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Abstract— Through many applications, it was demonstrated 

that Kron's formalism gives to electromagnetic compatibility 

(EMC) challenges all the theoretical tools to analyse and to 

theorize complex systems electromagnetic coupling. Kron’s 

formalism leads to describing electronic system with impedance 

matrices as fundamental objects. Recently the Random Coupling 

Method was proposed to describe the antenna impedance matrix 

in presence of wave chaotic cavities at high frequencies. In this 

paper, the integration of the Random Coupling Model inside the 

Kron’s formalism is proposed, thus leading to a stochastic Kron’s 

method. 

Keywords— Electromagnetic Computation; Chaotic Cavities; 

Statistical method; 

I.  INTRODUCTION 

Electromagnetic Compatibility (EMC) is very important for 
Information Security [1-4]. Spurious compromising 
emanations [1-2] and high intensity parasitic fields are non-
negligible threats for the security and the availability of critical 
systems. Immunity tests [3-4] can be performed for each 
electronic device that operates inside metallic enclosures as 
well as for the assembled electronic system as complex 
equipment. The electromagnetic waves radiated from a lot of 
intentional (e.g. wireless communication interface) and 
unintentional (e.g. electromagnetic noise) electronic devices 
will couple into the antenna of a receiving system, e.g. mobile 
communication emitters, or into the electronic device 
conductive structures. This coupling behavior can be seen as 
front door coupling into the antennas as well as backdoor 
coupling into the system cabling and the electronic itself. These 
parasitic coupling can disturb the system and may cause system 
errors or in the worst case the breakdown of the system as it 
was in-depth analyzed in [5]. 

In the design step of the electronic system, simulation tools are 
highly involved in order to prevent as much as possible 
parasitic coupling. To accurately simulate circuits influenced 
by the cavity eigenmodes along with the integrated electronics, 
studies rely generally on a full-wave solver involving circuit 
simulators. As these tools are known to be time-consuming, 
simple tools have been proposed to predict an estimation of the 
coupling between PCB’s and parasitic fields [6]. Kron’s 
formalism (KM) has shown its capability to provide EMC 

challenges [6-10] all the required theoretical tools for 
electromagnetic computation. The Kron’s formalism in the 
meshes space is based on the use of Z-parameters matrix as a 
centered object in the theory of networks. Combined with the 
tensorial approach (TA), the KM forms a theoretical 
framework that can be efficiently employed to model complex 
EMC coupling problems.  

Recently, a statistical model, based on impedance and/or 

admittance matrices (called the Random Coupling Model - 

RCM) has been derived to describe the coupling between ports 

and/or between apertures [11-14] within irregular resonating 

cavities. The hypothesis underlying the RCM is that the cavity 

supports a high density of ergodic eigenmodes, whose spectral 

statistics are chaotic and they can be described by semiclassics 

and random matrix theory. 

 

It is argued that both formalisms, the KM and the RCM, can 

be combined in order to create an “all-impedance stochastic 

model”, thus avoiding measurement of the environment 

scattering matrices. The KM impedance matrix of the source 

mesh and the KM impedance matrix of the load mesh can be 

coupled by the random impedance matrix of the RCM. Direct 

summation of KM networks for external measurements and 

environment and RCM impedance one representing equipment 

inside leads to the complete coupled system. 

 

This is particularly appealing in those applications where the 

environment is partially unknown or inaccessible and 

requiring too much efforts for a deterministic modeling. If the 

free-space radiation impedance matrix of terminals and ports 

can be measured (e.g. inside an anechoic chamber), the 

coupling through the environment of subsystems connected to 

those ports and modeled through the KM can be predicted by 

Monte Carlo analysis of the RCM experiments. 

 

As for a first validation purpose, the test case depicted in 

Figure 1 will be studied. The cavity have the following 

dimension 41.2 cm x 19.2 cm x 42.5 cm respectively along x, 

y and z axis. Two monopole antennas, represented as port 1 

and port 2 (respectively as input and output ports during the 

measurements), are placed inside a metallic enclosure. Taking 
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the lowest dimension of the cavity dlow = 19.2 cm, the maximal 

wavelength (i.e. the lowest usable frequency) taken in what 

follows λ (9.6 cm) >> dlow. This allows to comply with the 

overmoded hypothesis of the random coupling matrix. 

Nevertheless, as the instrumentation available allows for 

measuring a larger frequency band and since the Kron’s 

method has no limitation the frequency band covered in this 

study is 4 GHz – 8 GHz. Note that in what follows, the 

simulation and measurement of the RCM will start at 4 GHz. 

 

 

Fig. 1: Metallic electronic enclosure. 

An impedance-matrix Kron’s model of the two antennas 

inside the cavity will be given and simulation results will be 

compared to a set of measurements. The needs for a random 

coupling matrix will be illustrated. To overcome the challenge 

of characterizing and embedding the eigenmodes of the cavity 

inside Kron’s model, it will be shown how to combine both 

the KM and RCM methods to build a stochastic Kron’s model. 

 

The paper is organized as follows: in Section II, Kron’s 

principles are described and is applied to the analysis of the 

coupling between antennas placed inside a cavity. In 

Section III, the Random Coupling Model and its 

complementarity with Kron’s simulation tools are presented. 

II. KRON’S FORMALISM 

Kron’s formalism is a theoretical tool that has been successful 

in describing the interactions within electromagnetic 

compatibility systems. Combined with the tensorial approach, 

the KM forms a theoretical framework that can be efficiently 

employed to model complex EMC coupling problems [7-8]. In 

this Section, the main lines of the KM method are recalled. 

A. Kron’s formalism 

The Kron's formalism in the meshes space is based on the use 

of Z-parameters matrix as a center object in the theory of 

networks. This matrix leads to a Lagrange's equation of the 

problem. For this reason the technique is sometimes called a 

"modal method", compared to the "nodal" one which is used 

in SPICE for example and centered on the admittance 

expression of a circuit described in the nodes space. 

 
Interestingly, the KM is in the mesh space and is based on the 
use of impedance operators. In contrast to SPICE models, 
where 2N nodal equations need to be solved, KM leads to a 

system of N Lagrange equations. KM works with three levels 
of space: the nodal, the edge and mesh ones. Nodal techniques 
as SPICE work only with the two first. Besides this, KM 
fundamental object is in impedance. This gives KM particular 
capacity: to translate directly the rotational operator for 
example and leads to Lagrange's equations of the network 
studied [9].  

B. Simulation of the coupling between two antennas in a 

cavity 

The problem can be written under the Kron’s formalism in 

three steps: first step consists in locating dipoles in metallic 

walls. This leads to a network 𝑍𝑑. Second step, it consists in 

making the direct summation of two similar dipoles 𝑍𝑑 and of 

two guided waves structure representing the cavity. Finally, it 

consists in adding the coupling between all previous elements. 

 

The dipole being short ones, their near field interaction with a 

metallic plate stills the same until the plate is larger than a 

minimum dimension. This can be understood knowing that, if 

ℎ is the height of the dipole, its impedance when short 

compared to the wavelength is a capacitor of value 

approximated given by: 

 𝐶 ≈ 2𝜖0𝑟 ln(ℎ). (1) 

This means that the first order influence on the dipole 

impedance is the plate zone of radius h. In our case, the 

distances all around the dipoles on the metallic walls of the 

cavity are larger than h. So we consider the impedance for a 

dipole located on the cavity walls defined by: 

 𝑅𝑑 +
1

𝐶𝑑𝑝
= 𝑍𝑑. (2) 

The dipoles are seen as resonators. The generator has its own 

impedance R0. The cavity structure is modeled through 

Branin’s ones [10]. It consists of modelling lossy lines as a 

two port networks connected to load at both terminations. 

Thus, considering the case under study, Branin’s models have 

been derived for modelling the cavity as short circuited 

waveguide. More details are accessible in [11]. Two 

polarizations are considered following the two directions of 

the plan parallel to the walls with the dipoles. Each 

polarization can be characterized by a mode number given by: 

 𝑛𝑘 =
2𝐿𝑘

𝜆
, (3) 

where 𝐿𝑘 is the width of the structure, a group speed [12] 

defined by: 

 𝑣𝑔𝑘 = 𝑐 (1 −
𝑛𝑘

2𝜋2𝑐2

𝐿𝑘
2𝜔2 ), (4) 
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and finally a characteristic impedance following Collin’s 

meaning obtained with: 

 𝑍𝑐 =
2𝐻𝑘

𝐿𝑘
√

𝜇

𝜖
. (5) 

These elements give all the information to model a guided 

waves structure using Branin’s model [11]. The topology 

considered in this work is presented in Figure 2. 

 
Fig. 2: Topology and associate graph describing the test case. 

Next work is to add the mesh inductances and the coupling 

impedance to 𝑍𝑏. These coupling impedances are magnetic 

one and Branin’s coupling terms. Branin’s impedance for the 

guide waves and 𝑘 polarization are given by: 

 {
𝜁𝑎 = 𝑓𝑐𝑘(𝜓𝑏 − 𝑍𝑐𝑘𝑖𝑏)𝑒

−
𝑥

𝑣𝑔𝑘
𝑝
𝑒−𝛼𝑥

𝜁𝑏 = 𝑓𝑐𝑘(𝜓𝑎 − 𝑍𝑐𝑘𝑖𝑎)𝑒
−

𝑥

𝑣𝑔𝑘
𝑝
𝑒−𝛼𝑥

, 

(6.a) 

 

(6.b) 

where 𝜓𝑢 are the potential difference across the dipoles, 𝑓𝑐𝑘 

cutoff functions defining the low cutoff frequency of the 

guided waves and 𝜁𝑢 the voltage linked with the forward and 

backward waves transmitted by the guided waves.  

 

Replacing 𝜓𝑢 by their expressions depending on the dipole 

impedance and the current going across, we can define the 

coupling impedances. For example between 𝜁𝑎 and 𝑖𝑏 

(equation 6.a), the coupling impedance is defined by: 

 𝑍𝑎𝑏 = 𝑍𝑐𝑘𝑒
−

𝑥

𝑣𝑔𝑘
𝑝
𝑒−𝛼𝑥, (7) 

Once these coupling impedances defined between all the 

edges, they are added in the impedance matrix as extra-

diagonal components. It stills to transform the impedance 

matrix into the mesh space and to solve the system.  

 

Based on this computation we will be able to obtain the 

transfer function that we will be able to compare with 

measurements. In what follows, the transfer function is 

computed using the voltage at the RX monopole antenna 

(port 2) over the voltage at the TX one (port 1). 

C. Transfer function measurement and simulation 

The test case under study, depicted in Figure 1, is composed of 

two handmade monopole antennas covering a frequency band 

between 4 GHz and 6 GHz (the measured reflection 

coefficients of both antennas are below -15 dB). Both antenna 

are placed along x and have a length of 1.5 cm. The metallic 

enclosure is placed inside an anechoic chamber and the 

scattering parameters between port 1 and port 2 are obtained 

thanks to a vector network analyzer (VNA) from 1 GHz to 

8 GHz with 8821 equally spaced points of measurement. 

Figure 3 shows the obtained simulated and measured transfer 

functions from 4 GHz to 8 GHz.  

 

 
Fig. 3: Measured and simulated voltage magnitude transfer functions. 

The modeled and the measured transfer functions are in good 

agreement between 4 GHz and 8 GHz, as the simple 

simulation software allows estimating the overall tendencies 

of the measured transfer function between the two monopoles. 

The global resonance density is retrieved as maximum levels. 

The mean error is about 9 dB. At this step, it can be observed 

that the cavity eigenmodes have not been added in the 

measurement as no mode stirrer has been used in contrary to 

the Kron’s model which encloses the major modes involved 

through the antenna coupling functions.  

 

Nevertheless, the cavity eigenmodes in Kron’s model does not 

necessary strictly reflects the cavity response. In order to 

improve Kron’s formalism, it is necessary to rely on a well-

founded methodology. As a result, in the next section, it will 

be shown that it is possible to embed the cavity eigenmodes in 

Kron’s formalism thanks to the Random Coupling Model in 

order to complete the free-space model, avoiding the 

characterization of the cavity. 
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III. EMBEDDING THE EIGENMODES OF A CAVITY IN KRON’S 

FORMALISM 

A. Principle of the Random Coupling Model 

The RCM works by first identifying a suitable set of 

voltages and currents that are linearly related and that can be 

used to describe the interaction of the fields within the cavity 

with signals to and from the outside world. The RCM then 

provides a model for the linear relation between port voltages 

and currents that mimics the behaviour of the fields in the 

enclosure. The model is based on the following approach. First 

one imagines representing the fields inside the enclosure in a 

complete basis of modes, and calculates the excitation of these 

modes due to coupling to the ports. One then writes a formal 

expression for the matrix impedance that involves the modes 

and their resonant frequencies. The mode topologies and 

resonant frequencies of a wave chaotic cavity are too 

complicated, and too sensitive to details, to calculate. So, these 

are replaced by representations that are based on random 

matrix theory [13-14] and the assumption that modes appear to 

be random superposition of plane waves. The result is a 

compact expression for a model of the cavity impedance 

matrix: 

 𝑍𝑐𝑎𝑣 = 𝑖 Im (𝑍𝑟𝑎𝑑) + [𝑅𝑟𝑎𝑑
1

2 𝜉 𝑅𝑟𝑎𝑑
1

2] (8) 

where  

 𝑍𝑟𝑎𝑑 = 𝑅𝑟𝑎𝑑 + 𝑖 Im(𝑍𝑟𝑎𝑑), (9) 

is in the simplest theory an Np x Np diagonal matrix  (where Np 

is the number of ports) whose elements are the complex 

radiation impedances of the ports, and we have adopted the 

notation that a double underline indicates a matrix quantity. 

Here the radiation impedance provides the linear relation 

between the voltages and currents at a port in the case in 

which waves are allowed to enter the enclosure through the 

port but not return, as if they were absorbed in the enclosure. 𝜉 

is the only statistical matrix of 𝑍𝑐𝑎𝑣 .
 
Since the details of the 

EMC cavity environment can be too complicated to be 

estimated or simply unknown, the cavity eigenmodes are 

treated statistically. In particular, the matrix 𝜉 is an element of 

the Lorentzian ensemble [15] and can be defined for a lossless 

cavity as: 

 𝜉 =  −
𝑖

𝜋
 ∑

Φ𝑛Φ𝑛
𝑇

𝐾0
2−𝐾𝑛

2+𝑖𝛼𝑛  , (10) 

Here Φ𝑛 is a vector of uncorrelated, zero mean, unit width 

Gaussian random variables, and 𝐾𝑛
2 are the eigenvalues of a 

matrix selected from the Gaussian Orthogonal Ensemble 

(GOE) [16], where the central eigenvalue is shifted to be close 

to 𝐾0
2 = ω2 𝑐2⁄  where ω is the frequency of excitation. The 

shift implies that 𝜉 has zero mean. The eigenvalues are scaled 

so that the average spacing between eigenvalues near the 

central one is Δ𝐾2, which is selected to match the mean 

spacing of resonances of the enclosure in the frequency range 

of interest. The effect of internal losses, or additional ports 

(beyond the Np already considered) and the cavity dimension 

can be taking into account in the model thanks to the loss 

parameter 𝛼 = 𝐾𝑘
2 𝑄. Δ𝐾2⁄ . It is through the matrix 𝜉 that the 

propagation of waves in the enclosure from one port to 

another and back is modelled. In the test scenario of Figure 1, 

and for arbitrary cavity losses, the elements of the random 

impedance matrix (8) take the explicit form: 

 

𝑍11
𝑐𝑎𝑣 = 𝑖 Im(𝑍11

𝑟𝑎𝑑) + 𝑅11
𝑟𝑎𝑑  𝜉

11
, 

 

𝑍22
𝑐𝑎𝑣 = 𝑖 Im(𝑍22

𝑟𝑎𝑑) + 𝑅22
𝑟𝑎𝑑  𝜉

22
, 

 

𝑍12
𝑐𝑎𝑣 = (𝑅11

𝑟𝑎𝑑)1/2 𝜉
12

 (𝑅22
𝑟𝑎𝑑)1/2, 

 

𝑍21
𝑐𝑎𝑣 = (𝑅22

𝑟𝑎𝑑)1/2 𝜉
21

 (𝑅11
𝑟𝑎𝑑)1/2. 

(11.a) 

 

(11.b) 

 

(11.c) 

 

(11.d) 

 

B. Integration of the RCM model in the KM theory 

The impedance matrix given by the RCM can be integrated 

into the KM in order to tackle the coupling between complex 

structures operating inside an arbitrary cavity. This can be 

carried out through a two-step procedure involving both the 

edge space and the mesh space.  

 

First, since in RCM the ports are identified as independent 

edges, we include the input impedance of the two antennas as 

primitive objects in the edge impedance matrix, viz., 

 𝑍𝑒 = 

[
 
 
 
𝑅0 0 0 0

0 𝑍11
𝑟𝑎𝑑 0 0

0 0 𝑍22
𝑟𝑎𝑑 0

0 0 0 𝑍𝐿]
 
 
 

, (12) 

where the free-space radiation impedances are given by (2).  

 

Given the connectivity matrix: 

 C =  [

1 0
1 0
0 1
0 1

], (13) 

it is possible to represent the system in Figure 1 in mesh space.  

 

The related impedance matrix is found by the bilinear 

transform: 
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 𝑍𝑚 = 𝐶𝑇𝑍𝑚𝐶= [
𝑅0 + 𝑍11

𝑟𝑎𝑑 0

0 𝑍𝐿 + 𝑍22
𝑟𝑎𝑑], (14) 

representing two uncoupled antennas radiating in free-space.  

 

 
Fig. 4: Mesh representation of the two antennas radiating inside an 

arbitrary metallic cavity. 

In the KM, the coupling is formalized through the interaction 

impedance Zc, whose elements have the dimensions of 

impedance. By specializing the KM to the test scenario shown 

in Figure 1, and through the topology scheme given in 

Figure 4, we find: 

 𝑍𝑐= [
𝑍11

𝑐𝑎𝑣  𝑍12
𝑐𝑎𝑣

𝑍21
𝑐𝑎𝑣 𝑍22

𝑐𝑎𝑣], (15) 

where, because of reciprocity, the cross-impedances due to 

cavity wall reflections are given by (11.c) and (11.d). Finally, 

the electromotive forces (EMF) in the KM are found, given 

the source convector: 

 E = [𝐸0 0], (16) 

which can be obtained thanks to:  

 E = (𝑍𝑚 + 𝑍𝑐).Q, (17) 

from which the mesh currents Q can be calculated. Note that 

the solution of (17) is subject to the Monte Carlo generation of 

the random cavity impedances in (14) through (15), whence 

(8) and (10) can be used to generate probability distributions 

of the mesh currents. Interestingly, since <𝜉> = 0 , the 

ensemble average of (z) yields: 

 E = < (𝑍𝑚 + 𝑍𝑐) >.<Q> = 𝑍𝑚. Q , (18) 

which retrieves the free-space result.  

C. Introduction of the RCM in Kron’s models 

As for a first test case, we focused on the coupling of the two 

monopole antennas placed in a computer box as represented 

and described in Section I. Using equations 11.a to 11.b, the 

free-space model of the configuration under study has been 

completed to perform statistical analysis of the induced 

voltage on port 2 for a 10 V EMF applied on the port 1 

monopole antenna at 4 GHz when both antennas are placed 

inside the cavity. As for preliminary results, 600 ergotic 

modes have been embedded in Kron’s model. A 2000 random 

configurations (Monte Carlo analysis) run has been 

performed. A 1.0 loss factor has been defined as it is known to 

be a typical value for a 3D reverberation chamber in the few 

GHz range. 

 

 
Fig. 5: Induced voltage magnitudes on port 2 for 2000 Monte-Carlo 

runs. 

The voltage magnitude for each random configuration was 

obtained. Simulation results are depicted in Figure 5. The 

mean and standard deviation are 145.2 mV and 99.8 mV 

respectively.  

 

 
Fig. 6: Cumulative distribution function of the imagineray and real 

parts of the induced voltages on port 2 fitted with Logistic 

distributions. 

The cumulative distribution functions (CDF) of the imaginary 

and real parts of the induced voltages on port 2 are depicted in 

Figure 6. Both distributions have been compared to known 

distribution. In this case, it has been confirmed thanks to the 
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maximum log-likelihood function that the real and imaginary 

parts of the induced voltage are logistic distributions which are 

normal distribution with heavier tails. 

 

 
Fig. 7: Cumulative distribution function of induced voltage 

magnitudes on port 2 fitted with a Gamma distribution. 

Based on the combination of the imaginary and real parts 

distributions, we expected to have a normal distribution with a 

larger shape parameter due to the outliers. This has been 

confirmed as the induced voltages magnitudes distribution is 

following a Gamma distribution as it is depicted in Figure 7. 

IV. CONCLUSION 

In this paper, the main lines of the Kron’s formalism and the 

Branin’s model have been recalled. Thanks to the Z-matrices 

enclosed in the Kron’s formalism, it has been shown that for a 

reduced effort, the coupling between antennas placed inside 

metallic enclosure can be computed. The needs for embedding 

the eigenmodes of the cavity have been highlighted. To 

overcome the last challenge, it has been shown the Random 

Coupling Matrix can be enclosed in Kron’s formalism in order 

to build a stochastic Kron’s methods for electromagnetic 

computation. During the presentation, additional results will 

be provided in order to complete the theoretical aspects 

dealing with the RCM and the KM combination.  

 

Future work will be dedicated to analyze and estimate 

experimentally the distribution of the induced voltages on a 

monopole antenna placed in a cavity. Moreover, the 

configuration presented in this study was composed of small 

dipoles, placed inside a cavity, for which the impedance is 

mostly reactive (i.e. capacitive). The work will be extended to 

the analysis for large dipole antennas. 
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