
Introduction 
 
 Since May 2003, I have performed computer simulations of electromagnetic field effects 
for Professor Steven Anlage’s research group at the University of Maryland’s Center for 
Superconductivity Research. My work has supported the research of several individuals in Dr. 
Anlage’s group, but this paper will focus on two efforts in particular: the study of left-handed 
materials and microwave microscopy. 
 The Anlage group performs computer simulations for two reasons. First, simulations help 
to predict results that researchers may expect from their experiments, which can provide them 
with a benchline against which to compare their results. For example, I conducted simulations to 
determine the refractive properties of a prism that were later verified experimentally. In addition, 
predicting results may provide researchers with greater insight into planned experiments so that 
they can make adjustments before investing considerable effort and resources in setting up and 
conducting the experiments. For example, I modeled how placing a thin conducting film above a 
dielectric substrate would affect the local electric field during microwave microscopy 
experiments, helping a researcher to understand these effects before deciding whether to use such 
a thin film in his own experiments. 
 Second, simulations can provide quantitative analysis of experiments for which it may be 
difficult to measure precise quantities experimentally. For example, it is important to maximize 
the spatial resolution of a microwave microscope, but it is often difficult to measure this property 
accurately in a laboratory setting. Software simulations can often provide quantitative results to 
assist researchers in their efforts. 
 

Description of Ansoft Software 
 
What the Software Can Do 
 
 I used two pieces of software produced by the Ansoft Corporation to simulate problems 
for the Anlage group: HFSS and Maxwell 2D (M2D). 
 
HFSS 
 During my time with the Anlage group, I primarily used HFSS, which simulates time-
dependent electromagnetic effects in three spatial dimensions. This software has several 
properties that make it well-suited for simulating the group’s experiments. 
 First, projects may be solved using eigenmode or driven solutions. In the first case, when 
solving a project, the software finds its eigenmodes. The user may solve for only the lowest 
eigenmode (i.e., the one with the lowest resonant frequency) or several. This solution method is 
useful, for example, in determining the resonances of closed cavities. In the second case, when 
solving a project, the software determines properties of the system as electromagnetic radiation 
propagates through it. This method is useful, for example, in simulating transmission lines in 
which electromagnetic radiation enters from one end and exits from another. 
 Having specified a solution method, the user must design the model. He defines units of 
length and draws the model in three dimensions, and HFSS provides robust capabilities to 
customize the design. The model may include lines (including curved lines), 2-dimensional 
surfaces (including curved surfaces), and 3-dimensional objects. 



 Next, the user specifies the types of materials of which objects in the model are made. I 
typically used conductors (i.e., metals such as tungsten and copper), common dielectrics (such as 
silicon and teflon), and air and vacuum. HFSS includes preset properties for these materials, 
including electric permittivity, magnetic permeability, bulk conductivity, and dielectric loss 
tangent. 
 Next, the user may determine boundaries to be used along faces of model items and the 
outer boundary of the drawing area. For example, a user may define a boundary to simulate the 
existence of a perfect conductor along an object’s face. Electromagnetic radiation striking the 
face will reflect perfectly, and electric field lines will be perpendicular to the face. Defining a 
“radiation boundary” simulates the existence of empty space along a face. Radiation striking that 
face will propagate without reflecting back into the model area (or simply be absorbed). 
 The user then defines ports and port excitations. Ports may be placed along faces of 
objects and serve as means for electromagnetic radiation to enter and exit the model. The 
excitation determines the frequency of the incoming radiation. Users may solve projects for 
incident radiation with a wide variety of frequencies very easily by defining “frequency sweeps.” 
For example, a user may define a frequency sweep of 7 to 13 GHz in steps of .5 GHz, so that the 
model would first be solved for incident radiation with a frequency of 7 GHz, then 7.5 GHz, then 
8 GHz, etc. until 13 GHz. 
 The next step is to define solution options. In order to solve a model, HFSS generates a 
mesh of tetrahedra in the space that the model occupies. HFSS solves the project using these 
tetrahedra as building-blocks. The software then determines the areas of the mesh in which the 
solution is poorest and creates a new mesh for the entire model with more tetrahedra, with most 
of the new tetrahedra being placed in the deficient area. HFSS then solves the model again, this 
time finding a more accurate solution. The software continues in this way for several passes. 
More accurate solutions are generated by meshes with more tetrahedra, and the user can define 
solution options that require the software to generate greater numbers of tetrahedra for the mesh. 
The tradeoff is that HFSS requires more time and computing power to find solutions for more 
refined meshes. 
 After a solution is computed, the user can display results in one of two methods. The first 
method is to generate a plot of the model’s electric or magnetic fields. Color plots indicate the 
strengths of these fields, while vector plots indicate both magnitude and direction at 
representative points. Plots can also be animated to display the time-dependent behavior of these 
fields. The second display method is the generation of tables and graphs, such as scattering 
matrices and graphs of scattering matrix elements (such as S11) vs. frequency or phase. 
 
Maxwell 2D 
 The second piece of software that I used was M2D. This program solves Laplace’s 
equation (∇2V=0, where V is the electrostatic potential) to determine time-independent solutions 
to electromagnetic problems. 
 As its name implies, M2D uses 2-dimensional models only. Therefore, in order to 
simulate an actual laboratory experiment, the model must have either plane or rotational 
symmetry. If the user selects plane symmetry, then Cartesian coordinates are used, the model is 
drawn in the x-y plane, and the model is assumed to have symmetry along the z-axis. (For 
example, the square in figure 1 would represent a box with infinite length in the z direction. In 
this model, the software represents the x and y axes as u and v.  The hash-marks represent the 
origin of the coordinate system.) If the user selects rotational symmetry, then cylindrical 
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coordinates are used, the model is drawn in the r-z plane, and the model is assumed to have 
rotational symmetry about the z-axis. (For example, the square in figure 2 would represent a 
cylinder whose axis of symmetry lay along the z axis. In this model, the software represents the r 
and z axes as u and v.) 
 

 
Figure 1. This model, with planar symmetry, 
represents a box infinitely long in the z-
direction. 

 
Figure 2. This model, with rotational symmetry 
about its left edge, represents a cylinder. 

 
 Once the user has drawn the model, he defines materials, boundaries, and solution 
options in a manner similar to how he would do so in HFSS.1 (Ports and excitations are not 
defined since M2D only calculates static solutions.) The user can also generate plots of electric 
and magnetic field strengths, but tables and graphs are different, since scattering matrices can not 
be determined for static solutions. Instead, I usually determined capacitance matrices, which 
represent the capacitances among conducting objects in the model. 
 
Shortcomings of HFSS, M2D 
 
 Despite the capabilities of HFSS and M2D, these software programs had several 
drawbacks. For example, the modeling capabilities had strict aspect ratio limits. Aspect ratio is 
defined as the ratio of the longest length-scale in the model to the shortest, and Ansoft 
recommends that this number not exceed 104. I sometimes managed to get the software to run 
with larger aspect ratios, but when they became too large, either the results became erratic or the 
software simply failed to run. 
 Another problem was the failure of the software to mesh models properly on occasion. 
Sometimes tetrahedra would overlap, and sometimes their vertices would fail to coincide (i.e., 
the tetrahedra would not be adjacent, as required). I often did not know why these problems 
occurred. Instead, I had to rely on trial-and-error to make minor adjustments in the model and in 
order to determine what would work. 
 In addition, it was often impossible to calculate errors for numbers produced by HFSS 
and M2D. For example, it was sometimes impossible to determine whether numbers produced by 
the software (such as capacitances between objects or strengths of electric fields) were consistent 

                                                 
1 The user determines the mesh refinement as he does in HFSS. However, the mesh consists of triangles, not 
tetrahedra, since M2D models are two-dimensional. 
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with observations from laboratory experiments. Although we could determine errors for these 
experimental results, we had no way of determining how accurate the software results were. 
 

Left-Handed Materials 
 
 I simulated several projects for Michael Ricci and Nathan Orloff, two students in Dr. 
Anlage’s group conducting experiments with left-handed materials (LHMs), which have 
negative indices of refraction (n). Victor Veselago provided the theoretical outline for the 
behavior of such materials in 1968,2 but physicists only successfully created such materials in 
the late 1990s. Many researchers are now exploring the properties of these exotic materials, 
which may contribute to significant advances in optics and related fields. 
 Ricci’s and Orloff’s goal was to create an LHM object and demonstrate its negative index 
of refraction by creating a negative Goos-Hänchen shift. When a collimated incident 
electromagnetic wave strikes a plane separating one medium from another, it refracts according 
to Snell’s law, so that n1*sin(θ1)=n2*sin(θ2), where n1 and n2 are the indices of refraction of the 
incident and encountered media, respectively, and θ1 and θ2 are the angles between the beam and 
lines drawn normal to the plane of separation. When θ1=sin-1(n2/n1), then θ2=90˚ and the 
outgoing beam travels along the plane of separation. When the incident angle exceeds this 
critical value, then the outgoing beam 
reflects back into the incident 
medium, but it does so from a point 
that is displaced from the point at 
which it struck the plane. This lateral 
displacement is the Goos-Hänchen 
shift. (See figure 3.) When the 
encountered medium has a negative 
index of refraction, the Goos-Hänchen 
shift should be in the direction 
opposite to that of materials with 
positive indices of refraction.3

Figure 3. 

Goos-Hänchen Shift

Incident material

Encountered material

 
Waveguide Simulation 
 
 Ricci and Orloff wanted to use a waveguide to direct incident microwaves toward their 
apparatus, and one early concern was that they might excite a mode of higher order than the 
waveguide’s lowest mode for the propagating wave. In order to test this idea, I created a model 
of a simple three-dimensional box in HFSS, 12” long and with a standard X-band cross-section 
(.4” x .9”), to represent the waveguide. The incident port was placed at one end of the 
waveguide, and an outgoing port was placed at the opposite end. Ricci and Orloff used metal 
plates to form the top and bottom of their waveguide, so I set the boundary conditions on the top 
and bottom faces of my HFSS waveguide to simulate perfect conductors. They also placed a 
material especially designed to absorb microwaves along the sides of their waveguide, so I gave 
                                                 
2 V. G. Veselago, “The Electrodynamics of Substances with Simultaneously Negative ε and µ,” Sov. Phys. Usp. 10, 
no. 4 (Jan–Feb 1968): 509–514. 
3 Ilya V. Shadrivov et al., “Giant Goos-Hänchen Effect at the Reflection from Left-Handed Metamaterials,” Applied 
Physics Letters 83, no. 13 (29 September 2003): 2713–2715. 
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the sides of the HFSS waveguide a radiation boundary condition to simulate the effect of having 
the wave strike the sides and simply disappear (“radiate” away). 
 I first ran the simulation with the frequency of the incident wave set to f=13 GHz. A plot 
of the magnitude of the electric field revealed that the lowest-order mode was excited, as we 
expected. (See figure 4.) 
 Next, I changed the boundary conditions on the sides of the waveguide to simulate 
perfect conductors instead of radiation boundaries, so that all four faces parallel to the direction 
of propagation simulated perfect conductors. The electric field plot indicated that a higher-order 
mode was excited, also as expected. (See figure 5.) This result had no direct relevance to Ricci’s 
and Orloff’s experiment, since the sides of their waveguide would always be covered with 
microwave absorber, but it did confirm that HFSS was calculating the electric fields as we 
expected it to. 
 

Figure 4. Figure 5. 
 
 Ricci and Orloff were concerned that they might excite higher-order modes if they 
increased the height of their waveguide to more than .4”, so I ran projects with heights of .4”, 
.8”, .9”, and 1”. I ran the projects at a frequency of 10 GHz, since Ricci and Orloff were 
interested in using microwaves with frequencies between 7 and 13 GHz. The results at .4” were 
similar to those in figure 4; the wavefronts were spaced further apart due to the lower frequency, 
but otherwise the plots appeared similar, indicating that the lowest-order mode was still being 
excited. (See figure 6.) The results at .8” also indicated that the lowest-order mode was being 
excited. (See figure 7.) However, at .9” the structure of the electric field changed dramatically at 
the end of the waveguide nearer to the incident port, indicating that a higher-order mode was 
becoming excited. (See figure 8.) At 1” the new mode appeared to have completely replaced the 
lowest-order mode. (See figure 9.) 
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Figure 6. z=.4”, f=10 GHz. Figure 7. z=.8”, f=10 GHz. 

Figure 8. z=.9”, f=10 GHz. Figure 9. z=1”, f=10 GHz. 
 
 Ricci and Orloff ultimately decided to set the height of the top surface of their apparatus 
at a little less than .5”. Although I only ran simulations at 10 GHz, I did not see any higher-order 
mode in my simulations until the height exceeded .8”, so Ricci and Orloff felt comfortable that 
they would only excite the lowest-order mode if they kept the height below .5” for microwave 
frequencies between 7 and 13 GHz. 
 
Prism Refraction 
 
 Ricci and Orloff began to conduct experiments with a teflon prism, and I ran a series of 
simulations in support of that effort. These simulations had two purposes; the first was to 
determine the angle of refraction produced by the prism, in order to ensure that the refraction 
calculated by HFSS was consistent with what we expected based on theoretical calculations, and 
the second was to examine the refracted wavefronts emanating from the prism in order to 
ascertain how Ricci and Orloff could best measure the waves as they exited their apparatus. 
 My plan was first to design a simple apparatus, including only a waveguide and a cavity, 
and then add the prism and modify the geometry later. In my initial model, I created a 5.553” x 
1.3315” waveguide attached to a 6” x 12” cavity, both of which contained only vacuum. (See 
figure 10.) The height of the entire model was .4”. The top and bottom surfaces were assigned 
perfect conductor boundary conditions, and all sides were assigned radiation boundary 
conditions with the exception of the far end of the waveguide, which was the source of the 
incident microwaves. (I had trouble making two segments of the cavity’s walls into radiation 
boundaries, so I had to create thin “wings” along those edges in order to do so. The wings 
contained only vacuum and had no direct effect on the project.) 
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Figure 10. The initial setup for my prism refraction experiments. The waveguide is red, the 
cavity is blue, and the wings are purple. 
 
 We expected the incident waves to pass through the waveguide and enter the cavity, 
undergoing diffraction at the interface and propagating outwards to the cavity’s walls, at which 
point they would be absorbed by the radiation boundary conditions there. Inside the cavity I 
created a semicircular “arc” centered on the midpoint of the aperture between the waveguide and 
the cavity. The arc was actually a two-dimensional curved strip that had no practical effect on the 
project. However, Ricci and Orloff planned to place detection devices at positions roughly along 
the path of this arc, and creating it allowed me to calculate the magnitude of the electric field 
along it so that I could predict what results Ricci and Orloff could expect from their detection 
devices. 
 I ran the project and plotted the magnitude of the electric field along the bottom surface 
of the apparatus and along the arc. (See figure 11.) Two points were of interest. First, the wave 
attenuated as it propagated and underwent diffraction upon passing from the waveguide into the 
cavity, as expected. Second, the magnitude of the electric field varied along the arc (i.e., the 
microwave radiation arrived at points along the arc with different phases), suggesting that the 
wavefront was not entirely circular. This result persuaded Ricci and Orloff not to place their 
detectors along the path of the arc but instead to find another method to detect the exiting 
microwaves. 
 Next I inserted a rectangular teflon prism (εr=2.56, μr=1, n=1.6) between the waveguide 
and the cavity.4 (See figure 12.) The new dimensions of the waveguide were 4.9” x 1.3214”, the 
dimensions of the prism were 1.1568” x 3.6316”, and the dimensions of the cavity remained 6” x 
12”. The electric field plot revealed several similarities between this project and the previous 
one: the wave attenuated as it propagated along the waveguide and in the cavity, it underwent 
diffraction at the aperture between the waveguide and the prism (and probably at the interface 
between the prism and the cavity, as well, although this effect was more difficult to see), and the 
wavefront arrived at the arc at various phases. (See figure 13.) 
 

                                                 
4 Throughout these experiments, I always set μr of the incident medium equal to 1. 
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Figure 11. Figure 12. 
 
 However, one result was strikingly dissimilar to those of the previous project: the electric 
field displayed some unusual patterns inside the prism, and the wave actually appeared to 
strengthen during much of the time that it spent in this region. (This result is difficult to see in  
figure 13 but is clear when the plot is animated in HFSS, revealing how the electric field  
fluctuates and the wave propagates in time.) 
This result is likely due to the superposition 
of the incident wave, traveling from the 
waveguide toward the cavity, and a 
reflected wave, traveling from the interface 
between the prism and the cavity (from 
which it is reflected) toward the aperture 
between the prism and the waveguide. 
Discovering this result was reassuring, s
it indicated that HFSS could account for 
waves reflected from the interface betw
different media and calculate the 
superposition of waves traveling in d
directions. 

ince 

een 

ifferent Figure 13. 

 For the next project, I modified the shape of the prism so that the interface between the 
prism and the cavity formed an angle of 17.5˚ with its previous orientation, mimicking the setup 
of a new experiment that Ricci and Orloff were interested in conducting. (See figure 14.) The 
resulting plot of the electric field makes it clear that the wave refracts upon exiting the prism. 
(See figure 15.) (The wave is also affected by refraction inside the prism, since the wave is 
partially reflected from the angled surface.) Using Snell’s law, it is possible to determine the 
index of refraction of the prism from the angle of refraction (ignoring the effects of the reflected 
wave): n1=n2*sin(θ2)/sin(θ1)≈sin(θ2)/.3, where n1 is the index of refraction of the prism, n2=1 is 
the index of refraction of the cavity, θ2 is the angle that the outgoing wave makes with the line 
normal to the surface between the prism and the cavity, and θ1= 17.5˚ is the angle that the 
incoming wave makes with that line. Since n=(εrμr).5, εr1=μr1*n1

2≈(sin(θ2)/.3)2. Orloff measured 
θ2 and determined that εr1 was approximately 2.28, which is not far from the value used for teflon 
in HFSS (2.56). Although Orloff did not tell me what the error of his calculation might have 
been, I imagine that it would have been quite significant, since it is not easy to measure θ2 
accurately from the plots in figure 15. 
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Figure 14. The shape of the prism allows 
the wave to be refracted at the interface 
between the prism and the cavity. The 
indentation to the right of the prism 
represents an area in which microwave 
absorber would be placed in order to absorb 
any microwaves exiting from the side of 
prism. 

Figure 15. This electric field plot indicates that the 
wave undergoes refraction upon encountering the 
angled front edge of the prism. 

 
Goos-Hänchen Shift 
 
 Next I conducted experiments to support Ricci’s and Orloff’s efforts to measure the 
Goos-Hänchen shift for left-handed materials. Their goal was for the wave to travel via a 
waveguide into a triangular prism, undergo total internal reflection inside the prism, resulting in 
a Goos-Hänchen shift, and then exit the prism at a location displaced from the location at which 
it would have exited had there been no Goos-Hänchen shift. In conducting these simulations, I 
varied the properties of the prism and surrounding media and simulated effects for frequencies 
between 7 and 13 GHz.5

 First I created a model including 
a 10 cm x 12 cm waveguide, a triangular 
teflon prism (εr=2.2, n≈1.5) measuring 
24 cm along each side, a small cavity 
(cavity 1), and a large cavity (cavity 2). 
(See figure 16.) The top and bottom of 
the model are perfect conductors. The 
upper-left face of the waveguide 
represents the incident port, while the 
upper-right face of the prism is assigned 
a perfect conductor boundary condition. 
All other faces are defined as radiation 
boundaries, allowing radiation incident 
upon them to disappear. All objects 
except the prism contain only vacuum. 

Figure 16. The waveguide is purple, the prism is 
blue, and the two cavities are red. The upper-left face 
of the waveguide is the incident port, and the upper-
right face of the prism is assigned a perfect 
conductor boundary condition. 

                                                

 The wave was to pass through the waveguide and enter the prism along a path 
perpendicular to the interface between those media. The wave would then strike the back face of 
the prism, reflecting at the same angle at which it arrived. It would then pass into cavity 2, 

 
5 For the sake of brevity, I primarily present electric field plots only for the case of f=10 GHz. 
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traveling along a path normal to the plane of separation. (See figure 17.) The purpose of this 
project was to serve as a control, since we knew exactly what to expect from the exiting wave. 
 The results for this project appear to confirm our expectations. (See figure 18.) The 
angles of incidence and reflection appear to be 60º. There appear to be many secondary 
wavefronts, probably due to the reflection of the incident wave from corners. 
 

Figure 17. The wave’s expected path 
with a perfectly conducting wall. 

Figure 18. Results with a perfectly conducting wall, 
εr=2.2, and f=10 GHz. 

60°

60°

 
 Next I added another cavity (cavity 3) behind the rear face of the prism, eliminating the 
perfect conductor boundary condition and defining the exterior faces of cavity 3 as radiation 
boundaries. (See figure 19.) With this setup, I could modify the index of refraction of the prism 
and of cavity 3 to achieve total internal reflection. This condition occurs when 
n2/n1=sin(θ1)=sin(60º)=3.5/2≈.87. 
 First I let εr1=2.2 so that n1=εr1

.5≈1.48 and n2/n1≈1/1.48≈.68<.87, creating total internal 
reflection. (See figure 20.) According to theory, after reaching the interface between the prism 
and cavity 3, the wave should travel along the interface (down and to the right, in figure 20) and 
then reflect, resulting in a Goos-Hänchen shift to the right. The wave does appear to travel for a 
short distance along the interface, and when figures 18 and 20 are printed on transparencies and 
overlaid, it is clear that the position of the outgoing wave has shifted to the right. 
 

Figure 19. Figure 20. A field plot with n1≈1.48 and 
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n2=1 for f=10 GHz. 
 
 For the next project, I let εr1=1.35 so that n1=εr1

.5≈1.16 and n2/n1≈1/1.16≈.86<.87, again 
creating total internal reflection. (See figure 21.) Two points are interesting in this case. The first 
is that n2/n1 is only barely less than sin(θ1), so the total internal reflection is actually not complete 
(due to imperfections in the simulation such as corner effects). The result of this is clear in figure 
21, where some of the wave that is supposed to be traveling along the interface between the 
prism and cavity 3 actually “leaks” into cavity 3 at a shallow angle. The other point is that theory 
predicts that the Goos-Hänchen shift should be more pronounced when the critical angle nears 
the incident angle. In this case, the critical angle is θ1=sin-1(n2/n1)=sin-1(1/1.16)≈59.55º, which is 
quite close to the incident angle θ1=60º, and by comparing figures 21 and 20 it is clear that the 
Goos-Hänchen shift is much more pronounced in this case than previously. 
 Next I set εr1 back to 2.2 but modified the relative permittivity of cavity 3 to εr2=-1 and its 
relative permeability to μr2=-1. I was trying to achieve n2=-1, which should still yield total 
internal reflection since the criterion when n2 is negative is that |n2/n1|<sin(θ1). This would be 
true in this case, since |n2/n1|≈|-1/1.48|≈.68<.87. Still, I was not sure of how to achieve n=-1 in 
HFSS, but the results were encouraging. (See figure 22.) The simulation appears to display total 
internal reflection (ignoring some stray waves in cavity 3 that appear to emanate from the 
corners of the prism and are probably due to corner effects), and the Goos-Hänchen shift is 
clearly in the direction opposite to its earlier direction (i.e., the outgoing wave is now shifted to 
the left instead of to the right). 
 

Figure 21. A field plot with n1≈1.16 and n2=1, 
creating total internal reflection, for f=10 GHz. 

Figure 22. A field plot with n1≈1.48 and 
n2=–1, creating total internal reflection and 
a negative Goos-Hänchen shift, for f=10 
GHz. 

 
 Finally, I let εr1=2.2, εr2=-2, and μr2=-2. I was trying to achieve n2=-2, in which case there 
would be no total internal reflection since |n2/n1|≈|-2/1.48|≈1.35>.87. The simulation results 
agreed with this prediction, since the electric field plot displayed a reflected wave in cavity 3. 
(See figure 23. Note that this figure is plotted at a frequency that is different than those of 
Figure 23. A field plot with n1≈1.48 and n2=–2, 
creating a reflected wave that travels in the direction 
opposite to the direction seen in ordinary materials, 

earlier plots.) The reflected wave was also 
on the same side of the normal to the 
plane separating the media as the incident 
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for f=8 GHz. 

wave, which would only be true if one of 
the materials had a negative index of 
refraction. Furthermore, I animated the 
field plot, and the reflected wave 
propagated toward the plane separating 
the media. The incident and reflected 
wave, in fact, acted as if the plane 
separating them were a mirror: both 
waves approached the plane from the 
same side of the normal, and they 
appeared to annihilate each other upon 
meeting at the plane. Therefore, I felt very 
confident that HFSS was in fact 
simulating a left-handed material and that 
this method could be used to support 
further LHM experiments. 

 
Conclusion 
 
 As of a result of these  experiments, I came to several conclusions. First, I determined 
that no higher-order mode was excited in the waveguide for f=10 GHz until the height of the 
apparatus reached at least .8”, which was significantly greater than the height that Ricci and 
Orloff used. Second, my results from the prism refraction experiment indicated that HFSS 
appeared to simulate the refraction properly. Third, I determined that HFSS could simulate left-
handed materials correctly. Finally, I showed that the Goos-Hänchen shift could be produced in 
HFSS, demonstrating the effect of left-handed materials and assisting other researchers in 
designing and conducting their own experiments in this field. 
 

Microwave Microscopy 
 
 Most of my work in Dr. Anlage’s group has been in support of Atif Imtiaz’s microwave 
microscopy experiments. Imtiaz’s microscope includes a probe that hovers a very small distance 
(typically between one nanometer and a couple of microns) above a sample film. A microwave 
signal is directed from the probe’s tip to the sample and interacts with the sample. By studying 
the return signal, Imtiaz can characterize the sample’s properties. 
 The purpose of this kind of microscopy is to determine the properties of various materials 
on a very small scale. Similar techniques may be useful in the burgeoning field of 
nanotechnology. In order to design nanoscale devices, physicists and engineers need to 
determine various properties of these materials such as their inductances and resistances. 
Because of the devices’ small size, standard characterization techniques are often inadequate, 
and designers must rely on more specialized methods, such as microwave microscopy. 
 
Microwave Microscope Geometry 
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 Imtiaz asked me to simulate field effects in the neighborhood of a microwave microscope 
probe tip and sample. The objective of this work was to optimize the design of the probe tip to 
maximize its sensitivity to properties of the sample very near the tip (i.e., its spatial resolution). 
 The “business end” of Imtiaz’s microscope includes a solid conducting cylinder and a 
hollow conducting cylinder. The cylinders are coaxial, sharing a central axis aligned vertically. 
Near the bottom of the apparatus, the inner conductor (the probe) extends below the outer 
conductor before ending in a conical tip. This tip is suspended a small distance above the sample, 
and the height of the arrangement (“h”) is defined as the distance between the sample surface and 
the tip. Microwave radiation propagates downward along the coax, interacts with the sample, and 
returns along the coax. Imtiaz measures the returning wave in order to determine properties of 
the sample. Imtiaz was interested in simulating the operation of his microscope and microscopes 
of somewhat different geometries in order to determine whether he could improve the spatial 
resolution of his experiments. 
 
Validation Effort: Capacitance of Coaxial 
Conductors 
 During the early stages of this 
project, Dr. Anlage noted that it was 
important to determine whether M2D 
really calculated capacitances as we 
expected it to. I therefore modeled the 
coaxial part of Imtiaz’s microscope, 
ignoring the tip below. Imtiaz used a 
standard 085 coaxial cable, with an inner 
conductor with radius 127 μm and an 
outer conductor with inner radius 840 μm 
and outer radius 1080 μm. I modeled these 
two conductors as purple and brown 
rectangles in M2D, respectively, letting 
the left edge of the drawing area represent 
the axis of rotational symmetry. (See 

Figure 24. 

figure 24.) 
 Letting the radius of the inner conductor be a, the inner radius of the outer conductor be 
b, the length of the entire section (i.e., the height of the drawing area) be l, and the relative 
electric permittivity of the area inbetween the two cylinders be εr, the analytic solution for the 
capacitance between the conductors is given by C=2*π*ε0*εr*l/ln(b/a).6 I entered appropriate 
values for these variables in the software program Excel, which provided the following solution. 
 

l (m) a (μm) b (μm) ε0 (F/m) εr C (F) 
0.0021 127 840 8.8542E-12 1 6.18397E-14 

 
 M2D calculated the capacitance between the conductors to be 6.184x10-14 F. Although it 
was not possible to estimate the error of this calculation, Dr. Anlage, Imtiaz, and I believed that 

                                                 
6 Simon Ramo et al. Fields and Waves in Communication Electronics. New York: John Wiley & Sons, 1994, pg. 
250. 
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the result demonstrated that M2D could calculate capacitances to a degree of accuracy that was 
adequate for our work. 
 
Theoretical Approach to Microscope Tip 
with Three Capacitors 
 Imtiaz’s microscope may be thought 
of as a system of three capacitors: one 
between the probe and outer conductor (Cp-

o), one between the outer conductor and the 
sample (Co-s), and one between the probe 
and the sample (Cp-s). (See figure 25.) 
Because the electromagnetic radiation 
originates from and returns to an area above 
the apparatus, Cp-o is essentially connected 
in parallel to Cp-s and Co-s, which are 

   Figure 25. 

Cp-s Co-s

Cp-o

Sample

Outer conductorProbe

connected in series with each other. Therefore, it is reasonable to define a sample capacitance Cs 
so that Cs=(1/Cp-s+1/Co-s)-1. 
 Imtiaz had two objectives in order to improve the spatial resolution of his microscope. 
First, in order to localize the electric field near the tip, he wanted stronger fields between the 
probe and sample than between the outer conductor and the sample. Therefore, he wanted Cp-s to 
be much less than Co-s, since lower capacitance between two conductors implies a stronger 
electric field between them. At the same time, he wanted to ensure that more of the incident 
wave was traveling through the sample than between the probe and outer conductor. Therefore, 
he wanted Zs to be much less than Zp-o, where Zs is the sample impedance and Zp-o is the 
impedance between the probe and the outer conductor. Finding a new microscope geometry that 
would satisfy both of these conditions was a key goal of this set of simulations. 
 
Simulation with Imtiaz’s Microscope Geometry 
 In order to model Imtiaz’s microscope I drew three objects in M2D. (See figures 26 and 
27.) First I drew the probe (the purple object) along an axis of rotational symmetry, letting its 
radius (above the conical taper) be 127 μm. Next I drew the outer conductor (the brown object at 
the top of the drawing area) so that its inner radius was 840 μm, its outer radius was 1080 μm, 
and its bottom edge was 800 μm above the probe’s tip. (I called this distance, representing the 
extension of the probe tip beyond the outer conductor, “x.”) Finally, I drew the sample (the green 
object) below the probe. The probe is touching the sample in figures 26 and 27, but I assigned 
the variable dleft to represent the sample’s height and modified this variable so that h (the 
distance between the sample and the probe tip) assumed a range of values. 
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Figure 26. A model of Imtiaz’s microwave microscope with x=800 μm. 
The probe is the pink object along the left edge of the model (the axis of 
rotational symmetry), the outer conductor is the brown object at the top, 
and the sample is the green object at the bottom of the model. 

Figure 27. This is a 
detail of figure 26, 
showing the area in 
which the probe tip 
and sample surface 
meet. 

 
 I assigned all three objects to be made of metals. I let the voltage on the probe be 1 V and 
the voltage on the outer conductor be 0 V, and I let the sample float (with no charge assigned to  
it). I ran the project for values of h from 0 t
2 μm and created a vector plot of the 
electric field for h=.5 μm, which appeared 
to be similar to what Imtiaz and I had 
expected. (See figure 28.) M2D appeared to 
have calculated a voltage for the floating 
sample between 0 and 1, so that electric 
field lines pointed from objects of higher 
voltage to those of lower voltage. 
Furthermore, the electric field seemed to be 
strongest near the probe (especially b
the tip and sample surface, although this 
wasn’t obvious from the plot) and weakest 
far from any of the objects. 

o 

etween 
Figure 28. Vector plot of the electric field at 
x=800 μm and h=.5 μm. 

 I was also interested in capacitances among the three conductors. I expected that as the 
separation between the probe and the sample increased, the capacitance between them would 
decrease. It would be reasonable to assume, therefore, that the capacitance between the probe 
and the outer conductor would increase (since electric field lines traveling from the probe to the 
sample at small h would now be redirected toward the outer conductor) while the capacitance 
between the sample and the outer conductor would decrease (since more electric field lines 
connect the probe to the outer conductor, requiring that fewer connect it to the sample). 
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 In order to determine how capacitance depended on h, I plotted this relationship for 
capacitances among all three objects. (See figures 29–31.) The results for Cp-o and Co-s appear to 
be well fit by lines of the form a*h+b, where I varied a and b to minimize the errors.7 For Cp-s I 
used a natural logarithmic fit of the form a*ln(h)+b.8 All three capacitances depend on h as 
predicted. 
 It is not clear why the results for Cp-o and Co-s would be linear, and, in fact, it is not 
entirely clear that these relationships are actually linear. They may instead merely appear to be 
linear for a certain range of h or for a small number of data points. However, the inverse 
logarithmic relationship between Cp-s and h is consistent with published literature.9
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Figure 29. Cp-o at x=800 μm. 
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Figure 30. Co-s at x=800 μm. 

Capacitancep-s vs. h

18.4
18.6
18.8
19.0
19.2
19.4
19.6
19.8
20.0

0.0 0.4 0.8 1.2 1.6 2.0
h (μm)

C
ap

ac
ita

nc
e 

(fF
)

 
Figure 31. Cp-s at x=800 μm. 

 

 
Changing the Geometry 

                                                 
7 I fitted this curve (and all curves in this thesis) by using the software program Excel to vary the independent fitting 
variables ai so that z was a minimum, where z=Σ(yj–fj)2, where the sum is taken from j=1 to n, n is the number of 
data points, yj are the dependent values calculated by the software, fj=Σ ai*xj

i, this sum is taken from i=1 to p, xj are 
the independent variable of the simulation, and where I determined p based on what I believed the dependence of fj 
on xj to be. In this case, p=2 so that the independent variables are a1 and a2, yj are the calculated values of 
capacitance, n=16 (since I ran the simulation for 16 values of h), and xj are the values of h. 
8 The value of Cp-s for h=0 μm was 139.25 fF, although it is unusual to talk about the capacitance between two 
touching objects and it is impossible to take ln(0). 
9 See the section “Sphere above a Plane” below. 
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 Imtiaz was interested in whether changing the probe extension, x, would improve spatial 
resolution. I expected that if x decreased, then Cp-o would increase, since more of the outer 
conductor would be exposed, increasing the number of field lines that could extend to it from the 
probe; Co-s would also increase, since the outer conductor and sample would be much closer to 
each other; and Cp-s would drop, since the probe and the outer conductor would send more field 
lines to the outer conductor, reducing the number that they could send to each other. By 
analogous reasoning, I expected that if x increased, then Cp-o would decrease, Co-s would 
decrease, and Cp-s would increase. 
 First I ran a project with x=100 μm. I created a vector plot of the electric field for h=.5 
μm, in which the behavior of the electric field lines appears to be qualitatively similar to their 
behavior in figure 28. (See figure 32.) It is interesting to note that because the outer conductor is 
closer to the sample surface, the electric field lines’ bifurcation point (i.e., the point at which 
all lines to the left approach 
the sample and all points to the 
right depart from it) has s
to the left, as the sample s
more such lines to the outer 
conductor than before. I aga
plotted capacitance as a
function of h for capacitances 
among the three objects. C

hifted 
ends 

in 
 

 

 

ut 5 fF 

=2 mm. I 
ectric field for h=.5 μm, and the behavior of the electric field lines 

e 

5%), 

r different values of x.10 (See figure 34.) 

he 

                                                

p-o
increased by about 5.5 fF 
(about 12.5%), Co-s increased
by about 250 fF (about 220%), 
and Cp-s dropped by abo
(about 26%). These results 
confirmed my expectations. 
 Next I let x

Figure 32. Vector plot of the electric field at x=100 μm and 
h=.5 μm. 

created a vector plot of the el
appears again to be qualitatively similar to their behavior in figures 32 and 28, although their 
bifurcation point has now clearly shifted to the right since the outer conductor is far away. (Se
figure 33.) I again plotted capacitance as a function of h for capacitances among the three 
objects. In comparison with the x=800 μm case, Cp-o has decreased by about 24 fF (about 5
Co-s has decreased by about 75 fF (about 65%), and Cp-s has increased by about 16 fF (about 
85%). These results again confirmed my expectations. 
 Next I plotted the ratio of Zs/Zp-o and Cp-s/Co-s fo
Ideally both of these ratios would be small. Imtiaz’s current geometry (x=800 μm) is clearly 
better than letting x=2 mm, but it is not clear whether his spatial resolution would improve if 
reduced x to about 100 μm. In the end, Imtiaz decided to remain with his current microscope 
geometry. 
 

 
10 In order to calculate Zs/Zp-o, I used the fact that impedance varies inversely with capacitance across a capacitor so 
that Zs/Zp-o=Cp-o/Cs. 
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Figure 33. Vector plot of the electric field at x=2 
mm and h=.5 μm. 
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Figure 34. 
 
Sphere above a Plane 
 
Basis for Simulation 
 According to previous studies, treating microscopes like Imtiaz’s microwave microscope 
as if they were spheres suspended above sample surfaces provides solutions that approximate 
experimental results.11 Therefore, although it was only an approximation, for my next project I 
modeled the microscope tip by a sphere suspended above a conducting ground plane. 
 This problem can be solved analytically by using the image-charge method. A charge is 
placed at the center of the sphere, ensuring that the conducting sphere is at an equipotential of 1 
V. In order to satisfy the symmetry condition across the sample surface, an image charge is 
placed on the opposite side of the surface. This induces another charge on the first side, and the 
process continues. Successive image charges are placed closer and closer to the surface, with 
successive iterations yielding more accurate results. 
 The resulting capacitance between the sphere and surface has been estimated as 
C=4*π*ε0*R0*sinh(α)*Σ(sinh(n*α))-1, where ε0 is the permittivity of free space, R0 is the radius 
of the sphere, α=cosh-1(1+h/R0), h is the distance between the bottom of the sphere and the plane, 
and the sum is taken over all integers n from 1 to ∞.12 In the continuous limit, the sum may be 
converted to an integral, and the resulting expression can be estimated to give an inverse natural 
logarithmic dependence of capacitance on h (so that C≈k/ln(h), where k is a constant), and Imtiaz 
expected to see this dependence in my results. 
 
The Basic Project 
 I drew the model in M2D with R0=10 μm. (See figure 35.) I ran the simulation for a range 
of values of h and plotted the results on a semilog scale. (See figure 36.) The purple line is a 
fitted curve of the form C=a*ln(h)+b, where I varied the constants a and b to produce a best fit. 
The results appear to be roughly inverse logarithmic, as expected. 
 
                                                 
11 Chen Gao et al., “Quantitative Microwave Evanescent Microscopy,” Appl Phys Lett. 75, no. 19 (8 November 
1999), and Xiao-Dong Xiang and Chen Gao, “Scanning Evanescent Electro-magnetic Microscope,” U.S. patent 
number 6,173,604 B1, 16 January 2001. 
12  Chen Gao et al., “Quantitative Microwave Evanescent Microscopy,” Appl Phys Lett. 75, no. 19 (8 November 
1999). 
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Figure 35. 
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Figure 36. 
 
 After I ran this project, Imtiaz told me that he thought that a sphere of radius 37 μm 
would provide results that were closer to his experimental data. I therefore ran another project, 
with a sphere of radius 37 μm. My data are represented by the red squares in figure 37. At the 
same time, Imtiaz calculated the expected capacitance using the software program Mathematica, 
using the image charge method for 1000 iterations. His results are represented by the blue 
diamonds in figure 37. The fitted lines for both sets of data points are of the form C=a*ln(h)+b, 
as above. 
 Both sets of data exhibit an inverse logarithmic dependence, but their values are off by a 
few femtofarads. I thought that this might be because I drew the simulation model in a drawing 
area of only 60 x 80 μm. I imposed a Neumann boundary condition on the outer boundary of the 
model, requiring that electric field lines from the sphere to the sample had to remain within the 
drawing area. (See figure 38 for a demonstration of this effect.) I thought that this may have 
limited the number of field lines traveling from the sphere to the sample, reducing capacitance. 
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Figure 37. Figure 38. Electric field lines 
between a perfectly conducting 
sphere and plane with a Neumann 
outer boundary condition. 

 
 Therefore, I expanded the 
drawing area to 90 x 90 μm in order to 
see whether allowing more electric 
field lines would increase the 
calculated capacitance. My new data 
are represented by the green triangles 
in figure 39, which includes the 
previous simulation results and 
Imtiaz’s data. The new values of 
capacitance are greater than the 
previous ones and much closer to 
Imtiaz’s data. I assume that if I were 
able to run the project with an 
arbitrarily large box size, then my 
results would approach arbitrarily 
closely to Imtiaz’s data. 
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Figure 39. 
 
With Perturbation 
 As the microscope tip is dragged along the sample surface, it can accumulate tiny 
particles of dirt. Imtiaz was interested in how these perturbations would affect the capacitance 
between the microscope tip and the sample. I simulated the perturbation by including a sphere of 
radius 150 nm directly below the primary sphere in the model. (See figure 40.) I defined h as the 
distance from the sample surface to the bottom of the perturbation sphere. 
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 Imtiaz expected that the capacitance would no longer vary inverse logarithmically with 
height, especially at small distances, for which the perturbation should greatly affect the field 
structure between the two objects. However, he expected that the perturbation would have little 
effect at large distances, since in that case it would be much smaller than the area between the tip 
and the sample. Figure 41 presents results on a semilog scale. 
 

Figure 40. This is a blow-up of the area 
of the model between the spheres and 
the sample. The axis of rotational 
symmetry is the left edge. The area at 
the bottom, outlined in blue, is the 
sample. The bottom of the primary 
sphere is at the top of the figure, and 
the perturbation sphere is immediately 
below it. 
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Figure 41. 

 
 The inverse logarithmic relationship between capacitance and height clearly breaks down 
when the spheres are near the sample. However, the relationship appears to hold when the 
spheres are far from the sample, indicating that the perturbation sphere has little effect in this 
case. It should be noted that Imtiaz did not calculate any expected values for the capacitance in 
Mathematica for this case, since the image charge method that he had used earlier was not valid 
with two spheres. 
 
Sphere above a Plane with the Addition of a Thin Conducting Film 
 
 At the 2004 March meeting of the American Physical Society, Imtiaz heard another 
researcher claim that placing a thin metallic film above a substrate during microwave 
microscopy experiments could help to concentrate electric field lines near the tip. Imtiaz 
therefore asked me to simulate this kind of arrangement in order to verify the claim. 
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Figure 42. A conducting sphere above a 
dielectric substrate above a conducting ground. 

 I created the model in M2D. (See 
figure 42.) I drew a perfectly conducting 
sphere of radius 10 μm (the blue semicircle) 
above a silicon substrate that was 10 μm 
thick (the red rectangle near the bottom of the 
drawing area), which in turn was directly 
above a thin perfectly conducting ground 
layer (the very thin green rectangle at the 
bottom of the drawing area). I defined the 
distance between the sphere and the substrate 
to be h and varied this distance from 1 nm to 
1 μm. I assigned a voltage of 1 V to the 
sphere and a voltage of 0 V to the ground 
layer. After running that project, I replaced 
the topmost .1 μm of the substrate with a 
perfect conductor, which I let float, and ran 
that project. 
 I first plotted the magnitudes of the 
electric fields at 1 nm for both projects. (See 
figures 43 and 44.) The field structures 
generally appeared to be nearly identical 
above the surface of the sample. (Below the 
surface, the presence of the perfectly 
conducting film induced a uniform electric 
field throughout the substrate.) 

 

Figure 43. An electric field plot for a sphere 
above a substrate with no film, for h=1 nm. 

Figure 44. An electric field plot for a sphere 
above a substrate with a thin perfectly 
conducting film, for h=1 nm. 
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 However, the situation is very different in the gap directly between the sphere and the 
sample surface. (See figures 45 and 46.) Without the thin film at h=1 nm (figure 45), the 
magnitude of the electric field appears to be no greater than about 9.15*106 V/m near the axis of 
rotational symmetry, while with the film (figure 46), the magnitude of the electric field appears 
to be greater than 5*108 V/m in a region that extends much further from the axis. The thin film 
also appears to confine more of the electric field near the axis of rotation at h=1 μm, although the 
effect seems to be less pronounced at this height. (See figures 47 and 48.) 
 

Figure 45. Electric field plot in the region 
immediately between a sphere and a silicon 
substrate for h=1 nm. The bottom of the sphere 
is at the very top of the figure, and the top of 
the substrate is at the very bottom. The axis of 
rotational symmetry is along the left edge. 

Figure 46. Electric field plot in the region 
immediately between a sphere and a perfectly 
conducting film above a silicon substrate for 
h=1 nm. The bottom of the sphere is at the very 
top of the figure, the film is the white area (.1 
μm thick) that occupies most of the figure, and 
the top of the substrate is at the very bottom. 
The axis of rotational symmetry is along the 
left edge. 
 

Figure 47. Electric field plot in the region 
immediately between a sphere and a silicon 
substrate for h=1 μm. The bottom of the sphere 
is at the very top of the figure, and the top of 
the substrate is at the very bottom. The axis of 
rotational symmetry is along the left edge. 

Figure 48. Electric field plot in the region 
immediately between a sphere and a perfectly 
conducting film above a silicon substrate for 
h=1 μm. The bottom of the sphere is at the top 
of the figure, the film is the white area near the 
bottom, and the top of the substrate is at the 
very bottom. 
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These results seem to demonstrate that when studying a sample with a microwave 

icros e area 

onclusion

 
m cope, adding a thin film above a substrate can help to confine the field structure in th
directly underneath the tip, improving spatial resolution. If this is confirmed experimentally, this 
could help to improve the results of Imtiaz’s experiments. However, it is important to note that 
these results are new (the simulations were completed in mid-April) and that we have not had 
time to study them thoroughly yet. 
 
C  

M2D simulations provided several insights into Imtiaz’s microwave microscope 

hey demonstrated that we could examine different microscope geometries and 
e 

•  showed that the spatial resolution of Imtiaz’s current geometry is pretty good.  
 

• oscope tip destroys the inverse logarithmic 
 

• substrate may help to confine electric field 

 
Glossary of Symbols 

 
Symbol Definition 

ε elative electric permittivity 
y 

icroscope probe tip above sample 

uctor above microscope probe tip 

 

 
 
experiments. 

• First, t
compare the extent to which they help to confine the field structure near the microscop
tip. 
They

• Representing Imtiaz’s microscope as a sphere provides results that are quite accurate.
This can greatly simplify future simulations. 
Adding a perturbation to the bottom of a micr
dependence of capacitance on height. This suggests that if Imtiaz wants to take advantage
of this mathematical relationship, then he must take great care to prevent the 
accumulation of dirt on his microscope tips. 
Finally, adding a thin film above a dielectric 
structure during microwave microscopy experiments, greatly improving spatial 
resolution. 

  
r R
μr Relative magnetic permeabilit
f Frequency 
h Height of m
n Index of refraction 
x Height of outer cond
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