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Random matrix theory successfully predicts universal statistical properties of complicated wave scattering
systems in the semiclassical limit, while the random coupling model o�ers a complete statistical model with a
simple additive formula in terms of impedance to combine the predictions of random matrix theory and nonuniversal
system-speci�c features. The statistics of measured wave properties generally have nonuniversal features. However,
ratios of the variances of elements of the impedance matrix are predicted to be independent of such nonuniversal
features and thus should be universal functions of the overall system loss. In contrast with impedance variance
ratios, scattering variance ratios depend on nonuniversal features unless the system is in the high loss regime.
In this paper, we present numerical tests of the predicted universal impedance variance ratios and show that
an insu�cient sample size can lead to apparent deviation from the theory, particularly in the low loss regime.
Experimental tests are carried out in three two-port microwave cavities with varied loss parameters, including
a novel experimental system with a superconducting microwave billiard, to test the variance-ratio predictions in
the low loss time-reversal-invariant regime. It is found that the experimental results agree with the theoretical
predictions to the extent permitted by the �nite sample size.
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1. Introduction

Understanding the properties of complicated wave
scattering systems [1] is a common challenge in many
engineering and physics �elds, such as quantum chaotic
systems [2, 3], quantum dots and mesoscopic systems
[4�7], acoustic waves [8], and microwave cavities [9�12].
Due to the complexity of wave propagation and scatter-
ing in many of these systems, numerically solving the
wave equations with high resolution is di�cult or im-
practical. This is particularly true when the wavelength
is short compared to the characteristic size of the scat-
tering region (the situation of interest in this paper). In
addition, in this case, scattering properties are extremely
sensitive to small changes in system parameters, which
may not be precisely known. Thus, a statistical approach
has become a popular alternative for describing the wave
properties [13].
Researchers have developed statistical models based

on random matrix theory (RMT), which successfully pre-
dict certain universal statistical properties of complicated
wave scattering systems [14�16]. In order to apply RMT
to practical wave systems, one usually needs to account
for nonuniversal system-speci�c features, which are not
included in RMT. For example, considering microwave
signals entering an enclosure through localized ports and
propagating inside, the port coupling between the enclo-
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sure and the outside world is one system-speci�c feature
[17, 18]. The short ray trajectories between ports due to
scattering from �xed walls and/or objects within the en-
closure are also nonuniversal system-speci�c features [19].

The random coupling model (RCM) is a well-developed
model to combine the universal predictions of RMT
and the nonuniversal features of a practical system
by a simple additive formula in terms of impedance
[17�19]. This model has been experimentally veri�ed
in microwave cavities, and it o�ers a complete statis-
tical model for the impedance matrices, the scattering
matrices [11, 12, 20, 21], the admittance matrices [22],
the conductances [23], and the fading statistics [24, 25]
of practical systems. The statistical distributions of the
universal predictions of RMT and the practical distribu-
tions which includes nonuniversal features are distinctly
di�erent for most wave scattering properties. However,
the impedance variance ratio (de�ned below) is a quan-
tity that is predicted to be independent of nonuniversal
features of the wave system, and it is expected to be a
universal function of the loss of the system [26].

In this paper, we use �universality� to mean that the
impedance variance ratio is independent of the system-
-speci�c features including the port coupling of the sys-
tem and the short ray trajectories betweeen ports.

Impedance is a meaningful concept in electromag-
netism, and it can be extended to all wave scattering
systems. In a linear electromagnetic wave system with
N ports, the N×N impedance matrix Z is the linear re-

lationship of the complex phasor voltage vector V̂ of the
N port voltages and the complex phasor current vector
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Î of the N port currents, via the phasor generalization

of Ohm's law as V̂ = ZÎ [27]. A quantum-mechanical
quantity corresponding to the impedance is the so-called
reaction matrix, which is often denoted in the literature
as K and is related to Z by K = − iZ [6, 28�33]. The
impedance matrix can also be related to the scattering
matrix S via the relationship [17, 18]:

Z = Z
1/2
0 (1 + S) (1− S)

−1
Z

1/2
0 , (1)

where Z0 is a N × N diagonal matrix whose diagonal
element Z0,nn is the characteristic impedance of the n-th
scattering channel mode, and 1 is the identity matrix.
The scattering matrix S speci�es the linear relation-
ship between the incoming wave vector â and the out-

going wave vector b̂, as b̂ = Sâ. The n-th element
of the incoming and outgoing power waves are an =
(Vn+Z0,nnIn)/

√
Z0,nn and bn = (Vn−Z0,nnIn)/

√
Z0,nn,

where Vn and In are the voltage and current at the n-th
port, respectively [27], and the incident and re�ected
power �uxes in channel n are |an|2 and |bn|2.
For complicated wave scattering systems, the

impedance matrices and the scattering matrices are
sensitive to small variations of the system, such as
change of the applied frequency, the con�guration of the
enclosure boundary, or the location and orientation of
an internal scatterer. The statistical variations of the
elements of Z and S due to small random changes in the
scattering system are of great interest [26, 32, 34]. For
example, the variances of the elements of S and their
ratio (the Hauser�Feshbach relation) have been studied
in the nuclear scattering literature when researchers
investigate the statistics of inelastic scattering of neu-
trons [35] and compound nuclear reactions [28, 36].
Friedman and Mello used information theory to derive
the Hauser�Feshbach formula in the statistical treatment
of nuclear reactions [37].

The elastic enhancement factor is the ratio of vari-
ances in re�ection (diagonal elements of S) to that
in transmission (o�-diagonal elements of S) [38]. In
chaotic scattering, elastic processes (the diagonal ele-
ments) are known to be systematically enhanced over
inelastic ones (the o�-diagonal elements) [39, 40]. For
a two-port system, the elastic enhancement factor W =√

Var[S11]Var[S22]/Var[S12], where Var[x] stands for the
variance of the variable x, and Sij denotes the matrix
element of S that occupies the i-th row and the j-th
column. In research on electromagnetic �elds in mode-
-stirred reverberating chambers, Fiachetti and Michelsen
have conjectured the universality of the ratio of the vari-
ances of the scattering elements in the cases of time re-
versal invariant systems (corresponding to RMT of the
Gaussian orthogonal ensemble (GOE)) [41]. The univer-
sality of the scattering variance ratio has been tested with
wave scattering experiments in microwave resonators in
the GOE case [26]. Dietz et al. have also tested the
universality of the elastic enhancement factor with mi-
crowave resonators in the GOE case and in the cases
of partially breaking of time reversal invariance (cor-

responding to RMT of the Gaussian unitary ensemble
(GUE)) [40]. �awniczak et al. have used microwave net-
works to test the elastic enhancement factor in both the
GOE and GUE cases [42�44].

In this paper we are concerned with the impedance
variance ratio, which is de�ned as [26]

ΞZ ≡
Var [Zij ]√

Var [Zii] Var [Zjj ]
, i 6= j, (2)

and the scattering variance ratio, de�ned as

ΞS ≡
Var [Sij ]√

Var [Sii] Var [Sjj ]
, i 6= j, (3)

where the variances arise from small variations of
the system. For a reciprocal (Zij = Zji) two-
-port system, the impedance variance ratio is ΞZ =
Var[Z12]/

√
Var[Z11]Var[Z22]. Similarly, the scattering

variance ratio is ΞS = Var[S12]/
√

Var[S11]Var[S22]. Let
us note that ΞS is the inverse of the elastic enhancement
factor of a two-port system. The impedance variance
ratio ΞZ is predicted to be a universal function of the
loss parameter α [26], which characterizes the losses and
mode-spacing within the wave scattering system (de�ned
below). On the other hand, ΞS is in general dependent on
the system-speci�c features of the wave scattering system
and hence not universal. Only in the high loss regime
(α � 1) one can assume that the �uctuating part of
the impedance matrix (or the scattering matrix) is much
smaller than the mean part, which allows that one can
obtain the result ΞS ≈ ΞZ (α � 1) [26], which implies
that ΞS is approximately universal for high loss.

The loss parameter can be understood as the degree
of overlap of resonances in frequency in the electromag-
netic case (or energy level in the quantum case) due to
the distributed losses of the closed version of the wave
scattering system. For example, in the case of electro-
magnetic wave scattering, the loss parameter is

α =
f

2Q∆f
, (4)

where f is the frequency of the wave signal, ∆f is the av-
erage spacing between cavity resonant frequencies near f ,
and Q is the quality factor due to the distributed losses of
the closed cavity, such as losses from conducting walls or
a lossy dielectric that �lls the cavity [11, 17, 18]. Based
on RMT, researchers have given analytical expressions
of ΞZ(α) [26, 32] and ΞS(α) [32, 34] for the GOE and
GUE cases. In this paper, we focus on the time reversal
invariant case (GOE).

The goal of this paper is to experimentally test the an-
alytical predictions of the impedance variance ratio and
the scattering variance ratio in the low loss regime. Di-
etz et al. carried out experiments in the low loss regime,
but their interests were in the elastic enhancement factor
(inverse of ΞS) in the weak port-coupling situation [40].
Let us note that the common approach to accounting
for coupling (one nonuniversal feature) is to use a single
scalar quantity for a given frequency range (the ampli-
tude of the averaged scattering parameter |Sii|) [10, 34],
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whereas the random coupling model treats nonuniversal
features more generally by using a complex function of
frequency (the frequency-dependent averaged impedance
matrix, de�ned in Sect. 2.2), and includes short ray tra-
jectories. Zheng et al.'s study of ΞZ and ΞS [26] and
�awniczak et al.'s study of the elastic enhancement factor
[42�44] applied the original version of the RCM to take
account of the nonuniversality of the port-coupling. In
this paper we apply the extended version of the RCM to
further include the nonuniversal features of the short ray
trajectories. We also test the low loss regime which has
not been previously achieved by Zheng's or �awniczak's
experiments [26, 42�44].
In the following sections, we �rst review the theory and

present numerical tests of ΞZ and ΞS as a function of
loss parameter. The numerical tests point out a numeri-
cal deviation from the theory due to the �nite number of
samples, which is more signi�cant in the low loss regime
for the impedance variance ratio. After the numerical
tests, we present our experimental systems of three mi-
crowave cavities with varied values of the loss parameter
and make a thorough experimental test in a broad range
of loss parameters.

2. Theory and numerical results

2.1. Universal statistics based on RMT

The theoretical model of the impedance variance ra-
tio ΞZ is derived from RMT [26]. Using RMT, for a
complicated wave scattering system with time reversal
invariance of wave propagation, researchers have devel-
oped a statistical model of the impedance matrix Zrmt

[17�19, 29�33]. This statistical model is applicable to
situations where system-speci�c short-ray-trajectory ef-
fects are negligible and the ports are such that the input-
-output channels are perfectly matched to the scatterer
(in the sense that 〈Z〉 = 1, where 〈. . .〉 denotes a suitable
ensemble average).
With the known statistics of Zrmt, the impedance vari-

ance ratio as a function of α can be analytically derived
[15, 17]:

ΞZrmt
(α) =

[
3− 2

∫ ∞
0

4g(x)

4 + (x/α)2
dx

]−1
, (5)

where g(x) = f2(x) −
[∫ x

0
f(x′)dx′ − 1

2

]
df
dx and f(x) =

sin(πx)
πx in the time reversal invariant case. This result

is shown as the thick black curve in Fig. 1, where the
loss parameter scale is logarithmic. Let us note that
ΞZrmt

= 1/3 in the GOE lossless case (α = 0) and
ΞZrmt

= 1/2 as α→∞.
In addition to the analytical prediction (Eq. (5)), we

also numerically generate 2 × 2 random impedance ma-
trices Zrmt (using the appropriate RMT ensemble) and
compute the variance ratios with di�erent values of the
loss parameter α. We select 15 di�erent loss parameters
from α = 0.01 to α = 10. With each loss parameter, we
generate a �nite ensemble with Ns samples of Zrmt ma-
trices. The variations of these matrices represent a �nite

Fig. 1. The impedance variance ratio versus the loss
parameter α. The thick black curve is the analytical
formula ΞZrmt , Eq. (5). The other colored curves are nu-

merical results of mean impedance variance ratio Ξ̃
(Ns)
Zrmt

based on Zrmt with di�erent numbers of samples (Ns)
indicated in the parentheses.

sampling of the universal variations of the wave scatter-
ing system. Because the number of generated sample
matrices (Ns) is �nite, the variance ratio

Ξ
(Ns)
Zrmt

=
Var(Ns)[Zrmt,12]√

Var(Ns)[Zrmt,11]Var(Ns)[Zrmt,22]

of a �nite ensemble is not a single value, but has a sta-
tistical distribution. To illustrate the �nite-sample-size
issue, we choose the sample numbers as Ns = 30, 100,
350, 103, and 106 for each loss parameter, and we numer-

ically generate the statistical distribution of Ξ
(Ns)
Zrmt

. We

plot the means of these distributions (Ξ̃
(Ns)
Zrmt

= 〈Ξ (Ns)
Zrmt
〉)

versus the loss parameter as colored curves in Fig. 1. One

can see the deviations between the numerical Ξ̃
(Ns)
Zrmt

and
the analytical theory (Eq. (5)) are more signi�cant in the

low loss cases. This indicates that �uctuations of Ξ
(Ns)
Zrmt

in the low loss cases are more signi�cant, thus necessitat-
ing a large number of samples to achieve good agreement
between the �nite-size numerical mean and the theory.
As with the impedance variance ratio ΞZrmt

, we have
done the same analysis for the scattering variance ratio
ΞSrmt

, where Srmt = (Zrmt − 1)(Zrmt + 1)−1. For the
scattering matrices generated based on RMT in the time
reversal invariant (GOE) case, the theoretical prediction
is ΞSrmt

= 1/2 [5, 26], and it is independent of the loss
parameter α. We show the theory and numerical results
in Fig. 2. Note that ΞSrmt

does not contain the nonuni-
versal features encountered in a typical practical system.

2.2. Including the nonuniversal features
through the RCM

To extend the predictions of RMT to practical sys-
tems and include nonuniversal features, Zheng et al. have
introduced the random coupling model [17, 18]. The
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Fig. 2. The scattering variance ratio versus the loss
parameter α. The thick black curve is the theory
ΞSrmt = 1/2. The other colored curves are numerical

results Ξ̃
(Ns)
Srmt

with di�erent numbers of samples (Ns)
indicated in the parentheses.

original version of the random coupling model took the
system-speci�c port coupling into account through the
radiation impedance matrix. This method has also been
applied in previous work on impedance and scattering
variance ratios [26]. Hart et al. have considered the addi-
tional system-speci�c features of short ray trajectories
between ports and developed the short-ray-trajectory-
-corrected version of the RCM [19]. This RCM con-
nects the universal �uctuating part and the practical
impedance matrix Z as

Zn = R−1/2avg (Z − iXavg)R−1/2avg . (6)

The normalized impedance matrix Zn represents the
universal part, and its statistics are the same as the
RMT prediction (Zrmt) [20, 21]. The nonuniversal fea-
tures of the port coupling (the radiation impedance)
and short ray trajectories are included in the ensemble-
-averaged impedance matrixZavg = Ravg+iXavg, where
Ravg = Re[Zavg], Xavg = Im[Zavg] [19, 21].
In experiments measuring the statistics of wave scat-

tering properties, one needs an ensemble measurement
of many di�erent realizations of the system [11, 20, 21,
45, 46]. In this paper, our experimental measurement
ensemble includes con�guration variation and frequency
variation. These variations aim to create a set of systems
in which none of the nonuniversal system details are re-
produced from one realization to another, except for the
e�ects of the port coupling and short ray trajectories.
The previous analysis of the experimental results for the
impedance variance ratio included frequency-dependent
nonuniversal feature of short ray trajectories [26]. In this
paper we remove these by utilizing the extended RCM
(Eq. (6)) [20, 21].
Considering the extended RCM (Eq. (6)), in general

the variance ratio ΞZ of the impedance matrix and the
variance ratio ΞZn

of the normalized impedance matrix
are not equal, and their relationship depends on the el-
ements of Ravg (note that Xavg does not in�uence the

variances of the impedance elements). However, if the
ports of the wave scattering system are far apart, then
the o�-diagonal elements of Zavg are small [26], and one
can approximately simplify the relationship between ΞZ
and ΞZn . More speci�cally for a two-port system, one
can de�ne

R1/2
avg =

[
A B

C D

]
, (7)

where A, B, C, and D (B = C in time reversible (recip-
rocal) cases) are all frequency-dependent real quantities.
Under the condition A, D � |B|, |C|, the relationships
of impedance variances over con�guration realizations at
a frequency f become

Var [Z11] = A2(f)Var [Zn,11] , (8)

Var [Z22] = D2(f)Var [Zn,22] , (9)

Var [Z12] = A(f)D(f)Var [Zn,12] . (10)

In this case, A(f) and D(f) cancel in the calculation of
the variance ratio, and one has the universal result

ΞZ = ΞZn . (11)

This equation shows the signi�cance of the impedance
variance ratio: if o�-diagonal elements of Ravg are negli-
gible, the quantity is independent of the system-speci�c
feature Zavg and is directly related to the universal �uc-
tuating quantity Zn. The statistics of Zn are the same
as the statistics of Zrmt, and the statistical properties
only depend on the loss parameter α [26]. Therefore, the
impedance variance ratio becomes a universal property
of the wave scattering system and only depends on the
loss parameter α.
On the other hand, the scattering variance ratio ΞS of

the practical scattering matrix does not have this uni-
versality, even under the condition A, D � |B|, |C| [26].
The elastic enhancement factor (inverse of ΞS) is known
to be a function of both the loss parameter α and the
coupling, in general [34]. Only in the high loss regime
(α � 1), one can further assume that the �uctuation
part of the practical impedance δZ is much smaller
than the mean part of the practical impedance 〈Z〉, as
δZ � 〈Z〉 and the practical impedance elements |Z11|,
|Z22| � |Z12|, |Z21|, and therefore with Eq. (1) Zheng
et al. have derived [26],

ΞS ≈ ΞZ , α� 1. (12)

Let us note that for the high loss GOE case,
ΞS ≈ ΞZ = 1/2.

3. Experimental systems and results

3.1. Three experimental systems

In order to experimentally test the predictions above,
we use an Agilent PNA E8364C network analyzer to mea-
sure the frequency dependence of the complex 2×2 scat-
tering matrices S of three two-port microwave scatter-
ing enclosures in the semiclassical limit. To achieve the
semiclassical limit, the typical length scales of the cavi-
ties are at least several times larger than the free-space
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wavelength making the systems sensitive to small pertur-
bations. We add perturbing objects (perturbers) in each
wave scattering system and move the perturbers (with
the movement larger or on the scale of the applied wave-
length) to create an ensemble for each wave scattering
system. We can convert S to Z by Eq. (1), and the char-
acteristic impedances of the transmission lines connected
to the ports are Z0,11 = Z0,22 = 50 Ω in all experiments.

Fig. 3. (a) The 1/4-bowtie cavity with the two ports as
red dots and the two metallic perturbers as blue circles.
(b) The cut-circle cavity with the two ports as red dots
and the te�on perturber as the blue wedge.

The �rst experimental system is a quasi-two-
-dimensional ray-chaotic �1/4-bowtie-shaped� microwave
billiard illustrated in Fig. 3a. The cavity is made of cop-
per and has two coupling ports schematically shown as
the red dots in Fig. 3a. Microwaves are injected or ex-
tracted through each port antenna attached to a coaxial
transmission line, and each antenna is inserted into the
cavity through a small hole (diameter about 0.1 cm) in
the lid, similar to previous setups [20, 22, 23]. Due to
the two convex circular arc walls, ray trajectories are
chaotic. This system has previously been used to test
the predictions of RMT [47�49]. To create an ensemble
for statistical analysis, we add two metal perturbers to

the interior of the cavity and randomly move the per-
turbers to create 100 di�erent realizations [20, 21]. For
each realization, we measure the scattering matrix over
the frequency window (6�18 GHz). The perturbers are
conducting cylinders of diameter 5.1 cm and height ap-
proximately equal to that of the cavity (0.7 cm).

In order to test the predictions of ΞZ and ΞS in the low
loss regime, we have carried out experiments (similar to
the 1/4-bowtie cavity) in a superconducting microwave
cavity, illustrated in Fig. 3b. The shape of the cavity
is a symmetry-reduced �cut-circle� that shows chaos for
ray trajectories [24, 50�53]. The superconducting cav-
ity is made of copper with Pb-plated walls and cooled to
a temperature (6.6 K) below the transition temperature
of Pb. A te�on wedge (the blue wedge in Fig. 3b) can
be rotated as a ray-splitting perturber inside the cavity,
and we rotate the wedge in 5◦ increments to create an
ensemble of 72 di�erent realizations. Measurements of
the scattering matrix of the superconducting cavity are
calibrated by an in situ broadband cryogenic calibration
system (more experimental details of the cryogenic sys-
tems can be found in [54]).

The previous two wave systems are both quasi-two-
-dimensional cavities. We also do experiments in a three-
-dimensional metal cavity, which we call the �GigaBox�
[55, 56]. The GigaBox is approximately a rectangular
microwave resonator with dimensions of length 1.27 m,
width 1.22 m, and height 0.65 m. The cavity is made of
aluminum and has mode stirrers (a fan formed by alu-
minum plates) inside it. The mode stirrers and the irreg-
ularities on the surface create a complicated wave scat-
tering environment. A stepper motor is used to rotate
the mode stirrers to create an ensemble of 199 di�erent
realizations.

TABLEParameters of the six experimental data sets.

Data set I II III IV V VI

cavity cut-circle cut-circle 1/4-bowtie 1/4-bowtie GigaBox GigaBox

fR [GHz] 14�16 17�19 14�16 17�19 6.0�6.1 9.0�9.1

∆f [MHz] 28 23 10 8.6 0.031 0.014

Nm 71 87 200 230 3200 7100

Nr 72 72 100 100 199 199

α 0.02 0.23 1.24 1.9 4.51 9.31

ΞZ 0.39 ± 0.01 0.44 ± 0.01 0.48 ± 0.01 0.48 ± 0.01 0.502 ± 0.005 0.487 ± 0.004

ΞZn 0.37 ± 0.02 0.45 ± 0.01 0.48 ± 0.01 0.48 ± 0.01 0.502 ± 0.005 0.489 ± 0.004

ΞS 0.41 ± 0.01 0.48 ± 0.01 0.50 ± 0.01 0.48 ± 0.01 0.508 ± 0.005 0.503 ± 0.004

ΞSn 0.51 ± 0.02 0.55 ± 0.02 0.51 ± 0.01 0.50 ± 0.01 0.503 ± 0.005 0.489 ± 0.004

For each of these three microwave systems, we select
two frequency ranges where the condition A, D � |B|,
|C| (Eq. (7)) is satis�ed. The parameters of these six
experimental data sets are shown in Table, where fR is

the frequency range, ∆f is the mean frequency spacing
of the resonant modes in that range, Nm is the approx-
imate number of modes in the frequency range, Nr is
the number of con�guration realizations. The �rst data
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set of the cut-circle cavity is measured at temperature
6.6 K (the superconducting case), and the second data
set is from the cut-circle cavity at temperature 270 K
(the normal metal case). Let us note that the Giga-
Box system has a much higher mode density than the
two quasi-two-dimensional cavities due to its large vol-
ume (V = 1.01 m3), and therefore the smaller frequency
range (100 MHz) of the GigaBox contains more reso-
nances than the frequency range (2 GHz) of the other
two cavities. The loss parameters α for these data sets
are determined as the best-�t parameter by the method
introduced in [21], which compares the statistics of the
normalized scattering element Sn,12 and the prediction of
RMT (Srmt,12). The averaged variance ratios (ΞZ , ΞZn

,
ΞS , and ΞSn

) and their standard errors of the mean are
calculated from the experimental data, and we introduce
the procedures in the next section.

3.2. Analysis of the variance ratios

We show the impedance variance ratios of the normal-
ized impedance matrix Zn and the measured impedance
matrix Z versus the loss parameter α in Fig. 4. As shown
in the �nite-size numerical ensembles (Fig. 1), a large
number of samples are critical for accurately determin-
ing the impedance variance ratio, especially in the low
loss regime. For experimental measurement, the number
of samples from di�erent con�guration realizations are
limited by the remaining correlations in the experimen-
tal data. Therefore, we take the samples for computing
the variance from the ensemble not only with di�erent
con�guration realizations but also frequency variations.
Let us note that in Eqs. (8) to (11) the variances are taken
over the con�guration realizations at a �xed frequency.
However, if α is frequency independent, Maxwell's equa-
tions are invariant to the scaling f → ηf and (length)→
η(length), so that a frequency change can be thought of
as equivalent to a con�guration change.
For the normalized impedance matrix Zn, the

frequency-dependent nonuniversal features (A(f) and
D(f)) have been removed by the RCM, so we can com-
pute the impedance variance ratio ΞZn from variances
over the whole frequency range and all realizations. The
results are shown as green squares in Fig. 4. For the
measured impedance matrix Z, the frequency-dependent
nonuniversal features remain, so taking variances over the
whole frequency range is not valid. Therefore, we take a
smaller frequency window (1/20 of the whole frequency
range fR) instead and assume that the nonuniversal fea-
tures (A(f) andD(f)) are approximately constant in this
small frequency window (100 MHz for the cut-circle cav-
ity and the 1/4-bowtie cavity, and 5 MHz for the Giga-
Box). With this condition, the derivation from Eqs. (8)
to (11) is still valid.
We compute the averaged impedance variance ratio ΞZ

of the 20 impedance variance ratios of the smaller win-
dows and plot the results as red circles in Fig. 4. For com-
parison, we also plot the averaged impedance variance ra-
tio ΞZn of small windows for the normalized impedance

Fig. 4. The experimental impedance variance ratio
versus the loss parameter α. The thick black curve is
the analytical formula ΞZrmt , Eq. (5). The green squares
are ΞZn from the normalized impedance matrix over the
whole frequency range. The red circles are averaged ΞZ ,
and the pink bars show the standard deviations of ΞZ

from the practical impedance matrix over the smaller
frequency windows. The blue stars are averaged ΞZn ,
and the light blue bars show the standard deviations
of ΞZn from the normalized impedance matrix over the
smaller frequency windows.

matrix as the blue stars. The pink bars (and the light
blue bars) show the standard deviations of the 20 vari-
ance ratios of the measured (and normalized) impedance
matrices for the smaller windows to illustrate the larger
�uctuations in the low loss regime. Let us note that
1/
√

20 of these standard deviations are the standard er-
rors of the mean shown in the last four rows in Table.
Note also that in Fig. 4 the green squares and the blue
stars are both computed from the normalized impedance
matrix, and the only di�erence is the �nite sample size
due to the frequency range for the green squares being 20
times larger than the frequency range for the blue stars.
The values of the blue stars are systematically larger than
the values of the green squares, especially the lowest loss
case. This trend is consistent with the �nite-sample-size
deviation illustrated in Fig. 1. Comparing all three sets
of experimental impedance variance ratios, the results in
Fig. 4 agree with the prediction ΞZ = ΞZn

= ΞZrmt
as a

function of the loss parameter, to the extent permitted
by the �nite sample sizes.
We also convert the impedance matrix to the scattering

matrix by Eq. (1) and do the same analysis for the scat-
tering variance ratio. The results are shown in Fig. 5.
The experimental results show that the variance ratios
of the normalized scattering matrices (green squares and
blue stars) are consistent with the theoretical prediction
ΞSn

= ΞSrmt
= 1/2. Let us note that the measured scat-

tering variance ratios (red circles and pink bars) tend to
be lower than 1/2, especially in the low loss regime. This
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Fig. 5. The experimental scattering variance ratio ver-
sus the loss parameter α. The thick black curve is the
theory ΞSrmt = 1/2. The green squares are ΞSn from the
normalized scattering matrix over the whole frequency
range. The red circles are averaged ΞS , and the pink
bars show the standard deviations of ΞS from the prac-
tical impedance matrix over the smaller frequency win-
dows. The blue stars are averaged ΞSn , and the light
blue bars show the standard deviations of ΞSn from
the normalized impedance matrix over the smaller fre-
quency windows.

trend is opposite to the �nite-sample-size deviation illus-
trated in Fig. 2 and is due to the nonuniversal features
in the wave scattering system. Zheng et al. have shown
that the nonuniversal features (imperfect port coupling)
make the averaged ΞS < 1/2 in the lossless case [26].
Savin et al. have also examined the nonuniversal feature
of ΞS and found its relationship with the loss parameter
in the imperfect coupling situations [32, 34]. Hence, the
variance ratios of the scattering matrix ΞS (red circles)
are found not to be universal, and they depend on the
nonuniversal features, such as the port coupling and short
ray trajectories [26, 34]. Only in the high loss regime
(α � 1) is approximately universal behavior of ΞS ob-
served, such as the two data sets in the GigaBox, where
ΞS ≈ 1/2. By comparing Figs. 4 and 5, or the four rows
of variance ratios in Table, we see that ΞS ≈ ΞZ in the
high loss regime.

4. Conclusion

In this paper, we analyze the impedance and scattering
variance ratios of complicated wave scattering systems at
short wavelength. Through numerical tests (Fig. 1) and
experimental tests in three microwave systems (Fig. 4),
we show that the impedance variance ratio ΞZ is a uni-
versal function of the loss parameter, independent of the
nonuniversal port coupling and short-ray-trajectory ef-
fects (accounted for in Zavg by the RCM). On the other
hand, the scattering variance ratio ΞS in general depends

on the nonuniversal features (as the low loss cases in
Fig. 5 demonstrate), although it is universal in the high
loss regime.
Comparing with the previous analysis [26], this work

has two novel contributions. One is that we utilize the
superconducting microwave cavity to test the theoretical
predictions in the low loss regime. The other is that we
have utilized the extended RCM to better account for the
nonuniversal features. By applying the extended RCM to
remove the nonuniversal features of the system, we show
that the normalized data (ΞZn

and ΞSn
) agree with the

theoretical predictions (ΞZrmt
and ΞSrmt

) to within the
precision dictated by the �nite sample size.
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