

Physics and Applications of Negatively Refracting Electromagnetic Materials

Steven M. Anlage, Michael Ricci, Nathan Orloff

Work Funded by NSF/ECS-0322844

Outline

What are Negative Index of Refraction Metamaterials?

What novel properties do they have?

How are they made?

What new RF/microwave applications are emerging?

Superconducting Metamaterials

Caveats / Prospects for the future

Perative Index of Refraction (PNR) - Right Handed Medium (RHM)

How can we make refractive index n < 0?

Use "Metamaterials"

Artificially prepared dielectric and conducting materials with negative values of both ϵ and μ

$$\vec{D} = \varepsilon \, \vec{E} \qquad \vec{B} = \mu \, \vec{H}$$

→<u>Negative index of refraction</u>! Many optical properties are reversed!

Propagating Waves (ε, μ) space $\varepsilon < 0$ RHM $\epsilon > 0$ $\mu > 0$ Vac RHM LHM Vac $\mu > 0$ $n = \sqrt{\varepsilon\mu} > 0$ ii e, θ, 3 iii iν $\Theta_{\rm c}$ | k $\varepsilon > 0$ $\epsilon < 0$ $\mu < 0$ $n = \sqrt{\varepsilon \mu} < 0$ Ordinary Negative Propagating Waves-propagating Waves Refraction Refraction LHM

Negative Refraction: Consequences

Left-Handed or Negative Index of Refraction Metamaterials

 $\epsilon < 0 \text{ AND } \mu < 0$ Veselago, 1967 Propagating waves have index of refraction n < 0 \Rightarrow Phase velocity is opposite to Poynting vector direction Negative refraction in Snell's Law: $n_1 \sin \theta_1 = n_2 \sin \theta_2$

Flat lens with no optical axis "Perfect" Lens (Pendry, 2000) Reverse Doppler Effect Radiation Tension Converging Lens → Diverging Lens and *vice-versa* Reversed Čerenkov Effect

The plasma frequency for most metals is in the optical or UV spectral ranges

Strategy to decrease the plasma frequency \Rightarrow Thin wire lattice Decrease n_{eff} and increase m_{eff}

> with a = 5 mm and r = 1 μ m, f_p = $\omega_p/2\pi = 8.20$ GHz

Metamaterial vs Photonic Crystal

Create an "effective medium" with macroscopic ε_{eff} , μ_{eff} , *n* properties that are engineered

Use constructive and destructive interference to engineer properties of light $\rightarrow \omega(\vec{k})$ band structure band gaps defect states negative group velocity ...

Photonic Crystal

How to Make Negative Permeability

Magnetic Permeability $\mu = \mu_r \mu_0$

 $ec{M} = \chi_{magnetic} ec{H}$ $\mu = \mu_0 ig(1 + \chi_{magnetic} ig)$

A closed ring is diamagnetic (Lenz's Law)

Enhance χ_{magnetic} with a <u>resonance</u>. Add a capacitor to make an LC oscillator Screening current is enhanced and $\mu < 0$ is possible

Resonance ~10 GHz

Metamaterials: Realizations

One Strategy: Combine metamaterials so that frequency ranges of $\epsilon < 0$ and $\mu < 0$ overlap to give n < 0

Left-Handed Materials Theory (Veselago, 1967)

Experiments:

 $\epsilon_{eff} < 0$ accomplished by Pendry, *et al.* (1998) $\mu_{eff} < 0$ accomplished by Pendry, *et al.* (1999) using split-ring resonators (SRR)

 $\epsilon_{eff} < 0 \underline{AND} \mu_{eff} < 0$ done by D. R. Smith, *et al.*, PRL <u>84</u>, 4184 (2000) using wires and SRRs

Applications: Now Emerging!

Metamaterials: Realizations

Left-Handed Materials, Negative Refraction: Science 292 77 (2001)

Other examples of Evanescent signals:

Excitation of a waveguide beyond cutoff High spatial-frequency (k) non-propagating fields near a source (antenna)

"Perfect" Flat Lens Imaging

n < 0 Flat Lens can be a Perfect Lens: Pendry PRL <u>85</u>, 3966 (2000)

High spatial frequency optical information is carried in evanescent fields These waves are lost in normal "far-field" imaging. However, it is possible to recover this information and make "super resolution" images using LHM lenses!

Source must be in the nearfield of the lens to gather the evanescent waves

Losses and deviations from n = -1 limit the range of wavevectors that can be amplified!

Experimental Evidence for Super-Resolution Imaging

Metamaterials: Novel Applications

Thin SubWavelength Cavity Resonators (Engheta, 2002)

For a resonance in the z-direction: New possibility – zero net phase winding $2\pi p = k_0(n_1d_1 - |n_2|d_2)$ p = integerp = 0 "zeroth order resonance" 0^{th} resonance condition <u>independent</u> of $d_1 + d_2$ and depends only on d_1/d_2 $\underline{d_1}$ $\underline{n_2}$ $d_2 n_1$

Implementation of an LHM Compact Resonator

RHM Transmission Lines

LHM Transmission Line (Dual structure)

Microstrip Resonators

Both resonate at 1.2 GHz RHM/LHM/RHM resonator is 86% smaller

Scher, et al., 2004

Negative Index Microwave Circuits

Dual Transmission Lines with NIR concepts are leading to a new class of microwave devices

Compact couplers, resonators, antennas, phase shifters have been demonstrated

1.9 GHz 0th-order resonator T. Itoh, *et al.*, UCLA

A point source embedded in a metamaterial with $n\sim0$ will produce a directed beam nearly normal to the metamaterial/vacuum interface. From [Enoch2002].

Scaling LHM (n < 0) Behavior to THz Frequencies...

Micro- and Nano-Wire Arrays gold wires $\epsilon < 0 \text{ for } f < \omega_p / 2\pi = 0.7 \text{ THz}$

Nano-Scale Split Ring Resonators $\mu_{eff} < 0$ for 81 - 87 THz

- 20 nm-thick gold film

Linden, et al., 2004

 $\mu_{eff} < 0$ for 180 THz (1.67 μ m)

Enkrich, et al., 2005

... and on to Infrared and Optical Frequencies

TE

TM

0.00

An Important Limitation: Losses

22

Superconducting Metamaterials

Perhaps the <u>only</u> way to demonstrate amplification of evanescent waves (the key new physics)

Caveats and Some Issues to be Addressed

Negative Index behavior is limited to finite frequency ranges Causality constraint: $\frac{d(\omega n(\omega))}{d\omega} > 1$ For Im[ε] << 1, Smith, Kroll (2000)

Dispersion in Re[$n(\omega)$] implies loss: Im[n] > 0 Losses limit frequency range of $\varepsilon_{eff} < 0$ and $\mu_{eff} < 0$ Decreased range of k_x/k_0 for evanescent wave amplification Solution: superconductors, active media

Scaling to higher frequencies (decrease cell size *a*) Metal losses generally scale as 1/*a* or faster Solution: active media, photonic crystals?

Conclusions

Negatively Refracting Metamaterials offer opportunities for a new kind of optics

Negative Index of Refraction Flat Lens Imaging Amplification of Evanescent Waves "Super Lenses"

There are many new **Emerging Applications**

Compact (dual TL) structures with enhanced performance Composite LHM/RHM materials with unique field structures New antenna structures Novel optics / NIR lithography

SC metamaterials papers: Appl. Phys. Lett. **87**, 034102 (2005) and cond-mat/0512515 **anlage@umd.edu**