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Why can’t experimentalists agree on the superconducting
critical exponents?
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Abstract

The scaling analysis of voltage vs. current curves has been an invaluable tool in the study of the normal-superconducting phase tran-
sition, both in zero-field and in the vortex–glass transition in a field. However, we have recently shown that the conventional scaling
analysis is too flexible to uniquely determine the critical parameters. We have also shown that extrinsic effects such as current noise, small
magnetic fields (for the zero-field transition), and finite size effects can obscure and even destroy the three-dimensional phase transition.
These factors have led to the wide range of values for the dynamic critical exponent z and the static critical exponent m reported in the
literature, even for the zero-field transition. We have developed a criterion that removes the flexibility in the scaling analysis and have
conducted experiments to eliminate the extrinsic effects described above. Our results show that finite size effects, which obscure the phase
transition in thin films, are absent in bulk, untwinned, single crystals.
� 2007 Elsevier B.V. All rights reserved.
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The experimentally-accessible critical regimes of the
cuprate superconductors [1] excited a great interest in
experiments on the normal-superconducting phase transi-
tion in these materials. Scaling theory predicts that the
phase transition is governed by the static and dynamic crit-
ical exponents m and z, respectively [2]. This theory is valid
for the vortex–glass transition in a field and the zero-field
transition (though values of m and z may differ). In zero-
field, the transition is expected to obey the three-dimen-
sional (3D)-XY theory, where m � 0:67 and z ¼ 2:0 (assum-
ing diffusive dynamics).

In the past two decades, there have been numerous
experiments which have probed this phase transition. In
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zero-field, measurements of specific heat [3], penetration
depth [4], and thermal expansivity [5] on bulk single crys-
tals have led to a consensus that the phase transition does
follow the 3D-XY theory where m � 0:67 (although the
value of z is unaddressed). There are even some transport
measurements on crystals [6] that find a similar 3D-XY sta-
tic exponent.

By far the most popular tool to examine the normal-
superconducting phase transition is the measurement of cur-
rent vs. voltage (I–V) curves on thin films (thickness
1000 Å K d K 4000 Å). However, I–V curves in zero or low
magnetic fields yield exponents ranging from m � 0:63 and
z � 1:25 [7] to as high as m � 1:1 and z � 8:3 [8]. For the vor-
tex–glass transition, the range of exponents is even wider [9].

Our own efforts to understand this complex topic began
with a re-examination of the vortex–glass transition. We
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use thin films of optimally doped YBa2Cu3O7�d grown via
pulsed laser deposition onto SrTiO3 substrates. X-ray dif-
fraction shows our films to be predominately c-axis ori-
ented with transition widths 60.25 K measured via ac
susceptibility. R(T) measurements show T c � 91:5 K and
DT c � 0:7 K. These films are patterned into bridges 8 lm
by 40 lm and etched using dilute phosphoric acid. Typical
I–V curves taken on 2200 Å thick film in a field of 4 T are
shown in Fig. 1a.

Scaling predicts [2] Vn2+z�D/I = v ± (I nD � 1/T), where
D is the dimensionality, z is the dynamic critical exponent,
and v± are the scaling function above and below the tran-
sition temperature Tg. n is the correlation length, expected
to go as n�j(T � Tg)/Tgj�m, where m is the static exponent.
In zero-field, replace Tg, the glass transition temperature,
with Tc, the zero-field transition temperature. The scaling
equation has two useful limits. At the transition tempera-
ture, V � I ðzþ1Þ=2 (for 3D), in other words, a power-law
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Fig. 1. Panel (a) shows I–V curves for a 2200 Å thick film with bridge
dimensions 8 lm �40 lm in a field of 4 T. The dashed line has a slope of
one. The solid lines are power-law fits to non-ohmic isotherms. The
conventional data collapse for T g ¼ 81 K is shown in (b). From Ref. [10].
for all currents. For T > Tg, as I ! 0, we expect an ohmic
response that varies with temperature as V/I
�jT � Tgjm(z � 1).

These equations predict ohmic behavior above Tg. Fol-
lowing the conventional analysis, we return to Fig. 1a and
choose the first isotherm without an ohmic ‘‘tail” at low
currents to be Tg, so T g ¼ 81 K. A power-law fit of the iso-
therm will allow us to determine the exponent z (using
V � I ðzþ1Þ=2). Once we know z, we can determine m from
the ohmic tails above the critical isotherm (using
V =I �j T � T gjmðz�1Þ). Finally, knowing z and m, we can col-
lapse the data. If we have correctly determined the critical
exponents, then the data should fall on two universal
curves, v�, for above and below the critical temperature.
This data collapse is shown in Fig. 1b.

A closer look at the isotherms in Fig. 1a suggests that
the standard procedure of choosing the critical isotherm
– the first isotherm without an ohmic tail – is flawed. If
our voltmeter measured only to the microvolt range, then
the first isotherm without a measurable ohmic tail would
be above 81 K. Similarly, our voltage resolution in the
nanovolt range leads us to wonder whether the 81 K iso-
therm has an ohmic tail below the resolution of our voltme-
ter, and perhaps the true transition temperature lies lower
than 81 K. To test this conjecture, we can choose other iso-
therms (e.g. 75 and 70 K) as the transition temperature and
repeat the conventional analysis. This creates different sets
of T g, m, and z. With each set of critical parameters, we can
continue the conventional analysis, and for each set we can
create a data collapse – each of which looks as good to the
eye as the collapse shown in Fig. 1b [10]. Clearly, the con-
ventional data analysis and its accompanying data collapse
cannot uniquely determine the critical parameters.

To resolve this, we propose the opposite concavity crite-

rion [10]: isotherms equidistant from the critical isotherm
should have opposite concavities. This criterion is easiest
to see on a plot of d LogðV Þ=dLogðIÞ vs. I, where isotherms
above and below the transition have opposite slopes and
the critical isotherm is a horizontal line whose intercept is
ðzþ 1Þ=2. We show two logarithmic derivative plots for
isotherms taken in a field of 4 T and in zero-field in Fig. 2.

In Fig. 2a, there is no isotherm that is horizontal over
the entire range of currents in a field, indicating that the
opposite concavity criterion is not obeyed. Moreover, all
the isotherms bend towards d LogðV Þ=dLogðIÞ ¼ 1 (ohmic
behavior), and isotherms at low temperatures without
ohmic tails are merely limited by the sensitivity of our volt-
meter. These results imply that there is no phase transition
in a magnetic field. More shocking is that Fig. 2b gives a
similar result for zero-field, implying that there is no tran-
sition to a zero-resistance state, even in zero-field! These
surprising results lead us to question whether the hallmark
of isotherms greater than the critical temperature – the low-
current ohmic tail – could be created by intrinsic or extrin-
sic effects other than the phase transition.

Our first realization was that current noise can create a
linear response in non-linear devices. For most applica-
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Fig. 2. Logarithmic derivatives for two similar (d � 2200 Å) films in (a)
loH ¼ 4 T and (b) loH ¼ 0 T. The opposite concavity criterion cannot be
seen, and all isotherms (to the limit of our voltage sensitivity) bend back
towards dLogðV Þ=dLogðIÞ ¼ 1, or ohmic behavior. This implies that no
phase transition exists, either in field or in zero-field. From Refs. [10,12].
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tions, the applied current I is not a delta function but
rather a probability distribution centered about I with
some width rI . For high currents, when I � rI , it is easy
to show that the measured voltage is hV i � f ðIÞ, where
f ðIÞ is the true non-linear response of the system. However,
for I � rI , hV i � IReff , where Reff is an effective resistance
that depends on rI [11]. The result is ohmic response at
low currents, mimicking exactly the hallmark of the phase
transition.

Our cryostat is filtered using p and double-T section fil-
ters, creating a 3 dB point at 3 kHz. We can change the cur-
rent noise in the sample by removing the filters, as shown in
Fig. 3. In this figure, the isotherm at 91.1 K changes from
non-linear to linear behavior as we increase the current
noise. Thus, if current leads are not filtered, it will be
impossible to measure the true normal-superconducting
phase transition. This is true in zero-field as well as for
the vortex–glass transition [11].

Second, we found that even very small magnetic fields
can obscure the zero-field phase transition [13]. Just 1 mT
is large enough to create ohmic behavior in the non-linear
isotherms, and fields as small as the Earth’s ambient field
(50 lT) can change the shape of the I–V curves. These
effects can be eliminated by shielding the cryostat with l-
metal shields, which reduce the field at the sample to
0.2 lT. Because researchers often measure ‘‘zero” field data
in the Earth’s ambient field or inside the remnant field of a
superconducting magnet, improper shielding can help
explain the wide variety of exponents found in zero-field.

Finally, we found that finite size effects seen in thinner
films [14,6] occur also in thick films [12]. Different current
densities probe fluctuations of different sizes, given by
J � Tn1�D. This means that as J decreases, the size of the
fluctuation increases until the current probes only fluctua-
tions limited by the thickness of the film. This occurs at a
current density given by

J cross ¼ ckBT =Uod2

[2,15], where kB is the Boltzmann constant, Uo is the mag-
netic flux quantum, d is the thickness of the film, and c is
a constant of order 1 [2,14]. In a bridge of dimensions
8� 40 lm2 that is 2200 Å thick, this crossover is expected
to occur at about 10 lA. For J < J cross, we expect ohmic
behavior as the 3D transition is limited by the thickness
of the film. This is what causes the downturn in the
derivative plot in Fig. 2b at I � 20 lA. We have verified
this equation experimentally in films from 1000 to
3200 Å, and we find c � 0:6, in agreement with theory
[12].
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The most compelling evidence of the finite size effects in
films is an examination of the I–V curves in high-quality
bulk single crystals. The derivative plot of I–V curves taken
on a crystal (500� 330� 100 lm3) in zero-field
(T c � 93:5 K, DT c � 10 mK) [16] are shown in Fig. 4. Here
the the data agree with the opposite concavity criterion,
and there is no downturn towards dLogðV Þ=dLogðIÞ ¼
1, as the crossover to 2D behavior occurs at currents much
smaller than 1 nA. It is interesting to note that the opposite
concavity criterion is also obeyed if we examine only the
high-current region of thin films, where isotherms have
opposite slopes for current densities greater than J cross.

In conclusion, we have demonstrated that the conven-
tional scaling analysis and data collapse of the normal-
superconducting phase transition is too flexible to
uniquely determine the critical exponents and critical tem-
perature, in zero-field and in the vortex–glass transition.
Moreover, extrinsic effects like current noise and small
magnetic fields (for the zero-field transition) can obscure
or mimic the phase transition. We have also shown that
even thick films (d � 3500 Å) have finite size effects which
limit the 3D phase transition to high currents in films.
This analysis can also be extended to finite-frequency
effects for ac measurements. The combination of these
unexpected difficulties in the analysis and the experiment
may well be the cause of the lack of consensus regarding
the value for the critical exponents measured via I–V
curves.

Finally, we have demonstrated that bulk single crystals
are immune to finite size effects, as expected, and obey
the opposite concavity criterion, also seen in the high-cur-
rent regime in thin films. Work is ongoing to determine the
value of the critical exponents m and z in both crystals and
thin films.
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