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Impedance statistics of cable networks that model quantum graphs
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We present the theoretical framework required to describe the statistics of microwave networks that serve to
model quantum graphs. The networks are described by impedance and admittance matrices relating the voltages
and currents at the network’s ports. As we show, these matrices can be calculated in a number of ways. Normal
modes of the network are characterized by a discrete set of wave numbers corresponding to the propagation
constants on the network’s bonds for which the determinant of the admittance matrix vanishes. The distribution
of the spacings between adjacent eigenmode wave numbers is found to depend on the nature of the way bonds
are connected at nodes. The critical quantity is the reflection coefficient presented at a node to a wave on a bond.
As the reflection coefficient increases, the spacing distribution changes from one characteristic of the spacing of
eigenvalues of a Gaussian orthogonal ensemble matrix to a Poisson distribution. The effect of loss is studied, and
the scaling of the variance of the impedance values on network size, degree distribution, and other parameters
is characterized. We attempted to find universal scaling relations for the distribution of impedance values for
networks of different sizes. Finally, we compare the distribution of impedance values predicted by the model
with those measured in a network of cables.
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I. INTRODUCTION

In this paper, we investigate the properties of electrical
networks that model quantum graphs. The term “quantum
graph” refers to a system in which waves propagate along
one-dimensional paths that meet at junctions, where the waves
interfere and interact. Due to their simplicity, involving one-
dimensional wave propagation only, quantum graphs have
been used extensively as a simple model to analyze and un-
derstand a variety of wave systems [1–6]. Examples include
quantum wires [7,8], mesoscopic quantum systems [9], elec-
tromagnetic waveguide networks [10–12], and others.

This type of model was first used by Pauling [13],
who introduced a quantum graph model to describe the
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behavior of itinerant electrons in organic molecules. The word
“quantum” in the name comes from the fact that the system is
described by a wave equation, similar to the one-dimensional
Schrödinger equation, and thus it has a discrete set of eigen-
modes and frequency eigenvalues. It has been shown [14]
that the eigenvalue spectra of isolated quantum graphs with
incommensurable bond lengths have statistical properties that
are described by random matrix theory (RMT) [15]. Quantum
graphs are divided into orthogonal, unitary, and symplectic
universality classes. All of them can be realized experi-
mentally with microwave networks. Quantum graphs with
time-reversal invariance have spectral properties similar to
random matrices drawn from Gaussian orthogonal ensembles
(GOEs). Such systems are realized experimentally by net-
works of transmission lines connected at nodes characterized
by symmetric scattering matrices [12]. Quantum graphs with-
out time-reversal invariance have properties similar to random
matrices drawn from a Gaussian unitary ensemble (GUE).
Such networks are realized experimentally with the insertion
of circulators in the transmission lines [16–21]. Quantum
graphs with spectra described by Gaussian symplectic ensem-
bles (GSEs) can be approximately realized by constructing
graphs with symmetric paths and circulators [16,22,23].

This paper contains work only on time-reversal invariant
systems, which have been extensively studied experimentally
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[19–21,24–28]. The main focus is the study of the statistics
of the system’s eigenmodes and the statistics of the elements
of the network’s impedance matrix. The eigenmodes of the
system are labeled by index n and have propagation wave
numbers on the bonds kn. We study the spacing distribution
of these wave numbers, and we find that in cases in which the
reflection coefficients at the nodes are low, the distribution of
spacings is characteristic of a time-reversal symmetric, wave
chaotic system. This is similar to earlier findings [19,27,29].
Additionally, we have studied how the spacing distribution
can be altered by changing scattering matrices at the nodes.
In particular, as the reflection coefficients at the nodes are
increased, the spacing distributions approach that of an inte-
grable wave system.

To derive results for the impedance matrix, we treat the
system as an electrical network that is characterized by a
linear, frequency-dependent matrix that relates the voltages at
the nodes of the system to the currents injected at the nodes.
The impedance matrices of networks modeled as quantum
graphs have been studied previously [1,12,30–33]. In this
paper, we first derive three different approaches to calculate
the impedance matrix of the system, and we show that they
agree. We subsequently compare numerical predictions for the
elements of the impedance matrices with measurements made
in the laboratory, and we find agreement. We confirm that the
impedance matrix statistics do not agree with those of two-
and three-dimensional cavities, which are well described by
the random coupling model (RCM) [34–39]. Finally, we in-
vestigate the change in the statistical properties as propagation
loss along the bonds is increased. We find a new scaling for
the statistics as a function of propagation loss as the size of
the network is increased.

II. NETWORK MODEL

In this section, we present a model of a quantum graph in
the form of a network of transmission lines. We will consider
both the normal modes of the undriven network (the eigen-
modes) and the case of the network driven by an injected
signal. In the first case, we will examine statistics of the net-
work’s eigenvalues (resonant frequencies) and eigenfunctions
(network voltages). In the second case, we will examine the
linear relation between injected signals and network voltages.
We will show how these two situations are related. Addition-
ally, we will introduce several ways of calculating the matrices
that describe the network.

As our model of a graph, we consider the network shown in
Fig. 1. It consists of lengths of transmission lines (the bonds)
that connect at junctions (the nodes) that are labeled i = 1, N .
Such graphs are called metric graphs [2]. We adopt a simple
model of the nodes in which the voltage at each node has a
single value Vi, and the currents entering the node can pass
to the ground through an element with complex impedance,
Zi. Moreover, node-i may be connected by a bond, which we
treat as a transmission line, to node- j. In our studies, we have
used this simple model for the nodes. A consequence is that
all nodes reflect signals incident on the node from a bond
to some degree. Others [2,32,40] have considered so-called
Fourier nodes for which the reflection coefficient can be set to
zero. This gives added freedom in terms of network properties

FIG. 1. A schematic representation of a tetrahedral network with
four nodes and six bonds. At the node where the bonds meet a
complex impedance to ground, Zi is added. Note that the network
is open to infinite leads at nodes i and j.

and increases the ability to recover the RCM statistics. How-
ever, such nodes are not easily constructed in practice, so we
confine our studies to the simple nodes pictured in Fig. 1.

We assume the voltages and currents on the transmission
lines satisfy the frequency domain version of the Telegra-
pher’s equations,

ikV (z) = Z0
∂I (z)

∂z
, (1a)

ikZ0I (z) = ∂V (z)

∂z
, (1b)

where the propagation constant k = ω/v, where ω is the
angular frequency, v is the propagation speed, and Z0 is
the characteristic impedance of the transmission line. We note
that the characteristic impedance may be removed from the
problem by defining a new variable [Z0I (z)]. We keep it here
to connect to real networks consisting of sections of a trans-
mission line. Initially, we take the propagation constant to be
real. Subsequently, we will consider dissipation on the line
in which case k = ω/v + ikim, where kim is a damping rate.
For simplicity, we assume all the transmission line properties
are identical from a bond to a bond except for their lengths
Li j = Lji.

The transmission lines carry waves propagating in both
directions along each transmission line with propagation con-
stant k. We label the amplitude of the voltage wave traveling
from node-i and propagating to node- j as Vi j . This is the
amplitude of the voltage wave as it leaves node-i. The voltage
satisfying the Telegrapher’s equations as a function of distance
z from node-i can then be written

V (z) = Vi je
ikz + Vjie

−ik(z−Li j ). (2)

Note that the voltage a distance z′ from node- j can be found
either by the replacement z → Li j − z′ or by the interchange
of indices i and j. Using Eq. (2), we can express the node
voltage in terms of the wave amplitudes Vi j ,

Vi = Vi j + Vjie
ikLi j , (3a)

Vj = Vji + Vi je
ikLi j . (3b)
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From these equations, we can derive expressions for the
wave amplitudes in terms of the node voltages:

Vi j = i
(
e−ikLi jVi − Vj

)
2 sin(kLi j )

, (4a)

Vji = i
(
e−ikLi jVj − Vi

)
2 sin(kLi j )

. (4b)

Associated with the voltage waves are current waves,
which, according to Eqs. (1b) and (2), can be written as

I (z) = 1

Z0

(
Vi je

ikz − Vjie
−ik(z−Li j )

)
, (5)

where again Z0 is the characteristic impedance of the trans-
mission line. This expression represents the current flowing on
the line in the +z direction. Thus, the current leaving node-i
in the direction of node- j is

Ii→ j = 1

Z0

(
Vi j − Vjie

ikLi j
)

= i

Z0 sin(kLi j )
[Vi cos(kLi j ) − Vj], (6)

where we have used Eqs. (4) to express the voltage wave
amplitudes in terms of the node voltages.

We now apply Kirchhoff’s current law to node-i. We imag-
ine there is a current source injecting a current Ii into node-i.
This current must balance all the other currents leaving node-
i, either through the transmission line bonds or through the
impedance Zi to ground,

Ii =
∑
j �=i

Ii→ j + Vi

Zi
= Vi

⎛
⎝ 1

Zi
+ i

Z0

∑
j �=i

cos(kLi j )

sin(kLi j )

⎞
⎠

− i

Z0

∑
j �=i

Vj

sin(kLi j )
. (7)

Here it is understood that the sum over j is only over those
nodes that share a bond with node-i. Relation (7) can be cast
in the form of an admittance matrix,

Ii =
∑

j

Yi j (k)Vj, (8)

where

Yii =
⎛
⎝ 1

Zi
+ i

Z0

∑
j �=i

cos(kLi j )

sin(kLi j )

⎞
⎠ (9a)

and

Yi j = − i

Z0 sin(kLi j )
, j �= i. (9b)

The inverse of this admittance matrix is an impedance
matrix,

Vi =
∑

j

Zi j (k)I j . (10)

This situation described in Eq. (7), where the voltages at
the ends of the edges that are common to a node are equal, and
the current entering the node flows to the ground through an

impedance Zi, corresponds to a special case of the boundary
conditions considered in Ref. [41]. Specifically, the boundary
condition may be cast in the general form AV + BV ′ = 0,
where A and B are d by d square matrices, and V and
V ′ = dV/dz are d-dimensional vectors. Here d is the degree
of the node in question, and the elements of V and V ′ are the
voltages and their derivatives evaluated on the end of the edges
connected to the node in question. In the case here, B takes the
form B = i(kZ0)−111T, with 1 being a d-dimensional vector
whose elements are all unity, and superscript T implies trans-
pose. More simply, B is a matrix whose elements are all equal.
The matrix A takes the form A = Z−1

i I, where I is the identity
matrix. This boundary condition is chosen for two reasons.
First, it can be easily implemented in an experiment. Second,
by choosing the impedance Zi to be reactive, the scattering
matrix for a node is unitary and the diagonal elements can be
adjusted. We will explore the consequences of this in the next
section.

In the next sections, we will investigate the properties of
these matrices for networks of varying complexity. Before
doing that, we will derive an expression for the impedance
matrix in terms of the normal modes of a network.

Normal modes of the system are found for values of the
propagation constant k = kn for which the node voltages are
nonzero in the absence of injected current. This corresponds
to setting the determinant of the admittance matrix to zero,

det (Yi j (kn)) = 0. (11)

The discrete propagation constants kn will be real in the ab-
sence of losses, kim = 0 and Re(Zi ) = 0. Further, if the load
impedance is independent of frequency, dZi/dω = 0, all mode
energy is stored on the bonds. In this case, we expect the
average spacing in wave numbers between modes to be deter-
mined by the total length of the bonds, 〈kn+1 − kn〉 = π/LT ,
where LT = ∑

i j Li j . This relation will be checked when we
solve various network realizations numerically.

The energy stored on a bond is the sum of the electric and
magnetic field energy of the waves on the transmission line
constituting the bond,

U (n)
i j = 1

v

∫ Li j

0
dz

(
Z−1

0

|V (n)(z)|2
2

+ Z0
|I (n)(z)|2

2

)

= 2Li j

∣∣V (n)
i j

∣∣2

vZ0
. (12)

Here we have made use of the fact that the network is time-
reversal symmetric, and as a consequence, |V (n)

i j | = |V (n)
ji |.

Also, we now use a superscript (n) to denote a voltage or
current value associated with the normal mode of the un-
driven network having propagation constant kn. When we
solve for the modes of the network, we will normalize the
node voltages such that each mode has the same total energy,
U (n)

T = ∑
i j U (n)

i j .
There is a relation between the normal modes and the

impedance matrix, which for a driven system I j �= 0 is defined
for all values of propagation constant k (see Appendix A),

Zi j =
∑

n

iV (n)
j V (n)∗

i

(k − kn)vU (n)
T

. (13)
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Here V (n)
i is the voltage amplitude at node-i for mode n,

U (n)
T = ∑

i j U (n)
i j , where U (n)

i j is given by Eq. (12). It should
be noted for this system that the sum is over modes with
both positive and negative values of kn and that the node
voltages for the modes are real. This gives the elements of
the impedance matrix the property that for real k, they are
imaginary and odd functions of k. Further, if we give k = ω/v

a small positive imaginary part, the real parts of the diagonal
elements of the impedance matrix are positive as demanded
by causality. This expression will be compared with direct
inversion of the admittance matrix, Eqs. (9a) and (9b), in the
next section.

There is also a third way to calculate the impedance matrix
based on summing contributions from the different paths a
signal may take in traversing the graph. Specifically, we can
express elements of the impedance matrix in the following
way. For diagonal elements, we write

Zii,path = Zin,i

⎡
⎣1 +

∑
paths

∏
Bonds

σbeiθb

⎤
⎦, (14)

and for off-diagonal elements, we write

Zi j,path = Zin,i

∑
paths

∏
Bonds

σbeiθb . (15)

Here the sum over paths is a sum over all paths starting and
ending at node-i in the case of the diagonal elements and
starting at node-i and ending at node- j in the case of the
off-diagonal elements. The products are over the bonds that
constitute the steps in the paths. On each bond, a phase factor
θb = kLb is accumulated, where Lb is the length of the bond.
The factors σb that are also accumulated are determined by
how the path is followed from one bond to the next. If the
signal is reflected at the end of a bond and then retraces
the same bond, the factor is given by σb = ρb, where ρb

is the voltage reflection coefficient at the node where the
reflection occurs. If the signal passes through the node to
a different bond, then σb = 1 + ρb, which is the voltage
transmission coefficient. The voltage reflection coefficient de-
pends on the number of bonds connected to a node and the
impedance Zj that is connected to the ground at that node. Let
us define the equivalent impedance to the ground of a node,
which is connected to Nj bonds,

Z−1
eq, j = Z−1

j + (Nj − 1)Z−1
0 . (16)

This is the impedance seen by a wave incident on one bond
due to the load and the other bonds. It is the parallel combina-
tion of the load to ground Zj and the Nj − 1 other bonds. The
voltage reflection coefficient is then

ρb = Zeq, j − Z0

Zeq, j + Z0
. (17)

When a path ends on a node, which is considered to be a port,
then the factor σb = 1 + ρb is applied as if the signal were
passing to another bond. The input impedance at the node is
the parallel combination of the load impedance Zj and the Nj

transmission lines forming the bonds,

Z−1
in, j = Z−1

j + NjZ
−1
0 = Z−1

eq, j + Z−1
0 . (18)

It can be shown that with these definitions, each term in the
sum for off-diagonal impedance elements satisfies the reci-
procity condition Zi j = Zji.

In principle, the sum over paths gives the exact value of an
element of the impedance matrix only when an infinite num-
ber of paths is considered. However, useful approximations
to the value of an impedance element can be obtained with
a finite number of paths in two cases. The first case is if the
network has a loss, either in the transmission lines or the loads
to the ground. In this case, signals are attenuated fast enough
as they propagate so that the size of the individual terms in
the sum over longer and longer paths decreases faster than
the number of such paths increases. The second case is the
one in which the sliding window average using the Lorentzian
weighting function is sought rather than the precise value at
a given frequency. Averaging over a window of frequencies
(or wave numbers) of width �k, in this way, is equivalent to
adding loss kim = �k, and it causes the contribution of paths
of length L to decrease as exp(−�kL).

III. NUMERICAL ANALYSIS OF THE GRAPHS

In the previous section, we discussed the theoretical
framework necessary to study network graphs. Now, we nu-
merically analyze different graphs. The first graphs we choose
are the tetrahedron graph, which has four nodes and three
bonds per node, and a larger graph, which has 16 nodes
and three bonds per node. We examine the properties of the
eigenfunctions and the eigenvalues for these graphs. Recall
that the eigenvalues are the set of propagation constants kn for
which Eq. (8) has solutions with all injected currents Ii set to
zero. For each propagation constant kn, we find a set of node
voltages, which we normalize according to Eq. (12).

For the tetrahedron graph, with the set of bond lengths
(1.45, 1.67, 3.05, 3.57, 4.42, and 4.67), we select M =
2990 eigenfunctions in sequence with eigenvalues k1 −
kM spanning the range k1 = 0.57 to kM = 499.95. The
average spacing of eigenvalues for the N = 4 graph
is 〈kn+1 − kn〉 = (kM − k1)/(M − 1) = 0.17, giving 〈kn+1 −
kn〉LT = 3.15. The corresponding numbers for the N = 16
graph, with the set of bond lengths (1.37, 1.39, 1.39,
1.43, 1.65, 1.72, 2.04, 2.25, 2.31, 2.45, 2.63, 2.85, 3.11,
3.25, 3.61, 3.61, 3.64, 4.16, 4.38, 4.56, 4.56, 4.58, 4.85,
and 4.88), are M = 2075, k1 = 0.22, kM = 100.00, 〈kn+1 −
kn〉 = 0.048, 〈kn+1 − kn〉LT = 3.50. Thus, we see that the ex-
pected average spacing is realized.

We then construct histograms for the normalized node
voltages for the set of eigenfunctions. These are displayed
in Fig. 2(a) for the N = 4 graph and in Fig. 2(b) for the
N = 16 graph. Also, plotted on each graph is a Gaussian
distribution function fit to the measured variance of the mode
voltages. It can be seen that the Gaussian is a good fit for the
N = 16 case and not so good for the N = 4 case. We might
expect the Gaussian to be a good fit based on experience
with the eigenfunction of so-called ray-chaotic cavities in
two and three dimensions. Here the statistics of values of the
eigenfunctions are Gaussian as a consequence of the random
plane-wave hypothesis. That is, the field at any point in the
enclosed domain can be viewed as a random superposition of
a large number of plane waves with random phases.
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FIG. 2. Distribution functions of node voltage amplitudes for
two different graphs. (a) Red dots show the distribution function of
node voltage amplitudes for the tetrahedron graph: N = 4, B = 3.
(b) Red dots show the distribution function of node voltage am-
plitudes for the larger graph: N = 16, B = 3. Blue lines are the
Gaussian distribution functions fitted by minimizing the root-mean-
square deviation between numerical data and the Gaussian fitting
function in each case.

We now investigate the properties of the eigenvalue spec-
trum. The spectra of cable and waveguide networks have been
studied previously [29,42]. In these studies, it was found that
the distribution of spacings, sn = kn+1 − kn, was characteristic
of systems described by random matrix theory (RMT) in
that the spectrum exhibited level repulsion. However, it was
also found that the spectra were more rigid (to be described)
than RMT-like systems. Defining the normalized spacing sn =
(kn+1 − kn)/〈kn+1 − kn〉, we make histograms of the values
sn. For this study, we add a reactance Zi = iXi to the ground
at each node, and we construct histograms for a number of
values of the reactance. These are displayed in Fig. 3. The
main effect of this reactance is to increase the reflection co-
efficient for a wave incident on a node according to Eq. (17).
We note that for the lowest value of the reflection coefficient,
the spacing distribution is well approximated by the spacing
distribution of eigenvalues of a random matrix drawn from the
Gaussian orthogonal ensemble, P(s) = (πs/2) exp(−πs/4).
This is the distribution expected for eigenvalues of a wave
chaotic cavity. We note from Fig. 3 that as the reflection
coefficient at a node increases, the shape of the histogram
changes, approaching a Poisson distribution P(s) = exp(−s)
at the highest reflection value. This can be understood as fol-
lows. When the reflection coefficient becomes large, adjacent
bonds become isolated from each other. The result is that

FIG. 3. Nearest-neighbor spacing distribution of normal mode
wave vectors in tetrahedron graph (N = 4, B = 3), where s =
(kn+1 − kn)/〈kn+1 − kn〉. Shown for different reflection coefficients
of the node, |ρ|. The solid line represents the spacing distribution of
eigenvalues of a random matrix drawn from the Gaussian orthogonal
ensemble. The dashed line is the Poisson distribution function.

the eigenvalues are determined by quantizing the individual
bonds. The eigenvalues then fall uniformly distributed along
the real k-line, and there is no level repulsion as exhibited in
a wave chaotic cavity or as exhibited in a graph with strong
coupling between bonds.

Varying the reflection coefficient also affects spectral rigid-
ity. Here the spectral rigidity is characterized by the quantity

�3(L) = 〈�3(e; L)〉

=
〈

1

L
min
A,B

∫ e+L

e
[N (x) − Ax − B]2dx

〉
, (19)

where N (x) is the counting function that shows how many
eigenvalues satisfy |kn| < x.

Plots of �3(L) as a function of interval length L and
for different values of the reflection coefficient are shown
in Fig. 4. The curves are qualitatively similar to those of
Ref. [42]. Specifically, for small L, �3(L) goes to zero, as
it must based on its definition. It then increases with L and
saturates once L > 10. In contrast, this quantity increases log-
arithmically with L for large L in wave chaotic systems. Thus,
cable networks have more rigid spectra than wave chaotic
systems. The main effect of varying the reflection coefficient

FIG. 4. Comparing �3(L) statistics for different reflection coef-
ficients, defined by Eq. (17), in a Tetrahedron graph (N = 4, B = 3).

033195-5



GHUTISHVILI, CHEN, ANLAGE, AND ANTONSEN PHYSICAL REVIEW RESEARCH 5, 033195 (2023)

FIG. 5. Comparing statistics of node voltages (calculated only
for one node) for different reflection coefficients, defined by Eq. (17),
in a graph with N = 16, N = 3. Here node voltages are normalized
by the variance of the node voltages. Ṽ = V/var[V ].

is to vary the saturation value of �3(L). For the case with the
lowest reflection coefficient, the saturated value �3(L → ∞)
= 0.2, in agreement with Ref. [42]. For a perfect staircase with
equal spacings, this value would be 0.125. As the reflection
coefficient is raised, the saturated value �3(L) increases. This
can be understood as follows. As the reflection coefficient
increases, the system approaches a collection of NB, where
NB is the number of bonds, with isolated transmission lines
of differing lengths. Thus, although each isolated bond has a
perfect staircase spectrum, the composite spectrum will devi-
ate from a perfect staircase, thus the higher value of saturated
�3(L).

It is also instructive the examine the effect of the reflection
coefficient on the histograms of node voltages. This is illus-
trated in Fig. 5, where we plot histograms of node voltages
normalized by the variance of the node voltages for differ-
ent values of the reflection coefficient. (Notice the change in
normalization). What is seen is that the histograms transition
from what appears to be close to a normal distribution for
the lowest reflection coefficient to histograms for which most
nodes have low values of voltage while a few have large values
of voltage. This can be understood again by considering the
limit in which the network becomes an ensemble of isolated
transmission lines. Depending on the eigenvalue, mode energy
will be concentrated on the bond that is resonant. The nodes
that terminate this bond will have large voltage values, while
the other nodes will have small voltage values.

In Sec. II, we discussed that the impedance matrix could be
calculated by inverting the admittance matrix or by represent-
ing the impedance matrix in terms of modes of the undriven
network using Eq. (13). We now check that here. In principle,
using Eq. (13) requires summing over all normal modes of
the system. As this is not practical, we must truncate the sum.
From the form of Eq. (13), we see that the representation of
the impedance matrix will be accurate only for k-values in the
middle of the range of the eigenvalues kn of the modes retained
in the sum. In Fig. 6, we show a comparison of the inverse of
the admittance matrix and Eq. (13) for k-values in the range
249 < k < 251. In the sum in Eq. (13) we have retained 2990

FIG. 6. Imaginary part of the (a) diagonal and (b) nondiagonal
elements of the impedance matrix. The impedance values were de-
termined in two ways: by inverting the admittance matrix [Eq. (9)]
(red line) and by the sum over modes [Eq. (13)] (blue dots).

modes spanning the range of eigenvalues 0 < k < 500. In this
case, the agreement is quite good.

A second comparison can be made between the inverse
of the admittance matrix and the summed contributions from
the different paths a signal may take in traversing the graph,
Eqs. (14) and (15). Similar to the case of Eq. (13), the infinite
sums in Eqs. (14) and (15) will have to be truncated. In Fig. 7,
we show comparisons between the inverse of the admittance
matrix Eq. (8) and the path sums Eqs. (14) and (15) when
the path sums have been truncated for lengths over six bonds.
Impedance values are shown as functions of the real part of k
for two different values of the imaginary part of k, and for two
different graphs. Recall that evaluating the impedance with
a complex k is equivalent to evaluating it for real k using a
sliding Lorentzian window average for which the imaginary
part of k defines the width of the window. Figure 7 shows that
for small imaginary kim = 0.03, the truncated path sums only
reproduce the coarse variations of the impedance. However,
with larger kim = 0.3, the truncated sums agree quite well
with the inverse of the admittance matrix. This is to be ex-
pected because for the two graphs, the average lengths of a
bond are 〈Li j〉 = 3.14 and 3.03, respectively, for the N = 4
and 16 graphs. Evaluating the matrix with an imaginary k
is equivalent to adding spatial damping to the waves propa-
gating on the bonds. For the N = 4 case with kim = 0.03 we
find 6kim〈Li j〉 = 0.57, and with kim = 0.3 we find 6kim〈Li j〉 =
5.7. Similarly, for the N = 16 case with kim = 0.03 we find
6kim〈Li j〉 = 0.55, and with kim = 0.3 we find 6kim〈Li j〉 = 5.5.

FIG. 7. Comparison between the inverse of the admittance ma-
trix (red line) and summed contributions (blue dots) from the
different paths a signal may take in traversing the graph. Tetrahedron
graph (N = 4, B = 3) using (a) kim = 0.03 and (b) kim = 0.3. Larger
graph (N = 16, B = 3) using (c) kim = 0.03 and (d) kim = 0.3. In all
cases, we used all paths up to and including six bonds.
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Thus, the contributions from six paths are sufficient for the
kim = 0.3 case, but not in the kim = 0.03 case.

We now investigate the distribution of impedance values
for networks of varying sizes. We focus on the variance of the
imaginary part of the elements of networks with N = 4, 8,

and 16 nodes. We also consider two values of the number
of bonds per node (the degree) B = 3 and 5. We choose to
characterize the imaginary part of the impedance as opposed
to the real part, as it has zero mean and a distribution function
of even symmetry. The statistics of the real part of the diagonal
elements are complicated by the fact that the real part is
positive-definite and has a nonzero mean. The mean value of
the real part of a diagonal element is independent of the loss
rate. When the loss rate is small, the distribution of values
of the real part of a diagonal element becomes skewed in the
sense that there is a large probability of a small real value and
a small probability of a large value.

We computed the imaginary part of the diagonal and nondi-
agonal impedance elements of 20 realizations of networks of
varying size, each for 49 980 values of k, and with varying loss
rate kim. We then attempted to find universal scaling relations
that characterized the variance. The variance of the imaginary
part of diagonal elements scaled by N p, var ( Im(Z11))N p,
where p is adjusted to make the curves fall on top of each
other. We find p = −0.3 for graphs with B = 3 and p = −0.4
for graphs with B = 5. The variance of the imaginary part of
nondiagonal elements, each averaged over 49 980 values of k,
is plotted versus kim

∑
Li j in Figs. 8(a) and 8(b), respectively.

Here
∑

Li j is the total length of a graph. We find that scaling
by N p for diagonal elements, and by plotting versus kim

∑
Li j ,

results from networks of different sizes and degrees falling
on top of each other. This is true for both large and small
values of damping, as indicated in the figure and its inset. The
scaling with kim

∑
Li j is similar to that obtained for two- and

three-dimensional cavities. For cavities, the relevant measure
of damping is the loss rate normalized to the mean spacing be-
tween modes. The averaged spacing between modes for these
network is 〈kn+1 − kn〉 = π/LT , where LT = ∑

Li j . Thus,
these networks exhibit the expected dependence on kim

∑
Li j ,

where
∑

Li j is the total length of the bonds. Furthermore,
we checked how the actual distribution functions compare
to each other when we have the universal scaling relations
that characterize their variances. In Fig. 8, we can see that
for kim

∑
Li j = 1.5, the variances of diagonal elements of the

impedance matrix scaled by N p fall on top of each other,
and also, the same happens to the variances of nondiagonal
elements. To exclude the scaling factor that is used for di-
agonal elements of the impedance matrix, we compared the
distribution functions of diagonal elements of the impedance
matrix scaled by 1/

√
N p. Eventually, we found out that as

long as their variances are very close, their distributions do not
fall on top of each other. The results are provided in Fig. 9.

IV. COMPARISON WITH MEASURED IMPEDANCES

We now compare predicted impedance statistics with those
measured on a network of cables. The experimental config-
uration is described extensively in Refs. [1,12,24,43–45]. It
consists of a tetrahedral network (N = 4, B = 3) of 50 Ohm
coaxial cables of varying lengths. These cables are connected

FIG. 8. (a) The variance of the imaginary part of diagonal ele-
ments of the impedance matrix scaled by N p, where N is the total
number of nodes and p = −0.3 for graphs with B = 3 and p = −0.4
for graphs with B = 5, and (b) nondiagonal elements plotted vs
kim

∑
Li j . There are five different-sized graphs, each curve represents

the result averaged over 20 different realizations, and error bars on
each plot point represent the range in which the values vary during
all realizations.

at nodes using T-junctions. Comparisons between our simula-
tions and measured [45] impedance values are displayed in
Fig. 10. For these comparisons, we simulated a tetrahedral
graph (N = 4, B = 3) for which we choose bond lengths that
correspond to those in the experiment. In the experimental
setup, the nodes are not grounded through an impedance, thus
we set Zi to infinity in the first numerical calculations.

To compare numerical results with that measured [45], we
need to determine an attenuation rate kim on the bonds. The
calculated and measured attenuation rate on the coaxial cables
is presented in Appendix B of Ref. [45] as a function of
frequency. The authors of Ref. [45] found that the attenuation
varies with frequency. We thus select data in two ranges, 6–9
and 12–15 GHz, in which the variation of the attenuation
rate with frequency is approximately linear. In the simula-
tions we used 0.129 < kim < 0.165 m−1 for 6 < f < 9 GHz
and 0.198 < kim < 0.228 m−1 for 12 < f < 15 GHz. Results
for impedance values in the form of histograms are shown
in Fig. 10(a) for frequencies in the 6–9 GHz range and in
Fig. 10(b) for frequencies in the 12–15 GHz range. There are
four panels for the real and imaginary parts of the diagonal
and off-diagonal elements of the impedance matrix. For each
case, there are 84 different realizations of the network using
bonds of different lengths, and for each realization, the data
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FIG. 9. The distribution functions of the imaginary part of (a) di-
agonal elements of impedance matrix scaled by 1/

√
N p, where N

is the total number of nodes and p = −0.3 for graphs with B = 3
and p = −0.4 for graphs with B = 5, and (b) nondiagonal elements.
These data correspond to kim

∑
Li j = 1.5. There are five different-

sized graphs. Each curve represents the result averaged over 20
different realizations.

are generated by changing wave-vector value (essentially the
frequency).

To investigate the dependence on the type of loss, we
have added to Fig. 10 calculated impedance values assuming
the cables are lossless, but instead there are real impedance
elements connecting the nodes to the ground. The value of
this impedance was adjusted to match the other histograms,
Zi = 4.0 for f = 6–9 GHz and Zi = 2.7 for f = 12–15 GHz.
Note that the lossy element connects a node to ground, so a
larger value of Zi corresponds to lower loss. As can be seen,
the three types of histograms (experiment, distributed loss
simulated, and localized loss simulated) are quite similar. This
includes the multiple peaks in the Im(Z12) histograms, which
are due to direct paths from port 1 to port 2, as discussed
below.

Previously [1], the impedance statistics of this configura-
tion were compared with predictions of the RCM. It was found
that the statistics of the nondiagonal and diagonal elements
of the impedance matrix required fitting with different loss
factors to obtain agreement. Generally, the diagonal elements
required higher loss than the off-diagonal elements to obtain a
fit. Our purpose here is to determine whether this is a feature
of these networks reproduced by our simple model. What we
have found is that the histograms of the diagonal and nondiag-
onal elements are matched to the experimental histograms by
the same loss parameter. Thus, the network is not modeled by
the RCM. In Sec. I, we have described three different ways to

FIG. 10. Comparison between histograms of numerically gen-
erated impedance matrix elements and experimentally measured
values for an N = 4, B = 3 graph. (a) Loss is modeled in two
different ways: using Eqs. (9a) and (9b) with Zi = 4.0 and kim =
0.0 (green dots) and using Eqs. (9a) and (9b) with Zi = ∞ and
kim ∈ [0.129, 0.165] changing linearly (red dots). Experimental data
(blue line) were produced for the frequency range of 6–9 GHz, and
corresponding kim changes linearly from 0.129 to 0.165. (b) Loss
is modeled in two different ways: using Eqs. (9a) and (9b) with
Zi = 2.6 and kim = 0.0 (green dots) and using Eqs. (9a) and (9b)
with Zi = ∞ and, kim ∈ [0.198, 0.228] changing linearly (red dots).
Experimental data (blue line) were produced for the frequency range
of 12–15 GHz, and corresponding kim changes linearly from 0.198 to
0.228.

compute the impedance matrix. We found the most straight-
forward way to calculate the impedance matrix accurately is
to invert the admittance matrix given by Eq. (9), which results
in Eq. (10). In general, the random coupling model (RCM)
describes the systems without short-orbit [46] contributions.
Therefore, to compare our results to the RCM, we should
ensure that we have excluded short-orbit contributions from
the calculations. For that purpose, we can recall that we have
discussed how to calculate the impedance matrix based on
summing contributions from the different paths, Zi j,path, and
this was described by Eqs. (14) and (15). However, if we use
a finite number of paths in Zi j,path, we can generate only the
short-orbit contributions in the impedance matrix. Afterward,
we can subtract these contributions from the impedance ma-
trix calculated using Eq. (10), which results in the redefined
impedance matrix without short-orbit contributions,

Ẑi j (k) = [Y (k)]−1
i j − Zi j,path(k). (20)
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FIG. 11. Comparing impedance matrix distribution function ele-
ments, calculated by Eq. (20), to RCM. (a) Equation (20) (red dots)
has used the graph with N = 4, B = 3, and kim = 0.03 in all cases;
RCM (blue line) has used α = 1.20 for diagonal elements and α =
1.00 for nondiagonal elements. (b) Equation (20) (red dots) has used
the graph with N = 16, B = 3, and kim = 0.03 in all cases; RCM
(blue line) has used α = 3.00 for diagonal elements and α = 1.90
for nondiagonal elements.

We generated data for two different networks, (N = 4, B = 3)
and (N = 16, B = 3). We set a fixed loss rate, kim = 0.03,
for both of the cases and varied α, the loss parameter in
the RCM. We found out that the statistics of the redefined
impedance matrix for the (N = 4, B = 3) network, calculated
by Eq. (20), and the RCM have the best agreement when
α = 1.20 and 1.00 for diagonal and nondiagonal elements, re-
spectively. The corresponding results for the (N = 16, B = 3)
network are α = 3.00 and 1.90 for diagonal and nondiagonal
elements, respectively. The results are shown in Fig. 11.

Our findings are consistent with those described in [1]
based on measurements. The predicted distributions of values
of the elements of the impedance matrix based on our model
agree with those measured. However, as in [1], the distribu-
tions of impedance values from our model, when fit to the
RCM, require different values of loss to fit the diagonal and
off-diagonal elements. A possible cause for this discrepancy
is the nonvanishing reflection seen by a wave propagating on
a bond and incident on a node. Given our model of the nodes,
the smallest magnitude of the voltage reflection coefficient
can be 1/3. This reflection is absent in 2D and 3D cavities
for which good agreement with the RCM is attained. We
have found that increasing this reflection coefficient causes

the mode eigenfrequency spacing statistics to transition from
a GOE-like distribution to a Poisson-like distribution. Thus,
the small reflection may be responsible for the deviations
from RCM statistics. A recent study [32,40] has modeled the
nodes using a scattering matrix based on a Fourier decompo-
sition of the elements. Such a representation allows for the
reflection to be eliminated, and the authors find agreement
with RCM statistics. Implementing such a scattering matrix
in an experiment is a challenge. Various matching techniques
can be considered. However, these are usually effective only
over a limited range of frequencies, making generating a large
ensemble of impedance values difficult.

V. CONCLUSION

In this work, we have obtained several interesting results.
We found that by changing the values of the reflection co-
efficients at the nodes, we can change the statistics of the
distribution of normal-mode wave-vector spacings. This is
shown in Fig. 3. We have shown that the results of the de-
veloped framework adequately reproduce the experimental
results; see Fig. 10. We also have presented three different
approaches to calculating the impedance matrix: one that is
precise, one that is based on summing over the normal modes
of the graph, and one that is based on summing over paths
through the graph. We compared these approaches and deter-
mined the circumstances under which they agreed. Finally, we
showed that there is a universal formula for the dependence of
the size of the fluctuations of Im(Z11) on the propagation loss
rate and the number of nodes in the graph. The dependence is
given in Fig. 8.
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APPENDIX: NORMAL MODES AND THE IMPEDANCE
MATRIX

To find the relation between normal modes and the
impedance matrix, which for a driven system I j �= 0 is defined
for all values of propagation constant k, we first multiply the
Telegrapher’s equations by the conjugate of a mode voltage
and current, respectively, integrate in z over each bond, add
the two equations, and sum over bonds,

i(k − kn)
∑

i j

∫ Li j

0
dz

(
Z−1

0 V (n)∗V (z) + Z0I (n)∗ (z)I (z)
)

=
∑

i j

(V (n)∗ I (z) + V (z)I (n)∗)|Li j

0 . (A1)

The right-hand side involves the evaluation of voltages and
currents at nodes, and it can be converted into a sum over
nodes. Each node will enter twice, first as the lower limit,
(z = 0), and second as the upper limit, (z = Li j ). The current
variables have opposite meanings in these cases. At z = 0, the
current variables represent the currents leaving a node, and
at z = Li j they represent the currents entering a node. Thus
we write both in terms of the currents leaving node-i in the
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direction of node- j,∑
i j

(V (n)∗ I (z) + V (z)I (n)∗)|Li j

0

= −2

⎛
⎝ ∑

nodes-i

V (n)∗
i

∑
i j

Ii→ j +
∑

nodes-i

Vi

∑
i j

I (n)∗
i→ j

⎞
⎠. (A2)

The value of the sum of the currents leaving a node will
depend on whether the current variables apply to a normal
mode or a driven solution. In the case of a normal mode with
an index m, ∑

i j

I (m)
i→ j + V (m)

i

Zi
= 0. (A3)

Thus, if we consider the loss-free case Z∗
i = −Zi, the two

terms cancel. As a result,

i(k − kn)
∑

i j

∫ Li j

0
dz

(
Z−1

0 V (n)∗ (z)V (m)(z)

+ Z0I (n)∗ (z)I (m)(z)
) = 0, (A4)

and we conclude that the modes represent an orthogonal basis.
In the case of a driven solution,

∑
i j

I (m)
i→ j + V (m)

i

Zi
= Ii, (A5)

and we obtain

i(k − kn)
∑

i j

∫ Li j

0
dz

(
Z−1

0 V (n)∗V (z) + Z0I (n)∗ (z)I (z)
)

= −2

( ∑
nodes-i

V (n)∗
i Ii

)
. (A6)

We now expand the voltages and currents on the transmission
lines in a superposition of voltages and currents corresponding
to normal modes,

(V (z), I (z)) =
∑

m

Cm(V (m)(z), I (m)(z)). (A7)

Using the orthogonality property, we find for the coefficients
Cn,

i(k − kn)Cn = −2
( ∑

nodes-i V (n)∗
i Ii

)
∑

i j

∫ Li j

0 dz
(
Z−1

0

∣∣V (n)
∣∣2 + Z0

∣∣I (n)
∣∣2) . (A8)

Consequently, we can express the voltage at a node in the
driven case in terms of the impedance matrix, which in turn
is expressed in terms of the normal modes.
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