 2.6: A comparison of the pdfs of the real (top) and imaginary
(bottom) part of the measured and computed normalized impedances
over the frequency range 2.245 GHz -2.265 GHz where the short orbits
have a stronger effect of the pdfs.

24



2.5 Discussion

The results of the previous section show that the measured values of the cavity

impedance can be modeled by the RCM provided the appropriate values of the

average impedance Z̄ = R̄+jX̄ is used in Eq. 2.10. This value of average impedance

can be extracted using the time gating method (TGM). The possible errors in the

TGM are discussed in the context of the early implementation of the TGM inside

a network analyzer by Lu. et al. [34]. They have grouped them in four categories.

The first is the out of gate attenuation error. This occurs if the gating window

function is not equal to zero outside the gating window. In which case, it doesn’t

completely suppress the unwanted reflections. A rectangular window will avoid this

error. However, the sharp edges of the rectangular window in the time domain

can cause a ringing effect in the frequency domain. Modern VNAs often use other

windowing function to balance the ringing effects while also minimizing the out of

gate attenuation error. The second type of error is truncation error. This arises

when there is an overlap in time between the desired signal and the signal we want

to suppress. By suppressing the unwanted segment in time, we are also losing the

tail of the signal of interest. This is important to keep in mind when deciding on

the gating time. The third and fourth types of error are masking error and multi-

reflection aliasing error. Both of which arise when we want to suppress the prompt

reflection and keep the subsequent reflections. Therefore, it doesn’t apply in this

context.

Finally, the measurements of the radiation impedance assume negligible power
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loss at the port. This means the incident power at the antenna is either promptly

reflected or radiated into the cavity. Conversely, if the power is lost locally at the

port due to a lossy antenna, the radiation impedance cannot be directly measured

with TGM or any of the methods previously discussed. This situation is addressed

by the authors of Ref. [35] and this is the subject of Chapter 3 of this thesis. The

result in the high loss limit (α� 1) is a new formulation of the RCM that includes

the radiation efficiency (η) of the antenna. Updating Eq. 2.10 for the normalized

impedance we find

ξm =
Zcav − jX̄

ηR̄
+

(η − 1)

η
(2.11)

For example, we can consider a lossy antenna in the aluminum cavity discussed

in section 2.3. A copper trace on FR4 circuit board forms a loop antenna that has

some localized power loss in the frequency range of 3 GHz - 3.5 GHz. The antenna

is simulated in ANSYS HFSS [36]. The radiation efficiency over this frequency fluc-

tuates between 0.69 and 0.81 for an average of 0.75. Using this value, we normalize

the impedance by applying Eq. 2.11. In Fig. 2.7, very good agreement is shown

between the data normalized according to Eq. 2.11 with the prediction distribution

of ξ computed for the measured loss parameter (α = 6). Conversely, if we had

assumed that the port had negligible loss and applied Eq. 2.10, the variance of the

normalized impedance would be smaller due to the unaccounted-for port loss.
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Figure 2.7: A comparison of the pdfs of the real (top) and imaginary
(bottom) part of the measured and computed normalized impedances
for a lossy port.
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2.6 Conclusion

In this chapter, we presented a new way to measure the radiation impedance

in the random coupling model using time gating method. It is shown to have the

capability of including short orbits in the measurement. The method has been ex-

perimentally demonstrated and seems to be in good agreement with the predictions

of the random coupling model.
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Chapter 3: RCM for Ports with High Localized loss

In chapter 2, we discussed methods to extract the parameters of the ports and

the enclosure. Once we have collected these deterministic parameters, we can form

a complete statistical characterization of the EM wave system by using the random

coupling model (RCM). However, in those descriptions and previous description of

the RCM [10,21,22], the ports were such that the EM radiation incident at the port

is either promptly reflected or radiated into the enclosure. The case in which EM

radiation is dissipated locally at the port was not addressed. In this chapter, we will

consider the case of lossy antennas. We will demonstrate not only the difficulty of

measuring the radiation impedance parameter, but also the incorrect statistics that

result if we use the traditional methods for measuring radiation impedance. Finally,

a modified RCM model is derived with the introduction of the radiation efficiency

to the model. Under the typical condition of a lossy cavity, the model can handle a

port with high localized loss. Some of the contents of this chapter can also be found

in [35].
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3.1 Introduction

The RCM models the impedance statistics at the ports of a complex enclosure

[22]. The formula for this impedance has been presented in Eq. 1.6. As it is, it

is given in terms of two variables: the radiation impedance, Zrad, and the random

quantity, ξ, which depends on a single deterministic loss parameter, α. Therefore,

for the RCM to be useful we require two deterministic parameters of the system, the

radiation impedance and the loss parameter. However, a lack of direct measurement

access to the enclosure and the ports, could make the RCM unusable. In chapter

2, the time gating method (TGM) is presented as a solution for measuring the

radiation impedance of the ports in the case where direct access of the enclosure is

not possible.

The radiation impedance is the impedance that would be measured at the

ports if there were no reflection from the enclosure walls or if the walls were moved

out to infinity. In previous tests of the RCM, the radiation impedance was measured

by lining the walls of the enclosure with radiation absorbing material. The absorbers

significantly dampened the reflections from the walls of the enclosure such that the

impedance measured at the ports was the radiation impedance. However, lining

the walls with absorbers is not always possible; thus the TGM as discussed in

Chapter 2 is a method that does not require physical access to the interior of the

enclosure walls used to determine the radiation impedance. Therefore, with access

to only the terminals of the port, the radiation impedance could be measured. The

situation changes, unfortunately, when ports with non-negligible localized loss are
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considered. If there is significant localized loss at the port, the measured impedance

at the terminal will not characterize the amount of power that enters the cavity.

Rather, the antenna must be considered as a complicated network of impedances, a

general model of which is detailed in 3.3.

These lossy ports, which may not be designed as antennas and to which we

have limited access, are of great interest to the Electromagnetic Compatibility com-

munity [8]. Electromagnetic interference is often caused by strong electromagnetic

energy coupling through unintended ports. The RCM’s statistical description of

such system is only applicable if we have access to measurements of the radiation

impedance. In this chapter, we will describe a solution in the form of a modified

RCM that accurately models the impedance of an enclosure with a lossy port.

This chapter is organized as follows. In Section 3.2, the different losses in

the enclosure are described, including the losses through the ports. In Section 3.3,

a detailed model of the lossy port is presented, as well as a modified RCM which

uses measurements at the terminals of the port and the radiation efficiency of the

port to form an accurate model of the impedance at a lossy port of a complex

enclosure. In Section 3.4, the impedance measurement results of lossy ports are

presented including comparisons to the predictive RCM model. Also, the methods

of determining the radiation efficiency are described including numerical simulation

and measurements. Finally, in Section 3.5 the main ideas and results of the chapter

are summarized.
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3.2 Loss in Reverberant Enclosures

In order to describe the losses in an electromagnetic enclosure, we use the

dimension less quality factor parameter. The quality factor of an enclosure is defined

as ratio of the electromagnetic energy stored in the enclosure to the power dissipated

per cycle of the excitation frequency [37], written as,

Q =
ωU

Pd
, (3.1)

where U is the energy stored in the enclosure, Pd is the power dissipated, and ω is

the angular frequency. In reverberant enclosures, electromagnetic energy dissipates

through one of four loss mechanisms [38]. These loss mechanism are illustrated in

Fig. 3.1. The power dissipated in the enclosure can written as,

Pd = Pd1 + Pd2 + Pd3 + Pd4 (3.2)

where Pd1 is the power lost through ohmic dissipation at the walls of the enclosure,

Pd2 is the power lost by loading objects in the enclosure such as microwave absorbers,

Pd3 is the power lost through apertures, and Pd4 is the power lost through the ports.

Therefore, by plugging Eq. 3.2 in Eq. 3.1, we can write the quality factor as

Q−1 = Q−11 +Q−12 +Q−13 +Q−14 (3.3)

where,

Q1 =
ωU

Pd1
, Q2 =

ωU

Pd2
, Q3 =

ωU

Pd3
, Q4 =

ωU

Pd4
. (3.4)

In the reverberant enclosures we study, the ohmic dissipation, Pd1 and the

power lost of objects in the enclosure, Pd2 tend to be dominant. Furthermore, losses
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Figure 3.1: Multiple loss mechanisms in a reverberant electromagnetic enclosure.

through ports and apertures are treated separately in the RCM. For the stainless

steel and aluminum enclosures in this thesis, and other highly conductive enclosures,

Q1 is given by the expression [39]

Q1 =
3V

2µrδA
(3.5)

where V is the volume of the enclosure, A is the surface area of the walls of the

enclosure, µr is the relative permeability of the metal, δ is the skin depth of the

fields inside the metal walls. The other losses can vary depending of the size and

effectiveness of the absorbers, the size of the various apertures, and the antenna

efficiency of the ports, respectively.

The loss parameter, α, in the context of the random coupling model, is defined
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in terms of the quality factor by the formula

α =
k2

∆k2Q
(3.6)

where k2 is the square of wavenumber, ∆k2 is the mean spacing between adjacent

resonant modes, k2n+1 − k2n. The composite Q can be measured in the time domain

from the exponential decay time constant as discussed in Chapter 2, in which α is

approximated by Eq. 2.5. From the measurements in our enclosures, 2/3 of the

total power dissipated in the enclosure is due to the ohmic loss at the walls. The

power lost through the ports has minimal contribution due to the small effective

aperture, regardless of the antenna efficiency or loss at the port. However, the loss

at the port, as will be discussed in the next section, has a huge impact in our ability

to measure the radiation impedance.

3.3 General Models of Lossy Port

Often ports in enclosures are antennas designed to have very low localized loss.

For these types of antennas, the simple model shown in Fig. 3.2 applies, and we

can measure the radiation impedance in situ by the time gating method described

in Chapter 2. Therefore, in practice, a single port network analyzer measurement

at the antenna over the frequencies of interest can capture the radiation impedance.

Using the radiation impedance and the loss parameter, the impedance statistics at

that antenna can be fully characterized.

However, there are other ports that are not designed for or intended to couple

electromagnetic energy, which are also of interest to the EMC community [8]. Elec-
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Figure 3.2: A simple model for an antenna with negligible loss. The time
gated impedance measured at the port is the radiation impedance.

Figure 3.3: A generalized circuit model of the lossy port used for the
impedance analysis. R is the radiation resistance and the radiation re-
actance is lumped with Z2.
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tromagnetic interference is often caused by strong electromagnetic energy coupling

through unintended ports. In the most general case, antennas can be modeled by a

“T-network” shown in Fig. 3.3, where Z1, Z2, and Zs are complex impedances, and

R is the radiation resistance and the radiation reactance is included in Z2.

Thus, to characterize the antenna, three complex impedances values must be

determined. These in principle are determined by exciting the two terminals of

the network and measuring the currents I1 and I2. The loss can occur due to the

resistance of any element in the branches of the T-network. If the antenna has

significant localized loss the radiation impedance cannot be measured by the time

gating method or by lining the cavity walls with absorbers. In this work, we consider

the case when such a lossy antenna is located in an enclosure where the condition

for the random coupling model applies. That is, the wavelength is large compared

to the reverberant enclosure. In these enclosures, we often only have measurement

access to Zant, (see Fig. 3.3) but we can’t measure the additional impedances in

the T-network. In this section, the impedance statistics are described for a single

port enclosure such that the only additional information required is the radiation

efficiency of the antenna.

The main result presented in this section is the following equation for the

impedance of a lossy antenna attached to a complex enclosure.

Zin = Zant + ηRe{Zant}δξ (3.7)

where η is the radiation efficiency of the antenna. The quantity δξ is equal to ξ − 1

where ξ is the fluctuating normalized impedance as defined by Eq. 1.4. The quantity
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Zant is the input impedance of the lossy antenna radiating in free space and will be

defined in the derivation that follows.

For the following analysis, a two port model of the antenna shown in Fig. 3.3

is adopted. The elements of the two port impedance matrix are

Z11 = Z1 + Zs (3.8)

Z22 = Z2 + Zs (3.9)

Z12 = Z21 = Zs. (3.10)

When the antenna is placed in free space with no reflection, the measured

input impedance is given as

Zin = Z11 −
Z2
s

Z22 +R
≡ Zant. (3.11)

The radiation efficiency of this antenna is defined as the ratio of the power

radiated to the input power

η =
PR
Pin

, (3.12)

where PR = R|I2|2 and Pin = Re{Zin}|I1|2. Solving the circuit equations, we obtain

the following expression for the radiation efficiency,

η =
R

Re{Zant}

∣∣∣∣ Zs
R + Z22

∣∣∣∣2 (3.13)

If this antenna is placed in a complex enclosure, we replace R with R(1 + δξ) in Eq.

3.11. For a typical high loss cavity where α� 1 and |δξ| � 1, the input impedance

can approximated as follows,

Zin ≈
(
Z11 −

Z2
12

Z22 +R

)
+

(
RZ2

12

(Z22 +R)2

)
δξ. (3.14)
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Factoring out the phase from the second term, we obtain

Zin =

(
Z11 −

Z2
12

Z22 +R

)
+

∣∣∣∣ RZ2
12

(Z22 +R)2

∣∣∣∣ δξ′, (3.15)

where δξ′ = δξejφ and φ is the phase of RZ2
12/(Z22 +R)2. Since δξ is approximated

by a complex Gaussian random variable with independent and identically distributed

real and imaginary parts, the phase of δξ will be uniformly distributed. This means

that δξ and δξ′ have the same statistical properties. Therefore we can drop the

prime from δξ in Eq. 3.15. Now comparing Eq. 3.15 with Eq. 3.13, we arrive at

the expression for the impedance given in Eq. 3.7 with quantities that can be easily

measured.

3.4 Experimental Results for the Impedance Models at Lossy Ports

To demonstrate the effect of localized port losses, we focus on a copper loop

antenna printed on a lossy FR4 based circuit board in Fig. 3.4. We measured

this antenna inside a stainless steel cylindrical enclosure in Fig. 3.5 for two sets of

frequencies. The loss parameters, measured according to Eq. 3.6, are equal to 1.6

and 24.1 for the frequency ranges 1.5 GHz to 3 GHz and 9 GHz to 11 GHz, respec-

tively. The FR4 material has low dielectric loss in the lower frequency range, but

the loss becomes significant at these higher frequencies, which reduces the radiation

efficiency.

In order to measure the radiation efficiency, we first modeled the antenna and

supporting material in ANSOFT High Frequency Structural Simulator (HFSS) [36].

Figure 3.6 shows the HFSS model for the antenna. An outgoing radiation boundary
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Figure 3.4: The copper loop trace on FR4 PCB used in the experiments.

Figure 3.5: The cylindrical stainless steel enclosure with a rotating mode stirrer.

condition is assigned to the large box surrounding the antenna. The radiation

efficiency is computed as the ratio of the power radiated through the radiation

boundary to the power incident at the input port of the antenna. Figure 3.7 and

Fig. 3.8 show the resulting radiation efficiency computed for two frequency ranges.

The average radiation efficiency is computed to be 0.56 and 0.81 for the frequency
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ranges 1.5 GHz to 3 GHz and 9 GHz to 11 GHz, respectively.

In some cases, we do not have enough information about the antenna to simu-

late it in HFSS and compute its radiation efficiency. Under those circumstances, we

use the statistics of the normalized impedance to measure the radiation efficiency. In

Section 2.3, we discussed a method to measure the loss parameter, α, using the time

constant for the exponential energy decay in the enclosure. Since the energy decay

in the enclosure is dominated by loss mechanism other than loss at the port, this

method can be used to measure α independent of the loss at the port. The variance

of the normalized impedance of a lossless antenna in a lossy cavity has been shown

in [12] to be a function of α. The variance of both the real and imaginary part of

the normalized impedance is given by

Var [ξlossless] =
1

πα
, (3.16)

and it follows that by Eq. 3.7, the variance of the the normalzied impedance for a

lossy antenna is

Var [ξlossy] =
η2

πα
, (3.17)

Therefore, to measure η, we assume the antenna is lossless and normalize the mea-

sured impedance using Eq. 2.10. The quantity η is given by

η =
√

Var[Re{ξm}]πα. (3.18)

where ξm is the measured impedance normalized by Eq. 2.10 which assumes a

lossless antenna. Using these radiation efficiency values, we can characterize the

impedance statistics using Eq. 3.7.
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Figure 3.6: A copper loop trace on FR4 PCB modeled in HFSS inside a radiation

box.

Figure 3.7: The radiation efficiency of the loop trace on antenna computed in HFSS
for 9.5 GHz - 11 GHz.

The input impedance of this antenna is measured assuming the general antenna

model in Fig. 3.3. This is done by directly measuring the reflection coefficient

(S11) using a vector network analyzer for 32001 points over the frequency range.

41



Figure 3.8: The radiation efficiency of the loop trace antenna computed in HFSS
for 1.5 GHz - 3 GHz.

This measurement is repeated for 50 different positions of a mode stirrer inside the

enclosure. Each position is 7.2 degree from an adjacent position which is roughly

the minimum angular step required for uncorrelated measurements as discussed in

Appendix A. The normalized impedance is computed for each measurement data

point using Eq. 3.19, where the HFSS computed radiation efficiency is applied.

δξM =
Zin − Zant
ηRe{Zant}

(3.19)

Zin is generated from the measured reflection coefficients, Eq. 3.20.

Zin = Z
1
2
0 (I − S11)

−1(I + S11)Z
1
2
0 (3.20)

Zant is computed from Zin using the time gating method described is Chapter 2.

The probability density function (pdf) of the real and imaginary parts of the

normalized impedance is generated from a histogram of the large ensemble of mea-

surements. Figures 3.9, 3.10, 3.11, 3.12 show the pdfs are in good agreement with

the predicted pdfs. The predicted pdfs are obtained from the random matrix based
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Figure 3.9: Comparison of the probability density function of the real part of the
normalized impedance for 9.5 GHz - 11 GHz.

Figure 3.10: Comparison of the probability density function of the imaginary part
of the normalized impedance for 9.5 GHz - 11 GHz.

Monte Carlo simulation [22], where the only parameter required for the Monte Carlo

simulations is the measured loss parameter α. This agreement also shows the sig-

nificance of this new model. That is, if we had assumed the simple low loss antenna

model in Fig. 3.2, and would have obtained the pdfs, shown in gray in the Figs. 3.9,

3.10, 3.11, 3.12. These are shown to deviate substantially from the measured pdfs.
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Figure 3.11: Comparison of the probability density function of the real part of the
normalized impedance for 1.5 GHz - 3 GHz.

Figure 3.12: Comparison of the probability density function of the imaginary part
of the normalized impedance for 1.5 GHz - 3 GHz.

3.5 Conclusion

We have shown that for a lossy antenna in a lossy cavity, the impedance statis-

tics can still be characterized. Based on the description from the random coupling

model and the use of the radiation efficiency, the probability density function of
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the input impedance a port can be fully characterized. Furthermore, practical mea-

surement techniques, that are of interest to EMC community are demonstrated for

typical real world enclosures.
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Chapter 4: Determining the Lowest Usable Frequency in the RCM

When using a statistical model such as the RCM it is important to know

under what conditions the model is applicable to the system under consideration.

The RCM is applicable to enclosures that display chaotic behavior in the small

wavelength limit. For very small wavelengths, making a ray chaotic enclosure doesn’t

take much effort. For example, Haake et. al have demonstrated that even a cuboidal

microwave chamber [40] with a monopole antenna whose diameter is on the order of

a wavelength can produce spectra with the characteristic of a Gaussian orthogonal

ensemble. On the other hand, for large wavelengths, even ray chaotic enclosures may

not be described by wave chaos or the random coupling mode. This is because the

assumption of ray trajectories ergodically filling the enclosure is invalidated at low

frequencies. In this chapter, we discuss these assumptions of the RCM and present

experimental metrics that can be used to determine the lowest usable frequency of

the RCM.

4.1 Introduction

The random coupling model as described in Sec. 1.3 is a statistical model

that describes the impedance at the ports of enclosures with a limited amount of
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Figure 4.1: A illustration of the characteristic of an overmoded enclosure.
For range of interest, δk2, the enclosure is overmoded given ∆k2 �
δk2 � k2n

information about the enclosure itself. However, in order to apply the RCM, we must

first verify two key assumptions about wave scattering within the enclosure [12,20].

The first assumption is that the enclosure is overmoded. If we consider the complex

random quantity ξ in the impedance formulation of the RCM,

ξ = − j
π

∑
n

∆k2φnφ
T
n

k2 − k2n + jα/∆k2
, (4.1)

the comprising quantities of which are described in Sec. 1.3, the assumption is that

there are many modes with k2n over the frequency range of interest.

This is illustrated in Fig. 4.1, where k = 2πf
c

is the wavenumber, f is the

excitation frequency, and c is the speed of light. In the range δk2 of k2, over which we

want to describe our system using the RCM, the assumption is that ∆k2 � δk2 � k2n

such that within the range of δk2 of k2 many modes contribute to the response

(∆k2 � δk2), but these modes have similar properties (δk2 � k2n).

The second assumption is the ”random plane wave hypothesis,” which states

the fields can be approximated as plane waves uniformly distributed in the enclosure
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and locally can be treated as a superposition of isotropically propagating plane

waves. This hypothesis is based on the ergodic nature of ray trajectories in chaotic

billiards and has been demonstrated numerically for short wavelength solutions of

the Helmholtz equation in [41]. This is also discussed in the context of tunneling in

quantum wells [42]. The claim is that eigenfunction φ(x)) of the Helmholtz equation

can be approximated by a superposition of the plane waves with wavenumber kn,

φ(x) =
N∑
j=1

aj cos (iknêj · x + iθj) , (4.2)

where the amplitude aj is independent and identically distributed random variable,

ej is independent isotropically distributed random vector, and θj is independent and

uniformly distributed random variable in [0, 2π). Therefore, by the central limit

theorem, for very large N , at any point x, φ(x) will have a Gaussian distribution,

Px (φ) =
1√

2πσ2
exp

(
−φ2

2σ2

)
. (4.3)

However, this has only been validated at wavelengths much smaller than the en-

closure dimensions. This approximations will be incorrect at wavelengths on the

order of the size of the enclosure. Thus, it important to determine the lowest usable

frequency.

The Electromagnetic compatibility (EMC) community also has this important

task of finding the lowest usable frequency (LUF) in enclosures, where they test for

immunity of electronic devices exposed to high power electromagnetic sources [44].

In order to test for a variety of attack angles over a wide range of frequencies, the

devices are tested in mode stirred reverberation chambers similar to one shown in

Fig. 4.2. As the mode stirrer rotates, and at high excitation frequencies, the fields

48



Figure 4.2: A example of a reverberation chamber at the Otto-von-
Guericke-University Magdeburg, Germany, where electronic devices are
test for immunity to high power electromagnetic sources [43]
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at any point in the volume where the device is placed will have roughly uniform

amplitude and isotropic direction, ideal for immunity testing. However, the uni-

formity and isotropy break down at lower frequencies. International standards [45]

are written to guide users to determine the LUF for their enclosures. Some of the

methods in the EMC community will be used in this chapter as we develop metrics

to find the LUF of the RCM.

The chapter is organized as follows. In Section 4.2, an example case, a 2D

chaotic cavity, is solved in ANSOFT HFSS to demonstrate the metrics that allow

us to find the range of frequencies for which the RCM is applicable. In Section 4.3,

we describe experimental methods to determine the LUF. The ideas in this chapter

are summarized in Section 4.4.

4.2 Computing the distribution of field at lower frequency

In order to study the assumptions of the RCM at low frequencies, we simulate a

classically chaotic bowtie shaped 2D cavity in ANSOFT HFSS [36]. The geometry

of the cavity is shown in Fig. 4.3. The walls of the cavity are perfect electric

conductors. We have added an elliptical mode stirrer that we rotate by 180 degrees

in increments of 5 degrees. For each position of the mode stirrer, we solve for the

first 40 eigenfrequencies. The size of the mode stirrer is made large enough to

shift an eigenfrequency as it rotates by an amount equal to the spacing between

eigenfrequencies. In the following, we describe the procedure used to determine the

size of the mode stirrer.

50



Figure 4.3: An example cavity simulated in HFSS. The fields are mea-
sured over the test region to verify a Gaussian distribution over an en-
semble of mode stirrer positions

4.2.1 Determining the Size of the Mode Stirrer

We define the characteristic length of the mode stirrer to be

Lstir =
√
Astir. (4.4)

where Astir is the circular area that the mode stirrer sweeps as it rotates. Similarly,

the characteristic length of the bowtie cavity is

Lcav =
√
Acav, (4.5)

whereAcav is the area of the cavity. The area of the mode stirring ellipse is subtracted

in calculating the area of the cavity. For the bowtie cavity shown in Fig. 4.3,
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Lcav = 21.5 cm. The parameter of interest is the ratio of the characteristic lengths

R =
Lstir

Lcav

, (4.6)

which could be used to determine the necessary size of mode stirrers in different

shaped cavities as well.

For a range of values of R, we compute the first 20 eigenfrequencies of the

bowtie cavity at each position of the rotating mode stirrer. For any one position of

the mode stirrer, the mean spacing between squared eigenfrequencies is independent

of frequency and given by the Weyl formula as

〈
∆F 2

〉
Weyl

=
c2

π2Acav

(4.7)

where c is the speed of light. As an example, the first 20 squared eigenfrequencies

for R = 0.5 is shown in Fig. 4.4 as a function of the stirrer position. As we rotate

the mode stirrer, the ith squared eigenfrequency will vary over a range of squared

frequencies, ∆F 2
i . We consider the cavity to be adequately stirred if R is large

enough such that ∆F 2
i averaged over i is greater than 〈∆F 2〉Weyl. For the cavity

shown, R = 0.5 is large enough to satisfy this condition.

4.2.2 Electric Field Distribution in a Mode Stirred Cavity

Once we have set the geometry and the boundary conditions, we solve for the

eigenmodes and evaluate the fields in the test region. This region is chosen not to

be too close to any of the boundaries to avoid small field values. We compute the

electric field in the test region shown in Fig. 4.4 on a rectangular grid with a spatial
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Figure 4.4: The first 20 squared eigenfrequencies in the bowtie cavity as
a function of the angular position of the mode stirrer. The characteristic
lengths ratio, R = 0.5
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resolution of 1 mm at the first eigenfrequency above a specified frequency. By the

random plane wave hypothesis, we expect the distribution of electric field to be

Gaussian. Figure 4.5 shows the pdf of the electric field for two specified frequencies

compared to a Gaussian distribution. At lower frequencies, such as 3 GHz where

the ratio of the wavelength (λ) to the characteristic length of the cavity ( Lcav) is

0.47, the pdf appears to deviate from a Gaussian distribution. At 6 GHz where

λ/Lcav is 0.28, the pdf has a much better fit to a Gaussian. In order to determine

the frequency below which the distribution of normalized electric field no longer fits

a Gaussian, we apply the Kolmogorov-Smirnov goodness of fit test. The KS test

statistic (D), is

D = sup
x
|FE(x)− FN(x)| , (4.8)

where FE is the cdf of the computed normalized electric field, FN is the cdf of a

standard Gaussian distribution, and sup is the supremum operator. The KS test

statistic is shown in Fig. 4.6. Some the outliers at higher frequencies are cases where

for some positions of the mode stirrer the eigenmodes are trapped on the right side

of the mode stirrer and which never reach the test region and which have skewed

the distribution of the electric field. For a 1% threshold, the lowest usable frequency

is around 4 GHz where λ/Lcav is 0.35. Therefore, despite the fact that the cavity

at these frequencies is not overmoded, the mode stirrer moves the eigenfrequencies

enough that we have many different eigenfrequencies contained in the ensemble. The

ensemble of electric fields at these eigenmodes have a Gaussian distribution which

validates the random plane wave hypothesis.
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Figure 4.5: The probability density function of the real part of the nor-
malized electric field over the test region. The electric field for the eigen-
mode closest to 6 GHz (b) appears to have a pdf closer to a Gaussian
than the eigenmode closest to 3 GHz (a).
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Figure 4.6: The Kolmogorov-Smirnov test of the electric field distribu-
tion in the cavity to the Gaussian distribution. The dash line is 1%
threshold
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Figure 4.7: The cylindrical enclosure used for 2-port impedance mea-
surements. Port 1 is stationary while the location of port 2 can be at
one of four locations (2A, 2B, 2C, 2D).

4.3 Determining the lowest usable frequency in 3D Enclosures

For situations where we can not easily obtain the fields on a fine grid of points

inside our enclosure, we need to look for some other metric. In the same cylindrical

enclosure that we use for our studies in Chapter 3, we measure the 2× 2 impedance

matrix between port 1 and port 2 from 0.1 GHz to 2.1 GHz. The location of port

1 and the four locations of port 2 are illustrated in Fig. 4.7. The location of port

2 changes for each of the four measurements of the impedance while the location

of port 1 remains the same. The port at each of the locations is a 26 cm long low-

loss monopole antenna connected to a coaxial cable. The coaxial cable is removed

from the impedance measurement through calibration. A mode stirrer rotates a full

revolution in increments of 7.2 degrees for a total 50 cavity realizations. The ratio
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of the characteristic length of the mode stirrer (cube root of the swept volume) to

the characteristic length of the cavity is equal to 0.25.

At high enough frequencies, we expect the system to have two properties.

First, we expect that as the stirrer is turned there are a high number of uncorrelated

cavity realizations. At a frequency where the cavity is overmoded and the geometry

is such that the fields are sensitive to changes to the stirrer position, we expect to

generate an large ensemble of uncorrelated measurements and thus a large number of

cavity realizations as shown in previous tests of the RCM [46]. The second property

of the system has to do with the distribution of the normalized impedances. We

expect the distribution to be invariant to the location of port 2. This is due to the

assumption that waves ergodically fill the enclosure.

4.3.1 Comparing Normalized Impedance Distributions at Multiple

Locations

To find the frequency above which this distribution is invariant to the port

location, we normalize the measured impedance using the two-port random coupling

model equation,

z = R
−1/2
rad (Zcav − jXrad)R

−1/2
rad , (4.9)

where Zcav is the measured impedance, Rrad and Xrad are real and imaginary

parts of the radiation impedance. The radiation impedance can be measured using

the time gating method as described in Chapter 2. It can also be approximated by

averaging Zcav over mode stirrer positions. An example of the radiation impedance
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Figure 4.8: An example of the radiation impedance computed from the
measured Zcav (gray). The radiation impedance can be computed by
the time gating method (TGM) (red) or by averaging Zcav over mode
stirrer positions (black).

obtained by both methods is shown in Fig. 4.8. In this section, we use the time

gating method to measure the radiation impedance. We then compare the distri-

bution of the normalized impedance at the range of frequencies between 0.1 GHz

to 2 GHz. The distributions at high frequencies are shown in Fig. 4.9. The four

locations appear to have the same distribution. However, at the lower frequencies as

shown in Fig. 4.10, the distributions at the four location appear appear to disagree.

For a more quantitative analysis, We then compare the variance of the normalized

impedance measured at the four locations. The measured variances of the real and

imaginary part of z21 and z22 is shown in Fig. 4.11. At lower frequencies, the vari-
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Figure 4.9: The distribution of the normalized impedance between 2 GHz
to 2.1 GHz. Shown are the real (a)) and the imaginary part (b)) of z22,
and the real (c)) and imaginary part (d)) of the z21. The distributions
of at four locations appear to agree with one another.
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Figure 4.10: The distribution of the normalized impedance between 0.5
GHz to 0.6 GHz. Shown are the real (a)) and the imaginary part (b)) of
z22, and the real (c)) and imaginary part (d)) of the z21. The distribu-
tions of at four locations, particularly of r22 appears to be different for
the four locations.
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Figure 4.11: The variance of the normalized impedance. At lower fre-
quencies, the variance depends of the location of the port, but at higher
frequencies that variance collapses to a single curve
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ances are different at the four locations. At these frequencies, the modes are not

uniformly stirrer throughout the enclosure. As the mode stirrer rotates, some loca-

tions inside the enclosure will see a large variation in the fields and other locations

are not as sensitive to the rotation of the stirrer. This presumably arises from a

violation of the random plane wave hypothesis of the RCM. However, at frequencies

above 1.25 GHz, the variance of the impedance for the four locations collapses to one

curve. Therefore, using this as a metric, we would conclude that the lowest usable

frequency is 1.25 GHz, which in terms of the ratio of the wavelength to characteristic

length (λ/Lcav) is 0.2.

4.3.2 The Number of Cavity Realizations as a Metric for the LUF

The other metric for determining the LUF follows from the first property of

the mode stirred system described in this section. That is, we expect to find a

large number of uncorrelated cavity realizations, Nθ, as the stirrer is turned. The

frequency above which a large enough number of cavity realizations are available

is deemed to be the LUF. The quantity Nθ is also of interest in the design of

reverberation chambers for EMC purposes [47]. The procedure used in that context

is also applied here. To determine Nθ, we first compute the Pearson correlation

matrix,

rij =
Cov (Zi, Zj)√

Var (Zi) Var (Zj)
(i, j = 0, 1, 2, ..., N), (4.10)

where Zi,j is the normalized z21 at the ith or jth position and N = 50 is the number

of cavity realizations. The normalized z21 is measured between port 1 and each
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Figure 4.12: The number of uncorrelated positions generated by rotating
the mode stirrer, assuming the correlation cutoff rs = 0.6. Note that
there are 50 positions in the data set. The data below 0.2 GHz is mostly
uncorrelated noise because of a lack of propagating modes

of the port 2 locations. The operators Cov and Var are the covariance and the

variance, respectively. After computing the 50 × 50 matrix, we determine the the

number of uncorrelated position for a given correlation threshold rs as follows. We

compute the correlation of all 50 positions to the first position. All the positions

with correlation above rs are removed from the list. Next, the correlation between

the second position and all the other positions in the reduced list are computed.

Positions with correlation above rs are again removed. This is repeated for position

3 to 50. The number of positions left in the final list is taken to be the number of

uncorrelated positions. Figure 4.12 show the number of uncorrelated positions in our

cylindrical enclosure for rs = 0.6. The number seems to reach maximum at around
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1.25 GHz for all four positions. At this frequency, the ratio of wavelength to the

characteristic length of the cavity is equal to 0.2. Therefore, we use the saturation

point of Nθ as a metric for determining the lowest usable frequency of RCM.

4.4 Conclusion

In this chapter, we have illustrated some metrics that can be used to determine

the lowest usable frequency (LUF) for the random coupling model. With numerical

calculation, we solve for the eigenmodes of a cavity and study the distribution

of the fields. The RCM assumes the fields within a region in the cavity have a

Gaussian distribution. We use the Kolmogorov-Smirnov test to compare the field

distribution to a Gaussian, and to determine the frequency above which the fields

are said to be Gaussian distributed and thereby deem the RCM applicable. In 3D

enclosures, we measured the variance of the normalized impedance at four different

locations within the enclosure. The RCM predicts that the variances are the same.

From the variance measurements, we can identify the frequency above which the

variances are consistently the same at all four locations. Finally, we measured the

number of independent positions generated by the rotation of the mode stirrer. For a

given correlation threshold, we compute the number of uncorrelated measurements.

We can use the frequency above which the number of uncorrelated measurements

saturate as a metric to determine the LUF. From the various metrics discussed

in the chapter, we gather that the LUF in term of the ratio of the wavelength to

characteristic length of the cavity (λ/V 1/3) to be in the range of 0.2 to 0.35.
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Chapter 5: Microwave Analog to Chaotic Regularization of Quan-

tum Tunneling Rates

In this chapter, we will use the methods and tools of microwave systems to

experimentally validate a quantum mechanical concept. Specifically, we study chaos

regularization of tunneling rates, the theory of which is presented in [48,49]. In the

microwave analog, we demonstrate this principle through simulations in full wave

computational electromagnetic software and physical experiments in superconduct-

ing microwave cavities. Both are presented in this chapter.

5.1 Introduction

We consider a mirror symmetric double well systems separated by tunneling

barrier as shown in the insets of Fig. 5.1 and discussed in [48]. In this quantum

mechanical problem, the potential energy inside the wells is equal to 0, the potential

in the tunneling barrier region is equal to VB > E, where VB is a constant, E

is the energy of the eigenstates, and the potential is equal to infinity elsewhere.

The eigenstates have even and odd parity with respect to center. The presence of

the tunneling barrier causes a splitting of the energy of the eigenstates, with the

energies of the symmetric eigenstates Es being slightly smaller than the energies of
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Figure 5.1: The tunneling rates in integrable (a) and chaotic cavities (b).
The fluctuation of the tunneling rates is much higher in the integrable
case, but the sliding average (c) is independent of the shape of the cavity.
This result presented by Pecora et. al in [48] and reprinted here with
the permission of American Physical Society.
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the antisymmetric states Ea [49]. The difference, ∆E = Ea − Es, is referred to as

the tunneling rate.

There were two main results presented by Pecora et. al [48]. The first result

is that fluctuations in the tunneling rate are much larger for integrable cavities

compared with those of chaotic cavities. This is because the tunneling rate is a

function of the incident angle of a ray at the barrier. In the chaotic cavity, by

the random plane wave hypothesis as discussed in Sec. 4.1, the propagation angles

are uniformly distributed in [0, 2π). However, in the integrable cavity the incident

angles are restricted and differ from mode to mode. Waves with incident angles that

are nearly tangential to the barrier will tunnel less than those with angles nearly

perpendicular as shown in the inset of Fig. 5.1(a). The second result predicted

in [48] is that the sliding average of the tunneling rate will be independent of the

cavity shape given the same cavity area and the same tunneling barrier. This is

demonstrated in the result shown in Fig. 5.1(c).

In order to experimentally validate the theoretical results from [48], we look

to microwave cavities. The probability amplitude of a quantum mechanical particle

has an analog in the transverse electric field of a thin two-dimensional microwave

cavity. The ”tunneling barrier” for the microwave cavity as shown in Fig. 5.2 is

due to the septa forming a series of the waveguides with cutoff frequencies below

the range of frequencies we study.

The Schrodinger Equation can be written as the wave equation in the Helmholtz

form, (
∇2 + k2

)
φ (x) = 0, (5.1)
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where φ (x) is the wave field as a function of position x and k is the wavenumber.

For a quantum mechanical system, k2 = E−Vb, but for the transverse electric wave

in the microwave system k2 = K2 −K2
b where K2

b = 0 in the cavity and K2
b in the

septa is approximated by the square of the cutoff wavenumber of the waveguides in

the septa, and is given by

K2
b =

π2

d2
(5.2)

where d is the separation distance between the waveguide plates (see Fig. 5.2).

Therefore, the energy states of the quantum mechanical particle, E, have an analog

in the squared eigenfrequencies, Fn ≡ f 2
n, of the microwave system. Similarly, the

energy splitting or tunneling rate, ∆E, has an analog in the splittings of the squared

microwave eigenfrequencies, ∆f 2.

The remainder of this chapter is organized as follows. In Section 5.2, we will

present and discuss simulation results of the frequencies splittings in integrable and

chaotic microwave cavities. In Section 5.3, experimental results of the superconduct-

ing cavities are presented. In Section 5.4, the results of this chapter are summarize

and suggestions for future projects is presented.

5.2 Simulation of the Tunneling Rates in Cavities

A rectangular cavity and a bowtie shaped cavity are modeled in Ansoft HFSS

[36]. The geometry and dimensions of the rectangular cavity are shown in Fig. 5.2.

In both cavities, the dimensions of the septa as well as the area of the cavities is the

same. The curved boundaries of the bowtie cavity is constructed by two identical
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Figure 5.2: The microwave cavities used to study the tunneling rates in
HFSS. Both the integrable (a) and the chaotic (b) cavities have the same
area and the same ”tunneling barrier”
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circles on the sides of radius 504 mm with larger circle at the top of radius 840 mm.

The bottom surface is kept flat. The location of the circles on the sides are moved

to match the area of rectangular cavity. The height of the cavities in the third

dimension is 2.5 mm, which means as long as we measure below the 60 GHz cut-off

frequency, the field solutions will be essentially two dimensional. The separation,

d, between the septa is 14.2 mm; therefore, by Eq. 5.2, the cutoff wavenumber is

Kb = 221.2 m−1 and the cutoff frequency is fb = Kbc
2π

= 10.6 GHz.

Using HFSS, we compute the first 60 eigenfrequencies above 2 GHz in the

cavity, which as a result of the septa come in split pairs. We compute the difference

between the squared eigenfrequencies. The splitting of the squared eigenfrequencies

is ∆f 2. The difference from one pair of squared eigenfrequencies to the next is ∆F 2.

The relationship between ∆F 2 and ∆f 2 is shown in Fig. 5.3. The quantities ∆F 2

and ∆f 2 computed from a table of eigenfrequencies are shown in Fig. 5.4.

From the simulation, we can determine the mean mode spacing ∆K2 which

is directly proportional to the ∆F 2. The moving average of ∆F 2 appears to be

constant, independent of frequency for both the chaotic and integrable cavities.

This is expected because for a 2D cavity the spacing between adjacent cavity modes

(∆K2 = K2
n+1 − K2

n) as predicted by Weyl formula is frequency independent [20],

and given by

∆K2 =
4π

A
(5.3)

where A is the area of the cavity on one side of the septa.

More importantly, the frequency splitting or the spacing between symmetric
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Figure 5.3: An illustration of ∆f 2 and ∆F 2 shown in a prospective
measurement of the reflection coefficient at port inside the cavity.

and antisymmetric modes, ∆f 2, which we have referred to as the tunneling rate,

increases with frequency. This is because as the frequency approaches that of the

cutoff waveguide in the septa region more of the energy travels through evanescent

waves to the adjacent cavity. The moving average of ∆f 2 as shown in Fig. 5.5

appears to be the same in both cavities as predicted in [48]. Additionally, we observe

a reduction in the fluctuations of the tunneling rate in the bowtie cavity compared

to the rectangular cavity. The fluctuations about the moving average is computed

to be roughly 25% smaller for the bowtie cavity. Therefore, we have numerically

demonstrated regularization of tunneling rates in chaotic cavities.
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Figure 5.4: The difference in the square of the eigenfrequencies for the
rectangular (a) and the bowtie (b) cavity. As the eigenfrequencies split
pair come in pairs, the difference within the pair is ∆f 2 and the difference
from one set to another is ∆F 2
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Figure 5.5: The frequency splitting in the rectangular and bowtie cavi-
ties. The moving average of appear to be the same in both cavities while
the fluctuation is smaller for the bowtie cavity
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Figure 5.6: The quasi-2D aluminum cavities used to study the tunneling
rates. Both sides of the rectangular and bowtie cavities are carved a
depth of 2.5 mm and have the same area and the same ”tunneling bar-
rier” The left images show the milled bottom plate. The right images
show the lid attached to the bottom plate.

5.3 Experiments in Superconducting Microwave Cavities

For the purpose of experimental validation of chaos regularization of tunneling

rates, the cavities simulated in Section 5.2 are designed and built by Rachel Owen

and John Rodgers [50]. Two cavities of depth of 2.5 mm in the shape of the two

simulated cavities including the septa were milled in bulk of 6061 alloy aluminum.

This is shown in Fig. 5.6. Another aluminum plate is screwed on top to form the

cavity. On either side of the septa, coaxial fed ports were added with the center pin

extruding about half way into the cavity.

The cavities were cooled in a dilution refrigerator shown in Fig. 5.7 to about

100 mK. This temperature is much lower than the critical temperature for supercon-
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Figure 5.7: The aluminum cavity mounted in the dilution refrigerator.
The chamber is closed and cooled to about 100 mK.

ductivity of about 1 K for the 6061 aluminum alloy [51]. We placed a thermometer

at the bottom of the cavity as well as at the coldest point in the dilution refrigerator,

the mixing plate (MXC) shown in Fig. 5.7. The temperature profile as a function of

time is shown in Fig. 5.8. The temperature on the MXC is lower than on the cavity

itself; however we were able to reach below 100 mK on the cavity. The oscillations

in the temperature are due to the act of radiating into the cavity for the purpose

measuring the transmission coefficient.

We measured the transmission coefficient from one side of the septa to the

other in a network analyzer. The experimental setup for this measurement is shown

in Fig. 5.9. The superconductivity of the aluminum increases the quality factor

by about fivefold compared to the cavity at room temperature. This improves our
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Figure 5.8: The temperature profile of the cavity in the dilution refrig-
erator. The temperature at mixing plate and the cavity are shown over
a six hour period.

Figure 5.9: The experimental setup for measuring the transmission co-
efficient in the cavities
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ability to identify the narrow frequency splittings in the transmission coefficient

measurement. However, at higher frequencies where Q-widths are greater than

the frequency splitting, the symmetric/antisymmetric modes overlap and we have

difficulties identifying the frequency splittings. Even though we have removed ohmic

loss in the walls, which was the dominant contributor to the the quality factor, there

are other loss mechanism, as discussed in Sec. 3.2 by which the power from the cavity

can still dissipate including leakage through seams in the cavity as well as through

the ports. This limits the quality factor.

The measured transmission coefficient, S21 for the bowtie cavity is shown in

Fig. 5.10. The resonant peaks are identified using the findpeaks.m function in

MATLAB [52]. At lower frequencies, the peaks and the frequency splitting are

clearly identified. However, at higher frequencies the Q-widths of the resonances are

on the order of the frequency splitting which results in misidentifying superposition

of two very close resonant peaks as a single peak.

We have also measured the transmission coefficient in the rectangular cavity.

However as demonstrated in Sec. 5.2, the tunneling rates are not regularized in

the rectangular cavity, so the frequency splitting can take a wide range of values

including very small splittings at lower frequencies. This can be seen in Fig. 5.11.

Beginning with first resonance above 2 GHz, the Q-widths are not small enough to

resolve the frequency splitting. The fact that we were able to identify the splitting

more easily with bowtie cavity indicates chaos regularization of the tunneling rates.

However, in order to fully validate this principle a much higher quality factor cavity

is required. Some suggestions for increasing the quality factor are presented in the
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Figure 5.10: The measured S21 for the bowtie cavity. The blue dots
indicate the location of the identified peaks.

next section.

5.4 Conclusion

In this chapter we have demonstrated in the HFSS simulations that the fluc-

tuations of the tunneling rates are much higher between two rectangular cavities

than between two bowtie cavities. This is the microwave analog to quantum chaos

regularization of the tunneling rates presented in [48]. In order to experimentally

demonstrate this phenomenon, we need to be able to identify very close resonant

peaks in the transmission coefficient, which we found requires the quality factor to

be higher such that the Q-width is much smaller than the smallest frequency split-

ting. There are a couple of ways to achieve sufficiently higher quality factor that we

could explore in the future. One suggestion is to increase the depth of the cavities.

This will increase the volume and in effect increase the stored energy. The quality
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Figure 5.11: The measured S21 for the bowtie cavity. The red dots
indicate the location of the identified peaks.

factor, defined by Eq. 3.1, is directly proportional to the stored energy and will

increase accordingly. The depth of the cavity used for this project can be increased

to the separation width of the waveguides in the septa while maintaining 2D solu-

tions of the wave equation. Another suggestion would be to minimize any leakage

in the cavity. The cavity is formed by joining two aluminum plates using 50 screws

around the perimeter of the cavities. With the changing temperatures of the cavities

placed in the dilution refrigerator, the aluminum will expand and contract which

may allow EM energy to leak. If we could eliminate this possibility for leakage, we

could increase the quality factor, which will allow us experimentally validate chaos

regularization of the tunneling rates.
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Chapter 6: Final Conclusion and Future Work

Modeling the wave propagation in complex enclosures with multiple ports is

of interest to many disciplines. In this dissertation, we studied the statistics of

the scattering and impedance parameters in complex electromagnetic enclosures. A

focus point for this dissertation has been the random coupling model (RCM). The

RCM has been successfully demonstrated as a statistical model to characterize the

impedance matrix of multi-port complex electromagnetic enclosures. [22]. However,

there are some challenges to implementing the RCM in practical systems, which

have been addressed in this dissertation.

One of these challenges is measuring the radiation impedance, Zrad. In Chapter

2, the time gating method is introduced as a method to measure Zrad. Along with

the loss parameter, the radiation impedance is one of the system-specific parameters

required to form the RCM. In previous tests of the RCM, the radiation impedance

has been measured by covering the enclosure walls with absorbers to dampen the

reflections from the enclosure. However, lining the enclosure with absorber can be

prohibitively time consuming. In some cases, we may not have access to the parts of

the enclosure. We could alternatively simulate the port; however, this does require

that we know the exact dimensions and materials of the port, of which we may
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not have access. The time gating method, measures the radiation impedance in a

non-intrusive way by suppressing portions of the time domain measurement larger

than the gating time.

Another challenge addressed in this dissertation is localized loss at the ports

of complex enclosures. Under the condition of a lossy port, the radiation impedance

at the port is difficult to measure by any method including the time gating method.

However, in Chapter 3, we show that if the enclosure is also lossy, the impedance

statistics can still be characterized using a modified RCM formulation. The new

formulation is derived where the radiation efficiency of the port is an additional

parameter required to characterize the system. This models is successfully tested

on an antenna with significant dielectric loss at the port.

In addition to addressing these challenges of implementing RCM, we discuss

methods to determine the lowest usable frequency of the RCM. The key assump-

tions of the RCM which are an overmoded enclosure and the the random plane

wave hypothesis break down at lower frequencies. Some methods to measured this

break down is discussed in Chapter 4. The LUF is given in terms of the ratio of

the wavelength to the characteristic length of the enclosure which we found to be

between 0.2 to 0.35.

Finally in Chapter 5, we demonstrate the quantum mechanical principle of

chaos regularization of tunneling rates in cavities [48]. The mirror symmetric double

well system with a tunneling barrier has an analog case in microwave systems, which

we demonstrated in this chapter. Although, the RCM was not a subject of this

chapter, we used the concept of the random plane wave hypothesis and the tools of
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microwave systems to demonstrate the principle.

The RCM has been a topic of several dissertation at the University of Maryland

[12,20,53,54,54]; however, there are still some future work that can be done to fully

test the RCM. One of these projects is to study broken-time-reversal-symmetric

(BTRS) systems. The RCM theory can handle BTRS systems, but the experimental

tests of the RCM in 3D enclosures presented here and in previous projects have

been time-reversal-symmetric systems. Using large magnetized ferrites materials

in enclosures, we could test BTRS systems as well. Another project that is more

directly related to this dissertation is to generalize the lossy port formalism discussed

in Chapter 3 to low loss cavities (α < 1). We were able to avoid computing the three

unknown impedances in Fig. 3.3 by applying the radiation efficiency parameter.

However, the assumptions leading to the new RCM formulation are only applicable

to lossy cavities. For moderate to low-loss cavities with lossy ports, a new method

is required.
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Appendix A: Determining the Minimum Rotation Step of the Mode

Stirrer

In order to study the impedance statistics in the complex enclosures, we need

to collect a large ensemble of measurements. The mode stirrer in the enclosure allows

us to obtain many cavity realizations. Inside the cylindrical enclosure discussed in

Chapter 3 (see Fig. 3.5), the mode stirrer is an aluminum sheet 18.5 cm X 48 cm

suspended on a rod from the top of the cylinder at 45 degree angle as shown in Fig.

A.1. To obtain a new cavity realization, the rod is rotated by small angular step.

However, unless the step size is large enough, the new measurement will be strongly

correlated to previous measurement. This means the new measurement does not

add new data to the ensemble. This could even skew the statistics. Therefore,

we need to determine the angle step size above which adjacent measurements are

minimally correlated.

In order to study the correlation between consecutive measurements, we com-

pute the Pearson correlation coefficient matrix using the following procedure. We

measure the reflection coefficient, S11, in the frequency range of interest for 200

positions of the mode stirrer. Each mode stirrer position is separated by an angle

θ = 1.8 degrees from an adjacent position. Then, we compute the elements of the
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Figure A.1: The mode stirrer inside the cylindrical enclosure
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Figure A.2: The columns of Pearson correlation coefficient matrix for S11

measurements across 200 mode stirrer positions separated by an angle θ
away from each other

Pearson correlation coefficient matrix given by

ρ (i, j) =
Cov (Si, Sj))√

Var (Si) Var (Sj)
(A.1)

where Si,j is the measured S11 for the location indices i or j ranging from 1 to 200,

Cov and Var are the covariance and variance operators, respectively.

The columns of the correlation coefficient are shown Fig. A.2. The mea-

surements becomes minimally correlated if we rotate the mode stirrer by about 7

degrees or more. Therefore, for the measurements reported in Chapter 3 and Chap-

ter 4, we measure at 50 mode stirrer positions each separated by 7.2 degrees from a

neighboring position.
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