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Probability Amplitude Fluctuations in Experimental Wave Chaotic Eigenmodes with and
Without Time-Reversal Symmetry
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We have measured the probability dendipy(r)|? in the semiclassical limit of a classically chaotic
square well potential with and without time reversal symmetry, and compared our findings with theo-
retical predictions. We find that wave functions with time-reversal symmetry have larger fluctuations
than those without time-reversal symmetry. To quantify the degree of these fluctuations, eigenmodes
both with and without time-reversal symmetry are statistically analyzed and the two-point spatial cor-
relation function and the probability density distribution function of the eigenmodes are found to agree
with theoretical predictions. [S0031-9007(98)07259-7]

PACS numbers: 05.45.+b, 03.65.Ge, 73.23.—b, 85.70.Ge

The quantum mechanical behavior of nonintegrable sysreversal symmetry broken (TRSB) wave functions is also
tems has been a very intriguing subject for many decadesperative as it will give insights into the behavior of
and is still one of active research [1]. This is not only be-electronic wave functions of nanoscale structures that
cause of the interesting fundamental physics of “quantunhave these symmetries.
chaos” but also because of the strong analogy between theln this paper we report our experimental results on
guantum mechanical behavior of mesoscopic systems arile behavior and statistics of eigenfunctions obtained
the wave chaotic behavior of nonintegrable systems [2]from a quasi-two-dimensional (quasi-2D) microwave cav-
Hence the subject can pave the way to understanding thy analog of a quantum system with and without time-
statistical properties of electronic eigenstates and eigemeversal symmetry. Our experiments indicate that the
functions of mesoscopic systems, such as quantum dotsgenmodes experience strong amplitude fluctuations in a
and quantum wires, which will be increasingly importantclassically chaotic potential well and the degree of fluc-
for future technological applications. tuations depends on the time-reversal symmetry. In our

Theories and numerical simulations suggest that for inexperiment the distribution of probability amplitude has
tegrable (nonchaotic) systems a large degree of degenean exponential dependence oft,|> for TRSB systems
acy is allowed in the eigenvalues of the system; thereforand the Porter-Thomas distribution for TRS systemis (
the spacing between neighboring eigenvalues obeys Pois the eigenfunction with energy,). The probability
son statistics. For nonintegrable systems the existence density correlation function obey$y, (7)1, (7)]?) «
classical chaos breaks the degeneracies, and therefore the- c|f(Ar)|?, wheref(Ar) is the Friedel function, and
eigenvalue spacing statistics are clearly no longer PoisAr = |r; — r»2|. The factorc is predicted to be 1 for the
son. Theories propose that the statistics of the eigenFRSB case and 2 for the TRS case [9], in agreement with
value spacing are governed not only by the integrabilityour experimental results.
but also by the time-reversal symmetry of the system. To study the behavior of wave functions in a classically
One expects the spectral properties of a chaotic systeghaotic system with and without time-reversal symmetry,
with time-reversal symmetry to follow the statistics of we employed quasi-2D microwave cavities and measured
a Gaussian orthogonal ensemble (GOE) of random mahe microwave electric field strength inside the cavity
trices, while a chaotic system with broken time-reversa[10]. For a quasi-2D system with TRS, the Helmholtz
symmetry is expected to follow the statistics of a Gaussequation for the electric fieldV2E,, + k2E., = 0,
ian unitary ensemble (GUE) of random matrices. In redis mathematically identical to the Schrédinger equation
cent years several experiments similar to those describddr a particle of massn in a potential vV, V2, +
here have demonstrated that these theoretical predictior% (e, — V)¢, = 0, whereE_, is the electric field com-
are indeed correct [3-5]. ponent perpendicular to the surface of the quasi-2D cav-

An even more intriguing subject is the investigation ofity and is analogous to the wave functiofy,, k2 =
the eigenfunctions of wave chaotic systems. Althoughw?ue, and w, is the nth resonant frequency of the
some of the interesting behavior of eigenfunctions incavity with uniform permittivity e and permeabilityw.
systems with GOE symmetry has been explored bylo represent a quasi-2D system with TRSB, consider
several groups [6—8], there has been no experimental homogeneously magnetized ferrite with an associated
examination of the time-reversal symmetry dependence aflectromagnetic wave equatioV’E,, — i(¢ X Vk)
the eigenfunction behavior [9]. Investigating the detailedVE,, + k*E., = 0, where k is the off-diagonal com-
behavior of both time-reversal symmetric (TRS) and time-ponent of the ferrite permeability tensor. This system is
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in the same universality class as the Schrédinger equatiadicrowaves are fed into the cavity through an optimally
for a charged particle in a magnetic field [18]?¢, — coupled dipole antenna in the top plate of the cavity,
) %/;i Vi, + 2ﬁ_’;’ (6, — V — %;‘2)% =0, whereA and we measure transmitted microwave signals through a
is the vector potential, ang is the charge of the par- Similar antenna at another location on the top plate.

ticle [5,12]. In all casesE. = 0 and ¢, = 0 at the Wave function mapping is performed using a scanned
boundary of the potential well. The cavity supports 2Dperturbation method [10,13,14]. When a perturbation is
transverse magnetic modes (onb;, B,, and B, are introduced inside a cavity, the resonance frequency of

nonzero) below the 3D cutoff frequencimax — ¢/2d =  the cavity changes a&? = wgl[l + [(B* — E%)dv,],
18.9 GHz, whered = 0.310 in. is the cavity thickness in Where wo is an unperturbed resonance frequency of
the z direction. cavity. In this expression the microwave magnetic

Using these mathematical analogies, we examine théeld B and the electric fielde' (which are normalized
behavior of eigenmodes of a 2D cavity exhibiting classi-over the cavity volume) are integrated over the volume
cally chaotic motion for a billiard of the same geometry Of the perturbationv,. A small cylindrical metal pin
[10]. The geometry used for our experiment is a quadran{0-02 in. diameter, 0.16 in. long) is used as a pertur-
of a bow-tie-shaped region bounded by four circular arcsbation and is kept aligned with the axis while it is
two with a 42 in. radius and two with a 25.5 in. radius asscanned by means of a carefully tailored magnet located
shown in Fig. 1(a). This geometry was selected becauseutside the cavity [10]. Since this pin has a very small
all typical ray-trajectory orbits are chaotic and all periodiccross-sectional area in the horizontal plane, the magnetic
orbits are isolated. field term is much smaller than the electric field term,

For the investigation of time-reversal symmetry de-Particularly in comparison with commonly used spherical
pendence, we place a thin ferrite strip with dimensiongerturbations [10,14]. This simplifies the perturbed
8.4 in. X 0.2 in. X 0.310 in. adjacent to one wall of the resonance frequency te? = wgll — [E?,dv,]. In
cavity as shown in Fig. 1. For the TRSB case we applyother words,E7, at an arbitrary point on the-y plane
a dc magnetic field to the ferrite and measuyie,|> can be deduced by measuring the perturbed microwave
within certain frequency ranges where the ferrite gives 4ésonant frequency. The normalizedf, is therefore
large nonreciprocal phase shift that breaks time-reversaglentical to|y,|* for the quantum potential well that is
symmetry [12]. For TRS behavior we also use a magneanalogous to the microwave cavity being studied. Our
tized ferrite but only consider frequency ranges where théechnique enables us to measure a wide dynamic range of

nonreciprocal phase shift due to the ferrite is very smalll#,|* for states in the semiclassical regime.
We have mapped over 200 images of different eigen-

modes at frequencies between 700 MHz and 16 GHz
[10,15]. Here we examine the eigenmodes between 10
and 16 GHz since we are interested in the high-lying
states in the semiclassical regime where the wavelength
of the quantum mechanical particle is much less than the
characteristic size of the potential well. Figure 1 contrasts
TRS and TRSB wave functions of nearly identical energy,
with wo/27 = 13.69 and 13.62 GHz, respectively [15].
Figure 1(a) shows the probability amplitude,,|*A, pat-
tern with TRSB, where is the area of the cavity. The
wave function exhibits irregular patterns and has much
larger probability amplitude fluctuations than the rectan-
gular wave functions we imaged [10]. The probability
amplitude patterns with TRS, as shown in Fig. 1(b), re-
veal similar probability amplitude fluctuations; however,
the TRS wave functions have larger probability amplitude
fluctuations than the TRSB wave functions. These fluc-
tuations are present in all probability amplitude patterns
: obtained from the bow-tie cavity. In addition, we find
= (mCheS) the TRSB probability amplitude peaks appear to be more

FIG. 1. Probability amplitudéy, |2A as a function of position smeared out over the 2D cavity surface compared to the
for eigenmodes of the “bow-tie” quadrant potential well. TRS patterns.

The eigenmodes have approximately the same frequency, T4 make a quantitative analysis of the degree of

13.62 GHz (a) and 13.69 GHz (b), and are measured witho - . .
(a) and with (b) time-reversal symmetry. The first 4 in. of eacrﬁltthese probability amplitude fluctuations, we extract the

eigenmode are not imaged to prevent the perturbation scannir@Stribution of the probability amplitudePo(v) from
magnet from influencing the ferrite. a histogram of the measured probability amplitude

y (inches)
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within a given wave function, wherev = |, |?A. TRSB result is consistent with theoretical predictions
Figure 2 shows two density population distributionswhile the TRS result appears to be inconsistent with
Po(v) which we obtained by averaging the probability theory. However, when we take into account the finite
density distributions of 9 individual eigenmodes for experimental resolution forr (0.05 < v = 10) [18],
both the TRS and TRSB casesPy(v) with TRS is one finds U%Rs,expt = f(]fos(v — (v))?Po(v)dv = 1.65,
consistent with the Porter-Thomas distribution [16],in agreement with our data. Note that in each case the
Po(v) = (1/+/2mv)exp(—v/2), for GOE random matrix variance of the distribution is of the same order as the
systems, shown as a thick solid line in Fig. 2. In contrastaverage, another indication that there are very strong
Po(v) with TRSB is consistent with an exponential, fluctuations in the probability amplitude. We should
Po(v) = exp(—v), shown as a thin solid line, as theory also point out that while the Gaussian ensembles are
predicts for GUE random matrix systems [9,16]. Fur-discrete symmetries, our data suggest that there is a
thermore, in Fig. 2, the probability density distributions, smooth transition between TR$3 = 1) and TRSB
both with and without time-reversal symmetry, exhibit (8 = 2) eigenfunctions due to the frequency dependence
long tails. In contrast, for an integrable system it isof the nonreciprocal phase shift from the ferrite [5,12].
known that Po(v) quickly dies off at a certain value Our data suggest that a general distribution, such as
of probability density [for examplePy(v) =0 when P(v;B) = (Bv/2)B/> 1e Bv/2(8/2)/T(B/2) [19-21],
v = 4 for a rectangular cavity] [17]. This means that interpolates smoothly between the Porter-Thomas dis-
chaotic systems allow larger fluctuations of probabilitytribution (TRS) and a pure exponential (TRSB) and the
density than integrable ones. Hence the distributiorpparameter3 may provide a measure of the time-reversal
function suggests that strong wave function fluctuationsymmetry breaking of the system [22]. However, other
are a signature of quantum systems in classically chaotidistribution functions may describe the transition as
potentials. Also note from the distribution functions well [23].
that wave chaotic eigenmodes with TRS have more The two-point correlation of probability amplitudes in
large-amplitude fluctuations than TRSB eigenmodes witta given eigenfunction provides another test of the time-
the same energy, as can be seen from the longer tail ireversal symmetry of the system. Berry’s intuitive deriva-
the TRS distribution. tion of the two-point correlation function for a wave
To cross-examine the degree of fluctuations we extraathaotic eigenfunction is based on the conjecture that the
the varianceg? = ((v — (v))?), of the Py(v) distribution ~ wave function is an infinite superposition of plane waves
functions for GOE and GUE symmetries. The variance ohaving random amplitudes and directions but a fixed
the two probability density distributions for the two sym- wave number. This assumption leads to the following
metries is predicted to bgﬂg(v — (W))?Po(v)dv = 2/B expression for the angle-averaged two-point correlation
where B is the number of independent degrees of free{24]: C(kAr) = (|, (F)I* | (P)|?) = 1 + c|Jo(kAr)|?,
dom in the random matrix elements. Random matrixwhere the prefactor depends on the time-reversal sym-
theory indicates thapg = 1 (real matrix elements) for metry of the Hamiltonian/, is Bessel's function of order
TRS andpB = 2 (complex matrix elements) for TRSB zero, k is the wave number, andr = |r; — r»|. The
wave functions. The analysis of our data indicates thatheoretical prediction is that = 2 for GOE (TRS) and
otrsg = 1.10 = 0.14 while ofgs = 1.61 = 0.09. The ¢ =1 for GUE (TRSB) [9]. The two-point correlation
functions, which are calculated for each eigenfunction and
then averaged to form the data shown in Fig. 3, are in
good agreement with theory for the TRS (thick lines) and
TRSB (thin lines) cases. If instead we average the best-
fit ¢ values for each eigenfunction our result for TRSB
isc = 1.11 = 0.12 (averaged over 9 typical TRSB eigen-
functions) and for TRS = 2.06 = 0.11 (averaged over
17 typical TRS eigenfunctions). As with the probabil-
ity density distribution we find that between the TRS and
TRSB regimes there exists a “crossover” region where the
value ofc goes smoothly from 2 to 1 [22].
0 1 2 3 4 5 6 7 In addition to good agreement with theory, we see
| EN qualitative features in the eigenmodes themselves that
reinforce our findings. The TRS wave function depicted
FIG. 2. Probability amplitude distribution of eigenmodes with in Fig. 1(b) clearly has more large probability amplitude

(TRS) and without (TRSB) time-reversal symmetry. Also i in i
shown are theoretical predictions for systems with (GOE) ancpeaks than the TRSB wave function in Fig. 1(a). These

without (GUE) time-reversal symmetry, shown as thick andpeaks translate _into a longer tail in tw@(’_’) distribut'ion
thin solid lines, respectively. The inset shows small probability2nd a larger variance @to(v) thh theo"etlca_”_y predicted
amplitude behavior. and confirmed in our experiment. Additionally TRS
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