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Measurement of resonant frequency and quality factor of microwave
resonators: Comparison of methods

Paul J. Petersan and Steven M. Anlagea)
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Maryland 20742-4111

~Received 23 December 1997; accepted for publication 1 June 1998!

Precise microwave measurements of sample conductivity, dielectric, and magnetic properties are
routinely performed with cavity perturbation measurements. These methods require the accurate
determination of quality factor and resonant frequency of microwave resonators. Seven different
methods to determine the resonant frequency and quality factor from complex transmission
coefficient data are discussed and compared to find which is most accurate and precise when tested
using identical data. We find that the nonlinear least-squares fit to the phase versus frequency is the
most accurate and precise when the signal-to-noise ratio is greater than 65. For noisier data, the
nonlinear least-squares fit to a Lorentzian curve is more accurate and precise. The results are general
and can be applied to the analysis of many kinds of resonant phenomena. ©1998 American
Institute of Physics.@S0021-8979~98!04317-5#
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I. INTRODUCTION

Our objective is to accurately and precisely measure
quality factorQ, and resonant frequencyf 0 , of a microwave
resonator, using complex transmission coefficient data a
function of frequency. AccurateQ and f 0 measurements ar
needed for high precision cavity perturbation measurem
of surface impedance, dielectric constant, magnetic per
ability, etc. Under realistic experimental conditions, corru
tion of the data occurs because of crosstalk between
transmission lines and between coupling structures, the s
ration between the coupling ports and measurement dev
and noise. Although there are many methods discussed in
literature for measuringQ and resonant frequency, we a
aware of no treatment of these different methods wh
quantitatively compares their accuracy or precision un
real measurement conditions. In practice, theQ can vary
from 107 to 103 in superconducting cavity perturbation e
periments, so that aQ determination must be robust ove
many orders of magnitude ofQ. Also, it must be possible to
accurately determineQ and f 0 in the presence of modes
amounts of noise. In this article we will determine the b
methods of evaluating complex transmission coefficient d
i.e., the most precise, accurate, robust inQ, and robust in the
presence of noise.

Many different methods have been introduced to m
sure the quality factor and resonant frequency of microw
cavities over the past 50 years. Smith chart methods h
been used to determine half-power points which can be u
in conjunction with the value of the resonant frequency
deduce the quality factor of the cavity.1–6 In the decay
method for determining the quality factor, the fields in t
cavity are allowed to build up to equilibrium, the inpu
power is turned off, and the exponential decrease in
power leaving the cavity is measured and fit to determine

a!Electronic mail: anlage@squid.umd.edu
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quality factor of the cavity.3,4,7,8Cavity stabilization methods
put the cavity in a feedback loop to stabilize an oscillator
the resonant frequency of the cavity.8–12 For one port cavi-
ties, reflection measurements provide a determination of
half-power points and also determine the coupling const
allowing one to calculate the unloadedQ.13–16In more recent
years, complex transmission coefficient data versus
quency is found from vector measurements of transmit
signals through the cavity.17–20Methods which use this type
of data to determineQ and f 0 are the subject of this article

We have selected seven different methods for determ
ing f 0 andQ from complex transmission coefficient data. W
have collected sets of ‘‘typical’’ data from realistic measur
ment situations to test all of theQ and f 0 determination
methods. We have also created data and added noise to
measure the accuracy of the methods. In this article we c
sider only random errors and not systematic errors, suc
vibrations of the cavity which artificially broaden th
resonance.8–12 After comparing all of the different methods
we find that the nonlinear least-squares fit to the phase ve
frequency and the nonlinear least squares fit of the ma
tude of the transmission coefficient to the Lorentzian cu
are the best methods for determining the resonant freque
and quality factor. The phase versus frequency fit is the m
precise and accurate over many decades ofQ values if the
signal-to-noise ratio~SNR! is high (SNR.65), however the
Lorentzian fit is more robust for noisier data. Some of t
methods discussed here rely on a circle fit to the comp
transmission coefficient data as a step to findingf 0 and Q.
We find that by adjusting this fitting we can improve th
determination of the quality factor and resonant frequen
particularly for noisy data.

In Sec. II of this article, the simple lumped eleme
model for a microwave resonator is reviewed and develop
A description of our particular experimental setup is th
given, although the results of this article apply to any tra
mission resonator. We then discuss the data collected
2 © 1998 American Institute of Physics
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3393J. Appl. Phys., Vol. 84, No. 6, 15 September 1998 P. J. Petersan and S. M. Anlage
generated for use in the method comparison in Sec. III. S
tion IV outlines all of the methods that are studied in th
article. It should be noted that each method is tested u
exactly the same data. The results of the comparison
presented and discussed in Sec. V. Possible improvem
for some of the methods follow in Sec. VI, and the conclu
ing remarks of the article are made in the final section.

II. LUMPED ELEMENT MODEL OF A RESONATOR

To set the stage for our discussion of the different me
ods of determiningQ and resonant frequency, we briefl
review the simple lumped-element model of an electrom
netic resonator. As a model for an ideal resonator, we use
seriesRLC circuit ~see inset of Fig. 1!, defining 1/2pALC as
the resonant frequencyf 0 .19 The quality factor is defined a
2p times the ratio of the total energy stored in the resona
to the energy dissipated per cycle.4 For the lumped elemen
model in Fig. 1, the quality factorQ is 2p f 0L/R. The reso-
nator is coupled to transmission lines of impedanceZ0 by the
mutual inductancesl m1 and l m2 . The complex transmission
coefficient,S21 ~ratio of the voltage transmitted to the inc
dent voltage!, as a function of driving frequencyf, is given in
the limit of weak coupling by:19

S21~ f !5
S21

11 iQS f

f 0
2

f 0

f D . ~1!

The additional assumption thatf ; f 0 near resonance simpli
fies the frequency dependence in the denominator resu
in:

S21~ f !5
S21

11 i2QS f

f 0
21D , ~2!

where S21 is the maximum of the transmission coefficie
which occurs at the peak of the resonance:

FIG. 1. Measured magnitude of the complex transmission coefficientS21 of
a superconducting resonator as a function of frequency for measured
~Input power5110 dBm, SNR'108!. A Lorentzian curve is fit to the data
Inset is the lumped element model circuit diagram for the resonator.
input and output transmission lines have impedanceZ0 , l m1 and l m2 are
coupling mutual inductances,C is the capacitance,R is the resistance, andL
is the inductance of the model resonator.
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S215
8p2f 2l m1l m2

Z0R
52Ab1b2. ~3!

HereR is the resistance in the circuit model and this expr
sion again is valid in the weak coupling limit. On the fa
right side of Eq.~3!, b1 andb2 are the coupling coefficients
on ports 1 and 2, respectively,3,20 where b j

5(2p f )2l m j
2 /Z0R, with j 51,2.

The magnitude of the complex transmission coefficie
is:

uS21~ f !u5
uS21u

A114Q2S f

f 0
21D 2 . ~4!

The plot of uS21u versus frequency forms a Lorentzian cur
with the resonant frequency located at the position of
maximum magnitude~Fig. 1!. A numerical investigation of
uS21u with and without the simplified denominator assum
tion leading to Eq.~2!, shows that even for a relatively low
Q(Q5100), the difference between the magnitudes is l
than half a percent of the magnitude using Eq.~1!. For larger
Q the difference is much smaller, so we take this assump
as valid. All of the analysis methods treated in this artic
make use of the simplified denominator assumption, as w
as all the data we create to test the methods.

The plot of the imaginary part ofS21 @Eq. ~2!# versus the
real part~with frequency as a parameter!, forms a circle in
canonical position with its center on the real axis~Fig. 2!.
The circle intersects the real axis at two points, at the ori
and at the location of the resonant frequency.

Important alterations to the data occur when we take i
account several aspects of the real measurement situa
The first modification arises when considering the cross
between the cables and/or the coupling structures. This in
duces a complex translationX5(x0 ,y0), of the center of the
circle away from its place on the real axis.19–21 Secondly, a
phase shiftf is introduced because the coupling ports of t
resonator do not necessarily coincide with the plane of
measurement. This effect rotates the circle around the or
~Fig. 2!.19–21The corrected complex transmission coefficie
S̃21, is then given by:

S̃215~S211X!eif. ~5!

It should be noted that the order in which the translation a
rotation are performed is unique.21

Any method of determiningQ and f 0 from complex
transmission data must effectively deal with the corrupt
of the data represented by Eq.~5!. In addition, the method
used to determinef 0 and Q must give accurate and precis
results even in the presence of noise. This is necessary s
in typical measurements,Q ranges over several orders o
magnitude causing the signal-to-noise ratio~SNR, defined in
Sec. III C! during a single data run to vary significantly
Further corruption of the data can occur if there are nea
resonances present, particularly those with lowerQ. This in-
troduces a background variation onto the circles shown
Fig. 2 and may interfere with the determination off 0 andQ.
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In this article we consider only single isolated resonan
and refer the reader to an existing treatment of multi
resonances.22

III. DATA USED FOR METHOD COMPARISON

In this section we discuss the data we use for mak
quantitative comparisons of each method. The data is
lected to be representative of that encountered in real m
surement situations. Each trace consists of 801 freque
points, each of which have an associated real and imagi
part ofS21. Two types of data have been used for compar
the methods; measured data and generated data. The
sured data is collected with the network analyzer and ca
described below. The generated data is constructed to
like the measured data, but the underlyingQ and resonant
frequency are known exactly. All of the methods discuss
in the next section are tested using exactly the same da

A. Measured data

Complex transmission coefficient versus frequency d
is collected using a superconducting cylindrical Niobiu
cavity submerged in liquid Helium at 4.2 K. Microwave co
pling to the cavity is achieved using magnetic loops loca
at the end of 0.086 in. coaxial cables. The loops are in
duced into the cavity with controllable position and orien
tion. The coaxial cables come out of the cryogenic dewar
are then connected to a HP8510C vector network analyz23

The cavity design24 has recently been modified to allow to
loading of the samples into the cavity.

A sample is introduced into the center of the cavity
the end of a sapphire rod. The temperature of the sample
be varied by heating the rod, with a minimal perturbation
the superconducting Nb walls. The quality factor of the ca
ity resonator in the TE011 mode can range from about
3107 to 13103, with a resonant frequency of approximate
9.6 GHz. In a typical run with a superconducting cryst

FIG. 2. Measured imaginary vs real part of the complex transmission c
ficient S21 for a single resonant mode~Input power513 dBm, SNR'49!.
This plot shows data and a circle fit, as well as the translated and ro
circle in canonical position.@X'(1.6731024,22.5231024), f'116°#.
Large dots indicate centers of circles, and the size of the translation ve
has been exaggerated for clarity.
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where the temperature varies from 4.2 to 200 K,f 0 decreases
by about 10 MHz andQ changes from about 13107 to 4
3103. For accurate measurement of the electrodyna
properties of samples, it is important to be able to reso
frequency shifts of the cavity as small as 1 Hz at low te
peratures.

1. Fixed powers

One hundredS21 versus frequency traces were taken u
ing the network analyzer held at a fixed power and w
constant coupling to the cavity. One such data set was m
with the source power at115 dBm ~SNR'368, f 0

'9.600 242 GHz,Q'6.393106!, another set was take
with the source power at110 dBm ~SNR'108, f 0

'9.599 754 GHz,Q'6.463106!, a third data set was take
with the source power at13 dBm ~SNR'49, f 0

'9.599 754 GHz,Q'6.503106!. ~The approximate values
for f 0 and Q are obtained from the phase versus frequen
averages discussed below.!

2. Power ramp

To collect data with a systematic variation of signal-t
noise ratio, we took single traces at a series of different in
powers. A power-ramped data set was taken in a ca
where controllable parameters, such as temperature and
pling, were fixed, the only thing that changed was the mic
wave power input to the cavity. AnS21 versus frequency
trace was taken for powers ranging from218 to 115 dBm,
in steps of 0.5 dBm. This corresponds to a change in
signal-to-noise ratio from about 5 to 168~f 0

'9.603 938 GHz,Q'8.713106!.

B. Generated data

To check the accuracy of all the methods, we genera
data with known characteristics, and added a contro
amount of noise to simulate the measured data. The data
created using the real and imaginary parts of an idealS21 as
a function of frequency Eq.~2!;

Re S21~ f !5
S21

114Q2S f

f 0
21D 2

~6!

Im S21~ f !5

2S212QS f

f 0
21D

114Q2S f

f 0
21D 2 ,

whereS21 is the diameter of the circle being generated~see
Fig. 2!, Q is the quality factor, andf 0 is the resonant fre-
quency, which are all fixed. The frequencyf, is incremented
around the resonant frequency to create the circle. There
400 equally spaced frequency points before and after
resonant frequency, totaling 801 data points. The total s
of the generated data is about four 3 dB bandwidths for aQ
values.

To simulate measured data, noise was added to the
using Gaussian distributed random numbers25 that were

f-

ed
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scaled to be a fixed fraction of the radius,r of the circle
described by the data in the complexS21 plane. The noisy
data was then translated and rotated to mimic the effec
cross talk in the cables and coupling structures, and d
@Eq. ~5!#.

1. Power ramp

A power ramp was simulated by varying the amplitu
of the noise added to the circles. A total of 78S21 versus
frequency traces were created with a variation of the sig
to-noise ratio from about 1 to 2000~f 059.600 GHz, Q
51.003106, x050.1972,y0520.0877,r 50.2, f5p/17!

2. Fixed Q values

Data with different fixedQ values were created using th
above real and imaginary expressions forS21. Groups of
data were created with 100 traces each using:Q5102, 103,
104, 105 ~f 059.600 GHz and SNR'65 for all sets!. They
include fixed noise amplitude, and were each rotated
translated equal amounts to simulate measured data~x0

50.01,y050.015,r 50.2, f5p/19!.

C. Signal-to-noise ratio

The signal-to-noise ratio was found for all data sets
first determining the radiusr circle, and center (xc ,yc) of the
circle when plotting the imaginary part of the complex tran
mission coefficient versus the real part~Fig. 2!. Next, the
distance to each data point (xi ,yi) ( i 51 – 801) from the cen-
ter is calculated from:

di5A~xi2xc!
21~yi2yc!

2. ~7!

The signal-to-noise ratio is defined as:

SNR5
r circle

A 1
800 (

i 51

801

~di2r circle!
2

. ~8!

In the case of generated data, where the center and radi
the circle are known, the SNR is very well defined. Howev
the SNR values are approximate for the measured data
cause of uncertainties in the determination of the center
radius of the circles.

IV. DESCRIPTION OF METHODS

In this section we summarize the basic principles of
leading methods for determining theQ and resonant fre-
quency from complex transmission coefficient versus f
quency data. Further details on implementing these partic
methods can be found in the cited references. Because
believe that this is the first published description of the
verse mapping technique, we shall discuss it in more de
than the other methods. The Resonance Curve Area
Snortland techniques are not widely known, hence a b
review of these methods is also included.

The first three methods take the data as it appears
determine theQ from the estimated bandwidth of the res
nance. The last four methods make an attempt to first cor
the data for rotation and translation@Eq. ~5!#, then determine
f 0 andQ of the data in canonical position.
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A. The 3 dB method

The 3 dB method uses theuS21u versus frequency data
~Fig. 1!, whereuS21u5A(ReS21)

21(Im S21)
2. The frequency

at maximum magnitude is used as the resonant freque
f 0 . The half power points (1/& maxuS21u) are determined on
either side of the resonant frequency and the difference
those frequency positions is the bandwidthD f 3 dB. The qual-
ity factor is then given by:

Q5 f 0 /D f 3 dB. ~9!

Because this method relies solely on the discrete data, n
fit, it tends to give poor results as the signal-to-noise ra
decreases.

B. Lorentzian fit

For this method, theuS21u versus frequency data is fit t
a Lorentzian curve@Eq. ~4! and Fig. 1# using a nonlinear
least-squares fit.26 The resonant frequencyf 0 , bandwidth
D f Lorent, constant backgroundA1 , slope on the background
A2 , skew A3 , and maximum magnitudeuSmaxu are used as
fitting parameters for the Lorentzian:

uS21~ f !u5A11A2f 1
uSmaxu1A3f

A114S f 2 f 0

D f Lorent
D 2 . ~10!

The least-squares fit is iterated until the change in
squared is less than one part in 103. TheQ is then calculated
using the values off 0 andD f Lorent from the final fit param-
eters:Q5 f 0 /D f Lorent. This method is substantially more ro
bust in the presence of noise than the 3 dB method.
purposes of comparison with other methods, we shall use
simple expressions forf 0 andQ given above, rather than th
values modified by the skew parameter.

C. Resonance curve area method

In an attempt to use all of the data, but to minimize t
effects of noise in the determination ofQ, the Resonance
Curve Area ~RCA! method was developed.27 In this ap-
proach the area under theuS21( f )u2 curve is integrated to
arrive at a determination ofQ. In detail, the RCA method
uses the magnitude data squared,uS21u2, versus frequency
and fits it to a Lorentzian peak~same form as Fig. 1!:

uS21~ f !u25
P0

114S f 2 f 0

D f RCA
D 2 ~11!

using the resonant frequency,f 0 , and the maximum magni
tude squared,P0 , as fitting parameters. The bandwid
D f RCA is a parameter in the Lorentzian fit, but is not allow
to vary. This method iterates the Lorentzian fit until c
squared changes by less than one part in 104. Next, using the
fit values from the Lorentzian, the squared magnitu
uS21( f 06 f r)u2 is found at two pointsf 06 f r on the tails of
the Lorentzian far from the resonant frequency. The a
under the data,S1 , from f 02 f r to f 01 f r ~symmetric posi-
tions on either side of the resonant frequency! is found using
the trapezoidal rule:25
 license or copyright, see http://ojps.aip.org/japo/japcr.jsp
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S15E
f 02 f r

f 01 f r
uS21,data~ f !u2d f

5 (
N5 f 02 f r

f 01 f r d f

2
~ uS21,data~N!u21uS21,data~N11!u2!. ~12!

Here uS21,data(N)u2 indicates the magnitude squared da
point at the frequencyN, and d f is the frequency step be
tween consecutive data points.

The quality factor is subsequently computed from t
area as follows:27

Q5 f 0

P0

S1
tan21 A P0

uS21~ f 06 f r !u2
21. ~13!

This Q is compared to the previously determined one
Q changes by more than one part in 104, the Lorentzian fit is
repeated using as initial guesses forf 0 andP0 , the values of
f 0 and P0 from the previous Lorentzian fit, but the fixe
value of the bandwidth becomesD f RCA5 f 0 /Q. With the
new returned parameters from the fit,Q is again computed
by Eqs.~12! and~13! and compared to the previous one, a
the cycle continues until convergence onQ is achieved. This
method is claimed to be more robust against noise becau
uses all of the data in the integral given in Eq.~12!.27

All of the above methods assume a simple Lorentzi
like appearance of theuS21u versus frequency data. Howeve
the translation and rotation of the data described by Eq.~5!
can significantly alter the appearance ofuS21u versus fre-
quency. In addition, other nearby resonant modes can
matically alter the appearance ofuS21u.

22 For these reasons,
is necessary, in general, to correct the measuredS21 data to
remove the effects of crosstalk, delay, and nearby reso
modes. The remaining methods in the section all add
these issues before attempting to calculate theQ and reso-
nant frequency.

D. Inverse mapping technique

1. Circle fit

The inverse mapping technique, as well as all sub
quent methods in this section, make use of the complexS21

data and fit a circle to the plot of Im(S21) vs Re(S21) ~Fig. 2!.
The details of fits of complexS21 data to a circle have bee
discussed before by several authors.17,19 The data is fit to a
circle using a linearized least-squares algorithm. In the ci
fit, the data is weighted by first locating the point midw
between the first and last data point; this is the refere
point (xref ,yref) ~see Fig. 2!. Next, the distance from the
reference point to each data point (xi ,yi) is calculated. A
weight is then assigned to each data point~i 51 to 801! as:

WMap,i5@~xref2xi !
21~yref2yi !

2#2. ~14!

This gives the points closer to the resonant frequenc
heavier weight than those further away. The circle fit det
mines the center and radius of a circle which is a best fi
the data.
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2. Inverse mapping

We now know the center and radius of the circle whi
has suffered translation and rotation, as described by Eq.~5!.
Rather than unrotating and translating the circle back i
canonical position, this method uses the angular progres
of the measured points around the circle~as seen from the
center! as a function of frequency to extract theQ and reso-
nant frequency.28 Three data points are selected from t
circle, one randomly chosen near the resonant freque
( f 2), and two others~f 1 and f 3! randomly selected but ap
proximately one bandwidth above and below the reson
frequency@see Fig. 3~b!#. Figure 3~a! shows the complex
frequency plane with the measurement frequency a
(Im f ) and the pole of interest at a positioni f 02D f Map/2.
The conformal mapping defined by:

S215
S21D f Map/2

f 2S i f 02
D f Map

2 D ~15!

maps the imaginary frequency axis into a circle in canoni
position in theS21 plane~this mapping is obtained from Eq
~2! by rotating the frequency plane bye2 ip/2!. Under this
transformation, a line passing through the pole in the co
plex frequency plane@such as the line connecting the po
and i f 2 in Fig. 2~a!# will map into a line of equal but oppo
site slope through the origin in theS21 plane.29 In addition,
because the magnitudes of the slopes are preserved
angles between pointsf 1 and f 2 (u1), and pointsf 2 and f 3

(u2), in the S21 plane @Fig. 3~b!# are exactly the same a
those subtended from the pole in the complex freque
plane @Fig. 3~a!#.30 The angles subtended by these thr
points, as seen from the center of the circle in theS21 plane,
define circles in the complex frequency plane which rep

FIG. 3. ~a!. The complex frequency plane is shown with frequency poi
f 1 , f 2 , and f 3 on the imaginary axis and a pole off of the axis. The ima
nary frequency axis is mapped onto the complexS21 plane~b! as a circle in
canonical position, and the corresponding frequency points are indicate
the circumference of the circle.
 license or copyright, see http://ojps.aip.org/japo/japcr.jsp
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sent the possible locations of the resonance pole~dashed
circles in Fig. 3~a!!.28,31The intersection of these two circle
off of the imaginary frequency axis uniquely locates t
resonance pole. The resonant frequency andQ are directly
calculated from the pole position in the complex frequen
plane asf 0 and f 0 /D f Map. This procedure is repeated man
times by again choosing three data points as descr
above, and the results forQ and resonant frequency are a
eraged.

E. Modified inverse mapping technique

We find that the fit of the complexS21 data to a circle is
critically important for the quality of all subsequent determ
nations ofQ and f 0 . Hence we experimented with differen
ways of weighting the data to accomplish the circle fit. T
modified inverse mapping technique is identical to the p
vious inverse mapping, except for a difference in the weig
ing schemes for the fit of the data to a circle~Fig. 2!. Here
the weighting on each data point, known as the stand
weighting, is:

WStnd,i5@~xref2xi !
21~yref2yi !

2# ~16!

and is the square root of the weighting in Eq.~14!. Other
kinds of weighting will be discussed in Sec. VI.

F. Phase versus frequency fit

In the phase versus frequency fit,19 the complex trans-
mission data is first fit to a circle as discussed above for
inverse mapping technique. In addition, an estimate is m
of the rotation angle of the circle. The circle is then rotat
and translated so that its center lies at the origin of theS21

plane~rather than canonical position!, and an estimation o
the resonant frequency is found from the intersection of
circle with the positive real axis~see Fig. 4 inset!. The phase
angle of every data point with respect to the positive real a
is then calculated. Next the phase as a function of freque
~Fig. 4!, obtained from the ratio of the two parts of Eq.~6!, is
fit to this form using a nonlinear least-squares fit:25

FIG. 4. Measured phase as a function of frequency for measured
(SNR'31), both data and fit are shown. Inset is the translated and rot
circle, where its center is at the origin and the phase to each point is c
lated from the positive real axis.
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f~ f !5f012 tan21F2QS 12
f

f 0
D G . ~17!

In this equationf0 , the angle at which the resonant fre
quency occurs,f 0 , and Q are determined from the fit.32 A
weighting is used in the fit to emphasize data near the re
nant frequency and discount the noisier data far from
resonance which shows little phase variation. Again we fi
that the quality of this fit is sensitive to the method of fittin
the originalS21 data to a circle.

G. Snortland method

As will be shown below, the main weakness of the I
verse Mapping and Phase versus Frequency methods is i
initial circle fit of the complexS21 data. To analyze the fre
quency dependence of the data, or to bring the circle b
into canonical position for further analysis, the center a
rotation angle@Eq. ~5!# must be known to very high preci
sion. The Snortland method makes use of internal s
consistency checks on the data to make fine adjustmen
the center and rotation angle parameters, thus improving
accuracy of any subsequent determination of the reso
frequency andQ.

The Snortland method21 starts with a standard circle fi
and phase versus frequency fit~Fig. 4! as discussed above. A
self-consistency check is made on theS21 data versus fre-
quency by making use of the variation of the stored energ
the resonator as the frequency is scanned through reson
As the resonant frequency is approached from below,
current densities in the resonator increase. Beyond the r
nant frequency they decrease again. Hence a sweep thr
the resonance is equivalent to an increase and decrea
stored energy in the cavity and power dissipated in
sample. In general, there is a slight nonlinear dependenc
the sample resistance and inductance on resonator curreI.
This leads to a resonant frequency and quality factor wh
are current-level dependent. The generalized expression
resonator with current-dependent resonant frequency anQ
is21

s[
S21~v,I !

S21~vmax,I max!
5

1

Qmax

Q~ I !
1 i2QmaxS v2v0~ I !

v0~ I ! D , ~18!

wherevmax andQmax are the resonant frequency andQ at the
point of maximum current in the resonator,I max. TheQ and
resonant frequency are therefore determined at every
quency point on the resonance curve as21

Q~ I !5
Qmax

Re@s21#
, ~19!

v0~ I !5
v

@11Im@s21#/2Qmax#
. ~20!

If it is assumed that the response of the resonato
nonhysteretic as a function of power, then the up and do
‘‘power ramps’’ must give consistent values for theQ and
resonant frequency at each current level. If the data is c
rupted by a rotation in theS21 plane, the slight nonlinea
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response ofQ and f 0 with respect to field strength causes t
plots of Q and f 0 versus the current level to trace out hy
teresis curves.21 By adjusting the rotation phase angle a
Qmax parameters, one can make the two legs of theQ(I ) and
v0(I ) curves coincide, thereby determining the resonant
quency andQ more precisely.21

In practice, the resonant frequency is determined from
fit to the nonlinear inductance as a function of resona
current I through v(I )225c01c1I so that vmax

51/Ac01c1I max. Qmax is determined by making the two leg
of the v0(I ) curve overlap. The resulting determination
resonant frequency and quality factor arevmax and Qmax,
respectively.

V. COMPARING METHODS AND DISCUSSION

The values ofQ and f 0 obtained by each method for
group of data~e.g., fixed power or fixedQ! are averaged and
their standard deviations are determined. These results
used to compare the methods. The accuracy of each me
is determined using the generated data since, in those c
the true values forQ and f 0 are known. The most accurat
method is simply the one that yields an average (f 0,Q̄) clos-
est to the actual value (f 0

known,Qknown). The standard devia
tions (s f 0

,sQ) for the measured data are used as a mea
of precision for the methods. The smaller the standard de
tion returned, the more precise the method. To determine
most robust method over a wide dynamic range ofQ and
noise, both accuracy and precision are considered. Henc
algorithm that is both accurate and precise over varyingQ or
noise is deemed the most robust.

A. Fixed power data

Figures 5 and 6 show the values off 0 and Q, respec-
tively, resulting from the Lorentzian fit (B), the modified
inverse mapping technique (E), and the phase versus fre
quency fit (F), for the 110 dBm (SNR'108) fixed power
run. For f 0 , all three methods return values that are ve
close to each other. This is verified by the ratios ofs f 0

/ f 0

for those methods shown in Table I, which shows the n
malized ratio~normalized to the lowest number! of the stan-
dard deviation off 0 andQ to their average (s f 0

/ f 0,sQ /Q̄)
returned by each method on identical data. The differenc

FIG. 5. Plot of fit resonant frequency vs trace number for measured
when the source power is110 dBm. Results are shown for three method
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f 0 from trace to trace, seen in Fig. 5 is due entirely to t
particular noise distribution on thatS21( f ) trace. On the
other hand, the determinations ofQ are very different for the
three methods. From Fig. 6, we see that the phase ve
frequency fit is more precise in findingQ than both the
Lorentzian fit and the modified inverse mapping techniq
~see also Table I!. Thus the fixed power data identifies th
phase versus frequency fit as the best.

B. Power-ramped data

Figures 7 and 8 show the results forf 0 and Q, respec-
tively, from the same methods, for the measured pow
ramped data sets. The data are plotted versus the signa
noise ratio discussed in Sec. III. As the SNR decreases,
determination off 0 becomes less precise, but as in the ca
of fixed power, all of the methods return similar ratios f
s f 0

/ f 0 as confirmed by Table I. The determination ofQ also
becomes less precise as the SNR decreases tending to
estimate its value for noisier data. But, from Fig. 8, we s
that while the modified inverse mapping technique and ph
versus frequency fit give systematically increasing values
Q as the SNR decreases, the Lorentzian fit simply jum
around the average value. This implies that for a low SN
the Lorentzian fit is a more precise method. Table I confir
this statement by showing that the Lorentzian fit has
smallest ratio ofsQ /Q̄. We thus conclude that over a wid
dynamic range of SNR the Lorentzian fit is superior,
though the phase versus frequency fit is not significan
worse.

From Figs. 7 and 8, we see that thef 0 determination
does not degrade nearly as much as theQ determination as
SNR decreases. Here,s f 0

/ f 0 changes by a factor of 2, while

sQ /Q̄ changes by a factor of 300 as SNR decreases f
100 to 3, so the precision in the determinationf 0 is much
greater than that ofQ. The trend of decreasingQ as the SNR
increases beyond a value of about 50 in Fig. 8 is most lik
due to the nonlinear resistance of the superconducting w
in the cavity. An analysis of generated data power ram
does not show a decreasingQ at high SNR.

ta

FIG. 6. Plot of fit quality factor vs trace number for measured data when
power is110 dBm. Results are shown for three methods.
 license or copyright, see http://ojps.aip.org/japo/japcr.jsp
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TABLE I. Measurements of relative precision of the seven methods used to determinef 0 andQ from complex transmission data. Tabulated are ratios of
standard deviation to the average values for both resonant frequency (s f 0

/ f 0) and quality factor (sQ /Q̄) normalized to the best value~given in parentheses!,
for SNR'49, 368, and ramped from 5 to 168. All entries are based on measured data.

Precision table
Method

Noisy ~P513 dBm, SNR'49! Less noisy~P5115 dBm, SNR'368! Power ramp (SNR'5 – 168)

Q f 0 Q f 0 Q f 0

3 dB 5.91 1.069 7.50 4.77 190.44 1.274
Lorentzian 1.55 1.025 2.27 1.10 1 (1.9131022) 1.004
RCA 5.66 1.030 5.24 1 11.04 1.031
Inverse mapping 6.02 1.021 7.95 1.57 4.27 1.321
Modified mapping 1.49 1.031 5.89 2.13 1.61 1 (7.1731029)
Phase vs freq 1 (2.5131023) 1 (1.1531028) 1 (2.8031024) 1 (3.12310210) 1.47 1.025
Snortland 2.27 1.029 2.09 1 5.98 1.086
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C. Precision, accuracy, and robustness

The most precise methods over different fixed pow
are the nonlinear least-squares fit to the phase versus
quency (F) and the Lorentzian nonlinear least-squares
(B) ~Table I!. They consistently give the smallest ratios
their standard deviation to their average for bothQ and f 0

compared to all other methods. At high power (SNR.350)
the phase versus frequency fit is precise to about three p
in 1010 for the resonant frequency and to three parts in4

for the quality factor, when averaged over about 75 trace
When looking at the generated data with SNR'65, the

most accurate method for the determination of the reson
frequency is the phase versus frequency fit, because it ret
an average closest to the true value, or as in Table II, it
the smallest ratio of the difference between the average
the known value divided by the known value (u f 0

2 f 0
knownu/ f 0

known,uQ̄2Qknownu/Qknown). The value returned
for the resonant frequency is accurate to about eight par
108 for Q5103, and one part in 109 for Q5105 when aver-
aged over 100 traces. For the quality factor, the phase ve
frequency fit (F) is most accurate~Table II!, with accuracy
to about one part in 104 for Q5103, and one part in 104 for
Q5105 when averaged over 100 traces.

The method most robust in noise is the Lorentzian
~see the power-ramp columns of both Tables 1 and 2!. It
provided values forf 0 andQ that were the most precise an
accurate as the signal-to-noise ratio decreased~particularly

FIG. 7. Plot of fit resonant frequency vs the signal-to-noise ratio on a
scale for the measured power-ramped data set. Results are shown for
methods.
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for SNR,10!. Over several decades ofQ, the most robust
method for the determination off 0 is the phase versus fre
quency fit, which is precise to about one part in 105 when
Q5102, and to about 1 part in 108 whenQ5105, averaged
over 100 traces with SNR'65. For the determination ofQ,
the phase versus frequency (F) is also the most robust, pro
viding precision to two parts in 103 when Q5102– 105 av-
eraged over 100 traces.

VI. IMPROVEMENTS

The first three methods discussed above~3 dB, Lorentz-
ian fit, and RCA method! can be improved by correcting th
data for rotation and translation in the complexS21 plane. All
of the remaining methods can be improved by carefully
amining the validity of the circle fit. We have observed th
by modifying the weighting we can improve the fit to th
circle for noisy data, and thereby improve the determinat
of Q and f 0 . For instance, Fig. 9 shows that the standa
weighting~the weighting from the modified inverse mappin
technique! systematically overestimates the radius of t
circle for noisy data. Below we discuss several ways to i
prove these fits.

By introducing a radial weighting, we can improve th
circle fit substantially~an example is shown in Fig. 9!. For
the radial weighting, we first do the standard weighting

g
reeFIG. 8. Plot of fit quality factor vs the signal-to-noise ratio on a log scale
the measured power-ramped data set. Results are shown for three me
 license or copyright, see http://ojps.aip.org/japo/japcr.jsp
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TABLE II. Measurements of the relative accuracy of the seven methods used to determinef 0 andQ from complex transmission data. Tabulated are ratios
the difference of the averages off 0 andQ from the known value divided by the known values, for both resonant frequency (u f 02 f 0

knownu/ f 0
known) and quality

factor (Q̄2Qknownu/Qknown). The entries are normalized to the best value~given in parentheses!, for Q5103, Q5105 ~both with SNR'65!, and SNR ramped
from 1 to 2000. All entries are based on generated data.

Accuracy table
Method

Q5103 Q5105 Power ramp (SNR'1 – 2000)

Q f 0 Q f 0 Q f 0

3 dB 253.08 217.39 240.21 117.15 401.48 43.87
Lorentzian 15.38 27.25 14.93 17.28 1 (3.1131022) 1 (1.4631029)
RCA 246.15 403.05 23.35 217.76 8.39 73.39
Inverse mapping 3.85 3.01 10.43 2.21 2.84 5.72
Modified mapping 2.77 3.5 5.64 1.57 1.83 8.43
Phase vs freq 1 (1.3031024) 1 (7.8831028) 1 (1.4031024) 1 (1.4631029) 4.03 12.00
Snortland 103.08 12.68 95.21 8.50 5.11 13.50
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extract an estimate for the center of the circle (xc ,yc), which
is not strongly corrupted by noise. The radial weighting
each point (i 51 – 801) is then defined as:

WRadial,i5
1

A~xc2xi !
21~yc2yi !

2
, ~21!

which reduces the influence of noisy data points well outs
the circle. Figure 10 shows a plot of the calculated rad
versus the signal-to-noise ratio for the generated pow
ramped data set. The figure shows plots of the calcula
radius using four different weightings:Wstnd @Eq. ~16!#,
WRadial @Eq. ~21!#, WRadial

1/2 , andWRadial
2 . From this plot, it is

clear that above a SNR of about 30 all of the weightings g
very similar radius values. However, below that value we
that the radius from theWRadial

1/2 weighting agrees best with
the true radius of 0.2. Therefore, by improving the circle
with a similar weighting scheme, we hope to extract ev
higher precision and better accuracy from these method
lower signal-to-noise ratio.

FIG. 9. Measured imaginary vs real part of the complex transmission c
ficient for measured data@SNR'4, X'(7.2231025,3.2631024), f
'220°#. Plot shows data and two circle fits, one where the standard we
ing is used~dashed line!, and one where the square root radial weighting
used~solid line!.
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In addition to errors in the fit radius of the circle at lo
SNR, there can also be errors in the fit center of the cir
Figure 11 shows the normalized error,Ec :

Ec5AS xc2xfit

xc
D 2

1S yc2yfit

yc
D 2

~22!

in the calculation of the center of the circle from weighting
Wstnd, WRadial, WRadial

1/2 , andWRadial
2 , vs the SNR in log scal-

ing. Here (xc ,yc) is the true center of the circle and (xfit ,yfit)
is the calculated center from the circle fit. From Fig. 11, w
see that the calculation of the center of the circle is accu
to within 1% for SNR'20 and above using any weighting
However, below SNR510, all of the weightings give de
graded fits. The inset~b! of Fig. 11 shows the anglea vs
SNR, wherea is the angle between the vector connecting
true and calculated centers, and the vector connecting
true center to the position of the resonant frequency. Fr
this figure we see that the angle between these vectors
proachesp as SNR decreases, which means that the fit ce
migrates in the direction away from the resonant freque
as the data becomes noisy. This indicates that the point
the side of the circle opposite from the resonant freque

f-

t-
FIG. 10. The calculated circle fit radius vs the signal-to-noise ratio on a
scale is shown for the generated power-ramped data set. The plot show
results from four different weightings:Wstnd, WRadial, WRadial

2 , WRadial
1/2 . The

true value for the radius is 0.2.
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have a combined weight larger than those points around
resonant frequency, and thus the center is calculated clos
those points.

For data with SNR greater that about 10, all weightin
give similar results for the circle fits. For data with SNR le
than 10, the best circle fit would make an estimate of
radius of the circle by using the square root radial weighti
and an estimate of the center by weighting data near
resonant frequency more heavily.

A further refinement of the inverse mapping meth
would be to fit the data with an arbitrary number of poles a
zeroes to take account of multiple resonances in the
quency spectrum.31

The Snortland method was originally developed to a
lyze nonlinear resonances.21 Our use of it for linear low-
power resonances was preliminary, and the results prob
do not reflect its ultimate performance. Further developm
of this method on linear resonances has the potential to
duce results superior to those obtained with the phase ve
frequency method at high SNR.

VII. CONCLUSIONS

We find that the phase versus frequency fit and
Lorentzian nonlinear least squares fit are the most relia
procedures for estimatingf 0 andQ from complex transmis-
sion data. The Lorentzian fit ofuS21u vs frequency is surpris
ingly precise, but suffers from poor accuracy relative to v
tor methods, except for very noisy data. However, a ma
advantage of vector data is that it allows one to perfo
corrections to remove cross talk, delay, and nearby re
nances, thus significantly improving the quality of subs
quent fits. For the fixed-power measured data sets, the p
vs frequency fit has the highest precision and accuracy in
determination off 0 andQ making it the best method overal

FIG. 11. The normalized error in the determination of the center of the
circle is shown vs the signal-to-noise ratio on a log scale for the gener
power-ramp data. Results are from the weightings:Wstnd, WRadial, WRadial

2 ,
WRadial

1/2 . Inset~a! is a plot of the true circle~solid line! and the fit circle to
the data~dashed line! to show that the determination of the center from t
fit (xfit ,yfit) is located at an anglea from the line connecting the true cente
(xc ,yc) to the resonant frequency point,f 0 . The distance from the true
center to the calculated center is related to the normalized error in
calculated centerEc . Inset~b! is a plot of the anglea vs log of SNR for the
generated data.
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All of these methods are good for SNR greater than ab
10. Below this value, all methods of determiningQ and reso-
nant frequency from complex transmission coefficient d
degrade dramatically. Concerning robustness, the phase
sus frequency fit does well for a dynamic range ofQ, while
the Lorentzian fit does well in the power-ramp (SN
51 – 2000).

We also find that significant improvements can be ma
to the determination of resonant frequency andQ in noisy
situations when careful attention is paid to the circle fitti
procedure of the complexS21 data. Further development o
the inverse mapping and Snortland methods can greatly
prove the accuracy and precision of resonant frequency
Q determination in realistic measurement situations.
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