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Abstract 

Title of Dissertation: Novel Measurements of the Frequency Dependent Microwave 

Surface Impedance of Cuprate Thin Film Superconductors 

James Clay Booth, Doctor of Philosophy, 1996 

Dissertation directed by: Professor Steven M. Anlage 

Department of Physics 

A novel broadband experimental technique has been developed to study the 

microwave electrodynamics of high Tc superconducting films over the continuous 

frequency range from 45 MHz - 50 GHz. In zero applied magnetic field this technique 

is used to study thermal fluctuation effects in the ac conductivity at the normal to 

superconducting phase transition. In the presence of a perpendicular external magnetic 

field, the measurement system is employed to study the motion of magnetic vortices in 

the mixed state at microwave frequencies. Both experimental investigations yield 

fundamental new information about the nature of superconductivity in the high Tc 

materials that is unobtainable using conventional fixed-frequency microwave 

techniques. 

From measurements in zero field, experimental evidence is presented for critical 

behavior in the frequency and temperature dependent microwave conductivity of 

YBa2Cu30i-o (YBCO) thin films as the transition temperature is approached from 

above. For T-Tc s; 1 K, the data shows scaling behavior in both the magnitude and 

phase of the frequency-dependent fluctuation conductivity over three decades in 

frequency, with critical exponents v= 1.0-1.5 and z=2.3-3.0. These results describe a 



fluctuation lifetime that diverges much more quickly than predicted by Gaussian 

fluctuation theory as the transition temperature is approached from above. In addition, 

by utilizing the critical exponents derived from the frequency dependent analysis, it is 

possible to collapse both the temperature dependent and frequency dependent data onto 

the same universal curve within the critical region, which is estimated to be 1-2 K wide 

above Tc. 

From measurements of YBCO films in a perpendicular magnetic field, it is 

found that for a range of temperatures and fields there exists a cross-over frequency fx 

which separates two very different regimes of vortex motion. The experiments show 

that below fx the response of the vortex system can be well described by scaling 

theories based on the vortex liquid to glass phase transition, which explicitly take into 

account vortex-vortex interaction. At high enough frequencies (f>fx) the experimental 

data is more successfully described by conventional single-particle (or mean-field) 

theories of vortex motion, which ignore inter-vortex interactions. 
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Chapter 1 

Introduction 

1.1 Surface Impedance Measurements of Superconductors 

Surface impedance measurements at microwave frequencies have historically 

provided a wealth of essential information about the fundamental properties of the 

superconducting state.[ 1,2] Microwave experiments typically have very high 

sensitivity, allowing for detailed measurements of the very low losses characteristic of 

superconductors. In addition, measurements at finite frequencies allow for the 

determination of the electrodynamic response of both the superconducting condensate 

as well as the quasiparticle excitations that exist at finite temperatures. Microwave 

measurements have the advantage that the frequency is still well below the maximum 

gap frequency, and contributions from both the condensate and the quasiparticles are 

large enough to be measurable. 

In recent years, microwave surface impedance measurements have played a 

vital role in the ongoing effort to understand the mechanism of superconductivity in the 

newly discovered high transition temperature (high Tc) superconductors.[3,4] In 

particular, microwave penetration depth measurements on single crystals have provided 

compelling evidence in the effort to determine the symmetry of the order parameter in 

the high Tc materials.[5,6] Microwave measurements also provide a very stringent test 

of sample quality, and are therefore well suited to help separate intrinsic and extrinsic 

effects in these exotic and complicated materials, and also aid considerably in efforts to 

improve the quality of these materials.[?] 

In addition to fundamental aspects such as the pairing state symmetry of the 

high Tc superconductors, microwave measurements can also be used to help develop a 

general phenomenological picture of superconductivity in these materials, in the 
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absence of a fundamental theory. Microwave techniques have also been used 

extensively in studying the dynamic properties of magnetic vortices in the mixed state 

of the high Tc superconductors, and can be used to determine the relevant physical 

parameters of these materials, such as the lower critical field Hc1 (T).[8] 

Another very compelling reason to focus on the microwave properties of 

superconductors is because passive microwave devices represent a significant potential 

commercialization of high Tc superconductivity. Rapid progress in film growth and in 

the optimization of materials properties has allowed for the successful fabrication of 

many practical superconducting devices, such as narrow band filters, delay lines, high

Q oscillators and high-performance antennas, all of which operate at temperatures 

above 77 K.[9,10] The very low values for the surface resistance obtainable with high 

Tc superconductors (approximately 10-1000 times lower than the surface resistance of 

copper at 77 K at microwave frequencies) are very attractive for use in rf and 

microwave components and can yield orders of magnitude superior device performance 

compared to currently available technology, and at reasonable cost. Such a low surface 

resistance can even result in applications which are not possible at all using normal 

metal conductors.[10] In addition, the non-dispersive (frequency-independent) 

penetration depth of superconductors can be beneficial for some applications, such as 

broadband delay lines. The use of superconducting materials also results in smaller, 

denser circuits than is possible using normal metal conductors and conventional 

technology. 

The use of high Tc materials in actual commercial microwave circuits requires 

detailed knowledge of the microwave response of these new materials. Of particular 

concern is the fact that the high Tc materials possess some detrimental non-linear 

properties,[11] the origin of which are not currently understood. These non-linear 

effects, absent in normal metal conductors, seriously limit the usefulness of these 
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materials for some commercial applications. A thorough understanding of the behavior 

of the high Tc materials at microwave frequencies is essential in order to further the 

technological and commercial applications of high Tc superconductivity. 

The main focus of this thesis is on microwave experiments that explore the 

frequency dependence of the electrodynamic properties of high Tc superconductors. In 

what follows, the difference in approach between resonant and broadband microwave 

measurements is discussed, with the emphasis being placed on measurements of the 

non-resonant variety. This is followed in section 1.2 by some motivation as to what 

can be learned from broadband measurements applied to the high Tc superconductors. 

1.1.1 Resonant Measurements 

Most conventional microwave measurements of the surface impedance rely on 

resonance techniques, in which the sample under test forms all or part of a resonant 

structure. One then measures changes in the resonant frequency (f0) and quality factor 

(Q) of the resonance as a function of temperature or some other independent variable. 

The resonant frequency shift and Q are then related to the surface resistance Rs and 

change in penetration depth A of the superconductor under study. Such resonant 

techniques can achieve extremely high resolution for Rs (-1-10 µQ) and !>..11, (-1 A), 

due in part to the fact that the measured quantities in these experiments are frequencies, 

which can be measured with very high precision (1 part in 109 is not uncommon). The 

value of resonant measurements for determining intrinsic properties of the 

superconducting state can not be understated. But while such techniques can 

potentially provide a very sensitive means of studying the surface impedance as a 

function of temperature or sometimes magnetic field, they are necessarily limited to at 

most a few discrete frequency points, and therefore cannot provide much information 

on how the surface impedance varies with frequency. The inability of resonance 
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techniques to measure any frequency dependence can be a serious drawback when 

interpreting experimental data, since it is often possible to describe results obtained at a 

single frequency by an uninformative parametrization of the data. The behavior of a 

system at many different frequencies will provide a much more stringent test of any 

theoretical model. 

Some resonant techniques, such as stripline resonators,[12] obtain information 

about the frequency dependence of the surface impedance by measuring a number of 

higher order harmonics of a given fundamental mode. While these techniques can 

provide a measure of the frequency dependence in the low-loss superconducting state 

where non-resonant methods are not sensitive, one must be very careful in evaluating 

background contributions and other corrections at different frequencies, since different 

resonant modes have different microwave field and current distributions. 

1.1.2 Broadband Measurements 

Non-resonant experiments at microwave frequencies typically measure the 

transmission or reflection of a microwave signal incident on the sample. Since they do 

not make use of a resonant mode, there is much more freedom in choosing an 

operating frequency in these experiments than in their resonant counterparts. Some of 

the most important early microwave measurements on superconductors were the 

transmission measurements of Glover and Tinkham[2]. Broadband measurements are 

usually much less sensitive than high-Q resonant measurements, because the measured 

quantity is typically a voltage, not a frequency. In addition, in order to accurately 

measure both the real and imaginary parts of the response, one must use phase

sensitive measurement techniques, which become increasingly more difficult as the 

measurement frequency increases and the signal wavelength becomes much smaller 

than the measurement apparatus. 
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An example of a non-resonant technique that has been applied to the 

measurement of conventional superconductors is the waveguide transmission 

measurement.[13,14] In experiments of this type, a thin superconducting film is 

inserted between two sections of waveguide, and the ratio of the signal transmitted 

through the sample to the incident signal is measured. The complex conductivity of the 

sample can then be extracted from the measured transmission coefficient. Microwave 

transmission measurements of this kind have more recently been applied to 

measurements of the high Tc superconductors at 9 GHz[l5], and from 26.5 - 40 

GHz[ 16]. Other transmission measurements on superconductors include quasi-optical 

techniques used at 60 GHz. [ 17] Microwave transmission measurements have also 

been used in combination with parallel plate resonator measurements[l8] to determine 

an absolute value for the penetration depth ').. in high Tc thin films. Waveguide 

transmission measurements have also been used to measure the properties of high Tc 

thin films in magnetic fields (at 35 GHz).[19] Because of its non-resonant nature, the 

waveguide transmission measurement technique can be applied to investigate the 

frequency dependence of the electrodynamic response of superconductors ( often in 

practice by measuring the temperature dependent conductivity at a number of different 

frequencies). Such measurements are however limited to the single mode operating 

frequency range of the waveguide used (for example, the operating frequency for an 

X-band waveguide is - 8-12 GHz), and have the disadvantage that it can be quite 

difficult to extract the surface impedance from the experimentally measured 

quantities.[20] In addition, there can be problems associated with the leakage of the 

signal around (rather than transmission through) the sample. 

Non-resonant experiments at higher frequencies use coherent time-domain 

spectroscopy to measure the frequency dependent conductivity in the 500 GHz - 2.5 

THz range.[21,22] These experiments employ a very short electromagneticpulse and 
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obtain the frequency response by Fourier analysis. At still higher frequencies one can 

use far-infrared techniques, which measure the magnitude of the transmitted signal as a 

function of frequency, and can obtain the full complex conductivity versus frequency 

using a Krarners-Kronig relationship.[23] 

The measurement system described in this work is a broadband type, but is 

different from the waveguide transmission measurements in a number of significant 

ways. This technique, referred to as the Corbino reflection technique,[24] measures 

the complex reflection coefficient (from 45 MHz - 50 GHz) of a thin film which forms 

an electrical short across a coaxial transmission line. The Corbino reflection technique 

is a swept-frequency method, which allows for the direct measurement of the full 

complex resistivity (or conductivity) of thin film samples as a function of frequency 

over three decades in the rf/microwave/mm wave range. The measurement utilizes the 

TEM mode in a coaxial geometry in order to maximize the frequency range accessible 

to the measurement. The coaxial transmission lines used here support exclusively the 

TEM mode up to approximately 70 GHz, and can be used at frequencies all the way 

down to de due to the absence of a lower cutoff frequency for the TEM mode. The use 

of the TEM mode also results in a relatively simple field distribution within the thin 

film sample. Also, for the geometries used here, the measured reflection coefficient is 

rather simply related to the complex resistivity of the sample, which is a fundamentally 

interesting quantity. 

1.2 Frequency Dependent Microwave Measurements 

There are many fundamentally and practically interesting phenomena that can be 

studied using frequency dependent measurements in the microwave range. Access to 

the frequency dependence provides direct information about the time dependence of the 

system under study. If there are physical processes that take place on time scales of the 
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order of 1/f seconds (where 4.5 x107 $ f $ 5 x1010), then one can expect the 

frequency response of the system to change as the frequency is swept through the 

current measurement range. Due to the fact that most microwave measurements are 

resonant in nature, phenomena at microwave frequencies are primarily viewed from a 

fixed frequency point of view. As will be shown throughout this work, access to the 

frequency dependence can give a different and often valuable new perspective on 

physical phenomena. 

The frequency dependent measurements described here are used to investigate 

two distinct, although related, physical systems in superconductors. The first 

application of the technique to be described is the measurement of thermal fluctuation 

effects on the conductivity of YBCO thin films in the vicinity of the superconducting 

phase transition in zero magnetic field. It is found that frequency dependent 

measurements can yield valuable information about the lifetime of fluctuation-induced 

Cooper pairs above Tc, information that is inaccessible using the temperature 

dependence measurements alone. Such measurements provide evidence of critical 

behavior at the phase transition in the high Tc materials. 

The second system studied extensively here is the dynamics of magnetic 

vortices in superconducting YBCO thin films in large magnetic fields. In these 

systems it is found that for certain regions of parameter space, the response of the 

system can change character dramatically depending on the driving frequency. Both 

sets of experimental studies illustrate the discovery of new or different time scales that 

add significantly to our understanding of high Tc superconductors. 
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Chapter 2 

The Corbino Reflection Measurement Technique 

2.1 The Corbino Disk Geometry 

In this chapter the non-resonant experimental technique is described which 

allows the surface impedance of superconducting thin films to be measured at arbitrary 

frequencies in the rf and microwave range (from 45 MHz - 50 GHz). Measurements at 

lower frequencies have been accomplished using other methods.[1,2,3] The 

measurement technique, shown schematically in Fig. 2.1, employs a vector network 

analyzerto measure the complex reflection coefficient (S 11) of a thin film which forms 

an electrical short across the end of a coaxial cable. Once the complex reflection 

coefficient is measured, standard transmission line theory is used to extract the 

complex surface impedance of the film from S11.[4] The measurement takes advantage 

of a special geometry in which the sample forms a thin disc between the inner and outer 

conductors of the coaxial cable. The use of such a measurement geometry -- referred 

to as a Corbino disk[ 5] geometry -- means that currents in the film flow in the radial 

HP8510C 
Vector 

Network 
Analyzer 

45MHz-50GHz 

Corbino Disk 
Coaxial Cable 1'C:----..... 

Evaporated 
Contacts 

SuperconductmgFilm 

Fig. 2.1. Schematic diagram of Corbino measurement configuration 
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direction, producing magnetic fields only in the azimuthal direction, everywhere 

parallel to the surface of the film. The effects of the edges of the film are therefore 

effectively eliminated in the Corbino geometry (compare with a rectangular or 

microbridge geometry, where self fields due to the current can be perpendicular to the 

film surface, particularly at the edges). This geometry is particularly beneficial when 

studying the motion of magnetic vortices in the mixed state of superconductors, since 

the sample edge contribution to the creation and/or pinning[ 6] of vortices has been 

eliminated. An additional advantage of the technique is that it allows for the surface 

impedance to be determined over a wide range of experimental parameters, including 

temperature, magnetic field, frequency, rf power, and de bias current. 

The Corbino reflection measurement technique developed out of the historical 

use of the Corbino geometry for de transport measurements.[5] Bluzer and 

collaborators[7] used the Corbino geometry to measure time-domain picosecond 

quasiparticle dynamics in zero field in low- and high- Tc superconducting films. Their 

basic technique has been adapted to the frequency domain, and to the study of vortex 

dynamics and fluctuation conductivity in high Tc superconductors. 

This chapter describes in detail the application of the Corbino reflection 

technique to measurements of the surface impedance of superconducting thin films. 

Section 2.2 will give an overview of the two different implementations of the 

experimental technique used in this thesis, and section 2.3 will give a description of the 

crucial interface region between the coaxial transmission line and the thin film under 

study. This will be followed in section 2.4 by a discussion of absolute power 

measurements in the Corbino reflection geometry. Section 2.5 will then discuss the 

details of the preparation of superconducting thin film samples for the measurements 

presented here, and section 2.6 will briefly describe the de resistivity measurements 

used to complement the microwave experiments. 
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2.2 Experimental Overview 

Two different experimental set-ups are used to measure the reflection 

coefficient, depending on whether or not an external de magnetic field is required. For 

both experimental configurations, the thin film under study is used to terminate a 

coaxial transmission line, and the complex reflection coefficient S 11 is measured over 

the continuous frequency range 45 MHz - 50 GHz using a Hewlett-Packard HP8510C 

vector network analyzer. The microwave source is a Hewlett-Packard HP83651A 

synthesized sweeper which operates over the frequency range 45 MHz - 50 GHz with 

1 Hz resolution. The network analyzer is operated in step sweep mode to ensure phase 

coherence at each frequency point. Related experimental techniques use reflection 

coefficient measurements to obtain the complex dielectric constant of liquids[S,9] and 

solids[lO, 11] at room temperature. In our case, the dependence of the reflection 

coefficient on temperature, magnetic field, and frequency is of primary interest. 

In addition to measurements at rf and microwave frequencies, this technique 

also allows for 2-point de measurements to be performed. A de bias current is applied 

to the coaxial cable, and the resulting voltage drop between the inner and outer 

conductors of the coaxial cable is measured at the location of the network analyzer (an 

rf choke internal to the HP851 OC test set protects the high frequency detectors from the 

de current). This ability to make de measurements simultaneously with the microwave 

measurements is important because it allows direct comparison of the high frequency 

response with the more conventional de behavior. 

2.2.1 Measurements in Zero External Magnetic Field 

Fig. 2.2 shows schematically the experimental set-up used for measurements in 

zero external magnetic field. The sample is mounted on the cold finger of a Janis 

model ST-100 continuous-flow cryostat, and is connected to the network analyzer by 
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means of a 0.086 inch outer diameter copper coaxial transmission line, which supports 

only the TEM mode up to approximately 70 GHz. The dielectric material for the 

coaxial transmission line is air-articulatedPTFE (Teflon), which is used because it has 

the best available combination of thermal and electrical properties. A number of other 

coaxial cables with differing dielectric materials were tried, including solid PTFE and 

Isocore brand[ 12] PTFE. It was found experimentally that the solid PTFE was 

considerably more noisy, due to the expansion and contraction of the solid dielectric. 

The Isocore PTFE had by far the best thermal properties, but the phase velocity 

changed unpredictably with time at low temperatures. In this experimental 

configuration, the copper coaxial cable was a severe heat load for the system, and a 

stainless steel transmission line would have been preferable, but a stainless steel 

coaxial cable with the required air-articulated PTFE dielectric was not available. In 

order to minimize attenuation effects at higher frequencies, the transmission line is kept 

as short as possible, - 22 cm for the zero-field measurements. 

Coaxial Cable 

Fig. 2.2. Schematic diagram of experimental set-up for measurements in zero applied magnetic field. 

To control the temperature, a silicon diode thermometer was mounted on the 

cold finger, and a Lakeshore model DRC-93CA temperature controller was used to 
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stabilize the temperature at the desired value. The temperature of the sample was 

monitored by an addition temperature sensor located on the cylindrical copper sample 

housing, because large temperature gradients can be present in this experimental 

configuration. 

Before the sample is loaded into the cryostat, room temperature calibrations are 

performed directly at the position of the sample at the termination of the transmission 

line. Then the sample is connected first to the transmission line, and then to the cold 

finger of the cryostat. The main advantage of this set-up, other than the short 

transmission line, is the fact that after the transmission line is calibrated, the sample can 

be connected without disconnecting the transmission line from the test set. This 

provides the maximum accuracy, and a high quality calibration is crucial for an accurate 

measurement over such a wide frequency range. After the sample is attached to the 

cold finger, the cryostat is pumped down to a pressure of -20 µm Hg before the 

helium transfer is begun. During the entire measurement, a continuous flow of liquid 

helium is maintained through the cryostat in order to achieve the necessary cooling 

power. 

Measurements are performed in this configuration by slowly ramping the 

temperature set point up from its initial value. After the temperature is stabilized at each 

set point, the frequency dependent reflection coefficient is measured. From the full 

frequency dependence (usually consisting of 201 frequency points), several values of 

the reflection coefficient at preselected frequencies are written to a temperature 

dependent file, and the entire frequency trace is saved at periodic intervals. The data 

set from a given temperature ramp therefore consists of a file with the temperature

dependence of the reflection coefficient at several fixed frequencies, and a number of 

files containing the entire frequency dependence at different temperatures. 
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2.2.2 Measurements in Finite Magnetic Field 

The experimental set-up used in the magnetic field dependent measurements is 

shown schematically in Fig. 2.3. In this case, the coaxial transmission line must be 

approximately 3 meters long in order to reach a Nb-Ti superconducting magnet. The 

much longer transmission line used for these measurements results in a much smaller 

measurement signal at high frequencies, and also reduced dynamic range in the incident 

microwave power at the location of the sample, due to the increased attenuation. The 

coaxial transmission line used for this set-up is also copper, with the same dielectric 

material as is used in the zero-field set-up (air-articulated PTFE). 

Superconducting 
Thin Film ,-----------~ 

Supercon
ducting 
Film 

Top View of Sample 

I 

Nb-Ti 
Magnet 
Coils 

~I ~t[8l 
ll..pphed 

1 Substrat I _____________ I 

Fig. 2.3. Schematic diagram of experimental set-up for measurements in an external magnetic field. 

In this experimental configuration room temperature calibrations are also 

performed at the location of the sample at the temrination of the transmission line prior 

to each measurement. After calibrating, the transmission line must be disconnected 
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from the test set in order to load the sample, and the whole probe is inserted into a 

vacuum can. The vacuum can is pumped down to a pressure of - 50 µm Hg, and the 

whole assembly is inserted into the magnet or a helium storage dewar, before the 

transmission line can be reconnected to the network analyzer. As will be discussed in 

chapter 3, the process of disconnecting and reconnecting the transmission line to the 

test set after calibrations are performed necessarily leads to some degradation of the 

final calibration. 

To perform the magnetic field measurements the vacuum can is immersed in a 

He vapor flow within the magnet. After the sample temperature drops to the desired 

range, the sample temperature is stabilized by controlling the temperature of the helium 

vapor with a heater on the magnet at the location of the helium vapor inlet, and also by 

means of a resistive heater on the probe itself. Measurements in finite magnetic field 

are generally made at constant temperature while the magnetic field is ramped from zero 

to a maximum value and then back to zero. Usually the data from every magnetic field 

point is saved as a frequency trace and as a magnetic field dependent file. 

In addition to magnetic field dependent measurements, it is also possible to 

perform temperature dependent measurements with this experimental set-up. In this 

case the vacuum can is immersed in a helium storage dewar instead of the magnet 

system. Although the attenuation in this set-up is much larger than in the continuous

flow set-up, it has the advantage of smallertemperature gradients, and much smaller 

helium consumption. 

2.3 Coaxial Cable/Thin Film Interface 

A detailed diagram of the coaxial cable/film interface is shown in Fig. 2.4. 

Gold contacts a few thousand angstroms thick are evaporated through a washer-shaped 

shadow mask to form inner and outer electrical contacts on the film (see inset, Fig. 
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2.3). The portion of the film exposed between the contacts forms the Corbino disc 

proper, the inner and outer diameters of which are approximately 0.020 and 0.066 

inch, respectively. Electrical contact is made to the inner and outer conductors of the 

coaxial cable through a modified microwave connector.[13] Direct contact is made 

between the outer conductor of the connector and the outer contact of the film, while 

contact is made between the inner contact of the film and the inner conductor of the 

cable by means of a small tapered pin inserted into the connector center conductor. The 

pin is tapered from a diameter of 0.020" down to 0.010", so that thereis a restoring 

force in the direction of the film (the center conductor of the microwave connector is 

designed to spread open slightly in order to capture the center conductor of the mating 

connector), to ensure contact is maintained as the temperature is lowered. The size of 

this center conductor pin is crucial; if the diameter at the large end is much less that 

0.020" the pin slides into the connector center conductor, and there is no restoring 

force. If the large end diameter is much greater than 0.020" the pin becomes a large 

perturbation within the connector, and can cause large resonant effects which make 

accurate frequency dependent measurements impossible. Contact is maintained as the 

Coaxial 
Cable 

Gold 
ContactsSubstrate 

SuperF~ucting Copper Housing 

Fig. 2.4. Detailed view of thin film/connector interface, just prior to contact. Pressure is exerted on 
the aluminum pedestal by a spring in order to maintain contact between the film and connector 

throughout the temperature range. 
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temperature is changed by means of a copper pedestal and spring assembly which 

apply pressure to the backside of the substrate. Such a contact can reliably hold from 

room temperature to 4.2 K, with changes in the contact resistance of at most 15 mQ 

over the entire temperature range. 

In order to align the contacted film with the microwave connector properly, a 

special alignment jig is used to position the sample on the copper pedestal. Once the 

film is correctly positioned, the entire film/pedestal assembly[?] is loaded into a 

cylindrical copper housing, which also accepts the microwave connector, and ensures 

that the contacts on the film align with the connector as shown in Fig. 2.4. 

2.4 Absolute Power Measurements 

The fact that a modified microwave connector is used to contact the sample has 

a further advantage, because it allows for an HP437B power meter to be connected 

directly at the location of the sample in order to measure the actual microwave power 

incident on the thin film sample. This allows for the measurement the impedance of the 

film as a function of absolute power. This is in contrast to many resonant 

measurements which are in effect non-insertable devices, so that the actual power at the 

location of the sample can only be estimated. In addition, the power is usually set at 

the source, and compensation must be made for attenuation in the test set as well as the 

intervening transmission lines. In the present experiment, the actual microwave power 

reaching the sample is modified slightly by the changing attenuation of the coaxial cable 

as the temperature is lowered, but actual measurements suggest that changes in 

attenuation affect the signal by only a few percent (see section 3.3). 

The minimum and maximum microwave power that can be used depends on a 

number of experimental factors. In general, the minimum power is a function of the 
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sensitivity of the microwave detectors internal to the HP8510C, with -30 dBm 

representing a readily achievable level at most frequencies without losing phase lock to 

the reference signal. At the lowest frequencies, however, one can lose the reference 

signal at power levels well above-30 dBm. When this occurs, one can simply employ 

internal attenuators built in to the network analyzer, which attenuate the output signal 

after the reference signal has separated out. Lower power levels are also more difficult 

to measure accurately with the power meter, and were not considered for this work. 

The maximum microwave power available at the sample is limited by the 

maximum output power of the source, the maximum power that can be safely reflected 

back into the HP851 0C test set (approximately+ 17 dBm), and the attenuation of the 

coaxial transmission line. As such, the maximum power incident at the sample is a 

strong function of frequency. Table 2.1 gives values for the power measured at the 

sample for a source power of + 16 dBm for the two different experimental 

configurations described above. 

Table 2.1. Maximum power levels available at the sample for various frequencies. The source output 
power is 16 dBm. 

Frequency 

45MHz 
1GHz 
10GHz 
30GHz 
45GHz 

Maximum Power (dBm) 
Zero Field Experiment 

9.27 
7.96 
3.98 
-9.62 
-20.34 

Maximum Power (dBm) 
Finite Field Experiment 

8.93 
6.35 
-2.34 
-21.80 
-35.3 

It is possible to perform a power-flattening calibration in order to make the 

power incident on the sample nearly the same for all frequencies. This is accomplished 

by connecting the power meter to the transmission line at the location of the sample, 

and initiating an automated power flatness calibration function available on the network 
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analyzer, with the power meter connected to the HP8510 system bus. The network 

analyzer then measures the power at each frequency in the measurement range and 

computes a correction factor that is stored in an internal register. After the flatness 

calibration is completed and power flatness is enabled, the power output from the 

source at each frequency point is adjusted so that the power at the sample is equal to the 

set source power at each frequency. It is important that the output power is set to a 

value small enough so that the source power does not become saturated, since this will 

lead to an unleveled power at the sample. Using the magnet set-up, power flatness can 

be enabled with the sample power set to -22 dBm, which delivers a frequency 

independent power at the sample from 45 MHz up to approximately 35 GHz, above 

which some roll-off does occur (see table 2.1 ). Setting the power to lower values 

results in the loss of phase lock to the reference signal at lower frequencies, as 

discussed previously. 

In the Corbino disk geometry the rf currents flow in the radial direction, and the 

rf current density in the film is proportional to 1/r, where r is the distance from the 

center of the Corbino disk. The rf current density also depends on the film thickness 

and the rf power supplied by the source. If the sample is much thinner than the 

appropriate skin depth, the current density will be uniform in the film thickness. The 

(instantaneous) power transferred along the transmission line is given by the Poynting 

vector P = (E X H*) integrated over the cross section of the transmission line, which 

gives simply P=I·V. Since the ratio of the voltage to the current is simply the 

characteristic impedance of the transmission line, P=I22<J. The current density J is 

found by demanding that J(r) integrated over the volume of the Corbino disk be equal 

to the applied current I, which gives J(r) = l/27t1tf, where tcJ is the film thickness. The 

peak current density in the sample as a function of microwave power is therefore given 

by 
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J(r)=-1- fY 
21ttor 'V 4l (2.1) 

As an example, for a 1000 A thick film and an appliedrf power (at the sample) of zero 

dBm (=1 mW), and assuming the current density is uniform throughout the film 

thickness, the peak current density in the film is approximately 3x103 amps/cm2. 

2.5 Sample Preparation 

The superconducting thin films studied in this work are primarily several 

thousand angstroms of YBa2Cu30i-o (YBCO) deposited on LaA103 substrates (1/4" x 

1/4" square, typically) by pulsed laser deposition.[14] Thin film samples were 

obtained from A. Findikoglu, C. Kwon, and M. Rajeswari within the Center for 

Superconductivity Research, and also from Alberto Pique at Neocera, Inc. 

2.5.1 Thin Film Fabrication 

In this section some of the relevant deposition information for samples used in 

this work is briefly summarized. Many more detailed accounts of pulsed laser 

deposition applied to the growth of high Tc materials are widely available.[15,16] A 

substrate of LaAl03 is attached to a heater plate using silver paste, which has a high 

thermal conductivity. The substrate/heater assembly is loaded into a vacuum chamber, 

which is pumped down to approximately 2x10-5 Torr, at which point 300 mTorr of 

oxygen is admitted to the chamber and the substrate temperature is elevated gradually to 

above 700 'C. It is very important for sample homogeneity that the substrate 

temperature is uniform across the substrate throughout the deposition process. The 

laser pulses of wavelength 248 nm are focused on a rotating stoichiometric 

~Cu30i target at a rate of 10 Hz for a deposition rate of approximately 2-3A/sec. 

The laser energy density is typically 1.7 J/cm2. Immediately following deposition 
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approximately 400 Torr oxygen is admitted to the chamber, and the film is gradually 

cooled back to room temperamre at variable rates. For the experiments described here 

it is desirable to have a Tc in the range 89-91 K, but it is much more important to obtain 

a sample that is homogeneous over the area used for the measurement. 

2.5.2 Metallic Contacts 

In order to make concentric gold or silver contact pads as shown in Figs. 2 .1 

and 2.3, two different approaches were used: in-situ and ex-situ contact deposition. 

In the ex-situ technique a washer shaped shadow mask is used during evaporation of 

the contacts. The shadow mask is made from a magnetic material called COY AR 

which is an alloy of cobalt, nickel and iron, and is held in place by means of small 

magnets embedded in a specially designed substrate holder. The gold or silver is 

evaporated thermally or by electron beam evaporation, forming the inner and outer 

contact pads, and the masked part of the film becomes the Corbino disk. If the contact 

resistance between the gold or silver and YBCO is unsatisfactorily high (:2: 25 mQ), as 

determined by a 3-point resistivity measurement when the film is superconducting (see 

section 2.6 below), the film is annealed in Oz at 400-450 C for 1-8 hours. This 

normally results in a contact resistance of less than 15 mQ (which gives a contact 

resistivity of approximately 3x10-5 ncm2, assuming that the contact resistance is 

dominated by the smaller center contact). However, it is very importantto ensure that 

no impurities are introduced during the contacting or annealing steps, since the 

subsequent annealing can destroy superconductivity in the film if some contamination 

has occurred. 

The ex-situ technique described above was used for most of the samples 

studied in this work. However, an in-situ technique was also investigated. For the in

situ technique, a gold contact layer is deposited immediately following the film 

22 



deposition before the film is exposed to the atmosphere. After deposition a Corbino 

disk pattern is transferred to the gold/YBCO bilayer by standard photolithography 

techniques, and the gold is removed from the Corbino disk region using a gold etch 

(lg Kl 4g KI in 80 mf deionized water). While the contact resistances were generally 

acceptable and no additional annealing was required, the samples subject to the in-situ 

process appeared to have been slightly damaged by the etching step. In order to be 

useful for the measurements described here, further optimization of the in-situ 

technique is required. 

2.6 DC Resistivity Measurements 

Measurements of the de resistivity vs. temperature are made independently of 

the microwave measurements discussed above and serve several purposes. The 

temperature dependent resistivity measurements can be performed in about an hour, 

and are used to screen films so that only the best quality samples are used in the 

microwave measurements. Also, the de measurements provide a sensitive measure of 

the contact resistance, which cannot be determined from the two-point resistance values 

obtained during the microwave measurements, and is difficult to determine directly 

from the microwave data. The de measurements also serve as a check on the 

microwave surface impedance values, since in the thin film limit the real part of the 

effective impedance is just the real part of the resistivity, which is simply the de 

resistivity for a thin normal metal. In addition, the de resistivity measurements can be 

easily performed up to room temperature (which is difficult in the microwave setup), 

and can be instrumental in determining the temperature dependence of normal state 

properties for fluctuation conductivity analysis, for example. 

The de resistivity measurements are performed after the contacts are made, in a 

three point configuration, as illustrated in Fig. 2.5. Contact is made to the film by 
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means of beryllium-copper pins positioned on the film as shown in Fig. 2.5. The film 

itself is mounted on a copper block in which a silicon diode is embedded, and the 

whole assembly is immersed in a liquid helium storage dewar. The fourth contact is 

made to the beryllium copper pin on the center conductor, as close as possible to the 

film, because there is not sufficient room for two such pins to fit on the center contact 

pad. With this configuration, contact resistances down to 1 mn can be easily 

measured. 

+V 
-I 

-V +I 

Fig. 2.5. Schematic diagram of contacts in 3 point resistivity vs. temperature measurement. 

From measurements of the resistance in the above geometry, and knowing the 

inner and outer radii (a and b, respectively) of the Corbino disc, one can easily 

calculate the sheet resistance, Rsquare' from the measured resistance R meas according to 

Rmeas - R . ln(b/a) 
- square 2 Jt (2.2) 

The sheet resistance is related to the resistivity simply by Rsquare = p/t0, where to is the 

film thickness. It is the sheet resistance which can then be compared to the effective 

impedance measured at microwave frequencies. 
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Chapter 3 

Measurement Calibration and Error Correction 

This chapter develops the data analysis tools necessary to correctly interpret the 

measured frequency dependent data on superconducting thin films. In section 3 .1 the 

complex resistivity p(ro) = p1(ro) + ip2(ro) of thin films is extracted from the measured 

complex reflection coefficientSu(ro). Section 3.2 then discusses in some detail the 

calibration procedures necessary for the accurate frequency measurement of the 

complex reflection coefficient over the broad frequency range from 45 MHz - 50 GHz, 

and the errors associated with such a calibration procedure. Sections 3.3 and 3.4 

discuss errors that affect the frequency dependent measurements that are not addressed 

by standard calibration procedures, such as changes in the temperature of the 

transmission line (section 3.3), and transmission of the incident signal through the thin 

film under study and into the substrate (section 3.4). Finally in section 3.5 the full 

error correction procedure developed in this chapter for accurate frequency dependent 

measurements at cryogenic temperatures is summarized for the two different 

experimental configurations used in this work. 

3.1 Relation of the Reflection Coefficient to the Complex Resistivity 

In order to interpret our experimental data on conductors, it is necessary to 

extract the surface impedance Z
8 

from our measurements of the reflection coefficient. 

The reflection coefficient S 11 is related to the load impedance Zr, of the sample by the 

simple formula 

5 _ ZL - Zo 
11

- ZL + Zo 
(3.1) 

where Zo is the characteristic impedance of the coaxial transmission line (assumed to be 

son and real). The reflection coefficient is therefore a complex, dimensionless 
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quantity which measures the impedance mismatch between the transmission line and 

the load, and is bounded in magnitude between O and I. 

The load impedance Zr, in Eq. 3.1 is the ratio of the total voltage across the 

Corbino disc to the total current flowing through the disc. This quantity depends on 

the dimensions of the Corbino disc, and assuming the presence of only the TEM mode, 

can be expressed in terms of the surface impedance Zs of the film as 

ZL=rZs (3.2) 

The scale factor r in this expression simply relates the "ohmic" impedance Zrv = V /I, 

and the field impedance Zfield = E/Hq, for the TEM mode in a coaxial system (here V 

and I represent the instantaneous voltage and current, respectively, across the coaxial 

cable, while E, and H$ represent the instantaneous electric and magnetic fields, 

respectively, within the coaxial cable). The surface impedance Zs of the film is simply 

the field impedance 2ooict evaluated at the surface of the film. 

To calculate r, assume that one has an ideal, lossless coaxial transmission line 

of inner radius a and outer radius b. For a given (instantaneous) current I flowing 

through the transmission line, the (instantaneous) magnetic field at a distance r from the 

transmission line axis is given by Hq, = I/21tr Amps/meter. Similarly, the 

(instantaneous) electric field generated by an (instantaneous) potential difference V 

between the inner and outer conductors is given by Er= V/[ln(b/a)r] volts/meter. The 

ratio V/I in terms of Er and H$ is given by V/I = [ln(b/a)/21t] (E/Hq,). This gives the 

relationship between the field impedance Zfield and the "ohmic" impedance Zw for the 

TEM mode in the coaxial system, and yields r = ln(b/a)/21t. 

Once the reflection coefficient S 11 of the sample has been measured, one can 

obtain the surface impedance simply from Eqs. 3.1 and 3.2. If the load impedance ZL 

of the sample is small compared to ~ (which is normally the case for conductors), 

then evaluation of the geometric factor r (with 2a=5.08 x 104 meters and 2b=l.68 x 
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10-3 meters) yields the following approximate relationship between changes in the 

reflection coefficient and changes in the surface impedance: 

(3.3) 

Our measurementresolution for changes in 1S 111 at 1 GHz is approximately 5x104 , 

implying a resolution for changes in the surface impedance of approximately 7 5 mQ at 

this frequency. 

For comparison, the surface impedance of a bulk metallic sample in the local 

limit is given by 

(3.4) 

where cr = 1/P is the conductivity of the material, which is in general complex ( cr = cr1 

- icr2). For a numerical example, consider the superconductor YBaiCu3°'7_0 (YBCO), 

which in the normal state just above Tc has a resistivity p0-100 µQ-cm. With a 

conductivity that is completely real, evaluation of Eq. 3.4 at a frequency of 1 GHz 

gives Z
8 
~ (1 +i) 62.8 mQ, which is comparable in magnitude to the sensitivity limit of 

our measurement calculated above. This example illustrates the limited sensitivity of 

the measurement system for bulk metallic samples, and means that the effective surface 

impedance of our samples must be somehow enhanced, particularly in the 

superconducting state, for our technique to be useful. This is accomplished in practice 

by working with thin samples, where the measured surface impedance is increased due 

to finite film thickness effects.[ 1,2,3] The use of thin films, combined with large 

external magnetic fields and temperatures near Tc, provides more than adequate 

enhancement of the effective surface impedance for meaningful measurements with this 

technique. 

The effective surface impedance which one measures for a film of thickness 1<) 
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is given by 

ziff = z:; coth{ kto ) 
(3.5) 

where Zs= is the surface impedance of a bulk sample [Eq. 3.4], and k = (i~coo) 1l2 is 

the complex propagation constant in the film. [When the film is in the normal state, 

k=( 1 +i)/o, where o is the normal metal skin depth; at temperatures much below Tc the 

propagation constant reduces to k-1/A., where A is the superconductor magnetic 

penetration depth.] The expression in Eq. 3.5 implicitly assumes that the fields are 

zero at the backside of the film. Note also thatEq. 3.5 reduces to the bulk expression 

when the film thickness to > > 1/lkl. 

Equation 3.5 can often be further simplified when applied to thin metallic or 

superconducting samples. If the argument of the hyperbolic cotangent function is 

small (true when the film thickness to<< 1\,1.) we may approximate coth(x) by 1/x, and 

obtain the following remarkably simple expression for the effective surface impedance 

of a thin film, valid as long as lklto < < 1 : 

~ff z£... 
to 

( for lkl to<< 1) (3.6) 

Using the normal state resistivity for YBCO given above, and a film thickness of 

to=lO0O A, Eq. (6) yields Z/ff z l0Q in the normal state, just above Tc. Thus the 

effective surface resistance of a thin film is considerably enhanced relative to its infinite 

thickness value. In the superconducting state, when T << Tc, the effective surface 

impedance is dominated by the kinetic inductance of the film: Zs eff - iµ0ro). 2(T)/to, 

which is enhanced by a factor A(T)/to compared to the bulk value in the same limit. 

Note that as a result of Eqs. 3.2 and 3.6 the measured quantity ZL eff is directly 

related to the complex bulk resistivity P of a thin film sample, which is a fundamentally 

interesting quantity. For instance, many theories of vortex dynamics give explicit 
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expressions for P (B,T,ro), making comparisons between our experimental data and 

theory straightforward. Also, having obtained the complex resistivity, it is elementary 

to obtain the complex conductivity, which is also fundamentally interesting. We 

believe that one of the main utilities of our technique is the fact that we can directly 

measure the bulk complex resistivity or conductivity of a metallic or superconducting 

thin film sample. Yet another consequence of Eq. 3.6 is that in the normal state, where 

P is completely real, we expect imaginary{z/f } ~ 0 , in contrast to the bulk case, 

where imaginary{Z
8
=} = real{Z

8
=} in the normal state. 

3.2 Standard Calibration Methods 

3.2.1 The Need for Calibration 

The expression for the reflection coefficient given by Eq. 3.1 is valid only if 

the measurement is performed directly at the location of the impedance discontinuity. 

In practice the experimentally measured reflection coefficient will include effects due to 

the intervening transmission line, connectors, etc. which are necessary to perform a 

practical measurement. These effects become particularly important at higher 

frequencies, where the wavelength of the measurement signal is much smaller than the 

dimensions of the system. In what follows we will discuss in some detail the 

calibration procedures used to minimize the systematic errors involved in the 

measurement of the reflection coefficient versus frequency. 

The measurement of the reflection coefficient S 11 actual is in practice corrupted 

by attenuation and multiple reflections in the coaxial cable system, as well as by errors 

in the detection apparatus. These effects can be accounted for and eliminated from the 

data by means of a set of calibrations applied to the measured reflection coefficient 

S 11 meas . A general expression for the the measured reflection coefficient (S11 meas) in 

terms of the actual reflection coefficient ( S 11 actual) can be obtained using microwave 
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network theory[ 4] and is given by 

E S actual 
Smeas_E R 11 

11 - o+ 
1 E S

actual 
- S 11 

(3.7) 

Here E0, ER, and Es are complex error coefficients that completely characterize the 

detection apparatus/ transmission line system. 

3.2.2 Measured Error Coefficients 

The error coefficient ED in Eq. 3.7 is the directivity, which arises from the 

imperfect nature of the directional couplers in the test set of the network analyzer, and 

from reflections due to connectors in the system. These effects result in a small 

"leakage" of the signal from the source directly into the detectors, by-passing the load 

entirely. The effect of this error is easily seen by considering a reflectionless load 

(S 11actual = 0) in Eq. 3.7, which shows that the measured reflection coefficient is 

entirely due to the "leakage" signal in this limit. The magnitude of ED versus 

frequency is shown in Fig. 3.1 for a typical calibration in the zero-fieldexperimental 

configuration (see Fig. 2.2). The value of ED has no systematic dependence on 

0.20 ~----------~ 

0.16 ........ ; ......... ; 

~Cl 
..:i 0.12 ............ . 
~ 

I o.oso 

0.040 

Frequency (GHz) 
Fig. 3.1. Magnitude of the directivity error term ED vs. frequency for the zero-field measurement 
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frequency as shown in Fig. 3.1, and the magnitude is bounded by approximately0.15 

for the systems used here. 

The error term ER in Eq. 3. 7 is called the reflection tracking, and corrects 

principally for the attenuation and phase delay introduced by the transmission line. For 

a system consisting of simply a load at the end of a transmission line of length e, and 

for which E0 and Es are zero, one would obtain S ll meas = e-2Y f S ll actual, where y is 

the complex propagation constant of the transmission line (y=ex+il3, where ex is the 

attenuation constant of the transmission line, and 13 is the phase constant). Comparison 

with Eq. 3.7 shows that the error coefficient ER would be given by ER = e-2Y f for this 

simple case. In practice one finds that the frequency dependence of ER strongly 

resembles e-2Yf , with ex increasing roughly as co112, and 13=co/vphase• where vphase is 

the phase velocity in the transmission line. The magnitude of ER, shown in Fig. 3.2, 

is close to 1 at low frequencies (indicating little attenuation), and decreases to 

approximately 0.2 at the high frequency limit of 45 GHz (which implies much stronger 

attenuation). The fact that IERI is greater than 1 at low frequencies in Fig. 3.2 indicates 

that there are contributions to ER from other sources than the simple description given 

above. 

10 20 30 40 50 
Frequency (GHz) 

Fig. 3.2. Magnitude of the reflection tracking error term ER vs. frequency for the zero-field 

measurement. 
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The third error term Es in Eq. 3.7 is referred to as the source match, which 

arises due to the re-reflection of a portion of the signal at the measurement port, caused 

by the slight impedance mismatch between the detectors and the transmission line. 

This re-reflected signal interferes with the incident signal at the load, adding a small 

error to the incident signal. Since the reflection coefficient is defined as the ratio of the 

reflected signal to the incident signal, this error will also affect the reflection 

coefficient. Like E0 , the source match error coefficient shows no systematic 

dependence on frequency, and is also bounded in magnitude by approximately 0.15, as 

can be seen from the frequency dependence of IEs I shown in Fig. 3.3. 

-~ 
::;E 0.20 .. ~'--+ 

0.10 

10 20 30 40 
Frequency (GHz) 

50 

Fig. 3.3. Magnitude of the source match error tenn Es vs. frequency for the zero-field measurement. 

3.2.3 Calibration Procedures 

The three error coefficients described above are all frequency dependent. It is 

possible to ascertain values for all three error coefficients at each frequency point of 

interest through a calibration procedure involving the measurement of three standards 

for which S 11actuai is known. As pointed out previously, by measuring a standard for 

which s11aetuai = 0, one can directly measure the errorcoefficientE0 . In practice one 

uses a standard short (S 11actual = -1), a standard open (S 11actual = +1) and a matched 
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load (S 11actual = 0) to fully calibrate the system, although one can in principle use as a 

standard any load for which S ll actual vs. frequency is known. For measurements 

above 4 GHz, a sliding load must be used, because it is difficult to realize a matched 

load over such a broad frequency range. 

Once values for all three error coefficients are obtained (at each frequency point 

of interest), Eq. 3.7 may be inverted to calculate S11actua1 given Su meas and Eo, ER, 

and Es, This calibration procedure involving the measurement of 3 known standards 

is performed at room temperature prior to every measurement. Since our measurement 

makes use of a modified microwave connector to contact the sample, the calibrations 

are performed using this same connector, directly at the location of the sample. With 

an accurate calibration, the inversion of Eq. 3. 7 should yield the actual reflection 

coefficient of the load described by Eq. 3.1. 

When such a procedure is followed, one obtains the reflection coefficient vs. 

frequency, which is shown for a thick silver film (t > O) on a LaAl03 substrate in Fig. 

3.4 (magnitude Su) and Fig. 3.5 (phase Su), From the discussion in section 3 .1, 

one expects the reflection coefficient to be S 11 = -1 + Oi for a metallic film of thickness 

t >> o (where o is the skin depth) to within the resolution limit of the measurement 

system. The fact that the reflection coefficient in Figs. 3.4 and 3.5 deviates from this 

expected behavior simply means that there are some residual systematic errors that the 

calibration procedure described above does not remove. This could be due to the fact 

that during the measurements on film samples, a tapered pin is used to make contact 

between the center conductor of the VlOlF connector and the film (see section 2.3), 

whereas the standards used for calibration all utilize a conventional 2.4 mm male 

connector to couple to the modified VlOlF connectorthat terminates the transmission 

line. The response shown in Figs. 3.4 and 3.5 is in general seen for a number of 

different bulk metallic samples. Note, however, that the reflection coefficient 
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magnitude is within 5% of its expected value over the entire 3 decades of frequency. 

Because the actual frequency dependence of the bulk metallic sample is known (it may 

be calculated simply from Eqs. 3.1, 3.2, and 3.4), it may be used as an additional 

calibration standard to improve the accuracy of the measurement. 

1. 05 r;::;::::;:::::;::::;;;::::;-r--r--r--r--,........,--, 
1.04 
1.03 I---+---+--+--+ 

- 1.02 i--~--+--+-~~-

vf' 1.01 
- 1 
:: 0.99 1--~..:,.=---l---'-~ 

0.98 + 
0.97 >-+--c 
0.96 1---~~~~-~+--
0.95 ~..,__....._~_.___._ ____ ....._~ 

0 10 20 30 40 50 
Frequency (GHz) 

Fig. 3.4. Magnitude of the reflection coefficient S 11 of a thick silver film at room temperature. 

0.16 , , . . 
-1 Ag thick film 11 

0.12 : : : 
....... 1 ....... ) ... -. .. ) ......... . 

l -0.04 ~..,__....._~_.___._ _____ ......._....._~ 
0 10 20 30 40 50 

Frequency (GHz) 
Fig. 3.5. Phase of the reflection coefficient S11 of a thick silver film at room temperature. 

3.2.4 Calibration Errors 

The calibration procedure described above is strictly valid only as long as the 
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physical and electrical properties of the coaxial transmission line and test set are 

reproducible: the same during the measurement as during the calibration procedure. 

To maximize the accuracy of the calibration, semi-rigid coaxial cables are used to 

reduce physical changes in the transmission line system. In addition, in the zero-field 

set-np the calibrations and measurements can be performed without disconnecting the 

transmission line from the test set. This is important since reproducibility at 

connections is difficult to maintain through repeated connections/disconnections. In 

the magnetic field measurements, however, the transmission line must be disconnected 

in order to fit the probe into the magnet dewar. 

In spite of the above considerations, errors do exist in the measurement system 

and in the calibration procedure. In what follows the errors that affect the calibrations 

will be discussed, in order to estimate the effect of such errors on the final 

measurements. 

The inverse of Eq. 3. 7 gives an expression for S 11 actual in terms of S 11 meas 

and the three error coefficients described in section 3.2 above. Labeling this 

expression for S 11 actual as the corrected reflection coefficient S 1 /orrect gives 

5
correct _ (sfleas -Eo) 
11 - (meas) ER+ Es S11 -Eo 

(3.8) 

Any error in the experimentally determined reflection coefficient, L\S 11 correct, is 

therefore a result of errors in the four experimentally measured quantities: L\S 11 meas, 

L\£0, ,\ER, and L\Es. One obvious disadvantage of the need to perform the calibration 

described above is the propagation of errors. Instead of just one (complex) measured 

quantity, we now have four, each with its own associated uncertainty. 

The measurement errors that occur in S 11 correct may be classified as either 

random or systematic. The random errors in S 11 correct are due solely to the random 
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errors in the measured reflection coefficient S 11 meas. These errors may be estimated 

from the standard deviation obtained by performing a series of measurements on the 

system in the same state. The resulting upper bound for ti.S 11 meas is 

(3.9) 

It is assumed that there is no overall frequency dependence for the random errors 

ti.s 11meas over the entire accessible frequency range (45 MHz-50 GHz). However, 

this is not true for the corresponding random errors in ti.s 11correct, since the errors in 

S 11 meas must be propagated through Eq. 3.8 to obtain the errors in S 11 correct_ Such an 

analysis shows that at low frequencies ( :,; 2 GHz), the random errors in S 11 correct are 

on the order of 5xI0·4, while at the highest measurable frequencies (50 GHz), the 

random errors in S 11 correct approach approximately 2xI0·3. The fact that the 

measurement is more accurate at lower frequencies is due in part to the increased 

attenuation of the measurement signal by the transmission line at higher frequencies. 

These values for ti.s 11correct determine the (frequency dependent) resolution of the 

measurement system, the smallest change in S 11 correct that can be observed which is 

statistically significant. This is also the theoretical limit of the accuracy of the system, 

in the absence of any systematic errors. 

In practice, the accuracy of the measurement system is limited by systematic 

errors generated by inaccuracies in the measured values of the error coefficients E0 , 

ER, and Es. These errors are in general much harder to quantify than the random 

errors discussed above. Since E0 , ER, and Es are measured in the same way as 

S 11 meas, the uncertainty in their values is at least as large as ti.S 11 meas. In addition, 

since the calibration is performed at room temperature, and the measurements on 

superconductors are made at much lower temperatures, changes in the attenuation and 

phase velocity of the transmission line also contribute to errors in the values of the 

38 



error coefficients. In order to reduce the effects of these systematic errors as much as 

possible, we exploit the fact that we know what the reflection coefficient of a 

superconductor should look like at low temperatures. This enables us to replace one of 

the three standards used for calibration by this "reference state" of the sample, and 

effectively recalibrate the system at low temperatures. This procedure will be 

discussed in detail in section 3.3 below. 

3.3 Temperature Dependent Effects 

3.3.1 Origin of Temperature Dependent Effects 

A necessary requirement for the measurement system described here is the 

ability to vary the sample temperature. Since direct contact is made between the coaxial 

transmission line and the sample, the temperature of at least a portion of the 

transmission line necessarily changes during the measurement. Since the electrical 

properties of the transmission line depend on temperature, varying the sample 

temperature affects the accuracy of the room-temperature calibrations. 

The electrical properties of the transmission line that are affected by changes in 

temperature are the attenuation constant a. and the phase constant l3. The attenuation 

constant a. depends on the surface resistance R
8 

of the inner and outer conductors of 

the coaxial cable:[5] 

a. = _&__ (l + l) 
41tZo b a 

(3.10) 

where a and b are the inner and outer radii respectively of the coaxial transmission line, 

and ~ is the characteristic impedance of the line. The phase constant 13 depends 

primarily on the dielectric constant of the material used to separate the inner and outer 

conductors in the coaxial cable, which in this case is air-articulated Teflon (PTFE):[5] 
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(3.11) 

where e' is the real part of the dielectric constant. It is therefore changes in the surface 

resistance of the copper conductors and changes in the dielectric constant of the Teflon 

which lead to changes in the electrical propenies of the coaxial transmission line as the 

temperature is changed. 

Figures 3.6 and 3.7 show the changes in the magnitude and phase, 

respectively, of the reflection coefficient S 11 of the silver thick film standard as the 

temperature is lowered from 290 K to 70 K in the zero field experimental 

configuration. In both figures the change in S 11 is defined as ~S 11 = S 11 (72K) -

S11(290K). The change in the phase is roughly linear in frequency (as might be 

expected from Eq. 3.11 ), while the change in the (log) magnitude of S 11 is much 

smaller, and resembles 00112, which comes from the 00112 dependence of the surface 

resistance Rs on frequency. 

0.0
2 

• l ~g thick filmf.~1 ~-~! ..,I f······i········+-·······I 

::::: 0.016 • ····f ... ·····+ ...... ; + · ,. -r:I')_- •·······f . ., ... >'···!·····'·········'········• .._, 

I en o.oos . 
~ . 

Frequency (GHz) 
Figure 3.6. Change in the Log Magnitude of the reflection coefficient for the silver thick film 

between 290 K and 72 K in the zero field configuration. 
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Figure 3.7. Change in the Phase of the reflection coefficient for the silver thick film between 290 K 
and 72 K in the zero field configuration. 

In order to remove effects due to temperature changes in the coaxial line, two 

things are done. The measured reflection coefficient vs. temperature at a low 

temperature (typically - 70 K for the YBCO measurements) is used as a reference state, 

so that the data is in effect measured relative to this state, in order to correct for most of 

the effects due to the change in temperature of the transmission line. Also, the small 

changes with temperature that occur during the measurement are accounted for by 

measuring the change in the response of a thick silver film over the same temperature 

interval. This background contribution is then subtracted from the actual data. 

3.3.2 Low Temperature Recalculation of ER 

In order to correct our experimental data for these temperature-dependent 

changes in the electrical properties of the transmission line, we can use a low

temperature measurement as an additional calibration standard. In order to achieve 

maximum accuracy in the additional calibration step, we use the measured response of 

the superconducting film itself at a sufficiently low temperature so that its response is 

nearly that of a perfect reflector. Figure 3.8 shows the magnitude of S 11 for a 1000 A 
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thick YBCO film at 72 K in addition to IS 111 for the silver thick film standard, also at 

72K. This figure shows that the response of the superconducting film at 70 K is 

nearly identical to that of a thick normal conductor, and therefore should be appropriate 

to use as a calibration standard. For maximum accuracy, we assume that the response 

of the superconductor at this temperature is described by a two-fluid model, with the 

real and imaginary parts of the conductivity given at temperature t= T/f c by a 1 = 

f /pn(T), and cr2 = (1-f)/µ0co"'t? and proceed to calculate the expected response (using 

Eqs. 3.4, 3.2, and 3.1), assuming reasonable values for Ao and pnCT). We use the 

calculated response (S 11actual), the measured response (S 11meas), and the measured 

values for the error coefficients E0 and Es in Eq. 3. 7 to recalculate the error coefficient 

ER. We therefore make the explicit assumption that only the reflection tracking 

coefficient ER changes as the temperature is changed. In this manner we can correct 

for any residual systematic errors in the error term ER. 
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i 0.99 I-· ·+···+······-+········•!····· i i · il~;l/·····S········i 
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Fig. 3.8. Magnitude of the reflection coefficient of a superconducting YBCO film and Ag thick film 

at 72 K (both films on LaAI03 substrates). 

3.3.3 Determination of the Background Contribution 

A further correction step is necessary, however, to correct for the small changes 

in the cables that occur during the temperature ramp measurement. These errors are 
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deduced by measuring the response of the thick silver film (also on a LaA103 substrate) 

over the same temperature interval as for the superconductor. These background 

changes in the frequency dependence as a result of temperature-dependent errors are 

subtracted off before the new error coefficients described above are applied. For 

example, if the frequency dependence is measured for a superconductor at 90 K, and 

the low-temperature reference state referred to above is 70 K, the background 

contribution is determined by measuring the difference in the frequency dependence of 

the silver thick film standard between 90 K and 70 K, and directly subtracting off this 

quantity from the frequency dependence of the superconductor measured at 90 K. 

Since these temperature dependent changes are primarily due to the changing 

propagation constant of the coaxial transmission line, the difference referred to above is 

calculated by taking the difference in the log magnitude and phase of the reflection 

coefficient. 

3.4 Substrate Effects 

3.4.1 Origin of Substrate Effects 

Because we make use of thin samples in order to enhance our measured value 

of Zs eff, we expect to encounter errors due to the transmission of radiation through the 

film and into the substrate if the thickness of the film under study is made sufficiently 

small. In order to estimate the influence of such effects on our measurements, it is 

necessary to calculate the applicable corrections to Eq. 3.5 that result from allowing a 

non-zero value for the electric and magnetic fields within the substrate. A simple 

analysis involving only TEM waves yields the following expression for the effective 

surface impedance of a film of thickness ~ backed by a substrate that has a field 

impedance zs5ub: 
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z:; cot!t_kto) + (z;;-f 
sub 

zeff _ Zs 
5 

- ( 1 + 't; ~(kto)) 
(3.12) 

Here again Zs= is the surface impedance of a bulk sample, and k is the complex 

propagation constant, as in Eq. 3.5. One can think of z.stlh as an effective substrate 

impedance that includes the effect of everything that lies behind the film, which for our 

geometry would include the copper pedestal. Note that the expression for Zs eff in Eq. 

3.12 reduces to Eq. 3.5 when z.stlh~oo. Unlike Eq. 3.5, however, this expression 

gives z.etr = z.stlh as to ~ 0. Under conditions where lklto << 1 [the same 

assumptions that led to Eq. 3.6] this expression simplifies to 

(lklto <<I) 

(3.13) 

This expression clearly shows the conditions under which the influence of the substrate 

is important: when the effective impedance of the film is comparable to the impedance 

of the substrate. As will be shown in chapter 4, the actual substrate impedance 

depends on frequency approximately as IZ5 
stlhl - 1/co, so the effect of the substrate on 

z/ff is more significant at higher frequencies. Also, the corrections to Zs eff due to the 

substrate are most significant when the film is in the normal state, where pfto is large. 

Note that Eq. 3.13 also implies that when the film is fully superconducting, the 

corrections due to the substrate are essentially negligible, even for a very thin film, as 

long as lpl/to << I zs5ub1. 

3.4.2 Experimental Determination of Zs' tlh(co) 

In order to correct for the contribution of the substrate, it is necessary to extract 
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a measure of Z/tlh(ro), so thatEq. 3.13 may be inverted to obtain p/to as a function of 

frequency. This is accomplished by converting to an effective impedance [Z/ff(oo)] the 

reflection coefficient data obtained at an arbitrary temperature when the superconductor 

is in the normal state. This data will in general show some frequency dependence in 

both the real and imaginary parts, as Figs. 3.9 and 3.10 illustrate for a typical case, 

which is primarily due to the substrate contribution. The effective substrate impedance 

2i,stlh(ro) is extracted by demanding that p(ro)fto in the normal state be constant as a 

function of frequency and equal to the measureddc value of R/square = p<lf'to. This is 

shown asa solid line in Figs. 3.9 and 3.10. With values of Z
8
eff(oo) andp(ro)fto so 

determined, Eq. 3.13 may be solved for Z/tib(ro). The results for IZ/tib(ro)I, 

extracted from the data in Figs. 3.9 and 3.10, is shown in Fig. 3.11. The results of a 

first-principles calculation for the functional form of IZ/tib(ro)I will be shown for 

comparison in section 4.6. With the explicit assumption that Z/0h(ro) is temperature 

independent over the measurement interval, this value of Zs Sub(ro) can be applied to the 

frequency dependence measured at other temperatures in order to obtain p( ro )/to at any 

desired temperature. 
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Fig. 3.9. Real part of the effective surface impedance Z/ff for a YBCO film at 125 K. Also shown 

is the de sheet resistance at the same temperature. 
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Fig. 3.11. Effective substrate impedance derived from effective impedance data at 125 K. 

3.5 Error Correction Procedure 

It is clear that the simple calibration scheme outlined in section 3.2 is not 

adequate to handle the further errors discussed in sections 3.3 and 3.4. The full error 

correction procedure that has been developed in this chapter to deal with the specific 

difficulties outlined above will be summarized in detail in this section. 
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3.5.1 Procedure for Zero-Field Measurements 

The full error correction procedure is summarized schematically in Fig. 3.12, 

and can described by the following steps. In step 1 the reflection coefficient is 

measured at the temperature of interest utilizing the room temperature error coefficients 

as described above. This data is corrected for the temperature dependent changes in the 

cables during the temperature ramp in step 2 by directly subtracting off the changes in 

the measured response of a thick silver film measured over the same temperature 

interval that is used for the superconductor measurement. Following the background 

subtraction, the updated error coefficients, which are calculated in the reference state at 

low temperature, are applied in step 3. (The updated error coefficients, of course, give 

the calculated reference response when applied to the data at the reference temperature.) 

In step 4 the effective surface impedance is calculated by inverting Eq. 3.1, with ZcJ 

given by the field impedance of the TEM mode in the coaxial line [Z0 = -./(µ/EAJ) = 

377Q/-./e,, where µ is the permeability and i;. is the relative permittivity of the dielectric 

material of the coaxial cable, and i;.=2 for Teflon]. In step 5 the data is corrected for 

substrate effects as described in section 3.4, yielding the complex impedance as a 

function of frequency at the temperature of interest. 

1. Sf{"(T) vs. ro 

t 
2. 

5TI" (Tio)= zeff _ 3770 1 + syynn 
S\'\..,(Tm) • srf(T,ro) ' ----r,r 1- syynn 

4. 

! 
3. syynn = f(5TI") £. = Z~ff Zsub 

S~ynn(T=T1ow) ~ -1 + 0 to - ff Zmb • ~ 
5. 

I 
Fig. 3.12. Schematic diagram of the error correction procedure used in the zero-field measurements. 
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3.5.2 Procedure for Magnetic Field Measurements 

The error correction procedure for the finite field measurements is slightly more 

complicated than that for the zero-field case, primarily due to the fact that for these 

measurements the transmission line must be disconnected from the source after 

calibration in order to mount the sample and load it into the magnet (see section 2.2.2). 

The disconnection of the transmission line results in additional errors so that the 

procedure described in section 3.5. l is no longer the optimum one. In what follows a 

more accurate procedure for temperature-dependent measurements in the finite field 

setup is described (shown schematically in Fig. 3.13), followed by the procedure for 

the magnetic field-dependent measurements. 

For temperature-dependent measurements in the finite-field procedure, steps l 

and 2 are the same as above. The difference comes about in step 3, where in the finite

field procedure two reference states, one below and one above Tc are used to 

recalculate two of the error coefficient ER and Es. After step 3 the effective impedance 

is calculated as above. Since a second reference state above Tc is used in this 

procedure, it is only valid for samples for which the substrate effects described above 

are negligible, or for samples for which the substrate contribution is known . 

1. S'/'{"'(T) vs. co • syyrm = f SJ'/") 

2. 

t Sfyrm(T= T1ow = -1 + Oi 

snorm ff=Th· h = Ro - Zo 
S'/7rr (T ,co) = ll 1g Re,+ Zo 

S '/'i°'"(T ,co) - S~y(T ,co) i 
I Ziff = 3770. 1 + S1/'tn 4. 12 1- snrm 

3. 

Fig. 3.13. Schematic diagram of complete error correction procedure used in the finite-field 
measurements. 
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The error correction procedure for magnetic field-dependent measurements is 

much simpler, because it is assumed that there are no field-dependent changes to the 

properties of the coaxial transmission line. The procedure used here is to assume that 

the zero-field frequency dependence is known (either from a temperature-dependent 

measurement, or from a theoretical calculation), and the measurement of the zero-field 

state is used to update the error coefficient ER. There is only this one reference state 

known in the magnetic field dependent measurements, so only one error coefficient can 

be recalculated. This is usually sufficient, since the changes in the effective impedance 

with field are often smaller than the changes in the effective surface impedance with 

temperature. If greater accuracy is required, the updated error coefficient Es can be 

used from the temperature-dependent measurement. 

In summary, this chapter has described the development and implementation of 

a novel low-temperature calibration scheme that is used to accurately calibrate the 

Corbino reflection technique for the measurement of thin film samples from 45 MHz -

50 GHz over the temperature range from 4.2 - 300 K. 
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Chapter 4 

Electromagnetic Field Distribution in the Corbino Geometry 

4.1 Introduction 

Broadband measurements in the microwave regime can be utilized to gain 

important information about the frequency dependence of the electrodynamic response 

of a wide range of materials. One approach to broadband measurements is to use the 

TEM mode in a coaxial waveguide in order to avoid the restriction of operating above a 

fixed cutoff frequency. There exist many examples of measurements that utilize an 

open-ended coaxial probe in order to measure dielectric constants of solids,[!) 

liquids,[2,3) and even living tissue.[4,5,6) 

The particular geometry that is used in this work is shown in Fig. 4.1, and 

corresponds to an abrupt coaxial to circular waveguide transition (the cylindrical copper 

housing shown in Fig. 2.4 corresponds to the circular waveguide section). 

Calculations of the frequency response of such a discontinuity have been accomplished 

using a number of different theoretical techniques.[7,8,9) This chapter will focus on 

the development of a calculation based on a mode-matching technique that is used to 

mathematically model the frequency response in this geometry, in order to better 

understand the measured data obtained on superconductors. In particular, it is 

desirable to be able to calculate the effect of radiation propagating through a metallic or 

superconducting thin film sample into the substrate in the Corbino geometry, in order 

to understand the frequency response of the substrate effect discussed in section 3.4. 

In addition, such a calculation could be used to model the response of more 

complicated samples, such as superconductor/insulator structures and multilayers. 
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Fig. 4.1. Schematic diagram of coaxial/circular waveguide interface. 

The objective of this calculation is to obtain an expression for the frequency

dependent reflection coefficient S 11 ( ro) at the location of the transition (z=O in Fig. 4.1) 

for the general case of an arbitrary combination of metallic ( or superconducting) and/or 

dielectric layers in the circular waveguide region (region 2). To accomplish this, first 

the normal modes for the two waveguide regions are calculated from Maxwell's 

equations in section4.2. In section4.3 the general mode-matching technique used to 

calculate the reflection coefficient of the TEM mode at the discontinuity is described, 

and in section 4.4 the coupling coefficients between the coaxial waveguide modes and 

the circular waveguide modes are calculated. In section 4.5 the frequency-dependent 

reflection coefficient is calculated for a number of different uniform dielectric materials 

filling the circular guide (including air, Teflon, and sapphire), and compared with 

actual measurements of these materials. Then in section 4.6 the substrate effect for thin 

metallic layers is modeled, and the frequency dependence of the substrate impedance is 

calculated and compared to that derived from actual measurements. 
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4.2 Waveguide Modes 

4.2.1 Waveguide Equations 

We begin,[10] as usual, by writing down Maxwell's equations: 

ao 
VxH =J +at 

ae 
VxE =-

at 

V-D=p 

V-B = 0 
(4.1) 

We assume a periodic time dependence of e+irot for all fields and currents, and also 

assume the constitutive relations J=oE, and B=µH. Then the time dependent 

Maxwell's equations can be written as 

VxH = icoi::E VxE = -icoµH (4.2) 

with E=fo(Er - icr/co eo). Combining the above equations yields the wave equation for E 

andH: 

We now assume a spatial variation of the fields in the z-direction of 

E-E(x,y) e(irot±yz) 

H-H(x,y) e(irot ±yz) 

(4.3) 

(4.4) 

Writing the gradient operator as V2 = V i2 + a2/ilz2 gives the following equations for E 

andH: 

vf( ~ ) = - (f + co2µe) ( ~ ) (4.5) 

Note that y is found by solving equations ( 4.5) subject to the appropriate boundary 

conditions. 

It is also useful to separate out the z-component of the fields, writing 
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E=E1+E.,k, and B=B 1+B.,k, where k is a unit vector in the z-direction. Combining 

these expressions with the expanded form of the gradient operator (V2 = V / + ·,P/dz2) 

allows one to rewrite Maxwell's equations in a form which explicitly separates the 

transverse and z components of the fields. From the first expression in Eq. 4.2, 

VxH=iOJ£E one obtains the following equations 

(4.6) 

(4.7) 

Similarly, from VxE= -iroµH one obtains 

(4.8) 

(4.9) 

Also, decomposing V · D=O and V · B =O gives 

(4.10) 

The electromagnetic field configuration inside a waveguide can be expressed in 

terms of a complete set of orthogonal modes. These modes can be categorized by the 

presence or absence of the z-component of the electric or magnetic field, and are 

designated as TM (transverse magnetic, Hz=O), TE (transverse electric Ez=O), or 1EM 

(transverse electromagnetic, Hz=Ez=O). The general procedure to obtain expressions 

for the modes in a cylindrical waveguide is as follows. First, solve Eq. 4.5 for Ez or 

Hz subject to the appropriate boundary conditions. Then use Eqs. 4.6-4.9 to solve for 

the transverse components of the field once Ez or Hz is known. This procedure will be 

used in the following sections to calculate the appropriate modes in a coaxial 

waveguide and in a circular waveguide. 
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4.2.2 Coaxial TEM Mode 

The TEM mode has by definition no z-component for both the electric and 

magnetic fields. Substituting Hz=Ez=O into Eqs. 4.8 and 4.10 gives the following 

equations for E1 

(4.11) 

with similar equations for H1. The transverse electric field in the TEM mode can 

therefore be found by solving the following equation 

(4.12) 

Note that Eq. 4.12 combined with Eq. 4.5 gives the propagation constant for the TEM 

mode as 'Y = ±iro,/ (µe ), independent of the geometry of the system. 

A solution to Eq. 4.12 in cylindrical coordinates is given by 

(4.13) 

where Ao is a constant to be determined from normalization. The general normalization 

condition is J ie/·dA = I, where ej is the jth mode in the waveguide and the integration 

is carried out over the cross-sectional area of the waveguide. For the TEM mode in a 

coaxial waveguide of inner and outer radius a and b respectively, this normalization 

condition gives 

ajr,8)= 1 1 
Y 21t ln(b/a) r (4.14) 

The transverse magnetic field for the coaxial TEMmode can be found fromEq. 4.7 or 

Eq. 4.9, using the assumed z-dependence given by Eq. 4.4 and the fact thatEz=Hz=O, 

and for a wave traveling in the +z direction is given by 

(4.15) 

54 



Note that this gives for the field impedance of the coaxial TEM mode the following 

(4.16) 

4.2.3 Higher Order Coaxial Modes 

In addition to the TEM mode, higher order modes can be present in a coaxial 

transmission line. Under normal circumstances, the operating frequency of the coaxial 

transmission line is below the cutoff of any higher order modes, so that only the TEM 

mode (which has no cutoff frequency) can propagate. Higher order modes can be 

excited at the location of any discontinuity in the transmission line, and can make 

important contributions in these regions. In this section the orthonormal ™mn modes 

with m=O will be calculated. TM modes with m;;-0 and TE modes will not occur for an 

azimuthally symmetric coaxial waveguide. 

To obtain the ™oN modes in the circular coaxial waveguide it is necessary to 

solve Eq. 4.5 in cylindrical coordinates for the z-component of the electric field, 

subject to the appropriate boundary conditions. The equation to solve is 

(4.17) 

where a.2 = (y- + co2µ£). This is simply Bessel's equation, and the azimuthally 

symmetric solutions for the coaxial region are a linear combination of Bessel and 

Neumann functions of order 0. The boundary conditions to be enforced are E,(r=a) = 

E,(r=b) = 0, and the solution is 

EJr,<1>) = K [Jo(CXoN a) No(O.ON r)- No(aoN a) Jo(aoN r)) (4.18) 

where K is a constant and the eigenvalues UoN are the solutions to 
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[Jo(aoN a) No(<XoN b) - No(<XoN a) Jo(<XoN b)] = 0 (4.19) 

The first few eigenvalues for 2a=0.020" and 2b=0.065" are (u.01 - u.04) = (1.3749, 

2.7821, 4.1826, 5.5832). 

The transverse fields are found by combining Eqs. 4.7 and 4.9 with E, given 

by 4.18, and are given by 

(4.20) 

(4.21) 

The constant KN will be determined from the normalization condition. Note that the 

field impedance of the TM modes is given by 

(4.22) 

where the propagation constant of the ™oN mode is given by YN = --i(u.0N2 - ro2µE) 

(see Eq. 4.17). 

The normalization constant KN is determined by demanding that the integral 

IE,12 over the cross-sectional area of the coaxial waveguide be equal to unity. The 

result for the normalized modes er is 

(4.23) 

The function Zi(CXQNr) is simply a linear combination of Neumann and Bessel 
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4.2.4 Circular Waveguide Modes 

To find expressions for the modes in a circular waveguide of radius r0, the 

same procedure is followed as in section 4.2.3 above, with slightly different boundary 

conditions. The same considerations concerning azimuthal symmetry apply, so that the 

only modes allowed in the circular waveguide are the TMoN• as was the case for the 

circular coaxial waveguide. The expression to solve for Ez is given by Eq. 4.17, 

subject to the boundary conditions that E,(r=r0)=0, and E,(r=O) remain finite. The 

resulting solution for Ez is 

(4.24) 

where Jo(x) is the Bessel function of order O and xoN is the nth root of Jo(xoN)=O. The 

propagation constant for this case is given by YN2 = (xON/ro)2 - co2-Y(µ£). The 

corresponding expressions for the transverse electric and magnetic fields are also found 

in a manner analogous to section 4.2.3, and are given by 

(4.25) 

(4.26) 

Once again the field impedance of the TM modes is given by 4.22. 

The constant AN is as usual found from the normalization condition. The fully 

normalized expression for the electric field is given by 

J1(XrON r) 
e,(r,<I>) = 0 

ro fie J 1(xoN ) 

(4.27) 

The normalized h~ can of course be found from 4.27 and the expression for the field 

impedance, Eq. 4.22. 
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4.3 Mode Matching Calculation 

In this section a general procedure for calculating the reflection coefficient at a 

discontinuity is described.[11] The fields on each side of the discontinuity (referred to 

as region 1 and region 2) are written in terms of the complete set of normal modes for 

the appropriate region. Then the coupling between the individual modes in each region 

at the location of the discontinuity is calculated. The goal in this work is to be able to 

calculate the reflection coefficient of the TEM mode in the coaxial transmission line as a 

function of the dielectric constant or conductivity of the material or materials filling the 

circular waveguide. Although we are interested in only the reflection coefficient of the 

coaxial TEM mode, it is necessary in general to include the effects of higher order 

modes in the coaxial transmission line because these modes are necessary to satisfy the 

boundary conditions on the electric and magnetic fields at the discontinuity. 

4.3.1 Expansion in Normal Modes 

The fields in each region are written in terms of forward ( toward the interface) 

and backward (away from the interface) traveling waves. The electric and magnetic 

fields in region 1 can then be written as 

m -
~l) = L, (F?) + Bf l) ej1l 

i=l 

m (F(I) B(ll) -
H(I) = L, i - i e\l) 

$ i=I z(l) 
1 

l 

(4.28) 

(4.29) 

where e/1) is the normalized electric field for the mode i in region 1, and z/1l is the 

field impedance of the mode i in region 1. The corresponding expressions for region 2 

are 
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n -
~2) = L, (Fj2) + Bj2 >) ej2) 

j=l 

n I F(2) B(2)) _ 
H(2) = -'\' \ i - i e\2) 

~ ~ z(l) ) 
1 

(4.30) 

(4.31) 

The minus sign in 4.31 comes from the different propagation directions for F/2l and 

B/2l relative to F/ll and B/Jl. The summations in Eqs. 4.28 - 4.31 in principle run to 

infinity, although in the calculations described later, only a finite number of modes are 

considered in the actual calculation. 

4.3.2 Application of Boundary Conditions 

Having expressed the fields in region 1 and region 2 in terms of normal modes, 

the next step is to enforce the appropriate boundary conditions at the location of the 

discontinuity (z=O in Fig. 4.1 ). For the time being, it will be assumed that the walls of 

the waveguides are perfect conductors, and that the dielectric filling each region is 

lossless. Also, for the experimental configurations of concern here, the radius of the 

circular waveguide is greater that the outer radius of the coaxial waveguide (R>b ). 

The boundary condition that must be enforced at z=O is simply that the 

transverse components of the total electric and magnetic fields must be continuous. 

The continuity of E1 at z=O is written as 

E\1l(z=O) = E\2>(z=O) a< r < b 

O=E?)(z=O) r<a;r>b 
(4.32) 

The second line in Eq. 4. 32 is a consequence of the assumption of perfect conductivity 

in the walls of the waveguides. The next step is to write the transverse electric field in 

terms of the normal modes for each region. Substituting Eqs. 4.28 and 4.30 gives 
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n - m -L (F;2> + Bf>) ej2l = L (F?l + Bj1>) e\1> 
j=l i=I 

a<r<b 
(4.33) 

=0 r<a; r>b 

The next step is to take the dot product of both sides of Eq. 4.33 with ek(2)*, and 

integrate over the cross-sectional area of region 2: 

Utilizing the fact that the modes are orthonormal in region 2 gives 

m 

Fj2> + Bj2) = L Pji (F'.1l + B?>) (4.35) 
i=I 

where Pji is defined by 

Pji = j e; 1
> · ~Z) dS1 

s, 
(4.36) 

where the integral is evaluated over the cross-sectional area of region 1. 

Applying the same boundary condition to the tangential H field, then 

multiplying by ek (l)* and integrating over the cross-sectional area of region 1 yields the 

following additional equation 

n 
p(l) - B(l) = _z(l) °" (F(2) - B(Z)) y(2l Pi·,· 

l l 1£.. J J J 
(4.37) 

j=I 

where ~(l,2) and yp,2l are the field impedance and admittance, respectively, of the 

given mode in each region. 

The set of coefficients Fi and Bi, etc. can be written as I-column matrices 
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p(l) 
1 

B(l) 
1 

F(l)= 
p(l) 

f -(1) 
B = 

B(l) 
7 (4.38) 

p(l) 
m 

B(l) 
m 

with analogous expressions for region 2. Then Eqs. 4.36 and 4.37 can be rewritten in 

the following form 

(4.39) 

p<1) _ i3<1) = _z<iJ .pT .y<z). (p<2) _ i3<2J) (4.40) 

In the above expressions, P is an m x n dimensional matrix whose elements Pij are 

given by 4.36. Also, z{l) is an m x m dimensional diagonal matrix, whose elements 

i:;_?) are the field impedance for the mode i in region 1. Likewise, y(Z) is an n x n 

dimensional diagonal matrix whose elements Yj}2) correspond to the field admittance 

for mode j in region 2. 

4.3.3 Scattering Matrix Formulation 

In order to establish the scattering matrix formulation of the mode-matching 

calculation, it is necessary to relate the coefficients of the backward traveling waves, 

B(1) and B(2) (in the notation ofEqs. 4.38) to the coefficients of the forward traveling 

modes, p(l) and p(2). This is given by 

B(l) = S11 p(l) + S12 p<Z) 

B<2) = S21 p(l) + S22 p(Z) 

(4.41) 

These relations define the four scattering matrices. From Eq. 4.41 it is clear that S 11 

is an m x m dimensional matrix that gives the reflection of the ith mode at the interface 

due to the incidence of the jth mode, etc. 

In what follows the individual scattering matrices will be calculated in terms of 
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the field impedances (or admittances) of region 1 and region 2, and the coupling 

coefficients Pji· The expressions are quite general, and are not limited only to the 

coaxial to circular interface shown in Fig. 4.1. In fact, the scattering matrix 

formulation will be used also to calculate the response at the interface of different 

dielectric material within the circular waveguide. In addition, the scattering matrices 

will be derived for the simple case of a uniform section of waveguide of finite electrical 

length. 

4.3.3.1 Interface Regions 

From Eq. 4.41, it is clear that in order to identify the scattering matrices, it is 

necessary to simply obtain an expression for B(l) in terms of F<1) and p(2), and 

likewise for B(2) in terms of F(1) andF(2)_ This requires only that Eqs. 4.39 and 4.40 

be solved simultaneously for the desired quantities. After some algebra the following 

expressions are obtained for the scattering matrices[l l] 

S11 =[I+ z0).pT.y(2).pJ-1[1 _ z0).pT.y(2).p] (4.42) 

S12 = 2 [1 + z0).pT.y(2).pJ-1 z(l).pT.y(2) (4.43) 

S21 =2[1 + p.z(l).pT.y(2lJ-1 p (4.44) 

s22 = -1 [1 + p.zoJ.pT.y<2JJ1 [1 _ p.z<1J.pT.y<2J] (4.45) 

4.3.3.2 Uniform Regions 

The above equations represent the scattering matrices for any interface between 

two regions. For a complete description, it is also necessary to obtain expressions for 
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a homogeneous waveguide region of finite electrical length. For a transmission line of 

length C and having a propagation constant y, S 11 = S 2 2 = 0, and S 1 2 and S 2 1 are 

both diagonal, having matrix elements given by (S 1 2)ii = (S 2 1)ii = exp(-r/,). 

4.3.4 Combination Formulae 

Having obtained expressions for the scattering matrices for both interface 

regions and homogeneous regions, it only remains to determine how the S-matrices are 

combined together. To illustrate the process, consider the situation shown in Fig. 4. 2, 

in which the total S-matrices for two regions, region a and region b, have already been 

determined. 

F (1) F (2) Bb 1 ~ 
- a a -

( ) (2) 

--- sa - sb ---... .- -- - • 
-B (1) B

8
(2) Fb(1) F (2) -a b 

F(1) B(2) - --- s 
- -- ----- a(1) F(2) -

Fig. 4.2. Detennination of the combination fonnulae for the scattering matrices. 

It is then desirable to obtain the total S-matrices of the composite structure. Since the 

S-matricesrelate the coefficients of the forward and backward traveling waves incident 

on each region, the S-matrices of the composite structure can be found by algebraically 

solving for the coefficients B}1land Bb (2) in terms of Fb (2) and Fa(!)_ Determination of 

the S-matrices for the composite structure is in practice accomplished by writing down 

Eqs. 4.41 for regions a and b, and using the relation Fa (2) = Bb (I) and B}2) = Fb (I) to 

eliminate the unwanted coefficients. The result is expressed in terms of the given S-
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matrix written in terms of the individual S-matrices ofregions a and b[ll] 

(4.46) 

The combination formulae given above can be used to build up the total S

matrices of a more complicated configuration by calculating the S-matrices of the 

individual interfaces and homogeneous sections, and combining them according to 

Eqs. 4.46. This procedure is used in what follows to calculate the reflection coefficient 

S 11 of the TEM mode in the coaxial transmission line at the location of the 

coaxial/circular waveguide interface as a function of an arbitrary number of 

superconducting, normal conducting, and/or dielectric regions in the circular 

waveguide. 

4.4 Coaxial to Circular Waveguide Transition 

In order to complete the calculation it is necessary to calculate the coupling 

coefficients Pji for the coaxial to circular waveguide transition. The coupling matrix P 

between regions of circular waveguide that have different dielectric filling media is 

simply the unit matrix, since there will be no mixing of different modes for the same 

geometry. In this section the coupling coefficients for the coaxial to circular transition 

with the geometry shown in Fig. 4.1 will be calculated. This is simply the evaluation 

of the integral in Eq. 4.36, using the orthonormal modes for each region that were 

calculated in section 4.2. The effect of the finite conductivity of the waveguide walls 

will also be considered. 
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4.4.1 Calculation of the Coupling Coefficients Pj i 

The first set of coefficients to calculate is Pjo• which correspond to the coupling 

from the coaxial TEMmode to the™oj mode in the circular waveguide. Using Eqs. 

4.14 and 4.27 in the Pji definition 4.36 gives 

(4.47) 

Evaluating the integral gives 

(4.48) 

The corresponding calculation for the coupling coefficients between the coaxial 

TM and the circular TM can be found by evaluating the following integral, which 

utilizes the normal modes from Eqs. 4.23 and 4.27 

(4.49) 

with the result for the remaining Pji 

xoJro 
(4.50) 

Recall that x0j is the jlh zero of J0(x), and a0i is found by solving Eq. 4.19, and Z1(x) 

is given in section 4.2.3. 

4.4.2 Finite Conduction Losses 

The effect of finite conduction losses in the walls of the circular waveguide is to 

modify the propagation constant Yi derived in section 4.2.3, by making it in general a 

complex quantity. In order to obtain an expression valid at and below the cutoff 

frequency of the mode under consideration, one needs to use the perturbation of 

boundary conditions technique. The modified expression for the propagation constant 
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y is given by[ 10] 

(4.51) 

where Yo is the unmodified expression for y given in section 4.2.3, r0 is the radius of 

the waveguide, and cr is the conductivity of the walls of the waveguide. 

4.5 Reflection Coefficient of Dielectric Materials 

One immediate application of the above formalism is to evaluate the dielecnic 

constant as a function of frequency of a uniform dielecnic material that fills the circular 

waveguide region. After measuring the frequency-dependent reflection coefficient of a 

layer of material with unknown dielecnic constant, the above formalism can be used to 

calculate the frequency-dependent reflection coefficient while varying both the real and 

imaginary parts of the dielecnic constant of the unknown layer. The above formalism 

could also in principle lead to a method by which the dielectric constant of the 

unknown material as a function of frequency could be directly calculated from the 

measured reflection coefficient. Such a procedure to determine the dielectric constant 

vs. frequency in the range 45 MHz-50 GHz would be extremely valuable for 

determining the dielectric response of some of the exotic dielectric materials used in 

making superconducting circuits, in particular thin film dielecnics. 

The experimental set-up for measuring dielecnic samples that is used is the one 

shown in figure 2.4, with the contacted film and substrate replaced by a dielecnic 

material that uniformly fills the cylindrical copper housing. 

4.5.1 Air 

The simplest dielectric material to study is air, which is easily realized in 

practice by measuring the reflection coefficient of the empty 
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copper housing shown in Fig. 2.4. In this geometry the end cap of the housing is 

removed, along with the spring and copper pedestal. The calculation for such a 

geometry consists of a layer of uniform material with a relative dielectric constant of 1 

+ Oi of the appropriate thickness, backed by a uniform impedance of 3770., which 

represents the impedance of free space beyond the cavity. 

The measured and calculated frequency response of the magnitude and phase of 

the reflection coefficient for an air-filled circular waveguide are shown in Fig. 4.3 

(magnitude) and Fig. 4.4 (phase). Losses due to the waveguide walls are also 

included, with Pwans=lxl0-7 0.m. Both the magnitude and the phase show good 

agreement between the calculation and theory, to within a few percent. The deviations 

at higher frequencies are most likely due to calibration errors. The most noticeable 

feature is the resonance that occurs at approximately 23 GHz, which corresponds to the 

cutoff frequency of the TM01 mode in the air-filled circular waveguide. 
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waveguide as a function of frequency. 
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A practical use of this simple measurement could be as a calibration standard. 

One could use the air dielectric measurement, along with a measurement of a thick 

normal metal sample (as shown in Figs. 3.4 and 3.5, for example) as more accurate 

calibration standards for measurements performed utilizing this geometry. Also, by 

varying the value of the resistivity of the walls in the calculation one can obtain a good 

estimate for the contribution of the walls to the overall loss. 

4.5.2 Teflon 

Teflon represents a good choice to investigate the utility of the measurement 

system to obtain dielectric constants of bulk materials, in part because it is easy to 

machine into a shape which fits snugly intothecircularwaveguide. In this section, the 

reflection coefficient measurements of bulk Teflon will be presented for two different 

configurations, and compared with the calculated results in an effort to see how 

accurately the measurement system can be used to determine bulk dielectric properties, 

and to show some of the range of physical situations that can be simulated with the 

formalism described above. 
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The first measurement configuration is for a cylindrical sample 2. 7 mm long 

which is inserted into the circular waveguide without a metallic pedestal. In order to 

simulate this configuration we calculate the response for a layer of dielectric of the 

appropriate thickness, followed by a layer of air also of the appropriate thickness, all of 

which is backed by the free space impedance, as discussed in section 4.5 .1. The 

comparison of the measurement and the simulation is shown in Fig. 4.5 (magnitude) 

and Fig. 4.6 (phase). The calculation shown is for a relative dielectric constant of 
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Fig. 4.5. Frequency dependence of the magnitude of the reflection coefficient for the 2.71 mm Teflon 

sample backed by air. 
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Fig. 4 .6. Frequency dependence of the phase of the reflection coefficient for the 2. 71 mm Teflon 
sample backed by air. 
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fr=2.0 -0.02i. The disagreement between data and calculation at high frequencies 

could be due to a dielectric constant that varies with frequency. 

The second measurement configuration is for the a 5.4 mm thick Teflon 

sample, this time backed by a bulk copper pedestal. The calculation shown below in 

Figs. 4.7 and 4.8 assumes that the resistivity of the bulk copper pedestal is the same as 

the waveguide walls, Pcu=lx10·7 Qm. In comparison to Figs. 4.5 and 4.6, the 

thicker Teflon sample shows a greater number of higher-order modes, which is what 

one would expect qualitatively for a larger sample. 
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Fig. 4.7. Frequency dependence of the magnitude of the reflection coefficient for the 5.4 mm Teflon 

sample backed by a copper pedestal. 
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4.5.3 Sapphire 

An example of a material used as a substrate for superconducting films is 

sapphire. For the dielectric measurements here, circular sapphire substrates were 

obtained of thickness 0.56 mm and diameter 0.4 inch, so that they would fit as snugly 

as possible into the circular waveguide. The orientation was R-plane, which is 

commonly used to grow high Tc superconducting materials, but which has an 

anisotropic dielectricconstant.[12] Figs. 4.9 and 4.10 show the data and simulations 

for a sapphire substrate, with a value for the relative dielectric constant of i;.=10 + Oi 

for the simulation. The data clearly shows the effect of the smaller volume and much 

higher dielectric constant of sapphire relative to the Teflon, which give many more 

modes over the same frequency span. Also complicating the measurement is the fact 

that the dielectric constant in R-plane sapphire is not isotropic. In spite of these 

problems, however, we do obtain reasonable agreement between the measured phase 

and the simulation at low frequencies, where the number of propagating modes in the 

substrate is small. 
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Fig. 4.9. Frequency dependence of the magnitude of the reflection coefficient for the 0.56 mm 
sapphire substrate backed by a copper pedestal. 
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4.6 Substrate Effect Calculation 

The most useful result that can be obtained from the calculation outlined in this 

chapter for the work presented here on superconductors is the ability to calculate the 

contribution to the effective impedance of fields that propagate into the substrate. In 

section 3.4 a method was outlined by which it is possible to obtain a measure of the 

effective impedance of the substrate, but the functional form of the frequency

dependent substrate impedance was unknown. In this section that method will be 

verified by using the same procedure to extract the effective substrate impedance from 

simulated data, and comparing it directly with the calculated effective substrate 

impedance. The calculated frequency dependence of the substrate impedance will then 

be compared with the frequency dependence of the effective substrate impedance 

derived from normal state measurements of thin superconducting films in section 3.4. 

Following the discussion of section 3.4, the first calculation is of the reflection 

coefficient of a thin normal metal film backed by a dielectric layer on a bulk metallic 

pedestal. This simulates the effective impedance zseff(co) in equation 3.12. In order to 

simulate the de resistivity data, the reflection coefficient of the normal metal thin film is 
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calculated in the limit of infinite substrate impedance ( this corresponds to the 

assumption that at de the impedance of the substrate is very large). The calculated 

reflection coefficients are then converted to impedances according to equation 3.1. In 

Figs. 4.11 and 4.12 the real and imaginary parts of the calculated effective impedance 

for the two cases are shown. Note that these figures are qualitatively very similar to 

the corresponding measured quantities shown in Figs. 3.9 and 3.10, which show the 

frequency response of a superconducting film in the normal state backed by a square 

substrate. 

12 ...... ., ------··· ----·,,,. --· ·--, ·,,--,..-,--r--"'1·• ---.,----
~ i .; • ' '\ 11 1 

,.__,___.~ .... ).~ 

.... l ······11 
""' 10 
C 
'-' 

8 - .... 
• N 6 --o:! 

~ 4 

2 

0 
0 10 20 30 40 50 

Frequency (GHz) 
Fig. 4.11. Simulation of the frequency dependence of the real part of the impedance for a thin film 

plus a substrate, and the thin film alone. 
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In order to derive the effective substrate impedance, Eq. 3.12 is applied to the 

simulated data shown above. The effective surface impedance derived in this way is 

shown in Fig. 4.13, along with the frequency dependence of the substrate impedance, 

calculated using the same parameters. This figure shows that the procedure outlined in 

section 3.4 to obtain the substrate impedance is valid. Also note the similar functional 

dependence on frequency of the calculated substrate impedance, and the substrate 

impedance derived from measurements in Fig. 3.11. 
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Chapter 5 

Fluctuation Effects in the Conductivity of YBCO Thin Films 

5.1 Introduction -· Fluctuations in Superconductors 

Fluctuation effects in the vicinity of phase transitions have drawn much interest 

in recent years. In the high temperature superconductors it is believed that fluctuation 

effects are larger, and the region of temperature over which they are important is much 

wider than in their low temperature counterparts, allowing for fluctuations to be studied 

in far greater detail in these superconducting systems.[!] The high Tc superconductors 

may also provide the opportunity to measure critical behavior near the superconducting 

phase transition,[2] which is precluded in the low Tc systems because the critical 

regime is unobservably narrow. 

The effects of thermal fluctuations near a critical point can be observed in a 

number of different experimental quantities, such as the specific heat, susceptibility, de 

conductivity, etc. In this chapter the effects of fluctuations on the microwave 

conductivity of high Tc superconductors (primarily above Tc) are investigated in detail. 

This chapter describes a systematic study of dynamical fluctuation effects in the 

temperature and frequency dependent conductivity of YBCO thin films measured over 

three decades of frequency in the microwave range (45 MHz - 45 GHz). Previous 

observations of the ac fluctuation conductivity have been reported in the temperature 

dependence of the conductivity of thin lead films at (discrete) microwave frequencies 

by Lehoczky and Briscoe[3], while Tanner measured the frequency dependence of the 

fluctuation conductivity at far-infrared frequencies, also using thin lead films.[ 4] Both 

experimental studies found quantitative agreement with the 2D Gaussian fluctuation 

theory, based on time dependent Ginzburg-Landau theory. Previous work on 

fluctuation conductivity in the cuprates has focused mainly on de resistivity vs. 
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temperature measurements in YBCO crystals,[5,6,7] where the measured data was best 

fit by the 2D Gaussian fluctuation theory well above Tc and 3D Gaussian theory closer 

to Tc. Recently there have been reported measurements of the zero-field fluctuation 

conductivity at finite frequency in YBCO, observed in the temperature dependence of 

the conductivity above Tc at 9.6 GHz on single crystals.[8] These measurements also 

showed 2D Gaussian fluctuations for T > Tc, consistent with the de measurements. 

Critical fluctuation effects can be observed when fluctuations become 

sufficiently large so that the Gaussian approximation treatment of the Ginzburg-Landau 

free energy is no longer valid. The critical region is identified experimentally by 

measuring quantities such as the fluctuation lifetime ,:fl and correlation length I;, which 

diverge differently than predicted by the Gaussian theory as T -; Tc within the critical 

region. Evidence of critical behavior in the cuprate superconductors has been reported 

in the temperature dependence of the microwave penetration depth of YBCO single 

crystals as Tc is approached from below.[8,9] Such measurements reveal a 

surprisingly wide critical region below Tc (- 5-10 K), which exhibits 3D XY critical 

behavior. Heat capacity data also show 3D XY behavior [ -0.03 < (2-dv) <0] for T = 

Tc± 10 K.[10] Above Tc there has been no definitive observation of critical effects in 

the high Tc materials in zero magnetic field. Efforts to observe critical behavior in 

temperature-dependent conductivity measurements are hampered by the inability to 

measure closely enough to Tc and are also often clouded by the question of sample 

homogeneity. It is therefore very importantto explore different experimental degrees 

of freedom in order to determine if a critical region exists above Tc in the high Tc 

materials, and if so, what are the critical exponents and scaling functions that describe 

the approach to the phase transition. 

The ability of the Corbino reflection technique to extract the frequency 

dependence of the conductivity in addition to the temperature dependence at 
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temperatures through Tc provides additional essential information on the nature of the 

phase transition at Tc- By measuring the frequency dependence of the magnitude and 

phase of the fluctuation contribution to the conductivity, we can extract a measure of 

the thermodynamic critical temperature and the dynamical critical exponent z (both of 

which are difficult to determine using solely the temperature dependence). This fact 

has been utilized in lower frequency measurements to locate a phase transition from a 

vortex liquid to a vortex solid in finite fields in YBCO films[ 11, 12, 13] and in Mo3Si 

films[14], where the characteristic time scales are longer. Our access to the frequency 

dependence also allows us to directly observe the effect of the finite fluctuation lifetime 

on the conductivity above Tc, and also to determine how that lifetime diverges as T -; 

Tc in an effort to identify critical phenomena. 

In what follows, we will first describe in section 5.2 the current theoretical 

understanding of fluctuation effects in superconductors. This will be followed in 

section 5.3 with a detailed analysis of the temperature dependence of the de resistivity, 

with the goal of obtaining a measure of the normal state or mean-field contribution to 

the experimentally measured conductivity. In section 5.4 the frequency dependence of 

the complex conductivity in the immediate region of the superconducting phase 

transition will be analyzed in terms of the fluctuation theories outlined above, and in 

section 5.5 the temperature dependence of the fluctuation contribution to the 

conductivity will be explored. Finally in section 5.6 the dependence of the fluctuation 

effects on sample quality will be addressed by analyzing the fluctuation conductivity of 

samples of varying quality. 

5.2 Models of Fluctuations in Superconductors 

5.2.1 Mean-field Theory: Ginzburg-Landau Theory 

This section gives a brief summary of the application of Ginzburg-Landau (GL) 
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theory to calculate the effect of fluctuations of the order parameter on the conductivity 

of a superconductor. This section is not meant to be a complete description of 

Ginzburg-Landau theory; more complete treatments are available from a number of 

sources.[15,16,17,18] In what follows time independent GL theory will first be 

briefly described, followed by the generalization of GL theory to include time

dependent effects. Then the expressions for the fluctuation conductivity in three 

dimensions derived from time-dependent Ginzburg-Landau (TDGL) theory will be 

presented, followed by the corresponding expressions valid for two dimensions. 

Consider GL theory for a spatially uniform order parameter. Spatial uniformity 

can be assured by considering superconducting particles which have all dimensions 

smaller than the GL coherence length ~(T). Then the GL free energy of the 

superconducting state relative to the normal state can be written as an expansion in the 

order parameter 'I' 

(5.1) 

with a.=aoe, where ao and P are positive constants which are temperature independent 

near Tc, and Vis the volume, and E=ln(T/fc) ~ (T-Tclffc- The function ~Fis plotted 

as a function of l\ffl for temperatures above and below Tc in Fig. 5.1. 

The most probable value for the order parameter 'I' is that which gives a 

minimum in the free energy. For T<f0 it is clear from Fig. 5.1 that the minimum of 

Mis obtained for a non-zero value of l'lfl- For T> T0 the most probable value for the 

order parameter is l\ffl = 0, however, values of the free energy within kBT of the 

minimum value are also likely. This means that due to thermal fluctuations it is 

possible to have a non-zero value for the order parameter above Tc, which implies the 

existence of evanescent Cooper pairs above Tc with finite probability. 
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Fig. 5.1. The difference in the free energy of the superconducting state relative to the normal state 
above and below Tc as a function of order parameter. The circles indicate values of the order parameter 

that are also probable. After [18]. 

In order to include spatial variations and magnetic fields the free energy density 

(LiF=f f dV) must be modified as follows 

f = aj1vi2 +~ +-1- V~v - e* A) ,.J
2 

2 2m* ~1 'l'I (5.2) 

If we can assume that hj/12 is small, we can neglect the j3hjll4, and obtain the following 

expression for the free energy in the Gaussian approximation 

f= aj11,j2 +-1- V~v - e*A) ,.J2 
2m* ~ I 'l'I (5.3) 

Expanding IJI in a Fourier series as IJl(r) = I.k IJlkexp(ik-r) gives for the free energy per 

unit volume with A=O: f = I.k (a. + n2k2/2m*) hjlkl2. It is possible to calculate 

thermodynamic average quantities by using this form for the free energy functional in 

the Boltzmann factor and integrating over all possible values of k. The result for the 

thermodynamic average of l1J112 is <11J1kl2> = k8T/a.(1 +k2~2), where ~ is the GL 

coherence length, defined by 
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T -( -pz2 )1/2 - 1;o s( ) - 2m*lal - ,~l/2 (5.4) 

The meaning of s physically can be seen by considering the spatial correlation 

function of the order parameter g(r,r')=q*(r)\jl(r')>. Writing the relative coordinate 

R=r-r', valid for a homogeneous system, gives g(R) = Ik <l'Jfkl2>exp(ik·R). 

Converting the sum to an integral and using the above expression for <l'Jfkl2> gives the 

result 

(R) = m*knT exp{-R/s(T)) 
g 2rcn R 

(5.5) 

This gives spatial correlations which fall off exponentially over a length scale defined 

by s(T). The quantity s(T) therefore gives approximately the spatial extent of the 

fluctuations. 

The functions 'Jl(r) and A(r) are determined by minimizing the volume integral 

of the free energy density in (5.3) with respect to 'JI. In this manner one obtains the 

time independent GL differential equation 

(5.6) 

By minimizing the free energy with respect to the vector potential A one obtains the 

following equation for the current density J 

(5.7) 

In order to calculate the effect of fluctuations of the order parameter on the 

conductivity, it is necessary to include a time dependence in the Ginzburg-Landau free 

energy, since the excess conductivity due to fluctuations will be directly proportional to 

the lifetime of the fluctuations. The simplest time dependent generalization of (5.6), 

neglecting electromagnetic potentials, is given by 
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a."' + 131'1f'I' -.1L v
2
"' = - y n ~"' 2m* dt 

(5.8) 

The linearized TOOL equation is then obtained by neglecting the non-linear term 

131'1'12'1', and is given by 

The temperature-dependent relaxation time of the k=O mode is given by 

ny 'to 
'fGl.,=-=-

u I~ 

(5.9) 

(5.10) 

The above formalism can be used to calculate the contribution to the 

conductivity of superconducting fluctuations. Such a calculation has been carried out 

by Schmidt,[19] and later by Dorsey[20]. The results for the fluctuation conductivity 

(O' = cr1 - icr2) depend upon the dimensionality of the system, and are given in three 

dimensions by 

(5.11) 

Here F 1±(cot) and Fl(cot) describe the frequency dependence above(+) and below(-) 

Tc, and O'oc is the de fluctuation conductivity given by 

cr3Jt = 2 
3211~0 e1l2 (5.12) 

where once again E=ln(T/Tc). The expression for the de fluctuation conductivity was 

first worked out by Aslamazov and Larkin.[21] In three dimensions, the frequency 

dependent functions F+ are given for T > Tc by 

(5.13) 
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C; cr(!µk11"':\ 
\/DO 

The functions p· for T < Tc are given below for reference, also in three dimensions 

Fj(cot)= 8 [Y2°-(l+(cot)2)·
1
l
4
. ((1-(cotf}x + 2onY)] 

3(1-$)t)2J 

F2(cot)= swrf.a +2(l+(cot)2)·1/4_ (x _ (1-(cotf) y )] 
3(1-+totfJ 2cot 

(5.14) 

where X=cos[(l/2),tan·l(cot)], and Y=sin[(l/2)·tan·1(cot)]. The fluctuation relaxation 

time 't is given by 

(5.15) 

In two dimensions the results for the fluctuation conductivity are given by the 

following 

?D ?D + 
crj' = o-DC' G j"( cot) 

?D ?D + 
<,z = o-oc·G 2(cot) 

(5.16) 

where once again the functions G±( cot) describe the frequency dependence, and the 

two-dimensional de fluctuation conductivity is given by 

(5.17) 

Here d is the film thickness. The frequency dependent functions a+ for T > Tc in two 

dimensions are 

Gt(cot)= o!t[n-2tan·1lc.!t)· o!t· ln(l+(cotf)] 

G!(cot)= o!t[-2+~- ~ 1an·
1(o!t)+1n(l+(cot)2)] 

while the corresponding expressions for T < Tc are 

(5.18) 

(5.19) 

The fluctuation relaxation time 'tis the same in two dimensions, given in Eq. 5.15. 
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5.2.2 Scaling Theories 

The above treatment of the fluctuation conductivity is valid as long as the order 

parameter is small enough so that the non-linear terms in Eq. 5.8 can be safely 

neglected. Under circumstances where the non-linear terms are important, such an 

expansion of the free energy is no longer valid and other approaches must be adopted. 

In this section a more general scaling theory will be described, which utilizes 

dimensional arguments to obtain a form for the conductivity that is valid even when the 

fluctuations are large. 

The general scaling theory for the conductivity[ 1,20] starts with the assumption 

that the correlation length S diverges as T -t Tc (e-t0) as 

(5.20) 

where the exponent v can take on any value, and is not restricted to be V= l/2 as in the 

Gaussian theory (see Eq. 5.4). To describe the behavior of the conductivity, the 

theory also assumes a fluctuation relaxation time 't that diverges as e-tO as 't - S2
, 

where z is the dynamical critical exponent. Utilizing the temperature dependence of S 

in Eq. 5.20 gives the temperature dependence of 't as 

(5.21) 

Once again, z can take on any arbitrary value and is not limited to the Gaussian value of 

z=2 (which gives 't -1/e, see Eq. 5.15). 

The form of the fluctuation conductivity at finite frequencies can be determined 

by dimensional arguments and the requirement that the conductivity remain finite as 

T-tTc. This requires that near Tc the finite frequency conductivity scale with the 

correlation length as 

o(T,ro) z S2-D+z SJCO't) (5.22) 
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where D is the dimensionality, z is the dynamical critical exponent, and S±(x) are 

temperature-independent scaling functions above ( +) and below (-) Tc. The quantity 't 

is the fluctuation relaxation time defined above (Eq. 5.21). If we write the conductivity 

as cr=lolexp(i<l>cr) then the phase of the conductivity should also scale near the phase 

transition as 

<l>o(T,co) = <1>:t(CO't) (5.23) 

where once again <l>±(x) are temperature-independent scaling functions. 

The scaling functions S± and <I>± take on simple limiting forms when T=Tc. 

Given the fact that relaxation time diverges as 't z ~z. in order that the conductivity 

remain finite as the ~ diverges, the magnitude of the conductivity must scale with 

frequency at Tc as 

lo(T=Tc)I = qo:j{2-D+z)/z (5.24) 

At T=Tc the phase of the conductivity is a constant independent of frequency that 

depends only on the dimensionality of the system D and the dynamical critical exponent 

z 

(5.25) 

5.3 Normal State Behavior: Temperature Dependence of the de 

Res is ti vity 

In order to look for fluctuation effects in our YBCO films, we first examine the 

temperature dependence of the de resistivity, which is measured in a separate 

experiment over the entire temperature range from room temperature down to TO and is 

shown for sample #NCL705b in Fig. 5.2. The de resistivity is measured after the gold 

Corbino contacts are evaporated onto the film, in a three-point configuration, with two 

contacts on the outer circular contact and one on the inner conductor contact pad (as 
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shown in Fig. 2.5). Figure 5.3 shows the numerical derivative dp/dT versus 

temperature of the same experimental data. Note from the dp/dT plot thatthe slope is 

approximately constant for most of the temperature range from room temperature down 

to within about 10-20K of Tc, at which point the slope begins to increase, indicative of 

enhanced conductivity as Tc is approached. 

250 ~-------------~ 

200 1----f----

,...._ 
8 150 1-----+-----+---c.Y,::__-+-_ 
u 
' ~ 100 1-------f----;;;,,C 

'-' 

a. 50 . ' . ' 
0 : 0 ----------+--

-50 ._.._~ ....... ~~,_,_~~ ........ ~~.._,_~_,_, 
50 100 150 200 250 300 

Temperature (K) 
Fig. 5.2. The temperature dependence of the de resistivity for sample NCL 705b. 
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Fig. 5.3. The numerical derivative dp/dT for the resistivity data in figure 5.2. 

The de resistivity vs. temperature data is relevant to the high frequency 

measurements presented here for two reasons. First, the behavior of the temperature 

dependent de resistivity can be compared directly with the results of other de resistivity 
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experiments that show evidence of fluctuation effects. Perhaps more importantly for 

the finite frequency experiments presented later in this chapter is the fact that an 

accurate value for the mean-field (or normal state) resistivity can be extracted from 

these de measurements. This can be accomplished because the total conductivity can 

be assumed to be composed of the sum of a mean-field contribution and a fluctuation 

contribution: at01(T,co) = a'11f(T) + crfl(T,co), where the mean-field term corresponds 

to a resistivity that is linear in temperature and frequency independent: amf(T) = 

1/(r0+r 1 · T). Then by fitting the temperature dependence of the de resistivity (shown in 

Fig. 5.2, for example), with an appropriate model for crfl(T,eo=O), the function a'11f(T) 

can be determined. This mean field contribution is then subtracted from the total 

conductivity measured at finite frequency to obtain the finite frequency fluctuation 

conductivity. 

The temperature dependence of the de fluctuation contribution to the 

conductivity depends on the dimensionality of the system, and is given for three 

dimensions by Eq. 5.12 and for two dimensions by Eq. 5.17. Because of the layered 

nature and strong anisotropy of the high Tc superconductors, it is not clear if one 

should use the three dimensional isotropic form for the fluctuation conductivity, or the 

two dimensional form with the film thickness given by the copper-oxide layer 

separation. In order to take into account the anisotropic nature of the cuprates, 

Lawrence and Doniach[22] created a model for the fluctuation conductivity which 

essentially interpolates between the 2D and the 3D forms above, and is given by 

~I - 92 1 c,LD -

16nd E [ 1 + ! (2~~(0) rr/2 (5.26) 

where here ~(0) is the c-axis correlation length at zero temperature, and d is the inter

layer separation. As can be seen from Eq. 5.26, when the c-axis correlation length is 
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much less than the inter-layer spacing (s/0) << d), the fluctuation conductivity reduces 

to the 2D Gaussian expression (Eq. 5.17), while in the opposite limit, when sc<0) >> 

d, Eq. 5.26 reduces to the 3-dimensional form (Eq. 5.12). 

With the above forms (2D, 3D, Lawrence-Doniach) for the temperature 

dependence of ofi(T,ro=O), the measured de resistance can be fit to the 2D and 3D 

Gaussian fluctuation models, as well as to the Lawrence-Doniach model. For the pure 

Gaussian models, 4 variable parameters are used: r0, r 1, Tc, and either d or SQ 

(depending on the dimensionality), while for the Lawrence-Doniach model 5 

parameters are used: r0, r1, Tc, d, and sc<0). We also attempt to fit the data without 

any fluctuation effects ( ofi=0), using only 3 parameters: r0, r1, and Tc. The results of 

these fits are given for sample NCL705b in table 5.1. As might be expected, the 

Lawrence-Doniach model fits the data the best, and this fit is shown along with the 

data, and also the fit using only the mean-field contribution ( crfl=0), in Figs. 5.4 and 

5.5. The parameters extracted from the Lawrence-Doniach fit seem to be physically 

reasonable, with an inter-layer separation of d=lO.0 A, and a c-axis coherence length 

of So= 0.91 A. These parameters give 2D fluctuations in the region far above Tc, 

which cross over to 3D fluctuations near Tc. The cross-over from 2D to 3D 

fluctuations occurs when the temperature-dependent correlation length becomes 

comparable to half the inter-layer spacing (Sc(0)/'1£ ~ d/2), which occurs at T = 90.58 

K for these fit parameters. These parameters seem to be in reasonable agreement with 

previous temperature-dependent measurements of the de conductivity of YBCO 

crystals[5,6,7]. In addition, the values for r0 and r1 for the 2D Gaussian, 3D 

Gaussian, and mean-field fits give values for the mean field resistivity at temperatures 

near Tc that differ from the Lawrence-Doniach value by at most 5%. 
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Fig. 5.4. Fits to the de sheet resistance vs. temperature using both the Lawrence-Doniach model of 

the fluctuation conductivity (solid line), and using just the mean-field conductivity (dashed line). 
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Fig. 5.5. The Lawrence-Doniach (solid line) and mean-field only (dashed line) fits to the de sheet 

resistance near Tc· 

Table 5.1. Parameters for fits to the de resistance vs. temperature data for sample #NCL705b. The fit 
quality is in Q/degree of freedom, and is a minimum for the best fit. 

fit r0(µQ-cm) r 1(µQ-cm) Tc(K) ~o<AJ d(A) fit qual. 

<x2J 
mf 7.159 0.694 90.00 - - 0.076 
2D 9.649 0.699 89.52 - 13.0 0.024 
3D 4.726 0.793 89.87 1.23 - 0.034 
ID 10.490 0.700 89.83 0.91 10.0 0.023 
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5.4 The Complex Resistivity Near Tc in YBCO Films 

The main advantage of the Corbino reflection technique is the ability to measure 

the complex resistivity p * = p1 + ip2 over a wide range of frequencies in the 

rnicrowaverange. Figure5.6 shows the temperaturedependenceof p 1 ata numberof 

different measurement frequencies for a typical YBCO thin film. Also shown in Fig. 

5.6 is the de resistivity measured as described above in section 5.3. The main feature 

of the temperature dependent data is the fact that the transition appears to broaden 

considerable as the measurement frequency increases. In the normal state, the data at 

different frequencies (including de) all describe the same curve, because the normal 

state scattering rate (lltn) is much greater than the measurement frequency over the 

entire measurement range. 
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Fig. 5.6. The temperature dependence of p1 /to at several different frequencies near the superconducting 
phase transition. 

The temperature dependence of p2fto is shown in Fig. 5.7 at the same 

measurement frequencies as Fig. 5.6. In the region below Tc, p2fto increases as the 
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measurement frequency increases, and the temperature at which the peak in P2/to 

occurs moves systematically lower for higher frequencies. Also of note is the fact that 

p2fto=O for all frequencies in the normal state, consistent with a normal state resistivity 

that is completely real. 
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Fig. 5. 7. The temperature dependence of P2flo at several different frequencies. 

Because the Corbino reflection technique is a swept-frequency measurement, it 

is possible to directly measure the frequency dependence that is apparent in Figs. 5. 6 

and 5.7. Figures 5.8 and 5.9 display the frequency dependence of the same sample at 

several different temperatures in the transition region. Above Tc p 1fto is roughly 

frequency independent, and p2fto is roughly zero, as pointed out in the temperature 

dependence above. In the midst of transition region both p 1fto and p2fto show 

considerable frequency dependence. At temperatures well below Tc the p 1fto is small, 

and p2fto is approximately linear in frequency, since p2fto = ~coA.2(1)/to for T <Tc. 
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Fig. 5.8. The frequency dependence of p1/to at temperatures in the vicinity of Tc· 
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5.5 Fluctuation Effects in the Frequency Dependent Conductivity 

In order to analyze the frequency dependent data, it is convenient to convert the 

measured complex resistivity to a conductivity. It is then simple to remove the mean

field contribution as determined from the de resistivity fits in order to investigate the 

frequency dependence of the fluctuation conductivity alone. 

5.5.1 Frequency Dependence at T=T c 

The frequency dependence of the fluctuation conductivity magnitude (lcrl=[ cr1
2 

+ criJ1f2) and phase (<!>0=tan-1[cr2/cr1]) in the vicinity of the superconducting phase 

transition are quantities of considerable interest. According to general scaling theory 

discussed above,[1,20] the phase angle of the fluctuation conductivity should take on a 

frequency-independent value at the critical temperature Tc that depends only on the 

dimensionality D of the system and the dynamical critical exponent z (see Eq. 5.25): 

q>
0

(T=Tc) =(Jt/2)·(2-D+z)/z. The corresponding behavior of the magnitude of the 

fluctuation conductivity is a power-law frequency dependence at T=Tc (see Eq. 5.24): 

icrfl(T=Tc)I - 1ro1a, with a=(2-D+z)/z. The frequency dependence of the magnitude and 

phase of the fluctuation conductivity can therefore be examined to locate the critical 

temperature, and to obtain a value for the dynamical critical exponent z assuming D is 

known. 

The measured frequency dependence of the magnitude and phase of the 

fluctuation conductivity is shown in Figs. 5.10 and 5.11 respectively at temperatures in 

the vicinity of Tc. The fluctuation conductivity is extracted from the total measured 

conductivity by subtracting off the frequency-independent value for the mean-field 

conductivity. It should be noted that using a different value for cr"1f(T) within the 

range given in table 5.1 (roughly ±5%) does not affect the results. To determine the 

critical isotherm we fit the frequency dependence of the magnitude of the fluctuation 
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conductivity in Fig. 5.10 to a power law as prescribed by Eq. 5.24, and obtain the best 

fit for the data at T=89.18 K, where lcr(co)I - co-0·62±0.0Z_ Examination of Fig. 5.11 

shows that the fluctuation conductivity phase angle takes on a roughly constant value 

also for the T=89.18 K data set, with a mean value of <?cr=0.64-(rr/2) and a standard 

deviation of 0.12-(rr/2). Note that for temperatures above (below) 89.18 K, the phase 

is an increasing (decreasing) function of frequency. The frequency dependence at T = 

89.18 K shows that the value of the power law of the fluctuation conductivity 

magnitude and the value of the (constant) reduced phase angle are the same (within 

experimental error), in agreement with the prediction of the scaling theory (Eqs. 5.24 

and 5.25). 

The values of the phase angle and the magnitude power law determine the value 

of the dynamical critical exponent z. However, since the data sets are taken at 0.2 K 

intervals, there exists some uncertainty in the exact determination of Tc from the 

frequency dependence of the conductivity. This uncertainty is estimated to be roughly 

half the separation in temperature between the data sets, which is 0.1 K. Due to this 

uncertainty in Tc there also exists a corresponding uncertainty in the determination of 

the critical phase angle and power law values. We can therefore conclude from the 

behavior of the frequency dependent fluctuation conductivity that the thermodynamic 

critical temperature for this sample is Tc = 89 .18 ± 0.1 K and the value of the 

dynamical critical exponent (with the assumption that D=3) is in the range z = 2.35-

2.95. Other samples give values for z as high as z=3. In all cases our results for the 

value of the dynamical critical exponent are significantly larger than the Gaussian 

prediction of z=2. Since the fluctuation relaxation time ,:fl diverges as ,: - ~2
, the fact 

that z > 2 suggests critical behavior in our samples. Determination of the dynamical 

critical exponent z from non-linear de resistivity measurements give widely varying 

results, from z=2.2±0.4[23] up to z=8.3±0.3.[24] 
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Fig. 5.10. Magnitude of the fluctuation conductivity in the vicinity of Tc. The solid line is a power 
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5.5.2 Scaling of the Frequency-dependent Conductivity above Tc 

The results obtained in section 5.5.1 for the dynamical critical exponent at Tc 

suggest that we look for scaling behavior in the frequency-dependent fluctuation 

conductivity at temperatures above Tc. From scaling theory it is expected that in the 

vicinity of a phase transition, the fluctuation conductivity should scale with the 

appropriate power of the (temperature-dependent) correlation length ~ and the 

fluctuation lifetime'tfl, as shown in Eq. 5.22. The function S+ (S_) in Eq. 5.22 is the 

universal scaling function above (below) Tc, which should be the same for all members 

of a given universality class, as should be the critical exponents v and z. With the 

assumption that D=3, Eq. 5.22 implies that the quantity cr/e-v(z-l) plotted vs. the 

scaled frequency ox,-vz should yield the universal scaling function S±. We can 

determine if our measured data obeys Eq. 5.22 by plotting the scaled conductivities, 

measured at different temperatures, vs. the scaled frequency and varying the 

parameters v, z, and Tc until the different data sets all collapse onto the same universal 

curve. We have determined already from the behavior of the critical isotherm (section 

5.5.1) that Tc = 89.18 ± 0.1 K and z~2.6, leaving just the value of v which can be 

adjusted to collapse the data. 

Figure 5.12 shows conductivity data from 5 different temperatures which 

collapses onto a single curve when scaled as described above with Tc= 89.10, z=2.6, 

and v=l.2. In the inset to Fig. 5.12 we have plotted the magnitude of the scaling 

function for D=3 in the Gaussian theory, which was first derived by Schmidt.[19] The 

two functions are qualitatively similar, however the scaling function that describes the 

data approaches a power law of -0.62 at large argument, while the 3D Gaussian scaling 

function approaches a power law of -0.50. The scaling behavior is relatively 

insensitive to the ultimate choice of Tc (within the above quoted error), although the 

value of v varies in the range (1.0 < v < 1.2) as a result of the specific choice of Tc. If 
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the value of vis fixed atv = 2/3 (which is the prediction of the 3D XY model), then the 

data does show scaling behavior if the value of z is increased to approximately z= 

3.5. Such a large value of z is inconsistent, however, with the conclusions of section 

5.5.1. 

1 

0.1 

.__ _____ .. 10·• 

z=2.6 
v=l.2 

1015 1016 1017 1018 1019 1020 1021 

ro/£ vz (rad./sec) 
Fig. 5.12. Scaling behavior of the magnitude of the fluctuation conductivity. The data sets shown are 

89.18 K (x's), 89.38K (circles), 89.58K (diamonds), 89.80K (+'s), and 90.00K (squares). 

While the magnitude of the fluctuation conductivity obeys the scaling relation 

given by Eq. 5.22, the phase of the fluctuation conductivity scales with the relation 

given by Eq. 5.23. When we plot our (unscaled) measured conductivity phase angles 

vs. the scaled frequency, with the same values for v, z, and Tc that we used 

to scale the magnitude of the conductivity, we obtain the results shown in Fig. 

5.13. Although the phase data shows more uncertainty than the magnitude data, it 

confirms the scaling behavior seen in the conductivity magnitude data. We have also 

plotted the 3D Gaussian scaling function for the conductivity phase angle in the inset to 

Fig. 5.13, which shows a similar functional dependence to our data, but reaches a 
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maximum value of 0.5 for large argument, whereas the function that describes our data 

approaches roughly 0.64. 
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Fig. 5.13. Scaling of the fluctuation conductivity phase. The data sets shown are 89.18 K (x's), 

89.38K (circles), 89.58K (diamonds), and 89.80K (+'s). 

We conclude from the frequency dependent data that both the magnitude and 

phase of our measured fluctuation conductivities show scaling behavior with - 1 K of 

Tc with the same values for the critical exponents v=l.O-1.2 and z=2.35-2.95. In 

spite of the uncertainty in the exact values of the critical exponents v and z, these 

results mean physically that the fluctuation lifetime diverges as T ~ Tc from above 

roughly as 'tfl - 1/evz = l/e3, which is significantly faster than the Gaussian prediction 

of 'tfl - 1/e. Our measurements therefore represent a direct observation of the critical 

slowing down of the fluctuation relaxation rate 1/'tfl as T ~ Tc from above. 

5.6. Temperature Dependence of the Fluctuation Conductivity 

In order to view our fluctuation conductivity data from a different perspective, 
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we plot in figure 5.14 the temperature dependence of the fluctuation conductivity at 

several fixed frequencies. The value of Tc used to calculate e is Tc=89.10 K, as 

determined from the critical scaling above, and the mean field contribution <J'11f(T) has 

been subtracted off. This figure illustrates the effect of the fluctuation relaxation rate 

1/'tfl passing through the measurement frequencies. At de, the fluctuation conductivity 

diverges as e~. At finite frequency the existence of a finite fluctuation lifetime means 

that the fluctuation conductivity divergence will be cut off when ro - 1/'tfl. The points 

indicated by arrows indicate the estimated temperature at which rotn - 1 for 

measurement frequencies of 10 GHz, 2 GHz, and 0.5 GHz. If the conductivity 

obeyed the Gaussian theory, all the curves would remain together until e - 1 x 10-3 for 

l/'l1 
- 0.5GHz 

1/'tn - 2GHz 

1/'tn - 10GHz 

T 0.3 , Measured 
\ lifetime 

Gaussian\ I 
lifetime ,\... 

0.2 M 

S' \ 
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Fig. 5.14 The fluctuation conductivity cr1 vs. E=ln(Tffc), at 10 GHz (circles), 2 GHz (x's), 0.5 GHz 

(squares), and 0.27 GHz (diamonds). The arrows indicate approximately where 1/tfl is equal to the 
measurement frequency. The inset shows the temperature dependence of tfl derived in this manner, 

along with the temperature dependence oft fl in the Gaussian theory. 
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the measurement frequencies in Fig. 5.14. In the inset to Fig. 5.14 we plot thee 

dependence of tfl derived as described above, along with the strict Gaussian calculation 

of tfl (-1/e), Eq. 5.15. The dashed line is a power law fit to tfl - l/e3, which is 

consistent with the e dependence of tfl determined from the frequency dependence ( tfl 

- 1/evz = l/e3· 1 ), within experimental error. Figure 5 .15 represents further evidence 

that the fluctuation lifetime diverges much faster than the Gaussian prediction as e~O. 

Using the critical exponents for this sample determined from the frequency 

dependence analysis, we should also be able to scale the temperature dependence of o-1 

in Fig. 5.13 according to the scaling relation in Eq. 5.22, so that the data within the 

critical region will collapse together. This is just what we observe in Fig. 5.15, where 

the scaled temperature dependence measured at three discrete frequencies is plotted 

along with the scaled frequency dependence of o-1 measured at 6 different 

temperatures, all with the same values of Tc, v, and z. This figure shows dramatically 
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scaled frequency dependence at six different fixed temperatures (solid lines), all with T c=89 .1 OK, v= 1.2, 

andz=2.6. 
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how both the temperature dependence and the frequency dependence of the fluctuation 

conductivity are both described by the single universal scaling function S + within the 

critical regime. The point at which the temperature-dependent data deviate from the 

universal curve indicate the temperature at which the sample leaves the critical regime 

(T-Tc+ 2 K). 

5.7. Sample Dependence of Fluctuation Effects 

Before concluding it is necessary to address the question of what effect 

the presence of material disorder and inhomogeneity have on the above results. We 

address this question experimentally by measuring samples with varying amounts of 

disorder, as measured by high resolution x ray diffraction.[25] If our samples all 

belong to the same universality class then we expect them all to follow the same 

universal function with the same critical exponents as described above. In Fig. 5.16 

we plot the scaled temperature dependence (with v=l .2 and z=2.6) of the fluctuation 

conductivity for thin film #NCL 705b, along with the scaled temperature dependence of 

a second thin film (thin film #RA Y7) and also a single crystal, all measured at 

approximately 10 GHz. The conductivity of the single crystal was measured using a 

cavity perturbation method[8]. Sample RA Y7 has a broader resistivity transition width 

than film NCL 705b, and the high resolution x ray diffraction results show that film 

RA Y7 has a larger distribution of oxygen content, from which we conclude that film 

RA Y7 is the more disordered of the two films. 

In order to have the data from these 3 very different samples collapse onto the 

same curve, it is necessary only to adjust the non-universal values of~ and ~O in the 

quantities~ = ~r/Ev and 'C = 'CrJEvz in Eqs. 5.20 and 5.21. The relative values for~ 

and ~O used to scale the data in Fig. 5.16 are given in table 5.2. If the single crystal is 

assumed to represent the least disordered sample, than table 5.2 indicates that the 
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"bare" relaxation time~ decreases with increasing disorder. Fig. 5.16 illustrates that 

our scaling results are relatively insensitive to disorder. This might be expected from 

the Harris criterion,[26] which predicts that if the specific heat exponent o; is negative 

(which appears to be the case for YBCO[IO)), then disorder should not affect the 

universality of the critical exponents and scaling functions. 
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Fig. 5.16. The scaling of the temperature dependence of the fluctuation conductivity measured at 
approx. 10 GHz for 2 different thin film samples and a single crystal sample. 

Table 5.2. Relative values of the non-universal parameters To and ~O for the different samples shown 

in Fig. 5.16. 

Sample ~o'(~ofilm#NCL 705b) tof( tofilm#NCL 705b) 

thin film # NCL 705b 1 1 
thin film #RA Y7 0.625 0.5 

single crystal 1 11 
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Chapter 6 

Magnetic Field Measurements - Vortex Dynamics in YBCO 

Thin Films 

6.1 Introduction 

Information obtained from nticrowave measurements about vortex motion in the 

high Tc superconductors is important for fundamental reasons, as well as for many 

technological applications of high Tc superconductivity. Of fundamental interest is the 

question of what general laws govern vortex motion in superconductors. There has 

been a tremendous amount of theoretical and experimental work on the properties of 

the high Tc superconductors in an external magnetic field, which has uncovered a large 

number of interesting phenomena. The relevant physical parameters of the high Tc 

materials, such as the high accessible temperatures, small coherence length, and strong 

anisotropy mean that these systems are much more susceptible to different kinds of 

disorder than their low Tc counterparts. Experiments that focus on vortices in high Tc 

superconductors give one the opportunity to study the role of quenched disorder, 

thermal disorder, and quantum disorder, which can lead to new and exotic phases such 

as a vortex glass phase, or an entangled vortex liquid phase.[1] There is also the 

possibility of observing phase transitions within the vortex system, such as the melting 

of the vortex glass phase.[2] All of these considerations make the study of the mixed 

state in the high Tc superconductors a rich and extremely interesting field. 

Much of the experimental and theoretical work to date on vortices in high Tc 

superconductors has focused on de transport properties. While this effort has resulted 

in a more detailed understanding of vortex response subject to a de driving current, it is 

not clear if all of the conclusions from de investigations are directly applicable, or even 

relevant, at ac frequencies. In the study of vortex motion at finite frequencies, many 
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fundamental issues have yet to be resolved. For instance, it is not clear if single 

particle phenomenological models[3,4] can adequately describe vortex motion at rf and 

microwave frequencies. Alternative theories of vortex motion predict the existence of 

vortex core excitations and unusual optical activity[5], which should be observable in 

microwave surface impedance measurements. In addition, the investigation of 

collective properties of the vortex state, such as phase transitions and melting,[2] also 

provide motivation for a careful study of vortex dynamics in superconductors using 

high frequency techniques. High frequency experiments have the advantage of using 

very small current densities in order to probe reversible oscillations of vortices, and 

may be less sensitive to flux creep than de experiments.[ 6] 

An understanding of vortex motion at rf and microwave frequencies is 

important also for practical reasons, since some of the most promising near-term 

significant applications of high Tc superconductivity are in rf and microwave 

subsystems and components. Many of these applications require superconducting 

devices to operate under non-optimum conditions, such as large magnetic fields and/or 

high microwave power. Under such conditions, where high microwave power may 

induce an rf critical state,[?] the most significant limitations to the widespread use of 

high Tc components are the considerable power dependence exhibited by both passive 

and active devices, and intermodulation distortion caused by non-linearities in the 

surface impedance. Many of these limitations are directly related to the generation 

and/or motion of magnetic vortices under the influence of rf or microwave fields. The 

frequency range from 45 MHz to 50 GHz includes many technologically important 

applications, such as cellular telephone, PCS, and radar systems, and many devices 

that operate at these frequencies will therefore need to explicitly take into account the 

effects of vortex motion if they are expected to operate at high powers or fields. Also, 

such information is essential for non-reciprocal devices such as circulators and 
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isolators that require a fixed magnetic field to operate.[8] 

This chapter will examine primarily the effect of the driving frequency on 

vortex motion in the high Tc superconductors. Section 6.2 will briefly review some of 

the fundamental properties of magnetic vortices in the mixed state of type II 

superconductors. In section 6.3 some of the relevant theoretical models of the 

dynamics of vortices at high frequencies will be introduced, and some of the 

experiments used to test these models will be described. Then in section 6.4 some of 

the details of measurements of vortex dynamics in the Corbino geometry are discussed. 

In section 6.5 the main experimental results on the frequency dependence of vortex 

dynamics in YBCO thin films are presented, and in section 6.6 the implications of 

these findings for the technological applications of high Tc superconductors are briefly 

discussed. The main conclusion of this chapter is that the response of the mixed state 

in high Tc superconductors depends sensitively on the driving frequency, with a given 

response at low frequencies (S: 1 GHz), and a very different response for high 

frequencies (~ 10 GHz) for many temperatures and magnetic field strengths.[9] 

6.2 The Mixed State in Type II Superconductors 

The coherence length in the high Tc superconductors is much smaller than the 

penetration depth, making these materials extreme type II superconductors. The fact 

that the mixed state covers most of the B-T phase diagram in these materials makes it 

very important to understand how vortices respond to an applied current in the high Tc 

superconductors. The mean-field phase diagram for a general type II superconductors 

can be described as follows. At fields and temperatures above the lower critical field 

He! (T) one enters the mixed state, where the magnetic field penetrates the 

superconductor in the form of quantized magnetic vortices. The mixed state is 

characterized by a rigid triangular (Abrikosov) vortex lattice that persists until the upper 
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critical field, Hc2(f}, is exceeded and the superconductor is driven into the normal 

state. For a superconductor in the mixed state, an applied current produces a Lorentz 

force on a vortex: FL =<l>onxJ, where n is a unit vector directed along the vortex, and 

<l>o is the flux quantum. Vortices that move under the influence of this force produce 

Joss in the superconductor. The presence of material defects in the superconductor will 

provide pinning sites for vortices, which serve to prevent vortex motion and restore the 

ability of the superconductor to carry a current without dissipation. In the conventional 

superconductors the rigid vortex lattice means that only a few material defects can 

effectively pin the entire vortex lattice. 

The response of a superconductor in the mixed state to an applied de current can 

then be described as follows. For small currents, the vortex lattice is effectively 

pinned, and the superconductor can carry a current with zero dissipation. As the 

driving current increases, however, the Lorentz force will eventually overcome the 

pinning forces, and the vortices will begin to move under the influence of the Lorentz 

force and cause dissipation. The current at which the depinning occurs is called the 

critical current Jc• and represents the maximum de current that a superconductor can 

carry without loss. So for de considerations, Jc is the important material parameter by 

which a superconductor can be characterized. 

There exists another mechanism by which dissipation due to flux motion can 

occur, even for currents less than Jc. In this case, vortex motion occurs by thermally 

activated jumps over pinning barriers, a phenomenon referred to as flux creep. Since it 

is an activated process, however, the losses due to flux creep are usually very small in 

the conventional superconductors, except very near Tc, due to the low temperatures 

and large activation barriers. In the HTSC, however, it is expected that flux creep 

processes may be much more important. 
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6.3 Vortex Motion at rf and Microwave Frequencies 

This section will attempt to describe the current understanding of vortex motion 

in superconductors at rf and microwave frequencies. The discussion will be simplified 

whenever possible by examining separately the low frequency and high frequency 

limits in the context of the various theoretical models. The relevant experimental 

evidence supporting the different theories will also be discussed. 

6.3.1 Vortex Motion in Conventional Superconductors 

In conventional type II superconductors, one understands the low frequency ac 

response in terms of the same mean-field phase diagram that one uses at de. The 

response of the superconductor in the mixed state at low frequencies is therefore 

governed by the critical current of the material, with "superconducting" (or lossless) 

behavior observed as long as the ac current density is less than the critical current 

density Jc. 

As the ac driving frequency increases, however, one can observe dramatically 

different behavior from that described above:[3] the sudden onset ofloss occurs in the 

superconductor as one passes a characteristic frequency (called the "depinning 

frequency"), even with subcritical ac current densities. For driving frequencies above 

this depinning frequency the entire vortex lattice executes small oscillations about the 

equilibrium pinning position, giving the same response as one would observe if the 

pinning were absent. Hence for conventional superconductors in the mixed state, one 

can clearly demarcate two distinct regions in frequency: a low-frequency, lossless 

regime in which the vortex lattice is effectively pinned (f<fdepin) , and a high

frequency, lossy regime (f> fc1epin) in which the response of the vortex lattice is the 

same as if the pinning were absent and the vortices were free to move. 

Gittleman and Rosenblum[3] described the observed ac response of the mixed 
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state in type II superconductors in terms of an equation of motion for a single particle 

in a periodic pinning potential acted on by a driving force and a viscous force. With 

the assumption that the vortex displacement is small, the effect of the pinning potential 

can be approximated by a linear restoring force. With that simplification, the following 

equation of motion is obtained for the vortex displacement x: 

mx + TJx + Kpx = J <1>o (6.1) 

In this equation m is the effective vortex mass, TJ is the viscosity coefficient, and KP is 

the pinning force constant, while J is the component of the current density 

perpendicular to the vortex, and cJ>o is the flux quantum. Equation 6.1 is valid only for 

small vortex displacements, where the approximation of a linear restoring force is 

valid. Also note that Eq. 6.1 describes a vortex interacting with a single pinning 

potential, which represents the interaction between the entire vortex lattice and the 

pinning sites in the material. By assuming a periodic time dependence for all 

quantities,Eq. 6.1 can be combined with Faraday's law to obtain an expression for the 

complex resistivity due to vortex motion. With the further assumption that the vortex 

mass can be neglected, the complex resistivity resulting from vortex motion is found to 

be 

(6.2) 

where~(= 1/'t(J) = Kp/11 is the depinning frequency, and the flux-flow resistivity is 

given by Pff = B<l>ohl, For the conventional superconductor Pbln, the depinning 

frequency is on the order of -7 MHz at 1.7 K, while for NbTa at 4.2 K the value is 

-26 MHz.[3] 

Equation 6.2 is important because it forms the basis for more sophisticated 

treatments of vortex motion that are applied to the high Tc superconductors. The real 
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and imaginary parts of pjpff given by Eq. 6.2 are plotted as a function of frequency in 

Fig. 6.1. Note that the losses as measured by real{pvl increase dramatically at ro=roo, 
and approach pjpff = 1 at high frequency. Since Pff is the resistivity one would 

measure for free vortex motion, Fig. 6.1 implies that at high enough frequency the 

vortices behave as if the pinning were absent; hence the term depinning frequency. 

Note also that imaginary{pvl is a maximum at the depinning frequency ro=roo, 
Therefore at higher frequencies the pinning constant Kv becomes the relevant material 

parameter for describing the strength of pinning in a material, rather than the critical 

current density Jc, which is the measure of pinning strength for de considerations. 
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Fig. 6.1. The real and imaginary parts of the vortex resistivity as a function of frequency, as calculated 
from Eq. 6.2. 

6.3.2 Scaling Models in HTSC 

In the high Tc superconductors a number of factors, such as the short coherence 

lengths, strong anisotropy, and large thermal energies conspire to make the situation in 

the mixed state more complicated than in conventional superconductors. In the low 

frequency limit the main effects on the mixed state are the following: (a) the vortex 

lattice state is replaced by a novel vortex glass state, in which the long range crystalline 

order of the vortex lattice is destroyed by pinning disorder and thermal fluctuations, 
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and (b) the appearance of a "vortex liquid" state at fields and temperatures well below 

the upper critical field Hcz(T). Fig. 6.2 shows a possible phase diagram for the high 

Tc superconductor YBCO.[10] The vortex glass state remains a "true 

superconducting" state in which the losses go to zero in the limit of zero current. For 

large currents, however, the current-voltage response in the vortex glass state can 

become very non-linear. The vortex liquid state is characterized by finite losses in the 

superconductor for arbitrarily small de currents. This means, among other things, that 

any practical device that makes use of superconducting properties must be operated 

well below the vortex "melting" transition Hm(T).[11] 
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Fig. 6.2. Possible vortex phase diagram for YBCO. The "melting" line H,,,(f) separates a vortex 
solid state from a vortex liquid state. The data points represent an experimental determination 
of the phase boundary as discussed in section 6.5. The Meissner state is very near H=O on 
this scale. 

The existence of a vortex glass state and the associated glass to liquid transition 

was predicted by Fisher, Fisher, and Huse.[2] Experimental evidence for such a 

transition in the high Tc materials has been observed in measurements of the non-linear 

de current-voltage (I-V) characteristics in the presence of a large external magnetic 
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field.[12] These experiments support the existence of a vortex phase transition using 

scaling arguments that predict the collapse of I-V curves measured at different 

temperatures onto a single pair of curves, when scaled by the appropriate power of the 

vortex glass transition temperature T g· Such scaling treatments of the non-linear I-V 

curves yield, along with T g' the critical exponents v and z that describe the vortex glass 

to liquid phase transition. Experiments of this type have been performed on both 

YBCO films[ 12]and crystals[l 3, 14], all of which show the predicted scaling behavior 

with critical exponents that vary somewhat. The scaling of behavior of the 1-V curves 

is very robust, and has been seen in many different types of samples, including proton

irradiated YBCO crystals[l5], underdoped YBCO films[l6], Al-doped YBCO 

films[l7], and with varying magnetic field angle[l8], and with varying sample 

size[l9]. Scaling of the 1-V curves has also been observed in other materials, such as 

BSCCO thin films[20] and crystals[21], and even in Mo3Si thin films[22]. The values 

of the critical exponents vary somewhat for all these different measurements, with the 

static critical exponent v ranging from 0. 7-2.0 and the dynamical critical exponent z in 

the range 3.4-6.0. 

Experimental evidence for the existence of a vortex-liquid to -glass phase 

transition has also been observed in measurements of the frequency dependent 

resistivity, which make use of a different set of scaling relations[2]. These 

measurements show that the frequency-dependent conductivity in YBCO thin films can 

be collapsed using scaling relations over the frequency range from 100 kHz - 500 

MHz[23], 10-1 - 105 Hz[24], and 1-600 MHz[25]. Such frequency-dependent scaling 

has also been shown for YBCO single crystals, over the frequency range 3 Hz - 3 

MHz[26], from 100 Hz - 2 MHz[27], and from 4 - JOO kHz[28]; and also for Mo3Si 

films (100 Hz - 3 MHz).[22] The finite-frequencymeasurementsin general yield 

critical exponents that are consistent with the de measurements, but still show some 
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spread in the actual values (see ref.[26], for example). 

The finite frequency measurements show that at the liquid to glass transition the 

frequency dependence of the real and imaginary parts of the complex resistivity can be 

described by power Jaws: 

P1(ro) - wai 

P2(ro)- roa2 
(6.3) 

with a 1 = a 2 (= 0.73) at the vortex liquid to glass transition[25], and with a 1 > ( <) a 2 

below (above) the glass to liquid transition. The ac measurements described above did 

not extend into the microwave regime, with the highest measured frequency being 

approximately 600 MHz. It should be pointed out that in the conventional 

superconductors this "melting" transition occurs essentially at the upper critical field 

Hc2(T) and the vortex liquid region in the H-T phase diagram is unobservably narrow. 

6.3.3 Single-Particle Models in HTSC 

For the high Tc superconductors one might also expect qualitatively different 

behavior if the driving frequency is sufficiently high. This is because as the 

measurement frequency increases, the probing time scale becomes shorter, not 

allowing vortex lines enough time to interact with other vortices. Hence for high 

frequencies one might expect mean field models such as those employed for 

conventional superconductors to be more appropriate than the vortex interaction based 

glass/liquid models mentioned above. In this limit the vortices behave as individual 

flux lines. However, the short coherence length and disordered pinning potential in the 

high Tc superconductors mean that the interaction between the pinning potential and the 

vortices may be more complicated than for the conventional superconductors, where it 

is assumed that the rigid vortex lattice interacts with a single pinning potential.[3] 

Coffey and Clem provided a generalization of the treatment of vortex motion 
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discussed in section 6. 3 .1 to include the influence of both pinning and thermally 

activated effects in a unified theory of vortex response.[4] In their treatment, the 

vortex equation of motion (Eq. 6.1) is modified by including a random or Langevin 

force on the right hand side, in addition to the usual Lorentz force, in order to account 

for thermally activated effects. This modeling of the problem is similar to the treatment 

of a particle undergoing Brownian motion in a periodic potential. With this 

generalization, the resulting vortex motion resistivity is modified from Eq. 6.2 as 

( ) 
e+(rot}2+i(l-e)rot 

Pvro=pff '2 
1 + (rot, 

(6.4) 

Here PJI = B<!>oftl, as before. However, there appears an additional term e in Eq. 6.4, 

which is called the flux-creep factor, and accounts for thermally activated vortex 

motion over a barrier of height u0. The expression fore is given by e=l/Ii(v), where 

Io is a modified Bessel function of the first kind of order zero, and the temperature

dependent argument vis given by v=U0(T)/2kBT. Note that e is bounded between 0 

and 1. In addition to the appearance of the flux-creep factor e, the vortex relaxation 

time 't is modified as 

't _ lij(V) - 1 
- "CO I1(V) Io(v) 

(6.5) 

where 'to= TJ/Kp, as in Eq. 6.2, and I0 and 11 are modified Bessel functions. 

Note that the appearance of the pinning force constant KP in the above treatment 

means that it is assumed that the vortices all interact with a single pinning potential 

characterized by the single parameter KP, as in Eq. 6.1. While this is a good 

approximation for the conventional superconductors, where the pinning is collective, it 

is not clear that it is a good approximation for the high Tc materials at microwave 

frequencies, where the pinning is largely individual.[6] In addition, the effect of 
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disorder in the individual pinning regime also needs to be considered. 

Equation 6.4 gives the complex resistivity due to vortex motion in a 

superconductors in terms of three independent parameters: KP, Tl, and the flux-creep 

argument v, all of which are temperature and/or magnetic field dependent. In order to 

unambiguously determine all three parameters, measurements at different frequencies 

are required. When such measurements at different frequencies are performed, it is 

found that in order for Eq. 6.4 to consistently describe the data, at least some of these 

three parameters must be frequency-dependent.[28] Also, in the limit where oot<<l 

(and E<<l), Eq. 6.4 predicts a frequency dependence of p1 - al-, while experiments 

show p 1 - rol.2.[29] 

In spite of the above difficulties, many experiments performed on YBCO films 

at microwave frequencies (1-35 GHz)[29-38] have been successfully interpreted using 

such mean-field based models.[4] Many of these experiments work at low fields and 

temperatures in order to minimize the effects of flux creep, thereby reducing the 

number of parameters necessary for a complete description from three to two. Such 

measurements utilize a variety of techniques, and examine a wide variety of different 

YBCO samples, from thin films to single crystals. The results for the value of the 

pinning force constant KP are surprisingly consistent, with KP(T=O) - 1-2 x 105 N/m2. 

The observed temperature dependence is also very similar among the different 

experiments, showing that KP decreases with increasing temperature, with a functional 

dependence of approximately (l-(T/Tc)2)2.[39] Also, KP seems to be independent of 

magnetic field, indicating that the pinning is individual in these experiments.[6] 

Such microwave experiments also yield values for the viscosity coefficient Tl 

and the depinning frequency'°() in YBCO. At temperatures in the range 65-90 K, Tl 

varies in the range 0.1 x 10-7 to 2 x 10-7 Ns/m2, and decreases with increasing 

temperature, and is also independent of magnetic field. Values for the depinning 
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frequency O>pj21t are in the range 20-100 GHz, and decrease slightly with increasing 

temperature. These values for the "depinning frequency" in YBCO are much higher 

than for the conventional materials, which would imply, for example, a much wider 

operational frequency range for a high Tc device at a given temperature. 

Measurements at still higher frequencies, for example in the terahertz 

regime[40] (500 GHz-1 THz), are also well described by the mean-field (or single

particle) picture. In addition, far infrared measurements[ 41] are also in agreement with 

single-particle models[5] that neglect vortex-vortex interactions. The large number of 

experiments that can be more or less consistently described by mean-field models 

strongly suggests that there is at least some degree of relevance to the single-particle 

descriptions. However, these results seem to be in contradiction with the lower 

frequency experiments that support the vortex glass-based models described in section 

6.3.2. 

6.4 Vortex Dynamics in the Corbino Geometry 

Given the above considerations, measurements of the mixed state of high Tc 

superconductors that span a wide frequency range in the rf, microwave, and 

rnillirneter-waveregimes seem very desirable. In addition to the access to a wide 

frequency range (45 MHz - 50 GHz), the Corbino reflection technique offers several 

other advantages when studying vortex dynamics. The Corbino disk geometry (recall 

that the annular region of the film exposed between the inner and outer conductors 

defines a Corbino disk) is advantageous because the edges of the sample are effectively 

eliminated and do not contribute to the creation and/or pinning of vortices. The coaxial 

geometry also means that the same mode (TEM) can be used to measure at all 

frequencies, as opposed to stripline or microstrip resonators,[29,34] which use 

different modes, and hence different field distributions, for different (discrete) 
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frequencies. Another result of using the coaxial TEM mode, in addition to the absence 

of a lower cut-off frequency, is that the field distribution in the film is particularly 

simple, with the fields and currents proportional to 1/r (where r is the distance from the 

center of the disk), and uniform throughout the film thickness (for sufficiently thin 

films). 

The Corbino reflection technique is applied to measure the response of the 

superconducting mixed state over a very wide and technologically important frequency 

range (45 MHz - 50 GHz) in therf and microwave regime. The sensitivity allows for 

measurement of changes in the complex resistivity p of -10-9 Qm at low frequencies 

for a typical film thickness of 1000 A. The ac current density can also be varied, by 

changing the microwave power, and can be used along with a de current bias, to study 

the detailed form of the pinning potential in the high Tc materials. For the 

measurements described here the ac current density was kept small, approximately 80-

200 Ncm2. Measurements were carried out on several c-axis YBCO thin films of 

thickness -1000 A fabricated by pulsed laser deposition on LaA1O3 substrates. 

6.5 Vortex Response in YBCO Thin Films at Microwave Frequencies 

6.5.1 Frequency Dependence 

The goal of the measurements described here is to test directly the validity of the 

vortex glass-based scaling models at frequencies much higher than previously 

examined. To accomplish this goal, measurements are performed from 45 MHz - 50 

GHz in the vicinity of the melting line in the mixed state phase diagram ( one possible 

phase diagram for YBCO is shown in Fig. 6.2, for example). 

Data from one such measurement of the mixed state of a YBCO thin film is 

shown in Figs. 6.3 and 6.4, which exhibit the frequency dependence of the real and 

imaginary parts respectively of the complex resistivity at a temperature of 80.2 Kand 
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an applied magnetic field of 0.4 T. Recall that the complex resistivity p relates the time 

dependent electric field to the time dependent current density according to E=pJ. The 

real part of the complex resistivity p 1 is a measure of the energy loss, while the 

imaginary part p2 is a measure of the reactance, or energy stored. Also shown in Figs. 

6.3 and 6.4 are mean-field fits to the data (dashed lines), and fits to the vortex solid to 

liquid scaling forms p 1 - roal and p2 - roa2 (solid lines). The fitting function for the 

mean field fits is given by Eq. 6.4. 

Figs. 6.3 and 6.4 clearly show one of the major results of our work: at low 

frequencies the data follow the vortex solid to liquid scaling models (evident in the log

log plots shown in the insets), while at high frequencies the data deviate from the 

scaling predictions and rather show good agreement with a mean field description. 

The cross-over frequency from scaling to mean-field behavior occurs for the data in 

Figs. 6.3 and 6.4 at about 10 GHz, and the data shows a smooth transition from the 

low-ro regime to the high-ro regime. The values for a 1 and a 2 derived from the data 

shown in Figs. 6.3 and 6.4 (0.81 and 0.93, respectively) indicate that this point in the 

mixed state phase diagram (80.2 K and 0.4 Tesla) is on the vortex solid side of the 

vortex liquid/solid boundary. In order to investigate the vortex liquid side of the phase 

boundary, similar data is obtained at higher temperature and magnetic field strength and 

is shown in Figs. 6.5 and 6.6. This data also shows the same crossover from scaling 

behavior at lower frequencies to mean-field behavior at higher frequencies. 
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Another quantity of considerable interest is the phase angle of the complex 

resistivity, defined by p = lplei'P, so that <I>= tan-1(p2/p 1). The frequency dependence 

of the resistivity phase angle is shown for three different points in the mixed state 

phase diagram in Fig. 6.7. At the location of the vortex solid/liquid boundary, the 

resistivity phase angle is predicted by scaling theory to be a constant value, 

independent of frequency, while above (below) the boundary the phase angle should 

be an increasing (decreasing) function of frequency. The data shown in Fig. 6.7 

exhibit this behavior at low frequency, but for all the curves, the high frequency data 

show a phase angle that decreases as 1/ro, which is just what is expected from mean

field theory. The behavior of the frequency dependence of the resistivity phase angle 

therefore also shows a crossover from scaling to mean-field behavior as the frequency 

increases. 

10 ...---------...-------~ 
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0.1 1 10 

Frequency (GHz) 
Fig. 6.7. The phase angle tan<j) vs. frequency for various temperatures and field strengths, given by 

T=80.2K and H=0.4T (dashed line); T=86K, H=0.3 T (dash-dotted); and T=83K, H=4T (dotted). 
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We can obtain a measure of the characteristic vortex relaxation time 'C (which 

gives the "depinning frequency" fdcpin-1/'C) from the mean-field fit to the high 

frequency data. We find for instance at T=78 Kand H=0.3 T, that 1/'C - 13 x 109 

sec-1, which is somewhat larger than earlier results from YBCO crystals,[39] but 

smaller than that obtained for a thick (-lµm) YBCO film.[31] Also, using the value of 

Pr obtained from the fit, we extract TJ -2 x 10-8 Nsec/m2 forT=80.2 K andHd: = 0.4 

T. The mean-field fits also give values of E in the range 0.05 < E :s; 0.5 for 80 K < T < 

86 K and 0 < Hd: < 1 T. 

6.5.2 Magnetic Field Dependence 

We can also gain some insight into the nature of vortex motion from the detailed 

shape of the p 1 vs. Hd: curves shown in Fig. 6.8, which displays p 1 (H) measured at 

T=83.5 K for various frequencies, along with mean-field fits. The mean-field fits are 

obtained using the full expressions for p (given in Eq. 6.4 ). Note that v can be written 

as v = H* /H if we assume the barrier height depends on the magnetic field as U 0 -

l/H, so that H = H* represents the field at which U 0(H) = 2kB T and significant flux 

creep begins to occur. The data measured at 11 and 13 GHz follow the mean-field 

description for all fields. The 11 and 13 GHz fits yield values for H* - 3.5 Tesla, Tl -

3.2 x 10-8 Nsec/m2 and a pinning force constant ~ = 3.5-4.5 x 103 N/m2. The low 

frequency data (f=3 GHz and 6 GHz), however, cannot be reconciled with the mean

field fit with reasonable parameter values. The magnetic field dependence therefore 

corroborates the conclusion drawn from the frequency dependent data: the mean-field 

description is adequate for the high frequency data (f ;:: 10 GHz) while the low 

frequency data requires consideration of vortex-vortex interactions for a quantitative 

description. Note that the values for the mean-field parameters TJ and KP derived from 

the magnetic-field dependent fits are consistent with the values obtained from the mean-
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field fits to the frequency dependence. 

0.6 

--s 
a 0.4 r-
b -'-" 0 3 6 

..... 
a. 

0.2 • 0 

0 

O 0 

0 0 

.\ • 0 
• 0 

o O 3GHz 

01111w-&.::11:.:!..::..;...l,-----'----J 
0 2 

H(Tesla) 
4 

Fig. 6.8. Magnetic field dependence of p1 for a YBCO thin film for various frequencies at T=83.5 K. 

Dashed-dot line is a mean field fit for 3 GHz. Solid line and dashed line are mean field fits for 11 and 
13 GHz respectively. Inset: p1 (H) for O ,<; H ,<;9 T. 

The p 1 vs. H curves for the high frequency data can also be used to locate 

approximately the "melting transition" in the H-T phase diagram. If we take as a 

criterion for melting that p 1 (Hm) = O. lp0 , where Pn is the normal state resistivity at T 0 

then one obtains for the "melting line" the points shown in Fig. 6.2. The field for 

which this criterion is satisfied also corresponds to a peak in the quantity P2(H)/H vs. 

H, shown in Fig. 6.9, which is the imaginary part of the dynamic mobility of the 

vortex in the mean field picture[4] (p* = B4>oµ*, whereµ* is the complex dynamic 

mobility). Although this is not a stringent criterion for the melting of the vortex 

lattice,[11] it provides an order of magnitude estimate for Hm(T). 
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6.6. Implications of Frequency Dependent Measurements 

The frequency dependent measurements presented above serve to connect two 

seemingly contradictory sets of experimental results. The de and low frequency 

experiments show much evidence for the existence of a vortex glass/liquid state. 

However, microwave, THz, and far-infrared experimental results are well described by 

the mean-field models. Our experiments show that both sets of results are in fact 

consistent, with the broad frequency range of our measurements providing a bridge 

between these two very different regimes. The crossover from the vortex glass/liquid 

scaling behavior to the mean-field-like behavior as the frequency increases is likely 

related to a crossover from intervalley transitions,[ 42] where the vortices move 

collectively by thermally activated hops between different metastable states in the 

random pinning potential, to intravalley oscillations,[42] where the vortices move 

individually and the motion is dominantly confined within the random pinning potential 

well. Here we will consider the implications of such a picture for practical devices 

expected to operate at rf and microwave frequencies. 
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The lack of a theory for the finite frequency response of both the vortex glass 

and vortex liquid states away from the glass-to-liquid transition makes it difficult to 

accurately predict the response of a device operated in these regions of phase space. 

Our results indicate that one must go to high frequencies (> 10 GHz for the 

temperatures and field strengths investigated here) before the details of the pinning 

potential and vortex viscosity become more relevant. It is therefore necessary to 

further study the ac response, particularly of the vortex glass state, to better predict the 

behavior of a practical device operated in this (large) region of the B-T phase diagram. 

Note that the scaling theory predicts the behavior of p(ro) at the vortex glass-to

liquid transition will be universal, independent of the microscopic details of the system, 

so that there is little one can do experimentally to engineer the vortex behavior at the 

glass-to-liquid transition. However, if one wants highly reproducible surface 

impedance properties in a magnetic field, the vortex glass-to-liquid transition is very 

attractive. To take advantage of this, one can design a non-reciprocal device to operate 

at a magnetic field strength and temperature which is near, but just below, the vortex 

glass-to-liquid transition. 

The complicated mixed state response of the high Tc superconductors has many 

other consequences for applications. The existence of a "melting" transition well 

below the upper critical field imposes additional design constraints for high Tc 

devices. To fully exploit the advantages offered by superconducting materials, such 

devices should be operated below the "melting" line Hm(T) shown in Fig. 6.2. 

Therefore, for both de and rf/microwave devices, it is important to maximize the 

pinning strength of the material, in order to push the melting line Hm (T) to the highest 

possible fields and temperatures. 

The existence of a "depinning frequency" also implies a maximum operable 

frequency for an ac device at a given field and temperature. The mean-field 

126 



expression[4] forfdepin = llt- KJ'l shows that increasing the strength of the pinning 

also helps to increase the "depinning frequency." Above this frequency the pinning 

strength of the material becomes Jess and less important, and materials controls Jose 

their effectiveness. 

In summary, understanding the behavior of vortices in high Tc superconductors 

at rf and microwave frequencies is necessary for the development and operation of 

many practical high Tc devices. To that end, we have shown experimental evidence for 

a crossover in the frequency response of the mixed state of the high Tc superconductor 

YBCO from a low-frequency regime that can be described by vortex glass/liquid 

models to a high frequency regime which can be well described by mean-field models. 

Such experimental results provide important insights into the power dependence and 

non-linearities of high Tc microwave and rf devices, which helps to remove these 

barriers to the more widespread application of high Tc superconductivity at rf and 

microwave frequencies. 
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Chapter 7 

Conclusions and Future Work 

7.1. Results and Conclusions 

We have described in this work the successful development and implementation 

of a unique broadband experimental tool capable of measuring the surface impedance 

of a variety of materials over the unusually wide microwave frequency range of 45 

MHz - 50 GHz. In order to utilize this experimental method to study the response of 

superconducting thin films we have developed a novel low-temperature calibration 

scheme that has been employed to accurately calibrate our measurement system from 

45 MHz - 50 GHz over temperatures from 4.2 - 300 K. In order to understand 

quantitatively the frequency response of the samples studied, a mathematical model of a 

coaxial to circular waveguide transition was developed, which was used to simulate the 

effect of stray fields in the actual experimental geometry, and which also showed 

promise as a means to determine dielectric properties of materials over a wide 

frequency range. 

A number of physical systems have proven to be very interesting to study using 

this frequency-dependent technique. We have applied the Corbino reflection technique 

to examine the effect of thermal fluctuations on the microwave conductivity at the 

superconducting phase transition in zero magnetic field in thin films of the high Tc 

superconductor YBCO. We find that at a specific temperature the magnitude of the 

fluctuation contribution to the ac conductivity is a pure power law in frequency, and 

that the phase of the fluctuation conductivity is independent of frequency, throughout 

three decades in frequency. This is consistent with the predictions of general 

conductivity scaling theories for afl(co) at T=Tc. We have used this information to 

locate the thermodynamic critical temperature of our samples, and also to extract a 
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measure of the dynamical critical exponent z, which is found to be in the range z=2.35-

3.0 for the thin film samples studied here. This is significantly larger than the value of 

z=2 calculated in the Gaussian treatment of fluctuation conductivity based on time

dependent Ginsburg-Landau theory. We also find that at temperatures within 1-2 K of 

Tc both the magnitude and phase of the fluctuation conductivity exhibit scaling 

behavior in the frequency dependence, with critical exponents given by z = 2.35 - 3 .0 

and v = 1.0-1.5. These results together describe a lifetime ,:fl of fluctuations above Tc 

that diverges much more quickly than predicted by Gaussian theory as the transition 

temperature is approached from above. In addition, the scaling behavior allows for the 

experimental determination of the magnitude and phase of the universal scaling 

function, which is found to be qualitatively similar to the Gaussian function, but with 

quantitative differences in the limit of large argument. We believe that this work 

represents the first observation of the critical slowing down of the fluctuation relaxation 

rate !/,:fl in the conductivity at the superconducting phase transition in zero magnetic 

field. 

Examination of the temperature dependence of the fluctuation conductivity at 

different fixed frequencies shows the saturation of the fluctuation conductivity as the 

fluctuation relaxation rate passes through the measurement frequency. This allows us 

to directly determine experimentally the temperature dependence of the fluctuation 

relaxation time, and gives a temperature dependence of ,: - 1/e3, which is consistent 

with the divergence of,: implied by the critical exponents(,: - 1/evz = l/e(2.35-355l), 

within experimental error. In addition, both the temperature dependence and the 

frequency dependence of the fluctuation conductivity can be collapsed onto the same 

universal curve utilizing the critical exponents given above, dramatically illustrating the 

reduction of two independent variables to one that is accomplished with the scaling 

hypotheses. 
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The effects of sample inhomogeneity and disorder on the fluctuation effects 

have been investigated by examining the temperature dependence of the fluctuation 

conductivity of samples of differing quality as determined by high resolution x ray 

diffraction. It is found that the fluctuation conductivity of different quality thin films 

and also of a single crystal can all be described with the same universal functions and 

exponents described above, with systematic differences only in the non-universal 

quantities 'ttl and l;o. 

A second system that has been studied in detail using the frequency dependent 

Corbino reflection technique is the mixed state in YBCO thin films at high temperatures 

and magnetic fields. It is found that for a range of temperatures and fields, the 

response of the magnetic vortices depends sensitively on the frequency of the driving 

signal. In the region of the mixed state near the vortex liquid to glass transition, our 

swept-frequency measurements confirm that (below a characteristic frequency) the 

response of the vortex system can be well described by scaling theories based on the 

liquid to glass phase transition, which explicitly take into account vortex-vortex 

interactions. At frequencies above a cross-over frequency fx, however, the 

experimental data is more successfully described by conventional single-particle (or 

mean-field) theories of vortex motion, which ignore inter-vortex interactions. We 

attribute this change in character of the frequency dependent response to a crossover 

from intervalley vortex oscillations to intravalley oscillations as the probing time scale 

becomes shorter. 

In the mean-field region, we are able to extract the parameters that govern the 

dynamics of the vortex motion (the viscosity coefficient 11, the pinning force constant 

JCP, and the the diffusion barrier Uo/kBT) directly from our frequency dependent 

measurements. From complementary magnetic-field dependent measurements, the 

effectiveness of pinning appears to decrease with increasing frequency. In addition, 

133 



the vonex motion parameters that we extract from the high-frequency magnetic field 

dependent measurements agree well with other experimental determinations, and also 

agree well with the parameters extracted from the frequency dependent measurements. 

Our frequency-dependent measurements therefore serve to connect two seemingly 

contradictory sets of experimental results on vonex motion, and also elucidate an 

important new characteristic time scale (1/f). 

7.2. Technological Implications 

In addition to addressing fundamental physical questions, understanding the 

behavior of vortices in high Tc superconductors at rf and microwave frequencies is 

necessary for the development and operation of many practical high Tc devices. Much 

of the B-T parameter space investigated is an inherently non-linear region, where the 

electrodynamic response of the superconductor depends strongly on the magnitude of 

the driving current. It is likely that at least some of the power dependentpropenies and 

non-linearity observed in the high Tc materials at microwave frequencies can be 

attributable directly to vonex motion. To that end, our experimental results on vortex 

motion at microwave frequencies provide important insights into the cause of non

linearities in high Tc based microwave and rf devices, and contribute to the elimination 

of these barriers to the more widespread application of superconductivity at rf and 

microwave frequencies. 

7.3. Further Experiments 

The work described in this thesis is by no means an exhaustive treatment of the 

frequency dependence of the surface impedance of high Tc superconductors. There 

remain a large number of fundamentally and practically important questions to be 

answered in regard to the high temperature superconductors and their electrodynamic 
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response at microwave frequencies. Just a few obvious extensions of this work are 

given below. 

An extension of the measurement technique itself can be accomplished by 

utilizing additional source(s) in order to measure the surface impedance at lower 

frequencies. As mentioned previously, the TEM mode can be used at frequencies all 

the way down to de, so that extremely broadband measurements are in theory possible. 

Such measurements in practice may be easier to implement in a transmission, rather 

than reflection, geometry. 

One obvious question raised by this work is regarding the universality of the 

scaling behavior of the fluctuation conductivity in the high Tc superconductors. A 

systematic experimental investigation of different high Tc superconducting materials 

(NCCO, YPrBaCuO, for example) would go a long way to establishing the 

universality of the scaling functions and exponents, and also toward establishing to 

which universality class the high Tc superconductors belong. Anotherfruitful avenue 

of research would be to study the effect of increasing disorder on the fluctuation 

properties, and to draw parallels with previous work on fluctuations in disordered 

systems in liquid helium.[!] In addition, the ability to manufacture single unit cell and 

multilayer samples provides another excellent opportunity to study fluctuation effects in 

reduced dimensionality, because fluctuation effects should be larger in lower

dimensional systems. In systems of reduced dimensionality this technique could also 

be used to study the frequency dependence at the Kosterlitz-Thouless transition. 

Another obvious extension of the work presented here is to study fluctuation 

effects in magnetic fields. It would be extremely interesting to see how the critical 

exponents and scaling functions that are measured in zero magnetic field are modified 

as a magnetic field is applied. The subject of fluctuations in a magnetic field is to some 

degree a more complicated problem than fluctuations in zero magnetic field investigated 
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here, but the importance of fluctuations in understanding the properties of the high Tc 

materials is only just beginning to be appreciated. Frequency dependent measurements 

could also provide information about the value of Hc2(T) in the high Tc materials. 

A more practically-oriented extension of this work is to studies of the vortex 

state in the high Tc superconductors. The ability of the Corbino reflection technique to 

mix ac and de driving currents of variable magnitude, along with ac and de 

measurements, makes the technique extremely useful for studying pinning effects at 

microwave frequencies, since many current and future high Tc devices will need to 

operate in modest to high magnetic fields. By varying the de bias current, the rf 

current density, and the rf frequency one can effectively map out the form of the 

pinning potential in the high Tc materials. Also, it has been shown that a de bias 

current can depin the vortex lattice in YBCO, making it possible to measure the high 

frequency response of vortices in the limit of zero pinning.[2] In addition, the ability 

to make measurements as a function of absolute power means that this technique could 

be very useful in studying non-linear properties of the vortex state. 
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