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Prediction of the statistics of scattering in typical wave-chaotic systems requires combining system-specific
information with universal aspects of chaotic scattering as described by random matrix theory. This Rapid
Communication shows that the average impedance matrix, which characterizes such system-specific properties,
can be semiclassically calculated in terms of ray trajectories between ports. Theoretical predictions are com-
pared with experimental results for a microwave billiard, demonstrating that the theory successfully uncovered
universal statistics of wave-chaotic scattering systems.
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Wave systems appear in diverse branches of physics, such
as quantum mechanics, electromagnetics, and acoustics.
However, solving the wave equations can be difficult, par-
ticularly in the short-wavelength limit �1�. Furthermore, even
if exact solutions were feasible, there may be uncertainties in
the locations of boundaries or in parameters specifying the
system, and the desired wave quantities can be extremely
sensitive to such uncertainties when the wavelength is short.
Thus, rather than seeking solutions for specific systems, it is
often convenient to create statistical models which reproduce
generic properties of the system �2�. This is the motivation
for the application of random matrix theory to wave-chaotic
systems, in which it is conjectured that useful statistics can
be obtained by replacing the exact Hamiltonian or scattering
matrices by random matrices drawn from an appropriate en-
semble. Here, by wave chaotic we mean that, in the small
wavelength limit, the behavior of the wave system is de-
scribed by ray orbit trajectories that are chaotic �3�. Although
such formulations cannot predict details of any particular
wave system, they do predict the distribution of properties in
an ensemble of related wave-chaotic systems. Random ma-
trix theory is also hypothesized to predict the statistical prop-
erties of a single wave-chaotic system evaluated at different
frequencies �in, e.g., the cases of acoustics or electromagnet-
ics� or energies �in the case of quantum mechanics�. See
Refs. �4–6� for reviews of the theory, history, and the wide
range of applications of random matrix theory.

In this Rapid Communication, random matrix theory is
applied to model the scattering behavior of an ensemble of
wave-chaotic systems coupled to the outside world through a
single scattering channel �the generalization to larger num-
bers of scattering channels is straightforward �7��. Such scat-
tering systems have been studied extensively �8–13�, with
most work focusing on the scattering parameter S, which is
the ratio between the reflected waves and the incident waves
in the channel. Here we consider ensembles of systems
whose distribution of scattering parameters are well de-
scribed by the so-called Poisson kernel �8–10,14�. The Pois-
son kernel characterizes the probability density for observing
a particular scattering parameter S in terms of the average

scattering parameter S̄. It represents contributions to the scat-
tering behavior from elements of the system which are not
random, such as the prompt reflection from the interface be-

tween the scattering channel and the chaotic system. In ad-
dition, rays within the scattering region which return to the
scattering channel without ergodically exploring the chaotic

dynamics also affect S̄ �11,15,16�. The ability to determine S̄
from first principles, thus incorporating all nonuniversal ef-
fects, would dramatically improve our understanding and
ability to uncover universal fluctuations in a host of wave

phenomena. Because S̄ is the only parameter in the Poisson

kernel, methods for finding it are of interest. Even though S̄
can be estimated from experimental ensemble data, predict-
ing it from first principles has so far not been addressed in
general �although it has been done for the specific case of
quantum graphs �17��. In this Rapid Communication we

show how to semiclassically obtain S̄, and we experimentally
verify the accuracy and utility of our technique.

A quantity equivalent to the scattering parameter S is the
impedance, Z=Z0�1+S� / �1−S�, where Z0 is the characteris-
tic impedance of the scattering channel. Because nonuniver-
sal contributions manifest themselves in Z as simple additive
corrections, we use Z in much of our discussion �13,18–20�.
We note that impedance is a meaningful concept for all scat-
tering wave systems. In linear electromagnetics, it is defined

via Ohm’s law as V̂=ZÎ, where V̂ represents the phasor volt-
age difference across the attached transmission line �the sys-

tem’s port� and Î denotes the phasor current flowing through
the transmission line. In acoustics, the impedance is the ratio
of the sound pressure to the fluid velocity. A quantum-
mechanical quantity corresponding to impedance is the reac-
tion matrix �5,13,18�. In what follows, our discussion will
use language appropriate to scattering from a microwave
cavity excited by a small antenna fed by a transmission line
�the setting for our experiments�.

With the transformation to impedance, if S is distributed
according to the Poisson kernel, we find that the impedance
can be represented as �7�

Z = iXavg + Ravgi� , �1�

where in the lossless case Ravg and Xavg are the real and
imaginary parts of the impedance Zavg based on the average

scattering parameter, where Zavg�Z0�1+ S̄� / �1− S̄� and i�
�which we call the normalized impedance� is a Lorentzian
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distributed random variable with median 0 and width 1. With
uniform loss �e.g., due to an imaginary part of a homoge-
neous dielectric constant in a microwave cavity�, Ravg and
Xavg are the analytic continuations of the real and imaginary
parts of Zavg as k→k+ ik / �2Q�, where Q�1 is the quality
factor of the closed system and k denotes the wave number
of a plane wave. The normalized impedance i� of the lossy
system has a universal distribution which is dependent only
on the ratio k / �2Q�k�, where �k is the mean spacing be-
tween modes �18,20�.

We find that Zavg can be evaluated directly in the semi-
classical limit �7� as

Zavg = ZR + RR�
b�l�

�Pb�l��Db�l�e
ik�l+Lport�−i�/4� , �2�

where the radiation impedance ZR=RR+ iXR represents the
impedance the system would have if all the energy which
coupled into the system was absorbed before coupling back
out �19,20�. The radiation resistance RR and the radiation
reactance XR are the real and imaginary parts of the radiation
impedance ZR. In the summation, b�l� is an index over all
classical trajectories which leave the port and return to the
port location with total path length l, k is the wave number,
and Lport is observed to be a port-dependent constant length.
Each term of the sum is weighted by the survival probability
of the trajectory in the ensemble �Pb�l�, to be discussed fur-
ther� and the geometrical factor of the trajectory �Db�l�� �7�.
This geometrical factor is a function of the length of each
segment of the trajectory, the angle of incidence of each
bounce, and the radius of curvature of each wall encountered
in that trajectory; it has been assumed that the port radiates
isotropically from a location far from the two-dimensional
cavity boundaries. These parameters can all be determined
from the geometry of the scatterer and location of the port
�7�.

The purpose of this Rapid Communication is to test the
accuracy and usefulness of Eq. �2�. In practice, we take ac-
count of a finite number of ray trajectories according to their
length l. Therefore, in Eq. �2� we replace the summation by
�b�l�,L which signifies that the sum is now over all trajecto-
ries b�l� with lengths up to L, l�L.

In order to verify the theory of Hart et al. �7�, experimen-
tal tests are carried out on a quasi-two-dimensional micro-
wave cavity with a single port �3,21� �see Fig. 1, inset�,
where the length of wall A is 21.6 cm, the length of wall B is
43.2 cm, the distance of the port to the nearest wall �wall D�
is 7.5 cm, and the height of the cavity is 0.8 cm. For the
frequency range explored �6–18 GHz�, higher-order vertical
modes are beyond cutoff so that the waves are quasi-two-
dimensional. Furthermore, the corresponding wavelengths
�1.7–5.0 cm� can be regarded as in the semiclassical regime,
and the cavity shape yields chaotic ray trajectories. We excite
the cavity by means of a single coaxial probe whose exposed
inner conductor extends from the top plate and almost makes
electrical contact with the bottom plate of the cavity �3�.

The radiation impedance ZR in Eq. �2� is measured by
covering the four side walls of the cavity with microwave
absorbers. Normalizing the measured impedance with the ra-
diation impedance has been used to remove the nonuniversal

properties due to the coupling of the port and the cavity
�3,21,22�. Here we further consider the nonuniversal proper-
ties due to short ray trajectories by adding the summation
term in Eq. �2�.

To verify that Eq. �2� describes nonuniversal characteris-
tics of wave-chaotic systems, we first proceed to determine
universal statistics by applying the ensemble average. Two
irregular-shaped pieces of metal �with the maximum diam-
eters 7.9 and 9.5 cm� are added as perturbers in the wave-
chaotic system that is shown in the inset of Fig. 1, where the
circular dot shows the port and the two starlike objects rep-
resent the perturbers. The locations of the two perturbers
inside the cavity are systematically changed to produce a set
of 100 realizations for the ensemble �21�. Typically, the shifts
of resonances between two realizations are about one mean
level spacing. The scattering parameter S is measured from 6
to 18 GHz, covering roughly 1070 modes of the cavity. After
the ensemble average, longer ray trajectories have higher
probability of being blocked by the two perturbers, and
therefore, the main nonuniversal contributions are due to
short ray trajectories. We compare the measured ensemble
averaged impedance �Z	 and the theoretical impedance Zavg

�L�

that is calculated from Eq. �2� with the sum up to the maxi-
mum trajectory length L=200 cm, corresponding to a total
of 584 trajectories. We multiply each term in the sum �Eq.
�2�� by a weight �Pb�l�� equal to the fraction of perturbation
configurations that are not intercepted by the trajectory cor-
responding to that term. The result is shown in Fig. 1 where
the three upper curves are the real part of the impedance
�resistance� and the three lower curves are the imaginary part
�reactance�. The experiment curves �red solid� follow the
trend of the radiation impedance curves �black thick�, and
the theory curves �blue dashed� reproduce most of the fluc-
tuations in the experiment curves with only a modest number
of trajectories. The good agreement between the measured
data and the theoretical prediction verifies that the new
theory �Eq. �2�� predicts the nonuniversal features embodied
in the ensemble averaged impedance. We believe that the

FIG. 1. �Color online� Plot of the impedance from the average
of 100 cavity realizations �Z	 versus frequency from 6 to 8 GHz
with perturbers inside the cavity. Shown are the real �three upper
curves� and the imaginary parts �three lower curves� of the imped-
ance for the theory �Zavg

�L� with L=200 cm, blue dashed� and the
experiment ��Z	, red solid�, as well as the measured radiation im-
pedance of the port �ZR, black thick�. Inset: The wave-chaotic two-
dimensional cavity with perturbers and a single port.
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differences between the measured data and the theory are
due to the finite number of realizations in the ensemble and
diffraction effects that are not taken into account in the
theory.

We further test our theory by consideration of the statis-
tics of the scattering parameter for an ensemble of perturba-
tion configurations and an ensemble of frequencies. Random
matrix theory predicts that, after all nonuniversal effects
have been removed, the resulting scattering parameter, which
we denote as s= �i�−1� / �i�+1�= 
s
ei�s, should be distributed
uniformly in phase in 0��s�2�, and this result is indepen-
dent of loss, frequency, and mean level spacing �9,20�. The
previous work of Refs. �3,21,22� removed the nonuniversal
properties by performing normalization with only the radia-
tion impedance as i�= �Z− iXR� /RR. Here we add ray trajec-
tory corrections based on the maximum trajectory length L,

i��L� = �Z − iXavg
�L� �/Ravg

�L� , �3�

and use the �2 test to evaluate how uniform the resulting
phase distributions are. Ravg

�L� and Xavg
�L� are the analytic con-

tinuations of the real and imaginary parts of Zavg
�L� as k→k

+ ik / �2Q� in the experimental case with loss. Experimental
distributions of the phase �s of s are calculated from 100
realizations and different frequency windows. �2

= 1
�ni	

�i=1
N �ni− �ni	�2 measures the deviation between the ex-

perimental distributions of �s and a perfectly uniform distri-
bution, where ni is the number of elements in the ith bin in
the histogram �with ten bins, N=10� of the probability of the
phase of the scattering parameter P��s� and �ni	 is the aver-
age of ni over i. A smaller �2 value means the experimental
data are closer to the theoretical prediction.

Figure 2 shows the averaged �2 evaluated over the spec-
tral range from 6 to 18 GHz. The results indicate that the
distributions of the measured data are systematically more
uniform as more ray trajectories are taken into account in the
impedance normalization �Eq. �3��. The improvement is dra-
matic after including just a few short ray trajectories �L
=50 cm, seven trajectories� and saturates beyond L

=100 cm �36 trajectories�. The periodic wiggles represent
the effects of the strongest remaining trajectory not taken
into account in the theory. Thus, we see that nonuniversal
effects of ray trajectories in the ensemble of wave-chaotic
systems can be efficiently removed by considering a few
short ray trajectories or by increasing the window size for the
frequency ensemble.

In addition to experiments with ensemble averaging over
perturber positions, we now examine the theory in the strin-
gent case of just a single realization without scatterers, and
we use only a frequency ensemble. We consider frequency
smoothed experimental data and compare it with the
smoothed theoretical prediction. Figure 3 shows that the
smoothed measured impedance Z �red solid� agrees with the
smoothed theoretical impedance Z�L� �blue dashed�. Notice
that Zavg

�L� →Z�L� because there is only a single realization
now. The smoothing function is a Gaussian with standard
deviation �=240 MHz, which inserts an effective low-pass
Gaussian filter on the trajectory length, thus limiting the
terms in Eq. �2� to those with a path length l	c /�
=125 cm. The results in Fig. 3 shows that the theory cor-
rectly captures systematic contributions from short trajecto-
ries.

In conclusion, the nonuniversal effects of coupling and
short ray trajectories on wave scattering in chaotic systems
are predicted by a recently developed theory �7� and verified
experimentally. This is accomplished through statistical tests
of the scattering parameter and comparisons of impedance in
an ensemble of perturbed systems, as well as a single-
realization wave-chaotic system. In particular, nonuniversal
effects have been better represented and removed from mea-
sured data to reveal underlying universal fluctuations in the
scattering parameter. These results should be useful in many
fields, such as nuclear scattering, atomic physics, quantum
transport in condensed matter systems, electromagnetics,
acoustics, geophysics, etc.

We acknowledge seminal discussions with R. E. Prange
and assistance from Michael Johnson. This work was sup-
ported by the Air Force Office of Scientific Research Grant
No. FA95500710049.

FIG. 2. �Color online� The average �2 of distributions of the
phase of the scattering parameter �s on a semilogarithmic scale,
where the scattering parameters are calculated from impedance nor-
malized with only the radiation impedance �green� and with ray
trajectories according to the maximum trajectory length from L
=50 cm �red� up to L=200 cm �blue� versus frequency window
sizes from 0.1 to 4.0 GHz.

FIG. 3. �Color online� Plot of the smoothed impedance versus
frequency from 6 to 8 GHz. Shown are the real �three upper curves�
and the imaginary part �three lower curves� of the smoothed imped-
ance for the theory �Z�L� with L=200 cm, blue dashed� and the
experiment �red solid�, as well as the measured radiation impedance
of the port �ZR, black thick�.
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