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Abstract. A sensor was developed to quantitatively measure perturbations
which change the volume of a wave chaotic cavity while leaving its shape
intact. The sensors work in the time domain by using either scattering fidelity
of the transmitted signals or time-reversal mirrors. The sensors were tested
experimentally by inducing volume changing perturbations to a 1 m3 mixed
chaotic and regular billiard system. Perturbations that caused a volume change
that is as small as 54 parts in a million were quantitatively measured. These
results were obtained by using electromagnetic waves with a wavelength of
about 5 cm; therefore, the sensor is sensitive to extreme sub-wavelength changes
of the boundaries of a cavity. The experimental results were compared with
finite difference time-domain simulation results, and good agreement was found.
Furthermore, the sensor was tested using a frequency-domain approach on a
numerical model of the star graph, which is a representative wave chaotic
system. These results open up interesting applications such as: monitoring the
spatial uniformity of the temperature of a homogeneous cavity during heating
up/cooling down procedures, verifying the uniform displacement of a fluid
inside a wave chaotic cavity by another fluid, etc.
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1. Introduction

Many sensors, such as SONAR, rely on ballistic wave propagation that provides only direct
line of sight information. In that case, monitoring a cavity that has an irregular geometric
shape, including hidden regions, may require installing multiple sensors throughout the cavity
for comprehensive coverage. However, most real-world cavities have irregular shapes. This
irregularity has the benefit of facilitating the creation of ray chaotic trajectories. The study of
waves propagating inside these ray chaotic cavities, in the semi-classical limit, is called wave
chaos [1, 2]. Wave chaos is essentially the manifestation of the underlying ray chaos on the
properties of the waves whose wavelength is much smaller than the typical dimensions of the
cavity. For instance, random matrix theory has been shown to describe the spectral statistics
of quantum systems with chaotic classical counterparts [3–6]. Ray chaos is characterized by
sensitive dependence of ray trajectories to initial conditions. The effect of perturbations on
waves propagating in such cavities was studied using the concept of the scattering fidelity [7].
Scattering fidelity is a normalized correlation between two cavity response signals as a function
of time; the response signals are typically collected before and after a perturbation to the cavity.
The scattering fidelity decay resulting from global (as opposed to local) perturbations which
change all the boundary conditions of wave chaotic cavities has been studied [8–10]. Global
perturbations that change only one of the walls of the cavity have also been considered [11, 12].
The scattering fidelity decay associated with global perturbations is either an exponential or
Gaussian function of time. On the other hand, it has been shown that the scattering fidelity
associated with a local perturbation has a slower algebraic decay [13]. The fidelity decay
induced by perturbing the cavity coupling has also been considered [14]. On the other hand,
the effect of a local boundary perturbation on a quantum mechanical system is studied using the
Loschmidt echo concept [15, 16].
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Despite extensive research on scattering fidelity, a practical sensing application of the
scattering fidelity concept has not been explored so far. In previous work, wave chaotic
sensing techniques that allow a comprehensive spatial coverage using a single sensor
were introduced [17–19]. These techniques rely on the wave chaotic nature of most real-
world cavities. When a wave is broadcast into a cavity to probe it, the response signal
consists of reflections that bounce from almost all parts of the cavity; this is due to
the underlying spatial ergodicity of ray trajectories in ray chaotic cavities. Therefore, the
response signal essentially ‘fingerprints’ the cavity, and enables detection of changes to the
cavity.

The wave chaotic sensing techniques developed in [17–19] were not used to quantify
any kind of perturbation. Local and global perturbations to the boundaries of the cavity, and
perturbations to the medium of wave propagation within the cavity, were all shown to be
detectable [16, 18]. However, the quantification of a perturbation was not accomplished. On the
other hand, a remarkably sensitive quantification of a perturbation which involved translation
of a sub-wavelength object over sub-wavelength distances was successfully demonstrated [20].
However, the quantification was based on an empirical law that is specific to the system and
perturbation at hand. This is because the effect of the perturbation on the dynamics of the
waves propagating inside the wave chaotic cavity is not straightforward [20]. In this paper,
we focus on a single class of perturbation whose effect can be theoretically predicted, and
we propose two time-domain techniques to measure that particular kind of perturbation in any
cavity.

In this paper, we focus on quantifying volume changing perturbations (VCP) to a wave
chaotic scattering system. Such systems have all degeneracies broken, and we shall further
assume that they are time-reversal invariant. In general, a VCP changes the volume of a cavity,
but it may slightly change its shape as well. A special kind of VCP is a volume changing
and shape preserving perturbation (VCSPP). In section 2, the theoretical prediction of the
effect of VCSPPs is discussed. Section 2 proposes two time-domain techniques to quantify
VCPs. As in previous work, these techniques are based on the scattering fidelity and time-
reversal mirrors [17–19], whose experimental implementations are distinctly different. Section 3
presents the experimental test of these two VCSPP sensing techniques, along with a head-
to-head numerical validation. The experimental test is carried out inside a mixed chaotic and
regular billiard system using electromagnetic waves. Section 4 provides a test of the sensing
techniques in a numerical model of the star graph, which is a quasi-one-dimensional (1D) wave
chaotic system. Section 4 also shows the relative merits of approaching the problem in the
frequency domain. Section 5 discusses practical applications of the VCSPP sensor, and section 6
presents the conclusion.

2. Theory and approach

Consider a generic wave chaotic cavity with volume V1, which is considered as a baseline
(i.e. reference or unperturbed) system (see figure 1(a)). The schematics in figures 1(a) and (b)
illustrate the cavity as a stadium billiard, but the cavity is considered generic throughout
section 2. Suppose that the baseline cavity is perturbed such that each of its three length
dimensions increase by a factor of P . This amounts to a VCSPP, by a factor of P3; the
perturbed cavity has a volume of V2 = P3V1 (see figure 1(b)). Figures 1(a) and (b) show a
brief pulse being broadcast into the cavity. The response signal to the pulse is called the sona.
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a) b)

c) d)

Figure 1. Schematic diagram illustrating VCSPP. (a) Sona is collected from a
baseline cavity of volume V1. (b) Sona is collected from a perturbed cavity of
volume V2. (c) The pulse exciting the resonances of the baseline system. (d) The
same pulse exciting the perturbed resonances of the perturbed system.

The typical durations of the pulse and the sona are 1 ns and 10 µs, respectively. The sona from
the baseline cavity (which is referred to as baseline sona) and the sona from the perturbed cavity
(which is referred to as perturbed sona) are expected to be related, under certain conditions that
are discussed in section 3.5. For instance, if P > 1, a signal feature in the perturbed sona is
expected to be delayed by a factor of P compared to its appearance in the baseline sona. The
sensor is designed to enable the measurement of the value of P , which effectively quantifies
the VCSPP, by using the theoretically predicted effects of the VCSPP on the dynamics of the
waves. Another practically useful capability of the sensor is to check whether the perturbation
is indeed a VCSPP, and not merely a VCP.

Next, consider the scattering parameters of the cavities as a function of frequency.
The |S12|

2 as a function of frequency of the baseline and the perturbed two-port cavity
are schematically shown in figures 1(c) and (d). Let us assume that the antennas coupling
energy into the cavities have a negligible frequency dependence. Then, we expect a precise
mathematical relationship between the scattering parameters of the baseline and perturbed
cavities as a function of frequency. In particular, if P > 1, the baseline spectrum can be obtained
by stretching out the perturbed spectrum by a factor of P along its frequency axis. This
is precisely the prediction about the effect of VCSPPs on the dynamics of the waves. This
prediction can be used to measure the perturbation in the frequency domain. As opposed to the
resource intensive frequency-domain sensing, it is practically preferable to use a time-domain
interrogation of the baseline and the perturbed cavity by measuring the sonas. However, it is
useful to look at the problem in the frequency domain to understand the limitations of the time-
domain approach discussed in section 3.5.

There are two classes of time-domain sensing techniques that can be used to quantify
VCSPPs. The first technique relies on the scattering fidelity [7]. Consider two sonas X and Y ,
which are real voltage versus time signals with zero mean values. The scattering fidelity (SF)
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of X and Y is simply their Pearson’s correlation as a function of time, t [7]:

SF(t) =

∑m=t+1t
m=t X [m]Y [m]√∑m=t+1t

m=t X [m]2
∑m=t+1t

m=t Y [m]2
, (1)

where 1t is typically chosen to be the time it takes for the waves to traverse the cavity, at
the very least, once (i.e. of the order of magnitude of the ballistic flight time). The SF(t) of
two sonas can take real values ranging from 1 (i.e. perfect correlation at time t) to −1 (i.e.
perfect anti-correlation at time t). If SF(t) is 0, then the sonas are not correlated at time t . The
SF of the baseline and the perturbed sonas is not expected to stay close to 1 throughout time.
However, the SF of the perturbed sona and the baseline sona whose time axis is scaled using
the optimum stretching/squeezing factor is expected to stay close to 1 throughout time. The
optimum stretching/squeezing factor is expected to be equal to P , which is also related to the
magnitude of the perturbation.

The second technique to quantify VCSPPs utilizes classical time-reversal mirrors [21]. To
see the operation of a time-reversal mirror, consider a two-port cavity. Suppose that a pulse
is broadcast into the baseline cavity through port 1, and a baseline sona is recorded through
port 2. If the baseline sona is time reversed and broadcast back into the cavity through port 2,
a time-reversed version of the original pulse reconstructs at port 1. The reconstructed pulse
approximates the time-reversed version of the original pulse broadcast into the cavity. However,
if the time-reversed baseline sona is broadcast into a perturbed cavity, then the reconstructed
pulse will more poorly approximate the time-reversed version of the original pulse. The time
axis of the baseline sona needs to be scaled using the optimum factor before it is time reversed
and broadcast into the perturbed cavity; this is assuming that the perturbation is VCSPP.
The optimum stretching/squeezing factor is expected to result in a reconstructed pulse that
best approximates the original pulse. Once again, the optimum stretching/squeezing factor is
expected to be P .

Time-reversal mirrors have found a wide range of practical applications such as crack
imaging in solids [22, 23], and improved acoustic communication in air [24], among others
[21, 25]. Time-reversal mirrors have been shown to benefit from the cavity’s underlying ray
chaos, which is prevalent in most real-world cavities [26]. Recently, it was proposed that time-
reversal mirrors could also be applied to quantum systems [27]. The robustness of time-reversal
mirrors in a scattering medium undergoing perturbations has also been studied [28].

3. Testing the quantitative sensor in the time domain

3.1. Experimental setup

The cavity that is used to test the sensing techniques is an approximately 1 m3 (i.e. dimensions of
1.27 m × 1.27 m × 0.65 m) aluminum box that has scatterers and interior surface irregularities
which facilitate the creation of ray chaotic trajectories (see figure 2). The cavity is a mixed
chaotic and regular billiard system because it has parallel walls which may support integrable
modes in addition to the chaotic modes. Overall, the cavity represents a real-world case in
which the sensor would operate. There are two ports that connect the cavity to a microwave
source and an oscilloscope. Each port consists of a monopole antenna of length ≈1 cm and
diameter ≈1 mm. The monopole antennas are mounted on two different walls of the cavity. An
electromagnetic pulse with a center frequency of 7 GHz, and a Gaussian envelope of standard
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Figure 2. Schematic diagram of the experimental setup to induce VCSPPs
in an electromagnetic cavity, and the equipment needed to implement an
electromagnetic time-reversal mirror. The VCSPP is induced by filling the cavity
with helium or nitrogen gas. The gas transfer is carried out using a long copper
tube that helps to warm the gases up to room temperature. There is a gas inlet,
and six gas outlets on the walls of the cavity. The cavity has two antennas that are
connected to a microwave source and an oscilloscope. The electromagnetic time
reversal is carried out as follows. First, the original pulse is broadcast through
antenna 1 (1), and the resulting sona is collected at antenna 2 (2). Next, the
time reversed sona is injected into the system at antenna 1 (3) utilizing spatial
reciprocity to retrieve the reconstructed time reversed pulse at antenna 2 (4).
Experimental data are shown for each step.

deviation 1 ns is typically broadcast into the cavity through port 1. The resulting sona signal is
collected at port 2 by the oscilloscope, and it is digitally filtered to minimize noise.

Experimentally inducing a VCSPP can be more challenging than inducing a VCP, which
may slightly change the shape of the enclosure. VCSPPs can be realized by changing the speed
of wave propagation within the cavity (i.e. changing the electrical volume). The speed of light
(for the electromagnetic experiment at 7 GHz) within the cavity can be changed by filling up the
cavity with different gases that have similar dissipation and dispersion properties. For example,
the relative dielectric constants (εr) of air (at ≈50% relative humidity), nitrogen gas and helium
gas are εr,air = 1.000 635, εr,N2 = 1.000 547, εr,He = 1.000 065, respectively, at a temperature of
20 ◦C and a pressure of 101 kPa [29, 30]. As discussed later in section 3.2, it was shown that
the slightly different dissipation values of these gases do not change the sona signal in any
perceivable way. However, the slightly different speed of light values of these gases were seen
to significantly change the sonas collected.

The experimental procedure for filling up the cavity with different gases is as follows (see
figure 2). There is a gas inlet on the top wall of the cavity. The gas inlet was connected to a
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gas tank via a plastic tube and a long copper tube coil. The long copper tube coil allowed the
gas to reach room temperature before it gets into the cavity. There was a pressure regulator in
between the gas tank and the copper tube to control the rate of flow of the gas. There were three
gas outlets near the top wall of the cavity, and three gas outlets near the bottom wall of the
cavity. The diameter of the gas inlet and outlets was about a fifth of the wavelength, so that no
significant microwave leakage occurred. Depending on the density of the gas which was being
pumped into the cavity, half of the outlets (near the top or bottom wall) were closed off with
tape. This procedure helped to displace the existing gas and retain the gas being pumped into
the cavity.

As detailed in section 3.4, sona signals were collected from the cavity both during and after
the gas transfer process. The sona signals that were collected during the gas transfer indicate
when the cavity is almost fully filled with the new gas. The sona signals that were collected after
the gas transfer were used to measure the VCSPP that was induced.

3.2. Finite difference time domain (FDTD) simulations

The experiment described in section 3.1 was modeled using a finite difference time domain
(FDTD) code. The FDTD code solves Maxwell’s equations inside a three-dimensional (3D)
numerical model of the experimental cavity introduced in section 3.1. The code for this
simulation was optimized for parallel computers and for the simulation of reverberation
chambers [31, 32]. The FDTD simulation of the cavity enabled a direct comparison of
experimental and simulation results.

The FDTD simulation formed a 3D model of the experimental cavity by using spatial cubic
cells with an edge length of 1x ≈ 3.49 mm, and the cavity consisted of 364 × 364 × 188 cells.
The smallest time step taken to propagate solutions of Maxwell’s equations through the cells was
1t = 6 ps. Therefore, the Courant’s number for computational stability was c1t

√
3

√
εr1x ≈ 0.89 < 1

for all the media (εr) considered, where c is the speed of light in vacuum [33]. The model
of the cavity also had two ports, with antennas that are similar to the monopoles used in the
experiment. The electromagnetic pulse broadcast into the model was also similar to the one
broadcast experimentally (i.e. center frequency of 7 GHz and width of 1 ns). The maximum
and minimum of the ratio of the wavelength to the cubic cell dimensions were 14 and 11,
respectively.

In the experiment, the main source of dissipation is ohmic loss from the aluminum walls
of the cavity. In the simulation, the walls were assumed to be lossless for simplicity. Instead,
an equivalent loss was introduced within the medium of wave propagation to achieve the same
quality factor as the experimental cavity [31]. To accomplish this, a uniform conductivity of
10−5 S m−1 was introduced throughout the interior of the cavity model.

As mentioned in section 3.1, the experiment relies on changing the electrical volume (at
7 GHz) within the cavity by changing the gases filling the cavity. The gases used were air,
nitrogen gas and helium gas. For typical laboratory atmospheric conditions, the electromagnetic
loss in air at 7 GHz can be mainly attributed to oxygen molecules [31, 34]. The specific
attenuation of oxygen is 0.007 dB km−1, whereas the specific attenuation of water vapor is
just 0.003 dB km−1 at 7 GHz. The conductivity of air is estimated to be 4.3 × 10−9 S m−1 [31].
Therefore, the dissipation inside the cavity filled by helium gas or nitrogen gas was roughly
modeled by introducing an equivalent loss of 10−5–4.3 × 10−9 S m−1

= 9.9957 × 10−6 S m−1

uniformly throughout the cavity (once again, the walls were assumed to be lossless in
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the model). It was shown that sonas that are collected from the cavity model with 10−5 S m−1

conductivity and sonas that are collected from the cavity model with 9.9957 × 10−6 S m−1

are identical (i.e. they have a fidelity of 1). This simulation result proved that the difference
in loss between air (at ≈50% relative humidity), nitrogen gas and helium gas is not
significant.

As will be discussed later in section 3.4, the gases that experimentally filled the cavity are
not pure. The effective εr of the gases that filled the cavity are different from the εr values for
pure gases. The simulation of the cavity that is filled with helium, nitrogen or air is done by using
the effective εr values. This allows the simulation to better model the experimental reality. The
εr values used to simulate a cavity filled with air, nitrogen and helium are 1.000 576, 1.000 547
and 1.000 17, respectively. These values were chosen to match the experimental results that will
be discussed in section 3.4. The values were determined by anchoring the effective εr of nitrogen
to the value for pure nitrogen gas, and finding the effective εr values for the other gases to match
the experiment.

3.3. Sensitivity of the quantitative sensor

Here, the sensitivity of the sensor is described by deriving an expression for the minimum
volume changing perturbation that can be measured. Then, it will be shown that the VCSPP that
is induced when either of the three gases in the experiment (i.e. air, nitrogen and helium gas) is
displaced by another one can be measured using our experimental setup.

Consider using the sensing technique based on scattering fidelity, which was introduced
in section 2. The technique relies on comparing the baseline and perturbed sonas generated
by a short pulse that excites many modes of the system as a function of time. In section 3.3,
it is assumed that the perturbation increases the volume by a factor of P3, where P > 1. At
time t = 0, the sonas are expected to be similar for small enough 1t (see equation (1)), hence
SF(t = 0) ≈ 1. At any other time t , there may be a perceptible difference between the sonas. Any
particular signal feature in the baseline sona at time t is expected to be seen in the perturbed sona
at time t + tgap(t), where tgap(t) = Pt − t ; here, tgap(t) is defined as the time gap that develops
between two identical features in the baseline and perturbed sona at time t , where t is measured
within the baseline sona. This is because the baseline sona stretched out along its time axis by a
factor of P should approximate the perturbed sona, as discussed in section 2.

The minimum volume changing perturbation that can be quantified is the minimum of
P3

= (
t+tgap(t)

t )3. On the other hand, when the SF of the baseline and perturbed sona is computed
at any time t (see equation (1)), there are two necessary conditions that should be satisfied
in order to be able to measure the perturbation. Firstly, the signal-to-noise ratio (SNR) of
the baseline sona at time t should be well above 1. This is because the SF of the baseline
and perturbed sonas (when the SNR is close to 1) would simply be the correlation of two
noisy signals. Secondly, tgap(t) should be, conservatively, greater than half of the period of
the oscillations in the sona signals. Otherwise, if tgap(t) is much smaller than half a period of
the sona oscillations, the SF(t) will not be convincingly lower than its maximum value at t = 0
(which is ≈1 for the appropriate 1t value in equation (1)), hindering reliable measurement of
the perturbation. These two conditions guarantee that the SF(t) of the baseline and perturbed
sona can be used to measure the perturbation. The minimum of P3

= (
t+tgap(t)

t )3 subject to these
two conditions is (1 + T/2

TNoiseLevel
)3, where T is the period of sona oscillations and TNoiseLevel is the

time at which the SNR of the sona approaches 1.
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Therefore, the minimum perturbation that can be quantified by the sensor (i.e. (1 +
T/2

TNoiseLevel
)3) depends on the wavelength of the waves used to probe the cavity, the dissipation

in the cavity and the SNR of the system. The SNR, in turn, depends on the noise in the system,
and the dynamic range of the wave generation and detection equipment. The equipment used in
this experiment is shown in figure 2. For the electromagnetic experimental setup that is probing
the 1 m3 cavity discussed in this work, using 5 cm wavelength waves, a VCSPP that is as small
as 4 parts in 105 can be measured. Note that it is assumed that the probing pulse excites several
resonances of the baseline system as is discussed further in section 3.5.

Getting back to the experimental setup shown in figure 2, the VCSPP was induced by
changing the gas filling the cavity from air to nitrogen gas or to helium gas. This results in
≈0.05% change in the εr of the gases, which is equivalent to a VCSPP of at least 13 parts in
105. Therefore, the experimental system is expected to detect the change in electrical volume
induced when one of these gases displaces the other inside the cavity (assuming that the gases
are pure).

3.4. Results of the experiment and the FDTD simulation

3.4.1. Sensing using scattering fidelity. The air in the cavity at ≈20 ◦C and ≈50% relative
humidity was systematically displaced with nitrogen gas at room temperature. The nitrogen
gas was pumped into the cavity at 207 kPa gauge pressure as the air flowed out through the gas
outlets of the cavity. Every two minutes, the flow was stopped, and ten nominally identical sonas
(which are actually almost identical) were measured from the cavity, and these were averaged
together. The averaging is done after aligning the sonas to eliminate the adverse effects of trigger
jitter in the data acquisition system. In this manner, five averaged sonas were collected from
the cavity as the cavity was filled with more and more pure nitrogen gas. Each of these five
sonas were compared with a sona that was collected from the original cavity filled with air. The
comparison was made by computing the scattering fidelity (see equation (1)) of the sona from an
airy cavity and a sona from a partially air-filled cavity. Figure 3 shows these scattering fidelities.
The concentration of nitrogen increases with the number of minutes of nitrogen inflow into
the cavity. Therefore, figure 3 shows scattering fidelities of VCSPPs which get progressively
stronger.

The scattering fidelity of a VCSPP shows oscillation whose period is inversely related to
the strength of the perturbation (see figure 3). The oscillation in the scattering fidelity can be
explained by specifically examining the scattering fidelity of sona from the air-filled cavity, and
sona from the nitrogen-gas-filled cavity (see figure 4(a)). Here, both of the sonas were obtained
by averaging over 100 nominally identical sona samples. For times relatively close to t = 0,
the difference in the speed of light between air and nitrogen does not show up when signals
that traveled through these two gases are compared (see figure 4(b)). However, at t ≈ 4 µs,
a phase shift of half a period (i.e. 0.07 ns for the probing pulse centered at 7 GHz) develops
between the two signals (see figure 4(c)). Thus, the scattering fidelity between the two sonas
becomes ≈ − 1. The relative phase shift between the two sonas increases to one full period at
about 8 µs, and hence the scattering fidelity recovers to almost 1 (see figure 4(d)). However, as
can be seen in figure 4(d), in addition to the phase shift that develops between the individual
oscillations of the two sonas, a relative phase shift starts to develop between the envelopes of
the sona signals. Thus, the scattering fidelity of VCSPPs is not expected to oscillate between 1
and −1 indefinitely. Rather, it is expected to decay while oscillating [9]. However, we do not
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Figure 3. Scattering fidelity of sona signal from a cavity that is filled with air
(baseline), and sona from a perturbed cavity that had 2, 4, 6, 8 and 10 min
of nitrogen gas inflow. The perturbation gets stronger as the concentration of
nitrogen gas increases in the perturbed cavity.

a) d)

b) c)

Figure 4. (a) Examining the scattering fidelity oscillation for VCSPPs using sona
from an air-filled cavity and sona from a nitrogen-filled cavity. Each of the sonas
is averaged over 100 sona samples. (b) The sonas near t = 0 have a fidelity of 1.
(c) The sonas are out of phase by half a period around t = 4 µs. (d) The sonas
are out of phase by a period around t = 8 µs. Besides, the phase shift between
the envelopes of the sonas becomes significant.
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Figure 5. Undoing the effect of a VCSPP. The sona that was collected from the
cavity filled with nitrogen was stretched out optimally to recover the scattering
fidelity to 1 throughout the times when the SNR of the sonas is robust. The
SNR decreases roughly by a factor of 1000 between 0 and 10 µs. The optimum
stretching factor quantified the VCSPP. The fact that the scattering fidelity was
recovered proved that the perturbation was VCSPP.

anticipate seeing this fidelity decay with our measurement system for this particular perturbation
because the SNR of the sonas approaches unity after about 10 µs, and the fidelity does not decay
appreciably within this time for this particular perturbation.

The speed of light at 7 GHz in pure nitrogen gas was faster than it was in the laboratory air
(which had about 50% relative humidity). Therefore, as discussed in section 2, the VCSPP can
be quantified by finding the optimum stretching factor to be applied on the sona that is collected
from the cavity filled with nitrogen. The goal is to recover the scattering fidelity of the stretched
‘nitrogen-sona’ and the ‘air-sona’ to 1. This was achieved by using a stretching factor given by
(4 µs + 0.07 ns)/4 µs, because tgap = 0.07 ns (approximately half a period of oscillation of the
sona) at t = 4 µs (SF ≈ −1) based on the discussion in section 3.3. The resulting scattering
fidelity is plotted in red (see figure 5) with the scattering fidelity of the unmodified sonas
which is shown in blue. The optimum stretching factor is (4 µs + 0.07 ns)/4 µs ≈ 1.000 018,
whereas

√
εr,Air

εr,N2
≈ 1.000 044 is the expected value of P . In other words, ideally a 44 ppm (parts

per million) change across each electrical dimension of the cavity is expected; however, an
18 ppm change is measured.

The discrepancy can be explained by the fact that the nitrogen gas that filled the cavity has
an effective εr that is probably much closer to the effective εr of air. Figure 3 shows that it can
take several minutes to displace the air in the cavity with pure nitrogen. Therefore, we do not
expect the εr of the nitrogen gas that filled the cavity to be the same as the literature value for
pure nitrogen gas. The same conclusion applies to the other gases filling the cavity. There are
several reasons for the expected discrepancy between the literature value of εr and the effective
εr of the gases filling the cavity experimentally. The helium and nitrogen gases are of industrial
quality, which is not perfectly pure. Besides, the cavity is not necessarily air tight; this could
lead to leakage of air into the cavity when the cavity is not pressurized. Finally, the εr of the
gases is a function of temperature and relative humidity (for the case of air) [30]. Therefore,
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Figure 6. Scattering fidelity of sona from a cavity filled with air and sona from
a cavity filled with helium. The fidelity oscillations and decay can be seen. The
effect of the VCP could not be completely undone by stretching the ‘helium
sona’, so the perturbation is not VCSPP. The buoyant force of helium gas can
slightly change the shape by flexing the walls of the cavity.

deviations of laboratory temperature and relative humidity from 20 ◦C and 50% could impact
the effective εr value of the gases.

The fact that the shape of the cavity was preserved (during the displacement of the air by
nitrogen gas) can also be seen from figure 5. If the shape of the cavity were not preserved,
it would not be possible to recover the scattering fidelity of the two sonas through simple
numerical stretching of one of the sonas, along the time axis. Hence, displacing air with nitrogen
gas is not just a VCP, but also a VCSPP. Later, a VCP induced by displacement of air with
helium, which is not VCSPP, will be discussed.

The fidelity decay of VCSPPs, which is expected to be superimposed on the fidelity
oscillations, can be seen for a stronger VCSPP. The VCSPP should be strong enough to bring
about a significant phase shift between the envelopes of the sonas before their SNR deteriorates.
For our experimental setup, such a strong VCSPP can be achieved by displacing the air in the
cavity by helium gas. The scattering fidelity of sona from a cavity that is filled with air and sona
from a cavity that is filled with helium is plotted in figure 6 in blue. Based on the definition in
section 3.3, tgap = 0.07 ns (which is half the period of sona oscillation) at time t = 0.35 µs. Thus,
the optimum stretching factor was chosen to be (0.35 µs + 0.07 ns)/0.35 µs = 1.0002. This
optimum value maximizes the average value of the resulting scattering fidelity. Since the speed
of light at 7 GHz is higher in helium than in air, it was the ‘helium sona’ that was stretched out
along its time axis. The scattering fidelity of the stretched ‘helium sona’ and the ‘air sona’ is also
shown in figure 6 in red. Once again, the stretching factor (0.35 µs + 0.07 ns)/0.35 µs = 1.0002

approximates to
√

εr,Air

εr,He
≈ 1.000 285. In other words, a 285 ppm change across each electrical

dimensions of the cavity is expected, and a 200 ppm change is measured. This shows that the
change in electrical volume which was induced by replacing the air in the cavity with helium
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Figure 7. Scattering fidelity of sona from a cavity filled with air and sona from a
cavity filled with helium. The sonas are generated from the FDTD model of the
cavity.

was quantified successfully, considering that the effective εr of the helium and air gases are
probably closer than expected.

However, unlike the case in figure 5, the effect of the VCP could not be undone perfectly.
The scattering fidelity of the stretched ‘helium sona’ and the ‘air sona’ was not close to 1
throughout time; instead it shows a fidelity decay. The scattering fidelity of ‘helium sona’
and ‘air sona’ is expected to oscillate between 1 and −1 (as the phase shift between the fast
oscillations of the sonas increases in a similar fashion to the illustration in figures 4(b)–(d))
and decay to 0 (as the phase shift between the complicated envelopes of the sonas increases).
This decay is seen experimentally in figure 6. However, there must be another fidelity decay
superimposed on the fidelity decay that can be attributed to a VCP; because the fidelity decay
could not be undone by numerically stretching out one of the sonas.

An FDTD simulation of the experiment was performed to better understand the form of the
scattering fidelity when comparing ‘helium sona’ and ‘air sona’. As discussed in section 3.2,
differences in the dissipation of helium gas and air are so minute that they do not need to be
considered. The scattering fidelity of ‘helium sona’ and ‘air sona’, which was obtained from the
FDTD model by broadcasting the 7 GHz pulse used experimentally, are shown in figure 7. The
simulation results show that the effect of the VCSPP can be undone by applying the optimum
stretching factor (i.e. (0.35 µs + 0.07 ns)/0.35 µs = 1.0002) to the ‘helium sona’. The scattering
fidelity of the ‘air sona’ and the stretched ‘helium sona’ is shown in red in figure 7; it is close to 1,
which shows that the effect of the perturbation can be undone by simple numerical stretching.
The fidelity is close to 1 for times where the numerical errors in the FDTD are negligible.

The difference in the results of figures 6 and 7 shows that experimentally displacing air
with helium induces another kind of perturbation other than a volume changing perturbation.
The additional perturbation was not seen when nitrogen was pumped into the cavity at the same
pressure setting (i.e. 207 kPa gauge pressure) as was used for pumping helium into the cavity.
One possible explanation for this discrepancy is the fact that helium gas exerts a significant
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buoyancy force which slightly flexes the walls of the cavity (about 1 m2 area and 3 mm thick
aluminum sheets). From previous work on this cavity, it was shown that a flexing of one of the
walls of the cavity can cause a significant shape changing perturbation [35]. The result shown
in figure 6 demonstrates that it is possible to verify whether the shape of the cavity remained
intact while its electrical volume changed. This verification can be simply done by checking if
the scattering fidelity can be recovered to 1 throughout time. The capability to detect changes
to the shape of the cavity during a volume changing perturbation (which could be induced by a
spatially uniform heating or cooling of a homogeneous cavity) can have several applications
as was pointed out in section 1. Yet another possible explanation for the above-mentioned
discrepancy is the fact that nitrogen and helium gases have different density and atomic sizes.
This can lead to differences in the spatial uniformity of the gases filling the cavity. Again, such
differences can have the character of cavity shape changing perturbations.

3.4.2. Sensing using time reversal. So far, only one of the sensing techniques introduced in
section 2 has been demonstrated to quantify VCP. In addition to the scattering fidelity technique,
time-reversal mirrors can be used to quantify VCP. When a sona signal that is collected from
the cavity filled with nitrogen is time reversed and broadcast into the cavity filled with helium,
the reconstructed time reversed pulse is not expected to be ideal. This is because the time
reversed sona would be traversing an effectively smaller cavity. Note that in this particular case,
the baseline cavity is electrically larger than the perturbed cavity. Based on the discussions in
section 2, the baseline sona should be squeezed along its time axis using an optimum factor to
recover the maximum amplitude time-reversed pulse. When the optimally squeezed ‘nitrogen
sona’ is time reversed and broadcast into the cavity filled with helium, the reconstructed time-
reversed pulse is expected to better approximate the original pulse.

The improvement in the quality of the time-reversed reconstructed pulse can be measured
in various ways [18]. Here, the simplest measure (the peak-to-peak amplitude (PPA) of the
reconstructed pulse) of the quality of the time-reversed pulse is used. Figure 8 shows the
PPA of the time-reversed reconstructed pulse obtained when the ‘nitrogen sona’ is numerically
squeezed along its time axis by varying amounts. The optimum squeezing factor of 0.9998
approximates

√
εr,He

εr,N2
≈ 0.999 76. This means that a 240 ppm change is expected, but a 200 ppm

change across each electrical dimension of the cavity was measured. Once again, the small
discrepancy can be explained by the fact that the gases in the cavity are not perfectly pure. This
shows that the time-reversal technique can also be used to quantify VCP.

Time-reversal mirrors can also be used to detect when a volume changing perturbation
slightly changes the shape of the cavity. In this case, when the ‘nitrogen sona’ is time reversed
and broadcast into the cavity filled with nitrogen, the PPA of the reconstructed time reversed
pulse was about 1.13 V. However, when an optimally squeezed ‘nitrogen sona’ is broadcast
into the cavity filled with helium gas, the optimal value of the PPA is only about 0.85 V. This
indicates that the perturbation, which is induced when the nitrogen gas inside the cavity is
displaced with helium gas, is not just a volume changing perturbation but also a shape changing
perturbation. Once again, this is due to the relatively strong buoyant force of helium gas which
can flex the walls of the cavity.

To summarize, either of the two time-domain sensing techniques introduced in section 2
can be used to identify and quantify a VCSPP. However, the sensing technique based on time
reversal can have an advantage because it is computationally cheaper [18].
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Figure 8. Plot of the PPA of the time-reversed pulse in a cavity filled with helium
versus the ‘squeezing’ factor used to scale the time axis of the sona which is
collected from a cavity filled with nitrogen.

3.5. Limitations of the time-domain approaches to measure volume changing and shape
preserving perturbation

Now we can describe the time-domain approach further, and point out its limitations. When
a cavity is monitored for a VCSPP, a pulse is periodically broadcast into it, and a sona is
collected. It is generally preferred to use the same probing pulse (i.e. the same center frequency,
bandwidth, amplitude and shape) so that only the changes in the system show up when looking
at the sonas. When a VCSPP (with P > 1) occurs, the transmission spectrum |S12|

2 of the system
shrinks along the frequency axis by a factor of P as shown in figures 1(c) and (d). The probing
pulse frequency coverage is schematically shown in the frequency domain in figures 1(c) and
(d). The baseline and the perturbed sonas are a result of the probing pulse exciting resonances of
the cavity. The resonances excited by the probing pulse in the baseline and perturbed cavity are
not all the same. Suppose that there is a significant overlap between the resonances excited
by the probing pulse in the baseline and perturbed cavity. Under this condition, we expect
that the baseline sona can be numerically stretched out by a factor of P along its time axis
to approximate the perturbed sona.

However, if there is no overlap between the resonances excited in the baseline and
perturbed system, the time-domain sensing techniques are not expected to work. Thus, both
of the time-domain sensing techniques (based on scattering fidelity and time-reversal mirrors)
face a limitation regarding the maximum VCSPP that can be measured. This limitation can be
improved by increasing the bandwidth of the pulse that is used to probe the cavity. Doing so
would effectively make the time-domain technique closer to the frequency-domain interrogation
of the system, which does not face a limitation regarding the maximum VCSPP that can be
measured. In a similar spirit, using a pulse with a flat frequency response (such as a chirp) may
also be helpful. Note that the frequency-domain interrogation of the system is assumed to be
done on a large enough frequency window to measure the perturbation.

The regime of VCSPP strengths that cannot be measured using the time-domain techniques
is estimated as follows. Suppose that the probing pulse excites resonances with frequencies
ranging from fmin to fmax, with the center frequency at f =

fmin+ fmax

2 and 3 dB bandwidth of
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fmax − fmin. It is assumed that the probing pulse excites several resonances of the baseline
system. In other words, fmax − fmin � 1 f , where 1 f is the mean spacing between the resonant
frequencies of the baseline cavity. The VCSPP changes the volume of the cavity by a factor of
P3, where P > 1 for simplicity. Once again, the VCSPP has the effect of scaling the |S12|

2( f )

of the cavity along the frequency axis by a factor of P . If fmax

P < fmin, then the VCSPP is not
expected to be measured by using this probing pulse in the time domain because there would be
significant overlap between the resonances excited in the baseline and perturbed cavities.

In the experiments discussed in section 3.1, the probing pulse excited resonances between
fmin = 6.5 GHz and fmax = 7.5 GHz. The mean spacing between the resonant frequencies of the
baseline cavity is given by 1 f =

c3

8πV f 2 =
λ3

V
f

8π
≈ 22 kHz, where V is the volume of the baseline

cavity, f = 7 GHz is the center frequency of the pulse and λ is the wavelength. Therefore, a
VCSPP where P >

fmax

fmin
≈ 1.15 is not expected to be measured in the time-domain experiments

discussed in section 3.1. Clearly, the strongest VCSPP that was achieved in the laboratory
(i.e. P ≈ 1.000 018 for nitrogen gas versus the air) and the strongest VCP (i.e. P ≈ 1.0002
for helium gas versus the air) are both far below the maximum perturbation strengths that can
be measured using the time-domain techniques.

The case of a strong VCSPP perturbation, which cannot be measured using the time-
domain techniques, is best considered using a simulation tool that can be easily interrogated
in the frequency domain as well. Section 4 discusses such strong perturbations, and shows how
they can be quantified using a frequency-domain approach.

4. Sensing using frequency-domain information

In section 2, it was mentioned that VCSPPs can be quantified using information obtained in
the time domain or frequency domain. The time-domain approach is generally more practical
in applications. However, the frequency-domain approach does not have limitations on the
maximum perturbation value that can be quantified. This frequency-domain approach is used
to measure VCSPPs on a quasi-1D system called the star graph. We use the star graph because
it is a type of quantum graph that has generic properties of wave chaotic systems [36], but is
relatively simple to understand. It is also computationally cheaper to simulate than the 3D wave
chaotic system discussed in section 3.2. Besides, the star graph can be directly implemented in
the frequency domain as discussed in section 4.1.

4.1. The star graph model

The star graph is numerically modeled as a set of interconnected transmission lines as shown
schematically in figure 9 [37]. This is a one-port system; hence, the input signal is injected
into the driving transmission line and the output signal is also retrieved from the same line.
The driving transmission line has zero length. The driving transmission line is connected
with a number of transmission lines which are all connected in parallel to each other. The
transmission line properties (for a line labeled n) are length (Ln), characteristic admittance (Ycn),
frequency-dependent complex propagation constant (γn(ω)) and complex reflection coefficient
(0n) (for reflection from the terminations of the lines that are not connected to the driving
line). The driving line has zero length; thus its only adjustable property is its characteristic
admittance (Ycd).
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Figure 9. Schematic diagram of the star graph model. There are N transmission
lines that are connected in parallel, and a driving transmission line of
zero length. Each of the N lines (labeled n) can have unique length
(Ln), characteristic admittance (Ycn), frequency-dependent propagation constant
(γn(ω)) and reflection coefficient (0n). The driving line has a characteristic
admittance of Ycd.

This one-port system is modeled by using the analytically derived expression for its
scattering parameter as a function of frequency, S11(ω). The scattering parameter can be
expressed in terms of the characteristic admittance of the driving line (Ycd) and the input
admittance (Yn) of each of the other transmission lines while looking toward them,

S11(ω) =
Ycd −

∑n=N
n=1 Yn(ω)

Ycd +
∑

n Yn(ω)
, (2)

where N is the number of transmission lines connected in parallel. The input admittance of
each transmission line (labeled n), Yn(ω), can be expressed in terms of the above-mentioned
properties of the line,

Yn(ω) = Ycn

(
1 − 0ne2γn(ω)Ln

1 + 0ne2γn(ω)Ln

)
. (3)

Once the scattering parameter of the system is computed over a broad frequency range,
the response to any time-domain input signal can be calculated. This is done by Fourier
transforming the input signal to the frequency domain, multiplying it by the scattering parameter
(S11(ω)) and inverse Fourier transforming the product back to the time domain. This establishes
the star graph model as a time-domain simulation of this quasi-1D system. However, in this
section we are mainly interested in the frequency-domain representation of the star graph
using its scattering parameter. The frequency-domain approach will be shown to be effective
in quantifying strong perturbations that could not have been measured otherwise.

4.2. Quantifying strong perturbations to the star graph

As discussed in section 2, the scattering parameter of a cavity can be used to quantify a VCSPP.
The star graph is a quasi-1D system. A perturbation that changes the length of all of the lines of
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the star graph by the same proportion (i.e. with constant P) changes its effective volume while
leaving its shape intact (i.e. it is a VCSPP). The effective volume of a star graph with N lines is
given by 2

∑n=N
n=1 Ln [38]. Therefore, for a VCSPP perturbation that scales the lengths by a factor

of P , the effective volume of the star graph also changes by a factor of P . This is different from
the case of the 3D cavity discussed in section 3 (i.e. the volume of the 3D cavity changes by P3).

The baseline star graph was set up using the following parameter values. There were
ten lines whose length is given by Ln = 0.3d10

√
ne m (for n ranging from 1 to 10). Each of

these lines had a characteristic admittance, Ycn, of 1 S. The characteristic admittance of the
driving line was chosen such that Ycd =

∑n=10
n=1 Ycn = 10 S in order to eliminate prompt reflection

of signals injected through the driving line. The propagation constant of the lines is a function
of the frequency, ω, and was given by γn(ω) = ı ω

c with n = 1, . . . , N , where c is the speed
of light in vacuum; thus, the lines themselves were considered to be lossless (i.e. γn(ω) does
not have a real part). However, energy was dissipated during reflection from the terminations

of the lines. The reflection coefficient was given by 0n = e
−0.3d10

√
ne2

cτ with n = 1, . . . , N , where
τ = 1.5 µs. The amount of dissipation was designed to be independent of the size of the star
graph. However, the dissipation introduced through sub-unitary values of 0n can be interpreted
as an equivalent loss that could be introduced through γn(ω) (i.e. by introducing 1

cτ as the real
part of γn(ω) = ı ω

c + 1
cτ ). Thus, if the dissipation were modeled using γn(ω), τ = 1.5 µs would

be interpreted as the time it takes the signals to decay by 1/e as they propagate along the lines.
As a result, the typical 1/e decay time of the sona from the star graph was ≈1.5 µs, a value
typical of our 3D experiment.

The perturbed star graph was set up using identical values of parameters as the baseline
star graph, except for the length, Ln. The lengths of the perturbed star graph were chosen to be
P Ln, where P is the perturbation strength. The driving line has zero length in both the baseline
and perturbed star graphs.

4.2.1. Using the time-domain approaches. A Gaussian pulse of width 1 ns and center
frequency 7 GHz were used to generate a baseline and perturbed sona from the baseline and
perturbed star graphs. The time-domain sensing technique which is based on scattering fidelity
was applied to quantify a perturbation of strength P = 1.0002. Figure 10 shows the scattering
fidelity of the baseline and perturbed sonas before (blue) and after (red) optimally stretching
the baseline sona. This demonstrates that the scattering fidelity sensing technique can be used
to quantify a VCSPP in the quasi-1D chaotic system. The result gives the clearest evidence
to the discussion of fidelity decay induced by VCSPPs in section 3.4.1 (i.e. the results shown
in figures 5 and 6). VCSPPs induce a scattering fidelity oscillation that is superimposed on a
fidelity decay (see figure 10).

The application of the time-domain sensing technique which is based on time reversal
is presented in figure 11. Figure 11 shows the PPA of the time-reversed pulse reconstructed
using the baseline sona scaled with different factors along its time axis. The optimal PPA was
obtained when the sona was scaled by a factor exactly equal to the stretching of the transmission
line lengths (i.e. 1.0002).

The perturbation strength of P = 1.0002 was shown to be detectable using time-domain
techniques in the star graph setup described. However, as the perturbation got stronger, the
shortcoming of the time-domain techniques was revealed. For perturbation strength values, P ,
ranging from 1.0002 to 1.14, the SF(t) of the perturbed sona and the optimally scaled (along the
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Figure 10. Scattering fidelity of baseline and perturbed sonas from the star graph
before (blue ·) and after (red +) optimally scaling the baseline sona along its
time axis. The perturbation is a VCSPP with P = 1.0002.

Figure 11. PPA of the time-reversed pulse reconstructed inside the perturbed
star graph using the baseline sona which is scaled along its time axis by different
scaling factors.

time axis) baseline sona was examined. For each P , the SF(t) was averaged over time, t (from
0 to 10 µs, which is the duration of the sonas). The closeness of the average SF(t) to 1 indicates
the success of the time-domain technique to undo the effect of the VCSPP, and to measure it.
Figure 12 shows the average value of SF(t) (for optimally scaled baseline sona) versus log10(P);
the standard deviations of SF(t) taken over t are also shown as an error bar in figure 12. As P
increased beyond about 100.025

≈ 1.06, the effectiveness of the time-domain sensing technique
starts to deteriorate.

Based on the discussion in section 3.5, VCSPP perturbations that are characterized by
P >

fmax

fmin
≈

7.5 GHz
6.5 GHz ≈ 1.15 are not expected to be quantified using the time-domain techniques.

The mean spacing between resonant frequencies of the baseline star graph is 1 f =
c

2
∑n=N

n=1 Ln
≈

2 MHz, where N is the number of lines in the star graph [38], and fmax − fmin = 1 GHz � 1 f .
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Figure 12. The average SF(t) of the baseline sona and perturbed sonas, which are
optimally scaled by P (perturbation magnitude) along their time axis. The sonas
were collected from the baseline star graph and a perturbed star graph (VCSPP
with scaling factor P). The average SF(t) was taken from time t = 0 to 10 µs of
the sonas; error bars show the associated standard deviation.

Therefore, the probing pulse excites several resonances of the baseline cavity. The result
illustrated in figure 12 shows that VCSPP perturbations that are characterized by P � 1.15 =

100.06 are quantifiable.

4.2.2. Using the frequency-domain approach. The limitation of the time-domain approach was
discussed in section 3.5, and demonstrated using the star graph in section 4.2.1. As shown in
figure 12, for a strong perturbation such as P = 1.14, the time-domain sensing techniques fail
to undo the effect of the VCSPP, and hence to measure it. Here, a frequency-domain approach
is used to illustrate how the VCSPP with P = 1.14 can be measured.

Figure 13(a) shows the |S11|
2(ω) of the baseline (blue) and perturbed (red) star graphs.

The |S11|
2(ω) of the perturbed star graph (larger in size by a factor of P = 1.14) is compressed

along the frequency axis compared to the baseline’s case. This effect was predicted in section 2
and schematically illustrated in figure 1. The frequency-domain approach to measure VCSPP
involves optimally scaling the frequency axis of the scattering parameter of the perturbed
system (star graph in this case) to align it with the scattering parameter of the baseline
system. Figure 13(b) shows the |S11|

2(ω) of the baseline star graph (blue) and the optimally
stretched |S11|

2(ω) of the perturbed star graph (black). The optimal frequency scaling factor was
P = 1.14, which also successfully measures the VCSPP induced on the baseline star graph. To
conclude, given the scattering parameters of a baseline and a perturbed system, one can check
whether a VCSPP happened and quantify it.

5. Discussion

The development of this quantitative sensor opens up the possibilities for several potentially
useful applications. For example, when a cavity that has a homogenous material make-up is
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Figure 13. Quantifying a volume changing perturbation in the frequency domain.
(a) The |S11|

2(ω) of the baseline (blue) and a perturbed (red) star graph for
perturbation strength P = 1.14. (b) The |S11|

2(ω) of the baseline star graph
(blue) and the |S11|

2(ω) of the perturbed star graph (black) after optimal
frequency scaling which measures the VCSPP.

cooled down (or warmed up), it is interesting to check whether the temperature stays uniform
throughout all parts of the cavity. The sensor developed in this paper would allow one to check
whether the volume of the cavity is decreasing (or increasing) while the shape is intact; the
sensor would also allow one to measure by how much the volume (and hence the temperature)
of the cavity is changing. This is feasible as long as the temperature change primarily affects the
volume of the cavity and not the dielectric constant of the medium filling the cavity. This is one
possible application of the VCSPP sensor which can practically compete with the traditional
option of installing thermometers throughout the cavity. Another possible application of the
VCSPP sensor is monitoring if a fluid has displaced another fluid uniformly throughout a cavity.
Since the speed of the waves inside different fluids can be different, the displacement of the
fluid can change the volume of the cavity, as seen by the waves. This assumes that other wave
properties (such as dissipation and dispersion) of the two fluids are similar.

6. Conclusion

Measuring the effects of perturbation to a wave chaotic enclosure and uniquely identifying the
perturbation that gave rise to this change is a challenge because many such perturbations can
give rise to the same measured change. However, the effect of a perturbation that changes the
volume but keeps the shape intact can be theoretically predicted. The theoretical prediction
is most clear in the frequency domain. Thus, quantifying VCP is best done in the frequency
domain. Nonetheless, time-domain approaches can be preferred for practical purposes. The
time-domain approach is limited by a maximum perturbation that can be measured. This
limitation was demonstrated using a simulation of a star graph, which is a representative
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wave chaotic system. The time-domain approach can work using either scattering fidelity
techniques or time-reversal mirrors. Quantification of a volume changing perturbation was
experimentally demonstrated using these techniques. The volume changing perturbation was
induced experimentally by changing the electrical volume of the cavity. The results of the
experiment were compared with FDTD simulation results of the cavity, and good agreement
was found.
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