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Investigations of the intrinsic electromagnetic nonlinearity of superconductors give insight into the funda-
mental physics of these materials. Phase-sensitive third-order harmonic-voltage data ũ3f = �u3f�exp�i�3f� are
acquired with a near-field microwave microscope on homogeneous YBa2Cu3O7−� thin films in a temperature
range close to the critical temperature Tc. As temperature is increased from below Tc, the harmonic magnitude
exhibits a maximum while the phase � /2 in the superconducting state goes through a minimum. It is found that
samples with doping ranges from near optimal ��=0.16� to underdoped ��=0.47� exhibit different behavior in
terms of both the harmonic magnitude and phase. In optimally doped samples, the harmonic magnitude reaches
its maximum at a temperature TM slightly lower than that associated with the minimum of phase Tm and drops
into the noisefloor as soon as Tm is exceeded. In underdoped samples TM is shifted toward lower temperatures
with respect to Tm and the harmonic-voltage magnitude decreases slower with temperature than in the case of
optimally doped samples. A field-based analytical model of ũ3f is presented, where the nonlinear behavior is
introduced as corrections to the low-field linear-response complex conductivity. The model reproduces the
low-temperature regime where the �2 nonlinearity dominates, in agreement with published theoretical and
experimental results. Additionally the model identifies Tm as the temperature where the order-parameter relax-
ation time becomes comparable to the microwave probing period and reproduces semiquantitatively the ex-
perimental data.
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I. INTRODUCTION

Recently, a number of experiments have shown evidence
of unusual properties above the superconducting transition
temperature in underdoped cuprate superconductors. Obser-
vations include a significant Nernst effect in the pseudogap
phase of La-Sr-Cu-O, suggesting the existence of vortex
excitations.1 Diamagnetic response above Tc has also been
observed in underdoped Bi-Sr-Ca-Cu-O.2 These properties
have been generally interpreted in terms of a superconduct-
ing state with nonzero superfluid density but dominated by
strong phase fluctuations of the order parameter. Such a state
should have interesting nonlinear response characterized by
persistence of superconducting nonlinearities above Tc, as
reported before with scalar nonlinearity measurements.3 The
present study extends these results by measuring the com-
plex harmonic voltage developed by underdoped cuprate su-
perconductors when temperature is varied through the tran-
sition temperature.

Traditionally, the microwave nonlinear response of super-
conductors has been investigated by using resonator tech-
niques where the superconducting sample is subject to high
microwave magnetic fields, thus making the nonlinear effects
measurable.4,5 The experimental data have been interpreted
by using various time-dependent versions of the Ginzbug-
Landau theory to estimate the order-parameter relaxation
time in the superconducting state.6 After the discovery of
high-Tc superconductors, the prospect of using these materi-
als in microwave filters for the wireless industry has renewed
interest in the microwave nonlinear response. In the more
recent treatments, the nonlinear effects are introduced as cor-

rections to the complex conductivity and are evaluated by
using a microscopic approach in the zero-frequency limit.7,8

The dc treatment is legitimate for the range of temperatures
typical for the operation of high-Tc superconducting filters
�below Tc� where the superconducting order parameter reacts
almost instantaneously �compared to the period of the micro-
wave excitation� to the applied field and the field screening is
provided by the superfluid. The resulting field �or current-
density�-dependent conductivity is used as an input param-
eter for calculations of circuit elements in lumped-element
approximations of the superconducting transmission lines
and resonators.7 Theoretical studies addressing the operation
of high-Tc superconducting resonators have shown that for
temperatures significantly below Tc, the dominant nonlinear
mechanism in these devices has an inductive origin due to
the suppression of superfluid density by the current �or ap-
plied magnetic field�.7

Resonator techniques have provided experimental support
for the nonlinear Meissner effect at low temperatures in
d-wave superconductors9 �enhanced by the presence of
nodes of the order parameter on the Fermi surface as shown
in the theoretical works of Xu, Yip, and Sauls8 and Dahm
and Scalapino7� as well as close to Tc, where the superfluid
density is very sensitive to external perturbations.4,5 Despite
their success, the resonator techniques measure parts of the
sample that are often less than ideal, such as patterned edges
or natural edges and corners of single crystals. Such experi-
ments do not provide information about the local properties
of the samples and also usually do not provide phase infor-
mation of the nonlinear response. This issue is relevant es-
pecially for high-Tc materials whose properties may vary on
very short length scales due to their short coherence lengths.
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To overcome this limitation, a nonresonant local near-
field microwave technique has been created to make spatially
resolved studies of nonlinear response of
superconductors.3,10,11 This experimental approach is highly
sensitive to nonlinear effects close to Tc and provides a high
spatial resolution dictated by the geometrical dimensions of
the sensing element, as demonstrated in harmonic measure-
ments above an artificially created grain boundary.11,12 The
basic idea is to excite a highly localized current distribution
at frequency f on the surface of a homogeneous unpatterned
superconductor. Due to the nonlinear electrodynamic pro-
cesses, harmonic �2f , 3f , etc.� signals are created in the ma-
terial and collected by the sensing element. The harmonic
data measured at Tc on YBa2Cu3O7−� �YBCO� thin films has
been interpreted in the framework of a Ginzburg-Landau-
type model where the nonlinear source is the magnetic
field�current�-dependent superfluid density nS�T ,J�.3 The
current-suppressed superfluid density leads to an enhance-
ment of the penetration depth ��T ,J�, and consequently of
the kinetic inductance, which in turn, leads to odd higher-
order harmonics of inductive origin. The proposed model
describes accurately the measured data �temperature-
dependent third-order harmonic scalar power P3f�T�� in op-
timally doped samples. This approach also largely avoids
issues of nonlocality that are exacerbated by current buildup
at patterned edges.7,9

However, in underdoped samples the current-dependent
superfluid density nS�T ,J� acting alone as an inductive non-
linear source cannot explain the observed harmonic data.
More specifically, the measured harmonic response P3f�T�
does not turn off at temperatures above the independently
determined Tc as expected from the model but exhibits a tail
extending significantly above Tc in the pseudogap regime.3 It
is this high-temperature behavior of P3f�T�, including its ori-
gin and doping dependence, that prompted the present study.
In addition, many theoretical predictions of interesting elec-
trodynamic properties of the pseudogap exist in the
literature,13–19 and should be investigated. By employing an
experimental technique, the harmonic response of cuprate
thin films has been investigated at temperatures close to Tc,
where not only the magnitude of the complex harmonic
voltage/power is measured, as in previous work, but also its
harmonic phase. This experimental capability also motivates
a field-based finite-frequency model to explain features ob-
served mainly in the harmonic-phase experimental data. The
model includes the microwave skin-depth screening in the
electrodynamics of the superconducting state close to Tc,
where the superfluid density is suppressed and consequently
its field screening is compromised.

The paper is organized as follows: Sec. II describes the
experimental setup and the samples used in this study. Em-
phasis is placed on presenting in detail the acquisition and
data-processing methodology. Section III presents a theoret-
ical model aimed at evaluating the complex voltage mea-
sured with the experimental setup presented in the previous
section. By using general electromagnetic theory and making
minimal assumptions about the nature of nonlinear effects,
the model provides predictions in the temperature regime
where �1��2 and �1��2. These limiting cases are dis-
cussed in Sec. IV in conjunction with our experimental data.

The model reproduces in a semiquantitative fashion some
features observed in the experimental data as temperature is
increased toward Tc. The harmonic data acquired on samples
with various doping levels are discussed also in Sec. IV.
Sections V and VI describe the main features of the data and
the predictions of the model. Some deficiencies of the model
are pointed out and suggestions are made for future work.

II. EXPERIMENTAL SETUP AND SAMPLES

The objective of the experiment �shown in Fig. 1� is to
locally stimulate a homogeneous superconducting thin film
with microwave currents and measure the resulting nonlinear
response. The microwave excitation is provided by the inter-
nal source of a vector network analyzer, VNA, �Agilent
model E8364B� on port 1 at a fixed frequency f �6.5 GHz
in the continuous-wave mode, low-pass filtered �to eliminate
harmonics� and coupled to the sample by means of a mag-
netic loop probe. The probe is built by using commercially
available coaxial cable �UT034� where the inner conductor
has been soldered to the outer one.3,10,11 This results in a
semicircular loop with inner radius of roughly 165 �m and
an outer one of 365 �m �see inset of Fig. 1�. The loop has
been further mechanically polished at the outer radius in or-
der to bring the microwave current, flowing in a thickness
dictated by the skin depth at the inner radius of the loop,
closer to the sample ��100 �m�, thus improving the loop-
to-sample coupling and allowing the operation of the appa-
ratus at lower input-power levels. The signal originating
from the sample comes back through the probe, is high-pass
filtered to suppress the microwave power at the fundamental
frequency f and examined with the VNA in the frequency-
offset mode �VNA-FOM� by tuning the receiver on port 2 in

FIG. 1. �Color online� The experimental setup for the phase-
sensitive harmonic measurements. A signal at frequency f is gener-
ated by the internal VNA source, low-pass filtered and delivered to
the sample inside a cryogenic environment. The microwave signal
reflected by the sample and containing harmonics of the incident
power is high-pass filtered to remove the fundamental f and mea-
sured on VNA port 2. For phase-sensitive detection a reference
circuit, converts some microwave power at frequency f into power
at 3f by means of a harmonic generator and two band-pass filters,
and feeds the resulting 3f signal back into the VNA as reference
signal. Inset: drawing of the magnetic loop probe above the sample.
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a narrow frequency range �1 Hz� centered on the harmonic of
interest �3f in this case�.

The sample is placed in a cryogenic environment whose
temperature is controlled between 78 and 100 K with an
accuracy of 0.1 K and for each temperature a trace is ac-
quired from the VNA-FOM and stored on a computer for
further analysis. The samples are unpatterned homogeneous
c-axis-oriented YBCO thin films deposited on SrTiO3 or
NdGaO3 substrates by pulsed laser deposition �PLD�. The
oxygen content of the samples has been adjusted by anneal-
ing in various oxygen pressures and at different temperatures
in the PLD chamber resulting in critical temperatures Tc

ac in
the range of 52–90 K, as evaluated from ac susceptibility
measurements �performed at 120 kHz�. Despite their small
thickness ��50 nm� the sample superconducting quality is
very good as revealed by the narrow peaks of the
temperature-dependent imaginary part of the magnetic sus-
ceptibility whose full width at half maximum �Tc

ac are given
in Table I.

After a power calibration, performed according to the
manufacturer’s instructions,20 the VNA-FOM measures the
absolute power level at frequency 3f , P3f, incident on port 2
similar to a spectrum analyzer �“spectrum-analyzer mode”�.

To perform phase-sensitive detection of the 3f harmonic-
voltage incident on port 2, the VNA-FOM requires a refer-
ence signal at the same frequency as the signal to be ana-
lyzed. For the measurements reported here, the reference
signal is provided by an additional microwave circuit, called
the reference path �see Fig. 1� that converts some microwave
power at frequency f generated by the internal VNA source
into microwave power at frequency 3f . The fundamental f is
fed into a comb �harmonic� generator �Herotek, model GCA
2026A-12� followed by two band-pass filters designed to
suppress �attenuation of 80 dB� the fundamental and all har-
monics except for 3f , thus resulting in a clean 3f signal that
serves as reference, U3f

ref, for the phase-sensitive harmonic
detection. The VNA-FOM traces represent the complex ratio
of the voltage from the sample �whose temperature T is var-
ied inside the cryostat�, to that from the reference path,
ũ3f�T�=U3f

sample�T� /U3f
ref at the plane of the VNA’s port 2,

evaluated at the frequency points scanned by the VNA-FOM
receiver within the 1 Hz span window centered on 3f �“vec-
tor signal analyzer mode”�. Since during an experiment the
reference path and most of the microwave circuit are at room

temperature �only about 10 cm of coaxial cable is inside the
cryostat, however not in physical contact with the cold
plate�, it is legitimate to attribute the temperature dependence
of the measured relative harmonic voltage ũ3f�T� entirely to
the temperature-dependent nonlinear effects in the sample.
Since the microwave circuit is operated at low microwave
power ��0 to +9 dBm at VNA port 1�, the background
noise at 3f is dominated by the intrinsic noise of the VNA
��−140 dBm /Hz when P3f is measured without an input on
VNA port 2�. This is shown in Fig. 2, bottom plot, where the
nonlinear signal from the sample are at the noisefloor
�T=83.4 and 91.5 K�.

The VNA-FOM is not designed for absolute phase-
harmonic measurements but for relative ones since the VNA-
FOM only indicates how the harmonic phase changes as the
sample properties change from one temperature to another,
provided that the reference signal U3f

ref is stable during the
measurements. Consequently, the temperature-dependent
VNA-FOM phase data �3f�T�=�3f

sample�T�−�3f
ref −�of fset, are

offset by a temperature-independent unknown amount
��3f

ref +�of fset� originating from the phase winding in the
components of the microwave circuit �coaxial cables and fil-
ters� and the phase relationship between the fundamental and
the harmonics generated by the comb generator. The phase
shift �3f

ref +�of fset is evaluated by using the predictions of the
theoretical model presented in Sec. III for the limiting case
of low temperatures �T�Tc�, where the harmonic phase is
� /2, with a minimum of assumptions and in agreement with
other experimental observations.21

To increase the signal-to-noise ratio of the VNA-FOM
traces, 8–10 averages were performed on the VNA before
transferring the trace to the computer. Such averaged traces
acquired at three representative temperatures �below, above,
and around Tc

ac� are shown in Fig. 2: the complex phase and
magnitude of the harmonic voltage �upper and middle plots�
and the absolute harmonic-power levels �bottom plot�. The
1 Hz span P3f VNA-FOM traces look similar to small-span
traces acquired with a spectrum analyzer; at T=89.6 K
�close to Tc

ac� the temperature-dependent harmonic power

TABLE I. Sample properties: critical temperature Tc
ac and tran-

sition width �Tc
ac determined from ac susceptibility measurements,

the doping level 7−� estimated from Tc
ac, the difference between the

temperatures where the extreme values of the harmonic phase and
magnitude occur, 	TM,m, and the sample substrate.

Sample
Tc

ac

�K�
�Tc

ac

�K� 7−�
	TM,m

�K� Substrate

S1 88.9 0.3 6.84 0.2 NdGaO3

S2 86.6 1.0 6.82 0.5 NdGaO3

S3 74.0 0.9 6.76 0.4 NdGaO3

S4 62.0 0.55 6.69 0.6 SrTiO3

S5 52.0 1.1 6.53 1.0 SrTiO3
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FIG. 2. �Color online� Examples of VNA-FOM traces acquired
on a YBCO thin film �S1� in a frequency range centered on
3f =19.47 GHz. Top and middle plot: the phase and magnitude of
ũ3f�T� acquired in a phase-sensitive measurement; bottom plot: ab-
solute harmonic-power data P3f�T�, acquired in spectrum-analyzer
mode.
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P3f�T� reaches its maximum in agreement with other
authors,3–5,10 while at T=83.4 K and T=91.5 K �below and
above Tc

ac, respectively� the traces are flat and at the noise-
floor �−135 to −140 dBm /Hz�. Complex ũ3f�T� VNA-FOM
averaged traces acquired at T=83.4 K and T=91.5 K, ex-
hibit a large scatter both in phase and magnitude while
�ũ3f�T�� reaches its maximum at T=89.6 K, in agreement
with the P3f traces.

To extract the temperature dependence of the relative har-
monic voltage ũ3f�T� from the VNA-FOM traces, 1–3 central
points from each trace �see Fig. 2� are averaged and the
resulting complex magnitude and phase are plotted vs tem-
perature in Fig. 3. To quantify the data spread in a ũ3f�T�
VNA-FOM trace and the reliability of averaging the com-
plex traces, the standard deviation of the phase data STD�3f
is evaluated from each of the averaged 1 Hz span traces and
represented together with the phase data in Fig. 3. The
temperature-dependent STD�3f

can be used to select a tem-
perature range where �3f�T� data can be considered reliable
by imposing that STD�3f

does not exceed a certain threshold.
The temperatures associated with the traces from Fig. 2 are
indicated in Fig. 3 with shorter �magenta� arrows together
with Tc

ac and �Tc
ac from ac susceptibility measurements.

The samples have been measured by using various input
frequencies �6.45–6.55 GHz� and power levels �0 to
+9 dBm� and with the microwave probe placed at several
locations above the samples, all with consistent results. For
the range of microwave input-power levels employed in this
work, the harmonic data suggest that the microwave probe
does not induce a significant amount of heating in the sample
surface, which would be indicated by a shift of the maximum
of �ũ3f�T�� and of the minimum of �3f�T�, respectively, to
lower temperatures when the microwave power is increased.

Qualitatively, the magnitude of the harmonic voltage,
�u3f�T��, reaches a maximum at a temperature TM close to Tc

ac

in agreement with results from the literature where P3f�T� is
reported to reach a maximum.3–5,10 One of the results pre-
sented here is that the complex phase decreases smoothly

and reaches a minimum at Tm as the temperature is in-
creased. For the samples investigated here a consistent trend
has been observed: for near-optimally doped samples the
temperatures associated with the two extrema of magnitude
and phase almost coincide while for underdoped samples the
harmonic phase tends to reach its minimum at higher tem-
peratures �Tm
TM�. To quantify this trend, 	TM,m=Tm−TM
has been evaluated for all samples from measurements at
various input frequencies and microwave power levels and is
given in Table I. There is a general trend of increasing 	TM,m
with increased underdoping.

III. MODEL

The recent theoretical treatments of microwave nonlinear
effects in superconductors are mostly restricted to resonant
configurations and their equivalent lumped-element circuit
approximations.7 Due to the nonresonant nature of the near-
field microwave microscope employed in this work and since
the sample is not part of a transmission line structure, a field-
based analytical model is more appropriate to capture the
essential physics. Such an approach has been proposed for
temperatures below Tc, where the authors considered only
the nonlinear effects caused by the field dependence of the
imaginary part of the complex conductivity.10

The analytical model presented in this section is an exten-
sion of that proposed by Pestov and co-workers10 at finite
frequencies in an attempt to explain the temperature depen-
dence of the harmonic-phase data acquired with the near-
field microwave microscope described in the previous sec-
tion. The goal of the model is to provide an expression for
the complex-valued temperature-dependent harmonic volt-
age U3f

sample�T� induced in the near-field antenna by the mi-
crowave screening current distribution from the nonlinear
superconducting sample. This is achieved in three steps: first,
the magnetic vector potential created by the excitation cur-
rent in the microwave probe, Af, is calculated at the sample
surface, then by using a nonlinear generalization of the con-
stitutive London equation for superconductors, the harmonic
content of the screening current induced in the sample is
evaluated, and in the third step the harmonic voltage induced
in the near-field probe is found.

In order to preserve a higher level of generality, the non-
linear effects are introduced here as phenomenological cor-
rections to both the real and imaginary parts of the low-
power linear-response complex conductivity of the sample
�̃=�1− i�2, where �1,2 are positive definite ��1,2�0�,

�1,2�T,Af� = �1,2�1 �
Af

2

A1,2
2 + ¯	, Af � A1,2. �1�

Af is the vector potential associated with the microwave ex-
citation at the fundamental frequency f and the temperature-
dependent nonlinear vector-potential scales A1,2 quantify the
nonlinear effects in the real and imaginary components of the
complex conductivity, respectively. We assume local electro-
dynamics in this model. Note that A1,2 can model a wide
variety of nonlinear sources, including the nonlinear Meiss-
ner effect, vortex motion, weak links, etc. These corrections
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FIG. 3. �Color online� Phase-sensitive harmonic data acquired
on a YBCO thin film �S1�. �a� Temperature-dependent magnitude,
�u3f�T��. �b� Temperature-dependent phase ��3f�T� �green� solid
line� and the standard deviation of the 11-point traces acquired at
each temperature ��blue� dashed line�. Shorter �magenta� arrows
show: T=83.4, 89.6, and 91.5 K. Tc

ac and �Tc
ac represent the critical

temperature and transition width as determined from ac susceptibil-
ity measurements and are given in Table I.
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are valid when Af �A1,2, similar to other phenomenological
descriptions of nonlinear effects in the literature.3,10,21 This
treatment also implicitly assumes that the complex conduc-
tivity of the superconductor reacts instantaneously to
changes in the probing vector potential Af. At temperatures
very close to Tc, where the condition Af �A1,2 might be vio-
lated and higher-order terms should be included in the ex-
pansion �1� or when order-parameter relaxation times be-
come comparable to the microwave period, the present
formalism might not be applicable. In a qualitative picture
the superfluid density nS is suppressed by the microwave
excitation �“−” sign in Eq. �1� for �2� and “converted” into
normal fluid �“+” sign in Eq. �1� for �1�.

For the analytical treatment of the problem, the
near-field probe is approximated by a filamentary current
wire parallel to the z axis located at y=0 and x=a whose
current density is modeled by the � Dirac distribution:
j f
ext�x ,y�= If��x−a���y� while the sample extends infinitely

in the zOy plane of the Cartesian frame with the bottom
surface at x=0 �see Fig. 4�. Since the wire-to-sample sepa-
ration, a, is much smaller than the wavelength of the micro-
wave excitation, the magnetic vector potential Af outside the
superconducting sample satisfies the equations of magneto-
statics: above the sample �2Af =−�0j f

ext�x ,y� while below the
sample �2Af =0. Inside the superconducting sample the spa-
tial variation in the magnetic vector potential Af and current
density in the film j film in the x direction is governed by the
length scale associated with the inverse of the wave vector
�−1� �2=�−2+2i�sk

−2�f� which at low temperature T�Tc is
governed by the penetration depth � while in the normal
state by the skin depth evaluated at the probing frequency f ,
�sk�f��. For details on the superconducting screening at finite
frequencies, see, for example, the work of Clem and
Coffey.22 Since the sample thickness is smaller than both the
zero-temperature penetration depth as well as the microwave
skin depth within the investigated temperature range
�d0��0 ,�sk�f��, Af and j film are assumed uniform within the
thickness d0. At microwave frequencies the displacement
current is negligible with respect to the conduction one,
therefore Ampere’s law in integral form for the closed loop L
�shown in Fig. 4� reads

Bf�x = d0 + 0� − Bf�x = 0 − 0� = �0j filmd0, �2�

where j filmd0 is the sheet current. In the limit d0→0 of
sample thickness much smaller than all length scales in-

volved in the problem and taking into account that the cur-
rent density inside the film obeys London’s law for finite
frequency, j film=−2Af /�0 �here we assume local electrody-
namics�, the equation for the magnetic vector potential, can
be written in a closed form for the entire space,10

− �2Af�x,y� + �ef f
−1 Af�x,y���x� = �0If��x − a���y� , �3�

where �ef f =1 / �d02� represents a generalized finite-
frequency effective penetration depth.

To integrate Eq. �3�, the nonlinear effects in �1,2 are ne-
glected in this step �A1,2→�� and the equation is Fourier
transformed. After solving for Af�kx ,ky� and integrating with
respect to kx, Af�ky� reads10

Af�ky� = �0If

�ef f exp�− �ky�a�
1 + 2�ef f�ky�

. �4�

For the experimental setup described here, the sample-to-
wire separation, a is determined by the diameter of the inner
conductor of the coaxial cable �a�100 �m�. In the long-
wavelength approximation, a exceeds both length scales con-
tained in �ef f �� and �sk�f�� and consequently the term
2�ef f�ky� can be neglected in the denominator of Eq. �4�,
allowing a closed-form expression for the vector potential
generated by the current wire,

Af�y� 
 −
�0Ifa

�d0�a2 + y2�
·

1

�−2 + 2i�sk
−2�f�

. �5�

The finite-frequency nonlinear generalization of the
local London constitutive relationship j film= jS+ jn
= ��1− i�2�E=−��i�1+�2�Af �where the electric field
E=−�Af /�t and Af �exp�+i�t� with �=2�f� is obtained by
replacing the linear-response complex conductivity �1,2 with
its phenomenological nonlinear expressions from Eq. �1�,

j film 
 − ��2�1 −
Af

2

A2
2	Af − i��1�1 +

Af
2

A1
2	Af �6�

or can be expressed in terms of the linear-response length
scales � and �sk,

j film 
 −
1

�0�2�1 −
Af

2

A2
2	Af −

2i

�0�sk
2 �f�

�1 +
Af

2

A1
2	Af . �7�

This approximation is valid under the limited condition
Af �A1,2 and shows that the current density contains a com-
ponent at frequency f and another component at frequency
3f which represents the source of the measured harmonic
voltage at frequency 3f . The nonlinear component at
frequency 3f in the total current density j film, j3f, is
separated from the Af

3 terms by considering the time depen-
dence Af �cos��t� and using the trigonometric relation
cos3 �t= �cos 3�t+3 cos �t� /4,

j3f =
Af

3

4�0
� 1

�2A2
2 −

2i

�sk
2 A1

2	 =
�

4
��2

A2
2 − i

�1

A1
2	Af

3. �8�

The current distribution flowing in the sample and having
a harmonic 3f time variation generates a vector potential A3f
in the entire space and induces a voltage in the near-field
probe. In order to evaluate the induced voltage at 3f , U3f

sample,

FIG. 4. �Color online� The geometry of the analytical problem.
The near-field microwave antenna is approximated by a filamentary
current wire extending infinitely in the z direction at x=a and
y=0. The sample with thickness d0 extends infinitely in the zOy
plane and has its bottom surface at x=0.
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one has to calculate the vector potential at the location of the
wire. This is accomplished by using the equivalence prin-
ciple from electromagnetism23 where a current with fre-
quency 3f flowing through the wire j3f

ext= I3f��x−a���y� gen-
erates the magnetic vector potential on the sample surface
given by Eq. �5� with the appropriate substitution f →3f .
Equivalently, a current distribution j3f in the sample given by
Eq. �8� generates a vector potential A3f�x ,y ,z� in the entire
space. The equivalence principle23 reads

� dVj3f
ext�x,y,z�A3f�x,y,z� =� dVj3f�x,y,z�A3f�x,y,z�

�9�

with the integrals evaluated over the entire space. By using
the filtering properties of the Dirac delta function and since
all the z=constant planes contain the same field and current
configuration due to the symmetry of the problem, the vector
potential at the location of the wire reads

A3f�a,0� =
5

64
� �0If

�d0a
	3� 1

�2A2
2 −

2i

�sk
2 �f�A1

2
�� 1

�−2 + 2i�sk
−2�f�3 1

�−2 + 2i�sk
−2�3f�

, �10�

where �sk�f� and �sk�3f� represent the skin depth evaluated at
frequency f and 3f , respectively. These two quantities differ
by a factor of �3 in the ordinary skin-effect regime, and in
order to simplify the calculations, the following approxima-
tion will be used: �sk�3f���sk�f�=�sk.

The electric field induced in the wire at frequency 3f ,
E3f =−�A3f�a ,0� /�t, is used to evaluate the voltage induced
in a probe of length l0,

U3f
sample�a,0� =

15�l0

64
� �0If

�d0a
	3 �6

A1
2�2�2

�sk
2 + i

A1
2

A2
2�1 + i

2�2

�sk
2 −4

.

�11�

In terms of conductivities, the induced voltage reads

U3f
sample�a,0� =

15�l0

64
� If

�d0a�
	3 1

�2
3A1

2

���1

�2
+ i

A1
2

A2
2�1 + i

�1

�2
−4

. �12�

Equations �11� and �12� have been deduced in an analyti-
cal field-based approach, as opposed to most recent models
in the literature which use lumped-element descriptions for
the superconducting devices operating at microwave fre-
quencies. Several features can be noted: the harmonic-
voltage magnitude scales with the excitation current as
�U3f

sample�� If
3, the nonlinear effects are easier to measure in

thin films ��U3f
sample��d0

−3� and for small antenna-to-sample
geometric separation ��U3f

sample��a−3�, all in agreement with
experimental data in the literature, as well as models.

The model provides an estimate for the complex-valued
harmonic voltage induced in the near-field probe by the
screening current flowing on the sample surface. Since the
VNA-FOM measures the harmonic voltage from the sample

with respect to that from the reference path at the plane of
VNA’s port 2, the measured data must be phase shifted by an
amount �3f

ref +�of fset �see Sec. II�, which is equivalent to
moving the measurement plane from VNA’s port 2 to the
near-field antenna. Such a translation is effectively accom-
plished by examining the limiting case T�Tc of Eq. �12� to
evaluate the required amount of phase shift.

IV. ANALYSIS

A. Harmonic phase vs temperature

Before comparing the results of the mathematical model
with the experimental data, it is useful to examine the case of
nonlinearity at low temperatures, which has also been inves-
tigated by other authors in a resonant configuration.21 For
T�Tc, when the contribution of the normal fluid to the elec-
trodynamics of the superconducting state is small, the in-
duced voltage given by Eq. �12� can be expanded in a power
series around �1 /�2=0,

U3f
sample� T

Tc
� 1,a,0	

�
15�l0

64
� �0If

�d0a�
	3 1

�2
3A1

2

��i
A1

2

A2
2 + �1 + 4

A1
2

A2
2	�1

�2
− 2i�2 + 5

A1
2

A2
2	��1

�2
	2

+ ¯ .

�13�

Two possible scenarios emerge from this picture depend-
ing on the ratios of conductivities and that of vector-potential

scales. For the case 1�
�1

�2
�

A1
2

A2
2 the harmonic voltage

U3f
sample�a ,0� has a zero phase and depends on the �1 nonlin-

earity characterized by the vector potential scale A1,

U3f
sample� T

Tc
� 1,

�1

�2
�

A1
2

A2
2 ,a,0	 �

15�l0

64
� �0If

�d0a�
	3 1

�2
3A1

2

�1

�2
.

�14�

On the other hand, for the case
�1

�2
�

A1
2

A2
2 the first term in the

power expansion Eq. �13� is dominant and represents a pure
inductivelike nonlinear response. The harmonic voltage
U3f

sample�a ,0� depends only on the �2 nonlinearity, character-
ized by the nonlinear vector-potential scale A2, as in most of
the treatments of superconductor nonlinear response,3,7,10,21

U3f
sample� T

Tc
� 1,

�1

�2
�

A1
2

A2
2 ,a,0	 �

15�l0

64
� �0If

�d0a�
	3 i

�2
3A2

2 .

�15�

This result does not rely on any assumptions about the
temperature dependence of conductivity correction factors
A1,2 and is in good agreement with the experimental data of
Booth et al.21 who reported a purely inductive harmonic re-
sponse in YBCO thin films at 78 K, well below Tc�90 K.
Additionally, theoretical models describing the operation of
high-Tc microwave filters at temperatures below Tc, predict a
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purely inductive nonlinear response �consistent with our case
�1

�2
�

A1
2

A2
2 ,

A1
2

A2
2 �1�, however do not exclude the possibility of

resistive nonlinear effects close to Tc.
24 Equation �15� shows

that in the superconducting state where
�1

�2
�1, the experi-

mental setup is not sensitive to a possible �1 nonlinearity;
moreover, even if the �1 nonlinearity would dominate the �2

one �
�1

�2
�

A1
2

A2
2 �1�, this effect would not be detectable due to

the modest contribution of �1 in the field-screening process.
The harmonic-phase data reported here exhibit an almost

flat plateau at low temperatures where the magnitude starts to
go above the noisefloor �see, for example, Fig. 3�. This ob-
servation, together with the prediction of Eq. �15� suggests
that the harmonic response in that temperature range is char-
acterized by a � /2 phase. By using this result, the relative
phase data acquired by the VNA-FOM on all samples have
been corrected over the entire temperature range by adding a
temperature-independent phase offset �labeled �3f

ref +�of fset

in Sec. II� to enforce the condition �3f�T�Tc��� /2.
As temperature is increased toward Tc, the ratio �1 /�2

increases and the in-phase component starts to become sig-
nificant �the second term in square brackets in Eq. �13�
which is real and positive� while the out-of-phase component
�the difference of the first and third terms in Eq. �13�� is
gradually reduced. This behavior is consistent with the data
from all samples, �see, for example, Fig. 3� showing that the
third harmonic-phase angle rotates clockwise from � /2 as Tc

is approached from below.
Equation �12� for the harmonic voltage includes the ratios

�1 /�2, A1
2 /A2

2, and A1, �2 whose temperature dependence
must be known in order to model the experimental values of
the harmonic-voltage magnitude and phase. For a semiquan-
titative discussion it is important to examine the temperature-
dependent phase of the third harmonic voltage by consider-
ing only the functional dependence of the temperature-
dependent terms in Eq. �12�,

U3f
sample�a,0� �

1

�2
3A1

2��1

�2
+ i

A1
2

A2
2�1 + i

�1

�2
−4

. �16�

The behavior of the harmonic voltage in the complex plane
is dominated by the last term in Eq. �16� due to its fourth
power. For superconductors, in a mean-field approximation,
the ratio of conductivities �1 /�2 is essentially zero at
T�Tc and generally increases toward infinity as the tem-
perature approaches Tc; therefore the temperature depen-
dence of the complex phase associated with the last term in
Eq. �16� is 0 at low temperature and executes a full 360°
clockwise rotation in the complex plane as temperature is
increased toward Tc. This prediction for the sense of rotation
is in agreement with the experimental data up to the tempera-
ture Tm, where �3f goes through its minimum.

The harmonic voltage U3f
sample�a ,0� given by Eq. �12� can

be expanded in a power series around �1 /�2=1 and the first
two terms are

U3f
sample��1

�2
� 1,a,0	

�
15�l0

256
� If

�d0a�
	3 1

�2
3A1

2�− 1 − i
A1

2

A2
2

+ �1 − 2
A1

2

A2
2 + 2i�1 +

A1
2

A2
2	��1

�2
− 1	 + ¯� .

�17�

In the limiting case �1=�2 the complex harmonic voltage
U3f

sample�a ,0� lies in the third quadrant of the complex plane
with negative real and imaginary parts. To check this theo-
retical prediction, the experimental data shown in Fig. 3 have
been represented in the complex plane as Re�u3f� vs Im�u3f�
in Fig. 5, after offsetting the phase data to enforce the con-
dition �3f �� /2 at the lowest temperature where the signal-
to-noise ratio is acceptable. Also in Fig. 5 the two extreme
cases of A1

2�A2
2 , �1=�2 and A1

2�A2
2 , �1=�2 have been

represented as two dots. Common to all samples from Table
I, the harmonic-phase data exhibits a nonmonotonic behav-
ior, decreasing from � /2 at low temperatures, reaching a
minimum inside the fourth quadrant at a temperature Tm, and
increasing back toward � /2. The experimental data acquired
with all the samples from Table I do not reach the third
quadrant of the complex plane, as Eq. �17� predicts. Note
that the model does not take into account the finite order-
parameter relaxation time which, close to the critical tem-
perature �i.e., in the regime �1��2�, becomes comparable to
the microwave probing period.

Experimental data acquired at low frequency �1 kHz� by
Mawatari and co-workers,25 although in a different experi-
mental configuration that enhances the electromagnetic re-
sponse associated with vortex motion, exhibits a similar
trend. The third-order harmonic phase goes through a mini-
mum of roughly −� /2 when superconductivity is gradually
weakened by the application of an external magnetic field
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FIG. 5. �Color online� Temperature-dependent phase-sensitive
third-order harmonic-voltage data ũ3f acquired on a YBCO �S1�
thin film represented in the complex plane. The arrows indicate the
evolution of the complex data as temperature increases from Start
�T=86.4 K� to End �T=90.4 K�. Only the low-noise data are pre-
sented, here in arbitrary units. The dots represent the predicted
phase at a temperature for which �1=�2 and either A1

2�A2
2 or

A1
2�A2

2.
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whereas for the data presented here the superconductivity is
suppressed by increasing temperature. The microwave har-
monic measurements presented here have been performed on
a time scale roughly seven orders of magnitude shorter than
that employed in the work of Mawatari et al.,25 thus they are
more prone to explore the regime where the superconducting
order parameter cannot oscillate in phase with the probing
field. This could prevent the harmonic-phase data from
reaching the third quadrant of the complex plane. The mini-
mum of the harmonic phase observed in the microwave har-
monic data could indicate the onset of the regime where the
dynamics of the superconducting order parameter becomes
slower than the period of the probing electromagnetic field.
To account for this regime and to explain third-order har-
monic data acquired in gapless superconductors, Amato and
McLean4 proposed a correction term �1−2i��R�−1 to the mi-
crowave harmonic field B3f, where �R�T /Tc� is the order-
parameter relaxation time that diverges at Tc. Such a correc-
tion term gives rise to a counterclockwise rotation of the
harmonic voltage in the complex plane, in agreement with
our experimental data at temperatures above Tm.

B. Harmonic signal vs doping

A comparison of the magnitude and phase data acquired
on all samples from Table I is shown in Figs. 6 and 7. Only
the relatively low-noise data have been presented in these
figures: for magnitude data, the noisefloor is given by the

sensitivity of the VNA-FOM while for phase data only the
temperature ranges where the phase standard deviation
STD�3f

is less than 0.2 radians have been selected.
The examination of both Figs. 6 and 7 reveals that the

maximum of the harmonic-voltage magnitude occurs at a
temperature TM, lower than that associated with the mini-
mum of the complex phase, Tm. The difference between
these two temperatures, denoted 	TM,m=Tm−TM, follows a
consistent trend as indicated in Table I and shown in the inset
of Fig. 7 �i.e., increasing in the more underdoped samples�,
and is not correlated with the broadening of the supercon-
ducting transition in underdoped samples due to the anneal-
ing process �see Table I for �Tc

ac�. This feature has been
observed in all measurements despite the different input-
power levels, probing frequency, or microwave antenna lo-
cation above the sample. Unfortunately, due to the unavail-
ability of �1,2 and A1,2 theoretical temperature and doping
dependences, the observed trend of 	TM,m with doping could
not be accounted for by the model. However, future theoret-
ical models could be checked against this experimental ob-
servation.

The harmonic-voltage magnitude data from Fig. 6 show
that in near-optimally doped samples, the harmonic voltage
drops sharply into the noisefloor at a temperature slightly
above Tm while in underdoped samples, the �u3f� peak occurs
at a temperature below Tm and the �u3f� temperature depen-
dence extends more above Tm. This general trend is in agree-
ment with the observation of Lee et al.,3 who examined the
microwave harmonic power P3f reflected by YBCO thin
films with various doping levels. An interesting feature can
be noticed in the third-order harmonic-voltage-phase data
�Fig. 7�; in optimally doped samples when the magnitude
�u3f�T�� reaches the noisefloor the harmonic phase recovers
its value from the superconducting state �+� /2� after exhib-
iting a minimum at Tm whereas in the most underdoped
samples, the recovery is not complete.

Some features in Figs. 6 and 7 can be explained qualita-
tively by using the argument of Amato and McLean4 regard-
ing the regime where the superconducting order parameter
cannot react instantaneously to the microwave excitation.
The weakening of the harmonic-phase reversal and the
broader extent of the harmonic magnitude observed in our
harmonic data measured in the underdoped samples points to
a slower divergence of the order-parameter relaxation time in
underdoped samples compared to their optimally doped
counterparts. Such a scenario is compatible with stronger and
longer-lived superconducting fluctuations in underdoped cu-
prates. The extension of the nonlinear response above Tc is
consistent with Anderson’s picture in which the pseudogap
phase has the electrodynamic properties of a superconductor
but with a current-current correlation function that decays
with a finite time � and a diamagnetic susceptibility that is
nonlinear.13

V. DISCUSSION

Overall, the model offers a unified picture of microwave
nonlinear effects originating from both the real and the
imaginary parts of the conductivity. The model reproduces
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semiquantitatively the trends observed in both the magnitude
and phase of the harmonic voltage acquired with the phase-
sensitive nonlinear near-field setup. The lack of theoretical
models for the temperature and doping dependences of �1,2

and the divergence of the order-parameter relaxation time
close to the critical temperature hinders a more detailed com-
parison of data with the predictions of the model and the
extraction of the A1,2 temperature and doping dependences.

The analytical treatment points out the significance of the
�1 nonlinearity in addition to that associated with �2. Most
of the recent treatments of the nonlinear effects in cuprates
close to the critical temperature Tc ignore the influence of the
normal fluid and consequently assign the observed nonlinear
effects entirely to the �2 nonlinearity.3,10 Well below Tc, the
observed nonlinear behavior is due to the superfluid, as
shown in the theoretical works of Dahm and Scalapino,7 con-
firmed by the experimental work of Booth21 and also shown
in our model for the case of low temperatures ��1��2�.
However, the microscopic model of Dahm and Scalapino24

does not exclude the possibility that in close proximity to Tc
nonlinear mechanisms due to the normal fluid might become
important.

In the model, the relaxation time of the order parameter
was assumed much shorter than the microwave period, i.e.,
the order parameter reacts instantaneously with changes in
the external probing field. This assumption is valid only up
to temperatures very close to Tc.

6 The data presented here
correlated with those of Mawatari et al.25 acquired at much
lower excitation frequency suggest that neglecting the dy-
namics of the superconducting order parameter restricts our
analysis to temperatures below Tm, where the phase of the
harmonic voltage reaches its minimum in the fourth quadrant
of the complex plane.

The major benefit of the experimental technique comes
from the localized nature of the microwave excitation and
the ability to measure the temperature-dependent complex
harmonic voltage. Therefore, the nonlinear microwave re-
sponse can be investigated in as-grown superconducting
samples, free from potential defects caused by patterning.
Additionally, the harmonic response can be measured at vari-
ous locations in a homogeneous sample, thus ensuring that
the response does not depend on location or some peculiar
feature of the sample, such as edges, corners, grain bound-
aries, or defects of fabrication.26

The ability to measure both the magnitude and the phase
of the harmonic voltage allows a more complete description
of nonlinear effects as a function of doping level. The ex-
perimental data show that the maximum of harmonic-voltage
magnitude and the minimum of phase occur at slightly dif-
ferent temperatures, TM and Tm, respectively. The doping de-
pendence of the nonlinear response has been quantified by
defining 	TM,m=Tm−TM and monitoring its variation with
doping level 7−�. In almost optimally doped samples the
harmonic-voltage magnitude exhibits a sharp maximum very
close to the temperature where the harmonic phase reaches
its minimum, Tm, then drops abruptly to the noisefloor. In the
more underdoped samples, the maximum of the harmonic-
voltage magnitude occurs at a temperature lower than Tm,
thus in the superconducting state, but the harmonic response

extends above Tm into the pseudogap phase. This doping-
dependent nonlinear response could be due to enhanced Coo-
per pair lifetime,14,15 to superconducting fluctuations in the
pseudogap phase of underdoped cuprates13,16–18 or perhaps to
a transition from a pure d-wave order parameter to a d+s
order parameter.19 Another source of nonlinear response
above Tc could be vortexlike excitations in the pseudogap
phase.27

By a proper choice of the complex conductivity �1,2 and
its nonlinear corrections A1,2, one could incorporate micro-
scopic details �symmetry of the order parameter, shape of the
Fermi surface, effects due to the quasiparticles at the nodes
of the gap, etc.�, anisotropy effects of the in-plane conduc-
tivity and various possible sources of nonlinear behavior,
such as vortex motion, weak links, and defects due to sample
fabrication and annealing. Further investigations of nonlocal
electrodynamics9 should also be explored along with more
microscopic models.

VI. CONCLUSIONS

An experimental technique is presented where a vector
network analyzer in frequency-offset mode is used to acquire
the harmonic nonlinear response of homogeneous thin super-
conducting films to microwave current excitation. The phase-
sensitive harmonic detection technique provides an addi-
tional piece of information, compared to previous
investigations of nonlinear effects in the superconducting
state: the phase of the harmonic voltage at temperatures close
to Tc. The third-order harmonic phase gradually decreases
from � /2 in the superconducting state, reaches a minimum
close to Tc and recovers back to � /2, at least for samples
near optimal doping. In the underdoped samples the phase
does not recover completely to � /2 in the normal state but to
roughly 0.5 radians. In all samples used in this study the
harmonic magnitude exhibits a maximum, as observed by
other investigators3,10 and the magnitude maximum occurs at
a temperature TM below that associated with the minimum of
phase, Tm. A consistent trend with oxygen doping has been
found, where the difference 	TM,m=Tm−TM increases in the
more oxygen-deficient samples.

An analytical finite-frequency field-based model of the
nonlinear microwave response of superconducting thin films
in a near-field microwave experimental configuration is pre-
sented. The interplay of inductive and resistive nonlinear ef-
fects arises naturally in the model, being an improvement
with respect to previous models from the literature, which
treat the two types of nonlinear behavior separately. The de-
scription is field based as opposed to lumped-element based
and it introduces the nonlinear effects in a phenomenological
fashion as deviations of conductivity from its linear-response
value. The model is in agreement with experimental data and
other models from the literature in the limiting case of low
temperature where the field screening is due to the superfluid
and reproduces some key features observed in the data ac-
quired with the apparatus. More specifically, at low tempera-
tures it predicts a harmonic phase of � /2 with a nonlinear
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behavior originating mainly from the �2 nonlinearity. The
model also shows, in agreement with our experimental data,
that as temperature increases toward Tc an in-phase, resis-
tivelike, component becomes significant, thus “rotating” the
third-order harmonic voltage clockwise in the complex
plane. In the regime where the superconducting order-
parameter relaxation time diverges, the counterclockwise ro-
tation of the harmonic voltage in the complex plane can be
qualitatively reproduced by a phenomenological modifica-
tion of the model.
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