
Vol. 120 (2012) ACTA PHYSICA POLONICA A No. 6-A

Proceedings of the 5th Workshop on Quantum Chaos and Localisation Phenomena, Warsaw, Poland, May 20–22, 2011

Fading Statistics in Communications
— a Random Matrix Approach
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Fading is the time-dependent variations in signal strength measured at a receiver, due to temporally evolving
multipath scattering and interference. In our previous work we introduced a statistical fading model for the
time-reversal invariant case by combining the predictions of random matrix theory with the random coupling
model that includes system-specific properties such as the radiation impedance of the ports and short-orbit effects.
In the high-loss limit this random matrix theory model reduced to the most common fading models in the wireless
communication field. In this paper we discuss the theoretical model in more detail and extend it to the case of
broken time-reversal invariance.
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1. Introduction

The study of random matrix theory (RMT) is a highly
developed field, and applications of RMT have been
found in many different scientific and engineering disci-
plines [1]. The field was initiated by the work of Wigner
[2–5] concerning the statistics of the energy levels of large
nuclei. Large nuclei are examples of complicated systems
with extreme sensitivity to small changes, and therefore
the exact solution is either inaccessible or may not be
useful for predicting the properties of another similar
system. To address this problem Wigner replaced the
complicated Hamiltonian matrix H of the system with a
random matrix from a suitable ensemble. The statistical
properties of the eigenvalues and eigenfunctions of these
random matrices were found to be in agreement with
those of real nuclei. Other researchers have extended the
random matrix approach to other complicated systems in
different fields, such as quantum systems [6, 7], wave scat-
tering [8], acoustic waves [9], quantum dots and meso-
scopic systems [10–12], and microwave cavities [13, 14].

This research encompasses an active field called “wave
chaos” that utilizes a statistical approach to understand-
ing the wave properties of complex systems. Classical
chaos is characterized by the fact that small differences
in the initial conditions of a dynamical system grow ex-
ponentially in time [15, 16]. Although the wave equations
in these systems are not chaotic, if the wavelength is very
short compared to the typical length scale of the system,
the so-called “semi-classical limit”, the wave behavior can
be well approximated by ray equations. Since the ray
equations are a nonlinear Hamiltonian system, ray tra-
jectories can be chaotic [17, 18]. Wave chaotic systems
are expected to show universal statistical properties, as
predicted by RMT [19].

In this paper we study the application of the random
matrix approach to fading statistics [20]. Consider wave
propagation between a source and a receiver through
a complex scattering environment. Fading is the time-
-dependent variation in the received signal amplitude
as the scattering environment changes and evolves with
time [21]. A common example is the night-time varia-
tion of AM radio signal reception in the presence of ray
bounces off a time varying ionosphere. Another common
observation of fading is experienced by radio listeners in
automobiles moving among vehicles and buildings in an
urban environment. Fading occurs because waves prop-
agating via multiple paths or around obstacles interfere
when they arrive at a receiver. Although fading exists
in all types of wave propagation, such as electromagnetic
waves, acoustic waves, and quantum waves, it has been
most extensively studied in the wireless communication
field [21–25]. Researchers have applied RMT in wireless
communication [26] and in analyzing the information ca-
pacity of fading channels [27–30], but until recently, RMT
has not been directly applied to the fading phenomenon
itself [20].

In the wireless communication field, many statistical
fading models are utilized to describe the fading phe-
nomenon because practical wave propagating systems are
generally complicated, and a precise mathematical de-
scription of the fading phenomenon is either unknown or
too complex for tractable analysis [21]. Researchers have
empirically created statistical models for fading channels,
such as the Rayleigh fading model and the Rice fading
model, that depend on the particular propagation envi-
ronment and the underlying communication scenario [21].
Different fitting parameters are used in different models,
for example, the Rayleigh fading model applies a one-
-parameter Rayleigh distribution to model the fading am-
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plitude in an environment where there is no line-of-sight
(LOS) path between the transmitter and the receiver,
such as mobile wireless systems in a metropolitan area
[21–24]. The Rice fading model, on the other hand, ap-
plies a two-parameter distribution to model situations
with a strong LOS path [21, 25].

In a previous paper we introduced a wave chaotic
model of fading based on the combination of random
matrix theory in the time-reversal invariant (TRI) case
and the random coupling model [20]. We demonstrated
that this new fading model is more complete than the
Rayleigh and Rice fading models, which are recovered by
our model in the high-loss limit. In this paper we present
a thorough derivation of the new RMT fading model and
extend the model to the time-reversal invariance broken
(TRIB) case.

2. Theory

To model the fading amplitude, we use the scattering
matrix S that describes a linear relationship between the
input and the output voltage waves on a network. We
consider the 2 × 2 S matrix, where the two ports of the
network system correspond to the transmitter and the
receiver. The complicated scattering system is modeled
by the scattering matrix. The magnitude of the matrix
element |S21| therefore corresponds to the fading ampli-
tude. To apply the random matrix approach, we start
with an RMT description of the 2× 2 scattering matrix
srmt of a wave chaotic system, based on Brouwer and
Beenakker’s work [10]. This scattering matrix srmt does
not have any system specific information in it and is to-
tally ergodic. We will introduce and include the system
specific features later. The RMT form of the scattering
matrix can be written as [10]:

srmt = U1

[ √
1− T1 0

0
√

1− T2

]
U2 . (1)

In this equation U1 and U2 are two 2×2 random unitary
matrices that can be written in the form [31]:

U = e iβ

[
cos θe iψ sin θe iϕ

− sin θe− iϕ cos θe− iψ

]
, (2)

where β, ψ, and ϕ are independent random variables uni-
formly distributing from 0 to 2π, and θ = arcsin(

√
ξ),

where ξ is a random variable uniformly distributing
from 0 to 1. In the time-reversal invariant case, U2 is
the transpose of U1 (U2 = UT

1 ) [10], which in the case
of broken time reversal symmetry U1 and U2 are inde-
pendent (i.e., (β1, ψ1, ϕ1, θ1) and (β2, ψ2, ϕ2, θ2) are
independent). Also, the quantities T1 and T2 in Eq. (1)
are two random variables (0 ≤ T1 ≤ 1 and 0 ≤ T2 ≤ 1)
whose joint distribution function depends on a scalar pa-
rameter γ, referred to as the “dephasing rate” [10]:

P (T1, T2; γ) =
1
8
|T1 − T2|

T 4
1 T 4

2

exp
(
−γ

2

(
1
T1

+
1
T2

))

×[
γ2(2− 2eγ + γ + γ eγ)− γ(T1 + T2)(6− 6eγ

+ 4γ + 2γ eγ + γ2) + T1T2(24− 24eγ + 18γ

+ 6γ eγ + 6γ2 + γ3)
]
. (3)

From Eqs. (1) and (2), the fluctuating fading ampli-
tude is

|srmt,21| =
√

ξ(1− ξ)
[
2− T1 − T2 − 2 cos φ

√
(1− T1)(1− T2)

]
,

(4)
where φ = 2(ψ − ϕ). Hemmady et al. [14, 32–36] found
that the dephasing rate γ in Eq. (3) can be related to
the loss parameter α of the corresponding closed system
as γ = 4πα, where α ≡ f/(2Q∆f), f is the frequency, Q
is the typical quality factor, and ∆f is the mean spacing
of the adjacent eigenfrequencies. For an open fading sys-
tem, we consider an equivalent closed system in which
uniform absorption accounts for wave energy lost from
the system, and we assume that we can define an equiv-
alent loss parameter α for the open system.

From Eq. (4) we can tune the loss parameter α, which
determines the joint distribution function P (T1, T2; γ)
(Eq. (3)), to generate different probability distribution
functions of the fading amplitude [20]. In some special
cases we are able to derive the analytical form of the
distribution of the fading amplitude P (|srmt,21|). For a
lossless system (α = 0), we have T1 = T2 = 0 and

|srmt,21| =
√

2ξ(1− ξ)(1− cosφ) . (5)

By computing the n-th moment 〈|srmt,21|n〉, we find that
the distribution of the fading amplitude is uniform for
0 ≤ |srmt,21| ≤ 1. For high loss systems (γ À 1), the
dominant term in Eq. (3) is γ3 eγ . Because of 0 ≤ T1 ≤ 1
and 0 ≤ T2 ≤ 1, the distribution P (T1, T2) is negligible
except when T1 → 1 and T2 → 1. Therefore, we use
the approximation 1/T1 ' 2 − T1 and 1/T2 ' 2 − T2 in
the exponential function in Eq. (3), and we keep only the
dominant term. The joint distribution function P (T1, T2)
becomes

P (T1, T2; γ À 1) =
γ3

8
|T1 − T2|

× exp
(
−γ

2
(2− T1 − T2)

)
. (6)

With this joint distribution (Eq. (6)) and the formula
of |srmt,21| (Eq. (4)), we derive the n-th moment of the
high-loss-limit distribution of |srmt,21|,

〈|srmt,21|n〉 =
∫ 1

0

dξ

∫ 2π

0

dθ

2π

∫ 1

0

dT1

×
∫ 1

0

dT2|srmt,21|nP (T1, T2; γ) = γ
−n
2 Γ

(n

2
+ 1

)
.

(7)
This form of the n-th moment gives the distribution of
|srmt,21| as
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P (x = |srmt,21|; α) = 8παx exp(−4παx2) , (8)

which is identical to the Rayleigh distribution P (x; σ) =
(x/σ2) exp(−x2/(2σ2)) with the relation

α =
1

8πσ2
, (9)

valid for α À 1.
For the TRIB case [10], we have a different joint dis-

tribution function P̃ (T1, T2), and U1 and U2 in Eq. (1)
are now independent random unitary matrices with in-
dependent random variables ψ1, ϕ1, β1, ψ2, ϕ2, and β2,
which are all uniformly distributed from 0 to 2π. θ1 =
arcsin(

√
ξ1) and θ2 = arcsin(

√
ξ2) with independent ran-

dom variables ξ1 and ξ2 uniformly distributing from 0
to 1. The fluctuating fading amplitude for the TRIB
case is

|s̃rmt,21|2 = ξ1(1− ξ2)(1− T1) + ξ2(1− ξ1)(1− T2)

+ 2 cos φ̃
√

ξ1ξ2(1− ξ1)(1− ξ2)(1− T1)(1− T2) ,

(10)
where φ̃ = ψ1 + ψ2 + ϕ1 − ϕ2 has a uniform distribution
on [0, 2π).

We numerically generate |s̃rmt,21| from Eq. (10) and
plot the probability distributions P (|s̃rmt,21|) with vary-
ing loss parameters in Fig. 1. The numerical results show
that the distribution P (|s̃rmt,21|) is a triangular distribu-
tion P (x) = 2x for 0 ≤ x = |s̃rmt,21| ≤ 1 in the lossless
case, different from the TRI case. However, the distri-
bution goes to a Rayleigh distribution with the relation
α = 1/(8πσ2) in the high loss limit, as with the time-
-reversal invariant case. In practice, time-reversal in-
variance for wave systems can be continuously broken
[18, 37–39], so in the partially broken case the statisti-
cal properties would be in between the TRI case and the
TRIB case.

The fading amplitude in Eq. (4) or (10) does not in-
clude the system-specific features yet. Therefore, in order
to apply wave chaos theory to practical systems, we need
to account for the non-chaotic features of the wave sys-
tem. These non-chaotic features are specific to each wave
scattering system. The random coupling model (RCM)
is a method to combine the chaos properties and the non-
-chaotic system-specific features of a wave system in the
impedance domain [14, 32–36, 40–42]. The impedance
matrix Z is the linear relationship between the port volt-
ages and the port currents of a wave network, and it is
related to the scattering matrix as Z = Z0(1+S)/(1−S),
where Z0 is a diagonal matrix with elements equal to
the characteristic impedances of the transmission lines
connected to the ports. In the ensemble wave-scattering
system, the system-specific features include the radiation
impedance (Zrad) of the ports and short (major) trajec-
tory orbits between the ports. The radiation impedance
matrix Zrad quantifies the radiation and near-field char-
acteristics of the ports.

The random coupling model [40–42] combines the
system-specific features and the universal chaotic prop-

Fig. 1. The probability density functions of the fading
amplitude |s̃rmt,21| for the TRIB case. Solid curves show
the numerical results from the RMT model (Eq. (10))
with different loss parameters (α = 0, 0.1, 1, 10). For
the higher loss cases (α = 1 and α = 10), the cor-
responding Rayleigh distributions are shown as dashed
curves.

erties as
Z = iXavg + R1/2

avgzrmtR
1/2
avg, (11)

where zrmt is the RMT form of the impedance ma-
trix computed by zrmt = (1 + srmt)/(1 − srmt). Ravg

and Xavg are the resistance and the reactance parts
of the ensemble-averaged impedance Zavg that encom-
passes the system-specific features. We then convert
the impedance matrix back to the scattering matrix
S = (Z − Z0)/(Z + Z0) and have the complete statisti-
cal model for the measured fading amplitude |S21|. The
non-zero off-diagonal terms of Zavg bring S21 a non-zero
bias in the complex plane. We have shown that the bias
corresponds to the ν parameter of the Rice distribution
P (x; σ, ν) = (x/σ2) exp

(−(x2 + ν2)/(2σ2)
)
I0(xν/σ2) in

the high-loss limit [20].

3. Conclusion

We start from the RMT prediction of the universal
scattering parameter and combine it with the random
coupling model to derive a statistical model for the fad-
ing parameter. This is a new application of wave chaos
theory in the field of wireless communication, and this
new model is more complete than traditional models. We
also extend the theoretical model to the time-reversal in-
variance broken case. Because fading is a general phe-
nomenon for all sorts of waves, our RMT fading model
can, in addition to wireless communication field, also be
applied to other wave scattering related applications.
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