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Electromagnetic wave scattering in electrically large, irregularly shaped, environments is a common
phenomenon. The deterministic, or first-principles, study of this process is usually computationally expen-
sive and the results exhibit extreme sensitivity to scattering details. For this reason, the deterministic
approach is often dropped in favor of a statistical one. The random coupling model (RCM) Hemmady et
al. [Phys. Rev. Lett. 94, 014102 (2005).] is one such approach that has found great success in providing a
statistical characterization for wave chaotic systems in the frequency domain. Here we aim to transform
the RCM into the time domain and generalize it to alternative situations. The proposed time-domain RCM
(TDRCM) method can treat a wave chaotic system with multiple ports and modes. Two features are now
possible with the time-domain approach for chaotic resonators: the incorporation of early time short-orbit
transmission path effects between the ports, and the inclusion of arbitrary nonlinear or time-varying port
load impedances. We conduct short-pulse time-domain experiments in wave chaotic enclosures, and use
the TDRCM to simulate the corresponding experimental setup. We also examine a diode-loaded port and
compare experimental results with a numerical TDRCM treatment and find agreement.
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I. INTRODUCTION

The complicated scattering of electromagnetic (EM)
waves can be found in many applications [1–5]. Exam-
ples include the propagation of WiFi signals in an office
space, and the propagation of high-power microwave sig-
nals in interconnected cabins in ships and aircraft. When
the enclosure characteristic dimension is much larger than
the operating wavelength, the propagation of waves can be
thought of in terms of ray trajectories. In this limit, the ray
dynamics are extremely sensitive to geometrical details,
as well as to initial conditions. If the trajectories exhibit
chaos, that is, nearby trajectories diverge from one and
other exponentially upon undergoing many bounces, and
this occurs before a wave packet following the trajectory
damps out, such enclosures are labeled as wave chaotic.

The complicated dynamics of EM waves pose signif-
icant challenges for the exact solution of the EM fields.
With powerful computers, accurate modeling of wave
propagation can be simulated, but only when the exact
geometrical details of the scattering system are known
[6–8]. However, the precise geometrical details of such
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large systems are usually unknown in practice. Moreover,
the results computed from deterministic methods will be
rendered invalid when perturbations are applied to the sys-
tem, for example, by a simple change of system boundary.
Under these circumstances, statistical approaches are more
suitable for studying wave-chaotic systems.

Random matrix theory (RMT) is widely applied to
describe the statistics of spectral properties of wave-
chaotic systems. Researchers originally developed RMT
to model the spectra of the complicated Hamiltonians of
large nuclei [9–11]. Later, Bohigas, Giannoni, and Schmit
(BGS) proposed the applicability of RMT to simple wave
propagation in domains with complicated boundaries. It
is now surmised that all systems that show ray chaos
in the classical regime will have wave properties that
share universal statistical properties [12]. Based on the
BGS conjecture, RMT has found broad application in
various physical systems (atoms, quantum dots, quantum
wires, microwave enclosures, acoustic resonators, and oth-
ers) [13–18]. Depending on certain basic symmetries, the
spectral properties of a specific chaotic system can be cat-
egorized into one of three groups [11,17]. The first two
groups are the Gaussian orthogonal ensemble (GOE) and
Gaussian unitary ensemble (GUE) of random matrices for

2331-7019/23/19(6)/064052(19) 064052-1 © 2023 American Physical Society

https://orcid.org/0000-0002-6307-9460
https://orcid.org/0000-0002-2362-2430
https://orcid.org/0000-0001-7850-9059
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevApplied.19.064052&domain=pdf&date_stamp=2023-06-16
http://dx.doi.org/10.1103/PhysRevApplied.19.064052


MA, ANTONSEN, and ANLAGE PHYS. REV. APPLIED 19, 064052 (2023)

a system with and without time-reversal symmetry, respec-
tively. The third group is the so-called Gaussian symplectic
ensemble (GSE) of random matrices for a system with
half-integer spins and time-reversal symmetry.

Treatments of the scattering property statistics of wave-
chaotic systems have been carried out for some time [14,
19–33]. The random coupling model (RCM), developed
for electromagnetic applications [31–33], has also found
great success in characterizing the statistical properties of
various frequency-domain quantities, for example, the full
scattering (S) matrix and the impedance (Z) matrix of wave
chaotic systems [34,35].

A. Legacy random coupling model and short-orbit
treatment

To use the RCM one must first identify the ports of entry
and exit for waves in the enclosure. The RCM then pro-
vides a statistical expression for the impedance matrix that
linearly relates the port currents and voltages. For a chaotic
cavity, a model for the fluctuating impedance matrix was
given by Hart [36], based on the work of Brouwer [37].
The model expresses the statistically varying impedance
matrix Z

cav
in terms of an average matrix and a fluctuating

matrix,

Z
cav

= iX
avg

+ R1/2
avg

· ξ · R1/2
avg

. (1)

Here Z
avg

(ω) = R
avg

+ iX
avg

is a frequency or realization
averaged impedance matrix and ξ is a statistically fluctuat-
ing matrix drawn from the Lorenzian ensemble introduced
by Brouwer [37]. The average impedance matrix describes
the early time dynamics of fields in the enclosure. This
includes radiation from the port into the enclosure as well
as the propagation of radiation from one port to another
in the enclosure over short paths. Hart [36] showed that in
the short wavelength limit the average impedance matrix
could be expressed as the sum of the diagonal radiation
impedance matrix, which characterizes the coupling of the
ports to the enclosure, and a second matrix containing both
diagonal and off-diagonal contributions between the ports
from the short paths,

Z
avg

= R
rad

+ iX
rad

+ R1/2
rad

· ζ · R1/2
rad

. (2)

Here Z
rad

= R
rad

+ iX
rad

is the diagonal radiation
impedance and the matrix ζ can be expressed in the short
wavelength limit as a sum over paths going from one port
to another [36],

ζ =
∑

paths

C
path

exp[i(k + iκ)Lpath − iπ/4]. (3)

In Eq. (3), C
path

gives the strength of the path’s contribu-
tion, k = ω/c where c is the propagation speed, κ is the
attenuation rate, and Lpath is the length of the path.

The length of the retained paths depends on how the
average is taken [36,38–41]. If the average is over a win-
dow of frequencies, then only paths with travel times
shorter than the inverse of the frequency window survive
the averaging process. If the average is taken by varying
the orientation or position of a mode stirrer, then only paths
that do not intersect the stirrer survive the averaging pro-
cess [36]. Evaluation of Eq. (3) involves identifying the
relevant short paths and computing the coefficients and
path lengths [38]. Alternatively, the average impedance
matrix can be evaluated by measuring or computing the
early time impulse response of the enclosure [33,42], mul-
tiplying it by a decaying exponential function of time, and
Fourier transforming the product. This gives a frequency
window average of the impedance matrix, where the width
of the window is the exponential decay rate.

Equation (1) describes the realization-to-realization
fluctuations in a system’s impedance matrix but does not
model the frequency dependence of a single realization’s
impedance. To do this we first need to characterize the
processes that contribute to the impedance matrix and the
time scales over which they operate. The diagonal radi-
ation impedance characterizes the entry of wave energy
into the enclosure through the ports. This will vary in
frequency on a scale based on the size of the port Lport,
�ωport = c/Lport. It is expected this is the largest frequency
scale in the problem. The average impedance varies on the
port frequency scale, but also has finer frequency varia-
tions on the scale �ωpath = c/Lpath � �ωport if short orbits
are retained. Finally, we come to the finest frequency scale
in the problem, which will be attributed to the fluctuating
matrix ξ . This finest scale will be set by the properties
of the resonant modes of the enclosure. It will generally
be either the average spacing between modes, �ω, or the
mode Q width, ω/Q, whichever is larger. The ratio of these
two frequency scales is labeled the universal loss parame-
ter (defined below) and it characterizes the distribution of
values of the elements of the matrix ξ . The average spac-
ing and quality factor vary over the frequency range of the
port �ωport. We will soon specialize to the case of a band-
limited signal centered around a carrier and define these
quantities at the carrier frequency.

Given the range of frequency and time scales it is gener-
ally difficult to accurately simulate a system on all three
scales at the same time. Thus, we specialize to a situa-
tion where the excitation signal has a relatively narrow
bandwidth �ωBW around a central or carrier frequency ωc,
�ωBW < ωc. We assume that the bandwidth is compara-
ble to the path frequency �ωBW ≈ �ωpath � ωport. Thus,
we construct a model which describes the response of the
enclosure to a pulse envelope that has time variations on
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the scale of the length of the short orbits and longer, and
which modulates a carrier. In this approximation the time
scales associated with the injection of power through the
ports will be treated as instantaneous, and the radiation
impedance matrix is evaluated at the carrier frequency, ωc.
We make an additional approximation that the cavity loss
factor is high (ω/Q � �ω, where �ω and Q are now spec-
ified to be the average mode spacing and quality factor for
frequencies near the carrier) and that the short-orbit contri-
butions to the impedance matrix are small |ζ | � 1. What
these approximations mean in practice is that only a small
fraction of the energy injected into the enclosure escapes
through a labeled port. In this limit by combining Eqs. (1)
and (2) the cavity impedance matrix takes a simple form in
which the short-orbit effects and wave-chaotic mode effects
are additive,

Z
cav

= iX
rad

(ωc) + R1/2
rad

(ωc) · [ζ (ω)

+
∑

n−range

ξ
n
(ω)] · R1/2

rad
(ωc). (4)

Here the random matrices ξ
n

are continuous, frequency-
dependent, matrices that fluctuate from realization to real-
ization and provide the same statistical properties at a
single frequency as the matrix given in Eq. (1),

ξ
n
(ω) = −2iω

π

�ωc cT

ω2
n − iωωc/Q − ω2 . (5)

In Eq. (4) the sum is over a group of eigenfrequencies
of the closed cavity, ωn, which we replace by a spectrum
based on RMT (Appendix A). Further, we place this group
of eigenfrequencies over a range whose center is the car-
rier frequency, and whose extent is larger than the Q width
of the cavity and the bandwidth of the signal, allowing the
sum to converge. In this way the average contribution of
the sum to the imaginary part of Eq. (4) is negligible as the
average part is already included in X

rad
(ωc). In Eq. (5), we

now define the mean spacing in frequency between modes
with frequency near ωc, �ω = 〈ωn+1 − ωn〉, the average
quality factor for modes with frequency near ωc, Q, and
a column vector cn of dimension M (the number of ports)
whose elements are independent and identically distributed
zero mean, unit variance, Gaussian random variables. We
also introduce the previously mentioned loss parameter,
which is the ratio of the Q width of the mode resonances
to the average mode spacing,

α = ωc/(Q�ω). (6)

A detailed derivation of this result for the case in which
Z

avg
= Z

rad
, the diagonal radiation impedance, is presented

in Appendix B.

We can evaluate the expected value of Z
cav

in the weak
damping, dense spectrum limit Q � α � 1, by noting
〈c cT〉 = I , the identity matrix, and by replacing the sum
over modes with an integral over mode frequency. We find∑

n−range �ωξ
n

→ ∫
ξ

n
dωn = 1, and consequently agree-

ment with Eq. (2).
The frequency dependence of the impedance matrix has

consequences for the time dependence of signals in our
model system. First, we note that all the frequency depen-
dence is contained in the square bracket term in Eq. (4).
This term governs the propagation of signals between
the ports. It consists of two terms, a short-orbit contri-
bution and a fluctuating chaotic mode contribution. We
note that the average impedance matrix, Eq. (2), exhibits
prompt reflections from the excited ports and appropriately
delayed reflections and transmission to other ports due to
inclusion of short orbits.

Although the average response will respect all time
delays, individual realizations described by Eqs. (4) and
(5) will not. As we describe in coming sections, Eq. (5)
is realized by a system of second-order differential equa-
tions in time for the individual “chaotic” mode amplitudes.
The response of the mode amplitudes to steady excitation
is to initially grow linearly in time and then come into equi-
librium on the time scale of the quality factor Q/ωc. This
initial growth will cause some low level, fluctuating trans-
mitted signals to appear prematurely. The error being of
order ωcTpath/Q = Tpath/TQ, where Tpath is the travel time
for signals on a path connecting the ports and TQ is the
decay time for the fields in the enclosure. For a reverber-
ant enclosure the time of flight for signals between ports is
much less than the decay time, Tpath/TQ � 1.

If the injected signal is for communication purposes
the symbol rate, T−1

s , becomes relevant. One can expect
that paths with time durations Tpath/Ts ≤ 1 can con-
tribute coherently to the transmission, while the contri-
butions from longer paths will cause intersymbol interef-
erence. In this case one would want to include in the
average impedance the contributions from paths with
sufficiently short durations Tpath/Ts ≤ 1, while the sta-
tistically fluctuating response models the interference
from previously injected signals with delayed arrival
times.

Thus, in our model the signal arriving at a port is the
sum of two terms as represented in the square bracket in
Eq. (4). The first term is an average, “or coherent,” por-
tion containing the short-orbit contributions, and which
satisfies all physical time delays. The second term is the
stochastic contribution expressed in terms of mode ampli-
tudes. The amplitude of a mode will be determined by
solving a second-order differential equation in time with
the input currents at the port as sources. If one thinks
about expressing the solution of this differential equation
as a convolution, the kernel has a time duration Q/ωc =

064052-3



MA, ANTONSEN, and ANLAGE PHYS. REV. APPLIED 19, 064052 (2023)

TQ � Tpath. Thus, in the highly reverberant cavities that
we consider, the major contributions to the stochastic mode
amplitudes will come from signals injected well before the
current time, and that have reverberated in the cavity for a
time TQ. Thus, causality will effectively be satisfied.

In this paper, we aim to recast the RCM from the fre-
quency domain to the time domain. Previous work has
directly applied the frequency-domain RCM to compute
the system time-domain quantities (reflected voltage at
the input port) by Fourier transform [43]. However, this
method cannot be used to describe nonlinear devices in
the scattering system. The proposed time-domain RCM
(TDRCM) method is a true time-domain calculation,
in the sense that quantities evolve in the time domain
either as mode amplitudes or as convolutions. Because
the quantities are evolved in time, one can treat vari-
ous types of port loads including both linear and non-
linear, passive and active devices, and time-dependent
loads, such as those associated with time-dependent logic
states of electronics [41,44]. The TDRCM also explic-
itly includes nonuniversal effects through the incorporation
of the port-radiation impedances, losses, and short-orbit
effects.

The time-domain treatment presented here can be com-
pared with previous approaches [45,46]. One approach,
known as statistical energy analysis (SEA), is to calculate
the time dependence of the spatially averaged energy den-
sity in one or more coupled reverberation chambers [4].
The resulting system consists of a small number of
coupled ordinary differential equations, one per cavity
or enclosure, with coupling coefficients describing the
injection of energy in each enclosure and its leakage
from one enclosure to another. A more refined approach,
known as dynamical energy analysis (DEA), is to solve a
kinetic equation for the transport of wave action through
phase space in complex structures [47,48]. In both these
approaches the quantities solved for are quadratic in the
fields and averaged over the time period of the oscillat-
ing fields. Thus, the effects of interference are neglected,
while they are retained in the treatment presented here. A
third statistical time-domain method is based on the Baum-
Liu-Tesche equations [49], which model communication
among enclosures in terms of transmission lines. Other sta-
tistical time-domain methods are based on multipath ray
sums [50,51] where the arrival times are Poissonian, the
amplitudes are governed by Rayleigh statistics, and the
phases are assumed random.

There is interesting related work in the rapidly develop-
ing area of reconfigurable intelligent surfaces RIS [52,53].
Here researchers are interested in modeling and control-
ling the distribution and redistribution of field amplitudes
in reverberant enclosures containing programable metasur-
faces. These surfaces, consisting of an array of reflect-
ing cells, scatter incident waves in different directions
depending on the state of the array, which is electrically

controlled. As a result of the controlled scattering, it is pos-
sible to redirect waves and create hot and cold spots at arbi-
trary points in the enclosure. An application of such an RIS
is to enhance wireless communications in a reverberant
environment [54,55]. Given this application, a time-
dependent description of the scattering and interference of
the signals following different paths is desirable. As we
discus, the model we propose includes two types of path
by which signals are transported between ports: determin-
istic paths as contained in the average impedance matrix,
and statistical paths as contained in the random matrices
Eq. (5). Application of our model to the RIS communi-
cation problem would require including the RIS in the
short-orbit portion of the average impedance matrix where
precise time-of-flight information is retained, and treating
the reverberant background of signals interfering with the
communications signal statistically.

The outline of the paper is as follows. We first intro-
duce the fundamental equations of the TDRCM method in
Sec. II. Section III introduces the short-pulse experimental
verification of TDRCM theory, followed by a comparison
between the experimental results and the TDRCM simu-
lated results in Secs. IV and V. We give an example of the
use of TDRCM for nonlinear ports in the context of reser-
voir computing in Sec. VI. We summarize the results in
Sec. VII.

II. TIME-DOMAIN RANDOM COUPLING MODEL
FORMULATION

In this section, we discuss the formulation of the
TDRCM method. We first present the basic TDRCM sta-
tistical model in Sec. II A. We next describe the treatment
of system port loads (both linear and nonlinear loads) in
Sec. II B. In Sec. II C, we present a method to include
short-orbits (SO) in TDRCM, thus incorporating the non-
statistical aspects of the early time transmission inside the
cavity.

A. TDRCM evolution equations

The TDRCM models an enclosure supporting N eigen-
modes covering a range of frequencies such that the inte-
gral in Eq. (5) converges. The enclosure can have M ports,
where each of the ports can serve as a transmitting (TX)
port or a receiving (RX) port, or both. We use Fig. 1 to
summarize the variables and parameters of the TDRCM
method. The TDRCM computes the temporal evolution of
cavity modes and port variables. The type of load con-
nected at each of the ports can be different, and the degree
of lossyness for each of the modes can also be specified.
The radiation resistance of the port Rrad characterizes the
free-space radiation property of the port antenna [31–33].
The cavity modes (Un, n = 1, 2, . . . , N ) are represented by
the real voltages Un, where n is the mode index, and repre-
sents the amplitude of excitation of the nth eigenmode of
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FIG. 1. Schematic summary of the TDRCM method. The
injected waveform Vin(t) is sent into a wave-chaotic enclosure
through port 1. The enclosure has N eigenmodes excited. The
TDRCM model computes the voltage and current on all M ports,
as well as all N cavity-mode voltages. The system-specific quan-
tities (cavity Q factor, mean-mode spacing �ω, the radiation
resistance R

rad
(ω) of the ports, and the load impedances attached

to the ports, Zj ) are color-coded in red, while the RMT-generated
quantities (cavity-mode frequencies) are colored in green. The
result is predictions for the voltage waveforms appearing on all
ports as a function of time, Vi(t), i = 1, . . . , M . For example, a
sketch of the voltage wave prediction at port M is shown as VM (t)
in the figure.

the closed system. The signal at port j is represented by the
port voltage Vj and port current Ij (j = 1, . . . , M ).

Each cavity mode is described by a driven damped
harmonic oscillator equation,

d2

dt2
Un + vn

d
dt

Un + ω2
nUn = ωn

M∑

j =1

cnj Knj
d
dt

Ij , (7)

where port subscript j runs through all M system ports.
The port voltages (Vj , j = 1, 2, . . . , M ) are modeled by a
linear summation over all cavity modes,

Vj =
N∑

n=1

cjn

√
ε

μ
Knj Un − Vjc. (8)

The quantity Vjc represents the electrostatic mode contri-
bution of port j , defined as

Cp
dVjc

dt
= −Ij . (9)

The term Cp is a port capacitance that is useful at low fre-
quencies for dipolelike ports. In Eq. (7), the damping term
for a system mode is defined as vn = ωn/Qn, where we
allow each mode to have a different quality factor. The
quantities ωn and �ωn are the eigenmode frequency and
mean-mode spacing near ωn.

As in the frequency-domain RCM, the quantity cjn is a
normalized, fluctuating coupling coefficient between mode

n and port j (assumed to be Gaussian random variables).
The factor

Knj = −
(μ

ε

) 1
4
[

2Rrad,j (ωn) �ωn

πωn

] 1
2

(10)

is a dimensional factor having units of Ohms that give
the strength of the coupling of mode n to port j (see the
derivation in Appendix B). The quantities μ and ε are
the (assumed uniform) permeability and permittivity of the
enclosure volume material. The quantity Rrad,j (ωn) is the
frequency-domain radiation resistance of port j evaluated
at frequency ωn. In Eq. (8), the random coupling coeffi-
cient cjn and mode voltages Un are the same quantities as
in Eq. (7). In the analysis presented here we modify Eq. (4)
slightly in that we move the factors R1/2

rad (ωc) inside the
sum on modes n, and replace the carrier frequency, ωc,
the argument of the radiation resistance with the mode fre-
quency, ωn. In the narrow bandwidth limit, this is a minor
change. However, it more accurately represents the mode
expansion analysis in Appendix B.

For an enclosure with N modes and M ports, we have
N versions of Eq. (7) and M versions of Eq. (8). The
unknown quantities that need to be solved are the N Uns,
the M currents Ij , and the M voltages Vj , all of which
are functions of time. Usually we set the initial condition
(t = 0) as Un = dUn/dt = Vjc = 0 for all n and j , repre-
senting a quiet cavity. When the input pulses are turned on,
the port voltage values at the TX ports will have nonzero
values as well as nonzero time derivatives. As shown in
the rhs of Eq. (7), the change of port signals will then drive
cavity modes to oscillate. The oscillating cavity modes will
further contribute to the nonzero signals at all ports [the rhs
of Eq. (8)]. In addition to Eqs. (7) and (8), one needs the
explicit relationship between the port voltage and current
signals that describes the load at the port to solve for all
system mode (Un) and port quantities (Ij , Vj ).

B. System port treatments

In a time-domain model the equations for the mode
amplitudes Un, Eq. (7), must be integrated in time along
with the dynamic variables describing the ports. The
source term in Eq. (7) is proportional to the time derivative
of the port current, while the port voltage is linearly related
to the mode amplitudes through Eq. (7). These variables,
port voltages, and port currents are dynamically related by
the models describing the port loads. In this subsection,
we discuss the treatment of two generic types of loads that
are present at ports: a linear impedance load [Fig. 2(a)]
and a nonlinear load [Fig. 2(b)], where we utilize the spe-
cific example of a diode-loaded port. We first show the
treatment of ports with a linear load.

If the port is excited by an incoming wave on a trans-
mission line, with characteristic impedance Zj , the voltage
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(a) (b)

FIG. 2. Diagrams of the TDRCM port-load modeling. (a) The
linear load at port j is represented with an impedance Zj . The
dashed arrows mark the direction of waves flowing into and
out of the cavity. (b) Schematic of a diode-loaded port with the
resistor, diode, and capacitor components labeled.

and current at the port j can be related by

Vj = Vin + Vout,

Ij = (Vin − Vout)/Zj , (11)

where Vin (Vout) represents the incident (reflected) voltage
wave coming into (out of) the cavity. The direction of the
waves is shown by the dashed arrows in Fig. 2, so that
“in” corresponds to waves going into the cavity, and “out”
represents the waves that leave the cavity. If the port is
simply connected to a load, Zj , then we set Vin = 0. The
value of the load impedance Zj (often 50 
) is represented
by the load connected between the cavity and the ground
in Fig. 2(a). Note that the TDRCM allows the cavity to
have multiple ports, shown schematically in Fig. 2 with the
lines connected to the left side of the cavity. For a signal
input port, we have Ij = (Vin − Vout)/Zj = (2Vin − Vj )/Zj
where Vin is the waveform injected into the cavity at
that port. For an output port, we have Ij = −Vj /Zj since
Vin = 0.

One may express the I -V relation of both input and
output ports by the following vector expression:

I = Y V + D. (12)

Vector quantities are used here for simplicity: I and V are
two M -by-1 column vectors for all port currents and volt-
ages, whose elements are Ij and Vj (j = 1, . . . , M ). Here
Y is a diagonal M -by-M matrix where Yjj = −1/Zj and
D is a time-dependent vector with Dj = 2Vin,j /Zj . With
Eqs. (7), (8), and (12), we have now obtained enough equa-
tions to solve for the port voltages. Note that the values of
port-load impedance (Zj ) and the injected voltage signals
(Vin,j ) values are treated as known quantities. In a finite-
difference implementation, assuming Un and dUn/dt are
known at time t, then Vj and dVj /dt are known through
Eq. (8). Using Eq. (12) then gives dIj /dt and consequently,
Eq. (7) can be used to update dUn/dt and Un.

We next study the case with nonlinear output ports and
use a generic diode-loaded port as a representative exam-
ple, as illustrated in Fig. 2(b). (Note that the TDRCM

can also treat nonlinear input ports utilizing this same for-
malism.) As a finite-difference-method-based time-domain
model, one of the strengths of TDRCM is the ability to treat
ports loaded with nonlinear devices. Simulating nonlinear
components is a unique advantage of true time-domain
methods as opposed to the methods that compute time-
domain signals from frequency-domain quantities [36,55].
As shown in Fig. 2(b), the diode-loaded port is modeled
with a series resistance (R) and a shunt capacitance (C).
The diode port is modeled by the following equations:

Vj = VD + R ID, Ij = −(IC + ID),

IC = C
d
dt

Vj , ID = I0

[
exp

(
qVD

kBT

)
− 1

]
. (13)

The quantities VD, ID, and IC are the voltage drop at the
diode, the currents at the diode path, and the shunt capac-
itor path [Fig. 2(b)]. The diode parameters I0, q, kB, T are
the reverse current, elementary charge, Boltzmann con-
stant, and the temperature in Kelvin. The subscripts D
and C represent the diode and capacitor. For convenience,
we set ID = 0 for negative voltages. Equation (13) can be
simplified to

C
dVj

dt
+ Vj

R
+ Ij = −VD

R
, (14)

VD = kBT
q

ln
(

1 + Vj − VD

R I0

)
. (15)

The appearance of dVj /dt in Eq. (14) now adds a com-
plication to the finite-difference solution of our system of
equations. In particular, if Eq. (14) is differentiated in time
to express dIj /dt, and dIj /dt is inserted in Eq. (7), then
the second-order derivative of Vj appears on the right side
of Eq. (7) and the second derivative of Un appears on
the left side. These must be solved for consistently with
the relation Eq. (8). This can be done by introducing a
predictor-corrector method. The voltage across the diode
VD is computed by solving the transcendental Eq. (15). We
examine the effectiveness of TDRCM modeling of nonlin-
ear elements in Appendix C, and provide an example of
the TDRCM modeling of a reservoir computer based on a
microwave cavity containing diode-loaded output ports in
Sec. VI.

C. Inclusion of system-specific short orbits

So far we discuss the treatment of the statistically fluc-
tuating contribution to the impedance matrix Eq. (4). We
now turn to the average contribution contained in the
matrix ζ , Eq. (3). Including this term gives us the abil-
ity to describe the propagation of waves directly from port
to port, or indirectly with only a few reflections from the
enclosure’s walls. This is referred to as the short-orbit con-
tribution. Here, rather than computing ζ as a sum over
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paths as given by Eq. (3) as was done in Refs. [36,38],
we assume that it can be measured.

We define short orbits as system-specific trajectories
that link ports by means of either ballistic or few bounce,
ray orbits. Short orbits can persist in ensemble measure-
ments in which one or more perturbers are moved to block
various orbits that connect two ports of a complex scat-
tering system [36]. Such short orbits have been accounted
for in frequency-domain treatments of complex scatter-
ing by a number of authors [36,38,56–60]. We borrow
this approach and transform it into the time domain [61]
to account for system-specific early time signals that are
present in any particular realization of a complex scatter-
ing system. This early time RX signal rise up comes from
the nonstatistical and system-specific prompt response at
the port location, and is present in many realizations
of the cavity ensemble [31,37,56,62–65]. Note that short
orbits of open scattering systems should not be confused
with closed periodic orbits, which are properties of closed
billiard systems [66–68].

To include short-orbit effects in our time-domain model,
Eqs. (7)–(10), we add current-controlled voltage sources to
each port voltage, Vj → Vj + VSO, j , where

VSO, j (t) =
∑

j ′
(Rrad,j Rrad,j ′)1/2

∫ t

0
dt′ζ̂jj ′(t − t′)Ij ′(t′).

(16)

Here ζ̂jj ′ is a convolution kernel that describes the aver-
age transmission of wave amplitude from port j to port j ′.
The kernel can be found by exciting one port and measur-
ing the voltage at another. In the time domain, this would
be done by imposing a step-function current waveform at
port j ′ and measuring the voltage waveforms at all other
ports over a period of time comparable to the length of
the short orbits of interest. These signals should then be
multiplied by a decaying exponential to effectively per-
form a window average. Alternatively, the ports j ′ may
be excited with monochromatic waves, and the response
at other ports recorded for a range of injected frequen-
cies covering the expected signal bandwidth. In this case,
averaging would have to be conducted by changing the
configuration of a stirrer or by window averaging in fre-
quency. The frequency-domain version of the short-orbit
contribution is given by

ṼSO, j (ω) =
∑

j ′
(Rrad,j Rrad,j ′)1/2ζ̂jj ′(ω)Ĩj ′(ω). (17)

The inclusion of these terms, Eq. (16) in the time domain
and Eq. (17) in the frequency domain, replicates the first
term in the square bracket in Eq. (4).

We note that if the receiving port voltages are measured
with known injected current at the transmitting port, and

with all receiving ports open circuited, then Eqs. (16) and
(17) can be used to find the appropriate transfer matrix ele-
ments ζ̂jj ′(t) or ζjj ′(ω) directly. If the receiving ports are
not open circuited, and a current flows in the receiving
port, then this will cause the receiving port to reradiate the
signal, complicating the calculation of the various matrix
elements. This generally will be a small effect when the
diagonal impedance matrix elements are larger that the off-
diagonal ones. As we already assume this we neglect this
reradiation effect and proceed. With ζ̂jj ′(t) in hand we can
then model nonlinear ports in time using Eq. (16).

Figure 3(a) shows an example of an averaged short-
orbit signal VSO(t) evaluated as follows. The frequency-
dependent scattering matrix is measured by means of a
microwave network analyzer for a 1 m3 enclosure con-
taining a mode stirrer. Measurements are recorded for 50
positions of the mode stirrer and an average is taken. As
the quantity that is actually measured is S21(ω) with both
ports connected to 50-Ohm transmission lines, we seek
an expression for the short-orbit contribution either in the
form of Eqs. (16) or (17), the relationship between these
quantities must be determined. It is found to be

〈S21〉 = 2Z0(Rrad,1Rrad,2)
1/2

(Z0 + Zrad,1)(Z0 + Zrad,2)
ζ21(ω). (18)

Here we assume both transmitting and receiving ports are
connected to identical transmission lines of impedance
Z0. We next assume a narrow band input signal Vin(t)
is incident on one of the ports. The assumed input sig-
nal is a 5 GHz sine wave, modulated by a 5 ns long
flat top envelope with a 1 ns rise time. In practice, the
input signal Vin(t) is obtained by measuring the actual
injected waveform (a 5 ns, 5-GHz sine wave). The Vin(t)
is then Fourier transformed to the frequency domain and
the average scattering coefficient is applied to arrive at
an assumed frequency-domain output signal. This signal
is then Fourier transformed back to the time domain to
arrive at a short-orbit voltage signal VSO(t). This we plot in
Fig. 3(a). In the next section, we use this signal to compare
measured and simulated signal properties.

We next combine the short-orbit and statistical fluc-
tuating contributions to the off-diagonal elements of the
impedance matrix of Eq. (4). This was done by generat-
ing an ensemble of 20 fluctuating matrices as given by
different realizations of the random variables c in Eq. (5).
To complete the evaluations of Eq. (5) we estimate the
average spacing between modes (�ωn) and the Q fac-
tors of the modes in the range of 5 GHz (see gigabox
parameter values in Table I). We then add ξjj ′ to ζjj ′ in
Eq. (18) and perform the same operations that produce
VSO(t). These 20 signals are labeled Vport(t) and are plotted
in Fig. 3(b). Figure 3 shows that the average and statisti-
cal contributions for the first 20 ns are comparable, but for
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(a)

(b)

(c)

FIG. 3. (a) Computed time-domain short-orbit (SO) signal at the gigabox RX port. The injected pulse is a 5 GHz, 5-ns-long flat
single-frequency sine wave with an approximately 1-ns rise time. The inset is the enlarged view of the VSO curve from 30- to 32-ns
window (black dashed box). The VSO is computed with FT methods using the injected pulse and the measured ensemble averaged S
parameter (see details in the main text). (b) The TDRCM simulated RX port signals Vport from 20 realizations of the model system.
Here the SO contribution VSO is added onto the TDRCM computed Vport. (c) The RMS ensemble averaged RX port signal compiled
from the port signals before and after the SO treatment. The inset is the enlarged view of the curve from 10- to 12-ns window (black
dashed box).

long times the statistical signals are dominant. This com-
parison is taken further in Fig. 3(c) where we extracted
the time-dependent RMS envelope amplitude from the
time-dependent signals resulting from 30 realizations of
the fluctuating matrix with (blue) and without (red) the
short-orbit treatment and averaged them. In Fig. 3(b) the
presence of the short-orbit signal is difficult to discern in
the single realization signals. However, in Fig. 3(c) there
is a clear enhancement in the signal at around 12 ns that
can be attributed to the short orbits.

III. SHORT-PULSE EXPERIMENT SETUP

To test the correctness and applicability of the TDRCM
method, we conduct short-pulse injection experiments in
the gigabox enclosure (shown schematically in Fig. 4). The

gigabox is a metallic enclosure with a volume of approxi-
mately 1 m3. The round-trip time for short ray trajectories
in the gigabox is Trt = 7 ns. A mode stirrer, consisting of
two thin metallic panels, is located inside the gigabox to
randomize the EM fields. One can rotate the angle of the
mode stirrer through many fixed values to obtain differ-
ent scattering details, thus creating an ensemble of data.
To automate the measurement process, we install a motor
outside the gigabox to control the rotation angle of the
mode stirrer. Note that we conduct two-port pulse injection
experiments. One of the locations serves as the input port,
where a single carrier frequency fc is modulated by a 20-ns
short-pulse envelope and is injected into the gigabox. To
generate the input pulse, we use the Tektronix AWG7052
5 GS/s arbitrary waveform generator (AWG) to produce a
square pulse and then use the Agilent programmable signal
generator (PSG) E8267D to act as a modulated waveform

TABLE I. Summary table of different system time scales for the gigabox enclosure used in the experiments described here. The
mean-mode spacing �ωn is defined above in Sec. I.

Characteristic
time scales Gigabox parameter values Descriptions

Tosc = 1/fc 0.2 ns (fc = 5 GHz) Input carrier oscillation period
Trt = 2(V1/3)/c 7 ns (V = 1m3) Round-trip time
TBU = Q/ωc 1.5 µs (Q = 4.7e4 at 5 GHz) Build-up time
TH = 2π/�ωn 23.3 µs (evaluated at 5GHz) Heisenberg time
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source with a fixed center frequency fc. We use a series of
different fc values ranging from 5 to 10 GHz in the exper-
iment. A large number of system modes will be excited
by these pulses. For example, there exists about 2 × 104

modes from 4.5 ∼ 5.5 GHz, and about 9 × 104 modes
from 9.5 ∼ 10.5 GHz inside the gigabox. The pulses are
injected into an initially quiet cavity. A nonzero induced
voltage signal will be measured at the RX port. A 50-

load is connected to the RX port. Typical input and output
waveforms are shown as insets in Fig. 4 where one should
note the difference in time scales between the TX and RX
waveforms. We rotate the mode stirrer to 200 fixed loca-
tions for each choice of the center frequency to create an
ensemble of systems and measure the resulting received
time-domain waveforms at the RX port using an Agilent
DSO91304A 40-GS/s oscilloscope. As illustrated by the
insets of Fig. 4, we capture the detailed time-domain sig-
nal evolution on the subperiod time scale, allowing us to
examine details of the induced voltage such as extreme
values and to compile complete histograms of the time
evolution of the induced voltages. Statistical analysis is
then done on this ensemble of time-domain waveforms.
We have summarized the characteristic time scales of the
gigabox enclosure in Table I.

IV. LATE-TIME STATISTICAL TESTS

As introduced in the previous section, we conduct short-
pulse injection experiments in an electrically large ray-
chaotic cavity to test the performance of the TDRCM
model. Here we study the late-time (beginning at 7Trt ∼
50 ns after the pulse injection) quantities where the short-
orbit effects are not present and a reverberant field struc-
ture is established. We simulate the experimental structure
using realistic information for the experimental setup with

the TDRCM method. More specifically, the information
required are the gigabox loss parameter α [69] at frequency
fc, the injected waveform Vin(t), the mean-mode spacing,
the antenna radiation resistance Rrad over the bandwidth of
the pulse for each port, and the value of the linear load
impedance. The gigabox TDRCM simulation is run 1000
times for each center frequency, where alternative lists
of system modes ωn and all random port-mode coupling
coefficients cjn are refreshed each time.

We first study the statistics of the maximum RX port
voltage (max[Vport]) in the time domain. For each con-
figuration in the ensemble (typically 200 different system
configurations generated in the experiment by rotating the
stirrer, and generated in the TDRCM by generating another
random vector of coupling coefficients cjn and mode fre-
quency ωn that appear in Eqs. (7) and (8) we record the
maximum receiver port voltage over time. We then average
these maxima over the members of the ensemble to arrive
at a quantity mean[max(Vport)]. We observe the value of
this quantity to be stable once the ensemble size is over
50. This process is then repeated for different carrier fre-
quencies. We study the RCM simulations with or without
the SO addition treatment. We compare the statistics of
max

[
Vport

]
obtained from the experiment and the TDRCM

simulations. As summarized in Fig. 5, we find a rela-
tively good agreement for mean[max(Vport)] between the
TDRCM model prediction (red and yellow) and experi-
mental data (blue). All data points fall within one standard
deviation of each other. Six different experiments are con-
sidered here, where we vary the center frequency of the
injected sine wave from 5 to 10 GHz in steps of 1 GHz.
Note that the value of the RX port signal decreases as
the center frequency increases. This can be explained by
the loss parameter of the gigabox, which increases from
α ∼ 3 (5 GHz) to α ∼ 12 (10 GHz). Note that, as shown

FIG. 4. Schematic of the short-pulse time-domain experiment setup. The injected waveform (left inset, a 5-ns pulse) is generated
using the AWG and the PSG. The short pulse is broadcast into the enclosure through the TX port (red star). The data ensemble is
created by rotating a motorized mode stirrer inside the enclosure. The RX port (red star) induced voltage signal is measured by the
oscilloscope. An example of the measured RX port signal is displayed on different time scales as the insets on the right. A lab computer
is used for instrument control and data transmission and collection.
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FIG. 5. Late-time extreme port-voltage value statistics. We
show the mean values, and their standard deviations, of the
receiver port maximum voltage data over 200 realizations as a
function of the center frequency of the input pulse. The data
measured experimentally are shown in solid blue, and the data
computed by TDRCM and the TDRCM with the SO addition are
shown in solid red and dashed yellow, respectively. The input
pulse is a single-frequency 20-ns modulated sine pulse. The cen-
ter frequency fc is varied from 5 to 10 GHz. Note that the input
pulse has a finite rise or fall time (1 ∼ 2 ns, see Fig. 4 left inset).
The error bar is one standard deviation from the mean over the
ensemble.

in Fig. 5, the data computed from both the RCM model
and the RCM model with the SO addition show rela-
tively good agreement with the experimental data. Two
observations can be made. First, the SO correction does not
significantly alter the long-term statistics of the original
TDRCM predictions. Second, the maximum value of the
RX port signal is a quantity that is not strongly affected
by the early time SO contributions. This is a consequence
of the high value of the quality factor for the experimen-
tal cavity. The build-up time of the cavity modes is longer
than the round-trip time Trt for short orbits (see Table I).

V. EARLY TIME STATISTICAL TESTS

In Sec. II C we introduce a method to include the direct
short-orbit (SO) contribution to the TDRCM. The pro-
posed method computes the time-domain SO contribution
from a TX port to a RX port (VSO), and directly adds VSO to
the TDRCM computed RX port voltages (Vport → Vport +
VSO). Here we study the effectiveness of the SO addition
method by studying the detailed distribution of Vport in the
time domain. We focus on the early time (< 5 Trt after the
pulse injection) dynamics when the SO contribution dom-
inates the induced voltage at the RX port. We compare
Vport histogram data obtained from three different tests: the
gigabox short-pulse experiments (see details in Sec. III),

the corresponding TDRCM simulations that neglect SO,
and the TDRCM simulation that includes the SO contri-
bution. The distributions of the Vport(t) values for different
time intervals are shown in Fig. 6. Because the injected
pulse duration is 5 ns, we set the time window as 5 ns and
look at the relatively earlier times (before 5Trt) in Vport(t).
The experimental and the RCM + SO histograms consis-
tently show good agreement throughout the time evolution
of the waveform. However, the RCM-only results show a
clear deviation from the experimental results during the
5 to 15 ns (1–3 times Trt) time interval. We believe the
RCM-only results show smaller values of Vport(t) due to a
lack of SO-delivered energy. As shown in Figs. 3(a) and
3(c), the time-domain SO contribution shows the strongest
amplitude contribution from 10 to 15 ns. Inside the same
time window, we also observe the most significant devi-
ation between the RCM-only Vport statistics and the other
two data sets [Fig. 6(c)]. At a later time (15 ns after the
pulse injection), we find that the Vport statistics from the
three data sets show a relatively good agreement [Figs.
6(d)–6(f)]. We find that the late-time Vport distribution fits
nicely with a Gaussian distribution (not shown here) [70].
On the other hand, a substantial deviation from Gaussian
distribution in Vport statistics marks the existence of sub-
stantial SO contributions in the system. Examples of strong
SO effects are the experimental and the RCM + SO datasets
in Figs. 6(b) and 6(c).

VI. NONLINEAR TDRCM APPLICATION:
REVERBERANT WAVE RESERVOIR

COMPUTING HARDWARE

Here we aim to demonstrate one successful applica-
tion of the TDRCM method in a problem that requires a
nonlinear port treatment in the time domain. Recently in
Ref. [71], we have experimentally realized a physical sys-
tem, namely reverberant wave reservoir computing (RC)
hardware, which can execute multiple machine-learning
tasks on time-domain signals. Reservoir computing (RC) is
a type of machine-learning algorithm that utilizes a com-
plex system with a large number of nonlinear computing
nodes [72]. In a typical RC structure, the input signal is
randomly mapped to a high-dimensional “reservoir layer,”
which consists of connected nonlinear nodes. The system
output is extracted out of the reservoir layers through a lin-
ear transfer matrix, Wout. The training of an RC is only
conducted to the optimization of the Wout matrix [72,73].
An RC realization requires a system with a complex and
diverse set of modes, and requires a nonlinear evolution of
the system state.

The RC hardware is based on a wave-chaotic enclosure
with multiple diode-loaded ports. To operate the wave-
based RC, one injects the input data stream into a wave-
chaotic enclosure through a linear port, and then measures
the induced voltage signal at nonlinear ports at several
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(a) (b) (c)

(d) (e) (f)

FIG. 6. Comparison of RX received port voltage statistics in different time intervals for the gigabox experiment and related simu-
lations. The statistics of the distribution of the RX port voltages are shown from three data sets: the experimental data, the TDRCM
simulation neglecting SO, and the TDRCM simulation with the SO addition. A 5-GHz, 5-ns modulated single-frequency sine pulse
is adopted as the injected waveform into the gigabox for all three tests. We show the RX port voltage statistics in a series of 5-ns
windows. The window start time is swept from 0 to 25 ns in 5-ns steps, shown in (a)–(f), respectively.

discrete locations. The nonlinear induced voltage signals
at the ports will in turn excite cavity modes at harmonic
frequencies. In this manner, one introduces a nonlinear-
ity and further complexity into the modal dynamics of the
cavity RC. These voltage signals effectively serve as the
“neuron” responses in the traditional software RC. After
the training, the desired output signal is obtained by prop-
erly summing up the RC neuron responses. A ray-chaotic
microwave cavity with diode-loaded output ports is very
well suited for this task. We use TDRCM with nonlinear
ports to simulate the microwave realization of an RC. The
practical resonator system to be simulated with TDRCM
is a quasi-2D-resonator. The shape of the billiard is simi-
lar to a quarter of a bow tie with an area of A = 0.115m2.
The characteristic length of the billiard is A0.5 ∼ 0.35 m.
In the later TDRCM simulation, the input waveform is set
to center at fc = 4 GHz. With a height of d = 7.9 mm,
the billiard is considered to be quasi-2D because the elec-
tric field is polarized in the z direction for all frequencies
f < c/(2d) = 18.9 GHz [74].

Here we utilize the nonlinear version of TDRCM to
simulate the dynamics of the wave-based RC hardware.
The diode-loaded ports are modeled as in Sec. II B. We
put a single linear input port and 100 diode-loaded out-
put ports in our TDRCM cavity model computation.
All diodes have the same characteristics (R = 50
, C =
1.5e−12F , I0 = 1e−7A, and T = 300 K). The specific type

of machine-learning (ML) task we study here is the
so-called Rossler observer task [73]. The Rossler system
is governed by these equations,

ẋ = −y − z,

ẏ = x + ay,

ż = b + z(x − c), (19)

where a = 0.5, b = 2.1, c = 3.5, and the over-dot denotes
the derivative with respect to time. In this task, the ML
model is expected to predict the Rossler attractor y- and
z-component data when only the x-component information
is supplied. More details of the Rossler observer task setup
can be found in Refs. [71,73]. The wave-based RC train-
ing is completed with the out-coupling matrix Wout, which
is a many-to-few linear mapping of the reservoir state (as
measured through the 100 diode-loaded ports) to X out-
put channels (X being the dimension of the final output
state). The process of finding the optimized Wout matrix is
completed by running the Ridge regression algorithm on a
digital computer [73]. Here, the training phase used 80%
of the entire dataset (80 000 data points uniformly sampled
in approximately 200 oscillation periods).

With optimized cavity parameters (with loss parame-
ter α = 300 and a 35-V input amplitude for the Rossler
x(t) signal), the testing set results are shown in Fig. 7.
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(a) (b)

(c) (d)

FIG. 7. The Rossler-observer task testing set performance. The trained RC is given a continuous stream of the x(t) data generated
from the coupled nonlinear Rossler equations and has to deduce the evolution of the y(t) and z(t) time series based only on training
data. (a),(b) The Rossler-y and Rossler-z series results produced by the nonlinear RC, while (c),(d) show the Rossler-y and Rossler-z
series results produced by a linear RC, respectively. The TDRCM simulated reservoir computing data are shown by red dotted lines.
The actual states are shown by solid blue lines. The x axis shows the index of the testing, ranging from the 32 000th to the 40 000th data
points. Each data index corresponds to a time bin of duration 250 ps.

In this case, the trained RC is fed the x(t) time-domain
waveform generated by an arbitrary waveform generator
with a time step size of 250 ps. The RC has not seen
this waveform in its training phase. The task for the RC
is to continuously generate the y(t) and z(t) time-domain
signals without knowledge of the underlying equations of
motion for the Rossler attractor. The performance of the
RC prediction can be evaluated using the normalized mean
square error, e.g., defined for the y variable as NMSE =∑

n[sn − s′
n]2/

∑
n s2

n, where s′ and s denote true and RC-
inferred values for the Rossler time series, respectively,
and n is the time index of the testing set data. The s′ true
signal is denoted as “ground truth,” and the RC-inferred
signal s is denoted “nLin RC” in Figs. 7(a) and 7(b). The
NMSE is computed to be 0.038 and 0.076 for the results
shown in Figs. 7(a) and 7(b), respectively, showing that
the TDRCM simulated RC can perform this ML task with
high accuracy. We note that NMSE generally decreases
with an increasing number of output ports. In Figs. 7(c)
and 7(d) we show the deduced Rossler series from a linear
RC system (no diode connected to the ports). The NMSE
is computed to be 0.228 and 0.34 for the results shown
in Figs. 7(c) and 7(d), respectively, It is clear that the

existence of nonlinearity is crucial to the success of a
reservoir computer system.

With TDRCM, one can study the dynamics of the rever-
berant wave RC with great fidelity and detail because
all system parameters can be easily controlled. It is also
possible to study the cavity realization of the RC with
electromagnetic numerical simulation software, such as
CST [71]. However, the computing speed of TDRCM is
much faster than the numerical EM simulation due to
the latter’s need for an accurate computer-aided-design
drawing and the corresponding need for detailed spatial-
domain mesh solving. For comparison purposes, we also
conduct time-domain simulations of the Rossler-observer
task experiment with CST. The CST simulation model has
diodes connected to the ports and also has an accurate 3D
resonator structure. The TDRCM and the CST studies have
the same injected signal, number of diode-loaded ports,
and system Q factor. The CST simulation takes roughly 66
s to simulate 1ns ahead of time while the TDRCM codes
take roughly 23 s. Note that the advantage of TDRCM’s
speed enhancement is lower than the linear case (discussed
in the next section) because TDRCM takes extra time when
solving the transcendental Eq. (15).
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VII. DISCUSSION AND SUMMARY

The TDRCM is a statistical treatment of time-dependent
induced voltage signals in electrically large complex
enclosures. It eschews geometrical details and utilizes the
random plane wave hypothesis to describe the statistical
properties of the cavity modes. A significant limitation of
TDRCM is the neglect of the nonzero time for signals to
propagate through the cavity. In making the random plane-
wave approximation, the model neglects the correlation
between modes that carry the early time information about
the location of the ports. The inclusion of the short-orbit
time-domain response restores, to a degree, this informa-
tion. The causality of computed time-domain signals in
many frequency-domain-based methods faces the issue
of nonzero signals at negative times. Such a causal con-
cern is absent in TDRCM as the amplitude of all system
mode and port signals will stay at zero unless an exter-
nal excitation pulse is injected. On the other hand, the
model implicitly assumes that an excited mode develops
and varies its amplitude simultaneously everywhere in the
enclosed space of the cavity. Thus the ports are instanta-
neously excited by all the modes, giving rise to a coupling
between ports that is not causal. One will encounter causal-
ity concerns for the cases where the pulse length is not
substantially longer than (i.e., 10 times larger) the tran-
sit time for the pulse across the system. To address this
issue, one can apply a delay to all TDRCM computed
time-domain results to account for a longer transit time.

Another practical limitation of TDRCM is the trade-
off between computing speed and system mode density.
The TDRCM models each and every one of the N sys-
tem eigenmodes that are excited by an input pulse. We
can estimate the required number of eigenmodes N =
BW/(�f |fc), where BW is the bandwidth of the injected
pulse, and �f |fc represents the system mean-mode spacing
at the pulse center frequency fc. Here is an estimate of the
scale of N in our gigabox short-pulse experiment. For a 5-
ns pulse at fc = 5 GHz, there are N ∼ 8500 modes excited.
Hence, the computation speed of the TDRCM model is
limited by the total number of modes that must be mod-
eled. A method of systematically reducing the total number
of degrees of freedom to simulate is desired. As a refer-
ence, we list the computation resources of one run of the
TDRCM simulation conducted in Fig. 3. The simulation
is conducted with a desktop computer that has 11th Gen
Intel(R) Core(TM) i7. For a simulation with 1 input port,
1 output port, and 20 000 system modes, the simulation
takes 0.5 s to simulate the dynamics of a 1-ns signal when
utilizing 50% of the CPU resources. The maximum RAM
consumption is around 7 GB during the computation. We
note that the RAM consumption is related to the total num-
ber of system modes. As a head-to-head comparison, we
setup a time-domain simulation in CST. The simulation
model has the same 3D size as the experimental structure

but with a simplified interior geometry (no mode stirrer).
The CST simulation takes roughly 100 s to simulate the
dynamics of a 1-ns signal, and the simulation utilizes the
full capacity of the CPU. The TDRCM simulation presents
a 200 times improvement in computation speed, and the
computation resources it consumes may also be optimized
by using different coding environments.

The workflow of TDRCM starts by generating a list
of cavity modes using RMT. Each of the cavity modes
is characterized by a driven damped harmonic oscillator
equation. A random summation computes the port signal
over all excited cavity modes. A TDRCM user will need to
input the basic enclosure information (RCM loss param-
eter α, or equivalently Q values), port information (Rrad,
port-load impedances, and voltage-current relationship for
all nonlinear port loads), and the injected waveform. An
ensemble can be created by changing the list of eigen-
modes and the mode-port random coupling coefficients.
One can then study many statistical properties of the time-
dependent port voltages and system-mode dynamics, only
a few of which have been discussed here.

In this paper, we propose the TDRCM model, which can
simulate the temporal evolution of both port and cavity
mode signals in chaotic systems. To validate the TDRCM,
we conduct short-pulse injection experiments into a large
complex enclosure and perform statistical analysis of the
measured port voltage signal Vport(t). We find good agree-
ment between the measured and the TDRCM simulated
port voltage signals in two types of statistical analysis,
which are the statistics of the peculiar and rare incidents
(maximum RX port voltage) in the time domain, and
the overall port-voltage value distribution. Besides suc-
cessfully simulating the effects of background modes, we
include the effect of short orbits. The advantage of the
TDRCM to simulate the time-domain response of nonlin-
ear chaotic systems is demonstrated in Sec. VI. We also
work out the formalism for including nonlinear port loads
and demonstrate its use in Appendix C.

Concerning applications, one can use TDRCM to sim-
ulate both the linear and nonlinear time-reversed wave
focusing process between two ports in a complex scatter-
ing environment [61,75–85]. TDRCM can also be applied
to coda wave interferometry applications [86–89], and
the analysis of scattering fidelity studies [90–92]. The
reverberant wave-based reservoir computing hardware can
also be studied with the nonlinear TDRCM treatment. A
TDRCM user can set up a collection of SO signals to
study the coherent energy delivery between the ports when
the cavity geometry is known [61]. For future directions,
one may study the nonlinear properties of a diode-loaded
port with both TDRCM and experimental methods [93,94].
Another future direction is the inclusion of large multi-
mode apertures between complex enclosures in TDRCM.
Finally, TDRCM may also be applied to simulate the linear
and nonlinear dynamics for other systems, which RMT can
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model. Examples range from optical pulses in multimode
fibers [95,96] to financial market fluctuations [97].
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APPENDIX

1. Generation of system eigenmodes with RMT

One will need to provide a list of eigenmodes of the
closed system to initiate TDRCM. It is possible to obtain
all cavity eigenmodes accurately using numerical simula-
tion tools (CST, HFSS, COMSOL). However, such a process
would be time consuming for an electrically large system
and impossible when the accurate geometrical details are
unknown. Here we utilize the property of a chaotic system
to simulate a list of system modes by only knowing the
macroscopic system information (i.e., volume, area) and
the operating frequency [69].

As introduced in the main text, a list of system eigen-
modes ωn can be generated using RMT. We start by
computing the eigenvalues λrmt of large random matrices.
The matrix size equals the total number of system modes
that we want to model, and the matrix elements are drawn
from a Gaussian distribution controlled by the symmetry
group of the system [10]. The main symmetry classes of
concern are the Gaussian orthogonal and Gaussian unitary
ensembles of random matrices. The system eigenmodes
ωn are computed from the relation λrmt = ω2

c − ω2
n/�ω2,

where the quantity ωc is the center frequency of the band
that we want to model, and �ω2 is the mean-mode spac-
ing near ωc. To sum up, one first uses the total number of
modes (N ) to generate N random-matrix eigenvalues λrmt,
and then uses the center frequency and mean-mode spacing
to compute N system modes ωn from λrmt.

2. Derivation of time-domain random coupling model

In this section, we outline the derivation of TDRCM. We
start by representing the EM field inside the closed cavity
in a basis of modes, en, hn, φn′ , where

∇ × en = knhn,

∇ × hn = knen,

∇2φn′ + β2
nφn′ = 0.

. (A1)

The quantities en and hn are the electric and magnetic fields
for the nth cavity mode, φn′ is potential of the electrostatic
modes, and β and k are the corresponding wave numbers.
For boundary conditions, we have the tangential compo-
nents of en = 0 at the boundary and the normal component

of hn = 0. For electrostatic modes, we have φn′ = 0 on the
boundary. Between two different cavity modes (mode m
and mode n, m �= n), we have the orthogonal relationship

∫

V
d3x em · en = 0

∫

V
d3x hm · hn = 0

. (A2)

The quantity V is the cavity volume. We define a normal-
ization process,

∫

V
d3x en · en = k−1

n =
∫

V
d3x hn · hn. (A3)

Similarly, for the electrostatic modes, we have
∫

V
d3x ∇φm′ · φn′ = 0, m′ �= n′,

∫

V
d3x ∇φn′ · φn′ = β−1

n′ . (A4)

We next expand the total EM field inside the cavity E and
H in the basis of cavity modes,

E =
∑

n

Unen +
∑

n′
Un′∇φn′

H =
∑

n

Inhn

. (A5)

Here we use Un and In to represent the voltage and current
of mode n. Then we plug Eq. (A5) to Maxwell’s equations.
We dot Faraday’s law with hn and integrate over volume,

−μ
∂

∂t

∫

V
d3x hn · H = − μ

kn

∂

∂t
In =

∫

V
d3x hn · ∇ × E

=
∫

V
d3x E · ∇ × hn = Un. (A6)

We dot Ampere’s law with en,

ε
∂

∂t

∫

V
d3x en · E = ε

kn

∂

∂t
Un = −

∫

V
d3x en · J

+ kn

∫

V
d3x hn · H. (A7)

The quantities ε and μ are the permittivity and permeabil-
ity of the system environment. The current density J above
has two components: the leakage current due to bulk con-
ductivity representing cavity losses, and the driving current
due to port current Ij (j is the index of the port),

J = σE +
∑

ports

Ij uj . (A8)

Here uj is a profile function for the port j current density.
It is normalized with unit magnitude has units L−2. The
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quantity σ is the conductivity of the cavity wall. Then the
first term in Eq. (A7) becomes

∫

V
d3x en · J =

∫

V
d3x en ·

(
σE +

∑

ports

Ij uj

)

= σ

kn
Un +

∑

ports

Ij ĉnj . (A9)

Here the dimensionless coupling coefficient is defined
ĉnj = ∫

V d3x en · uj , and Ampere’s law [Eq. (A7)] becomes

ε

kn

∂

∂t
Un + σ

kn
Un = −

∑

ports

Ij ĉnj + In. (A10)

The port current Ij will also excite an electrostatic field
component,

ε
∂

∂t

∫

V
d3x ∇φn′ · E = ε

βn′

∂

∂t
Un′ = − σ

βn′
Un′ −

∑

ports

Vj ĉ′
n′j .

(A11)

Similarly we introduce a coupling coefficient ĉ′
n′j =∫

V d3x ∇φn′ · uj . Finally, we have the induced electric field
at the port j written as

Vj = −
∫

V
d3x uj · E = −

∑

em-modes

Unĉnj −
∑

es-modes

Un′ ĉ′
n′j .

(A12)

We write the complete time-domain equations here

−μ
∂

∂t
In = knUn,

ε

kn

∂

∂t
Un + σ

kn
Un = −

∑

ports

ĉnj Ij + In,

ε

βn′

∂

∂t
Un′ + σ

βn′
Un′ = −

∑

ports

ĉ′
n′j Ij .

. (A13)

The coupling coefficients are ĉnj = ∫
V d3x en · uj and

ĉ′
n′j = ∫

V d3x ∇φn′ · uj . We rewrite Eq. (A13) by eliminat-
ing the mode currents (In),

∂2

∂t2
Un + σ

ε

∂

∂t
Un + k2

n

εμ
Un = −

√
μ

ε

kn√
με

∑

ports

ĉnj
∂

∂t
Ij ,

∂

∂t
Un′ + σ

ε
Un′ = −βn′

ε

∑

ports

ĉ′
n′j Ij ,

Vj = −
∑

em-modes

Unĉnj −
∑

es-modes

Un′ ĉ′
n′j . (A14)

Here we study the port-mode coefficients ĉnj in Eq. (A14)
by switching to the frequency domain version. We have

(ω2
n − iωγ − ω2)Un = i

√
μ

ε
ωnω

∑

ports

ĉnj , (A15)

where γ = σ/ε and kn/
√

με = ωn. The electrostatic
modes are characterized by (γ − iω)Un′ = −βn′/ε∑

ports ĉn′j In′ . The port voltage is written as

Vj = −iω
√

μ

ε

∑

em-modes

∑

ports

ωnĉnj ′ ĉnj

(ω2
n − iωγ − ω2)

Ij ′

+
∑

es-modes

∑

ports

βn′

ε

ĉn′j ′ ĉn′j
γ − iω

Ij ′ (A16)

where j and j ′ are the indices of different ports. The
impedance matrix writes as Zjj ′ = −iω

√
μ/ε

∑
em-modes

ωnĉnj ′ ĉnj /(ω
2
n − iωγ − ω2).

We next relate elements of the impedance matrix to
the radiation resistance of the ports. We first introduce
the mode density. We use N (ω) as the number of cav-
ity modes with ω < ωn. Because we work with cavi-
ties with a high mode density, we have

∑
em-modes →∫

dωnN ′(ωn), N ′(ωn) = dN (ω)/dω|ω=ωn . The real part
of the impedance Re(Zjj ′) = −iω

√
μ/ε

∫
dωnN ′ωnĉnj ′ ĉnj /

(ω2
n − iωγ − ω2) ≈ ω

√
μ/επ/2N ′ĉnj ′ ĉnj .

We redefine the coupling coefficient as
√

μ/εĉnj ′ ĉnj =[
Rrad(ωn)/

(
π/2ωnN ′)] c2

nj where cnj is a zero mean,
unit variance Gaussian random variable. The quan-
tity Rrad,j is the radiation resistance of port j . Thus
we define the mode-port coupling coefficient as cnj =[√

ε/μRrad,j (ωn)/
(
π/2ωnN ′)]1/2 ĉnj . We also have the

system impedance matrix as

Zjj ′ = −iω
∑

em-modes

2(Rrad,j Rrad,j ′)1/2

πN ′
cnj ′cnj

(ω2
n − iωγ − ω2)

.

(A17)

Note that Eq. (A17) has the same form as the frequency-
domain single-cavity RCM [69].

The final TDRCM mode equations are

∂2

∂t2
Un + γn

∂

∂t
Un + ω2

nUn

= −
(μ

ε

)1/4
ωn

∑

ports

[
2Rrad,j (ωn)

πωnN ′

]1/2

cnj
∂

∂t
Ij

γn = ωn/Qn

C
∂

∂t
Vjc = −Ij

. (A18)

Here N ′(ωn) = 1/�ωn is the inverse of the mode spacing
at ωn, and Vjc describes the electrostatic contribution. The
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(a) (b)

(d)(c)

FIG. 8. The TDRCM simulated RX port signals. (a),(b) Time-domain RX port signal Vport for a 50 
 linear load and a diode load,
respectively. The Fourier transform of the time-domain waveforms in (a) and (b) are shown in (c),(d).

quantity C is the port radiation reactance at lower frequen-
cies as in the main text. The TDRCM port-voltage equation
is

Vj = −
(

ε

μ

)1/4 ∑

em-modes

[
2Rrad,j (ωn)

πωnN ′

]1/2

cjnUn − Vjc.

(A19)

With Eqs. (A18) and (A19), we have the complete
equations of motion of TDRCM. The coefficient Knj =
− (μ/ε)1/4 [

2Rrad,j (ωn) �ωn/πωn
] 1

2 is the combined coef-
ficient on the RHS of the mode equation Eq. (A18), and K ′

jn
is the corresponding coefficient in Eq. (A19).

3. TDRCM treatment of linear and nonlinear
loads—spectral response

To expand the applicability of the TDRCM model, we
present the treatment of nonlinear port loads in Sec. III
B. Here we test the nonlinear capability of TDRCM with
a simple single-tone stimulation of a cavity with a non-
linear output port. In this numerical exercise, we inject
a single-frequency 5-GHz sine wave for 50 ns through
a linear TX port into a model cavity with M = 2 ports,
and study the induced voltage signal at a second RX port
in the cavity. The loss parameter of the system is set at
α = 1, and N = 1000 system modes are used. The mean-
mode spacing is set as �k2 = 4π/A = 109.3m−2 where
A = 0.115m2 is the two-dimensional billiard area. For con-
venience, the frequency-independent radiation resistance
of both ports is set to (18 + 50i)
 (measured at 5 GHz).
Because we are only testing the port-load responses, we
fix the system spectrum [ωn in Eq. (7)] and the port-
mode coupling coefficients [cjn in Eqs. (7) and (8)]. For
the linear system test, the load connected at the RX port

is a 50-
 linear impedance [Fig. 2(a)]. For the nonlin-
ear system test, the RX port is a diode-loaded port, as
shown in Fig. 2(b). The following parameters are used
for the diode-loaded port (R = 50
, C = 1.5e−20F , I0 =
1e−7A, and T = 300 K). The amplitude of the cw input
sine wave is 5 V. The computed time-domain linear and
nonlinear RX port results are shown in Figs. 8(a) and
8(b), respectively. One can already see hints of nonlinear-
ity from Fig. 8(b) by eye. We next show the spectrum of
the linear and nonlinear time-domain waveforms in Figs.
8(c) and 8(d), respectively. Here, the linear-port spectrum
is dominated by one peak at the fundamental frequency
(5 GHz), while the spectrum of the nonlinear port shows
a clear peak at the second and several higher harmonics.
Thus the TDRCM is capable of simulating nonlinear ele-
ments and emulating proper nonlinear behaviors. Note that
the speed of TDRCM computation will slow down when
nonlinear elements are included.
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