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microwave microscope

Sheng-Chiang Lee,® C. P. Vlahacos,” B. J. Feenstra,Y Andrew Schwartz,?

D. E. Steinhauer,® F. C. Wellstood, and Steven M. Anlage
Material Research Science and Engineering Center, and Center for Superconductivity Research,
Department of Physics, University of Maryland, College Park, Maryland 20742-4111

(Received 27 June 2000; accepted for publication 25 October)2000

We describe a scanning near-field microwave microscope which uses a loop probe to measure local
magnetic properties of metallic samples on a length scale ofti200We demonstrate imaging at

6 GHz through spatiallyresolved ferromagnetic resonance experiments on a single crystal of the
colossal magneto-resistive material 81, ,MNO;. We find the experimental results are
qualitatively and quantitatively well described by a simple model of the system20@ American
Institute of Physics.S0003-695(00)03951-4

The extraordinary increase in the density of magnetidwice the modulation frequency, the losses in the sample
storage media and the access speeds of read/write heads leastributing to the Q factor of the resonator can be
led to an increased interest in measuring local microwaveneasuretf as well.
magnetic properties of materials on short length scales. Itis We model the coupling between the loop probe and a
also of interest to evaluate the homogeneity of magnetisample with the equivalent circuit shown in the inset of Fig.
properties of samples, such as the local Curie temperaturd, The loop probe is represented as an induktgrthe test
magnetization, and microscopic phase separation into magpaterial as a series combination of its effective inductance
netic and nonmagnetic regions. Many techniques exist tdx and complex impedancg,=Rx+iXy, and the coupling
measure the global microwave permeability or susceptibilitygs @ mutual inductandd . Since the materials of concern are
of materialst Progress has also been made in scanning migood conductors with a microwave skin depth much smaller
croscopes which are designed to image radio frequency magf)an the sample thickness, we model the sample inductance
netic fields>~* electron paramagnetic resonancand ferro- by an identical image of the loop probe, so that=L,. The
magnetic resonancéFMR).®~° However, few of these self-inductance of the loop probe is roughly estimated as
techniques measure microwave permeability on sub-mrko~1.2510a," assuming a circular loop with inner diam-
length scaled®!* To fulfill this need, we have developed a eter a=wire thickness-200um. In the high-frequency
technique for measuring local permeability using a scannindjmit, the surface impedance of the sample can be written as
near-field microwave microscof@&NMM). Previously, the ~Zx=\Tmosrwp, Wherepu, is the complex relative perme-
SNMM has been used to image conductititand dielectric ~ ability of the materialw is the microwave frequency, and
propertieé3 of materials with an open ended t|p probe, which is the reSiStiVity of the material, which is considered to be
has a maximum electric field and minimum magnetic field athdependent of., . Since the loop and its image are roughly
the probe end. In this letter, we discuss the utilization of gCircular inductors, we can calculah@ as the mutual induc-
short circuited loop probe, which couples magnetically to afance between two circular loops in the same plane. How-
sample. ever, because this two-circular-loop model only approxi-

Our SNMM is a driven resonant coaxial transmission™ately describes the geometry, we will ultimately need to
line connected to a Cu loop which is formed by shorting thefreat the value oM as a fitting parameter. The microscope
inner conductor of a coaxial cable to the outer
conductor?~**We use a frequency following circuiFig. 1)

Af Q
and a lock-in amplifier in a feedback loop to lock to one of Microwave
the resonant frequencies of the coaxial resonator. We then Source FFC L,
M =

monitor the frequency shiftAf, due to perturbations from
the sample, which is scanned under the probe. By modulat- R+iXy
ing the microwave frequency of the source and monitorin Diode

9 q y 9 Detecto Closed End sample

Loop Probe\::' -3
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FIG. 2. Line scans oA f and unloaded measurements across a ferromag- l
netic sample, FgNi,oP14Bg, and a paramagnetic sample gfdi;5Cry4P;.Bg 426 g
at 6.036 GHz and room temperature. The plane of the loop is aligned with
the direction of the scan line at a sample-probe separation @imGnea- 424 _
sured from the bottom of the probe loop to the surface of the sample. No CY
external magnetic field is applied. L)
Q 422 -
i
8 s
resonator is treated as a transmission line that is capacitively-a 420 i
coupled to the microwave sourteThe frequency shift and D
Q are calculated using microwave transmission line théory. Ate 1
In the high-frequency limit, we can takel , to be much
greater tharjZy|. From the equivalent circuit shown in Fig. 416 ’ . . ) . )
1, we find that the load impedance presented by the probe 0 500 1000 1500 2000
and sample isZ, .=iwLq(1—k?) +k3(Ry+iXy), where
p Load™ 1 @Lo( ) Tk (Rx+iXx) H__ (O¢)

the coupling coefficienkk=M//LyLy is a purely geometrical

factor. The frequency shift is produced by the imaginary PartG. 3. Measured frequency shif) and unloaded) (b) vs applied mag-
of Z| oaq, While the real part oZ, o, determines th€ of the  netic field over a LSMO crystal at a sample-probe separation gfraCat
microscope?4 6.037 GHz. Open circles are experimental data; solid line is the model
To study the sensitivity of our microwave microscope toPrediction withZx=izop wp in the model.
magnetic permeability, we measured two metallic glass tapes
made of FgNiuP14Bs and FasNizeCri4P1,Bs. The differ-  we examined a single crystal of the colossal magneto-
ence in composition makes the former ferromagnetic and theesistive material LggSry ,MnO3 (LSMO) in the vicinity of
latter paramagnetic at room temperature, although both haves FMR® The imaging was performed at 301.500
the same resistivityp=150uQcm. This ensures that any +0.005K, just below the Curie temperatifg=305.5 K6
differences observed in images with the microwave micro\With the probe positioned about 20m above the center of
scope are due solely to the differences in permeability. the sample, we measurédd andQ as a function of external
We measured the samples with both an electric fieldnagnetic fieldH,; (applied uniformly parallel to the sample
probé?*and the magnetic field loop probe. With the elec-surface and the plane of the loop probe, see Fig.i8a
tric field probe at 5.9 GHz, the two tapes give indistinguish-separate experiment, the complex surface impedance of this
able frequency shifA f andQ data. However, with the loop sample was also measurfd.’ FMR is clearly observed as a
probe, the ferromagnetic sample gives a strong reduction iminimum in Q(H.,) and the point of maximum slope of
the Q, whereas the\f data do not show significant contrast Af(Hg,y) in Fig. 3.
(see Fig. 2 To understand why, note that the two metallic We can compare the measur&dl andQ versusH,; of
glass tapes have similar topography, the coupkrig iden- LSMO with our model predictions based on the indepen-
tical for both materials, and the imaginary part in the secondlently measured complex surface impedance and
term in the expression foiZ g is small, i.e., k?Xy permeability*® In our model, thex, dependence only ap-
<wly(1—k?); hence, we do not expect contrast Af. pears in the surface impedangg. To test whether or not
However, the significant difference in microwave permeabil-this model properly describes the experiment, we evaluated
ity of the two samples leads to contrasiRy, which appears the model with the measuret); . It is known from indepen-
as contrast in the microscof® consistent with Fig. 2. As a dent information that the decoupler capacitany,
further test, we measurelif andQ versus the probe-sample =10 *F, L, and M=10 1°H, and the cable attenuation
separatiorh, at frequencies of 4.04, GHz, 7.08, and 10.340.1<«<0.2 nepers/m, but we treated them as fitting param-
GHz. We found an increase if(500um)—Af(10um) as  eters here since none of them were known exactly. We find
the frequency increased, and a weak frequency dependentiet the full model prediction fitS the experimental results
of Q(500um)—Q(10xm), consistent with the model pre- very well with Cp=2.94x10 ¥F, L,=6.5x10"1°H, M
diction. =1.3x10 °H, and «=0.1967 nepers/m. The datapen

To quantitatively evaluate our theoretical understandinggircles and fit (solid line) are shown together in Fig. 3.
Downloaded 07 Aug 2003 to 129.2.40.3. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/aplo/aplcr.jsp



4406 Appl. Phys. Lett., Vol. 77, No. 26, 25 December 2000 Lee et al.

| In conclusion, we have demonstrated the sensitivity of

H. (a) our SNMM to magnetic properties by observing significant
$|,, T , contrast between ferromagnetic and paramagnetic materials
) using a loop probe. Also, we have demonstrated a qualitative

and quantitative understanding of FMR data from the sys-
tem. It should also be possible to extend the technique to
image ferromagnetic antiresonance, and antiferromagnetic

I;rheigu(e;?gz() resonance using the microscope.
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