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ABSTRACT

The Random Coupling Model (RCM) is a statistical approach for studying the scattering properties of linear wave chaotic systems
in the semi-classical regime. Its success has been experimentally verified in various over-moded wave settings, including both
microwave and acoustic systems. It is of great interest to extend its use in nonlinear systems. This paper studies the impact of
a nonlinear port on the measured statistical electromagnetic properties of a ray-chaotic complex enclosure in the short wave-
length limit. A Vector Network Analyzer is upgraded with a high power option, which enables calibrated scattering (S) parameter
measurements up to +43dBm. By attaching a diode to the excitation antenna, amplitude-dependent S-parameters and Wigner
reaction matrix (impedance) statistics are observed. We have systematically studied how the key components in the RCM are
affected by this nonlinear port, including the radiation impedance, short ray orbit corrections, and statistical properties. By
applying the newly developed radiation efficiency extension to the RCM, we find that the diode admittance increases with the
excitation amplitude. This reduces the amount of power entering the cavity through the port so that the diode effectively acts
as a protection element. As a result, we have developed a quantitative understanding of the statistical scattering properties of a
semi-classical wave chaotic system with a nonlinear coupling channel.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5085653

Many wave systems, ranging from the quantum mechanical
wavefunctions of complex molecules to the reverberation of
sound in a large concert hall, share a common description
in terms of wave chaos. Such systems have been shown to
have universal statistical fluctuations governed by the ran-
dom matrix theory, but their properties are also “dressed”
by non-universal features that are specific to each phe-
nomenon. Of particular interest are the scattering proper-
ties of wave chaotic systems that are open to the outside
world through a finite number of scattering channels. We
have developed the Random Coupling Model (RCM) to pro-
vide a complete quantitative understanding of all such sys-
tems, and we have extended it in several ways to account
for increasingly complicated features of such systems. In
this paper, we further extend the RCM to understand the
amplitude-dependent universal and non-universal proper-
ties of a wave chaotic systemwith a strong nonlinearity built
into a coupling channel. Using this extended RCM, we are
able to understand the amplitude-dependent experimental
data on the scattering properties of a microwave cavity with

a nonlinear diode attached to the scattering port. This is an
important step in the ongoing effort to create the science of
nonlinear wave chaos.

I. INTRODUCTION

Concepts from the field of wave chaos have been shown
to successfully predict the statistical properties of linear fields
in enclosures with dimensions much larger than the wave-
length. This includes the properties of closed systems, such
as eigenvalues and eigenfunctions, as well as the scattering
properties of open systems.1 The Random Coupling Model
(RCM) describes the scattering properties by incorporating
both universal features described by the Random Matrix The-
ory (RMT)1–7 and the system-specific features of particular
system realizations.8–10 The RCM is formulated in terms of
the Wigner reaction matrix, directly analogous to the electro-
magnetic or acoustic impedance, rather than the scattering
matrix.11,12 This allows the RCM to be expanded and appended
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in a simple additive or multiplicative manner, creating oppor-
tunities to describe increasingly complicated scattering sce-
narios. Examples of such complications include taking account
of “short orbits” between the ports (or scattering channels)
that survive the ensemble averaging process13–15 and modifi-
cations of scattering statistics due to losses localized in the
ports, rather than in the scattering system.16–18

Nonlinearity in wave-chaotic systems has been studied
in several aspects. For example, rouge waves can appear in
linear wave chaotic scattering systems.19,20 However, such
waves can also appear in a variety of physical contexts
and are enhanced by nonlinear mechanisms.21,22 In acous-
tics, Time-Reversed Nonlinear Elastic Wave Spectroscopy
(TR/NEWS) is based on the nonlinear time reversal properties
of a wave chaotic system.23 TR/NEWS is proposed as a tool
to detect micro-scale damage features (e.g., delaminations,
micro-cracks, or weak adhesive bonds) via their nonlinear
acoustic signatures.24,25 Applying this idea to electromagnetic
waves,26 the nonlinear electromagnetic time-reversal mir-
ror shows promise for novel applications such as exclusive
communication and wireless power transfer.27–30 The theo-
retical study of stationary scattering from quantum graphs
has been generalized to the nonlinear domain, where the
nonlinearity creates multi-stability and hysteresis.31 A wave-
chaotic microwave cavity with a nonlinear circuit feedback
loop demonstrated sub-wavelength position sensing for a
perturber inside the cavity.32 Nonlinearity is a key ingredi-
ent in various machine learning protocols, including neu-
ral networks33,34 and reservoir computing.35,36 Utilizing wave
chaotic layers, along with nonlinearity, offers an attractive way
to enable physical realizations of deep learning machines.37–39

Nonlinear effects in wave chaotic systems manifest as
harmonic and sub-harmonic generation, driving amplitude
dependent responses, etc. We have recently studied the
statistics of harmonics generated in a wave chaotic system
by adding an active frequency multiplier to the 1/4-bowtie
microwave billiard,40 which is a vertically thin (less than a
half-wavelength) microwave cavity whose horizontal shape
resembles a quarter of a bowtie (Fig. 1). This is quite relevant to
the work that investigates the electromagnetic field statistics
created by nonlinear electronics inside a wave chaotic rever-
beration chamber, and it has a number of applications in the
EMC (Electromagnetic Compatibility) community, such as the
electromagnetic immunity testing of digital electronics.41,42

Another approach to observe the nonlinear effects is to cre-
ate a scattering system with amplitude dependent response.
To achieve this, we have introduced different sources of non-
linearity into the billiards, and in this paper, we focus on a
high frequency diode. Reaching the nonlinear regime usually
requires high amplitude inputs, hence we have implemented
a high power vector network analyzer (VNA) which is able
to measure the scattering (S) parameters for signals up to
∼ +43dBm (' 20W).

In this paper, we first briefly review the salient features of
the Random Coupling Model and several of its extensions. We
then discuss the microwave billiard experiment with a nonlin-
ear diode element attached to the single port. The raw data are

FIG. 1. Top view of the experimental setup of the 1/4-bowtie quasi-2D microwave
billiard loaded with a diode attached to the single port. The diode (Infineon
BAS7004) is connected between the center pin of the port and the top plate.
The antenna pin is 7.6 mm long and 1.27mm in diameter. The diode package
has a dimension of 1.3 × 2.9 × 1mm3. The Vector Network Analyzer (Keysight
N5242A PNA-X) measures the scattering parameter at excitation levels up to
+43 dBmwith microwave wavelengths from 3 to 7.5 cm. The two blue solid circles
are metallic perturbers that can bemoved around to create ensemble realizations.
The inset shows a side-view cross section through the diode-loaded antenna.

presented and discussed, and then a nonlinear generalization
of the RCM is presented and applied to the data. The results
are discussed and conclusions are drawn in Sec. VI.

II. RCM OVERVIEW

The basic idea of the RCM is as follows. For an N-port ray
chaotic system, the statistical properties of the N × N cavity
impedance matrix ¯̄Zcav are described by a universally fluctuat-
ing complex normalized impedance ¯̄ξ and the system specific
properties ¯̄Zavg through the following equation:9,10,13–15

¯̄Zcav = i · Im{
¯̄Zavg} + [Re{ ¯̄Zavg}]1/2 · ¯̄ξ · [Re{ ¯̄Zavg}]1/2, (1)

where ¯̄Zavg is the average impedance over an ensemble of cav-

ity realizations. ¯̄Zavg contains the non-universal features of the
system, including the radiation impedance of the port (which
fully characterizes the port-specific properties that determine
the “prompt response” to an input excitation8,13,14,43,68), and
short orbits that survive the ensemble average.13–15 The “radi-
ation impedance” ¯̄Zrad describes the impedance of the port
when only outgoing waves are present. Practically speaking,
it is measured in the case that the waves get into the cavity
through the port but do not return. This can be realized, for
example, by covering the boundary of the billiard with perfect
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microwave absorbers. A “short orbit” describes a ray trajec-
tory that leaves the port and immediately returns to it, or
another port, without ergodically visiting the chaotic system.
It is the result of the port-to-port interaction that introduces
deterministic field components which can remain fixed in the
ensemble.14 Under the assumption that losses are uniform, the
statistics of the universally fluctuating complex impedance ¯̄ξ

is determined by a single parameter named the loss parameter
α.8,9,43,44 For a two-dimensional electromagnetic system (i.e., a
vertically thin cavity), it is given by α = k2A/(4πQ) and can be
interpreted as the ratio of the typical 3-dB bandwidth of the
resonant modes to the mean mode spacing. Here, k = 2π f/c
is the wave number at frequency f, A represents the area of
the billiard, and Q is the typical loaded quality factor of the
enclosure. The loss parameter α can vary from 0 (isolated
resonances) to infinity (many overlapping resonances). The
universal statistical properties of a chaotic system with loss
parameter α is given by RMT.9,10,45–47 Note that we can invert
Eq. (1) and create an experimental approximate to the statistics
of ¯̄ξ , called ¯̄ξexp by gathering an ensemble of ¯̄Zcav, and con-

structing ¯̄Zavg. By fitting the statistics of ¯̄ξexp to theoretical pre-
dictions, the loss parameter of the system can be estimated.

The success of the principles underlying the RCM
has been experimentally verified in linear wave chaotic
systems including microwave systems48–50 and acoustic
systems,51–55 from 1D quantum graphs,56–58 2D electromagnetic
billiards,14,15,43,59 and 3D cavities.60–63 Based on its success and
flexibility, it is of great interest to extend the RCM to other
systems. One area of extension is to nonlinear systems.

In this work, we show the results for measurements of the
nonlinear scattering parameters in a diode-loaded 1/4-bowtie
quasi two-dimensional microwave cavity. The 1/4-bowtie cav-
ity is a ray-chaotic billiard that displays universal statistical
properties predicted by RMT and RCM.9,10,45,49,64–70 In this case,
the diode acts as a nearly point-like nonlinearity in a wave
chaotic system. Attaching a diode to the excitation port,
we observed that the raw cavity statistics of the impedance
change substantially with the excitation power. We extend
the RCM to this situation and use it to analyze our experi-
mental results. We find that when the radiation impedance
becomes nonlinear, short orbits between the port and a
nearby wall, and the raw impedance statistics are strongly
modified. We also find that many of these changes are due
to the fact that the admittance of the diode changes with
the excitation power. The nonlinear diode competes with the
cavity admittance, substantially altering the response of the
system. By implementing the lossy port model extension of
the RCM,16–18 the results are well explained by the chang-
ing radiation efficiency of the diode-loaded port. As a result,
the diode effectively acts like a protection element in this
configuration.

III. EXPERIMENTAL SETUP

In the small signal limit, our system can be approximated
as linear. To observe a nonlinear response, the system must

have some sort of nonlinear property, and a large excita-
tion signal is required. In our earlier studies of wave chaotic
systems with one port or multiple ports, we measured the
scattering parameters and used these measurements to study
the statistical properties of the system. Here, we measure
the high power S-parameters including a nonlinear element
in the wave system, at power levels up to +43dBm (see the
supplementary material).

To induce strong nonlinearity, a diode (Infineon BAS7004
with two diodes in the package but only one is electrically
connected) is soldered between the center pin and cavity
ground, as shown in the inset to Fig. 1. From the datasheet,71

this diode has low transition capacitance, C ∼ 1.5 pF at 1MHz,
which decreases nonlinearly to ∼ 0.5 pF as the reverse voltage
increases. Its differential resistance also changes nonlinearly
as a function of the forward current. For typical forward cur-
rents IF = 1 ∼ 15mA, the resistance R changes from 80 to 20�.
A rough estimate for the time constant τRC = RC ∼ 100ps,
which is close to the charge carrier life-time as given in the
data sheet. Thus, this diode can respond in the GHz fre-
quency range and produce clear nonlinear responses, making
it suitable for our microwave wave chaos experiments.72,73

In addition, the diode package is significantly smaller than
the wavelengths used in this study (30-75mm), rendering it
approximately “point like.” The connection shown in Fig. 1 has
advantages in terms of stability and reproducibility, due to
the fact that when the bowtie billiard is opened, the antenna
and the top plate are attached together as one piece, and
the bottom plate is a separate piece. This in turn allows for
excellent reproducibility of ¯̄Zrad (radiation impedance, see the
supplementary material), ¯̄Zcav, and

¯̄Zavg measurements.

IV. RESULTS

With this diode loaded nonlinear port, we observed that
both the system specific properties and universal statistics
change dramatically with the input microwave amplitude. The
detailed analysis of the system specific properties, including
the radiation impedance and short orbits, is presented in the
supplementary material. Here, we focus mainly on the scatter-
ing statistics, which are significantly affected in the 4 ∼ 10GHz
range.

A. Ensemble realizations

To analyze the statistics of the cavity, the metallic per-
turbers shown in Fig. 1 are moved around to create 120 distinct
static realizations. Figure 2(a) shows reflection vs. frequency
results for a typical realization for low (blue) and high (green)
input power. They have similar shapes as in the radiation case,
but are “decorated” with many resonance fluctuations. The
linear RCM approach applies well in the low power case, and
we follow the RCM normalization process to determine an
experimental approximate, ξexp.8,10,14 Figure 2(b) shows PDFs
of Re(ξexp) in the 6.5 to 7.5GHz range for several different
input powers. Clearly, the PDF of the normalized impedance
Re(ξexp) changes substantially with power, being more widely
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FIG. 2. (a) Comparing the reflection
S-parameter |S| of a typical single
realization of the 1/4-bowtie cavity
with a diode-loaded port for low power
(blue, −5 dBm) and high power (green
+30 dBm). (b) Histogram of normalized
Re(ξexp) obtained from ensemble data
using traditional linear RCM for a 1 GHz
window centered at 7 GHz. The resulting
fitted loss parameter α increases with
power as shown in the inset. R2 values in
the legend indicate the goodness of fit.40

distributed in the low power case, indicating stronger fluctu-
ations, a property which is associated with lower loss parame-
ter α. Note that the Re(ξexp) distribution is more concentrated
near unity as power increases, consistent with a high loss (high
α) situation. If we naïvely fit this distribution function to the
RCM prediction using α as the sole fitting parameter, the fit-
ted loss parameter α systematically increases with power, as
shown in the inset. The raw statistics of the system change
substantially with power because of the presence of the non-
linear port. However, it should be noted that these ξexp PDFs
show substantial deviations from RMT predictions (note the
low fit R2 values at high power), making it clear that the naïve
application of the RCM breaks down in the nonlinear regime.

B. Radiation efficiency of the nonlinear port (high loss

system)

In the RCM treatment presented above, we expect the
loss parameter of the system to be independent of the exci-
tation power as long as the properties of the cavity remain
unchanged. The nonlinear property in this case is only asso-
ciated with the port. The RCM described in Eq. (1) is derived
assuming a lossless linear port. But this is no longer the case in
this experiment. As we can see from Fig. 2(a) particularly in the
vicinity of 6GHz, the fluctuations are suppressed in the high
power case, indicating that excitations of the cavity modes are
suppressed. In this case, the port must be considered as a lossy
port. References 16 and 17 have derived a generalization of the
RCM to account for the loss of the port. A radiation efficiency
η is introduced to quantify the ratio of the power radiated by
the port to the input power to the antenna, η = Prad/Pin (η is
real and 0 6 η 6 1). In a high loss system (i.e., α � 1), it can be
shown that the impedance of a lossy antenna inside a complex
enclosure can be approximated as

¯̄Zin =
¯̄Zant + η · Re{ ¯̄Zant} · δ ¯̄ξ , (2)

where η is the radiation efficiency of the antenna, δ ¯̄ξ = ¯̄ξ −
¯̄I,

¯̄I is the identity matrix with diagonal elements 1 + i0, and ¯̄Zant

is the input impedance of the lossy antenna radiating in free
space. Reference 18 has successfully applied this model to
a scaled cavity, where the radiation efficiency accounts for

the loss in free-space propagation suffered through a remote
injection path. In our case, ¯̄Zin can be considered as ¯̄Zcav

and ¯̄Zant can be considered as ¯̄Zavg, therefore, Eq. (2) can be
modified as

¯̄Zcav = i · Im{
¯̄Zavg} + (

¯̄I + η · δ ¯̄ξ) · Re{ ¯̄Zavg}, (3)

which is valid in the limit α � 1. To determine η for the non-
linear port, we first measure ¯̄ξcav of the billiard when there is
no diode attached to the antenna. In that case, ¯̄ξcav describes
the properties of the billiard alone (because all system-specific
properties have been removed), and as such it is a linear
system. We use the linear RCM approach, creating 120 realiza-
tions with the two perturbers, then applying Eq. (1) to extract
¯̄ξcav and fit to RCM to find the corresponding loss parame-
ter α.8,10,14 Additionally, to make the bowtie billiard a high loss
system, the perimeter of the billiard is partly (but uniformly)
covered with microwave absorbers, tuning the loss parame-
ter to be α = 3 (4.5GHz) to α = 7 (9.5GHz). Then, using the
value of α which characterizes loss in the cavity and ¯̄ξcav, we
go back to the diode-loaded nonlinear port case, utilizing Eq.
(3) and varying η so that the statistics of ¯̄ξ(η) agree with ¯̄ξcav.
Figure 3(a) shows the fitted radiation efficiency from Im(ξ)

statistics [the Re(ξ) statistics give similar results].
Figure 3(a) shows that the radiation efficiency is

strongly power-dependent in the frequency range 4 ∼ 10GHz.
Between 6 and 9GHz, the radiation efficiency decreases with
increasing power, meaning the port is getting more lossy as
the excitation power increases. There is a cross-over regime
at a low frequency of 4 ∼ 6GHz, where the radiation efficiency
increases at high powers. And although it is not shown in the
plot, at 10GHz and above, the radiation efficiency is almost
independent of power.

To explain the results, we are interested in characterizing
the diode admittance under different excitation powers. The
diode is connected between the center pin and the ground of
the port. The billiard radiation admittance can also be consid-
ered as being connected between the center pin and ground.
Therefore, a simple model is constructed by considering the
diode and the billiard to be connected in parallel. By measur-
ing the port radiation admittance with (Yrad

with diode) and without
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FIG. 3. (a) Fitted radiation efficiency η

[from Im(ξ) statistics] versus frequency
and power. Each fit was done with data
from 120 realizations and a window of
1 GHz. (b) Plot of diode admittance mag-
nitude versus frequency at various rf pow-
ers, as well as the radiation admittance of
the linear port |Y rad

no diode|.

the diode (Yrad
no diode), the diode admittance can be approximated

as Ydiode ' Yrad
with diode − Yrad

no diode.
Figure 3(b) shows the experimental results of |Ydiode| com-

pared with |Yrad
no diode|. Between 4 and6GHz, |Ydiode| has similar

values to |Yrad
no diode| and changes little with power. Thus, the

diode admittance competes roughly equally with the billiard
admittance. A small change in the admittance value may result
in a big change in the fitted radiation efficiency. However,
between 6 and 9GHz, the diode admittance dominates the
billiard admittance and generally increases with power. In this
frequency range, because the diode admittance is much larger
than the billiard admittance and increases with power, the
radiation efficiency of the port decreases, consistent with the
results in Fig. 3(a).

To better understand the nonlinear port, we built a circuit
model for simulation in the finite difference time-domain code
called CST (Computer Simulation Technology). The SPICE
models of the diode as well as the package are provided
by the manufacturer. In addition to the SPICE models, the
dielectric properties of the package near the port also affect
the radiation impedance, and this was added to the model.
The internal capacitances of the package SPICE model were
altered because the diode is being used beyond its design fre-
quency range. The simulated amplitude dependent radiation
S-parameters show relatively good agreement with the exper-
imental results (see the supplementary material). In addition,
the resultant radiation efficiency that is directly calculated
as Prad/Pin is in general agreement with the experimental
results. Based on the circuit model, the nonlinearity arises
from the diode, which is approximated with an exponential I-V
diode function.74 The diode nonlinearity is shorted by parasitic
capacitance in the package SPICE model at high frequen-
cies, thus the port model does not have power dependence
at 10GHz and above, consistent with the data.

V. DISCUSSION AND FUTURE WORK

We have shown that by attaching a diode to the center
pin and ground of an antenna, the port shows dramatic non-
linear behavior. For the statistical results, if we blindly apply
the RCM to the billiard with a diode-loaded port, one finds
that the loss parameter increases with the input power. The

RCM posits that the loss parameter determines the univer-
sal properties of the chaotic system. In our case, the billiard
properties should not change with power because the nonlin-
earity is only associated with the port. We applied the newly
developed radiation efficiency model to the port, using the
radiation efficiency η to quantify the proportion of power from
the source radiated into the billiard. At high power in the non-
linear region, the diode consumes most of the power, causing
the radiation efficiency to decrease. The diode thus prevents
high power signals from getting into the billiard.75

There are several interesting questions for further study
of this system. First, the billiard had to be intentionally mod-
ified into a high loss system in order to use the radiation
efficiency model. The statistics of low-loss nonlinear systems
cannot be addressed at this time. In addition, another behav-
ior we have observed is the loss of reciprocity in a two-port
version of this system, where one port is a nonlinear port
and the other is linear. We observed that S12 6= S21 when large
amplitude signals are applied. We note that there is no general
reciprocity theorem that holds for nonlinear systems.76 This
behavior can be understood by considering that with equal
powers injected in both ports, the diode will be driven to non-
linearity when power is injected in the port hosting the diode,
and to a lesser extent when the linear port is excited.

Besides the approach we used in this paper to analyze
the nonlinear system, we mention for completeness that high
power S-parameters are sometimes called hot S-parameters,77

and the nonlinear effects can be fully characterized by the
so-called X-parameters measured by the nonlinear VNA.78,79

However, we believe that the present treatment is best suited
for understanding the statistical properties of nonlinear wave
chaotic systems in the semi-classical regime.

VI. CONCLUSIONS

To conclude, a diode based nonlinear port alters the radi-
ation impedance, short orbits, and raw impedance statistics of
a wave chaotic system from those observed in a linear system.
By using the Random Coupling Model with incorporation of
the diode nonlinear properties and a lossy port model, these
nonlinear phenomena are well explained and verified by the
simulation. The nonlinear property of the port can be applied
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to protect delicate circuits from high power electromagnetic
microwave interference. This represents an important step
forward in understanding the statistical scattering proper-
ties of a semi-classical wave chaotic system with a nonlinear
coupling channel. The raw data are available in Ref. 80.

SUPPLEMENTARY MATERIAL

The supplementary material contains more information
on the implementation of high-power vector network analyzer
(VNA), detailed analysis of the nonlinear effects on the system
specific properties, and simulation results of the diode-loaded
port in computer simulation technology (CST).
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