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In wave chaotic scattering, statistical fluctuations of the scattering matrix S and the impedance matrix Z
depend both on universal properties and on nonuniversal details of how the scatterer is coupled to external
channels. This paper considers the impedance and scattering variance ratios, �z and �s, where �z

=Var�Zij� / �Var�Zii�Var�Zjj��1/2, �s=Var�Sij� / �Var�Sii�Var�Sjj��1/2, and Var�·� denotes variance. �z is shown to
be a universal function of distributed losses within the scatterer. That is, �z is independent of nonuniversal
coupling details. This contrasts with �s for which universality applies only in the large loss limit. Explicit
results are given for �z for time reversal symmetric and broken time reversal symmetric systems. Experimental
tests of the theory are presented using data taken from scattering measurements on a chaotic microwave cavity.
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I. INTRODUCTION

The general problem of externally generated time har-
monic waves linearly interacting with a structure of limited
spatial extent is basic in many fields of science �1–3�. In
recent years much work has been done elucidating the con-
sequences for the scattering of waves in cases in which, in
the geometric optics approximation, the ray orbits within the
structure are chaotic. Examples include optical �4�, acoustic
�5�, microwave �6–9�, and electronic cavities �10,11�. In the
case of complex or irregularly shaped enclosures that are
large compared with a wavelength, small changes in the fre-
quency and the configuration give rise to large changes in the
scattering characteristics. This feature motivates treatments
that are statistical in nature. In this regard random matrix
theory �12,13� has proven useful in predicting universal as-
pect of chaotic wave scattering problems in the cases of both
time reversal symmetric systems �corresponding to matrix
statistics of the Gaussian orthogonal ensemble �GOE�� and
time reversal symmetry broken systems �corresponding to
matrix statistics of the Gaussian unitary ensemble �GUE��.

Scattering problems can be characterized by the scattering
matrix S which relates outgoing scattered wave amplitudes b
to incoming waves a, via b=Sa. An alternative formulation
is in terms of the impedance matrix Z. To illustrate the im-
pedance description, consider an electromagnetic wave scat-
tering problem in which N transmission lines labeled i
=1,2 , . . . ,N of characteristic impedance Z0i are connected to
a cavity. Let Vi and Ii represent the voltage and current on
transmission line i as measured at a suitable reference plane.
Then the incident wave ai and the reflected wave bi may be
expressed as ai= �Vi+Z0iIi� /Z0i

1/2, bi= �Vi−Z0iIi� /Z0i
1/2. The im-

pedance matrix Z relates the vector voltage to the vector
current, via V=ZI, and Z and S are related by Z=Z0

1/2�1
−S�−1�1+S�Z0

1/2, where 1 is the N-dimensional identity ma-
trix, and Z0=diag�Z01,Z02, . . . ,Z0N�. The impedance formu-
lation is identical to the so called “R matrix,” a formulation
introduced by Wigner and Eisenbud in nuclear-reaction

theory in 1947, and further developed in Refs. �14–17�.
Statistical variations of the elements of Z and S due to

small random variations in the scattering are of great interest.
These statistics have two fundamental influences, �i� univer-
sal aspects described by random matrix theory, and �ii� non-
universal aspects dependent upon the details of the coupling
of input channels �e.g., transmission lines� to the scatterer.
Our main result concerns the quantity

�z =
Var�Zij�

�Var�Zii�Var�Zjj�
, i � j , �1�

where Var�A�, the variance of the complex scalar A, is de-
fined as the sum of Var�Re A� and Var�Im A�. Our result is
of the form

�z = �F1��� for GOE,

F2��� for GUE,
	 �2�

where � is a parameter characterizing the losses within the
scatterer. For example, in the case of an electromagnetic cav-
ity, �=� / �2Q���, where � is the frequency of the incoming
signal, �� is the average spacing between cavity resonant
frequencies near �, and Q is the quality factor of the cavity
�Q=� if there are no internal losses�. The remarkable aspect
of �2� is that F1,2��� depends only on the loss parameter and
not on the nonuniversal properties of the coupling to the
cavity. Thus �z is a universal function of the loss �. The
results for F1 and F2 �to be derived subsequently� are shown
in Fig. 1. For ��1,

�z = �1/2 for GOE,

1 for GUE.
	 �3�

For ��1,

�z = �1/3 for GOE,

1/2 for GUE.
	 �4�

A ratio similar to �1� can also be considered for the scat-
tering matrix S,

�s 

Var�Sij�

�Var�Sii�Var�Sjj�
, i � j . �5�*Also at Department of Electrical and Computer Engineering.
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In contrast with �2�, �s in general depends on both the cou-
pling to the cavity and on the loss parameter �. However, in
the special case of high loss, ��1, �s becomes universal,

�s = �1/2 for GOE,

1 for GUE.
	 �6�

That is, �s=�z for ��1. Based on their electromagnetics
experiments, Fiachetti and Michelsen �18� have recently con-
jectured the universality of �6� in the GOE case. More gen-
erally, �6� follows from classic results of Hauser and Fesh-
bach describing fluctuations in the cross section of inelastic
neutron scattering �19�, and this result has been obtained by
Friedman and Mello �20� using the concept of maximization
of information entropy, and by Agassi et al. �21� using a
random-matrix model. The important point is that a universal
result for �s �i.e., Eq. �6�� applies only for ��1, while the
universal result for �z Eq. �2� and Fig. 1, is for arbitrary �.

In what follows we derive these results and test them by
comparison with data obtained from scattering measure-
ments on a chaotic microwave cavity. Section II derives the
results for impedance variance ration, �z. Section III consid-
ers the scattering variance ratio, �s. Section IV presents our
experimental tests of the theory.

II. IMPEDANCE VARIANCE RATIO

In this section we will obtain the universal functions
F1,2��� in Eq. �2�. We adopt a formulation �e.g., see Refs.
�22,23�� that incorporates the nonuniversal effects of the spe-
cific coupling geometry of input-output channels to the scat-
terer, combined with the random matrix theory for the uni-
versal aspects of the chaotic wave behavior within the
scatterer. �In what follows, we use terminology appropriate
to microwave experiments.� Beginning with the case of zero
loss ��=0�, we have that, in the GOE case, the impedance
matrix Z is described by the following statistical model �22�

Z = −
j

	
�

n

��kn�
Rr

1/2�kn�wnwn
TRr

1/2�kn�
k2 − kn

2 . �7�

Here k is the wave number corresponding to the incoming
frequency, wn is a vector whose elements are real, indepen-
dent, zero mean, Gaussian random variables of unit variance.
The eigenvalues kn

2 are randomly chosen with statistics ap-
propriate to GOE. This is done by generating ensembles of
eigenvalues of random matrices and then scaling them such
that the mean spacing between adjacent eigenvalues near
kn

2 is ��kn�. Here ��k� is given by the Weyl formula for
the mean eigenvalue spacing. For example, for the case of
a two-dimensional �2D� cavity ��k� is independent of k,
�=4	 /A where A is the area of the cavity. The system-
dependent part of the coupling is characterized by the corre-
sponding radiation impedance matrix Zr=Rr+ jXr. Note also
that, since Zr depends only on local geometry near the en-
trances to the scattering region, its frequency dependence is
much slower than that of Z which depends on the geometry
of the scattering region assumed to be characterized by much
longer length scales. The radiation impedance is the imped-
ance seen at the reference plane of the input channel when
waves that leave the channel propagate outward and are not
reflected back to their input by the distant walls of the cavity.
Thus the radiation impedance is the impedance seen when
the distant walls are removed to infinity, or �as can be done
in an experimental measurement �9�� when the distant walls
are lined with absorber. Hence, the radiation impedance de-
pends only on the local structure in the vicinity of the port
coupling to the cavity and not on the shape or chaotic prop-
erties of the cavity. In the case of ports that are far apart, e.g.,
of the order of the cavity size, the off-diagonal elements of
Zr are small and will be neglected. Thus we will take Zr to be
a diagonal matrix with elements Zri=Rri+ jXri. In the GUE
case, the elements of wn in �7� are complex with real and
imaginary parts each individually having Gaussian statistics,
wn

T in �7� is replaced by wn
† �where † denotes the conjugate

transpose�, and the statistics of kn
2 are now those appropriate

to GUE.
Equation �7� is derived in Ref. �22�. It results from a

formal series expansion of the solution for Z in terms of
eigenfunctions of the closed cavity. The local structure of the
eigenfunctions is then assumed to satisfy the so-called
“random plane wave hypothesis;” namely, that in the semi-
classical limit �k−1 is large compared to the typical dimen-
sions of the structure�, if ray trajectories in the closed cavity
are chaotic, then eigenfunction n is statistically similar to a
random isotropic superposition of plane waves of wave num-
ber k� with magnitude �k��=kn. This gives Eq. �7� �22�. We
then further supplement Eq. �7� with the known distribution
function of kn

2 determined from random matrix theory and the
local mean spacing �kn

2 between adjacent eigenvalues.
The universality of the result for �z �Fig. 1� can be shown

from �7� as follows. The impedance matrix Z defined in �7�
will have a mean and a fluctuating component. As shown in
Refs. �22,23�, the value of the mean is determined by all
terms in the sum and thus depends on the slow k dependence
of Rr�k� and ��k�, while the fluctuating component of Z is

FIG. 1. �z vs the loss parameter �, as specified in Eqs. �15� and
�16�.
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determined by terms in the sum in Eq. �7� for which k2


kn
2. Thus if Rr�kn� and ��kn� are approximately constant

over a range of kn
2 values corresponding to many resonances,

then the fluctuating part of Z will be universal after appro-

priate normalization. If we define Z̃ to be the fluctuating part
of Z, we have

Rr
−1/2�k�Z̃Rr

−1/2�k� = −
j

	
�

n

wnwn
†

sn

 
 , �7��

where sn are the eigenvalues of a GOE random matrix, nor-
malized to have unit mean spacing between adjacent eigen-
values near sn
0. Thus 
 is a universal normalized imped-
ance matrix. If Zr is diagonal, we have 
ij =Rri

−1/2Rrj
−1/2Zij.

Hence, the ratios RVarz
defined by �1� is the same for Z and 
,

and is, therefore, universal. �We emphasize, however, that
this conclusion relies on Zr being diagonal.�

The effects of distributed loss, such as losses due to con-
ducting walls or a lossy dielectric that fills the cavity, can be
simply incorporated in Eq. �7�. Since modal fluctuations in
losses are small when the modes are chaotic and the wave-
length is short, we can construct a complex cavity impedance
accounting for distributed loss by simply replacing k2 in Eq.
�7� by k2�1− jQ−1�, where Q is the cavity quality factor. �In
terms of the normalized impedance matrix 
 defined in �7��
we replace the denominator sn by sn− jk2 / �Q��k��.� For ex-
ample,

Zii = −
j

	
�
n=1

Rri�nwin
2

k2�1 − jQ−1� − kn
2 
 Rii + jXii

=
1

	��
n=1

Rri�nwin
2 k2/Q

�k2 − kn
2�2 + �k2/Q�2 + j�

n=1

Rri�nwin
2 �kn

2 − k2�
�k2 − kn

2�2 + �k2/Q�2� .

�8�

�Henceforth, we employ the notation �n
��kn�.� Calcula-
tion of the moments of the impedance is facilitated by the
fact that the eigenvalues and eigenfunctions in the chaotic
cavities are statistically independent. For example, the ex-
pected value of Xii is

E�Xii� = lim
M→�

1

	
�
n=1

M � dwinf�win�win
2 � dk1

2
¯ dkM

2

�PJ�k1
2, . . . ,kM

2 �
Rri�n�kn

2 − k2�
�k2 − kn

2�2 + �k2/Q�2 , �9�

where f�win� is the probability distribution function �pdf� of
win and PJ is the joint pdf of the eigenvalues. Integrating
over all kj, j�n, we express E�Xii� as an integral over the
pdf of kn

2, P1�kn
2�=1/ ��nM�, we consider the M→� limit

and use �wn
2�=1 for the Gaussian random variable wn,

E�Xii� =� dkn
2 Rri�kn��kn

2 − k2�/	
�k2 − kn

2�2 + �k2/Q�2 = Xri�k� . �10�

The second equality in �10� relating E�Xii� to the radiation
reactance requires Q�1 and is analogous to the Kramers-
Kronig relation.

The second moment of Xii can be determined in a similar
way by integrating over all j except j= t ,s and using the joint
distribution function P2�kt

2 ,ks
2�= �1−g��kt

2−ks
2� /��� / �M��2,

where g��kt
2−ks

2� /�� is known from the random matrix theory
�13�. Using the fact that g goes to zero at large argument and
assuming that the radiation resistance Rri�kn� and the average
spacing �n vary slowly over the damping width k2 /Q, we
obtain

E�Xii
2� =

3

2	
�Rri

2 �

k2/Q
� + �E�Xii��2 +

Rri
2

	2 � dkt
2dks

2

�
�w2�2g��kt

2 − ks
2�/���kt

2 − k2��ks
2 − k2�

��kt
2 − k2�2 + �k2/Q�2���ks

2 − k2�2 + �k2/Q�2�
.

�11�

Combining Eqs. �11� and �10�, we obtain

Var�Xii� =
Rri

2

� � 3

2	
−

1

	
�

0

�

dxg�x�
4

4 + �x/��2� , �12�

where �=k2 / �Q��. A similar moment evaluation can be car-
ried out for Rii, as specified in Eq. �8�, which yields the same
expression as Eq. �12� for Var�Rii�. For GOE �the case we
are now considering� we have that �13�, g�s�= f2�s�
− ��0

sd�s��f�s��−1/2��df /ds�, where f�s�= ��sin 	s� / �	s��.
In order to obtain the variance ratio, we also apply the

previous process to the off diagonal term Zij, i� j, which,
based on Eq. �7�, is given by

Zij =
1

	
��

n

�RriRrj�nwinwjnk2/Q

�k2/Q�2 + �k2 − kn
2�2

+ j�
n

�RriRrj�winwjnk2/Q

�k2/Q�2 + �k2 − kn
2�2 � . �13�

Since win and wjn are independent, the first moments of Xij
and Rij are both zero, and the variance is equal to the second
moment

Var�Xij� = lim
M→�

M

	2 � dkn
2 RriRrj�n

2�win
2 ��wjn

2 �
��kn

2 − k2�2 + �k2/Q��2 P1�kn
2�

=
RriRrj

�

1

2	
, �14�

The same result is obtained for Var�Rij�. Combining Eq. �14�
with Eq. �12�, we have Eq. �2� with

�z = F1��� = �3 − 2�
0

�

dxg�x�
4

4 + �x/��2�−1

. �15�

A similar calculation in the GUE case is facilitated by the
simpler form of the function g�x� which is now given by
g�x�=sin2�	x� / �	x�2. We obtain

�z = F2��� = �2 − 2�
0

�

dx� sin 	x

	x
�2 4

4 + �x/��2�−1

= �1 +
1 − e−4	�

4	�
�−1

. �16�
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We note that subsequent to a previous announcement of
our work �24�, the two-frequency correlation functions for
the elements of the impedance and the scattering matrix have
recently been calculated by Savin, Fyodorov, and Sommers
�25�, and are consistent with the preceding in the limit of
zero frequency separation.

III. SCATTERING VARIANCE RATIO

We now consider the scattering matrix in the high loss
limit, ��1. For simplicity, we consider the case of two
channels connecting to the scatterer, N=2, and Z and S are
2�2 matrices. We note that a chaotic scattering process can
be divided into a direct process and a delayed process, which
leads to a separation of the mean part �equal to Zr� and the
fluctuating part �Z of the cavity impedance, Z=Zr+�Z. The
fluctuating part �Z decreases as loss increases. Thus in the
high loss limit, �Z�Zr, which implies Z12,Z21�Z11,Z22.
�Recall, the mean parts of the off diagonal components are
zero.� We may now form S using S=Z0

−1/2�Z−Z0��Z
+Z0�−1Z0

1/2. Since the off diagonal terms of Z are small, the
diagonal components of S are dominated by the diagonal
components of Z. We then find for S11,

S11 �
Z11 − Z01

Z11 + Z01
=

�Zr1 − Z01� + �Z11

�Zr1 + Z01� + �Z11

� Sr1 + � 2Z01

�Zr1 + Z01�2��Z11, �17�

where Sr1= �Zr1−Z01� / �Zr1+Z01�, and Z01 is the characteris-
tics impedance of channel 1. Thus, we obtain

Var�S11� = � 2Z01

�Zr1 + Z01�2�2

Var�Z11� . �18�

In addition, we can express S12 in the high damping limit as

S12 =
2Z12

�Z01Z02

�Z11 + Z01��Z22 + Z02�



2Z12
�Z01Z02

�Zr1 + Z01��Zr2 + Z02�
,

�19�

which leads to

Var�S12� = � 2�Z01Z02

�Zr1 + Z01��Zr2 + Z02�
�2

Var�Z12� , �20�

and similarly for Var�S21�. Combining Eqs. �18� and �20�, we
recover Eq. �6� and we note that this result is independent of
the coupling �i.e., independent of Zr�.

To illustrate the influence of coupling on RVars
at finite

loss parameter �, we consider the impedance matrix in the
GOE case using the model normalized impedance 
 used
in Ref. �22�, Z=Rr

1/2
Rr
1/2+ jXr, where 
 is given by 
ij

=−�j /	��n=1
M �winwjn� / �k̃2− k̃n

2− j��, k̃n
2=k2 /�, and k̃2 is set to

be M /2, such that mean of 
 is zero. Realizations of 
 are
produced numerically by generating Gaussian random vari-

ables win and spectra k̃n
2 from the eigenvalues of random

matrices. We express a model scattering matrix S as

S = �
r
1/2

r

1/2 + j
x + 1�−1�
r
1/2

r

1/2 + j
x − 1� , �21�

where 
r=Z0
−1Rr and 
x=Z0

−1Xr. When 
r is the identity ma-
trix and 
x is zero, we reach the so-called perfect coupling
condition, which means that the scattering is determined by
the delayed process and the direct process is absent. We now
consider an example in which the two-port couplings are the
same so that 
r,x=diag�
̄r,x , 
̄r,x�, where 
̄r,x is a scalar. Fig-
ures 2�a� and 2�b� show results for the variation of �s with
the coupling parameters 
̄r and 
̄x, for a high loss case ��
=5� and for the lossless case ��=0�. In Fig. 2�a�, we fix 
̄x to
be zero, and vary 
̄r, while in Fig. 2�b�, 
̄r is fixed to be 1
and 
̄x is varied. Compared to the high damping case, �s in
the lossless case has a much larger deviation from the con-
stant 1 /2. Note that �s is 1 /2 in the perfect-coupling case
�i.e., 
̄r=1, 
̄x=0�, no matter whether the cavity is highly
lossy or lossless. This is related to the concept of “weak
localization” reviewed in Ref. �26�.

In the case of an N port we can think of the above two-
port consideration of �s as applying to the N port converted
to a two port by opening channels 3 ,4 , . . . ,N; i.e., the incom-
ing waves a3 ,a4 , . . . ,aN are identically zero �for a micro-
wave cavity with transmission line inputs, this corresponds
to terminating transmission lines 3 ,4 , . . . ,N with their char-
acteristic impedances, Z03,Z04, . . . ,Z0N�. Thus ports
3 ,4 , . . . ,N effectively add to the loss due to the energy flux

FIG. 2. �a� �s vs 
̄r for 
̄x=0 in the lossless case �=0 and in a
high loss case �=5. �b� �s vs 
̄x for 
̄r=1.
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leaving through them. If the ports 3 ,4 , . . . ,N are assumed to
act like distributed loss, they can be taken into account by
increasing the loss parameter �. �This increased loss en-
hances the validity of Eq. �6�.�

IV. EXPERIMENTAL TESTS

We provide experimental results testing the theoretical
predictions for the statistical fluctuations in the variance of
the S and Z elements, in the limit of large damping. The
experiments are done in an air-filled, quarter bow-tie shaped
cavity which acts as a two-dimensional resonator below
19.05 GHz �Fig. 3�a�� �27�. This cavity has previously been
used for the successful study of the eigenvalue spacing sta-
tistics �28�, eigenfunction statistics �29,30�, and for studying
the universal fluctuations in the impedance �9� and scattering
matrix �31� for a wave chaotic system. The cavity is driven
by two ports; each of which consists of the center conductor
�diameter 2a=1.27 mm� of a coaxial cable that extends from
the top lid of the cavity and makes contact with the bottom
plate of the cavity �Fig. 3�b��. From direct S21 measurements,
we estimate that the cavity has a typical loaded Q of about
150 between 4 and 5 GHz and about 300 between 11 and
12 GHz. This translates to a damping parameter of ��0.5
for the entire frequency range of this experiment. Hence we
examine experimentally the time-reversal symmetric �GOE�
cases for the Z and S-variance ratios in the high damping
limit.

To perform an approximation to ensemble averaging, two
perturbers �shown gray in Fig. 3�a��, made up of rectangular
ferromagnetic solids wrapped in Al foil �of dimensions
26.7�40.6�7.87 mm3�, are systematically scanned and ro-
tated throughout the volume of the cavity by means of a
magnet that is placed outside the cavity. The ensemble set

consists of 100 different positions and orientations of the
perturbers within the cavity. The perturbers are on the scale
of half the wavelength or bigger over the entire frequency
range of the experiment. The full two by two S matrix is
measured between 4 and 12 GHz for each position of the
perturbers. Below 4 GHz the mode density is too low to
obtain meaningful ensemble averaging, while above 12 GHz
the coupling becomes too weak to couple to the modes of the
cavity, at least for this port geometry. Once the S matrix has
been measured, it is then converted to Z through Z=Z0�I
+S��I−S�−1.

To eliminate the effect on the average of short ray orbits
returning to the antenna �these lead to rapidly varying-with-
frequency systematic deviations of the average from the en-
semble average, as discussed in Ref. �22�� we perform fre-
quency averaging over a sliding window of width 300 MHz.
We denote such sliding averages of impedance and scattering

FIG. 3. �a� The physical dimensions of quarter bow-tie chaotic
microwave resonator are shown along with the position of the two
coupling ports. Two metallic perturbers are shown in gray. �b� The
details of the coupling ports �antennas� and cavity height h are
shown in cross section.

FIG. 4. Var�Z21� �circles�, �Var�Z11�Var�Z22� �stars�, and

�� z�Var�Z11�Var�Z22� �dashes� are plotted on a natural-logrithmic
scale as a function of frequency from 4 to 12 GHz. Inset shows the

ratio �̄z vs frequency �solid line�. The small circles show �z with-
out any frequency averaging.

FIG. 5. Var�S21� �circles�, �Var�S11�Var�S22� �stars�, and

�� s�Var�S11�Var�S22� �dashes� are plotted as a function of fre-

quency from 4 to 12 GHz. Inset shows the ratio �̄s vs frequency.
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variance ratios by �̄z and �̄s. The inset in Fig. 4 shows �̄z
�solid line� over a frequency range 4–12 GHz. Denoting the
average of �̄z over the entire range, 4–12 GHz, by �� z, we
obtain �� z=0.49, and we find that ��� z−�̄z��0.02 over the
entire frequency range. This value of experimentally ob-
tained �̄z is close to the ideal theoretical value of 1 /2 for
large damping. Also shown in the inset is the variance ratio
obtained with no frequency averaging �small circles�. These
are deviations from the frequency averaged ratio values with
a standard deviation of 0.04. Nevertheless, the mean value of
the variance ratio over the entire frequency range is 0.49.

The circles, stars and dashes in Fig. 4 show the
variation in ln�Var�Z21��, ln��Var�Z11�Var�Z22�� and

ln��� z�Var�Z11�Var�Z22�� respectively, as a function of fre-
quency. The agreement is quite good �i.e., the dashes overlie
the open circles� at all frequencies.

Similarly in Fig. 5, we present data for the scattering
variance ratio. Experimentally we obtain �� s=0.50 and ��� s

−�̄s��0.08 over the range 4–12 GHz. The circles, stars, and
dashes in Fig. 5 show the variation in Var�S21�,
�Var�S11�Var�S22� and ln��� s�Var�S11�Var�S22��, respec-
tively, as a function of frequency. Similar to the impedance

data �Fig. 4�, we observe that the data for

�̄s�Var�S11�Var�S22� �dashes� overlie the data for Var�S21�
�open circles�, again indicating that the experimentally ob-

tained value for �̄s shows good agreement with the
asymptotic theoretical values for highly damped time-
reversal symmetric systems over a large frequency range.

To sum up, we have used random matrix theory in con-
junction with the radiation impedance characterizing the
system-dependent coupling details to evaluate the variance
ratios �1� and �5�. The main result is that the impedance
variance ratio �1� is a universal function of the loss in the
scatterer.
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