Agilent 4396B Network/Spectrum/Impedance Analyzer GPIB Command Reference

SERIAL NUMBERS
This manual applies directly to instruments which have the serial number prefix JP1KE.
For additional important information about serial numbers,
read "Serial Number" in Appendix A of this Manual.

Agilent Technologies

Agilent Part No. 04396-90054
Printed in JAPAN May 2003

Fifth Edition

Notice

The information contained in this document is subject to change without notice.
This document contains proprietary information that is protected by copyright. All rights are reserved. No part of this document may be photocopied, reproduced, or translated to another language without the prior written consent of the Agilent Technologies.

Agilent Technologies Japan, Ltd.
Component Test PGU-Kobe
1-3-2, Murotani, Nishi-ku, Kobe-shi, Hyogo, 651-2241 Japan

Manual Printing History

The manual printing date and part number indicate its current edition. The printing date changes when a new edition is printed. (Minor corrections and updates that are incorporated at reprint do not cause the date to change.) The manual part number changes when extensive technical changes are incorporated.

July 1997 .. Second Edition (part number: 04396-90034)
March 1998 ..Third Edition (part number: 04396-90044)
March 2000 .. Fourth Edition (part number: 04396-90044)
May $2003 \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$.. Edition (part number: 04396-90054)

Typeface Conventions

Bold

Italics

Computer
(HARDKEYS)
SOFTKEYS

Boldface type is used when a term is defined. For example: icons are symbols.
Italic type is used for emphasis and for titles of manuals and other publications.
Italic type is also used for keyboard entries when a name or a variable must be typed in place of the words in italics. For example: copy filename means to type the word copy, to type a space, and then to type the name of a file such as file1.
Computer font is used for on-screen prompts and messages.
Labeled keys on the instrument front panel are enclosed in \square.
Softkeys located to the right of the CRT are enclosed in

Documentation Map

The following manuals are available for the analyzer.

User's Guide (Agilent Part Number 04396-90031)

The User's Guide walks you through system setup and initial power-on, shows how to make basic measurements, explains commonly used features, and typical application measurement examples. After you receive your analyzer, begin with this manual.

Task Reference (Agilent Part Number 04396-90030)

Task Reference helps you to learn how to use the analyzer. This manual provides simple step-by-step instructions without concepts.

Function Reference (Agilent Part Number 04396-90052)

The Function Reference describes all function accessed from the front panel keys and softkeys. It also provides information on options and accessories available, specifications, system performance, and some topics about the analyzer's features.

Programming Guide (Agilent Part Number 04396-90043)

The Programming Guide shows how to write and use BASIC program to control the analyzer and describes how Instrument BASIC works with the analyzer..

GPIB Command Reference (Agilent Part Number 04396-90044)

The GPIB Command Reference provides a summary of all available GPIB commands. It also provides information on the status reporting structure and the trigger system (these features conform to the SCPI standard).

Option 010 Operating Handbook (Agilent Part Number 04396-90036)

The option 010 Operation Handbook describes the unique impedance measurement functions of the 4396 B with option 010.

Instrument BASIC Manual Set (Agilent Part Number E2083-90000)

The Instrument BASIC User's Handbook introduces you to the Instrument BASIC programming language, provide some helpful hints on getting the most use from it, and provide a general programming reference. It is divided into three books, Instrument BASIC Programming Techniques, Instrument BASIC Interface Techniques, and Instrument BASIC Language Reference.

Performance Test Manual (Agilent Part Number 04396-90130)

The Performance Test Manual explains how to verify conformance to published specifications.

Service Manual (Agilent Part Number 04396-90121)

The Service Manual explains how to adjust, troubleshoot, and repair the instrument. This manual is option 0BW only.

Contents

1. Introduction
GPIB Commands 1-3
Simple Commands 1-3
SCPI Commands 1-3
Common Commands 1-3
SCPI Subsystem Commands 1-3
Subsystem Command Tree 1-4
Command Abbreviations 1-5
Program Message Syntax 1-5
Case 1-5
Program Message Terminator 1-5
Multiple Messages 1-5
Query and Response Message Syntax 1-5
Parameters 1-6
Parameter Types 1-6
2. Commands Reference
Simple Commands 2-3
ADDRCONT $\sqcup<$ numeric $>$ 2-3
ANAOCH1 2-3
ANAOCH2 2-3
ANAODATA 2-3
ANAOMEMO 2-4
ANARANGப<numeric1>,<numeric2> 2-4
ANARFULL 2-4
ATTЬ<numeric $>[\mathrm{DB}]$ 2-4
ATTAUTO $\sqcup\{\mathrm{OFF}|\mathrm{ON}| 0 \mid 1\}$ 2-5
ATTP1ப<numeric $>[\mathrm{DB}]$ 2-5
ATTP2 $ப<$ numeric $>[\mathrm{DB}]$ 2-5
AUTO 2-6
AVER $\sqcup\{\mathrm{OFF}|\mathrm{ON}| 0 \mid 1\}$ 2-6
AVERFACT $\sqcup<$ numeric $>$ 2-6
AVERREST 2-6
BACI $\sqcup<$ numeric $>[\mathrm{PCT}]$ 2-7
BEEPDONE $\sqcup\{\mathrm{OFF}|\mathrm{ON}| 0 \mid 1\}$ 2-7
BEEPFAIL $\sqcup\{\mathrm{OFF}|\mathrm{ON}| 0 \mid 1\}$ 2-7
BEEPWARNப\{OFF|ON|0|1\} 2-8
BLIGHTப\{OFF|ON|0|1\} 2-8
BOTVப<numeric $>$ 2-8
BWப<numeric $>[\mathrm{HZ}|\mathrm{KHZ}| \mathrm{MAHZ}]$ 2-9
BWAUTO $\sqcup\{\mathrm{OFF}|\mathrm{ON}| 0 \mid 1\}$ 2-9
BWSRATப<numeric> 2-10
C0ப<numeric> 2-10
C1ப<numeric $>$ 2-10
C2ப<numeric> 2-11
CALCASSI 2-11
CALECPARA 2-11
CALI $\sqcup\{$ NONE|RESP|RAI|S111|S221|FUL2|ONE2|IMP\} 2-11
CALK $\sqcup\{$ APC7|APC35|N50|N75|USED\} 2-12
CALS $\sqcup<$ numeric $>$ 2-13
CBRI \leq <numeric $>$ [PCT] 2-13
CENTப<numeric>[HZ|KHZ|MAHZ|GHZ|DBM] 2-13
CHADப<string> 2-14
CHAN1 2-14
CHAN2 2-15
CIRF $\sqcup\{\operatorname{RI}|\mathrm{LIN}| \mathrm{LOG}|\mathrm{RX}| \mathrm{GB} \mid \mathrm{SWR}\}$ 2-15
CLAD 2-16
CLASIMP $\{\mathrm{A}|\mathrm{B}| \mathrm{C}\}$ 2-16
CLASS11 $\{\mathrm{A}|\mathrm{B}| \mathrm{C}\}$ 2-16
CLASS22\{A|B|C\} 2-16
CLEL 2-16
CLES 2-17
CLOSE 2-17
CNTS - numeric $>[\mathrm{HZ}|\mathrm{KHZ}| \mathrm{MAHZ} \mid \mathrm{GHZ}]$ 2-17
CNTSAUTO $\sqcup\{\mathrm{OFF}|\mathrm{ON}| 0 \mid 1\}$ 2-17
COLOப<parameter $>$ 2-18
COLORப<numeric $>[\mathrm{PCT}]$ 2-20
$\operatorname{COMC}\{\mathrm{A}|\mathrm{B}| \mathrm{C}\}$ 2-20
COMCDAT $\{\mathrm{A}|\mathrm{B}| \mathrm{C}\} \sqcup\{\mathrm{OFF}|\mathrm{ON}| 0 \mid 1\}$ 2-20
COMKDONE 2-21
COMP 2-21
COMS 2-21
COMSDONE 2-21
CONT 2-21
CONVப<parameter> 2-22
COPA 2-22
COPT $\sqcup\{\mathrm{OFF}|\mathrm{ON}| 0 \mid 1\}$ 2-23
CORR $\sqcup\{\mathrm{OFF}|\mathrm{ON}| 0 \mid 1\}$ 2-23
COUC $\sqcup\{\mathrm{OFF}|\mathrm{ON}| 0 \mid 1\}$ 2-24
CRED $\sqcup<$ string $>$ 2-24
CRSC $\sqcup\{\mathrm{OFF}|\mathrm{ON}| 0 \mid 1\}$ 2-25
CWD? 2-25
CWFREQ $\triangle<$ numeric $>[\mathrm{HZ}|\mathrm{KHZ}| \mathrm{MAHZ} \mid \mathrm{GHZ}]$ 2-25
DATAOVAL \leq numeric $>$ 2-26
DATGAINப<numeric> 2-26
DATMEM 2-26
DATOVAL \llcorner <numeric $>$ 2-27
DAYMYEAR 2-27
DEFC 2-27
DEFEC\{R1|C1|L1|C0\} $\sqcup<$ numeric $>$ 2-28
DEFGO 2-28
DEFS $\sqcup\{1-8\}$ 2-29
DEFSLOAD $\{\mathrm{R} \mid \mathrm{L}\} \sqcup<$ numeric $>$ 2-29
DEFSOPEN $\{\mathrm{G} \mid \mathrm{C}\} \sqcup<$ numeric $>$ 2-30
DEFSSHOR $\{\mathrm{R} \mid \mathrm{L}\} \sqcup<$ numeric $>$ 2-30
DETப\{POS|NEG|SAM\} 2-31
DFLT 2-31
DHOLD $\sqcup\{$ OFF \mid MAX \mid MIN $\}$ 2-32
DISA $\sqcup\{$ ALLI|HIHB|ALLB|BASS $\}$ 2-32
DISECIRC 2-33
DISECPARA $\{\mathrm{OFF}|\mathrm{ON}| 0 \mid 1\}$ 2-33
DISF $\sqcup\{\mathrm{DOS} \mid \mathrm{LIF}\}$ 2-34
DISL 2-34
DISLLIST 2-34
DISMAMP $\sqcup\{\mathrm{UL} \mid \mathrm{MD}\}$ 2-34
DISMPRMப\{STSP|CTSP\} 2-35
DISP $\sqcup\{$ DATA|MEMO|DATM $\}$ 2-35
DMKR $\sqcup\{\mathrm{ON}|\mathrm{FIX}| \mathrm{TRAC} \mid \mathrm{OFF}\}$ 2-36
DMKRAUVU<numeric> 2-36
DMKRPRM $\sqcup<$ numeric $>[\mathrm{HZ}|\mathrm{KHZ}| \mathrm{MAHZ}|\mathrm{GHZ}| \mathrm{DBM}]$ 2-37
DMKRVAL $\sqcup<$ numeric $>$ 2-37
DONE 2-37
DPI $ப$ <numeric> 2-38
DSKEY 2-38
$\mathrm{DUAC} \sqcup\{\mathrm{OFF}|\mathrm{ON}| 0 \mid 1\}$ 2-39
EDITDONE 2-39
EDITLIML 2-39
EDITLIST 2-40
ELED $\sqcup<$ numeric $>[\mathrm{S}|\mathrm{MS}| \mathrm{US}|\mathrm{NS}| \mathrm{PS} \mid \mathrm{FS}]$ 2-40
ENKEY 2-40
EQUCLCIR $\{\mathrm{A}|\mathrm{B}| \mathrm{C}|\mathrm{D}| \mathrm{E}\}$ 2-40
EQUC0? \leq numeric $>$ 2-41
EQUCPARA? 2-41
EQUCPARS? 2-41
EQUCPARS4? 2-41
EQUM? $<$ numeric> 2-41
ESB? 2-42
ESNB $\sqcup<$ numeric $>$ 2-42
EXPPப\{OFF|ON|0|1\} 2-42
FILCப $<$ string $1>,<$ string $2>,<$ string $3>,<$ string $4>$ 2-43
FIXE $\llcorner<$ numeric $>$ 2-43
FIXKDONE 2-43
FIXT $\sqcup\{$ NONE|16191|16192|16193|16194|USED\} 2-43
FMTU-parameter $>$ 2-44
FNAME? \leq numeric $>$ 2-45
FNUM? 2-46
FORM2 2-46
FORM3 2-46
FORM4 2-46
FORM5 2-46
FORMFEED $\sqcup\{\mathrm{OFF}|\mathrm{ON}| 0 \mid 1\}$ 2-47
FREO 2-47
FSIZE? \leq string $>$ 2-47
FULS 2-47
FWDI 2-48
FWDM 2-48
FWDT 2-48
GATCTL $\sqcup\{L E V \mid E D G\}$ 2-48
GATDLY \leq numeric $>$ [US|MS|S] 2-49
GATLEN $\sqcup<$ numeric $>$ [US|MS|S] 2-49
GRODAPER \leq numeric $>$ [PCT] 2-49
HOLD 2-50
INID 2-50
INP8IO? 2-50
INPUCALC\{1-12\} $\sqcup<$ numeric (1)>, <numeric (2)>, $\ldots,<$ numeric $(n)>$ 2-51
INPUCALK $\leq<b l o c k>$ 2-51
INPUCOMC\{1|2|3\}ப<numeric> 2-51
INPUD 2-52
INPUDATA $\llcorner<$ numeric $(1)>,<$ numeric $(2)>, \ldots,<$ numeric $(n)>$ 2-52
INPUDTRCப<numeric (1)>,<numeric (2)>, ... ,<numeric (n) $>$ 2-53
INPULOAA \leq numeric $(1)>,<$ numeric $(2)>, \ldots,<$ numeric $(n)>$ 2-53
INPUOPEA \leq numeric (1)>,<numeric (2)>, ..., $<$ numeric (n) $>$ 2-53
INPURAW $\{1-4\} \sqcup<$ numeric $(1)>,<$ numeric (2) $>, \ldots,<$ numeric $(n)>$ 2-54
INPUSHOA $ப<$ numeric $(1)>,<$ numeric (2) $>, \ldots,<$ numeric $(n)>$ 2-54
INPZ $\sqcup 50 \mid 75\}[\mathrm{OHM}]$ 2-54
INTE $\sqcup<$ numeric $>[\mathrm{PCT}]$ 2-55
ISOD 2-55
ISOL 2-55
KEYப<numeric> 2-55
KITD 2-56
LABECOMK $\leq<$ string $>$ 2-56
LABEFIX \triangle <string $>$ 2-56
LABEFWD $\{\mathrm{T} \mid \mathrm{M}\} \sqcup<$ string $>$ 2-57
LABEIMP $\{\mathrm{A}|\mathrm{B}| \mathrm{C}\} \sqcup<$ string $>$ 2-57
LABERES $\{\mathrm{P} \mid \mathrm{I}\} \sqcup<$ string $>$ 2-57
LABEREV\{T|M\}ப<string> 2-58
LABES11\{A|B|C\}ப<string> 2-58
LABES22\{A $|\mathrm{B}| \mathrm{C}\} \sqcup<$ string $>$ 2-59
LABK $\sqcup<$ string $>$ 2-59
LABS $\sqcup<$ string $>$ 2-60
LANDSCAPE $\sqcup\{\mathrm{OFF}|\mathrm{ON}| 0 \mid 1\}$ 2-60
LIMCLEL 2-60
LIMD \leq numeric> 2-60
LIMEDONE 2-61
LIMIAMPOப<numeric> 2-61
LIMILINE $\sqcup\{\mathrm{OFF}|\mathrm{ON}| 0 \mid 1\}$ 2-61
LIMIPRMOப<numeric> 2-62
LIMITEST $\sqcup\{\mathrm{OFF}|\mathrm{ON}| 0 \mid 1\}$ 2-62
LIML $\sqcup<$ numeric $>$ 2-62
LIMMப<numeric $>$ 2-63
LIMPRMப<numeric>[HZ|KHZ|MAHZ|GHZ|DBM] 2-63
LIMSADD 2-63
LIMSDEL 2-63
LIMSDON 2-64
LIMSEDIப[<numeric>] 2-64
LIMUப<numeric> 2-64
LMAX? \leq numeric $>$ 2-64
LMARG $ப<$ numeric $>$ 2-65
LMIN? \leq numeric> 2-65
LISV 2-65
LVCDT $\llcorner<$ numeric $>[\mathrm{DB}]$ 2-66
LVLCAL 2-66
MATH $\sqcup\{$ DATA|DDVM|DMNM|DPLM $\}$ 2-66
MAXMLEVப<numeric $>[\mathrm{DBM}]$ 2-67
MEAS - parameter $>$ 2-67
MEASTATப\{OFF|ON|0|1\} 2-70
MKR \sqcup OFF $|\mathrm{ON}| 0 \mid 1\}$ 2-70
MKRAMPO 2-70
MKRAUV? 2-70
MKRCENT 2-71
MKRCONTப $\sqcup \mathrm{OFF}|\mathrm{ON}| 0 \mid 1\}$ 2-71
MKRCOUP $\sqcup\{\mathrm{OFF}|\mathrm{ON}| 0 \mid 1\}$ 2-71
MKRCSTE 2-71
MKRDCENT 2-72
MKRDCSTE 2-72
MKRDELA 2-72
MKRDSPAN 2-72
MKRL $\sqcup\{\mathrm{OFF}|\mathrm{ON}| 0 \mid 1\}$ 2-72
MKRMIDD 2-73
MKRNOIப\{OFF|ON|0|1\} 2-73
MKRO $\sqcup\{$ DATA|MEMO $\}$ 2-73
MKROFS 2-73
MKRPப<numeric> 2-74
MKRPKD 2-74
MKRPRM $\sqcup<$ numeric $>[\mathrm{HZ}|\mathrm{KHZ}| \mathrm{MAHZ}|\mathrm{GHZ}| \mathrm{DBM}]$ 2-74
MKRREF 2-74
MKRSTAR 2-75
MKRSTOP 2-75
MKRSWPRM 2-75
MKRTHRE 2-75
MKRTIME $\sqcup\{\mathrm{OFF}|\mathrm{ON}| 0 \mid 1\}$ 2-76
MKRVAL? 2-76
MKRZM 2-76
MODI1 2-76
MODICOMK 2-77
MODIFIX 2-77
MONDYEAR 2-77
NA 2-77
NEXP 2-78
NEXPK? 2-78
NUMG - numeric> 2-78
NUMLMAX? 2-79
NUMLMIN? 2-79
OFSD $\sqcup<$ numeric $>[\mathrm{S}]$ 2-79
OFSL $\sqcup<$ value $>$ 2-79
OFSZ $\sqcup<$ numeric $>[\mathrm{OHM} \mid \mathrm{KOHM}]$ 2-80
OMII 2-80
OPEP 2-80
OSE $\sqcup<$ numeric $>$ 2-80
OSER? 2-81
OSNT $\llcorner<$ numeric $>$ 2-81
OSPTப<numeric $>$ 2-81
OSR? 2-81
OUT8IOப<numeric> 2-82
OUTPCALC\{1-12\}? 2-82
OUTPCALK? 2-82
OUTPCERR? 2-82
OUTPCFIL? 2-83
OUTPCOMC\{1|2|3\}? 2-83
OUTPDATA? 2-83
OUTPDATAP? \leq numeric $>$ 2-84
OUTPDMKR? 2-84
OUTPDTRC? 2-85
OUTPDTRCP? \leq numeric $>$ 2-85
OUTPERRO? 2-86
OUTPFAIP? 2-86
OUTPFILT? 2-86
OUTPLIMF? 2-86
OUTPLIML? 2-87
OUTPLIMM? 2-88
OUTPMAX? 2-88
OUTPMEAN? 2-88
OUTPMEMO? 2-88
OUTPMEMOP? \leq numiric $>$ 2-89
OUTPMIN? 2-89
OUTPMINMAX? 2-89
OUTPMKR? 2-89
OUTPMSTA? 2-90
OUTPMTRC? 2-90
OUTPMTRCP? \leq numeric $>$ 2-91
OUTPMWID? 2-91
OUTPRAW\{1-4\}? 2-92
OUTPRESF? 2-92
OUTPRESO? 2-92
OUTPRESR? 2-92
OUTPSMKR\{1-7\}? 2-92
OUTPSWPRM? 2-93
OUTPSWPRMP? \leq <numeric $>$ 2-93
OUTPXFIL? 2-93
PARS $\sqcup\{0 F F|O N| 0 \mid 1\}$ 2-94
PEAK? 2-94
PEAKCENT 2-94
PHAOப<numeric>[DEG] 2-95
PHAU \{RAD|DEG $\}$ 2-95
PKDLTX $\llcorner<$ numeric $>[\mathrm{HZ}|\mathrm{KHZ}| \mathrm{MAHZ}|\mathrm{GHZ}| \mathrm{DBM}]$ 2-95
PKDLTYப<numeric> 2-96
PKPOLU\{POS|NEG\} 2-96
PKTHRE $\sqcup\{\mathrm{OFF}|\mathrm{ON}| 0 \mid 1\}$ 2-97
PKTHVALU<value> 2-97
POINU<numeric $>$ 2-98
POLE? \leq <numeric $>$ 2-98
PORE $\sqcup\{$ OFF $|O N| 0 \mid 1\}$ 2-98
PORT1ப<numeric>[S|MS|US|NS|PS] 2-99
PORT2ப<numeric>[S|MS|US|NS|PS] 2-99
PORTA $\llcorner<$ numeric $>[\mathrm{S}|\mathrm{MS}| \mathrm{US}|\mathrm{NS}| \mathrm{PS}]$ 2-99
PORTB \leq numeric $>[\mathrm{S}|\mathrm{MS}| \mathrm{US}|\mathrm{NS}| \mathrm{PS}]$ 2-100
PORTR \leq numeric $>[\mathrm{S}|\mathrm{MS}| \mathrm{US}|\mathrm{NS}| \mathrm{PS}]$ 2-100
PORTZப<numeric> 2-100
POWE $\sqcup<$ numeric $>[\mathrm{DBM}]$ 2-101
PREP 2-101
PRES 2-101
PRIC 2-102
PRICFIXE 2-102
PRICVARI 2-102
PRINALL 2-103
PRIS 2-103
PRSOFTL \llcorner OFF|ON|0|1\} 2-103
PRSMKRS 2-104
PURGப<string> 2-104
RAID 2-104
RAIISOL 2-104
RAIRESP 2-105
READ? 2-105
RECC 2-105
RECD \llcorner <string $>$ 2-106
REFD 2-106
REFL 2-106
REFP $\sqcup<$ numeric $>$ 2-107
REFVU<numeric> 2-107
REFX $\triangle<$ numeric $>$ 2-108
REFY $\triangle<$ numeric $>$ 2-108
REPTSMP $\sqcup\{\mathrm{OFF}|\mathrm{ON}| 0 \mid 1\}$ 2-109
RESAVDப<string> 2-109
RESC 2-109
RESCOM 2-110
RESD 2-110
RESPDONE 2-110
REST 2-110
REVI 2-110
REVM 2-111
REVT 2-111
RFO \square OFFF|ON|0|1\} 2-111
ROPENU<string> 2-112
RPLENV? 2-112
RPLHEI? 2-112
RPLLHEI? 2-113
RPLMEA? 2-113
RPLPP? 2-113
RPLRHEI? 2-113
RPLVAL? 2-113
RSCO 2-113
SA 2-114
SADD 2-114
SAUNITU\{DBM|DBV|DBUV|W|V\} 2-114
SAV1 2-115
SAV2 2-115
SAVC 2-115
SAVCAL $\sqcup\{0 \mathrm{FF}|\mathrm{ON}| 0 \mid 1\}$ 2-116
SAVCOM 2-116
SAVDASC \llcorner <string $>$ 2-116
SAVDAT \llcorner OFF|ON|0|1\} 2-117
SAVDDATU<string> 2-117
SAVDSTAப<string> 2-117
SAVDSTACப<string> 2-118
SAVDTIFப<string> 2-118
SAVDTRC $\sqcup\{\mathrm{OFF}|\mathrm{ON}| 0 \mid 1\}$ 2-119
SAVEUSEK 2-119
SAVIMP 2-119
SAVMEMப\{OFF|ON|0|1\} 2-119
SAVMTRC $\sqcup\{\mathrm{OFF}|\mathrm{ON}| 0 \mid 1\}$ 2-120
SAVRAWப\{OFF|ON|0|1\} 2-120
SAVUCOMK 2-120
SAVUFIXT 2-120
$\mathrm{SCAC} \sqcup \mathrm{OFF}|\mathrm{ON}| 0 \mid 1\}$ 2-121
SCAF $\sqcup\{$ DATA|MEMO $\}$ 2-121
SCALL<numeric> 2-121
$\mathrm{SCRN} \sqcup\{\mathrm{OFF}|\mathrm{ON}| 0 \mid 1\}$ 2-122
SDEL 2-122
SDON 2-122
SEAL 2-122
SEAMப\{PEAK|MAX|MIN|TARG|PKSA|PKSR|PKSL|OFF\} 2-123
SEANPK 2-123
SEANPKL 2-124
SEANPKR 2-124
SEAR 2-124
SEARSTR 2-124
SEARSTRL 2-124
SEARSTRR 2-125
SEATARG - <numeric $>[\mathrm{DB}|\mathrm{DEG}| \mathrm{S} \mid \mathrm{OHM}]$ 2-125
SEDIப<numeric> 2-125
SETCDATE \leq numeric (year) $>,<$ numeric (month) $>,<$ numeric (day) $>$ 2-126
SETCTIME $\sqcup<$ numeric (hour) $>,<$ numeric (minute) $>,<$ numeric (second) $>$ 2-126
SETZ $-<$ numeric $>[\mathrm{OHM}|\mathrm{KOHM}| \mathrm{MAOHM}]$ 2-126
SGTRK $\sqcup\{\mathrm{OFF}|\mathrm{ON}| 0 \mid 1\}$ 2-127
SIMFCHAR 2-127
SING 2-128
$\mathrm{SLOP} \sqcup\{\mathrm{OFF}|\mathrm{ON}| 0 \mid 1\}$ 2-128
SLOPE $\sqcup<$ numeric $>$ 2-129
SMKR $\{1-7\} \sqcup\{\mathrm{OFF}|\mathrm{ON}| 0 \mid 1\}$ 2-129
SMKRAUV $1-7\}$? 2-130
SMKRP\{1-7\}ப<numeric $>$ 2-130
SMKRPRM\{1-7\} \leq numeric $>[H Z|K H Z| M A H Z|G H Z| D B M]$ 2-131
SMKRVAL\{1-7\}? 2-131
SPANப<numeric $>[\mathrm{HZ}|\mathrm{KHZ}| \mathrm{MAHZ}|\mathrm{GHZ}| \mathrm{DBM}]$ 2-132
SPECFWD $\{\mathrm{M} \mid \mathrm{T}\} \sqcup<$ numeric $1>[,<$ numeric $2>[, \ldots[,<$ numeric $7>]$ 2-132
SPECIMP $\{\mathrm{A}|\mathrm{B}| \mathrm{C}\} \sqcup<$ numeric $1>[,<$ numeric $\mathcal{2}>[, \ldots \quad[,<$ numeric $7>]$ 2-132
SPECRES $\{\mathrm{I} \mid \mathrm{P}\} \sqcup<$ numeric $1>[,<$ numeric $\mathscr{2}>[, \ldots[,<$ numeric $7>]$ 2-133
SPECREV $\{\mathrm{M} \mid \mathrm{T}\} \sqcup<$ numeric $1>[,<$ numeric $2>[, \ldots[,<$ numeric $7>]$ 2-133
SPECS11\{A $|\mathrm{B}| \mathrm{C}\} \sqcup<$ numeric $1>[,<$ numeric $\mathcal{Z}>[, \ldots[,<$ numeric $7>]$ 2-134
SPECS22\{ $\mathrm{A}|\mathrm{B}| \mathrm{C}\} \sqcup<$ numeric $1>[,<$ numeric $2>[, \ldots \quad[,<$ numeric $7>]$ 2-134
SPLD $\sqcup\{\mathrm{OFF}|\mathrm{ON}| 0 \mid 1\}$ 2-135
SQUI 2-135
STAN $\{\mathrm{A}-\mathrm{G}\}$ 2-135
STARப<numeric $>[\mathrm{HZ}|\mathrm{KHZ}| \mathrm{MAHZ}|\mathrm{GHZ}| \mathrm{DBM}]$ 2-135
STDD 2-136
STDT $\sqcup\{$ OPEN|SHOR|LOAD|DELA|ARBI $\}$ 2-136
STOD\{DISK|MEMO\} 2-136
STOPப<numeric $>[\mathrm{HZ}|\mathrm{KHZ}| \mathrm{MAHZ}|\mathrm{GHZ}| \mathrm{DBM}]$ 2-137
SVCO 2-137
SWET $\sqcup<$ numeric $>[\mathrm{S} \mid \mathrm{MS}]$ 2-137
SWETAUTO $\sqcup\{\mathrm{OFF}|\mathrm{ON}| 0 \mid 1\}$ 2-138
SWPTப\{LINF|LOGF|LIST|POWE\} 2-138
TARL? 2-139
TARR? 2-139
TERI $\sqcup<$ numeric $>[\mathrm{OHM} \mid \mathrm{KOHM}]$ 2-139
TESS? 2-139
THRR $\sqcup<$ numeric $>$ 2-139
TINTப<numeric> 2-140
TITLப<string> 2-140
TMARGப<numeric> 2-140
TOPV \sqcup <numeric $>$ 2-141
TRACK $\sqcup\{\mathrm{OFF}|\mathrm{ON}| 0 \mid 1\}$ 2-141
TRAD 2-141
TRAN 2-142
TRGEVE $\sqcup\{\mathrm{SWE} \mid \mathrm{POIN}\}$ 2-142
TRGP \square POS|NEG $\}$ 2-142
TRGS $\sqcup\{I N T|E X T| B U S|V I D| M A N \mid G A T\}$ 2-143
USKEY 2-143
VBWப<numeric $>[\mathrm{HZ}|\mathrm{KHZ}| \mathrm{MAHZ}]$ 2-144
VBWT $\sqcup\{\operatorname{LIN} \mid L O G\}$ 2-144
VELOFACT $\sqcup<$ numeric $>$ 2-144
VIDLVL $ப$ <numeric> 2-145
WIDSIN 2-145
WIDSOUT 2-145
WIDT $\sqcup\{\mathrm{OFF}|\mathrm{ON}| 0 \mid 1\}$ 2-145
WIDVப<numeric $>[\mathrm{DB}|\mathrm{DEG}| \mathrm{S} \mid \mathrm{OHM}]$ 2-146
WIDVTYPE $\sqcup\{$ DIVS2|MULS2|DIV2|FIXed $\}$ 2-146
WOPEN $\sqcup<$ string $>[,<$ numeric $>]$ 2-147
WRITE $\sqcup<b l o c k>$ 2-147
ZA 2-147
ZMAPER \triangle <numeric $>$ 2-148
Common Commands 2-149
*CLS 2-149
*ESE $\llcorner<$ numeric> 2-149
*ESR? 2-149
*IDN? 2-149
*OPC 2-150
*OPT? 2-150
*PCB \triangle <numeric $>$ 2-150
*RST 2-151
*SRE $\sqcup<$ numeric $>$ 2-151
*STB? 2-151
*TRG 2-151
*TST? 2-152
*WAI 2-152
SCPI Commands With No Equivalent Simple Command 2-153
:CALCulate:MATH1[:EXPRession]:CATalog? 2-153
:CALCulate:MATH2[:EXPRession]:CATalog? 2-153
:CALCulate:PATH? 2-153
:PROGram:CATalog? 2-154
:PROGram[:SELected]:DEFine $\sqcup<b l o c k>$ 2-154
:PROGram[:SELected]:DELete[:SELected] 2-155
:PROGram[:SELected]:DELete:ALL 2-155
:PROGram[:SELected]:EXECute $\langle<$ string $>$ 2-155
:PROGram[:SELected]:MALLocate $\sqcup\{<$ numeric $>\mid$ DEFault $\}$ 2-155
:PROGram[:SELected]:NAME $\sqcup<$ string $>$ 2-155
:PROGram[:SELected]:NUMBer $\sqcup<$ string $>,<$ numeric $1>[,<$ numeric $2>[$, $[,<$ numeric $n>]$ 2-156
:PROGram[:SELected]:STATe $\sqcup\{$ RUN|PAUSe|STOP|CONTinue $\}$ 2-156
:PROGram[:SELected]:STRing $\sqcup<$ string (varname) $>,<$ string (value 1) $>[,<$ string (value 2) $>[$, . . $[,<$ string (value $n)>]$ 2-157
:PROGram[:SELected]:WAIT 2-157
:PROGram:EXPLicit:DEFineป"PROG",<block> 2-158
:PROGram:EXPLicit:DELeteப"PROG" 2-158
:PROGram:EXPLicit:EXECute ${ }^{\text {"PROG" }}$, $<$ string $>$ 2-158
:PROGram:EXPLicit:MALLocate "PROG" $^{\text {P }}\{$ < numeric $>\mid$ DEFault $\}$ 2-158
:PROGram:EXPLicit:NAME」"PROG",<string> 2-158
:PROGram:EXPLicit:NUMBerப"PROG", $<$ varname $>,<$ numeric $1>[,<$ numeric $2>$ $[, \ldots[,<$ numeric $n>] \ldots]]$ 2-158
:PROGram:EXPLicit:STATeப"PROG",\{RUN|PAUSe|STOP|CONTinue\} 2-158
:PROGram:EXPLicit:STRingப"PROG", $<$ varname $>,<$ string $1>[,<$ string $2>[, \ldots$ [,<string $n>] \ldots$]] 2-158
:PROGram:EXPLicit:WAIT "PROG" 2-158
:STATus:PRESet 2-159
:STATus:QUEStionable:CONDition? 2-159
:STATus:QUEStionable:ENABleப<numeric> 2-159
:STATus:QUEStionable[:EVENt]? 2-159
:SYSTem:VERSion? 2-159
Service Related Commands 2-160
:DIAG:EREFerence:STATe? 2-160
:DIAG:FREVision? 2-160
:DIAG:INIT:RESult? 2-161
:DIAG:SERVice:BUS:AZERoப\{OFF|ON|0|1\} 2-161
:DIAG:SERVice:BUS:DCL<numeric> 2-161
:DIAG:SERVice:BUS:FREQப<numeric> 2-162
:DIAG:SERVice:BUS:STATe $\llcorner\{0 F F|O N| 0 \mid 1\}$ 2-162
:DIAG:SERVice:BUS:WAITU<numeric> 2-162
:DIAG:SERVice:CCONstant:FRESponse $\sqcup\{0 \mathrm{OF}|\mathrm{ON}| 0 \mid 1\}$ 2-163
:DIAG:SERVice:CCONstant:IFGainப\{OFF|ON|0|1\} 2-163
:DIAG:SERVice:CCONstant:SOURce \sqcup OOFF|ON|0|1\} 2-163
:DIAG:SERVice:CCONstant:XTAL $\cup\{0 F F|O N| 0 \mid 1\}$ 2-164
:DIAG:SERVice:IF:ADMX:MODE $\sqcup\{$ AUTO|ALTernate|DEG0|DEG90\} 2-164
:DIAG:SERVice:IF:BPFilter:MODE \sqcup \{AUTO|BW3M|BW1M|XTAL\} 2-165
:DIAG:SERVice:IF:GAIN:MODE $\sqcup\{$ AUTO|MANual\} 2-165
:DIAG:SERVice:IF:GAIN: Wப\{AUTO|DB0|DB10\} 2-165
:DIAG:SERVice:IF:GAIN:Xப\{AUTO|DB0|DB18\} 2-166
:DIAG:SERVice:IF:GAIN:Yப\{AUTO|DB0|DB6|DB12|DB18\} 2-166
:DIAG:SERVice:IF:GAIN:Z \backslash \{AUTO|DB0|DB2|DB4|DB18\} 2-167
:DIAG:SERVice:IF:LPFilter:MODE $\{$ AUTO|BW5K|BW15K|BW50K| BW150K|THRough $\}$ 2-167
:DIAG:SERVice:IF:RANGe:Fப\{HIGH|LOW\} 2-168
:DIAG:SERVice:IF:RANGe:MODE \cup \{AUTO|MANual\} 2-168
:DIAG:SERVice:IF:RANGe:Rப\{HIGH|LOW\} 2-168
:DIAG:SERVice:IF:SHBW:MODE $\sqcup\{$ AUTO|NARRow|MIDDle|WIDE\} 2-168
:DIAG:SERVice:IF:TLOCal:MODE $\cup\{A U T O|A C| D C\}$ 2-169
:DIAG:SERVice:MODE $\sqcup\{\mathrm{ON} \mid 1\}$ 2-169
:DIAG:SERVice:SOURce:ALCLoop \sqcup \{OPEN|CLOSe $\}$ 2-169
:DIAG:SERVice:SOURce:ATTenuator $\sqcup\{\operatorname{AUTO|DB0|DB10|DB20|DB30|~}$ DB40|DB50|DB60\} 2-170
:DIAG:SERVice:SOURce:GAIN:DAC:MODE \sqcup \{AUTO|MANual\} 2-170
:DIAG:SERVice:SOURce:GAIN:DAC:VALue \langle numeric $>$ 2-171
:DIAG:SERVice:SOURce:LEVel:DAC:MODE $\sqcup\{$ AUTO|MANual\} 2-171
:DIAG:SERVice:SOURce:LEVel:DAC:VALueப<numeric> 2-171
:DIAG:SERVice:SOURce:MODE \sqcup \{AUTO|MANual\} 2-172
:DIAG:SERVice:SYNThesizer:FLOCal:MODE $\sqcup\{$ AUTO|SINGle|TRIPle\} 2-172
:DIAG:SERVice:SYNThesizer:FN:MODE $\cup\{$ AUTO|NARRow|WIDE\} 2-172
:DIAG:SERVice:SYNThesizer:FREQuency:OFFSetப<numeric> 2-173
:DIAG:SERVice:SYNThesizer:STEP:DAC:MODEப\{AUTO|MANual\} 2-173
:DIAG:SERVice:SYNThesizer:STEP:DAC:VALue $<$ numeric $>$ 2-173
:DIAG:SERVice:SYNThesizer:STEP:LOOPப\{OPEN|CLOSe\} 2-174
:DIAG:SERVice:SYNThesizer:STEP:MODE \sqcup \{AUTO|MANual\} 2-174
:DIAG:SERVice:SYNThesizer:STEP:OUTPut $\sqcup\{\mathrm{OFF}|\mathrm{ON}| 0 \mid 1\}$ 2-174
:DIAG:SERVice:SYNThesizer:STEP:POLarity $\sqcup\{$ AUTO|POSitive|NEGative\} 2-174
:DIAG:TESTப<numeric> 2-175
:DIAG:TEST:CONTinue 2-175
:DIAG:TEST:EXECute 2-175
:DIAG:TEST:RESult?ப<numeric> 2-176
A. Manual Changes
Introduction A-1
Manual Changes A-1
Serial Number A-2
Change 1 A-2
Change 2 A-2
B. Command Summary
C. SCPI Commands Summary
D. Status Reporting OSPT, OSNT D-5
OSPT (Operation Status Positive Transition Filter) D-5
OSNT (Operation Status Negative Transition Filter) D-5
E. Trigger System
Trigger System E-1
Analyzer Trigger System Configuration E-1
Idle State E-2
Initiate State E-2
Trigger Event Detection State E-2
Sequence Operation State E-2
F. Calibration Types and Standard Classes, and Calibration Arrays
G. Key Codes
H. Data Format and Data Levels
Data Format H-1
Data Levels H-2
Marker Readout H-3
I. Waveform Analysis Commands
Conventions and Definitions I-2
Waveform Analysis Setup Commands I-3
ANAOCH1 I-3
ANAOCH2 I-3
ANARANG I-4
ANARFULL I-4
ANAODATA I-5
ANAOMEMO I-5
THRR I-6
Maximum/Minimum/Mean Value Search Commands I-7
OUTPMAX? I-7
OUTPMIN? I-7
OUTPMINMAX? I-8
OUTPMEAN? I-8
PEAK? I-9
NEXPK? I-10
NUMLMAX? I-11
NUMLMIN? I-11
LMAX? I-12
LMIN? I-12
TARR? I-13
TARL? I-14
Ripple Analysis Commands I-15
RPLPP? I-15
RPLHEI? I-17
RPLRHEI? I-18
RPLLHEI? I-19
RPLENV? I-20
RPLMEA? I-21
RPLVAL? I-22
POLE? I-23
Filter and Resonator Analysis Commands I-25
OUTPFILT? I-26
OUTPXFIL? I-28
OUTPCFIL? I-31
OUTPRESO? I-34
OUTPRESR? I-36
OUTPRESF? I-38
OUTPCERR? I-40
Equivalent circuit analysis commands I-42
EQUCPARA? I-43
EQUCPARS? I-46
EQUC0? value I-47
EQUCPARS4? I-49

Messages

Index

Figures

1-1. Proper Use of the Colon and Semicolon 1-4
2-1. Fixed length block format 2-105
2-2. Procedure of executing commands to read/write data 2-112
A-1. Serial Number Plate A-2
D-1. Status Reporting Structure D-1
D-2. Example of Reading Status Byte (1) D-2
D-3. Example of Reading Status Byte (2) D-2
D-4. Example of Generating a Service Request (SRQ) D-5
E-1. Trigger System Configuration E-1
E-2. Inside an Trigger Event Detection State E-2
G-1. Key Codes G-1
H-1. Form 2 Data Transfer Format H-1
H-2. Form 3 Data Transfer Format H-1
I-1. THRR I-6
I-2. RPLPP? I-15
I-3. RPLHEI? I-17
I-4. RPLRHEI? I-18
I-5. RPLLHEI? I-19
I-6. RPLENV? I-20
I-7. RPLMEA? I-21
I-8. RPLVAL? I-22
I-9. POLE? I-23
I-10. OUTPFILT? I-26
I-11. OUTPXFIL? I-29
I-12. OUTPCFIL? I-32
I-13. OUTPRESO? I-34
I-14. OUTPRESR? I-36
I-15. OUTPRESF? I-38
I-16. OUTPCERR? I-40
I-17. Six-Device Equivalent Circuit of Crystal Resonator I-43
I-18. Four-Device Equivalent Circuit of Crystal Resonator I-49
I-19. Admittance Characteristic Circle Diagram I-50

Tables

A-1. Manual Changes by Serial Number A-1
A-2. Manual Changes by Firmware Version A-1
D-1. Status Bit Definitions of the Status Byte (STB) D-2
D-2. Status Bit Definitions of the Standard Event Status Register (ESR) D-3
D-3. Status Bit Definitions of the Event Status Register B (ESB) D-4
D-4. Status Bit Definitions of the Operation Status Register (OSR) D-4
F-1. Calibration Types and Standard Classes F-1
F-2. Calibration Array F-2
H-1. Marker Readout H-3

Introduction

This manual provides a reference for the General Purpose Interface Bus (GPIB) commands used to control the 4396B Network/Spectrum/Impedance Analyzer (analyzer). These commands are implemented using an external controller or the Instrument BASIC.
The following is a brief description of each chapter and appendix.
Chapter 2 explains all the GPIB commands.
Appendix A contains the information required to adept this manual to earlier versions or configurations of the analyzer than the current printing date of this manual.

Appendix B lists all the GPIB commands sorted by the function (key label).
Appendix C lists all the GPIB commands in alphabetical order for the Standard Commands for Programmable Instruments (SCPI) commands.
Appendix D provides information about the status reporting structure for service request functions.
Appendix E provides information about the trigger system, which corresponds to the SCPI standard.
Appendix F describes the calibration types and the standard classes, and the calibration coefficients.
Appendix G provides the front-panel key codes for the KEY GPIB commands.
Appendix H provides information about data formats and data levels.
Appendix I provides detail information about the waveform analysis commands.
Error Messages lists all error messages with an explanation for each error.
See the GPIB Programming Guide for introduction to using the analyzer's GPIB commands and for a description of how the Instrument BASIC works with the analyzer.

Note	You should become familiar with the operation of the analyzer before you
attempt to control it using GPIB commands. See the following documents	
which are better suited to this task.	
For more information concerning the operation of the analyzer, see the	
following:	
User's Guide	
Task Reference	
Function Reference	
Option O10 Operating Handbook for impedance measurement mode.	

Note	This manual is not intended to teach the BASIC programming language or the
Standard Commands for Programmable Instruments (SCPI) commands. It also	
does not discuss GPIB theory. See the following documents that are better	
suited to these tasks.	

For more information concerning BASIC, see the manual set for the BASIC version being used:

> BASIC Programming Techniques
> BASIC Language Reference

For more information concerning SCPI, see the following:
Beginner's Guide to SCPI
For more information concerning GPIB operation, see the following:
BASIC Interfacing Techniques
Tutorial Description of the General Purpose Interface Bus
Condensed Description of the General Purpose Interface Bus

GPIB Commands

Most of the analyzer's functions have two corresponding GPIB commands. One is unique to the analyzer (called a Simple command) and another corresponds to the Standard Commands for Programmable Instruments (called a SCPI command). You can use both commands in one program.

- For example, the command to select the analyzer type is as follows:

Simple command: NA
SCPI command: :INSTrument:TYPE NA
The analyzer also has other commands (called Common command) that are not measurement related. These include commands for functions such as status register control or synchronization.

- For example, the command to clear status registers is as follows:
*CLS

Simple Commands

All the analyzer's front-panel keys have corresponding GPIB commands. The names of the simple commands are derived from their front panel key titles (where possible). Commands that have no equivalent front-panel key use a similar convention based on the common name of the function.

SCPI Commands

SCPI is the instrument command language for controlling instrument that goes beyond IEEE 488.2 standard to address a wide variety of instrument functions in a standard manner.

Common Commands

All common commands begin with an asterisk (*). Common commands are defined by IEEE 488.2.

SCPI Subsystem Commands

Subsystem commands include all measurement functions and some general purpose functions. Each subsystem is a set of commands that roughly corresponds to a functional block inside the instrument.

Subsystem commands have a hierarchical structure, called a command tree, that consists of several key words separated by a colon between each word.

Subsystem Command Tree

The top of the subsystem command tree is called the root command, or simply the root. To reach the low-level commands, you must specify a particular path (like a DOS file directory path). After Power ON or after presetting, the current path is set to the root. The path settings are changed as follows:
Program Message A program message terminator, such as <new line> character, sets the Terminator

Colon (:)

Semicolon (;) A semicolon separates two commands in the same message without changing the current path.

Figure 1-1 shows examples of how to use the colon and semicolon to navigate efficiently through the command tree.
Common commands, such as $*$ RST, are not part of any subsystem. The analyzer interprets them in the same way, regardless of the current path setting.

Figure 1-1. Proper Use of the Colon and Semicolon
(®) sets the current path to the root.
(D) moves the current path down one level.
(10) does not change the current path.

Command Abbreviations

Many commands have a long and a short form. In this manual, all commands are spelled out in the long form. The short form is obtained by deleting the lower case letters.

For example, the short form of :INITiate is :INIT and the long form of it is :INITIATE.
(SCPI does not accept anything in between, such as : INITIA.)

Program Message Syntax

This section provides the construction of program messages. A program message is the message that you send from a computer to an instrument. Program messages consist of commands combined with appropriate punctuation and program message terminators.

Case

Letter cases (upper and lower) are ignored.

Program Message Terminator

A program message must end with one of the three program message terminators, <new line>, <^END>, or <new line><^END>. <^END> means that End Of Identify (EOI) is asserted on the GPIB interface at the same time the preceding data byte is sent. For example, the BASIC OUTPUT statement is automatically sent after last data byte. If you are using a PC, you can usually configure your system to send whatever terminator you specify.

Multiple Messages

To send more than one command in the same message, you must separate them with a semicolon:

```
NA; CHAN1
```


Query and Response Message Syntax

All commands can be queried except the commands described as "no query" in the command reference. To send a query message, add ? after the last command mnemonic.

```
NA?
```

A response message may contain both commas and semicolons as separators. When a single query command returns multiple values, a comma is used to separate each data item. When multiple queries are sent in the same message, the group of data items corresponding to each query are separated by a semicolon. For example, the fictitious query : QUERY1?;QUERY2? might return a response message of:

```
<data1>,<data1>;<data2>,<data2>
```

After the message, <new line><^END> is always sent as a response message terminator.

Parameters

There must be a <space> between the last command mnemonic and the first parameter in a subsystem command.

CENTЬparameter
\sqcup means a space (ASCII character (decimal 32)).
If you send more than one parameter with a single command, each parameter must be separated by a comma.

Parameter Types

The analyzer accepts commands and parameters in various formats and responds to a particular query in a predefined and fixed format. Each command reference contains information about the parameter types available for the individual commands.

■ <numeric> represents numeric parameters as follows:
100 no decimal point required
100. fractional digits optional
$-1.23,+235$
$4.56 \mathrm{e} \sqcup 3$
$-7.89 E-01$
. 5 digits left of decimal point optional
The analyzer setting programmed with a numeric parameter can assume a finite number of values, so the analyzer automatically rounds off the parameter. For example, the analyzer has a programmable input attenuator value. If you specified 50.1 , it would be rounded off to 50 .

Query response of <numeric_value $>$ is always a numeric value in $<\mathrm{NR} 1>$ (integer) or $<$ NR3 $>$ (floating point) format.

\square Suffix

When a command has a specified suffix, the suffix multiplier and suffix units can be used with parameters as follows. (The suffix multiplier must be used with the suffix unit.):

Frequency:	HZ (Hz; default), KHZ (kHz), MAHZ or MHZ (MHz), GHZ (GHz)
Power:	DBM (dBm; default)
Attenuator:	DB (dB; default)
Time:	S (second; default), MS (ms), US ($\mu \mathrm{s}$), NS (ns), PS (ps), FS (fs)
Scale:	DB (dB), DEG $\left({ }^{\circ}\right)$, S (second), DBM (dBm), DBV (dBV), DBUV ($\mathrm{dB} \mu \mathrm{V}$), W (watt), V (Volt), OHM (Ω), SIE (siemens)
Phase:	DEG (${ }^{\circ}$; default)
Capacitance:	F (farad; default)
Percent:	PCT (\%; default)
Impedance:	OHM (Ω; default), KOHM (k k)
Loss:	DB (dB; default)

The suffix is optional and can be omitted.
■ <string $>$ is a string parameter that contains ASCII characters. A string must begin with a single quote (ASCII 39 decimal) or a double quote (ASCII 34 decimal) and end with the same corresponding character, a single or double quote. The quote to mark the beginning and end of the string is called the delimiter. You can include the delimiter as part of the string by typing it twice without any characters in between.

Example of <string $>$ TXT,

```
OUTPUT @Meter;"ASCE 'TXT'" using single quote
OUTPUT @Meter;"ASCE ""TXT""" using double quote
```

The query response is the string between double quote delimiters.

- <block> is typically used to transfer large quantities of related data. <block>can be sent as the definite length blocks.

General form of block parameters:

```
#<num_digits><num_bytes><data bytes>
```

The single decimal digit <num_digits> specifies how many digits are contained in <num_bytes>. The decimal number <num_bytes> specifies how many data bytes will follow in <data bytes>.

Example of $<$ block $>\mathrm{ABC}+\mathrm{XYZ}$, OUTPUT @Meter;"\#17ABC+XYZ"
(1 means one digit follows, 7 means seven bytes follow.)

2

Commands Reference

This chapter provides a reference for the GPIB commands of the analyzer. Use this information as a reference to the syntax requirements and general function of the individual commands.
This chapter is organized as follows:

- Simple Commands
- Common Commands
- SCPI Commands With No Equivalent Simple Command
- Service Related Commands

Within each group the commands are listed in alphabetical order. See Appendix B for a functional list of the commands. See Appendix C for a list of the SCPI commands in alphabetical order.
See the Function Reference for the details of each function. See GPIB Programming Guide for an introdution to using the analyzer's GPIB Commands.

The following conventions and definitions are used to describe the commands.

```
(1) }->\quad\mathrm{ AVER }\sqcup{\textrm{OFF}|\textrm{ON}|0|1
(2) }->\mathrm{ Turns the averaging function ON or OFF for the active channel. (AVERAGING on off
    under (Bw/Avg)
(3)}
\begin{tabular}{c|ll} 
Parameter & & Description \\
\hline OFF or 0 & Averaging function OFF & \\
ON or 1 & Averaging function ON &
\end{tabular}
(4) }->\mathrm{ ■ Query Response
        {0|1} <new line> < ENND>
(5) }->\mathrm{ ■ Equivalent SCPI Command
        :SENSe:AVERage[:STATe] {OFF|ON|O|1}
(b) }->\mathrm{ ■ Example
    OUTPUT 717;"AVER ON"
    OUTPUT 717;"AVER?"
    ENTER 717;A
    OUTPUT 717;":SENS:AVER ON"
OUTPUT 717;":SENS:AVER?"
ENTER 717;A
```

(1)	Command name and required parameter. Upper case bold characters represent the command that must appear exactly as shown with no embedded spaces. Upper and lower case characters are equivalent. A constant or a pre-assigned simple or complex numeric or string variable transferred to the analyzer. There must be a space between it and the code. (ப indicates a space.) Characters enclosed in the \{ $\}$ brackets are qualifiers attached to the root mnemonic. There can be no spaces or symbols between the root mnemonic and its appendage. For example, $\{0 F F\|O N\| 0 \mid 1\}$ means OFF, ON, 0, or 1, and $\{1-4\}$ means 1, 2, 3, or 4.
(2)	Description. Key or softkey that has the same function is shown in the brackets. The brackets may include more additional information.
(3)	Parameter description of the Simple command and SCPI command.
(4)	Query response of the Simple command and SCPI command. If the query response of the SCPI command differs from the response of the Simple command, the query response of the SCPI command is described in "Equivalent SCPI Command."
(5)	Equivalent SCPI command to the Simple command. See "SCPI Commands" in Chapter 1 for more information about the SCPI command. Square brackets indicate that the enclosed information is optional. (6)Example of the usage of the Simple command and SCPI command (including their query forms).

Simple Commands

ADDRCONT $\sqcup<$ numeric $>$

Sets the GPIB address the analyzer will use to communicate with the external controller. (ADDRESS: CONTROLLER under (Local)

Parameter	Range	Unit
$<$ numeric $>$	0 to 30	

- Query Response
\{numeric\} <new line><<END>
- Equivalent SCPI Command
:SYSTem:COMMunicate:GPIB2:ADDRess $\sqcup<$ numeric>

ANAOCH1

Selects channel 1 for waveform analysis. For details, see "ANAOCH1" in Appendix I. (Instrument BASIC EXECUTE executable; No equivalent SCPI command)

- Query Response

Parameter	
OFF or 0	Analysis for channel 1 is off.
ON or 1	Analysis for channel 1 is on.

ANAOCH2

Selects channel 2 for waveform analysis. For details, see "ANAOCH2" in Appendix I. (Instrument BASIC EXECUTE executable; No equivalent SCPI command)

- Query Response

Parameter	
OFF or 0	Analysis for channel 1 is off.
ON or 1	Analysis for channel 1 is on.

ANAODATA

Selects a data trace for waveform analysis. For details, refer to "ANAODATA" in Appendix I. (Instrument BASIC EXECUTE executable; No equivalent SCPI command)

- Query Response

Parameter	
OFF or 0	Analysis for data trace is off.
ON or 1	Analysis for data trace is on.

ANAOMEMO

Selects a memory trace for waveform analysis. For details, refer to "ANAOMEMO" in Appendix I. (Instrument BASIC EXECUTE executable; No equivalent SCPI command)

- Query Response

Parameter	
OFF or 0	Analysis for memory trace is off.
ON or 1	Analysis for memory trace is on.

ANARANG $\sqcup<$ numeric $1>,<$ numeric2 $>$

Sets the waveform analysis stimulus range by entering the START and STOP values. For details, see "ANARANG" in Appendix I. (Instrument BASIC EXECUTE executable; No equivalent SCPI command)

- Query Response
$\{$ numeric 1$\},\{$ numeric 2$\}<$ new line $><$ END $>$

ANARFULL

Sets the analysis range equal to the full stimulus ragne. For details, see "ANARFULL" in Appendix I. (Instrument BASIC EXECUTE executable; No equivalent SCPI command)

$\mathbf{A T T} \sqcup<$ numeric $>$ [DB]

Changes the input attenuation when the S input is selected. Because the attenuators at the R, A, and B inputs are fixed, if either R, A, or B is selected, you can enter the value but not change. (Spectrum analyzer only) (ATTEN under (Scale Ref)

Parameter	Range	Unit
$<$ numeric $>$	$0,10,20,30,40,50,60$	dB

[^0]- Example

```
OUTPUT 717;"ATT 10DB"
OUTPUT 717;":SENS:POW:AC:ATT:AUTO OFF"
OUTPUT 717;":SENS:POW:AC:ATT 10"
```


ATTAUTO $\sqcup\{\mathbf{O F F}|\mathbf{O N}| \mathbf{0} \mid \mathbf{1}\}$

Sets the automatic and manual spectrum analyzer input attenuator of the S input. (Spectrum analyzer only) (ATTEN AUTO man under (Scale Ref)

Parameter		Description
OFF or 0	Manual attenuator	
ON or 1	Automatic attenuator	

- Query Response
$\{0 \mid 1\}<$ new line>< <END>
- Equivalent SCPI Command
:SENSe:POWer:AC:ATTenuation:AUTO $\square\{0 F F|O N| 0 \mid 1\}$

ATTP1 $\sqcup<$ numeric $>[\mathrm{DB}]$

Controls the attenuation at port 1 of an S-parameter Test Set connected to the analyzer.
(Network analyzer only) (ATTENUATOR PORT 1 under (Source))

Parameter	Range	Unit
$<$ numeric $>$	$0,10,20,30,40,50,60,70$	dB

- Query Response
\{numeric\} <new line><<END>
- Equivalent SCPI Command

```
:OUTPut:ATTenuation1ப<numeric>
```


ATTP2 $\sqcup<$ numeric $>$ [DB]

Controls the attenuation at port 2 of an S-parameter Test Set connected to the analyzer. (Network analyzer only) (ATTENUATOR PORT 2 under (Source))

Parameter	Range	Unit
$<$ numeric $>$	$0,10,20,30,40,50,60,70$	dB

- Query Response
$\{$ numeric $\}<$ new line><<END>
- Equivalent SCPI Command
: OUTPut:ATTenuation2ப<numeric>

AUTO

Brings the trace data, defined by the SCAF command, in view on the display. (Network and impedance analyzer only) (AUTO SCALE under (Scale Ref); No query)

- Equivalent SCPI Command
:DISPlay[:WINDow]:TRACe\{[1] 12$\}: Y[: S C A L e]: A U T O \sqcup O N C E ~$
(TRACe[1] for the data trace; TRACe2 for the memory trace.)

AVER $\sqcup\{\mathbf{O F F}|\mathbf{O N}| \mathbf{0} \mid \mathbf{1}\}$

Turns the averaging function ON or OFF for the active channel. (AVERAGING ON off under (Bw/Avg)

Parameter	
OFF or 0	Averaging function OFF
ON or 1	Averaging function ON

- Query Response
$\{0 \mid 1\}<n e w ~ l i n e>\ll E N D>$
- Equivalent SCPI Command
:SENSe:AVERage[:STATe] $\sqcup\{0 \mathrm{FF} \mid$ ON|O|1\}

AVERFACT $\sqcup<$ numeric $>$

Makes the averaging factor for the active function. (AVERAGING FACTOR under (Bw/Avg)

Parameter		Range

- Query Response
\{numeric\} <new line><<END>
- Equivalent SCPI Command
: SENSe: AVERage: COUNt \sqcup <numeric>

AVERREST

Resets the sweep-to-sweep averaging and restarts the sweep count at 1 at the beginning of the next sweep. (AVERAGING RESTART under (Bw/Avg); No query)

- Equivalent SCPI Command
:SENSe:AVERage:CLEar

$\mathbf{B A C I} \sqcup<$ numeric $>[\mathbf{P C T}]$

Sets the background intensity of the display as a percent of the white level. (BACKGROUND INTENSITY under (Display)

Parameter	Range	Unit
$<$ numeric $>$ 0 to 100 (simple command) $\%$ $<$ numeric $>$ 0 to 1 (SCPI command) .		

- Query Response
\{numeric\} <new line><<END>
- Equivalent SCPI Command
: DISPlay:CONTrast \sqcup <numeric>

BEEPDONE $\sqcup\{$ OFF \mid ON $|0| 1\}$

Sets an annunciator that sounds to indicate completion of certain operations such as calibration or instrument state save. (BEEP DONE ON off under (System)

Parameter	
OFF or 0	Operation completion beeper OFF
ON or 1	Operation completion beeper ON

- Query Response
$\{0 \mid 1\}<$ new line><<END>
- Equivalent SCPI Command
:SYSTem:BEEPer1:STATeப\{OFF|ON|0|1\}

BEEPFAIL $\sqcup\{\mathbf{O F F}|\mathbf{O N}| \mathbf{0} \mid \mathbf{1}\}$

Turns the limit fail beeper ON or OFF. When the limit testing is ON and the fail beeper is ON, a beep is emitted each time a limit test is performed and a failure is detected. (BEEP FAIL ON off under (System)

Parameter		Description
OFF or 0	Limit fail beeper OFF	
ON or 1	Limit fail beeper ON	

- Query Response
$\{0 \mid 1\}<$ new line><<END>
- Equivalent SCPI Command

```
:CALCulate:LIMit:BEEPer[:STATe]\sqcup{OFF|ON|O| 1}
```


BEEPWARN $\sqcup\{$ OFF \mid ON $|\mathbf{0}| \mathbf{1}\}$

Sets the warning annunciator. When the annunciator is ON, it sounds a warning when a cautionary message is displayed. (BEEP WARN ON off under (System)

Parameter		Description
OFF or 0	Warning beeper OFF	
ON or 1	Warning beeper ON	

- Query Response
$\{0 \mid 1\}<$ new line $><$ ENND $>$
- Equivalent SCPI Command
:SYSTem:BEEPer2:STATe $4\{0 F F|O N| 0 \mid 1\}$

BLIGHT $\sqcup\{$ OFF \mid ON $|0| \mathbf{1}\}$

Sets backlighting the LCD screeen ON or OFF.

Parameter	
OFF or 0	Backlighting OFF
ON or 1	Backlighting ON

- Query Response
$\{0 \mid 1\}<$ new line>< ${ }^{-}$END>
- Equivalent SCPI Command

```
:DISPlay:BACKlight\sqcup{0FF|ON|O|1}
```


BOTV $\sqcup<$ numeric $>$

Defines the bottom border of the display and adjusts the scale value. (BOTTOM VALUE under Scale Ref; Impedance analyzer only)

Parameter	Range	Unit
$<$ numeric $>$	-1×10^{9} to 1×10^{9}	y-axis unit
y-axis unit (Log)		

- Query Response
$\{$ numeric $\}<$ new line $><$ - END $>$
- Equivalent SCPI Command
:DISPlay[:WINDow]:TRACe\{1|2\}:Y[:SCALe]: BOTTomப<numeric>

$\mathbf{B W} \sqcup<$ numeric $>[\mathbf{H Z}|\mathbf{K H Z}| \mathbf{M A H Z}]$

Sets the bandwidth value for IF bandwidth reduction, or sets the IF bandwidth of the list sweep table. (Network analyzer and Impedance analyzer) (IF BW under ($\overline{\mathrm{Bw} / \mathrm{Avg} \text {), or IF BW }}$ under (Sweep)

Sets the bandwidth value for the resolution bandwidth reduction, or sets the resolution bandwidth of the list sweep table. (Spectrum analyzer) (RES BW under (Bw/Avg), or RES BW under (Sweep)

Parameter	Range	Unit
<numeric>	$10,30,100,300,1000(=1 \mathrm{k}), 3000(=3 \mathrm{k}), 10000(=10 \mathrm{k})$, $40000(=40 \mathrm{k}$) (network analyzer and impedance analyzer) $\begin{aligned} & 1,3,10,30,100,300,1000(=1 \mathrm{k}), 3000(=3 \mathrm{k}), \\ & 10000(=10 \mathrm{k}), 30000(=30 \mathrm{k}), 100000(=100 \mathrm{k}), \\ & 300000(=300 \mathrm{k}), 1000000(=1 \mathrm{M}), 3000000(=3 \mathrm{M}) \\ & \text { (spectrum analyzer) } \end{aligned}$	Hz

- Query Response
$\{$ numeric $\}<$ new line>< $\mathrm{END}>$
- Equivalent SCPI Command

Network and impedance :SENSe:BANDwidth[:RESolution]ப<numeric> analyzer
Spectrum analyzer :SENSe:BANDwidth[:RESolution]:AUTOப\{0FF|0\} :SENSe:BANDwidth[:RESolution] ப<numeric>
IF BW, RES BW under Sweep :SENSe:LIST:SEGMent:BANDwidthப<numeric>

BWAUTO $\sqcup\{\mathbf{O F F}|\mathbf{O N}| \mathbf{0} \mid \mathbf{1}\}$

Sets either the automatic or manual resolution bandwidth ON. (Spectrum analyzer only) (RES BW AUTO man under Bw/Avg)

Parameter	
OFF or 0	Manual resolution bandwidth.
ON or 1	Automatic resolution bandwidth.

- Query Response
$\{0 \mid 1\}<$ new line><^END>
- Equivalent SCPI Command

```
:SENSe:BANDwidth[:RESolution]:AUTOD{OFF|ON|O|1}
```


BWAUTO $\{$ \{OFF $|\mathbf{O N}| \mathbf{0} \mid \mathbf{1}\}$

BWSRAT $\sqcup<$ numeric $>$

Sets the RBW/SPAN ratio that specifies the resolution bandwidth in the AUTO mode. (Spectrum analyzer only) (RBW/SPAN RATIO under (Bw/Avg)

Parameter	Range	
$<$ numeric $>$	0.01 to 10 (of SPAN) (simple command)	Unit
$<$ numeric $>$	0.0001 to 0.1 (SCPI command)	$\%$

- Query Response
$\{$ numeric $\}<$ new line><END>
- Equivalent SCPI Command

```
:SENSe:BANDwidth[:RESolution]:RATioL<numeric>
```

$\mathbf{C 0} \sqcup<$ numeric $>$
Enters the C_{0} term, which is the constant term of the capacitance model equation. (Network and impedance analyzer only) (Co under (Cal); No query)

Parameter	Range	Unit
$<$ numeric $>$	-10000 to $10000\left(\times 10^{-15}\right)$	F

- Equivalent SCPI Command (Query)

:SENSe:CORRection:CKIT:STANdard:COப<numeric>

- Query Response
\{numeric\} <new line><<END>

$\mathbf{C 1} \sqcup<$ numeric $>$

Enters the C_{1} term, which is the constant term of the capacitance model equation. (Network and impedance analyzer only) (C1 under (Cal); No query)

Parameter	Range	Unit
$<$ numeric $>$	-10000 to $10000\left(\times 10^{-27}\right)$	F / Hz

- Equivalent SCPI Command (Query)
:SENSe:CORRection:CKIT:STANdard:C1ப<numeric>
- Query Response
$\{$ numeric $\}<$ new line><-END>
$\mathbf{C} 2 \sqcup<$ numeric $>$
Enters the C_{2} term, which is the constant term of the capacitance model equation. (Network and impedance analyzer only) (C2 under (çal]; No query)

Parameter	Range	Unit
\langle numeric \rangle	-10000 to $10000\left(\times 10^{-36}\right)$	$\mathrm{F} / \mathrm{Hz}^{2}$

- Equivalent SCPI Command (Query)
:SENSe:CORRection:CKIT:STANdard:C2ப<numeric>
- Query Response
$\{$ numeric $\}<$ new line><<END>

CALCASSI

Shows the tabular listing of the calibration kit class assignment. (Network and impedance analyzer only) (CLASS ASSIGNMENT under (Copy; No query)

- Equivalent SCPI Command
:DISPlay[:WINDow]:TEXT3:PAGEU1
:DISPlay[:WINDow]:TEXT3:STATeப\{0N|1\}

CALECPARA

Calculates and displays the equivalent circuit parameters. (CALCULATE EQV PARAMS under (Display); No query; Impedance analyzer only)

- Equivalent SCPI Command

```
:CALCulate:EVALuate:EPARameters
:DISPlay[:WINDow]:TEXT18:STATe\sqcup{ON|1}
```


CALI $\sqcup\{$ NONE \mid RESP \mid RAI \mid S111|S221|FUL2|ONE2|IMP $\}$

Selects the measurement calibration type. (Network analyzer and impedance analyzer only) (CALIBRATE:NONE, RESPONSE, RESPONSE \& ISOL'N, S11 1-PORT, S22 1-PORT, FULL 2-PORT, ONE PATH 2-PORT under (Cal) of network analyzer mode or CALIBRATE MENU under (Cal) of impedance analyzer mode.)

Parameter	Description
NONE	No calibration (Network and impedance analyzer only)
RESP	Response measurement calibration (Network analyzer only)
RAI	Response and isolation measurement calibration (Network analyzer only)
S111	1-Port measurement calibration at port 1 (Network analyzer only)
S221	1-Port measurement calibration at port 2 (Network analyzer only)
FUL2	Full 2-Port measurement calibration (Network analyzer only)
ONE2	One-path 2-Port measurement calibration (Network analyzer only)
IMP	Calibration of the impedance analyzer mode. (Impedance analyzer only)

- Query Response

CALI $\sqcup\{\mathbf{N O N E} \mid$ RESP \mid RAI $\mid \mathbf{S 1 1 1 | S 2 2 1 | F U L 2 | O N E 2 | I M P \}}$

$\{$ NONE|RESP|RAI|S111|S221|FUL2|ONE2|IMP $\}<$ new line $><$ END $>$

- Equivalent SCPI Command

```
CALIUNONE :SENSe:CORRection1:COLLect:METHodUNONE
CALI\RESP :SENSe:CORRection1:COLLect:METHodURESPonse
CALIURAI :SENSe:CORRection1:COLLect:METHodURAIsol
CALIUS111 :SENSe:CORRection1:COLLect:METHodUS111
CALIUS221 :SENSe:CORRection1:COLLect:METHodUS221
CALIUFUL2 :SENSe:CORRection1:COLLect:METHodUTPORt
CALIUONE2 :SENSe:CORRection1:COLLect:METHod\sqcupOPTPort
CALIDIMP :SENSe:CORRection1:COLLect:METHodUIMPedance
```

- Example

```
OUTPUT 717;"CALI NONE"
OUTPUT 717;"CALI?"
ENTER 717;A$
OUTPUT 717;":SENS:CORR:COLL:METH NONE"
OUTPUT 717;":SENS:CORR:COLL:METH?"
ENTER 717;A$
```


$\mathbf{C A L K} \sqcup\{\mathbf{A P C 7} \mid \mathbf{A P C 3 5 | N 5 0 | N 7 5 | \text { USED } \}}$

Selects one of the default calibration kits availabl e for different connector types. (Network and impedance analyzer only) (CAL KIT: $7 \mathrm{~mm}, 3.5 \mathrm{~mm}$, N 50 ohm, N 75 ohm, or USER KIT under (Cal)

Parameter		Description
APC7	7 mm	
APC35	3.5 mm	
N50	Type-N 50Ω	
N75	Type-N 75Ω	
USED	User-defined	

- Query Response
$\{$ APC7|APC35|N50|N75|USED $\}<$ new line><
- Equivalent SCPI Command

```
CALKLAPC7 :SENSe:CORRection:CKIT\sqcupAPC7
CALK\sqcupAPC35 :SENSe:CORRection:CKIT\sqcupAPC35
CALK\sqcupN50 :SENSe:CORRection:CKIT\sqcupN50
CALK\sqcupN75 :SENSe:CORRection:CKIT\N75
CALK\USED :SENSe:CORRection:CKITLUDEFined
```

- Example

OUTPUT 717;"CALK APC7"
OUTPUT 717;"CALK?"
ENTER 717;A\$
OUTPUT 717;":SENS:CORR:CKIT APC7"

2-12 Commands Reference

CALS $\sqcup<$ numeric $>$
Provides the tabular listing of the standard definitions. (Network and impedance analyzer only) (STD NO. 1 to STD NO. 8 under ((Copy; No query)

$\left.\begin{array}{l|l|l}\text { Parameter } & & \text { Range }\end{array}\right]$ Unit | | |
| :---: | :---: |
| numeric \rangle | 1 to 8 |

- Equivalent SCPI Command

CALSப1	$\begin{aligned} & \text { :DISPlay [:WINDow] :TEXT4:PAGEU1 } \\ & : \text { DISPlay [:WINDow]:TEXT4:STATeப\{0N\|1\} } \end{aligned}$
CALS ${ }^{\text {2 }}$:DISPlay [:WINDow]:TEXT5:PAGEப1 :DISPlay [:WINDow]:TEXT5:STATe $5\{0 \mathrm{~N} \mid 1\}$
CALS S	:DISPlay[:WINDow]:TEXT6:PAGE $ப 1$:DISPlay[:WINDow]:TEXT6:STATe $\sqcup\{0 N \mid 1\}$
CALS ${ }^{\text {4 }}$:DISPlay[:WINDow]:TEXT7:PAGEப1 :DISPlay[:WINDow]:TEXT7:STATe $\mathrm{SON} \mid 1\}$
CALS 55	:DISPlay[:WINDow]:TEXT8:PAGEU1 :DISPlay [:WINDow]:TEXT8:STATeL\{ON\|1\}
CALS 6	:DISPlay[:WINDow]:TEXT9:PAGEU1 :DISPlay [:WINDow]:TEXT9:STATeL\{ON\|1\}
CALS T	:DISPlay[:WINDow]:TEXT10:PAGED1 :DISPlay [:WINDow]:TEXT10:STATe $\llcorner\{0 \mathrm{~N} \mid 1\}$
CALS 58	:DISPlay[:WINDow]:TEXT11:PAGEப1 :DISPlay[:WINDow]:TEXT11:STATe $\{$ \{ON\|1\}

CBRI $\sqcup<$ numeric $>$ [PCT]

Adjusts the brightness of the color being modified. (BRIGHTNESS under (Display; No equivalent SCPI command)

Parameter	Range	Unit
$<$ numeric $>$	0 to 100	$\%$

- Query Response
$\{$ numeric $\}<$ new line><<END>

$\mathbf{C E N T} \sqcup<$ numeric $>$ [$\mathbf{H Z}|\mathbf{K H Z}| \mathbf{M A H Z}|\mathbf{G H Z}| \mathbf{D B M}]$

Defines the center value of the sweep range, or the center value of the segment to be edited in the list sweep table. ([Center), or CENTER under (Sweep))

CENT $\triangle<$ numeric $>[\mathrm{HZ}|\mathbf{K H Z}| \mathbf{M A H Z}|\mathbf{G H Z}| \mathbf{D B M}]$

Parameter	Range	Unit
<numeric $>$	100 k to 1.82 G (network analyzer and impedance analyzer)	Hz (frequency)
	0 to 1.8199999995 G (spectrum analyzer)	
	0 to 1.81999999990234 G (spectrum analyzer with span $=$	
	195 mHz)	
	0 to 1.82 G (spectrum analyzer with span $=0 \mathrm{~Hz}$)	
	-60 to +20 (network analyzer and impedance analyzer)	dBm (power)

- Query Response
\{numeric\} <new line><<END>
- Equivalent SCPI Command

Center :SENSe:FREQuency: CENTerப<numeric> (frequency) or :SOURce:POWer:CENTerப<numeric> (power)

CENTER under (Sweep) :SENSe:LIST:SEGMent:FREQunecy:CENTerப<numeric> (List sweep table)

- Example

OUTPUT 717;"CENT 899.95MAHZ"

CHAD $\sqcup<\operatorname{string}>$

Specifies changing the current directory of a DOS format disk. (CHANGE DIRECTORY under (Save); No query)

Parameter		Description
$<$ string $>$	Directory path	

- Equivalent SCPI Command
:MMEMory:CDIRectoryப<string>
- Example

OUTPUT 717;"CHAD "".."""

CHAN 1

Selects channel 1 as the active channel. (Chan 1)

- Query Response
$\{0 \mid 1\}<$ new line><<END>
- Equivalent SCPI Command

```
:INSTrument[:SELect]\CH2 or :INSTrument:NSELect\sqcup2
:INSTrument:STATeLOFF
:INSTrument[:SELect]\CH1 or :INSTrument:NSELect\sqcup1
:INSTrument:STATeLON
```

- Example

```
OUTPUT 717;"CHAN1"
OUTPUT 717;":INST CH2"
OUTPUT 717;":INST:STAT OFF"
OUTPUT 717;":INST CH1"
OUTPUT 717;":INST:STAT ON"
```


CHAN2

Selects channel 2 as the active channel. (Chan 2])

- Query Response
$\{0 \mid 1\}<$ new line><<END>
- Equivalent SCPI Command
:INSTrument[:SELect]பCH1 or :INSTrument: NSELectப1
: INSTrument:STATeLOFF
:INSTrument[:SELect] CCH 2 or :INSTrument: NSELectப2
:INSTrument:STATeLON

$\mathbf{C I R F} \sqcup\{\mathbf{R I}|\mathbf{L I N}|$ LOG $|\mathbf{R X}| \mathbf{G B} \mid \mathbf{S W R}\}$

Selects format to readout the value of a Smith, polar, or admittance chart using markers. (Network and impedance analyzer only) (REAL IMAG, LIN MAG PHASE, LOG MAG PHASE, $R+j \mathrm{X}, \mathrm{G}+\mathrm{jB}$, SWR PHASE under (Utility)

Parameter	
RI	Real and imaginary form
LIN	Linear magnitude and phase form
LOG	Log magnitude and phase form
RX	Complex impedance form $(\mathrm{R}+\mathrm{jX})$
GB	Complex admittance form $(\mathrm{G}+\mathrm{jB})$
SWR	SWR and phase form

- Query Response
\{RI|LIN|LOG|RX|GB|SWR\} <new line><<END>
- Equivalent SCPI Commands

```
CIRF}\RI :CALCulate:EVALuate:R:FORMat\sqcupRIMaginary
CIRFULIN :CALCulate:EVALuate:R:FORMat\sqcupMLIPhase
CIRFULOG :CALCulate:EVALuate:R:FORMatDMLOPhase
CIRF}\RX :CALCulate:EVALuate:R:FORMat\RX
CIRF\sqcupGB :CALCulate:EVALuate:R:FORMatLGB
CIRF\sqcupSWR :CALCulate:EVALuate:R:FORMat\sqcupSWRPhase
```

- Example

OUTPUT 717;"CIRF GB"

CLAD

Completes the class assignment and stores it. (Network and impedance analyzer only) (CLASS DONE (SPE D) under (Cal); No query)

- Equivalent SCPI Command

```
:SENSe:CORRection:CKIT:SAVE\sqcupCLASs
```

- Example

OUTPUT 717;"CLAD"
OUTPUT 717;":SENS:CORR:CKIT:SAVE CLAS"

CLASIMP $\{\mathbf{A}|\mathbf{B}| \mathbf{C}\}$

Selects and aquires the impedance calibraion classes. (CALIBRATION OPEN, SHORT, or LOAD under (Cal), respectively; No query; Impedance analyzer only)
The order in which you acquire the OPEN, SHORT, and LOAD is changable. You can suspend a calibraion sequence and do a different operation, and then resume the calibration sequence.

- Equivalent SCPI Command

```
:SENSe:CORRection1:COLLect[:ACQuire] IMP{A|B|C}
```


CLASS $11\{\mathbf{A}|\mathbf{B}| \mathbf{C}\}$

Selects port 1 (S11) calibration standard class: S11A (open), S11B (short), or S11C (load). (Network analyzer only) ([S11]: OPEN, SHORT, LOAD under (Cal]; No query)

- Equivalent SCPI Command

```
:SENSe:CORRection:COLLect[:ACQuire]\STANdard{1|2|3}
```


CLASS22 $\{\mathbf{A}|\mathbf{B}| \mathbf{C}\}$

Selects port 2 (S22) calibration standard class: S22A (open), S22B (short), or S22C (load).
(Network analyzer only) ([S22]: OPEN, SHORT, LOAD under (Cal; No query)

- Equivalent SCPI Command
:SENSe: CORRection:COLLect[:ACQuire] $\triangle C S 22\{A|B| C\}$

CLEL

Clears the entire list. (CLEAR LIST under (Sweep; No query)

- Equivalent SCPI Command : SENSe:LIST: CLEar

CLES

Clears the Status Byte register, the Standard Event Status register, the Event Status register B (Instrument Event Status register), and the Operational Status register. (No query)

- Equivalent Common Command
*CLS

CLOSE

Returns a file, which has been read/write-enabled using the ROPEN command or WOPEN command, to access-disabled status. If this command is executed before reading process using the READ? command completes, an error occurs.

Generally, this command is used in combination with the ROPEN command and READ? command or the WOPEN command and the WRITE command, as shown in Figure 2-2. (No query)

CNTS $\sqcup<$ numeric $>$ [HZ $|\mathbf{K H Z}| \mathbf{M A H Z} \mid \mathbf{G H Z}]$

Changes the step size for the center frequency function. (CENTER STEP SIZE under (Center))

Parameter	Range	Unit
$<$ numeric $>$	0 to 1.8199×10^{9}	Hz

- Query Response
$\{$ numeric $\}<$ new line $><$ ENDD $>$
- Equivalent SCPI Command
:SENSe:FREQuency:CENTer:STEP[:INCRement]ப<numeric>
- Example

OUTPUT 717;"CNTS 1MAHZ"

CNTSAUTO $\sqcup\{\mathbf{O F F}|\mathbf{O N}| \mathbf{0} \mid \mathbf{1}\}$

Sets CENTER step policy. (STEP SIZE AUTO man under (Center)

Parameter		Description
$0 F F$ or 0	Linear step	
ON or 1	$1-2-5$ step	

- Query Response
$\{0 \mid 1\}<$ new line>< $<$ END $>$
- Equivalent SCPI Commands
:SENSe: FREQuency : CENTer:STEP[:INCRement]: AUTOD\{OFF|ON|0|1\}

COLO $\sqcup<$ parameter $>$

Specifies the display element to change color. (CH1 DATA, CH1 MEM LIMIT LN, CH2 DATA, CH2 MEM LTMIT LN, GRATICULE, IBASIC, PEN 1, PEN 2 , PEN 3 , PEN 4, PEN 5, PEN 6 , TEXT, WARNING under (Display)

Parameter	Description
CH1D	Channel 1 data
CH1M	Channel 1 memory and limit lines
CH2D	Channel 2 data
CH2M	Channel 2 memory and limit lines
GRAT	Graticule and a portion of softkey text
WARN	Warning annotation
TEXT	All the non-data text
IBT	Text on the BASIC screen
PEN1	Pen 1
PEN2	Pen 2
PEN3	Pen 3
PEN4	Pen 4
PEN5	Pen 5
PEN6	Pen 6

- Query response
\{CH1D|CH1M|CH2D|CH2M|WARN|TEXT|GRAT|IBT|PEN1|PEN2|PEN3|PEN4|PEN5|PEN6\}
<new line><< END >
- Equivalent SCPI Command

```
COLO\sqcupCH1D :DISPlay:CMAP:COLor1:HSLப<numeric (hue)>,<numeric (sat)>,
    <numeric (lum)>
COLO\sqcupCH1M :DISPlay:CMAP:COLor2:HSL\sqcup<numeric (hue)>,<numeric (sat)>,
    <numeric (lum)>
COLOLCH2D :DISPlay:CMAP:COLor3:HSL\sqcup<numeric (hue)>,<numeric (sat)>,
    <numeric (lum)>
COLODCH2M :DISPlay:CMAP:COLor4:HSL\sqcup<numeric (hue)>,<numeric (sat)>,
    <numeric (lum)>
COLOLGRAT :DISPlay:CMAP:COLor5:HSLப<numeric (hue)>,<numeric (sat)>,
    <numeric (lum)>
COLODWARN :DISPlay:CMAP:COLor6:HSL\sqcup<numeric (hue)>,<numeric (sat)>,
    <numeric (lum)>
COLO\sqcupTEXT :DISPlay:CMAP:COLor7:HSL\sqcup<numeric (hue)>,<numeric (sat)>,
    <numeric (lum)>
COLO\sqcupIBT :DISPlay:CMAP:COLor8:HSL\sqcup<numeric (hue)>,<numeric (sat)>,
    <numeric (lum)>
COLOLPEN1 : DISPlay:CMAP:COLor9:HSL\sqcup<numeric (hue)>,<numeric (sat)>,
    <numeric (lum)>
COLOLPEN2 :DISPlay:CMAP:COLor10:HSL\sqcup<numeric (hue)>,<numeric (sat)>,
    <numeric (lum)>
COLODPEN3 :DISPlay:CMAP:COLor11:HSLU<numeric (hue)>,<numeric (sat)>,
    <numeric (lum)>
COLOLPEN4 :DISPlay:CMAP:COLor12:HSL\sqcup<<numeric (hue)>,<numeric (sat)>,
    <numeric (lum)>
COLODPEN5 :DISPlay:CMAP:COLor13:HSLப<numeric (hue)>,<numeric (sat)>,
    <numeric (lum)>
COLODPEN6 :DISPlay:CMAP:COLor14:HSLப<numeric (hue)>,<numeric (sat)>,
    <numeric (lum)>
```

Parameter	Range	Unit
<numeric (hue)>	(Hue) 0 to 100 , circular, with a value of 0 resulting in the same hue as a value of 100 . The approximate color is (starting at 0): red, orange, yellow, green, cyan, blue, magenta, and back to red.	\%
<numeric (sat)>	(Saturation) 0 to 100 , with 0 specifying no color (only white or gray, depending on intensity) and 1 specifying no white.	\%
$<$ numeric (lum)>	(Luminance) 0 to 100 , with 0 resulting in black and 1 resulting in the brightest color available.	\%

Query Response
\{numeric (hue)\}, \{numeric (sat)\}, \{numeric (lum)\} <new line><END>

- Example

OUTPUT 717;"COLO CH1D"
OUTPUT 717;":DISP:CMAP:COL1:HSL 17,100,100"

COLOR $\sqcup<$ numeric $>$ [PCT]

Adjusts the degree of whiteness of the color being modified. (COLOR under (Display); No equivalent SCPI Command)

Parameter	Range	Unit
$<$ numeric $>$	0 to 100	$\%$

- Query response
$\{$ numeric $\}<$ new line><<END>

$\operatorname{COMC}\{\mathbf{A}|\mathbf{B}| \mathbf{C}\}$

Measures the standards for the fixture compensation. (COMPEN OPEN, SHORT, or LOAD under (Cal); No query; Impedance analyzer only)

Parameter	Descriptiom	
A	Measures OPEN.	
B	Measures SHORT.	Measures LOAD.

- Equivalent SCPI Commands

```
COMCA :SENSe:CORRection2:COLLect[:ACQuire]USTANdard1
COMCB :SENSe:CORRection2:COLLect[:ACQuire]USTANdard2
COMCC :SENSe:CORRection2:COLLect[:ACQuire]USTANdard3
```


COMCDAT $\{\mathbf{A}|\mathbf{B}| \mathbf{C}\} \sqcup\{\mathbf{O F F}|\mathbf{O N}| \mathbf{0} \mid \mathbf{1}\}$

Sets the OPEN, SHORT, and LOAD fixture compensation ON or OFF. (OPEN ON off, SHORT ON off, or LOAD ON off under (Cal; Impedance analyzer only)

Parameter	
A	Descriptiom
B	Uses SHORT compensation data.
C	Uses LOAD compensation data
ON or 1	Turns on the selected data.
OFF or 0	Turns off the selected data.

- Query response

$\{1 \mid 0\}<$ new line>< END>

- Equivalent SCPI Commands

COMCDATA \{ON|OFF\} :SENSe:CORRection2:OPEN \sqcup \{ON|OFF|1|0\}
COMCDATB \{ON|OFF\} :SENSe:CORRection2:SHORt $\cup\{O N|O F F| 1 \mid 0\}$
COMCDATC \{ON|OFF\} :SENSe:CORRection2:LOADU\{ON|OFF|1|O\}

COMKDONE

Complete modifying the fixture compensation kit. (KIT DONE (MODIFIED) under (Cal) COMPEN KIT [USER] MODIFY [USER]; Impedance analyzer only)

- Equivalent SCPI Command
:SENSE:CORRection2:CKIT:SAVE

COMP

Call the fixture compensation menu. You need send this command before sending COMC.
(COMPEN MENU under (Cal) FIXTURE COMPEN; No query; Impedance analyzer only)

- Equivalent SCPI Command
:SENSE:CORRection2:COLLect:METHod $\sqcup I M P e d a n c e$

COMS

Displays the fixture compensation definition on the display. (COMPEN KIT DEFINITION under (Copy; No query; Impedance analyzer only)

- Equivalent SCPI Commands

```
DISPlay[:WINDow]:TEXT20:PAGE 1
DISPlay[:WINDow]:TEXT20:STATe ON
```


COMSDONE

Complete defining the standard for the fixture compensation kit. (STD DONE (DEFINED) under
(Cal) COMPEN KIT [USER] MODIFY [USER]; Impedance analyzer only)

- Equivalent SCPI Command
:SENSE:CORRection2:CKIT:STANdard:SAVE

CONT

Triggers sweep automatically and continuously and the trace is updated with each sweep. (CONTINUOUS under (Trig)

- Query Response
$\{0 \mid 1\}<$ new line><
■ Equivalent SCPI Command

```
:INITiate:CONTinuous\sqcup{1|ON}
```


CONT

CONV $\sqcup<$ parameter $>$

Selects the measurement data conversion setting (impedance, admittance, or multiple phase).
(Network analyzer only) (OFF, Z:Refl, Z:Trans, Y:Refl, Y:Trans, 1/S, 4xPHASE,
8xPHASE, 16xPHASE under (Meas)

Parameter	Description
OFF	Conversion OFF
ZREF	Z: reflection
ZTRA	Z: transmission
YREF	Y: reflection
YTRA	Y: transmission
ONEDS	Reciprocal (1/S)
MP4	Multiply phase by 4
MP8	Multiply phase by 8
MP16	Multiply phase by 16

- Query Response
\{OFF|ZREF|ZTRA|YREF|YTRA|ONEDS|MP4|MP8|MP16\} <new line>< ${ }^{\text {EEND }}>$
- Equivalent SCPI Command

CONV ${ }^{\text {a }}$ OF	: CALCulate:MATH1[:EXPRession] : NAME 5 OFF
CONVUZREF	: CALCulate:MATH1[:EXPRession]: NAME \triangle ZREF
CONV \triangle ZTRA	: CALCulate:MATH1[:EXPRession]: NAME \triangle ZTRA
CONVUYREF	: CALCulate:MATH1[:EXPRession]: NAMEDYREF
CONVUYTRA	: CALCulate:MATH1[:EXPRession]: NAME \square YTRA
CONVLONEDS	: CALCulate:MATH1[:EXPRession]: NAMEDINVS
CONVபMP4	: CALCulate:MATH1[:EXPRession] : NAME \triangle MP4
CONV MP $^{\text {P }}$: CALCulate:MATH1[:EXPRession]: NAME MP8 $^{\text {a }}$
CONVபMP16	: CALCulate:MATH1[:EXPRession]:NAMEDMP16

\square Query Response
\{OFF|ZREF|ZTRA|YREF|YTRA|ONEDS|MP4|MP8|MP16\} <new line><

- Example

OUTPUT 717;"CONV ZREF"
OUTPUT 717;":CALC:MATH1:NAME ZREF"

COPA

Aborts a print in progress. (COPY ABORT under (Copy); No query)

- Equivalent SCPI Command

```
:HCOPy:ABORt
```


$\mathbf{C O P T} \sqcup\{\mathbf{O F F}|\mathbf{O N}| \mathbf{0} \mid \mathbf{1}\}$

Turns printing time and date (the time stamp function) ON or OFF. (COPY TIME ON off under (Copy)

Parameter	
OFF or 0	Time stamp function OFF
ON or 1	Time stamp function ON

- Query Response
$\{0 \mid 1\}<n e w ~ l i n e>\ll E N D>$
- Equivalent SCPI Command
: HCOPy:ITEM:TDSTamp:STATe $\{$ \{OFF|ON|O|1\}

$\mathbf{C O R R} \sqcup\{\mathbf{O F F}|\mathbf{O N}| \mathbf{0} \mid \mathbf{1}\}$

Turns error correction ON or OFF. (Network and impedance analyzer only)
(CORRECTION ON off under (Cal), This softkey is Network analyzer only)

Parameter		Description
OFF or 0	Error correction OFF	
ON or 1	Error correction ON	

- Query Response
$\{0 \mid 1\}<$ new line><<END>
- Equivalent SCPI Command

```
:SENSe:CORRection[:STATe]\{0FF|ON|O|1}
```

- Example

OUTPUT 717;"CORR OFF"
OUTPUT 717;"CORR?"
ENTER 717;A
OUTPUT 717;":SENS:CORR OFF"
OUTPUT 717;":SENS:CORR?"
ENTER 717;A

$\mathrm{CORR} \sqcup\{\mathrm{OFF}|\mathrm{ON}| 0 \mid 1\}$

$\mathbf{C O U C} \sqcup\{\mathbf{O F F}|\mathbf{O N}| \mathbf{0} \mid \mathbf{1}\}$

Sets the channel coupling of sweep parameter values. (Between network or between impedance analyzers only) (COUPLED CH ON off under (Sweep))

Parameter	
OFF or 0	Channel coupling OFF
ON or 1	Channel coupling ON

- Query Response
$\{0 \mid 1\}<$ new line><<END>
- Equivalent SCPI Command

```
:INSTrument:COUPle\sqcup{OFF|ON|O|1}
```


CRED $\sqcup<$ string $>$

Create a new directory in a DOS format disk. (CREATE DIRECTORY under (Save); No query)

Parameter	Description
$<$ string $>$	Up to 8 characters for directory name (and up to 3 characters for extension)

- Equivalent SCPI Command
: MMEMory:CREate:DIRectoryப<string>
- Example

OUTPUT 717;"CRED ""DATA"""
OUTPUT 717;":MMEM:CRE:DIR ""DATA"""

$\mathbf{C R S C} \sqcup\{\mathbf{O F F}|\mathbf{O N}| \mathbf{0} \mid \mathbf{1}\}$

Selects the destination channel of the marker \rightarrow functions. When a marker \rightarrow function is performed, the sweep parameter or amplitude value of the destination channel is changed. (CROSS CHAN ON off under (Marker \rightarrow)

Parameter	Description
OFF or 0	Current active channel as the destination channel
ON or 1	Current inactive channel as the destination channel ${ }^{1}$

1 Can be selected only when the dual channel function is ON.

- Query Response
$\{0 \mid 1\}<$ new line>< $\mathrm{END}>$
- Equivalent SCPI Command
: CALCulate: EVALuate:EFFect:ONப\{1|2\}
When channel 1 is active,

Parameter	Description
1	The channel currently active is selected.
2	The channel currently not active is selected.

When channel 2 is active,

Parameter	Description
1	The channel currently not active is selected.
2	The channel currently active is selected.

CWD?

Returns the name of the current directory. (Query only)

- Query Response
$\{$ string $\}<$ new line $><$ ENDD $>$

CWFREQ $\sqcup<$ numeric $>$ [HZ \mid KHZ \mid MAHZ $\mid \mathbf{G H Z}]$

Sets the frequency for power sweep. (Network and impedance analyzer only) (CWFREQ under (Source)

Parameter	Range	Unit
$<$ numeric $>$	$100000(=100 \mathrm{k})$ to $1.82 \times 10^{9}(=1.82 \mathrm{G})$	Hz

- Query Response
$\{$ numeric $\}<$ new line $><$ ENND $>$
- Equivalent SCPI Command
: SOURce: FREQuency [:CW] ப<numeric>

CWFREQ $ப<$ numeric $>[\mathbf{H Z}|\mathbf{K H Z}| \mathbf{M A H Z} \mid \mathbf{G H Z}]$

- Example

OUTPUT 717;"CWFREQ 500MAHZ"

DATAOVAL $\downarrow<$ numeric $>$

Defines the imaginary part of the offset value when using the Smith, Polar, and admittance chart format. (AUX OFFSET under (Display)

Parameter	Range	Unit
$<$ numeric $>$	-500000 to 500000	

- Query Response
\{numeric $\}<$ new line><<END>
- Equivalent SCPI Command
:DATA[:DATA] $\triangle A O F F,<n u m e r i c>$

DATGAIN $\sqcup<$ numeric $>$
Defines the gain value of the data math function. (GAIN under (Display)

Parameter	Range	Unit
$<$ numeric $>$	-100 to -0.001, or 0.001 to 100	

- Query Response
\{numeric\} <new line>< $\mathrm{END}>$
- Equivalent SCPI Command
: DATA [: DATA] பGAIN , <numeric>

DATMEM

Stores the current active measurement data in the memory of the active channel. (DATA-MEMORY under (Display); No query)

- Equivalent SCPI Command
:TRACe\{1|2\}:COPY \triangle MTRace, DTRace
- Example

OUTPUT 717;":TRAC:COPY MTR,DTR"

DATOVAL $\sqcup<$ numeric $>$
Defines the offset value. When using Smith, Polar, and admittance chart format, this command defines the real part of the offset value. (OFFSET under (Display)

Parameter	Range	Unit
$<$ numeric $>$	-500000 to 500000	

- Query Response
\{numeric\} <new line><<END>
- Equivalent SCPI Command
:DATA[:DATA] $\operatorname{DOFFS},<$ numeric>

DAYMYEAR

Changes the displayed date to the "day:month:year" format. (DayMonYear under (System)

- Query Response
$\{0 \mid 1\}<n e w ~ l i n e><$ - END>
(0 for the "month:day:year" format; 1 for the "day:month:year" format.)
- Equivalent SCPI Command :SYSTem:DATE:MODEUDMY

DEFC

Returns all the color settings back to the factory-set default values. (DEFAULT COLORS under (Display); No query)

- Equivalent SCPI Command
:DISPlay:CMAP:DEFault

DEFC

DEFEC $\{\mathbf{R 1}|\mathbf{C 1}| \mathbf{L 1} \mid \mathbf{C 0}\} \sqcup<$ numeric $>$

Defines the specified equivalent circuit parameter for simulation. (PARAMETER R1, C1, L1, co under (IDisplay); Impedance analyzer only)

Parameter	
R1	Parameter R_{1}
C1	Parameter C_{1}
L1	Parameter L_{1}
C0	Parameter C_{0}

Parameter	Range	Unit
$<$ numeric $>$	-1×10^{18} to 1×10^{18}	$\mathrm{~F}(\mathrm{C} 0, \mathrm{C} 1) \mathrm{H}(\mathrm{L} 1) \mathrm{OHM}(\mathrm{R} 1)$

- Query Responce
<numeric> <new line>< END>
- Equivalent SCPI Command
:DATA[:DATA] $\operatorname{DEQ}\{\mathrm{R} 1|C 1| \mathrm{L} 1 \mid \mathrm{CO}\},<$ numeric>
- Example

OUTPUT @Hp4396;"DEFECR1 350HM"
OUTPUT @Hp4396;"DEFECC1?"
ENTER @Hp4396;C1

DEFGO

Returns the gain and offset values back to the default values (gain $=1$, offset $=0$).
(DEFAULT GAIN \& OFS under (Display); No query)

- Equivalent SCPI Command
:DATA[:DATA] UGAIN, 1 :DATA[:DATA] $\operatorname{DOFFS}, 0$
- Example

OUTPUT 717;"DEFGO"
OUTPUT 717;":DATA GAIN,1"
OUTPUT 717;":DATA OFFS,0"

DEFS $\sqcup\{$ 1-8 $\}$

Defines the number of the calibration standards to be modified. (Network and impedance analyzer only) (DEFINE STANDARD under (Cal); No query)

Parameter	Description
1	Standard no. $1(\mathrm{SHORT})$
2	Standard no. 2 (OPEN)
3	Standard no. 3(LOAD)
4	Standard no. $4(\mathrm{DEL} / \mathrm{THRU})$
5	Standard no. $5(\mathrm{LOAD})$
6	Standard no. $6(\mathrm{LOAD})$
7	Standard no. $7(\mathrm{SHORT})$
8	Standard no. 8 (OPEN)

- Equivalent SCPI Command (Query)

```
:SENSe:CORRection:CKIT:SELectLSTANdard{1-8}
```

\square Query response
$\{\operatorname{STAN}\{1-8\}\}<$ new line $>\ll$ END $>$
■ Example
OUTPUT 717;"DEFS 1"
OUTPUT 717;":SENS:CORR:CKIT:SEL STAN1"
OUTPUT 717;":SENS:CORR:CKIT:SEL?"
ENTER 717;A\$

DEFSLOAD $\{\mathbf{R} \mid \mathbf{L}\} \sqcup<$ numeric $>$

Defines the LOAD standard by entering resistance and reactance value.
(LOAD: RESIST. (R), INDUCT. (L) under (Cal) CAL KIT []. Impedance analyzer only)

Parameter	Description
R	Resistance value of the LOAD fixture compensation standard.
L	Inductance value of the LOAD fixture compensation standard.

Parameter	Range	Unit
$<$ numeric $>$	-1×10^{6} to 1×10^{6}	$\Omega(\mathrm{R})$
$<$ numeric $>$	-1×10^{6} to 1×10^{6}	$\mathrm{H}(\mathrm{L})$

- Query Response
$\{$ numeric $\}<$ new line $><$ - END $>$
- Equivalent SCPI Command

DEFSLOADR :SENSe:CORRection2:CKIT:STANdard3:Rப<numeric>
DEFSLOADL :SENSe:CORRection2:CKIT:STANdard3:Lப<numeric>

DEFSOPEN $\{\mathbf{G} \mid \mathbf{C}\} \sqcup<$ numeric $>$

Defines the OPEN standard by entering conductance and capacitance value.
(OPEN: CONDUCT. (G) , CAP. (C) under (Cal) CAL KIT []. Impedance analyzer only)

Parameter	Description
G	Conductance value of the OPEN fixture compensation standard.
C	Capacitance value of the OPEN fixture compensation standard.

Parameter	Range	Unit
$<$ numeric $>$	-1×10^{6} to 1×10^{6}	$\mathrm{~S}(\mathrm{G})$
$<$ numeric $>$	-1×10^{-6} to 1×10^{6} (simple command)	$\mathrm{f}(\mathrm{C})$
$<$ numeric $>$	-1×10^{-9} to 1×10^{9} (SCPI command)	$\mathrm{F}(\mathrm{C})$

- Query Response
$\{$ numeric $\}<$ new line><<END>
- Equivalent SCPI Command

```
DEFSOPENG SENSe:CORRection2:CKIT:STANdard1:G\sqcup<numeric>
DEFSOPENC SENSe:CORRection2:CKIT:STANdard1:C\sqcup<numeric>
```

- Example

OUTPUT @Hp4396;"DEFSOPENG OS"
OUTPUT @Hp4396;"DEFSOPENC 53E-6F"
OUTPUT @Hp4396;"DEFSOPENG?"
ENTER ©Hp4396;G
OUTPUT @Hp4396;"SENS:CORR2:CKIT:STAN1:G OS;C 53E-6F"

DEFSSHOR $\{\mathbf{R} \mid \mathbf{L}\} \sqcup<$ numeric $>$

Defines the SHORT calibration standard by entering resistance and inductance value. (SHORT: RESIST. (R), INDUCT. (L) under (Cal) CAL KIT []. Impedance analyzer only)

Parameter	Description
R	Resistance value of the SHORT fixture compensation standard.
L	Inductance value of the SHORT fixture compensation standard.

Parameter	Range	Unit
$<$ numeric $>$	-1×10^{6} to 1×10^{6}	$\Omega(\mathrm{R})$
$<$ numeric $>$	-1×10^{6} to 1×10^{6}	$\mathrm{H}(\mathrm{L})$

- Query Response
$\{$ numeric $\}<$ new line><<END>
- Equivalent SCPI Command

DEFSSHORR SENSe:CORRection2:CKIT:STANdard2:Rப<numeric>
DEFSSHORL SENSe:CORRection2:CKIT:STANdard2:Lப<numeric>

- Example

```
OUTPUT @Hp4396;"DEFSSHORTR OOHM"
OUTPUT @Hp4396;"DEFSSHORTL OH"
OUTPUT @Hp4396;"DEFSSHORTR?"
ENTER @HP4396;R
OUTPUT @Hp4396;"SENS:CORR2:CKIT:STAN2:R 00HM;L OH"
```


$\mathbf{D E T} \sqcup\{\mathbf{P O S}|\mathbf{N E G}| \mathbf{S A M}\}$

Selects the detection mode for the active channel. (Spectrum analyzer only) (POS PEAK, NEG PEAK, SAMPLE under (Meas)

Parameter		Description
POS	Positive Detection	
NEG	Negative Detection	
SAM	Sample Detection	

- Query Response
\{POS|NEG|SAM\} <new line><<END>
- Equivalent SCPI Command
:SENSe:DETector[:FUNCtion] \sqcup \{POSitivelNEGativelSAMple\}
- Example

OUTPUT 717;"DET POS"

DFLT

Returns the printing parameters to their default values. (DEFAULT SETUP under (Copy); No query)

The table below lists the default values.

Command	Default value	Unit
DPI	75	dpi
FORMFEED	ON	
LANDSCAPE	OFF	inch
LMARG	1.0	inch
TMARG	1.0	

- Equivalent SCPI Command
:HCOPy:DEFault

DFLT

DHOLD $\sqcup\{\mathbf{O F F}|\mathbf{M A X}| \mathbf{M I N}\}$

Selects the data hold operation. When the format is changed, the value held is initiated.
(HOLD: OFF, MAX, MIN under (Display)

Parameter	
OFF	Data hold operation is turned off
MAX	Maximum data hold
MIN	Minimum data hold

- Query Response
$\{$ OFF \mid MAX \mid MIN $\}<$ new line $><$ ELND $>$
- Equivalent SCPI Command

```
DHOLDLOFF :CALCulate:AVERage:STATeLOFF
DHOLDLMAX :CALCulate:AVERage:TYPEDMAXimum
                        :CALCulate1:AVERage:STATeLON
DHOLD\sqcupMIN :CALCulate:AVERage:TYPEDMINimum
                        :CALCulate1:AVERage:STATeLON
```

- Example

OUTPUT 717;"DHOLD MAX"
OUTPUT 717;"DHOLD?"
ENTER 717;A\$
OUTPUT 717;":CALC:AVER:TYPE MAX"
OUTPUT 717;":CALC:AVER:STAT ON"
OUTPUT 717;":CALC:AVER:TYPE?"
ENTER 717;A\$
OUTPUT 717;":CALC:AVER:STAT?"
ENTER 717;A

DISA $\sqcup\{$ ALLI \mid HIHB \mid ALLB \mid BASS $\}$

Selects the display allocation mode. (DISPLAY ALLOCATION under (Display)

Parameter	Description
ALLI	All instrument
HIHB	Half instrument and half Instrument BASIC
ALLB	All Instrument BASIC
BASS	Instrument BASIC status

- Query Response
\{ALLI|HIHB|ALLB|BASS\} < new line>< ${ }^{\text {END }}$ >
- Equivalent SCPI Command

```
DISA\sqcupALLI :DISPlay[:WINDow]:ALLocation\INSTrument
DISA\sqcupHIHB :DISPlay[:WINDow]:ALLocation\HIHB
DISALALLB :DISPlay[:WINDow]:ALLocationUBASic
DISA\sqcupBASS :DISPlay[:WINDow]:ALLocation\BSTatus
```

- Example

OUTPUT 717;"DISA HIHB"
OUTPUT 717;"DISA?"
ENTER 717;A\$

DISECIRC

Displays the equivalent circuit models. (SELECT EQV CKT [A] under (Display); Impedance analyzer only)

Parameter	Description
OFF or 0	Turns off the equivalen circuit parameter display.
ON or 1	Turns on the equivalen circuit parameter display.

- Query Response
$\{0 \mid 1\}<$ new line><<END>
- Equivalent SCPI Command

```
:DISPlay[:WINDow]:TEXT19:STATe\sqcup{OFF|ON|O|1}
```


DISECPARA \{OFF \mid ON $|0| 1\}$

Displays the equivalent circuit parameters. (DISP EQV PARM [ON] or [OFF] under (Display); Impedance analyzer only)

Parameter	
0 FF or 0	Turns off the equivalen circuit parameter display.
ON or 1	Turns on the equivalen circuit parameter display.

- Query Response
$\{0 \mid 1\}<n e w ~ l i n e>\ll E N D>$
- Equivalent SCPI Command
:DISPlay [:WINDow]:TEXT18:STATe $\sqcup\{0 F F \mid O N / 011\}$

DISECPARA $\{\mathbf{O F F}|\mathbf{O N}| \mathbf{0} \mid \mathbf{1}\}$

DISF $\sqcup\{$ DOS \mid LIF $\}$

Selects the disk format (LIF or DOS) to be used when initializing a new disk. (FORMAT [] under (Save); No equivalent SCPI command)

Parameter	
DOS	Disk Operating System format
LIF	Logical Interchange format

- Query Response
\{DOS|LIF\} <new line><< ${ }^{-}$END>
- Example

OUTPUT 717;"DISF DOS"

DISL

Displays the list sweep table on the display. (DISPLAY LIST under (Copy); No query)

- Equivalent SCPI Command
:DISPlay[:WINDow]:TEXT\{12|13\}:PAGEப1
:DISPlay[:WINDow]:TEXT\{12|13\}:STATeป\{0N|1\}
(TEXT12 for the "start \& stop" format; TEXT13 for the "center \& span" format)

DISLLIST

Displays the limit testing table on the display. (DISPLAY LIST under (copy); No query)

- Equivalent SCPI Command
:DISPlay[:WINDow] :TEXT\{14|15\}:PAGEப1
:DISPlay[:WINDow]:TEXT\{14|15\}:STATeப\{ON|1\}
(TEXT14 for the "upper \& lower" format; TEXT15 for the "middle \& delta" format)

DISMAMP $\sqcup\{\mathbf{U L} \mid \mathbf{M D}\}$

Selects the amplitude format to display the limit testing table to list on the screen. (DISP MODE: UPR \& LWR, MID \& DLT under (copy); No equivalent SCPI command)

Parameter	
UL	Upper and lower format
MD	Middle and delta format

- Query Response
\{UL|MD\} <new line><-END>
- Example

```
OUTPUT 717;"DISMAMP UL"
OUTPUT 717;"DISMAMP?"
ENTER 717;A$
```


DISMPRM $\sqcup\{$ STSP \mid CTSP $\}$

Selects the sweep parameter range format to display the list sweep table on the screen.
(DISP MODE: ST \& SP, CTR \& SPAN under (Copy); No equivalent SCPI command)

Parameter	
STSP	Start and stop format
CTSP	Center and span format

- Query Response
\{STSP|CTSP\} <new line><<END>
- Example

OUTPUT 717;"DISMPRM STSP"

DISP $\sqcup\{$ DATA \mid MEMO \mid DATM $\}$

Selects the display trace type. (DISPLAY: DATA, MEMORY, DATA and MEMORY under (Display)

Parameter		Description
DATA	Current data trace	
MEMO	Memory trace	
DATM	Current data and memory traces	

- Query Response
\{DATA|MEMO|DATM\} <new line><<END>
- Equivalent SCPI Command

```
DISPUDATA :DISPlay[:WINDow]:TRACe1:STATeU{ON|1}
        :DISPlay[:WINDow]:TRACe2:STATeL{0FFlO}
DISP\sqcupMEMO :DISPlay[:WINDow]:TRACe1:STATeL{OFFIO}
        :DISPlay[:WINDow]:TRACe2:STATeL{ON|1}
DISPUDATM :DISPlay[:WINDow]:TRACe1:STATeU{ON|1}
                        :DISPlay[:WINDow]:TRACe2:STATeL{ON|1}
```

- Example

OUTPUT 717;"DISP DATA"
OUTPUT 717;":DISP:TRAC1:STAT ON"
OUTPUT 717;":DISP:TRAC2:STAT OFF"

DISP $\sqcup\{$ DATA \mid MEMO \mid DATM $\}$

DMKR $\sqcup\{$ ON \mid FIX \mid TRAC \mid OFF $\}$

Displays the Δ marker (ON, FIX, TRAC) at the point of the marker and the marker mode changes to the Δ mode. Erases (OFF) the Δ marker and the Δ mode is turned off. (\triangle MKR ,

Parameter	Description
ON	Puts the Δ marker on a current position of the marker.
FIX	Sets a user-specified fixed reference marker.
TRAC	Puts a Δ marker at the present active marker position and turns on the tracking Δ marker.
OFF	Turns off the Δ mode.

- Query Response
$\{\mathrm{ON}|\mathrm{FIX}| \mathrm{TRAC} \mid \mathrm{OFF}\}<$ new line $><$ - $\mathrm{END}>$
- Equivalent SCPI Command

```
DMKRLON :DISPlay[:WINDow]:TRACe{[1]|2}:MARKer[1]:RELativeL{ON|1}
    :DISPlay[:WINDow]:TRACe{[1]|2}:MARKer[1]:RELative:REFerenceLMARKer
DMKR\sqcupFIX :DISPlay[:WINDow]:TRACe{[1]|2}:MARKer[1]:RELative\sqcup{ON|1}
    :DISPlay[:WINDow]:TRACe{[1]|2}:MARKer[1]:RELative:REFerence\FIXed
DMKR\sqcupTRAC :DISPlay[:WINDow]:TRACe{[1]|2}:MARKer[1]:RELativeD{ON|1}
    :DISPlay[:WINDow]:TRACe{[1]|2}:MARKer[1]:RELative:REFerenceபTRACked
DMKR\sqcupOFF :DISPlay[:WINDow]:TRACe{[1]|2}:MARKer[1]:RELative\sqcup{0FF|0}
```

(TRACe[1] for the data trace; TRACe2 for the memory trace)

- Example

```
OUTPUT 717;"DMKR ON"
OUTPUT 717;":DISP:TRAC:MARK:REL ON"
OUTPUT 717;":DISP:TRAC:MARK:REL:REF MARK"
```


DMKRAUV $\sqcup<$ numeric $>$

Sets the auxiliary amplitude value of the fixed Δ marker. This command is used with a polar, Smith, or admittance chart. (Network and impedance analyzer only) ($\triangle M K R$ AUX VALUE under (Marker)

Parameter	Range	Unit
$<$ numeric $>$	-500000 to 500000	

- Query Response
$\{$ numeric $\}<$ new line $><$ - $\mathrm{END}>$
- Equivalent SCPI Command
:CALCulate: EVALuate: REFerence:Y2ப<numeric>
- Example

OUTPUT 717;"DMKRAUV 0"

DMKRPRM $\sqcup<$ numeric $>$ [HZ \mid KHZ \mid MAHZ \mid GHZ $\mid \mathbf{D B M}]$

Sets the sweep parameter value of the Δ marker. (\triangle MKR SWP PRM under (Marker))

Parameter	Range	Unit
<numeric $>$	Start value to stop value	Hz (frequency) dBm (power)

- Query Response
$\{$ numeric $\}<$ new line $><$ ENDD $>$
- Equivalent SCPI Command
: CALCulate:EVALuate: REFerence: $\mathrm{X} \sqcup\langle$ numeric>

DMKRVAL $\sqcup<$ numeric $>$
Sets the amplitude value of the fixed Δ marker. (\triangle MKR VALUE under (Marker)

Parameter	Range	Format
$<$ numeric $>$	-500 to 500 (spectrum analyzer)	($\mathrm{dBm}, \mathrm{dB} \mu \mathrm{V}, \mathrm{dBV}$ formats)
$<$ numeric $>$	-500 to 500 (network analyzer)	
$<$ numeric $>$	-500 k to 500 k	(Log magnitude format)

- Query Response
$\{$ numeric $\}<$ new line>< $\mathrm{END}>$
- Equivalent SCPI Command
:CALCulate: EVALuate: REFerence: Y1 \langle <numeric>

DONE

Completes the measurement of the selected standard calibration. (Network and impedance analyzer only) (DONE: RESPONSE under (Cal). When Type-N calkits or user calkit, DONE: OPEN DONE: SHORT under (Cal).No query)

- Equivalent SCPI Command

```
:SENSe:CORRection:COLLect:SAVE1
```


DPI $\sqcup<$ numeric>

Specifies the printing resolution value for the printer. (DPI under (Copy)

Parameter	Range	Unit
$<$ numeric $>$	75 to 600	dpi

- Query Response
\{numeric\} <new line><<END>
- Equivalent SCPI Command
:HCOPy:DRIVer:DPIU<numeric>

DSKEY

Disables the front panel keys and the rotary knob. To enable the keys and knob again, send the ENKEY command. (No query for the Simple command)

- Equivalent SCPI Command
:SYSTem: KLOCkப\{1|ON\}
- Example

OUTPUT 717;"DSKEY"
OUTPUT 717;":SYST:KLOC ON"

DUAC $\sqcup\{\mathbf{O F F}|\mathbf{O N}| \mathbf{0} \mid \mathbf{1}\}$

Selects the display of both measurement channels or the active channel only.
(DUAL CHAN ON off under (Display)

Parameter		Description
OFF or 0	Active channel only	
ON or 1	Both channels	

- Query Response
$\{0 \mid 1\}<$ new line><<END>
- Equivalent SCPI Command

When channel 1 is active,

$$
\begin{array}{ll}
\text { DUACLON } & : \text { INSTrument [:SELect] } \operatorname{CH} \text { 2 } \\
& \text { :INSTrument:STATeLON } \\
& \text { :INSTrument [:SELect] } \operatorname{ICH} 1 \\
& \text { :INSTrument:STATeLON }
\end{array}
$$

When channel 2 is active,

```
DUACDON :INSTrument[:SELect]\CH1
            :INSTrument:STATeDON
            :INSTrument[:SELect]\sqcupCH2
            :INSTrument:STATeDON
DUACDOFF :INSTrument[:SELect]\sqcup{CH1|CH2}
            :INSTrument:STATeLOFF
            :INSTrument[:SELect]\sqcup{CH1|CH2}
```

- Example

```
OUTPUT 717;"DUAC ON"
OUTPUT 717;":INST CH1"
OUTPUT 717;":INST:STAT ON"
OUTPUT 717;":INST CH2"
OUTPUT 717;":INST:STAT ON"
```


EDITDONE

Completes editing the frequency sweep list. (LIST DONE under (Sweep); No query)

- Equivalent SCPI Command : SENSe:LIST:SAVE

EDITLIML

Begins editing the limit line table. (EDIT LIMIT LINE under System; No query; No equivalent SCPI command)

EDITLIML

EDITLIST

Begins editing the frequency sweep list. (EDIT LIST under (Sweep); No query; No equivalent SCPI command)

$\mathbf{E L E D} \sqcup<$ numeric $>[\mathbf{S}|\mathbf{M S}| \mathbf{U S}|\mathbf{N S}| \mathbf{P S} \mid \mathbf{F S}]$

Adjusts the electrical delay to balance the phase of the DUT. (Network analyzer only) (ELECTRICAL DELAY under (Scale Ref $)$

Parameter	Range	Unit
$<$ numeric $>$	-10 to 10	s

- Query Response
$\{$ numeric $\}<$ new line><<END>
- Equivalent SCPI Command
:SENSe:CORRection:EDELay2ப<numeric>

ENKEY

Reenables the front panel keys and the rotary knob that have been disabled by the DSKEY command. (No query for the Simple command)

- Equivalent SCPI Command

SYSTem:KLOCk $\sqcup\{0 F F 10\}$
■ Example
OUTPUT 717;"ENKEY"
OUTPUT 717;":SYST:KLOC OFF"

$\mathbf{E Q U C} \sqcup \mathbf{C I R}\{\mathbf{A}|\mathbf{B}| \mathbf{C}|\mathbf{D}| \mathbf{E}\}$

Selects the equivalent circuit. (SELECT EQV CKT []. under (Display). Impedance analyzer only)

Parameter	Description
CIRA	For coils with high core loss.
CIRB	For coils and resistance.
CIRC	For high-value resistors.
CIRD	For capacitors.
CIRE	For resonators.

- Query Response
$\operatorname{CIR}\{\mathrm{A}|\mathrm{B}| \mathrm{C}|\mathrm{D}| \mathrm{E}\}<$ new line $><-\mathrm{END}>$
- Equivalent SCPI Command

```
:CALCulate:EVALuate:EPARameters:CIRCuit\sqcup{A|B|C|D|E}
```

- Example

OUTPUT @Hp4396;"EQUC CIRA"

EQUC0? $<$ numeric $>$

Returns a C_{0} at the specified frequency. For more information, see "EQUC0? value" in Appendix I. (No equivalent SCPI command; Network analyzer only)

Parameter	Range	
$<$ numeric $>$	0 to $1.82 \times 10^{9}(=1.82 \mathrm{G})$	Hz

- Query Response
$<$ numeric $><$ new line $>\ll$ END $>$

EQUCPARA?

Executes six elements equivalent circuit analysis of a crystal resonator, and outputs parameters. For more information, see "EQUCPARA?" in Appendix I. (No equivalent SCPI command; Network analyzer only)

- Query Responce

See "EQUCPARA?" in Appendix I.

EQUCPARS?

Executes six elements equivalent circuit analysis of a crystal resonator, and outputs parameters. For more information, see "EQUCPARS?" in Appendix I. (No equivalent SCPI command; Network analyzer only)

- Query Responce

See "EQUCPARS?" in Appendix I.

EQUCPARS4?

Executes four elements equivalent circuit analysis of a crystal resonator, and outputs parameters. For more information, see "EQUCPARS4?" in Appendix I. (No equivalent SCPI command; Network analyzer only)

- Query Responce

See "EQUCPARS4?" in Appendix I.

EQUM? $<$ numeric $>$

Specifies how many points are used for an approximation of a admittance circle for EQUCPARA? and EQUCPARS? equivalent circuit analysis commands for the crystal resonator. EQUCPARA? (or EQUCPARS?) thins the measured points out for the specified points, then make circle approximation. When the EQUM parameter is set greater than the number of points, EQUCPARA? (or EQCUCPARS?) uses all points for the circle approximation. Default value is 8 . (Instrument BASIC EXECUTE executable; No equivalent SCPI command; Network analyzer only)

| Parameter | Range | Unit |
| :---: | :--- | :--- | :--- |
| $<$ numeric $>$ | 2 to 801 | N/A |

- Query Response
$<$ numeric $><$ new line><<END>

ESB?

Outputs the Event Status register B (Instrument Event Status register) value. (Query Only)

- Query Response
$\{$ numeric $\}<$ new line>< $\mathrm{END}>$
- Equivalent SCPI Command
:STATus:INSTrument[:EVENt]?

ESNB $\sqcup<$ numeric $>$
Enables the bits of Event Status register B (Instrument Event Status register).

Parameter	Range	Unit
$<$ numeric $>$	Decimal expression of the contents of the register, 0 to $65535\left(=2^{16}-1\right)$	

- Query Response
$\{$ numeric $\}<$ new line>< $<$ END $>$
- Equivalent SCPI Command

```
:STATus:INSTrument:ENABleப<numeric>
```


$\mathbf{E X P P} \sqcup\{\mathbf{O F F}|\mathbf{O N}| \mathbf{0} \mid \mathbf{1}\}$

Turns on and off the expanded phase display. (EXP PHASE on OFF under (Format); Impedance analyzer only)

Parameter	Description
OFF or 0	Turns off the expanded phase display.
ON or 1	Turns on the expanded phase display.

- Query Response
$\{0 \mid 1\}<$ new line><<END>
- Equivalent SCPI Command

```
EXPP\sqcupOFF :CALCulate:MATH1:STATeLOFF
    :CALCulate:FORMat\sqcupPHASe
EXPPUON :CALCulate:MATH1:STATeLOFF
    :CALCulate:FORMat\UPHASe
```

```
FILC\sqcup<string1>,<string2>,<string9>,,<string4>
```

Copies files. (COPY FILE under (save); No query)

Parameter	Description
$<\operatorname{string} \gg$	Source file name
$<\operatorname{string}>$	Source device name ("DISK" or "MEMORY")
$<\operatorname{string}>$	Destination file name
$<\operatorname{string} 4>$	Destination device name ("DISK"or "MEMORY")

1 "DISK" for the built-in flexible disk drive; "MEMORY" for the RAM disk memory.

- Equivalent SCPI Command
:MMEMory:COPYப<string1>, <string2>, <string3>, <string4>
- Example

```
OUTPUT @Hp4396;"FILC ""DAT1.TXT"",""MEMORY"",""DAT1.TXT"",""DISK"""
OUTPUT @Hp4396;":MMEM:COPY ""DAT1.TXT"",""MEMORY"",""DAT1.TXT"",""DISK"""
```


FIXE $\sqcup<$ numeric $>$

Sets the electrcal length of the fixture. (DEFINE EXTENSION under (Meas); Impedance analyzer only.)

Parameter	Range	Unit
<numeric>	-10 to 10	m

- Query Response
\{numeric\} <new line><<END>
- Equivalent SCPI Command
:SYSTem:FIXTure:DISTance $\sqcup\langle$ numeric>

FIXKDONE

Terminates the user fixture setting. (DONE under (Meas); No query; Impedance analyzer only.)

- Equivalent SCPI Command
:SYSTem:FIXTure:SAVE

FIXT $\sqcup\{$ NONE $\mid \mathbf{1 6 1 9 1 | 1 6 1 9 2 | \mathbf { 1 6 1 9 3 | } | \mathbf { 1 6 1 9 4 } | \text { USED } \}}$

Specifies the fixture in use in order to select which electrical length (recorded in the analyzer) is to be used. (FIXTURE: NONE, 16191, 16192, 16193, 16194, USED under (Meas) SELECT FIXTURE ; Impedance analyzer only.)

- Query Response
\{NONE|16191|16192|16193|16194|USED\}<new line><<END>
- Equivalent SCPI Command

FIXT $\sqcup\{$ NONE $\mid \mathbf{1 6 1 9 1 | 1 6 1 9 2 | 1 6 1 9 3 | 1 6 1 9 4 | U S E D ~}\}$

```
    :SYSTem:FIXTure\sqcup{NONE|16191|16192|16193|16194|USED}
```


FMT $\sqcup<$ parameter $>$

Selects the display format. (FORMAT: LOG MAG, PHASE, DELAY, SMITH [Re Im], POLAR [Re Im], LIN MAG, SWR, FORMAT: REAL, IMAGINARY, EXPANDED PHASE, ADMITTANCE [Re Im], FORMAT: SPECTRUM, NOISE, LIN Y-AXIS, LOG Y-AXIS, COPLEX PLANE under (Format)

Parameter	
LOGM	Description
PHAS	Log magnitude format (Network analyzer only)
DELA	Phase format (Network analyzer only)
SMITH	Delay format (Network analyzer only)
POLA	Smith chart format (Network and impedance analyzer only)
LINM	Polar chart format (Network and impedance analyzer only)
SWR	Linear magnitude format (Network analyzer only)
REAL	SWR format (Network analyzer only)
IMAG	Real format (Network analyzer only)
EXPP	Imaginary format (Network analyzer only)
ADMIT	Expanded phase format (Network analyzer only)
SPECT	Admittance Smith chart (Network and impedance analyzer only)
NOISE	Spectrum measurement (Spectrum analyzer only)
LINY	Noise level measurement (Spectrum analyzer only)
LOGY	Linear Y-axis measurement (Impedance analyzer only)
COMP	Log Y-axis measurement (Impedance analyzer only)
	Complex plane measurement (Impedance analyzer only)

- Query Response
\{LOGM|PHAS|DELA|SMITH|POLA|LINM|SWR|REAL|IMAG|EXPP|ADMIT|SPECT|NOISE| LINY|LOGY|COMP\} <new line>< END>
- Equivalent SCPI Command

FMTULOGM	:DISPlay [:WINDow]:TRACe\{[1]\|2\}:GRATicule:FORMat CRECTangle :CALCulate:FORMatLMLOGarithmic
FMTUPHAS	:DISPlay[:WINDow]:TRACe\{[1]\|2\}:GRATicule:FORMat $\$ RECTangle : CALCulate:FORMatLPHASe \hline FMTUDELA & :DISPlay [:WINDow]:TRACe\{[1]\|2\}:GRATicule:FORMatURECTangle :CALCulate:FORMat $\operatorname{CGDELay}$
FMTUSMITH	:DISPlay[:WINDow]:TRACe\{[1]I2\}:GRATicule:FORMatபSMITh :CALCulate:FORMatபCOMPlex
FMTUPOLA	:DISPlay [:WINDow]:TRACe\{[1]\|2\}:GRATicule:FORMat \triangle POLar :CALCulate:FORMatபCOMPlex
FMTULINM	:DISPlay [:WINDow]:TRACe\{[1]\|2\}:GRATicule:FORMatURECTangle :CALCulate:FORMatபMLINear
FMTUSWR	:DISPlay[:WINDow]:TRACe\{[1]\|2\}:GRATicule:FORMat \(
) RECTangle :CALCulate:FORMatUSWR	

FMTUREAL	:DISPlay [:WINDow]:TRACe\{[1]\|2\}:GRATicule:FORMat \triangle RECTangle : CALCulate: FORMat \triangle REAL		
FMTபIMAG	:DISPlay[:WINDow]:TRACe\{[1]\|2\}:GRATicule:FORMatURECTangle :CALCulate:FORMatபIMAGinary		
FMT ${ }^{\text {P }}$ EXPP	:DISPlay[:WINDow]:TRACe\{[1]\|2\}:GRATicule:FORMat ${ }^{\text {[RECTangle }}$: CALCulate: FORMatபUPHase		
FMT ADMMIT $^{\text {a }}$:DISPlay [:WINDow]:TRACe\{[1]\|2\}:GRATicule:FORMatபADMittance : CALCulate: FORMatபCOMPlex		
FMTUSPECT	: SENSe: FUNCtionป"POWer $\sqcup\{1\|2\| 3 \mid 4\}$ "		
FMTUNOISE	: SENSe:FUNCtionU"POWer\{1\|2	3	4\}:PSDensity"
FMTபLINY	DISPlay[:WINDow]:TRACe\{[1]\|2\}:GRATicule:FORMat RECTangle DISPlay[:WINDow]:TRACe\{[1]	2\}:Y::SPACing LINear	
FMTULOGY	DISPlay[:WINDow]:TRACe\{[1]\|2\}:GRATicule:FORMat RECTangle DISPlay[:WINDow]:TRACe\{[1]	2\}:Y::SPACing LOGarithmic	
FMTUCOMP	DISPlay[:WINDow]:TRACe\{[1]\|2\}:GRATicule:FORMat CPLane CALCulate: FORMat:COMPlex (TRACe[1] for the data trace; TRACe2 for the memory trace.)		

- Example

```
OUTPUT @Hp4396;"FMT LOGM"
OUTPUT @Hp4396;"FMT?"
ENTER @Hp4396;A$
OUTPUT @Hp4396;":DISP:TRAC:GRAT:FORM RECT"
OUTPUT @Hp4396;":CALC:FORM MLOG"
OUTPUT @Hp4396;":DISP:TRAC:GRAT:FORM?"
ENTER @Hp4396;A$
OUTPUT @Hp4396;":CALC:FORM?"
ENTER @Hp4396;B$
```


FNAME ? \leq $<$ numeric $>$

Returns the file name corresponding to a specified number in the current directory. To each file, a number is assigned from 1 to "the number of the files" in alphabetical order. Use the FNUM? command to verify the number of the files in the current directory. (Query only)

Parameter	Description	Range
$<$ numeric $>$	Specified file No.	1 to "the number of the files in the current directory"

- Query Response
$\{$ string $\}<$ new line $><$ ENDD>

FNAME? $\sqcup<$ numeric $>$

FNUM?

Returns the number of the files in the current directory. (Query only)

- Query Response
$\{$ numeric $\}<$ new line $><$ ENND $>$

FORM2

Sets the IEEE 32-bit floating point format to transfer trace data via GPIB. See Appendix H for more information. (No query for the Simple command)

- Equivalent SCPI Command
: FORMat[:DATA] $\operatorname{REAL}, 32$

FORM3

Sets the IEEE 64-bit floating point format to transfer the trace data via GPIB. See Appendix H for more information. (No query for the Simple command)

- Equivalent SCPI Command

```
:FORMat[:DATA] \REAL,64
```


FORM4

Sets the ASCII transfer format to transfer the trace data via GPIB. See Appendix H for more information. (No query for the Simple command)

- Equivalent SCPI Command

```
:FORMat[:DATA]\sqcupASCii
```


FORM5

Sets MS-DOS format to transfer the trace data via GPIB. See Appendix H for more information. (No query for the Simple command)

- Equivalent SCPI Command
:FORMat[:DATA] \sqcup PACKed, 32

FORMFEED $\sqcup\{$ OFF \mid ON $|0| \mathbf{1}\}$

Sets the printer ON or OFF for delivering printed paper each time printing an entire screen is finished. When the paper orientation is set to Landscape, the setting by this FORMFEED command will not take effect and the printer delivers printed paper screen by screen.

Parameter	
OFF or 0	Does not deliver printed paper
ON or 1	Delivers printed paper

- Query Response
$\{0 \mid 1\}<n e w ~ l i n e><$ END $>$
- Equivalent SCPI Command
:HCOPy:DRIVer:FORMFeedப\{OFF|ON|O|1\}

FREO

Blanks the displayed frequency notation for security purposes. Frequency notation cannot be restored except by sending the :SYSTem:PRESet or $*$ RST command, or by turning the power OFF and ON. (FREQUENCY BLANK under (Display)

- Query Response
$\{0 \mid 1\}<n e w ~ l i n e>\ll E N D>$
- Equivalent SCPI Command
:DISPlay:ANNotation:FREQuency $\sqcup\{0$ FF 10$\}$
:SYSTem:SECurity[:STATe] $\sqcup\{0 N \mid 1\}$

FSIZE? $\cup<$ string $>$

Returns the size of a specified file in bytes. If the file does not exist, this command returns -1 . (Query only)

Parameter	Description
\langle string $>$	File name of up to 12 characters including its extension (for the LIF format, up to 10 characters)

- Query Response
\{numeric\} <new line><<END>

FULS

Sets the SPAN to the maximum range. (FULL SPAN under (Span); No query)

- Equivalent SCPI Command
: SENSe: FREQuency:SPAN: FULL (frequency) or
:SOURce:POWer:SPAN: FULL (power)

FULS

FWDI

Measures S_{21} isolation. (Network analyzer only) (FWD ISOL'N ISOL'N STD under (Cal); No query)

- Equivalent SCPI Command
:SENSe: CORRection: COLLect[:ACQuire] $\operatorname{\text {SFWDI}}$

FWDM

Measures S_{11} load match. (Network analyzer only) (FWD. MATCH THRU under (Cal); No query)

- Equivalent SCPI Command
:SENSe:CORRection:COLLect[:ACQuire] $ل$ FWDM

FWDT

Measures S_{21} frequency response. (Network analyzer only) (FWD. TRANS. THRU under (Cal); No query)

- Equivalent SCPI Command
:SENSe:CORRection:COLLect[:ACQuire] $ل$ FWDT

GATCTL $\downarrow\{$ LEV \mid EDG $\}$

Specifies the gate trigger mode. (Spectrum analyzer only) (Option 1D6 only) (GATE CTL: LEVEL, EDGE under (Trigger)

Parameter		Description
LEV	Level gate trigger mode	
EDG	Edge gate trigger mode	

- Query Response
$\{$ LEV $\mid E D G\}<$ new line $><$ ENND $>$
- Equivalent SCPI Command

$$
\begin{array}{ll}
\text { GATCTLDLEV } & \text { :SENSe:SWEep:GATed:TRIGgerபLEVel } \\
\text { GATCTLபEDG } & \text { :SENSe:SWEep:GATed:TRIGger } \sqcup E D G E
\end{array}
$$

GATDLY $\sqcup<$ numeric $>$ [US $|\mathbf{M S}| \mathbf{S}]$

Sets the gate delay. (Spectrum analyzer only) (Option 1D6 only) (GATE DELAY under (Trigger)

Parameter	Range	Unit
$<$ numeric $>$	$0.000002(=2 \mu)$ to 3.2	s

- Query Response
\{numeric\} <new line><<END>
- Equivalent SCPI Command
:SENSe:SWEep:GATed:DELayப<numeric>
- Example

OUTPUT @Hp4396;"GATDLY 10US"

GATLEN $\sqcup<$ numeric $>$ [US $|\mathbf{M S}| \mathbf{S}]$

Sets the gate length. (Spectrum analyzer only) (Option 1D6 only) (GATE LENGTH under (Trigger)

Parameter	Range	Unit
$<$ numeric $>$	$0.000002(=2 \mu)$ to 3.2	s

- Query Response
\{numeric\} <new line><<END>
- Equivalent SCPI Command
: SENSe: SWEep: GATed:LENGthப<numeric>
- Example

OUTPUT @Hp4396;"GATLEN 100US"
OUTPUT @Hp4396;":SENS:SWE:GAT:LENG 100US"

GRODAPER $\sqcup<$ numeric $>$ [PCT]

Sets the aperture for the group delay measurement as a percentage of the span. (Network analyzer only) (GROUP DELY APERTURE under ($\overline{\mathrm{Bw} / \mathrm{Avg} \text {) }) ~}$

Parameter	Range	Unit
$<$ numeric $>$	0.25 to 20 (of span) (simple command)	$\%$
$<$ numeric $>$	0.0025 to 0.2 (SCPI command)	

- Query Response
\{numeric $\}<$ new line><<END>
- Equivalent SCPI Command
: CALCulate: GDAPerture:APERture \langle <numeric>

HOLD

Freezes the data trace on the display. the analyzer stops sweeping and taking data.
(SWEEP: HOLD under (Trigger)

- Query Response
$\{0 \mid 1\}<$ new line><< END>

Parameter	Description
0	Sweeping (not hold mode)
1	Hold mode

- Equivalent SCPI Command
:INITiate: CONTinuous $\sqcup\{0 F F \mid 0\}$
:ABORt

INID

Initializes the disk in the flexible disk drive or the RAM disk memory. (INITIALIZE under Save; No query) Floppy disks can be initialized in the 2HD format only.

- Equivalent SCPI Command
:MMEMory:INITializeப<string (msus)>, \{LIF|DOS\}

Parameter	Description
$<$ string (msus) $>$	"DISK" for the internal flexible disk drive
	"MEMORY" for the internal RAM disk memory

- Example

OUTPUT @Hp4396;":MMEM:INIT ""DISK"",DOS"

INP8IO?

Inputs data from the 4-bit parallel input to the analyzer, and outputs the data to a controller. (Query only)

- Query Response
$\{$ numeric $\}<$ new line><<END>
- Equivalent SCPI Command
:SYSTem:COMMunicate:PARallel[:RECeive]:DATA?

INPUCALC $\{\mathbf{1 - 1 2}\} \sqcup<$ numeric (1) $>,<$ numeric (2) $>, \ldots,<$ numeric (n) $>$
Stores the measurement calibration error coefficient set of real/imaginary pairs input via GPIB into the analyzer's memory. The command definition changes to INPUCALC $\{1-3\}$ when used in the impedance analyzer. See Appendix F for calibration array assignments. (Network and impedance analyzer only; No query)

Parameter	Description
$<$ numeric $>$	Complex number (Data format: real, imaginary)

- Equivalent SCPI Command

:DATA[:DATA] $\operatorname{DCCO}\{1-12\},\{<n u m e r i c ~(1)>,<n u m e r i c ~(2)>, ~ . . . ~,<n u m e r i c(n)>\mid<b l o c k>\} ~$

- Example

```
DIM A(1:201,1:2) NOP:201
OUTPUT @Hp4396;"INPUCALC1 ";A(*) Set the measurement calibration error coefficient.
DIM A(1:201,1:2) NOP: 201
OUTPUT @Hp4396;":DATA CCO1,";A(*) Set the measurement calibration error coefficient.
```


INPUCALK $\sqcup<b l o c k>$

Stores the calibration kit data transmitted by the OUTPCALK? command. (Network and impedance analyzer only) (No query)

Parameter	Description
\langle block \rangle	Block data (Data format: 4396B internal format (714 bytes of binary data))

- Equivalent SCPI Command

```
:DATA[:DATA]பCKIT, {<block> |<numeric (1)> ,<numeric (2)>, ...,<numeric (n)>}
```

- Example

```
OUTPUT @Hp4396;"INPUCALK ";A$
OUTPUT @Hp4396;":DATA CKIT,";A$
```


INPUCOMC $\{\mathbf{1}|\mathbf{2}| 3\} \sqcup<$ numeric $>$

Inputs data into the fixture compensation coefficient arrays. (No query; Impedance analyzer only.)

The analyzer handles a reflection coefficient data for the intermediate processing. Thus, the fixture compensation is performed for the reflection coefficient as follows:

$$
\Gamma=\frac{\Gamma_{M}-A}{B \times\left(\Gamma_{M}-A\right)+C}
$$

Where,

$$
\begin{array}{ll}
A, B, \text { and } C & \text { Fixture compensation coefficients. (complex) } \\
\Gamma_{M} & \text { Measured reflection data. (converted from V and I.) } \\
\Gamma & \text { Corrected reflection data. }
\end{array}
$$

INPUCOMC $\{\mathbf{1}|\mathbf{2}| \mathbf{3}\} \sqcup<$ numeric $>$

By using this command, you can change the contents of the fixture compensation coefficient arrays.

Parameter	Description
1	coefficient A
2	coefficient B
3	coefficient C
Complex number (Data format: real, imaginary)	

- Equivalent SCPI Command
: DATA [:DATA] பCMP $\{1|2| 3\},\{<$ numeric>
- Example

OUTPUT @Hp4396;"INPUCOMC1 ";Dat(*)
OUTPUT @Hp4396;"DATA CMP1,";Dat(*)

INPUD

Executes a 3 -term calibration by using real data which are set with INPULOAA, INPUOPEA, and INPUSHOA commands. (No equivalent SCPI command; No query; Network analyzer only)

INPUDATA $\sqcup<$ numeric $(1)>,<$ numeric $(\mathcal{Z})>, \ldots,<$ numeric $(n)>$
Inputs the error corrected data. (No query)

Parameter	Description
$<$ numeric $>$	Complex number (Data format: real, imaginary) for the Network analyzer Real number for the Spectrum analyzer

- Equivalent SCPI Command

DATA [:DATA] பDATA,$\{<$ numeric (1)>, <numeric (2)>, . . , <numeric (n) $\rangle \mid\langle b l o c k\rangle\}$

- Example

DIM A(1:201,1:2)
Network Analyzer, NOP: 201
! Set the error corrected data.
OUTPUT @Hp4396;"INPUDATA ";A(*)
DIM A(1:201,1:2)
! Set the error corrected data.
OUTPUT @Hp4396;":DATA DATA,";A(*)

INPUOPEA $\sqcup<$ numeric (1)>,<numeric (2)>, $\ldots,<$ numeric $(n)>$
INPUDTRC $\sqcup<$ numeric (1) $>,<$ numeric (2) $>, \ldots,<$ numeric (n) $>$
Inputs data to DATA TRACE memory. (No query)

Parameter	Description
$<$ numeric $>$	Complex number (Data format: real, imaginary) for the Network analyzer Real number for the Spectrum analyzer

- Equivalent SCPI Command
:TRACe[:DATA] $\triangle D T R,\{<$ numeric (1)>, <numeric (2)>, ... ,<numeric (n) > $\mid<$ block $>\}$
- Example

```
! Set the trace data.
OUTPUT @Hp4396;"INPUDTRC ";A(*)
DIM A(1:201,1:2)
! Set the trace data.
OUTPUT @Hp4396;":TRAC DTR,";A(*)
```

DIM A $(1: 201,1: 2) \quad$ Network analyzer, NOP: 201

INPULOAA $\sqcup<$ numeric (1) $>,<$ numeric (2) $>, \ldots,<$ numeric (n) $>$
Inputs the real LOAD data array for a 3 -term calubtaion. (No equivalent SCPI command; No query; Network analyzer only)

Parameter	Description
$<$ numeric $>$	Complex number (Data format: real, imaginary)

INPUOPEA $\sqcup<$ numeric (1) $>,<$ numeric (2) $>, \ldots,<$ numeric (n) $>$
Inputs the real OPEN data array for a 3 -term calubtaion. (No equivalent SCPI command; No query; Network analyzer only)

Parameter	Description
<numeric $>$	Complex number (Data format: real, imaginary)

INPUOPEA $\sqcup<$ numeric $(1)>,<$ numeric $(2)>, \ldots,<$ numeric $(n)>$
INPURAW $\{\mathbf{1 - 4}\} \sqcup<$ numeric $(1)>,<$ numeric $(2)>, \ldots,<n u m e r i c(n)>$
Inputs raw data. The command definition changes to INPURAW\{1\} when used in the impedance analyzer and spectrum analyzer. (No query)

Parameter	Description
$<$ numeric $>$	Complex number (Data format: real, imaginary) for the Network analyzer Real number for the Spectrum analyzer

- Equivalent SCPI Command
: DATA [:DATA] \sqcup RAW $\{1-4\},\{\langle$ numeric $(1)\rangle,\langle$ numeric $(2)\rangle, \ldots,\langle$ numeric $(n)\rangle|<b l o c k\rangle\}$
- Example

```
DIM A(1:201,1:2)
! Set the raw data.
OUTPUT @Hp4396;"INPURAW1 ";A(*)
DIM A(1:201,1:2)
! Set the raw data.
OUTPUT @Hp4396;":DATA RAW1,";A(*)
```

Network Analyzer, NOP: 201

INPUSHOA $\sqcup<$ numeric (1) $>,<$ numeric (2) $>, \ldots,<$ numeric (n) $>$
Inputs the real SHORT data array for a 3 -term calubtaion. (No equivalent SCPI command; No query; Network analyzer only)

Parameter	Description
$<$ numeric $>$	Complex number (Data format: real, imaginary)

$\mathbf{I N P Z} \sqcup\{50 \mid \mathbf{7 5}\}[\mathbf{O H M}]$

Sets the input impedance. (Spectrum analyzer only) (INPUT Z under (Cal))

- Query Response
$\{$ numeric $\}<$ new line $><$ ENDD $>$
- Equivalent SCPI Command
:INPut:IMPedanceப<numeric>
- Example

OUTPUT @Hp4396;"INPZ 50"

INTE $\sqcup<$ numeric $>$ [PCT]

Sets the display intensity as a percent of the brightest setting. (INTENSITY under (Display)

Parameter	Range	Unit
$<$ value $>$	0 to 100 (simple command)	$\%$
$<$ value \rangle	0 to 1 (SCPI command)	

- Query Response
\{numeric $\}<$ new line><<END>
- Equivalent SCPI Command
:DISPlay:BRIGhtness $\sqcup<$ numeric>

ISOD

Completes isolation calibration. The error coefficients are calculated and stored. (Network analyzer only) (ISOLATION DONE under (Cal); No query)

- Equivalent SCPI Command
: SENSe:CORRection: COLLect:SAVE7

ISOL

Starts the isolation calibration. (Network analyzer only) (ISOLATION under (Cal); No query)

- Equivalent SCPI Command

```
:SENSe:CORRection:COLLect[:ACQuire]\ISOL2
```


KEY $\sqcup<$ numeric $>$

Sends the key code for a key or a softkey on the front panel. This is equivalent to actually pressing a key. See Appendix G for key codes.

Parameter		Description
$<$ numeric $>$	0 to 52	

- Query Response
\{numeric\} <new line><<END>
- Equivalent SCPI Command
:SYSTem:KEYப<numeric>
- Example

OUTPUT @Hp4396;"KEY 8" Equivalent to pressing (Chan 1).

KITD

Completes the procedure to define user cal kit. (Network analyzer only)
(KIT DONE (MODIFIED) under (Cal; No query)

- Equivalent SCPI Command
:SENSe:CORRection:CKIT:SAVEபALL

LABECOMK $\sqcup<\operatorname{str} i n g>$

Modifies the label of user defined fixture compensation kit. (Impedance analyzer only) (LABEL KIT under (Cal); No query)

Parameter	Description	
$<$ string $>$	Up to 8 characters.	

■ Equivalent SCPI Command (Query)

```
:SENSe:CORRection2:CKIT:LABelப<string>
```

- Query Response
$\{$ numeric $\}<$ new line>< $\mathrm{END}>$
- Example

OUTPUT @Hp4396;"LABECOMK ""NEW"""

LABEFIX $\sqcup<$ string $>$

Modifies the label of user defined test fixture. (LABEL FIXTURE under Meas) FIXTURE []; Impedance analyzer only.)

Parameter		Description
$<$ string $>$	Up to ten characters.	

- Query Response
$<$ string $><$ new line $><$ EEND $>$
- Equivalent SCPI Command
:SYSTem:FIXTure:LABelப<string>
- Example

OUTPUT @Hp4396;"LABEFIX ""NEW"""

LABEFWD $\{\mathbf{T} \mid \mathbf{M}\} \sqcup<$ string $>$

Defines the label for the forward transmission (THRU) or the forward match (THRU) calibration. (Network analyzer only) (LABEL: FWD. TRANS., FWD. MATCH under (Cal); No query)

Parameter		Description
$<$ string $>$	Up to ten characters.	

- Equivalent SCPI Command (Query)

LABEFWDTப<string> :SENSe:CORRection:CKIT:CLASs7:LABelப<string>
LABEFWDMப<string> :SENSe:CORRection:CKIT:CLASs9:LABelப<string>
■ Query Response
$\{$ numeric $\}<$ new line $><$ ENDD $>$

LABEIMP $\{\mathbf{A}|\mathbf{B}| \mathbf{C}\} \sqcup<$ string $>$

Defines the label for the first class, second class, or the third class required for an impedance measurement calibration. (Impedance analyzer only) (LABEL CLASS under (Cal); No query)

Parameter		Description
$<$ string $>$	Up to ten characters.	

- Equivalent SCPI Command (Query)

LABEIMPAப<string> :SENSe:CORRection:CKIT:CLASs13:LABelப<string>
LABEIMPBப<string> :SENSe:CORRection:CKIT:CLASs14:LABelப<string>
LABEIMPCப<string> :SENSe:CORRection:CKIT:CLASs15:LABelப<string>

- Query Response
$\{$ numeric $\}<$ new line $><$ - $E N D>$

LABERES $\{\mathbf{P} \mid \mathbf{I}\} \sqcup<$ string $>$

Defines the label for the response, or the response and isolation calibration. (Network analyzer only) (RESPONSE, RESPONSE \& ISOL'N under Cal; No query)

Parameter		Description
$<$ string $>$	Up to ten characters.	

■ Equivalent SCPI Command (Query)
LABERESPப<string> :SENSe:CORRection:CKIT:CLASs11:LABelப<string>
LABERESIப<string> :SENSe:CORRection:CKIT:CLASs12:LABelப<string>

- Query Response
$\{$ numeric $\}<$ new line $><$ ELND $>$

LABERES $\{\mathbf{P} \mid \mathbf{I}\} \sqcup<$ string $>$

- Example

```
OUTPUT @Hp4396;"LABERESP ""RESPONSE"""
OUTPUT @Hp4396;":SENS:CORR:CKIT:CLAS11:LAB ""RESPONSE"""
```


LABEREV $\{\mathbf{T} \mid \mathbf{M}\} \sqcup<$ string $>$

Defines the label for reverse transmission (THRU) or the reverse match (THRU) calibration. (Network analyzer only) (REV.TRANS., REV.MATCH under (Cal); No query)

Parameter		Description
$<$ string $>$	Up to ten characters.	

- Equivalent SCPI Command (Query)

LABEREVTU<string> :SENSe:CORRection:CKIT:CLASs8:LABelப<string>
LABEREVMப〈string> :SENSe:CORRection:CKIT:CLASs10:LABelப<string>

- Query Response
$\{$ numeric $\}<$ new line><<END>

LABES11 $\{\mathbf{A}|\mathbf{B}| \mathbf{C}\} \sqcup<$ string $>$

Defines the label for the first class, the second class, or the third class required for an S_{11} 1-port calibration. (Network analyzer only) (LABEL: S11A, S11B, S11C under (Cal); No query)

Parameter		Description
\langle string $>$	Up to ten characters.	

■ Equivalent SCPI Command (Query)
LABES11Aப〈string> :SENSe:CORRection:CKIT:CLASs1:LABelப<string>
LABES11Bப<string> :SENSe:CORRection:CKIT:CLASs2:LABelப<string>
LABES11Cப<string> :SENSe:CORRection:CKIT:CLASs3:LABelப<string>

- Query Response
$\{$ numeric $\}<$ new line>< $\mathrm{END}>$

LABES22 $\{\mathbf{A}|\mathbf{B}| \mathbf{C}\} \sqcup<$ string $>$

Defines the label for the first class, the second class, or the third class required for an S_{22} 1-port calibration. (Network analyzer only) (LABEL: S22A, S22B, S22C under (Cal; No query)

Parameter		Description
$<$ string $>$	Up to ten characters.	

- Equivalent SCPI Command (Query)

LABES22Aப<string> :SENSe:CORRection:CKIT:CLASs4:LABelப<string>
LABES22BL<string> :SENSe:CORRection:CKIT:CLASs5:LABelப<string>
LABES22Cப<string> :SENSe:CORRection:CKIT:CLASs6:LABelப<string>

- Query Response
$\{$ numeric $\}<$ new line><<END>
- Example

OUTPUT @Hp4396;"LABES22A ""OPENS"""
OUTPUT @Hp4396;":SENS:CORR:CKIT:CLAS4:LAB ""OPENS"""

LABK $\sqcup<\operatorname{string}>$
Defines a label for a new calibration kit. (Network and impedance analyzer only) (LABEL KIT under (Cal); No query)

Parameter	Description
$<$ string $>$	Up to eight characters.

- Equivalent SCPI Command (Query)
:SENSe:CORRection:CKIT:LABelU<string>
- Query Response
$\{$ numeric $\}<$ new line><< $\mathrm{END}>$
- Example

OUTPUT @Hp4396;"LABK ""7mm"""
OUTPUT @Hp4396;":SENS:CORR:CKIT:LAB ""7mm"""

LABK $U<$ string $>$
LABS $\sqcup<$ string $>$
Defines a label for the standard. (Network and impedance analyzer only) (LABEL STD under (Cal); No query)

Parameter		Description
$<$ string $>$	Up to ten characters.	

- Equivalent SCPI Command
:SENSe:CORRection:CKIT:STANdard:LABelU<string>
- Example

```
OUTPUT @Hp4396;"LABS ""SHORT"""
OUTPUT @Hp4396;":SENS:CORR:CKIT:STAN:LAB ""SHORT"""
```


LANDSCAPE $\sqcup\{\mathbf{O F F}|\mathbf{O N}| \mathbf{0} \mid \mathbf{1}\}$

Sets the orientation of paper landscape or not, using ON or OFF. This setting takes effect for priters which support printing paper placed in the landscape orientation. Setting the paper orientation mode will invalidate the setting by the FORMFEED command. (LNDSCAPE under (Copy)

Parameter	Description
OFF or 0	The orientation of paper is not set to Landscape. (Thus, Portrait)
ON or 1	The orientation of paper is set to Landscape.

- Query Response
$\{0 \mid 1\}<$ new line>< END>
- Equivalent SCPI Command
:HCOPy:DRIVer:LANDScape \quad \{0FF|ONIO|1\}

LIMCLEL

Clears all segments in the limit line. (CLEAR LIST YES under (System); No query)

- Equivalent SCPI Command

```
:CALCulate:LIMit:CLEar
```


LIMD $\sqcup<$ numeric>

Sets the limits an equal amount above and below a specified middle value, instead of setting upper and lower limits separately. (DELTA LIMITS under (System)

Parameter		Range
numeric $>$	0 to 5000000	Unit

- Query Response
\{numeric\} <new line><-END>
- Equivalent SCPI Command
: CALCulate:LIMit:SEGMent:DELTaப<numeric>

LIMEDONE

Completes editing the limit table. (DONE under (System); No query)

- Equivalent SCPI Command

```
:CALCulate:LIMit:SAVE
```

LIMIAMPO $\sqcup<$ numeric $>$
Adds or subtracts an offset in amplitude value. (AMPLITUDE OFFSET under system)

Parameter	Range	Unit
$<$ numeric $>$	-5000000 to 5000000	

- Query Response
$\{$ numeric $\}<$ new line><<END>
- Equivalent SCPI Command
:CALCulate:LIMit:OFFSetப<numeric>

LIMILINE $\sqcup\{\mathbf{O F F}|\mathbf{O N}| \mathbf{0} \mid \mathbf{1}\}$

Sets limit lines ON or OFF. (LIMIT LINE ON off under (System)

Parameter	
OFF or 0	Limit lines OFF
ON or 1	Limit lines ON

- Query Response
$\{0 \mid 1\}<$ new line><<END>
- Equivalent SCPI Command
: CALCulate:LIMit:LINE $\sqcup\{0 F F|O N| 0 \mid 1\}$
- Example

```
        OUTPUT @Hp4396;"LIMILINE ON"
```

LIMILINE $\sqcup\{\mathbf{O F F}|\mathbf{O N}| \mathbf{0} \mid \mathbf{1}\}$
LIMIPRMO $\sqcup<$ numeric $>$
Adds or subtracts an offset from the sweep parameter value. (SWP PARAM OFFSET under (System)

Parameter	Range	Unit
$<$ numeric $>$	$-1.82 \times 10^{9}(=-1.82 \mathrm{G})$ to $1.82 \times 10^{9}(=1.82 \mathrm{G})$	Hz (frequency) dB (power)

- Query Response
\{numeric\} <new line><<END>
- Equivalent SCPI Command
:CALCulate:LIMit:CONTrol:OFFSetப<numeric>

LIMITEST $\sqcup\{$ OFF \mid ON $|0| 1\}$

Sets the limit testing ON or OFF. (LIMIT TEST ON off under (System)

Parameter		Description
OFF or 0	Limit testing OFF	
ON or 1	Limit testing ON	

- Query Response
\{numeric\} <new line><END>
- Equivalent SCPI Command
: CALCulate:LIMit:STATe $\mathrm{S}\{0 \mathrm{FF}|0 \mathrm{~N}| 0 \mid 1\}$

LIML $\sqcup<$ numeric $>$
Sets the lower limit value for the segment. (LOWER LIMIT under (system)

Parameter	Range	Unit
$<$ value \rangle	-5000000 to 5000000	

- Query Response
\{numeric\} <new line><<END>
- Equivalent SCPI Command
: CALCulate:LIMit:SEGMent:LOWerப<numeric>

LIMM $\square<$ numeric $>$

Sets the midpoint for delta limits. (MIDDLE VALUE under (System)

Parameter	Range	Unit
$<$ value $>$	-5000000 to 5000000	

- Query Response
\{numeric\} <new line><-END>
- Equivalent SCPI Command
:CALCulate:LIMit:SEGMent:MIDDleப<numeric>

LIMPRM $\sqcup<$ numeric $>$ [HZ \mid KHZ \mid MAHZ \mid GHZ $\mid \mathbf{D B M}]$

Sets the starting sweep parameter value of a segment, using entry block controls. (SWP PARAM under (System)

Parameter	Range	Unit
<numeric $>$	$100000(=100 \mathrm{k})$ to $1.82 \times 10^{9}(=1.82 \mathrm{G})$ (Network and impedance analyzer) $<$ numeric $>$	0 to $1.82 \times 10^{9}(=1.82 \mathrm{G})$ (Spectrum analyzer) -60 to 20

- Query Response
\{numeric\} <new line><<END>
- Equivalent SCPI Command
: CALCulate:LIMit:SEGMent:CONTrol[:DATA]ப<numeric>

LIMSADD

Adds a new segment to the end of the limit list. (ADD under (System); No query)

- Equivalent SCPI Command

```
:CALCulate:LIMit:SEGMent:ADD
```


LIMSDEL

Deletes a limit testing segment. (DELETE under (System; No query)

- Equivalent SCPI Command

```
:CALCulate:LIMit:SEGMent:DELete
```


LIMSDEL

LIMSDON

Terminates a limit segment definition. (DONE under System; No query)

- Equivalent SCPI Command
:CALCulate:LIMit:SEGMent:SAVE

LIMSEDI $\sqcup[<$ numer $i c>]$

Specifies which limit segment in the table to edit. When you want to define or modify the values of the specified segment, you do not have to enter <numeric> (the segment number).
(SEGMENT, EDIT under (System)

Parameter		Description
$<$ numeric $>$	Segment number, 1 to 18.	

- Query Response

$\{$ numeric $\}<$ new line><<END>

- Equivalent SCPI Command

LIMSEDIப<numeric> : CALCulate:LIMit:SEGMentப<numeric> (SEGMENT)
LIMSEDIப[<numeric>] :CALCulate:LIMit:SEGMent:EDITப<numeric> (No query) (EDIT)

LIMU $\sqcup<$ numeric $>$

Sets the upper limit value for a limit testing segment. (UPPER LIMIT under (System)

Parameter	Range	Unit
$<$ numeric $>$	-5000000 to 5000000	

- Query Response
$\{$ numeric $\}<$ new line $><$ ENDD $>$
- Equivalent SCPI Command
:CALCulate:LIMit:SEGMent:UPPerப<numeric>

LMAX? \leq numeric $>$

Outputs the nth peak value from the left of the analysis range. See "LMAX?" in Appendix I. (Instrument BASIC EXECUTE executable; No equivalent SCPI command)

Parameter	Range	Unit
$<$ numeric $>$	1 to 801	

■ Query Response

Parameter	Description
$<$ numeric $>$	Complex number (Data format: real, imaginary)

LMARG $\sqcup<$ numeric $>$

Specify the value for the left margin of printed paper. (PRINT SETUP, LEFT MARGIN under (Copy)

Parameter	Range	Unit
$<$ numeric $>$	0 to 5	inch

- Query Response
\{numeric\} <new line><<END>
- Equivalent SCPI Command
:HCOPy:DRIVer:LEFTMarg:ப<numeric>

LMIN? \leq numeric>

Outputs the nth negative peak value from the left of the analysis range. See "LMIN?" in Appendix I. (Instrument BASIC EXECUTE executable; No equivalent SCPI command)

Parameter	Range	Unit
$<$ numeric $>$	1 to 801	

- Query Response

Parameter	Description
\langle numeric \rangle	Complex number (Data format: real, imaginary)

LISV

Displays a tabular listing of all the measured data points and their current values.
(LIST VALUES under (Copy; No query)

- Equivalent SCPI Command
:DISPlay [:WINDow]:TEXT1:PAGEU1
:DISPlay [:WINDow]:TEXT1:STATeU\{0N|1\}

LISV

LVCDT $\sqcup<$ numeric $>$ [DB]

Sets the level cal data (adds an offset value to the measured value). (Spectrum analyzer only) (LVL CAL DATA under (Cal)

Parameter	Range	Unit
$<$ numeric $>$	-10 to 10	dB

- Query Response
$\{$ numeric $\}<$ new line>< $<$ END $>$
- Equivalent SCPI Command
:SENSe:CORRection:OFFSet[:MAGNitude]ப<numeric>

LVLCAL

Measures the CAL OUT signal ($20 \mathrm{MHz},-20 \mathrm{dBm}$) at the input selected by the MEAS command (automatically sets the level cal data). After executing this function, the instrument state is returned to the state that existed before executing this function. (Spectrum analyzer only) (EXECUTE LVL CAL under (Cal); No query)

- Equivalent SCPI Command
:CALibration: AUTOLONCE

MATH $\sqcup\{$ DATA \mid DDVM \mid DMNM \mid DPLM $\}$

Sets the trace math operation. (DATA MATH: DATA, DATA-MEM, DATA+MEM, DATA/MEM under DATA MATH [] under (Display])

Parameter	Description
DATA	Turns OFF all data math functions.
DMNM	Subtracts the memory from the data.
DPLM	Adds the memory to the data.
DDVM	Divides the data by the memory.

- Query Response
$\{$ DATA \mid DMNM \mid DPLM \mid DDVM $\}<$ new line $><$ ENED $>$
- Equivalent SCPI Command

```
MATH\sqcupDATA :CALCulate:MATH2[:EXPRession]:NAME\sqcupOFF
MATH\sqcupDMNM :CALCulate:MATH2[:EXPRession]:NAME\sqcupSUB
MATH\sqcupDPLM :CALCulate:MATH2[:EXPRession]:NAME\sqcupADD
MATHபDDVM :CALCulate:MATH2[:EXPRession]:NAME\sqcupDIV
```

- Example

OUTPUT @Hp4396;"MATH DATA"
OUTPUT @Hp4396;":CALC:MATH2:NAME OFF"

MAXMLEV $\sqcup<$ numeric $>$ [DBM]

Sets the maximum mixer level. (Spectrum analyzer only) (MAX MIXER LEVEL under (Scale Ref)

Parameter	Range	Unit
$<$ numeric $>$	-100 to -10	dBm

- Query Response
\{numeric\} <new line><-END>
- Equivalent SCPI Command
:SENSe:POWer:AC:RANGe[:UPPer]ப<numeric>

MEAS $\sqcup<$ parameter $>$

Selects the parameters or inputs to be measured. (NETWORK: A/R, B/R, R, A, B, Refl: FWD S11 [A/R], Trans:FWD S21 [B/R], Trans:REV S12 [A/R], Refl: REV S22 [B/R], SPECTRUM: S, R, A, B, IMPEDANCE: MAG(|Z|), $\operatorname{PHASE}\left(\theta_{Z}\right)$, $\operatorname{RESIST}(R), \operatorname{REACT}(X), \operatorname{ADMITTNCE}: \operatorname{MAG}(|Y|), \operatorname{PHASE}\left(\theta_{\mathrm{Y}}\right), \operatorname{CONDUCT}(G), \operatorname{SUSCEPT}(B)$, REFL.COEF: MAX $\left.\left.(|\Gamma|), \operatorname{PHASE}\left(\theta_{\Gamma}\right)\right\}\right\}$, REAL $\left(\Gamma_{X}\right), \operatorname{IMAG}\left(\Gamma_{Y}\right), \operatorname{CAPCITNCE:PRL}(C p)$, SER(Cs), INDUCTNCE:PRL(Lp) SER(Ls), RESISTNCE:PRL(Rp), SER(Rs), D FACTOR(D), Q FACTOR (Q) under (Meas)

MEAS $\sqcup<$ parameter $>$

Parameter	Description	
AR	A/R measurement (Network analyzer only)	
BR	B / R measurement (Network analyzer only)	
R	R measurement (Both Network and Spectrum analyzers)	
A	A measurement (Both Network and Spectrum analyzers)	
B	B measurement (Both Network and Spectrum analyzers)	
S11	S11 measurement (Network analyzer only)	
S12	S12 measurement (Network analyzer only)	
S21	S21 measurement (Network analyzer only)	
S22	S22 measurement (Network analyzer only)	
S	S measurement (Spectrum analyzer only)	
IMAG	\|Z	measurement (Impedance analyzer only)
IPH	θ_{z} (Impedance analyzer only)	
IRE	R (Impedance analyzer only)	
IIM	X (Impedance analyzer only)	
AMAG	\|Y	(Impedance analyzer only)
APH	θ_{y} (Impedance analyzer only)	
ARE	G (Impedance analyzer only)	
AIM	B (Impedance analyzer only)	
RCM	$\|\Gamma\|$ (Impedance analyzer only)	
RCPH	θ_{Γ} (Impedance analyzer only)	
RCR	Γ_{x} (Impedance analyzer only)	
RCIM	Γ_{y} (Impedance analyzer only)	
CP	Parallel Capacitance, C_{p} (Impedance analyzer only)	
CS	Series Capacitance, C_{8} (Impedance analyzer only)	
LP	Parallel Inductance, L_{p} (Impedance analyzer only)	
LS	Series Inductance, L_{s} (Impedance analyzer only)	
D	Disipation Factor, D (Impedance analyzer only)	
Q	Quality Factor, Q (Impedance analyzer only)	
RP	Parallel Resistance, R_{p} (Impedance analyzer only)	
RS	Series Resistance, R_{s} (Impedance analyzer only)	

- Query Response
\{AR|RB|R|A|B|S11|S12|S21|S22|S|IMAG|IPH|IRE|IIM|AMAG|APH|ARE|AIM|RCM|RCPH| RCM|RCPH|RCR|RCIM|CP|CS|LP|LS|D|Q|RP|RS\} <new line><

```
■ Equivalent SCPI Command
MEAS\sqcupAR :SENSe:FUNCtion\"POWer:RATio\sqcup3,2"
MEAS\sqcupBR :SENSe:FUNCtion\"POWer:RATio\4,2"
MEASUR :SENSe:FUNCtion\"POWer\sqcup2"
MEAS\sqcupA :SENSe:FUNCtionப"POWer\sqcup3"
MEAS\sqcupB :SENSe:FUNCtionU"POWerப4"
MEASLS11 :SENSe:FUNCtion\"POWer:S11"
MEASLS21 :SENSe:FUNCtion\"POWer:S21"
MEASLS12 :SENSe:FUNCtion\"POWer:S12"
MEASLS22 :SENSe:FUNCtion\"POWer:S22"
MEAS\sqcupS :SENSe:FUNCtionU"POWer\sqcup1"
MEASDIMAG CALCulate:MATH1[:EXPRession]:NAME IMPedance
    CALCulate:FORMat MLINear
MEASDIPH CALCulate:MATH1[:EXPRession]:NAME IMPedance
    CALCulate:FORMat PHASe
```


OUTPUT @Hp4396;"MEAS AR"
OUTPUT @Hp4396;"MEAS?"
ENTER @Hp4396;A\$
OUTPUT @Hp4396;":SENS:FUNC ""POW:RAT 3,2"""
OUTPUT @Hp4396;":SENS:FUNC?"
ENTER @Hp4396;A\$

MEASTAT $\sqcup\{\mathbf{O F F}|\mathbf{O N}| \mathbf{0} \mid \mathbf{1}\}$

Calculates the mean, standard deviation, and peak-to-peak values in the portion of the displayed trace that is in the search range. (STATICS ON off under (Uutility)

Parameter	Description
OFF or 0	Does not display the statistical values
ON or 1	Displays the statistical values

- Query Response
$\{0 \mid 1\}<$ new line><<END>
- Equivalent SCPI Command

```
:CALCulate:EVALuate:MSTatistics[:STATe]\sqcup{OFF|ON|O|1}
```


$\mathbf{M K R} \sqcup\{\mathbf{O F F}|\mathbf{O N}| \mathbf{0} \mid \mathbf{1}\}$

Sets the marker to active (ON) or inactive (OFF). When the MKR is turned off, the marker, sub-marker, and Δ marker are tuned to be off. ([MKR])

Parameter	
OFF or 0	Turns off the marker function.
ON or 1	Turns on the marker function.

- Query Response
$\{0 \mid 1\}<$ new line><<END>
- Equivalent SCPI Command

```
:DISPlay[:WINDow]:TRACe{[1]|2}:MARKer[1]:ALL:STATeU{0FF|ON|0|1}
```

(TRACe [1] for the data trace; TRACe2 for the memory trace.)

MKRAMPO

Moves the limits so that they are centered an equal amount above and below the marker at the sweep parameter value. (MAKER-AMP. OFS. under (System); No query)

- Equivalent SCPI Command

```
:CALCulate:LIMit:OFFSet\sqcupMARKer
```


MKRAUV?

Outputs the auxiliary amplitude value (value 2) of the measurement value at the marker position. See "Marker Readout" in Appendix H for the auxiliary amplitude value of each display format. (Query only)

- Query Response
\{numeric\} <new line><<END>
- Equivalent SCPI Command
: CALCulate: EVALuate: Y[1]:VALue2?

MKRCENT

Sets the sweep parameter center value of the destination channel to the sweep parameter value of the marker and centers the new span about that value. (MKR-CENTER under (Marker \Rightarrow; No query)

- Equivalent SCPI Command
: SENSe: FREQuency: CENTer \sqcup MARKer (frequency) or
: SOURce: POWer: CENTer \sqcup MARKer (power)

MKRCONT $\sqcup\{\mathbf{O F F}|\mathbf{O N}| \mathbf{0} \mid \mathbf{1}\}$

Sets the continuous or discontinuous marker mode. (Network and impedance analyzer only) (MKR [] under (Marker)

Parameter	
OFF or 0	Discontinuous marker mode.
ON or 1	Continuous marker mode.

- Query Response
$\{0 \mid 1\}<$ new line>< ${ }^{\wedge}$ END>
- Equivalent SCPI Command

```
:CALCulate:EVALuate:INTerpolate\sqcup{OFF|ON|O| 1}
```


MKRCOUP $\sqcup\{\mathbf{O F F}|\mathbf{O N}| \mathbf{0} \mid \mathbf{1}\}$

Sets the coupled or uncoupled marker mode. (MKR [] under (Marker)

Parameter		Description
OFF or 0	Uncoupled marker mode	
ON or 1	Coupled marker mode	

- Query Response
$\{0 \mid 1\}<$ new line><<END>
- Equivalent SCPI Command

```
:CALCulate:EVALuate:COUPle\{OFF|ON|0|1}
```


MKRCSTE

Sets the CENTER step size to the marker's sweep parameter value. (MKR-CNTR STEP under (Center); No query)

- Equivalent SCPI Command

```
:SENSe:FREQuency:CENTter:STEP[:INCRement]\MARKer
```


MKRCSTE

MKRDCENT

Sets the sweep parameter center value of the destination channel to the difference value between the marker and the Δ marker values. (MKR Δ - CENTER under (Center) and Marker \rightarrow; No query)

- Equivalent SCPI Command
: SENSe: FREQuency : CENTerபDMARker (frequency) or
: SOURce: POWer: CENTer \sqcup DMARker (power)

MKRDCSTE

Sets the CENTER step size to the difference between the marker and Δ marker values. (MKRA-CNTR STEP under (Center); No query)

- Equivalent SCPI Command
:SENSe: FREQuency:CENTer:STEP[:INCRement] DDMARker

MKRDELA

Sets the group delay at the marker point of a fixed frequency aperture, 20% of the span, to the electrical delay to balance the phase of the DUT. (Network analyzer only) (MKR-DELAY under Scale Ref; No query)

- Equivalent SCPI Command

```
:SENSe:CORRection:EDELay2\sqcupMARKer
```


MKRDSPAN

Sets the SPAN of the destination channel to the difference between the marker and the Δ marker values. (MKR \triangle CENTER under ($\overline{\text { Span } \text {) or (Marker }}$); No query)

- Equivalent SCPI Command
:SENSe:FREQuency:SPANDDMARker (frequency) or :SOURce:POWer:SPANLDMARker (power)

MKRL $\sqcup\{\mathbf{O F F}|\mathbf{O N}| \mathbf{0} \mid \mathbf{1}\}$

Sets the maker list function ON or OFF. (MKR LIST ON off under (Utility)

Parameter		Description
OFF or 0	Marker list function OFF	
ON or 1	Marker list function ON	

- Query Response
$\{0 \mid 1\}<$ new line><
- Equivalent SCPI Command

```
:DISPlay[:WINDow]:TEXT16:STATe\sqcup{OFF|ON|0|1}
```


MKRMIDD

Sets the midpoint the LIMD command using the marker to set the middle amplitude value of a limit segment. (MKR-MIDDLE under (System); No query)

- Equivalent SCPI Command

```
:CALCulate:LIMit:SEGMent:MIDDle\sqcupMARKer
```


MKRNOI $\sqcup\{\mathbf{O F F}|\mathbf{O N}| \mathbf{0} \mid \mathbf{1}\}$

Sets the noise format of the marker ON or OFF. This marker reads out the average noise level at the marker position (referenced to a 1 Hz noise power bandwidth). (Spectrum analyzer only) (NOISE FORM ON off under (Utility))

- Query Response
$\{0 \mid 1\}<$ new line><^END>
■ Equivalent SCPI Command
: CALCulate:EVALuate: NOISe[:STATe] $\sqcup\{0 F F|O N| 0 \mid 1\}$

MKRO $\sqcup\{$ DATA \mid MEMO $\}$

Sets a trace from data or memory to be applied for the marker values. (MKR ON [] under (Marker)

Parameter		Description
DATA	DATA TRACE	
MEMO	MEMORY TRACE	

- Query Response
$\{$ DATA|MEMO $\}<$ new line $><$ ENND $>$
- Equivalent SCPI Command

MKRODDATA :CALCulate:EVALuate:ONப"DTR"
MKRODMEMO : CALCulate:EVALuate:ONப"MTR"

- Example

OUTPUT @Hp4396;"MKRO DATA"

MKROFS

Sets the marker's amplitude value into the offset value. (MKR-OFFSET under (Display); No query)

- Equivalent SCPI Command
: DATA[:DATA] பOFFS, MARKer

MKROFS

MKRP $\sqcup<$ numeric $>$
Moves the marker to the specified data point number.

Parameter		Description
<numeric $>$	1 to Number of Points	

- Query Response
\{numeric\} <new line><<END>
- Equivalent SCPI Command
:CALCulate:EVALuate:Y[1]:XPOSition:POINtப<numeric>

MKRPKD

Sets the peak delta value to the smaller value of the difference of amplitude values between the present marker position and both side display points of the marker. (Network and impedance analyzer only) (MKR-PEAK DELTA under (Search; No query)

- Equivalent SCPI Command
:CALCulate: EVALuate:PEAK:EXCursion \triangle DMARker

MKRPRM $\sqcup<$ numeric $>$ [HZ $|\mathbf{K H Z}| \mathbf{M A H Z}|\mathbf{G H Z}| \mathbf{D B M}]$

Sets the marker at the point of the specified sweep parameter, when the marker is ON.

Parameter	Range	Unit
$<$ numeric $>$	start value to stop value	Hz (frequency) dBm (power)

- Query Response
\{numeric\} <new line><<END>
- Equivalent SCPI Command
:CALCulate:EVALuate:Y[1]:XPOSition $\cup<$ numeric>

MKRREF

Makes the reference value of the destination channel equal to the marker's absolute value (regardless of the Δ marker value). (MKR-REFERENCE under (Scale Ref) and (Marker二; No query)

- Equivalent SCPI Command
:DISPlay[:WINDow]:TRACe\{[1]|2\}:Y[:SCALe]:RLEVel \perp MARKer
(TRACe[1] for the data trace; TRACe2 for the memory trace.)

MKRSTAR

Sets the sweep parameter start value of the destination channel to the sweep parameter value of the marker. (SEGMENT: MKR - START under (Sweep), or MKR-START under (Marker \rightarrow; No query)

- Equivalent SCPI Command

SEGMENT: MKR-START under (Sweep)	:SENSe:LIST:SEGMent:FREQ
MKR-START under Marker二	:SENSe:FREQuency:STARt \triangle MARKer (frequency) or :SOURce:POWer:STARtபMARKer (power)

MKRSTOP

Sets the sweep parameter stop value of the destination channel to the sweep parameter value of the marker. (MKR-STOP under (Sweep), or MKR - STOP under (Mareker-); No query)

- Equivalent SCPI Command

$$
\begin{array}{ll}
\text { MKR - STOP under (Sweep) } & \text { :SENSe:LIST:SEGMent:FREQuency:STOP } \triangle \text { MARKer } \\
\text { MKR - STOP under Mareker } \rightarrow \text { :SENSe:FREQuency:STOP } \triangle \text { MARKer (frequency) or } \\
& \text { :SOURce:POWer:STOP MMARKer (power) }
\end{array}
$$

MKRSWPRM

Sets the segment sweep parameter value to the present marker sweep parameter value.
(MKR - SWP PARAM under (System); No query)

- Equivalent SCPI Command

```
:CALCulate:LIMit:SEGMent:CONTrol[:DATA]DMARKer
```


MKRTHRE

Sets the threshold value to the amplitude value of the present marker position.
(MKR - THRESHOLD under (Search); No query)

- Equivalent SCPI Command

[^1]
MKRTHRE

MKRTIME $\sqcup\{\mathbf{O F F}|\mathbf{O N}| \mathbf{0} \mid \mathbf{1}\}$

Sets the x-axis units to time, (the start point is zero and the stop point is the value of the sweep time). (MKR TIME ON off under (Utility))

Parameter	Description
OFF or 0	Sets the x-axis to the sweep parameter
ON or 1	Sets the x-axis to time

- Query Response
$\{0 \mid 1\}<$ new line><
- Equivalent SCPI Command

```
:DISPlay[:WINDow]:TRACe{[1]|2}:MARKer[1]:UNIT:TIME\sqcup{OFF|ON|0|1}
```

- Example

OUTPUT @Hp4396;"MKRTIME ON"

MKRVAL?

Outputs the amplitude value of the measurement value at the marker position. See "Marker Readout" in Appendix H for the amplitude value of each display format. (Query only)

- Query Response
$\{$ numeric $\}<$ new line><<END>
- Equivalent SCPI Command

```
:CALCulate:EVALuate:Y[1]:VALue1?
```

- Example

OUTPUT @Hp4396;"MKRVAL?"
ENTER @Hp4396;A

MKRZM

Sets the sweep parameter center value of the destination channel to the sweep parameter value of the marker, and changes the sweep parameter span value of the destination channel to "sweep parameter span \times zooming aperture." (MKR ZOOM under (Marker \Rightarrow; No query)

- Equivalent SCPI Command
:SENSe: FREQuency: SPAN $\triangle M Z A P e r t u r e ~(f r e q u e n c y) ~ o r ~$
:SOURce:POWer:SPAN $\sqcup M Z A P$ erture (power)

MODI1

Leads to the modify calibration kit menu, where a calibration kit can be user-modified.
(Network and impedance analyzer only) (MODIFY [] under (Cal; No query)

- Equivalent SCPI Command

```
:SENSe:CORRection:CKIT:MODify
```


MODICOMK

Leads to the modify fixture compensation kit menu. (MODIFY [] under (Cal] COMPEN KIT [] ; No query;Impedance analyzer only.)

- Equivalent SCPI Command
: SENSe:CORRection2:CKIT:MODify

MODIFIX

Leads to the modify user fixture menu. (MODIFY [] under (Meas) FIXTURE[] ; No query; Impedance analyzerf only.)

- Equivalent SCPI Command
:SYSTem:FIXTure:MODify

MONDYEAR

Changes the displayed date to the "month:day:year" format. (DATE MODE: MonDayYear under (System)

- Query Response
$\{0 \mid 1\}<$ new line><<END>

Parameter	
0	"day:month:year" format
1	"month:day:year" format

- Equivalent SCPI Command

```
:SYSTem:DATE:MODE\sqcupMDY
```


NA

Selects the network analyzer as the analyzer type. (NETWORK ANALYZER under (Meas)

- Query Response
\{0|1\}<new line><<END>

Parameter	
0	Network analyzer is not selected.
1	Network analyzer is selected.

- Equivalent SCPI Command INSTrument:TYPE \sqcup NA
- Example

OUTPUT @Hp4396;"NA?"
ENTER @Hp4396; Na
If 1 THEN PRINT "Network Analyzer Mode is selected."

NEXP

Displays the next page of information in a tabular listing. (NEXT PAGE under (Copy); No query)

- Equivalent SCPI Command
:DISPlay[:WINDow]:TEXT\{1-17\}:PAGEபUP

Parameter	Description
1	List Value
2	Operation Parameter
4 to 11	Cal Class
12	Cal Standard No. 1 to No. 8
13	Start and Stop
14	Center and Span (List)
15	Upper and Lower
16	Middle and Delta (Limit Test)
17	Marker List
	Title

NEXPK?

Outputs the maximum peak value and its stimulus next to the peak last found by the PEAK?, or NEXPK? commands. For more information, see "NEXPK?" in Appendix I. (Instrument BASIC EXECUTE executable; No equivalent SCPI command; Query only)

NUMG $\sqcup<$ numeric>

Triggers a user-specified number of sweeps and returns to the HOLD mode. (NUMBER OF GROUPS under (Trigger); No query)

Parameter	Description
$<$ numeric $>$	1 to 999 (if $<$ numeric $>$ is 0 or less than 0, it is set to 1.)

■ Equivalent SCPI Command (Query)
: INITiate: CONTinuous $\sqcup\{0 F F \mid 0\}$
: ABORt
:SENSe:SWEep:COUNtப<numeric>
:INITiate[:IMMediate]

- Query Response
$\{$ numeric $\}<$ new line $><$ E END $>$
- Example

```
OUTPUT @Hp4396;"NUMG 10"
    OUTPUT @Hp4396;":INIT:CONT OFF"
    OUTPUT @Hp4396;":SENS:SWE:COUN 10"
    OUTPUT @Hp4396;":INIT"
```


NUMLMAX?

Outputs the number of peaks within the analysis range. See "NUMLMAX?" in Appendix I. (Instrument BASIC EXECUTE executable; No equivalent SCPI command)

- Query Response
$<$ numeric $><$ new line $><$ END $>$

NUMLMIN?

Outputs the number of negative peaks within the analysis range. See "NUMLMIN?" in Appendix I. (Instrument BASIC EXECUTE executable; No equivalent SCPI command)

- Query Response
$<$ numeric $><$ new line $><$ ELND $>$

OFSD $\sqcup<$ numeric $>$ [S]

Specifies the one-way electrical delay from the measurement (reference) plane to the standard. (Network and impedance analyzer only) (OFFSET DELAY under (Cal); No query)

Parameter	Range	Unit
$<$ numeric $>$	-10 to 10	s

- Equivalent SCPI Command (Query)
:SENSe:CORRection:CKIT:STANdard:ODELayப<numeric>
- Query Response
$\{$ numeric $\}<$ new line $><$ ENDD $>$

OFSL $\downarrow<$ value $>$
Specifies energy loss, due to skin effect, along a one-way length of coaxial cable offset. (Network and impedance analyzer only) (OFFSET LOSS under (Cal); No query)

Parameter	Range	Unit
$<$ value $>$	0 to 1×10^{19}	Ω / s

- Equivalent SCPI Command (Query)
: SENSe: CORRection:CKIT:STANdard:OLOSsப<numeric>
- Query Response
$\{$ numeric $\}<$ new line $><$ END $>$

OFSL $\sqcup<$ value $>$

OFSZ $\sqcup<$ numeric $>$ [OHM \mid KOHM]

Specifies the characteristic impedance of the coaxial cable offset. (Network and impedance analyzer only) (OFFSET ZO under (Cal); No query)

Parameter	Range	Unit
$<$ numeric $>$	0.001 to $5000000(=5 \mathrm{M})$	Ω

■ Equivalent SCPI Command (Query)
:SENSe:CORRection:CKIT:STANdard:OCIMpedanceப<numeric>

- Query Response
$\{$ numeric $\}<$ new line $><$ END $>$

OMII

Omits correction for isolation of a 2-port calibration. (Network analyzer only)
(OMIT ISOLATION under (Cal); No query)

- Equivalent SCPI Command
:SENSe: CORRection: COLLect[:ACQuire] $\triangle O M I I$

OPEP

Provides a tabular listing on the display of the key parameters for both channels. (OPERATING PARAMETERS under (Copy); No query)

- Equivalent SCPI Command
:DISPlay[:WINDow]:TEXT2:PAGEப1
:DISPlay[:WINDow]:TEXT2:STATe $\\{0 N \mid 1\}$

OSE $\sqcup<$ numeric $>$
Enables the operational status register.

Parameter	Description
$<$ numeric $>$	Decimal expression of the contents of the register, 0 to $65535\left(=2^{16}-1\right)$

- Query Response
$\{$ numeric $\}<$ new line><-END>
- Equivalent SCPI Command
:STATus:OPERation:ENABleப<numeric>

OSER?

Outputs the current value in the event register of an operational status register. (Query only)

- Query Response
$\{$ numeric $\}<$ new line><<END>
- Equivalent SCPI Command
: STATus:OPERation [:EVENt]?

OSNT $\sqcup<$ numeric>
Sets the negative transition filter of an operational status register. For details, refer to Appendix D.

Parameter	Description
$<$ numeric $>$	Decimal expression of the contents of the register, 0 to $65535\left(=2^{16}-1\right)$

- Query Response
\{numeric\} <new line><<END>
- Equivalent SCPI Command
:STATus:OPERation:NTRansition $ப<$ numeric>

OSPT $\sqcup<$ numeric>

Sets the positive transition filter of an operational status register. For details, refer to Appendix D.

Parameter	Description
$<$ numeric $>$	Decimal expression of the contents of the register, 0 to $65535\left(=2^{16}-1\right)$

- Query Response
\{numeric $\}<$ new line><<END>
- Equivalent SCPI Command
:STATus:OPERation:PTRansition $ப$ <numeric>

OSR?

Outputs the operational status register value. (Query only)

- Query Response
$\{$ numeric $\}<$ new line><<END>
- Equivalent SCPI Command
:STATus:OPERation:CONDition?

OUT8IO $\sqcup<$ numeric $>$

Outputs the data to the 8 -bit parallel output port. (No query)

Parameter		Description
$<$ numeric $>$	0 to 255	

- Equivalent SCPI Command

```
:SYSTem:COMMunicate:PARallel:TRANsmit:DATA\sqcup<numeric>
```


OUTPCALC $\{$ 1-12 $\}$?

Outputs the active calibration set array of the active channel. Refer to Appendix F for the calibration set array. (Network and impedance analyzer only) (Query only)

- Query Response
$\{$ numeric (1) \} \{numeric (2)\}... \{numeric (n) \} <new line>< $<$ END $>$ (n is the number of points.)
numeric is a complex number (data format: real, imaginary).
- Equivalent SCPI Command
:DATA[:DATA]? $\sqcup C C O\{1-12\}$
- Example

```
DIM A(1:201,1:2) NOP:201
OUTPUT 717;"OUTCALC1?"
ENTER 717;A(*)
DIM A(1:201,1:2)
OUTPUT 717;":DATA? CCO1"
ENTER 717;A(*)
```


OUTPCALK?

Outputs the active calibration kit. (Network and impedance analyzer only) (Query only)

- Query Response
$\{$ block data (714 bytes of binary data) $\}<$ new line $><$ END $>$
- Equivalent SCPI Command
:DATA[:DATA]? $\triangle C K I T$

OUTPCERR?

Outputs ceramic resonator parameters. See "OUTPCERR?" in Appendix I for details, query response, and examples. (Instrument BASIC EXECUTE executable; No equivalent SCPI command; Query only; Network analyzer only)

OUTPCFIL?

Outputs ceramic filter parameters. See "OUTPCFIL?" in Appendix I for details, query response, and examples. (Instrument BASIC EXECUTE executable; No equivalent SCPI command; Query only; Network analyzer only)

OUTPCOMC $\{1|2| 3\}$?

Outputs data of the fixture compensation arrays. See "INPUCOMC\{1|2|3\}ப<numeric>" for details about the fixture compensation arrays. (Impedance analyzer only)

- Query Response
$\{$ numeric (1) $\}\{$ numeric (2) $\} \ldots$. . numeric (n) $\}<$ new line $><$ ENND $>$
(n is the number of points.)
numeric is a complex number. (data format: real, imaginary)
- Equivalent SCPI Command
: DATA [:DATA]? $\operatorname{DCMP}\{1|2| 3\}$

OUTPDATA?

Outputs the error corrected data. (Query only)

- Query Response
$\{$ numeric (1) $\}\{$ numeric (2) $\} \ldots\{$ numeric $(n)\}<$ new line $><$ END $>$
(n is the number of points.)
numeric is a complex number (data format: real, imaginary) for the Network analyzer, or a real number for the Spectrum analyzer.
- Equivalent SCPI Command
: DATA[:DATA]? DDATA
- Example

```
DIM A(1:201,1:2) Network Analyzer, NOP: 201
OUTPUT 717;"OUTPDATA?"
ENTER 717;A(*)
DIM A(1:201,1:2)
OUTPUT 717;":DATA? DATA"
ENTER 717;A(*)
```


OUTPDATA?

OUTPDATAP? $\sqcup<$ numeric $>$

Outputs the error corrected data at the specified point. (Query only)

Parameter	Description
$<$ numeric $>$	1 to "number of points" (If <numeric $>$ is 0 or less than 0, it is set to 1. If <numeric $>$ is greater than "number of points," it is set to "number of points.")

- Query Response
$\{$ numeric (real) $\}$ \{numeric (imaginary) $\}<$ new line $><$ ENND $>$ (Network analyzer)
$\{$ numeric (val) $\}<$ new line $><\wedge$ END $>$ (Spectrum analyzer)
- Equivalent SCPI Command
:DATA[:DATA]:VALue? D DATA, <numeric>
- Example

OUTPUT 717;"OUTPDATAP? 1"
ENTER 717;A,B Network Analyzer
OUTPUT 717;":DATA:VAL? DATA,1"
ENTER 717;A,B

OUTPDMKR?

Outputs sweep parameter and measurement value at the Δ marker position. (Query only)

- Query Response
$\{$ numeric (val1) $\}$ \{numeric (val2) $\}$ \{numeric (stimulus) $\}<$ new line $><\wedge$ END $>$
(Val1: Amplitude value, Val2: Auxiliary amplitude value. See "Marker Readout" in Appendix H.)
- Equivalent SCPI Command
:CALCulate: EVALuate: REFerence: DATA?
- Example

OUTPUT 717;"OUTPDMKR?"
ENTER 717; A,B,C
OUTPUT 717;":CALC:EVAL:REF:DATA?"
ENTER 717;A,B,C

OUTPDTRC?

Outputs DATA TRACE data. (Query only)

- Query Response
$\{$ numeric (1:val1) $\{$ \{numeric (1:val2) $\}$ \{numeric (2:val1) $\}$ \{numeric (2:val2) $\} \ldots$
$\{$ numeric (n:val2) $\}$ \{numeric (n:val2) $\}<$ new line $><$ ENND $>$ (Network analyzer)
$\{$ numeric (1) $\}\{$ numeric (2) $\} \ldots\{$ numeric $(n)\}<$ new line $><$ ERND $>$ (Spectrum analyzer)
(n is the number of points.) (Val1: Amplitude value, Val2: Auxiliary amplitude value. See "Marker Readout" in Appendix H.)

■ Equivalent SCPI Command
:TRACe[:DATA]? DDTR

- Example

```
DIM A(1:201,1:2) Network Analyzer, NOP: 201
OUTPUT 717;"OUTPDTRC?"
ENTER 717;A(*)
DIM A(1:201,1:2)
OUTPUT 717;":TRAC? DTR"
ENTER 717;A(*)
```


OUTPDTRCP? $\sqcup<$ numeric $>$

Outputs DATA TRACE data at the specified point. (Query only)

Parameter	Description
$<$ numeric $>$	1 to "number of points" (If $<$ numeric $>$ is 0 or less than 0, it is set to 1. If $<$ numeric $>$ is greater than "number of points," it is set to "number of points.")

- Query Response
$\{$ numeric (vall) $\}$ \{numeric (val2) $\}<$ new line $><$ ENDD $>$ (Network analyzer)
$\{$ numeric (val) $\}<$ new line $><$ END $>$ (Spectrum analyzer)
(Val1: Amplitude value, Val2: Auxiliary amplitude value. See "Marker Readout" in Appendix H.)
- Equivalent SCPI Command
:TRACe[:DATA]:VALue? D DTR,\langle numeric>
- Example

```
OUTPUT 717;"OUTPDTRCP? 1"
ENTER 717;A,B
OUTPUT 717;":TRAC:VAL? DTR,1"
ENTER 717;A,B
```


OUTPERRO?

Outputs the error message in the error queue.

- Query Response
$\{$ numeric (Error number) $\}\{$ string (Error message) $\}<$ new line $><$ END $>$
- Equivalent SCPI Command
:SYSTem:ERRor?
- Example

```
OUTPUT 717;"OUTPERRO?"
ENTER 717;A,A$
OUTPUT 717;":SYST:ERR?"
ENTER 717;A,A$
```


OUTPFAIP?

Outputs number of the failed point of the limit test. (Query only)

- Query Response
$\{$ numeric $\}<$ new line>< $<$ END $>$
- Equivalent SCPI Command
: DATA:POINts? LLFA
- Example

```
OUTPUT 717;"OUTPFAIP?"
ENTER 717;A
OUTPUT 717;":DATA:POIN? LFA"
ENTER 717;A
```


OUTPFILT?

Outputs filter parameters. See "OUTPFILT?" in Appendix I for details, query response, and examples. (Instrument BASIC EXECUTE executable; No equivalent SCPI command; Query only; Network analyzer only)

OUTPLIMF?

Outputs the limit test results only for the failed points. (Query only)

- Query Response
$\{$ numeric (stimulus 1$)\}\{0\}\{$ numeric (upper_limit 1) $\{$ \{numeric (lower_limit 1) $\}$
$\{$ numeric (stimulus 2) $\{0\}$ \{numeric (upper_limit 2) $\}$ \{numeric (lower_limit 2) $\}$
$\{$ numeric (stimulus n) $\}\{0\}\{$ numeric (upper_limit n) $\}\{$ numeric (lower_limit n) $\}<$ new line><<END> (Form 4)
(n is the number of failed points.)
$\{0\}<$ new line $><$ END $>$ (for no failed points.)
- Equivalent SCPI Command
: Data[:DATA]? LLFA
- Example

```
DIM A(1:201,1:4) NOP:201
OUTPUT 717;"OUTPLIMF?"
ENTER 717 USING "%,K";A(*)
DIM A(1:201,1:4)
OUTPUT 717;":DATA? LFA"
ENTER 717 USING "%,K";A(*)
```


OUTPLIML?

Outputs the limit test results for each point. (Query only)

- Query Response
$\{$ numeric (stimulus 1) $\}$ \{numeric (result 1)\} \{numeric (upper_limit 1)\} \{numeric (lower_limit 1)\}
\{numeric (stimulus 2)\} \{numeric (result 2)\} \{numeric (upper_limit 2)\} \{numeric (lower_limil 2)\}
\vdots
\{numeric (stimulus n)\} \{numeric (result n)\} \{numeric (upper_limit n)\}
$\{$ numeric (lower_limit n)\} <new line><<END> (Form 4)
(n is the number of points.) (resull is 1 for pass, 0 for fail, or -1 for no test.)
- Equivalent SCPI Command
: DATA[:DATA]? ULLIS
- Example

```
DIM A(1:201,1:4) NOP:201
OUTPUT 717;"OUTPLIML?"
ENTER 717;A(*)
DIM A(1:201,1:4)
OUTPUT 717;":DATA? LLIS"
ENTER 717;A(*)
```


OUTPLIML?

OUTPLIMM?

Outputs the limit test result for the marker position. (Query only)

- Query Response
$\{$ numeric (stimulus) $\}$ \{numeric (resull) $\}$ \{numeric (upper_limit) $\}$ \{numeric (lower_limit) $\}$ <new line><< END >
(result is 1 for pass, 0 for fail, or -1 for no test)
- Equivalent SCPI Command
:DATA[:DATA]? $\triangle L M A R$
- Example

OUTPUT 717;"OUTPLIMM?"
ENTER 717;A,B,C,D
OUTPUT 717;":DATA? LMAR"
ENTER 717;A,B,C,D

OUTPMAX?

Outputs maximum value within analysis range. See "OUTPMAX?" in Appendix I for details, query response, and examples. (Instrument BASIC EXECUTE executable; No equivalent SCPI command; Query only)

OUTPMEAN?

Outputs mean value within analysis range. See "OUTPMEAN?" in Appendix I for details, query response, and examples. (Instrument BASIC EXECUTE executable; No equivalent SCPI command; Query only)

OUTPMEMO?

Outputs the memory data from the active channel. (Query only)

- Query Response

$\{$ numeric (1) $\}\{$ numeric (2) $\} \ldots$. . $\{$ numeric $(n)\}<$ new line $><$ END $>$
(n is the number of points.)
numeric is a complex number (data format: real, imaginary) for the Network analyzer, or a real number for the Spectrum analyzer.

- Equivalent SCPI Command
: DATA [:DATA]? $\triangle M E M$
- Example

```
DIM A(1:201,1:2) Network Analyzer, NOP: 201
OUTPUT 717;"OUTPMEMO?"
ENTER 717;A(*)
DIM A(1:201,1:2)
OUTPUT 717;":DATA? MEM"
ENTER 717;A(*)
```


OUTPMEMOP? $\<$ numiric $>$

Outputs the memory data from the active channel at a specified point. (Query only)

Parameter	Description
$<$ value $>$	1 to "number of points" (If <numeric $>$ is 0 or less than 0, it is set to 1.
	If <numeric $>$ is greater than "number of points," it is set to "number of points.")

- Query Response
\{real\} \{imaginary\} <new line>< $\mathrm{END}>$ (Network analyzer)
\{numeric\} <new line><<END> (Spectrum analyzer)
- Equivalent SCPI Command
: DATA[:DATA]:VALue? \sqcup MEM,<numeric>

OUTPMIN?

Outputs minimum value within analysis range. See "OUTPMIN?" in Appendix I for details, query response, and examples. (Instrument BASIC EXECUTE executable; No equivalent SCPI command; Query only)

OUTPMINMAX?

Outputs maximum and minimum value within analysis range. See "OUTPMIN?" in Appendix I for details, query response, and examples. (Instrument BASIC EXECUTE executable; No equivalent SCPI command; Query only)

OUTPMKR?

Outputs the sweep parameter and measurement values at the marker position. (Query only)

- Query Response
$\{$ numeric (val1) $\}$ \{numeric (val2) $\}$ \{numeric (stimulus) $\}<$ new line $><$ END $>$
(Val1: Amplitude value, Val2: Auxiliary amplitude value. See "Marker Readout" in Appendix H.)
- Equivalent SCPI Command
:CALCulate:EVALuate:Y:DATA?
- Example

```
OUTPUT 717;"OUTPMKR?"
ENTER 717;A,B,C
OUTPUT 717;":CALC:EVAL:Y:DATA?"
ENTER 717;A,B,C
```


OUTPMKR?

OUTPMSTA?

Outputs the marker statistics. (STATISTICS ON off under (Utility); Query only)
■ Query Response
$\{$ numeric (mean) $\}$ \{numeric (standard deviation) $\}$ \{numeric (peak to peak) $\}$ $<$ new line><-END>

- Equivalent SCPI Command
:CALCulate: EVALuate:MSTatistics:DATA?
- Example

```
OUTPUT 717;"OUTPMSTA?"
ENTER 717;A,B,C
OUTPUT 717;":CALC:EVAL:MST:DATA?"
ENTER 717;A,B,C
```


OUTPMTRC?

Outputs the MEMORY TRACE data. (Query only)

- Query Response
$\{$ numeric (1:val1) $\}$ \{numeric (1:val2) $\}$ \{numeric (2:val1) $\{$ numeric (2:val) \ldots
$\{$ numeric (n:val1) $\}$ \{numeric (n:val2) $\}<$ new line $><{ }^{\wedge} \mathrm{END}>$ (Network analyzer)
$\{$ numeric (1) $\}\{$ numeric (2) $\} \ldots\{$ numeric $(n)\}<$ new line $>\ll \in N D>$ (Spectrum analyzer)
(n is the number of points.) (Val1: Amplitude value, Val2: Auxiliary amplitude value. See "Marker Readout" in Appendix H.)
- Equivalent SCPI Command
:TRACe[:DATA]? $\triangle M T R$
- Example

```
DIM A(1:201,1:2) Network Analyzer, NOP: 201
OUTPUT 717;"OUTPMTRC?"
ENTER 717;A(*)
DIM A(1:201,1:2)
OUTPUT 717;":TRAC? MTR"
ENTER 717;A(*)
```


OUTPMTRCP? $\sqcup<$ numeric $>$

Outputs the MEMORY TRACE data at the specified point. (Query only)

Parameter	Description
$<$ numeric $>$	1 to "number of points"
	(If <numeric $>$ is 0 or less than 0, it is set to 1.
	If <numeric $>$ is greater than "number of points," it is set to "number of points.")

- Query Response
\{numeric (val1)\} \{numeric (val2)\} <new line><-END> (Network analyzer)
\{numeric (val)\} <new line><<END> (Spectrum analyzer)
(Val1: Amplitude value, Val2: Auxiliary amplitude value. See "Marker Readout" in Appendix H.)
- Equivalent SCPI Command
:TRACe[:DATA]:VALue? $\triangle M T R,<n u m e r i c>$
- Example

OUTPUT 717;"OUTPMTRCP? 1" Network Analyzer
ENTER 717; A,B
f
OUTPUT 717;":TRAC:VAL? MTR,1"
ENTER 717;A,B

OUTPMWID?

Outputs the results of the bandwidth search. (Network and impedance analyzer only) (WIDTHS ON off under (Search); Query only)

- Query Response
$\{$ numeric (bandwidth) $\}$ \{numeric (center) $\}\{$ numeric $(Q)\}<$ new line><<END>
- Equivalent SCPI Command
:CALCulate:EVALuate:WIDTh: DATA?
- Example

OUTPUT 717;"OUTPMWID?"
ENTER 717; A,B, C
OUTPUT 717;":CALC:EVAL:WIDT:DATA?"
ENTER 717; A,B,C

OUTPMWID?

OUTPRAW $\{\mathbf{1 - 4}\}$?

Outputs the uncorrected data arrays for the active channel. (Query only)

- Query Response
$\{$ numeric (1) $\}\{$ numeric (2) $\} \ldots$. . numeric $(n)\}<$ new line $><$ END $>$
(n is the number of points.)
numeric is a complex number (data format: real, imaginary) for the Network analyzer, or a real number for the Spectrum analyzer.
- Equivalent SCPI Command
:DATA[:DATA]? $\sqcup \operatorname{RAW}\{1-4\}$

OUTPRESF?

Outputs resonator parameters. See "OUTPRESF?" in Appendix I for details, query response, and examples. (Instrument BASIC EXECUTE executable; No equivalent SCPI command; Query only; Network analyzer only)

OUTPRESO?

Outputs resonator parameters. See "OUTPRESO?" in Appendix I for details, query response, and examples. (Instrument BASIC EXECUTE executable; No equivalent SCPI command; Query only; Network analyzer only)

OUTPRESR?

Outputs resonator parameters. See "OUTPRESR?" in Appendix I for details, query response, and examples. (Instrument BASIC EXECUTE executable; No equivalent SCPI command; Query only; Network analyzer only)

OUTPSMKR \{1-7\}?

Outputs the measurement values and sweep parameter at the sub-marker position. (Query only)

- Query Response
$\{$ numeric (val1) $\}$ \{numeric (val2) $\}$ \{numeric (stimulus) $\}<$ new line $><$ - ${ }^{\text {END }}>$
(Val1: Amplitude value, Val2: Auxiliary amplitude value. See "Marker Readout" in Appendix H.)
- Equivalent SCPI Command

```
OUTPSMKR1? :CALCulate:EVALuate:Y2:DATA?
OUTPSMKR2? :CALCulate:EVALuate:Y3:DATA?
OUTPSMKR3? :CALCulate:EVALuate:Y4:DATA?
OUTPSMKR4? :CALCulate:EVALuate:Y5:DATA?
OUTPSMKR5? :CALCulate:EVALuate:Y6:DATA?
OUTPSMKR6? :CALCulate:EVALuate:Y7:DATA?
OUTPSMKR7? :CALCulate:EVALuate:Y8:DATA?
```


OUTPSWPRM?

Outputs the sweep parameter data. (Query only)

- Query Response
\{numeric 1\} \{numeric 2\} ... \{numeric $n\}<$ new line><<END>
(n is the number of points.)
- Equivalent SCPI Command
: DATA[:DATA]? USPAR

OUTPSWPRMP? $\sqcup<$ numeric $>$

Outputs the sweep parameter data at a specified point. (Query only)

Parameter	Description
$<$ numeric $>$	1 to "number of points" (If <numeric $>$ is 0 or less than 0, it is set to 1.
	If <numeric $>$ is greater than "number of points," it is set to "number of points.")

- Query Response
\{numeric\} <new line><<END>
- Equivalent SCPI Command
: DATA [:DATA]:VALue? $\operatorname{DSPAR},<n u m e r i c>$

OUTPXFIL?

Outputs crystal filter parameters. See "OUTPXFIL?" in Appendix I for details, query response, and examples. (Instrument BASIC EXECUTE executable; No equivalent SCPI command; Query only; Network analyzer only)

OUTPXFIL?

PARS $\sqcup\{\mathbf{O F F}|\mathbf{O N} \mathbf{0}| \mathbf{1}\}$

Sets the partial search of the marker search function ON or OFF. (PART SRCH ON off under (Search)

Parameter	Description
OFF or 0	Partial search OFF
ON or 1	Partial search ON

- Query Response
$\{0 \mid 1\}<$ new line><<END>
- Equivalent SCPI Command

```
:CALCulate:EVALuate:BAND:FULL[:STATe]\sqcup{OFF|ON|0|1}
```

Parameter	Description
OFF or 0	Partial search ON
ON or 1	Partial search OFF

- Example

```
OUTPUT 717;"PARS ON"
OUTPUT 717;"PARS?"
ENTER 717;A
OUTPUT 717;":CALC:EVAL:BAND:FULL OFF"
OUTPUT 717;":CALC:EVAL:BAND:FULL?"
ENTER 717;A
```


PEAK?

Outputs maximum peak within analysis range, and memorizes its position for the NEXPK? command. See "PEAK?" in Appendix I for details, query response, and examples. (Instrument BASIC EXECUTE executable; No equivalent SCPI command; Query only)

PEAKCENT

Searches for a peak using the marker and then changes the CENTER of the destination channel to the sweep parameter value of that peak. (PEAK-CENTER under (Center) or (Marker \rightarrow; No query)

- Equivalent SCPI Command
: SENSe : FREQuency : CENTerபTPEak (frequency) or
: SOURce: POWer: CENTerபTPEak (power)

PHAO $\sqcup<$ numeric $>$ [DEG]

Adds or subtracts a phase offset that is constant with frequency. (Network analyzer only) (PHASE OFFSET under (Scale Ref)

Parameter	Range	Unit
$<$ numeric $>$	-360 to +360	\circ

- Query Response
$\{$ numeric $\}<$ new line><<END>
- Equivalent SCPI Command
:SENSe:CORRection:OFFSet:PHASeL〈numeric〉

PHAU \{RAD|DEG\}

Selects the unit of phase format. (PHASE UNIT [] under (Format); Impedance analyzer only.)

Parameter	
DEG	Degree.
RAD	Radian.

- Query Response
\{DEG|RAD\}<new line><<END>
- Equivalent SCPI Command
: CALCulate: FORMat:UNIT:ANGLe $\sqcup\{$ DEG|RAD $\}$

PKDLTX $\sqcup<$ numeric $>[\mathbf{H Z}|\mathbf{K H Z}| \mathbf{M A H Z}|\mathbf{G H Z}| \mathbf{D B M}]$

Sets the peak $\Delta \mathrm{X}$ value that is used to define the peak. (Network and impedance analyzer only) (PEAK DEF: $\triangle X$ under (Search)

Parameter	Range	Unit
$<$ numeric $>$	0 to 8 G	Hz (frequency) dBm (power)

- Query Response
\{numeric\} <new line><<END>
- Equivalent SCPI Command
:CALCulate:EVALuate:PEAK:EXCursion:Xப<numeric>

PKDLTX $\sqcup<$ numeric $>[\mathbf{H Z}|\mathbf{K H Z}|$ MAHZ \mid GHZ $\mid \mathbf{D B M}]$

- Example

```
OUTPUT 717;"PKDLTX 1E6"
OUTPUT 717;"PKDLTX?"
ENTER 717;A
OUTPUT 717;":CALC:EVAL:PEAK:EXC:X 1E6"
OUTPUT 717;":CALC:EVAL:PEAK:EXC:X?"
ENTER 717;A
```


PKDLTY $\sqcup<$ numeric $>$

Sets the peak ΔY value that is used to define the peak. (PEAK DEF: $\triangle Y$ under (Search))

Parameter	Range	Format
<numeric>	0 to 500 (spectrum analyzer) 0 to 500 k 0 to 500 (network analyzer) 0 to 500 k (any format in network analyzer except log magnitude format, and impedance analyzer)	($\mathrm{dBm}, \mathrm{dB} \mu \mathrm{V}$, dBV formats) (Watt format, Volt format) (Log magnitude format)

■ Query Response
$\{$ numeric $\}<$ new line><<END>

- Equivalent SCPI Command
:CALCulate:EVALuate:PEAK:EXCursion:Yப<numeric>

PKPOL $\downarrow\{\mathbf{P O S} \mid \mathbf{N E G}\}$

Sets the peak polarity for the marker search functions. (Network and impedance Analyzer only) (PEAK PLRTY pos neg under (Search)

Parameter	
POS	Positive peak
NEG	Negative peak

- Query Response
\{POS|NEG\} <new line><<END>
- Equivalent SCPI Command

```
:CALCulate:EVALuate:PEAK:POLarity\sqcup{POSitive|NEGative}
```


PKTHRE $\sqcup\{$ OFF \mid ON $|\mathbf{0}| \mathbf{1}\}$

Sets the threshold ON or OFF. (THRESHOLD ON off under (Search)

Parameter		Description
OFF or 0	Threshold OFF	
ON or 1	Threshold ON	

- Query Response
$\{0 \mid 1\}<$ new line $><$ - END $>$
- Equivalent SCPI Command
:CALCulate:EVALuate:PEAK:THReshold:STATe $\mathcal{S O F F}|0 N| 0 \mid 1\}$
PKTHVAL $\sqcup<$ value $>$
Sets the threshold values. (THRESHOLD VALUE under (Search))

Parameter	Range	Unit
<numeric>	-500 to 500	(Log mag format)
	-5×10^{6} to 5×10^{6}	(Phase, Expanded phase, Lin man, Real, Imaginary, SWR formats)
	-0.5 to 0.5	(Delay format)
	1×10^{-11} to 500	(Smith chart, Admittance chart, Polar formats)
	-100 to 30	(dBm format)
	-113 to 17 (50 М)	(dBV format)
	-111.2 to $18.8(75 \Omega)$	
	7 to $137(50 \Omega)$	($\mathrm{dB} \mu \mathrm{V}$ format)
	8.8 to $138.8(75 \Omega)$	
	1×10^{-13} to 1	(Watt format)
	1×10^{-6} to $7.071(50 \Omega)$	(Volt format)
	1×10^{-6} to $8.66(75 \Omega)$	

- Query Response
$\{$ numeric $\}<$ new line>< $\mathrm{END}>$
- Equivalent SCPI Command
:CALCulate:EVALuate:PEAK:THReshold \cup <numeric>

PKTHVAL $\sqcup<$ value $>$

POIN $\sqcup<$ numeric $>$

Sets the number of points for the segment, or sets the number of points for the list sweep table. (NUMBER OF POINTS under (Sweep)

Parameter		Description
$<$ numeric $>$	2 to $801 .^{1}$	

1 For the spectrum analyzer, <numeric> can be set when the SPAN is set to zero. When the SPAN is not zero, this command is query only.

- Query Response
$\{$ numeric $\}<$ new line><<END>
- Equivalent SCPI Command
:SENSe:SWEep:POINts $\sqcup<$ numeric> or
:SENSe:LIST:SEGMent:POINts $\sqcup<$ numeric> (List sweep)

POLE? \triangle <numeric $>$

Outputs the first found negative peaks for both side from the maximum peak. Negative peaks must be lower than the <numeric> down from the maximum peak. See "POLE?" in Appendix I for details, command paramter, query response, and examples. (Instrument BASIC EXECUTE executable; No equivalent SCPI command; No query)

PORE $\sqcup\{\mathbf{O F F}|\mathbf{O N}| \mathbf{0} \mid \mathbf{1}\}$

Sets the reference plane extension mode ON or OFF. (Network and impedance analyzer only) (EXTENSIONS ON off under (Cal)

Parameter	Description
OFF or 0	Reference plane extension mode OFF
ON or 1	Reference plane extension mode ON

- Query Response
$\{0 \mid 1\}<$ new line><<END>
- Equivalent SCPI Command

```
:SENSe:CORRection:EDELay:STATeப{OFF|ON|O|1}
```


PORT1 $\sqcup<$ numeric $>$ [S $|\mathbf{M S}| \mathbf{U S}|\mathbf{N S}| \mathbf{P S}]$

Extends the reference plane for measurement of S_{11}, S_{21}, and S_{12}. (Network analyzer only) (EXTENSION PORT 1 under (Cal)

Parameter	Range	Unit
$<$ numeric $>$	-10 to 10	s

- Query Response
$\{$ numeric $\}<$ new line><<END>
- Equivalent SCPI Command
:SENSe:CORRection:EDELay:PORT1:TIMEப<numeric>

PORT2 $\sqcup<$ numeric $>$ [S $|\mathbf{M S}|$ US \mid NS $\mid \mathbf{P S}]$

Extends the reference plane for measurement of S_{22}, S_{12}, and S_{21}. (Network analyzer only) (EXTENSION PORT 2 under (Cal)

Parameter	Range	Unit
$<$ numeric $>$	-10 to 10	s

- Query Response
\{numeric\} <new line><<END>
- Equivalent SCPI Command
:SENSe:CORRection:EDELay:PORT2:TIME $ப<$ numeric>

PORTA $\sqcup<$ numeric $>[\mathbf{S}|\mathbf{M S}| \mathbf{U S}|\mathbf{N S}| \mathbf{P S}]$

Adds electrical delay to the input A reference plan for all A input measurements (including S-parameters). (Network analyzer only) (EXTENSION INPUT A under (Cal)

Parameter	Range	Unit
\langle value \rangle	-10 to 10	s

- Query Response
\{numeric $\}<$ new line><<END>
- Equivalent SCPI Command
:SENSe:CORRection:EDELay:PORT4:TIMEப<numeric>

PORTB $\sqcup<$ numeric $>$ [S \mid MS $|\mathbf{U S}| \mathbf{N S} \mid \mathbf{P S}]$

Adds electrical delay to the input B reference plane for all B input measurements (including S-parameters). (Network analyzer only) (EXTENSION INPUT B under (Cal)

Parameter	Range	Unit
$<$ numeric $>$	-10 to 10	s

- Query Response
$\{$ numeric $\}<$ new line><EEND>
- Equivalent SCPI Command
:SENSe:CORRection:EDELay:PORT5:TIME $\sqcup<$ numeric $>$

PORTR $\sqcup<$ numeric $>$ [S $|\mathbf{M S}| \mathbf{U S}|\mathbf{N S}| \mathbf{P S}]$

Adds electrical delay to extend the reference plane at input R to the end of cable. (Network analyzer only) (EXTENSION INPUT R under (Cal])

Parameter	Range	Unit
\langle value \rangle	-10 to 10	s

- Query Response
$\{$ numeric $\}<$ new line><<END>
- Equivalent SCPI Command
:SENSe:CORRection:EDELay:PORT3:TIME $\langle<$ numeric>

PORTZ $\sqcup<$ numeric $>$

Sets the port extension value. (EXTENSION VALUE under (Cal); Impedance analyzer only.)

- Query response
$<$ numeric $><$ new line><<END>
- Equivalent SCPI command
:SENSe:CORRection1:EDELay:PORT6:[:TIME]ப<numeric>

PRES

$\mathbf{P O W E} \sqcup<$ numeric $>$ [DBM]

Sets the power level segment by segment, or sets the power level for the list sweep table. (POWER under (Sweep)

Parameter	Range	Unit
$<$ numeric $>$	-60 to +20	dBm

- Query Response
\{numeric\} <new line><<END>
- Equivalent SCPI Command
:SOURce:POWer[:LEVel][:IMMediate][:AMPLitude]ப<numeric> or :SENSe:LIST:SEGMent:POWer <numeric> (List sweep)

PREP

Displays the previous page of information in a tabular listing. (PREV PAGE under ((copy); No query)

- Equivalent SCPI Command
:DISPlay[:WINDow]:TEXT\{1-17\}:PAGEபDOWN

Parameter	
1	Description
2	List Value
3	Operation Parameter
4 to 11	Cal Class
12	Cal Standard No. 1 to No. 8
13	Start and Stop
14	Center and Span (List)
15	Upper and Lower
16	Middle and Delta (Limit Test)
17	Marker List

PRES

Presets the ANALYZER to the preset default values. See Appendix D of the Function Reference for the default values. The PRES command does not preset the Instrument BASIC. ((PRESET); No query)

- Equivalent SCPI Command

```
:SYSTem:PRESet
```


PRES

PRIC

Sets the print command to the color printing. (COLOR under (Copy)

- Query Response
$\{0 \mid 1\}<$ new line $>\ll$ END $>$

Parameter	Description
0	Single-color printing
1	Color printing

- Equivalent SCPI Command
:HCOPy:DRIVer:COLor $\sqcup\{0 N \mid 1\}$

PRICFIXE

Sets the default colors for printing a hard copy. (PRINT COLOR [FIXED] under (Copy])

- Query Response
$\{0 \mid 1\}<$ new line $><\wedge$ END $>$

Parameter	Description
0	Variable colors (colors similar to the display)
1	Fixed colors (default colors)

- Equivalent SCPI Command
:HCOPy:DRIVer:CMAP:COLor $\sqcup F I X e d$

PRICVARI

Sets the colors used for printing a hard copy as close as possible to the display colors. Refer to "System Accesory Printer" in Chapter 9 of FuncRef for the printers which support the variable color printing. (PRINT COLOR [VARIABLE] under Copy)

- Query Response $\{0 \mid 1\}<$ new line $><$ - END $>$

Parameter	Description
0	Fixed colors (default colors)
1	Variable colors (colors similar to the display)

- Equivalent SCPI Command

```
:HCOPy:DRIVer:CMAP:COLor\VARiable
```


PRSOFTT \sqcup OFF|ON|0|1\}

PRINALL

Causes an extra copy of the display to be printed. (PRINT [] under (Copy); No query)

- Equivalent SCPI Command
: HCOPy [:IMMediate]

PRIS

Sets the print command to the single color printing. (PRINT: STANDARD under (Copy)

- Query Response
$\{0 \mid 1\}<$ new line><<END>

Parameter	
0	Color printing
1	Single color printing

- Equivalent SCPI Command
: HCOPy:DRIVer:COLor $\sqcup\{0 F F \mid 0\}$
\square Query Response

Parameter	
0	Default printing (black only)
1	Color printing

PRSOFT $\sqcup\{$ OFF \mid ON $|0| 1\}$

Sets printing the softkeys displayed in the screen ON or OFF. (COPY SKEY under (Copy)

Parameter	
OFF or 0	Does not print the soft keys
ON or 1	Print the soft keys

- Query Response
$\{0 \mid 1\}<$ new line><<END>
- Equivalent SCPI Command : HCOPy:DRIVer:SKEY \sqcup \{OFF|ON|O|1\}

PRSOFT $\sqcup\{0 F F|O N| 0 \mid 1\}$

PRSMKRS

Turns off all markers and cancels all settings of the marker functions. (PRESET MKRS under (Marker); No query)

- Equivalent SCPI Command
:DISPlay[:WINDow]:TRACe\{[1]|2\}:MARKer[1]:ALLDDEFault
(TRACe[1] for the data trace; TRACe2 for the memory trace.)

PURG $\sqcup<\operatorname{string}>$
Removes the file. (PURGE FILE under (SAVE); No query)

Parameter	Description
\langle string $>$	File name, up to 10 characters including the extension

- Equivalent SCPI Command
:MMEMory:DELeteப<string (file_name)>[,<string (msus)>]

Parameter	Description
$<$ string $($ msus $)>$	"DISK" for the flexible disk drive "MEMORY" for the RAM disk memory

- Example

OUTPUT 717;"PURG ""TEST_S"""
OUTPUT 717;":MMEM:DEL ""TEST_S"""

RAID

Completes the response and isolation calibration. Computes and stores the error coefficients. (Network analyzer only) (DONE RESP ISOL'N CAL under (Cal); No query)

- Equivalent SCPI Command
:SENSe:CORRection:COLLect:SAVE3

RAIISOL

Selects the isolation class for the response and isolation calibration. (Network analyzer only) (ISOL'N STD under (Cal); No query)

- Equivalent SCPI Command
:SENSe: CORRection: COLLect[:ACQuire] பISOL

RAIRESP

Selects the response class for the response and isolation calibration. (Network analyzer only) (RESPONSE under (Cal); No query)

- Equivalent SCPI Command

```
:SENSe:CORRection:COLLect[:ACQuire]\RESP
```


READ?

Reads data from a file that has been read-enabled using the ROPEN command. The returned data is in the fixed length block format defined in IEEE488.2. The fixed length block format, as shown in Figure 2-1, consists of a header part indicating the data size and an actual data part. In the case of the 4396 B , the number of digits to indicate the data size is 6 and the maximum length of the actual data part is 16 Kbytes. If a file contains data greater than 16 Kbytes, execute this command repeatedly to read it. Note that acceptable file formats for this command are the DOS format and the LIF format BDAT type.
Generally, this command is used in combination with the ROPEN command and the CLOSE command, as shown in Figure 2-2. (Query only)

- Query Response
$\{$ block $\}<$ new line $><$ ENND $>$

Figure 2-1. Fixed length block format

RECC

Recalls the previously saved version of the color set from the non-volatile memory. (RECALL COLORS under (Display); No query)

- Equivalent SCPI Command
: DISPlay: CMAP:LOAD

RECC

RECD $\sqcup<$ string $>$

Loads the instrument states or data. (file name under (Recall); No query)

Parameter	Description
$<$ string $>$	File name, Up to 10 characters including the extension

- Equivalent SCPI Command

```
:MMEMory:LOAD:STATeL<string (fle_name)> [,<string (msus)>] (State)
:MMEMory:LOAD:TRACeLSEL ,<string (file_name)> [,<string (msus)>] (Data)
```

Parameter	Description
<string (file_name)>	File name, Up to 10 characters including the extension
<string (msus)>	"DISK" for the flexible disk drive "MEMORY" for the RAM disk memory

- Example

OUTPUT 717;"RECD ""TEST_S"""
OUTPUT 717;":MMEM:LOAD:STAT ""TEST_S"""

REFD

Completes with the reflection part of the full 2-port or one-path 2-port calibration. (Network analyzer only) (REFLECT'N DONE under (Cal); No query)

- Equivalent SCPI Command

```
:SENSe:CORRection:COLLect:SAVE5
```


REFL

Begins the reflection part of the full 2-port or one-path 2-port calibration. (Network analyzer only) (REFLECT'N under (Cal); No query)

- Equivalent SCPI Command

```
:SENSe:CORRection:COLLect[:ACQuire]\REFL2
```


REFP $\sqcup<$ numeric $>$

Sets the position of the reference line on the graticule of a Cartesian display. (Network and impedance analyzer only) (REFERENCE POSITION under (Scale Ref)

Parameter	Range	Unit
$<$ numeric $>$	0 to 10 (simple command)	
0 to 100 (SCPI command)	Div	

- Equivalent SCPI Command
:DISPlay[:WINDow]:TRACe\{[1]|2\}:Y[:SCALe]:RPOSitionப<numeric>
Where,

TRACe1	Data trace
TRACe2	Memory trace

REFV $\sqcup<$ numeric>

Sets the value of the reference line, moving the measurement trace correspondingly. (REFERENCE VALUE under (Scale Ref)

Parameter	Range	Format
$\begin{aligned} & <\text { numeric }> \\ & <\text { numeric }> \end{aligned}$	-500 to 500 (Network analyzer) -500 M to 500 M (Impedance analyzer) -500 M to 500 M (Network analyzer) -0.5 to 0.5 (Network analyzer) 1×10^{-11} to 500 (Network analyzer) 10 f to 500 M (Impedance analyzer) -100 to 30 (Spectrum analyzer) -113 to $17(50 \Omega)$ -111.2 to 18.8 (75Ω) (Spectrum analyzer) 7 to $137(50 \Omega)$ 8.8 to 138.8 (75Ω) (Spectrum analyzer) 1×10^{-13} to 1 (Spectrum analyzer) 2.236μ to $7.071(50 \Omega)$ 2.739μ to $8.66(75 \Omega)$ (Spectrum analyzer)	(Log mag format) (Linear magnitude format) (Phase, Expanded phase, Lin man, Real, Imaginary, SWR formats) (Delay format) (Smith chart, Admittance chart, Polar formats) (Smith chart, Admittance chart, Polar formats) (dBm format) (dBV format) ($\mathrm{dB} \mu \mathrm{V}$ format $)$ (Watt format) (Volt format)

- Query Response
\{numeric\} <new line><<END>
- Equivalent SCPI Command
:DISPlay[:WINDow]:TRACe\{[1]|2\}:Y[:SCALe]:RLEVelU<numeric>
Where,

TRACe1	Data trace
TRACe2	Memory trace

REFX $\sqcup<$ numeric $>$

Sets the value of the x-axis reference line in complex plane format, moving the measurement trace correspondingly, when the measurement format is set to the complex plane.
(REFERENCE X VALUE under (Scale Ref); Impedance analyzer only.)

Parameter	Range	Unit
<numeric>	-5.0×10^{8} to 5.0×10^{8}	U

- Query Response
<numeric><new line><<END>
- Equivalent SCPI Command
:DISPlay[:WINDow]:TRACe\{1|2\}:X[:SCALe]:RLEVelப<numeric>
Where,

TRACe1	Data trace
TRACe2	Memory trace

REFY $\sqcup<$ numeric $>$

Sets the value of the y-axis reference line in complex plane format, moving the measurement trace correspondingly, when the measurement format is set to the complex plane.
(REFERENCE Y VALUE under (Scale Ref)

Parameter		Range

- Query Response
<numeric><new line><-END>
- Equivalent SCPI Command

$$
\text { :DISPlay [:WINDow]:TRACe\{1|2\}:Y[:SCALe]:RLEVelப<numeric> }
$$

Where,

TRACe1	Data trace
TRACe2	Memory trace

REPTSMP $\sqcup\{\mathbf{O F F}|\mathbf{O N}| \mathbf{0} \mid \mathbf{1}\}$

Sets the normal or repetitive sampling mode for zero span. (Spectrum analyzer only) (SAMPLING NORMAL repet under (Sweep))

Parameter		Description
OFF or 0	Normal sampling	
ON or 1	Repetitive sampling 1	

[^2] type is linear frequency.

■ Query response
$\{$ numeric $\}<$ new line $><$ ENND $>$

- Equivalent SCPI Command
: SENSe: DETector: CONTinuous $\square\{0 F F|O N| 0 \mid 1\}$

RESAVD $\sqcup<\operatorname{string}>$

Updates a file that is already saved. (RE-SAVE FILE under (Save); No query)

Parameter	Description
$<$ string $>$	File name up to 10 characters including the extension

- Equivalent SCPI Command

STATE :MMEMory:DELeteப<string (file_name)> [,<string (msus)>]
: MMEMOry:STORe:STATeப<string (file_name)>[,<string (msus)>]
TRACE :MMEMory:DELeteப<string (file_name)> [,<string (msus)>]
:MMEMory:STORe:TRACeLSEL,<string (file_name)> [,<string (msus)>]

Parameter	
<string (msus)>	"DISK" for the flexible disk drive
"MEMORY" for the RAM disk memory	

- Example

OUTPUT 717;"RESAVD ""TEST_S""""
OUTPUT 717;":MMEM:DEL ""TEST_S"""
OUTPUT 717;":MMEM:STOR:STAT ""TEST"""

RESC

Eliminates the need to restart a calibration sequence that was interrupted to access some other menu. (Network and impedance analyzer only) (RESUME CAL SEQUENCE under (Cal); No query)

- Equivalent SCPI Command
:SENSe:CORRection: COLLect:RESume

RESCOM

Resume the last measured compensation sequence. (RESUME COMP SEQ under (Cal); No query; Impedance analyzer only.)

- Equivalent SCPI Command

```
:SENSe:CORRection2:COLLect:RESume
```


RESD

Turns off the tabular listing and returns the measurement display to the screen.
(RESTORE DISPLAY under (Copy; No query)

- Equivalent SCPI Command
:DISPlay[:WINDow]:TEXT\{1-17\}:STATeபOFF

Parameter	
1	Description
2	List Value
3	Operation Parameter
4 to 11	Cal Class
12	Cal Standard No. 1 to No. 8
13	Start and Stop
14	Center and Span (List)
15	Upper and Lower
16	Middle and Delta (Limit Test)
17	Marker List

RESPDONE

Completes the response calibration. Computes and stores the error coefficients. (Network analyzer only) (DONE: RESPONSE under (Cal); No query)

- Equivalent SCPI Command

```
:SENSe:CORRection:COLLect:SAVE2
```


REST

Aborts the sweep in progress and then restarts the measurement. (MEASURE RESTART under (Trigger); No query)

- Equivalent SCPI Command

```
:INITiate[:IMMediate]:AGAin:ALL
```


REVI

Measures S_{12} isolation for the full 2-port calibration. (Network analyzer only) (REV ISOL'N ISOL'N STD under (Cal); No query)

- Equivalent SCPI Command

```
:SENSe:CORRection:COLLect[:ACQuire]\REVI
```


REVM

Measures S_{22} load match for the full 2-port calibration. (Network analyzer only)
(REV. MATCH THRU under (Cal); No query)

- Equivalent SCPI Command

```
:SENSe:CORRection: COLLect[:ACQuire]\REVM
```


REVT

Measures S_{12} frequency response for the full 2-port calibration. (Network analyzer only)
(REV. TRANS. THRU under (Cal); No query)

- Equivalent SCPI Command
: SENSe: CORRection: COLLect[:ACQuire] \sqcup REVT

$\mathbf{R F O} \sqcup\{\mathbf{O F F}|\mathbf{O N}| \mathbf{0} \mid \mathbf{1}\}$

Sets the signal output on the RF OUT port ON or OFF. (RF OUT ON off under (Source))

Parameter	
OFF or 0	RF OUT port OFF
ON or 1	RF OUT port ON

- Query Response
$\{0 \mid 1\}<$ new line>< $\mathrm{END}>$
- Equivalent SCPI Command

```
:SOURce:POWer:STATe\sqcup{OFF|ON|O|1}
```

RFO $\sqcup\{\mathbf{O F F}|\mathbf{O N}| \mathbf{0 |} \mid\}$

ROPEN $\sqcup<$ string $>$

Makes a specified file read-enabled. If the file does not exist, an error occurs.
Generally, this command is used in combination with the READ? command and the CLOSE command, as shown in Figure 2-2. (No query)

Parameter	Description
$<$ string $>$	File name of up to 12 characters including its extension (for the LIF format, up to 10 characters)

Figure 2-2. Procedure of executing commands to read/write data

RPLENV?

Returns the maximum height between the negative peak and intersection of an imaginary slope line between the adjacent positive peaks. See "RPLENV?" in Appendix I for details, query response, and examples. (Instrument BASIC EXECUTE executable; No equivalent SCPI command; Query only)

RPLHEI?

Returns the maximum difference between adjacent positive and negative peaks. See "RPLHEI?" in Appendix I for details, query response, and examples. (Instrument BASIC EXECUTE executable; No equivalent SCPI command; Query only)

RPLLHEI?

Returns the maximum difference between the positive peak and right-hand adjacent negative peak. See "RPLLHEI?" in Appendix I for details, query response, and examples. (Instrument BASIC EXECUTE executable; No equivalent SCPI command; Query only)

RPLMEA?

Returns the mean of the difference between adjacent positive and negative peaks within range. See "RPLPP?" in Appendix I for details, query response, and examples. (Instrument BASIC EXECUTE executable; No equivalent SCPI command; Query only)

RPLPP?

Returns the maximum difference between the positive peak and the negative peak within range. See "RPLPP?" in Appendix I for details, query response, and examples. (Instrument BASIC EXECUTE executable; No equivalent SCPI command; Query only)

RPLRHEI?

Returns the maximum difference between the positive peak and left-hand adjacent negative peak. See "RPLRHEI?" in Appendix I for details, query response, and examples. (Instrument BASIC EXECUTE executable; No equivalent SCPI command; Query only)

RPLVAL?

Returns the maximum total of the differences between the negative peaks and the adjacent positive peaks on both sides and the stimulus of the corresponding negative peak. See "RPLPP?" in Appendix I for details, query response, and examples. (Instrument BASIC EXECUTE executable; No equivalent SCPI command; Query only)

RSCO

Resets the color being modified to the default color. (RESET COLOR under (Display); No query)

- Equivalent SCPI Command

```
DISPlay:CMAP:COLor{1-14}:DEFault
```

Parameter	Description
1	Channel 1 data
2	Channel 1 memory and limit lines
3	Channel 2 data
4	Channel 2 memory and limit lines
6	Graticule and a portion of softkey text
7	Warning annotation
8	All the non-data text
$9-14$	Text on the BASIC screen
Pen 1-6	

RSCO

SA

Selects the spectrum analyzer as the analyzer type. (SPECTRUM ANALYZER under (Meas)

- Query Response
$\{0 \mid 1\}<$ new line><<END>

Parameter	
0	Spectrum analyzer is not selected.
1	Spectrum analyzer is selected.

- Equivalent SCPI Command
:INSTrument:TYPEபSA
- Example

OUTPUT 717;"SA"
OUTPUT 717;"SA?"
ENTER 717;A
OUTPUT 717;":INST:TYPE SA"
OUTPUT 717;":INST:TYPE?"
ENTER 717;A\$

SADD

Adds a new segment to a list sweep table. (ADD under (sweep); No query)

- Equivalent SCPI Command
:SENSe:LIST:SEGMent:ADD

$\mathbf{S A U N I T} \sqcup\{\mathbf{D B M}|\mathbf{D B V}| \mathbf{D B U V}|\mathbf{W}| \mathbf{V}\}$

Selects the measurement data unit of the spectrum analyzer on the active channel. (Spectrum analyzer only) (UNIT: dBm, $\mathrm{dBV}, \mathrm{dB} \mu \mathrm{V}$, WATT, VOLT under (Format)

Parameter	
DBM	dBm
DBV	dBV
DBUV	$\mathrm{dB} \mu \mathrm{V}$
W	Watt
V	Volt

- Query Response
$\{\mathrm{DBM}|\mathrm{DBV}| \mathrm{DBUV}|\mathrm{W}| \mathrm{V}\}<$ new line>< $\mathrm{END}>$
- Equivalent SCPI Command

```
SAUNIT\DBM :CALCulate:FORMat\sqcupMLOGarithmic
    :UNIT:POWer\sqcupDBM
SAUNIT\DBV :CALCulate:FORMat\sqcupMLOGarithmic
    :UNIT:POWerUDBV
SAUNIT\sqcupDBUV :CALCulate:FORMat\sqcupMLOGarithmic
    :UNIT:POWer\DBUV
SAUNITDW :CALCulate:FORMatLMLINear
    :UNIT:POWer\sqcupW
SAUNIT\sqcupV :CALCulate:FORMatLMLINear
    :UNIT:POWer\sqcupV
```

- Example
OUTPUT 717;"SAUNIT DBM"
OUTPUT 717;"SAUNIT?"
ENTER 717;A\$
OUTPUT 717;":CALC:FORM MLOG"
OUTPUT 717;":UNIT:POW DBM"
OUTPUT 717;":CALC:FORM?"
ENTER 717;A\$
OUTPUT 717;":UNIT:POW?"
ENTER 717;B\$

SAV1

Completes the S_{11} or S_{22} 1-port calibration. The error coefficients are computed and stored. (Network analyzer only) (DONE: 1-PORT CAL under (Cal); No query)

- Equivalent SCPI Command

```
:SENSe:CORRection:COLLect:SAVE4
```


SAV2

Completes the full or one-path 2-port calibration. The error coefficients are computed and stored. (Network analyzer only) (DONE: 2-PORT CAL under (Cal); No query)

- Equivalent SCPI Command

```
:SENSe:CORRection:COLLect:SAVE8
```


SAVC

Redraws a trace using the current error coefficient array data. (Network and impedance analyzer only) (No query)

- Equivalent SCPI Command

```
:SENSe:CORRection:COLLect:SAVE9
```


SAVC

SAVCAL $\sqcup\{\mathbf{O F F}|\mathbf{O N}| \mathbf{0} \mid \mathbf{1}\}$

Selects whether or not to save the calibration coefficients arrays. (CAL ON off under (Save); No query for the SCPI command)

Parameter	Description
OFF or 0	Does not save the calibration coefficients arrays.
ON or 1	Saves the calibration coefficients arrays.

- Query Response
$\{0 \mid 1\}<$ new line><<END>
- Equivalent SCPI Command

SAVCAL $\sqcup\{0 F F \mid 0\}$:MMEMory:STORe:ITEM:TRACe\{1|2\}:DELete $\angle C C O$
SAVCALப\{0N|1\} :MMEMory:STORe:ITEM:TRACe\{1|2\}:SELectபCCO

SAVCOM

Caluculates the fixture compensation coefficients and store it. (DONE: COMPEN under (Cal); No query; Impedance analyzer only)

- Equivalent SCPI Command
:SENSe:CORRection2:COLLect:SAVE

SAVDASC $\sqcup<$ string $>$

Specifies saving the internal data arrays as an ASCII file. (SAVE ASCII under (Save); No query)

Parameter	
$<$ string $>$	File name, up to 8 characters

- Equivalent SCPI Command
:MMEMory:STORe:DINTerchange:TRACeபSEL,<string (file_name)>[,<string (msus)>]

Parameter	
<string (msus)>	"DISK" for the flexible disk drive
"MEMORY" for the RAM disk memory	

- Example

OUTPUT 717;"SAVDASC ""DATA1"""
OUTPUT 717;":MMEM:STOR:DINT:TRAC SEL,""DATA1"""

SAVDAT $\sqcup\{$ OFF $|\mathbf{O N}| \mathbf{0} \mid \mathbf{1}\}$

Selects whether or not to save the data arrays. (DATA ON off under (Save); No query for the SCPI command)

Parameter	
OFF or 0	Does not save the data arrays.
ON or 1	Saves the data arrays.

- Query Response
$\{0 \mid 1\}<n e w ~ l i n e>\ll E N D>$
- Equivalent SCPI Command

```
SAVDATU{OFF|O} :MMEMory:STORe:ITEM:TRACe{1|2}:DELeteLDATA
```

SAVDATL\{ON|1\} :MMEMory:STORe:ITEM:TRACe\{1|2\}:SELectUDATA

- Example

OUTPUT 717;"SAVDAT ON"

SAVDDAT $\sqcup<$ string $>$

Specifies saving the internal data arrays which are defined by the SAVRAW, SAVCAL, SAVDAT, SAVMEM, SAVTDAT, and SAVTMEM commands. (SAVE BINARY under (Save); No query)

Parameter	
\langle string $>$	File name up to 8 characters

- Equivalent SCPI Command

Parameter	Description
<string (msus)>	"DISK" for the flexible disk drive "MEMORY" for the RAM disk memory

- Example

OUTPUT 717;"SAVDDAT ""DATA1""""
OUTPUT 717;":MMEM:STOR:TRAC SEL,""DATA1""""

SAVDSTA $\sqcup<$ string $>$

Specifies saving only the instrument states and the calibration coefficients. (STATE under (Save); No query)

Parameter	
\langle string $>$	File name up to 8 characters

SAVDSTA $\sqcup<$ string $>$

- Equivalent SCPI Command
:MMEMory:STORe:STATeப<string (file_name)> [,<string (msus)>]

Parameter	
$<$ string $($ msus $)>$	"DISK" for the flexible disk drive
	"MEMORY" for the RAM disk memory

```
- Example
OUTPUT 717;"SAVDSTA ""STA1"""
OUTPUT 717;":MMEM:STOR:STAT ""STA1"""
```


SAVDSTAC $\sqcup<$ string $>$

Specifies saving the instrument states the calibration coefficients and measurement data which are compatible with 4196A. (4396A STATE under (Save); No query)

Note	The following settings are not saved:
- dpi	
	- Printer Orientation
	- Form feed
	- Top Margin
	- Left Margin
	- Print Softkey

Parameter	
$<$ string $>$	File name up to 8 characters

- Equivalent SCPI Command

None

- Example

OUTPUT 717;"SAVDSTA ""STA1"""

SAVDTIF $\sqcup<$ string $>$

Saves the displayed screen in the TIFF format. (GRAPHICS under (Save); No Query)

Parameter	Description
$<$ string $>$	File name having maximum 8 characters

- Equivalent SCPI Command
:MMEMory:STORe:DINTerchange:TIFFப<string (file name)>

SAVDTRC $\sqcup\{\mathbf{O F F}|\mathbf{O N}| \mathbf{0} \mid \mathbf{1}\}$

Sets whether or not to save the trace arrays. (DATA TRACE ON off under (Save); No query for the SCPI command)

Parameter	
OFF or 0	Does not save the trace arrays.
ON or 1	Saves the trace arrays.

- Query Response
$\{0 \mid 1\}<n e w ~ l i n e>\ll E N D>$
- Equivalent SCPI Command

SAVDTRCப\{OFF|0\} :MMEMory:STORe:ITEM:TRACe\{1|2\}:DELeteபDTR
SAVDTRCப\{0N|1\} :MMEMory:STORe:ITEM:TRACe\{1|2\}:SELectபDTR

SAVEUSEK

Stores the user-modified or user-defined calibration kit into memory. (Network and impedance analyzer only) (SAVE USER KIT under (Cal); No query)

- Equivalent SCPI Command
:SENSe:CORRection: CKIT:MODify:SAVE

SAVIMP

Calculates the error-correction coefficients from the calibration data and stores the cefficients. (DONE:CAL under (CAL); No query; Impedance analyzer only)

- Equivalent SCPI Command
:SENSe:CORRection1:COLLect:SAVE

SAVMEM $\sqcup\{\mathbf{O F F}|\mathbf{O N}| \mathbf{0} \mid \mathbf{1}\}$

Specifies whether or not to save the memory arrays. (MEM ON off under (Save); No query for the SCPI command)

Parameter	
OFF or 0	Does not save the memory arrays.
ON or 1	Saves the memory arrays.

- Query Response
$\{0 \mid 1\}<$ new line><<END>
- Equivalent SCPI Command

SAVMEMப\{OFF|0\} :MMEMory:STORe:ITEM:TRACe\{1|2\}:DELete \triangle MEM
SAVMEMப\{ON|1\} :MMEMory:STORe:ITEM:TRACe\{1|2\}:SELectபMEM

SAVMTRC $\sqcup\{\mathbf{O F F}|\mathbf{O N}| \mathbf{0} \mid \mathbf{1}\}$

Specifies whether or not to save the memory trace arrays. (MEM TRACE ON off under (Save); No query for the SCPI command)

Parameter	Description
0 FF or 0	Does not save the memory trace arrays.
ON or 1	Saves the memory trace arrays.

- Query Response
$\{0 \mid 1\}<$ new line><<END>
- Equivalent SCPI Command

```
SAVMTRC\sqcup{OFF|0} :MMEMory:STORe:ITEM:TRACe{1|2}:DELete\sqcupMTR
```

SAVMTRC $\sqcup\{0 N \mid 1\}$:MMEMory:STORe:ITEM:TRACe\{1|2\}:SELectபMTR

SAVRAW $\sqcup\{\mathbf{O F F}|\mathbf{O N}| 0 \mid \mathbf{1}\}$

Specifies whether or not to save the raw data arrays. (RAW ON off under (Save); No query for the SCPI command)

Parameter	
OFF or 0	Does not save the raw data arrays.
ON or 1	Saves the raw data arrays.

- Query Response
$\{0 \mid 1\}<$ new line>< END>
- Equivalent SCPI Command

```
SAVRAWL{OFF|O} :MMEMory:STORe:ITEM:TRACe{1|2}:DELete\RAW
```

SAVRAWப\{ON|1\} :MMEMory:STORe:ITEM:TRACe\{1|2\}:SELectபRAW

SAVUCOMK

Stores the user-modified compensation kit into memory. (SAVE COMPEN KIT under Cal); No query; Impedance analyzer only)

- Equivalent SCPI Command
:SENSe:CORRection2:CKIT:MODifySAVE

SAVUFIXT

Saves the settings of user difined fixture. (SAVE USER FXTR KIT under (Meas) FIXTURE [] ; No query; Impedance analyzer only)

- Equivalent SCPI Command
:SYSTem:FIXTure:SAVE

$\mathbf{S C A C} \sqcup\{\mathbf{O F F}|\mathbf{O N}| \mathbf{0} \mid \mathbf{1}\}$

Couples or uncouples the "DATA" and "MEMORY" traces to be scaled. (D\&M SCALE [] under (Scale Reff;)

Parameter	Description
OFF or 0	Uncouples the "DATA" and "MEMORY" traces.
ON or 1	Couples the "DATA" and "MEMORY" traces.

- Query Response
$\{0 \mid 1\}<n e w ~ l i n e>\ll E N D>$
- Equivalent SCPI Command
:DISPlay[:WINDow]:TRACe\{[1]|2\}:Y[:SCALe]:COUPleL\{OFF|ON|0|1\}
(TRACe[1] for the data trace; TRACe2 for the memory trace.)

$\mathbf{S C A F} \sqcup\{\mathbf{D A T A} \mid$ MEMO $\}$

Selects one of the "DATA" or "MEMORY" traces to be scaled. (SCALE FOR [] under (Scale Ref); No equivalent SCPI command)

- Query Response
$\{$ DATA \mid MEMO $\}<$ new line>< END>

SCAL $\llcorner<$ numeric $>$

Sets the response value scale per graticule trace. (SCALE/DIV under (Scale Ref)

Parameter	Range	Format
<numeric>	0.001 to 500 (Network analyzer)	(Log magnitude format)
	1p to 500 (Network analyzer)	(Phase format)
	1×10^{-14} to 10 (Network analyzer)	(Delay format)
	1×10^{-11} to 10000 (Network analyzer)	(Smith chart, Admittance chart, Polar, Lin mag, Real, Imaginary, SWR, and Expanded phase formats)
	1f to 100 M (Network analyzer)	(Lin mag, Real, Imaginary, SWR, and Expanded phase formats)
	0.1 to 20 (Network analyzer)	($\mathrm{dBm}, \mathrm{dB} \mu \mathrm{V}, \mathrm{dBV}$ formats)
	1f to 0.1 (Network analyzer)	(Watt format)
	1 n to 1 (Network analyzer)	(Volt format)
	1f to 100 M (Impedance analyzer)	(Log mag, Lin mag, and complex plane formats)
	10 f to 500 M (Impedance analyzer)	(Smith chart, Admittance chart, and Polar formats)

SCAL $\sqcup<$ numeric $>$

- Query Response
\{numeric\} <new line><EEND>
- Equivalent SCPI Command
:DISPlay[:WINDow]:TRACe\{[1]|2\}:Y[:SCALe]:PDIVision $\Delta<n u m e r i c>$
(TRACe[1] for the data trace; TRACe2 for the memory trace.)

$\mathbf{S C R N} \sqcup\{\mathbf{O F F}|\mathbf{O N}| \mathbf{0} \mid \mathbf{1}\}$

Controls whether the LCD display is visible or not. (No equivalent SCPI command)

Parameter	Description
OFF or 0	Invisible (only softkey labels are displayed.)
ON or 1	Visible

- Query Response
$\{0 \mid 1\}<n e w ~ l i n e><$ END $>$

SDEL

Deletes a segment from a list sweep table. (DELETE under (Sweep); No query)

- Equivalent SCPI Command
:SENSe:LIST:SEGMent:DELete

SDON

Saves the modified segment of a list sweep table. (SEGMENT DONE under (Sweep); No query)

- Equivalent SCPI Command
:SENSe:LIST:SEGMent:SAVE
- Example

OUTPUT 717;"SDON"
OUTPUT 717;":SENS:LIST:SEG:SAVE"

SEAL

Searches the trace for the next occurrence of the target value to the left of the marker.
(Network and impedance analyzer only) (SEARCH LEFT under (Search); No query)

- Equivalent SCPI Command

```
:CALCulate:EVALuate:Y:XPOSition:LTARget
```


SEAM $\sqcup\{$ PEAK \mid MAX \mid MIN \mid TARG \mid PKSA \mid PKSR \mid PKSL \mid OFF $\}$

Selects the marker search function. (SEARCH: PEAK, MAX, MIN, TARGET, SEARCH: PEAKS ALL, PEAKS RIGHT, PEAKS LEFT under (Search); No query for the SCPI command)

Parameter	Description
PEAK	Peak search
MAX	Maximum search
MIN	Minimum search
TARG	Target search (Network and impedance analyzer only)
PKSA	Peak all
PKSR	Peak right all
PKSL	Peak left all
OFF	Marker search function OFF

- Query Response
\{PEAK|MAX|MIN|TARG|PKSA|PKSR|PKSL|OFF $\}<$ new line><<END>
- Equivalent SCPI Command

SEAM \triangle PEAK	.CALCulate. EVALuate.Y. $\mathrm{XPOSition.PEAK}$
SEAMபMAX	: CALCulate:EVALuate:Y:XPOSition:MAXimum
SEAMபMIN	: CALCulate:EVALuate:Y:XPOSition:MINimum
SEAMDTARG	: CALCulate:EVALuate:Y:XPOSition:TARGetப<numeric>
SEAM \triangle PKSA	: CALCulate:EVALuate:Y:XPOSition:PALL
SEAM \triangle PKSR	: CALCulate:EVALuate: Y: XPOSition:PRIGht
SEAM \triangle PKSL	: CALCulate:EVALuate:Y:XPOSition:PLEFt
SEAM $-0 F F$	None

Parameter	Range	Unit
$<$ numeric $>$ for	-5×10^{5} to 5×10^{5}	
$:$ CALC : EVAL:Y:XPOS:TARG		

```
- Example
```

```
OUTPUT 717;"SEAM PEAK"
```

OUTPUT 717;"SEAM PEAK"
OUTPUT 717;"SEAM?"
ENTER 717;A\$
OUTPUT 717;":CALC:EVAL:Y:XPOS:PEAK"

```

\section*{SEANPK}

Moves the marker to the next peak. (NEXT PEAK under (Search; No query)
- Equivalent SCPI Command
```

:CALCulate:EVALuate:Y:XPOSition:NPEak

```

\section*{SEANPK}

\section*{SEANPKL}

Moves the marker to the peak to the left of the present marker position. (NEXT PEAK LEFT under (Search; No query)
- Equivalent SCPI Command
:CALCulate:EVALuate: Y: XPOSition:LPEak

\section*{SEANPKR}

Moves the marker to the peak to the right of the present marker position. (NEXT PEAK RIGHT under (Search); No query)
- Equivalent SCPI Command
```

:CALCulate:EVALuate:Y:XPOSition:RPEak

```

\section*{SEAR}

Searches the trace for the next occurrence of the target value to the right of the marker. (Network and impedance analyzer only) (SEARCH RIGHT under (Search; No Query)
- Equivalent SCPI Command
```

:CALCulate:EVALuate:Y:XPOSition:RTARget

```

\section*{SEARSTR}

Sets the partial search range to the range between the marker and the \(\Delta\) marker.
(MKRA-SEARCH RNG under (Search); No query)
- Equivalent SCPI Command
:CALCulate: EVALuate: BAND:SPANDDMARker

\section*{SEARSTRL}

Sets the left (lower) border of the partial search range at the current position of the marker. (MKR-LEFT RNG under (Search); No query)
- Equivalent SCPI Command
```

:CALCulate:EVALuate:BAND:STARt\sqcupMARKer

```

■ Example
OUTPUT 717;"SEARSTRL"
OUTPUT 717;":CALC:EVAL:BAND:STAR MARK"

\section*{SEARSTRR}

Sets the right (higher) border of the partial search range at the current position of the marker. (MKR-RIGHT RNG under (Search); No query)
- Equivalent SCPI Command
```

:CALCulate:EVALuate:BAND:STOP LMARKer

```

■ Example
OUTPUT 717;"SEARSTRR"
OUTPUT 717;":CALC:EVAL:BAND:STOP MARK"

\section*{SEATARG \(\sqcup<\) numeric \(>\) [DB \(\mid\) DEG \(|\mathbf{S}| \mathbf{O H M}]\)}

Makes the target value to the active function to enter a value and moves the marker to a specified target point on the trace. (Network and impedance analyzer only) (TARGET under (Search)
\begin{tabular}{c|c|c} 
Parameter & Range & Unit \\
\hline\(<\) numeric \(>\) & \(-5 \times 10^{5}\) to \(5 \times 10^{5}\) &
\end{tabular}
- Query Response
\(\{\) numeric \(\}<\) new line \(><\) ENDD \(>\)
- Equivalent SCPI Command
:CALCulate:EVALuate:Y:XPOSition:TARGetப<numeric>
- Example
```

 OUTPUT 717;"SEATARG 0"
    ```

\section*{SEDI \(\sqcup<\) numeric \(>\)}

Determines the segment of the list sweep table to be modified. (EDIT under (Sweep); No query for the SCPI command)
\begin{tabular}{c|lc} 
Parameter & & Description \\
\hline\(<\) numeric \(>\) & 1 to 15 &
\end{tabular}
- Query Response
\(\{\) numeric \(\}<\) new line>< \(<\) END \(>\)
- Equivalent SCPI Command
:SENSe:LIST:SEGMent:EDIT

SEDI \(\sqcup<\) numeric \(>\)

SETCDATE \(\sqcup<\) numeric (year) \(>,<\) numeric (month) \(>,<\) numeric (day) \(>\)
Sets the date of the internal clock. (DATE MM/DD/YY under (System)
\begin{tabular}{c|ll} 
Parameter & & Description \\
\hline\(<\) numeric (year) \(>\) & 1900 to 2099 & \\
\(<\) numeric (month) \(>\) & 1 to 12 \\
\(<\) numeric (day) \(>\) & 1 to 31
\end{tabular}
- Query Response
\(\{\) numeric (year) \(\}\{\) numeric (month) \(\}\{\) numeric \((\) day \()\}<\) new line \(>\ll \mathrm{END}>\)
- Equivalent SCPI Command
:SYSTem:DATEப<numeric (year)>, <numeric (month)>,<numeric (day)>
- Example

OUTPUT 717;"SETCDATE 1993,1,1"

\section*{SETCTIME \(\sqcup<\) numeric (hour) \(>,<\) numeric (minute) \(\rangle,<\) numeric (second) \(>\)}

Sets the time of the internal clock. (SETCTIME under System)
\begin{tabular}{c|cc} 
Parameter & & Description \\
\hline\(<\) numeric (hour)> & 0 to 23 & \\
\(<\) numeric \((\) minute \()>\) & 0 to 59 & \\
\(<\) numeric \((\) second \()>\) & 0 to 59 &
\end{tabular}
- Query Response
\(\{\) numeric (hour) \(\}\{\) numeric (minute) \(\}\{\) numeric (second) \(\}<\) new line \(>\ll\) END \(>\)
- Equivalent SCPI Command
:SYSTem:TIME \(\sqcup<\) numeric (hour)>,<numeric (minute)> ,<numeric (second)>
- Example

OUTPUT 717;"SETCTIME 10,30,0"

\section*{\(\mathbf{S E T Z} \sqcup<\) numeric \(>\) [OHM \(\mid\) KOHM \(\mid\) MAOHM \(]\)}

Sets the characteristic impedance of the coaxial cable offset. (Network analyzer only) (SET ZO under (Cal)
\begin{tabular}{c|l|l} 
Parameter & Range & Unit \\
\hline\(<\) numeric \(>\) & 0.001 to 5 M & \(\Omega\)
\end{tabular}
- Query Response
\(\{\) numeric \(\}<\) new line><<END>
- Equivalent SCPI Command
: SENSe: CORRection:CIMPedanceப〈numeric>

\section*{\(\mathbf{S G T R K} \sqcup\{\mathbf{O F F}|\mathbf{O N}| \mathbf{0} \mid \mathbf{1}\}\)}

Sets the signal tracking function ON or OFF. (Spectrum analyzer only) (SGNL TRACK ON off under (Search])
\begin{tabular}{c|ll} 
Parameter & & Description \\
\hline OFF or 0 & Signal tracking OFF & \\
ON or 1 & Signal tracking ON &
\end{tabular}
- Query Response
\{0|1\} <new line><<END>
- Equivalent SCPI Command
```

:SENSe:TRACk:SIGNal:MARKer|{OFF|ON|O|1}

```

\section*{SIMFCHAR}

Simulates frequency response of the equivalent circuit. (SIMULTE F-CHAR under Display; No query; Impedance analyzer only)
- Equivalent SCPI Command

CALCulate:EVALuate: EPARameters:SIMulation

\section*{SIMFCHAR}

\section*{SING}

Makes one sweep of the data and returns to the hold mode. (Instrument BASIC EXECUTE executable; SINGLE under (Trigger); No query;)

When you execute this command by EXECUTE command of the instruement BASIC, the analyzer sweeps once and then back the control to the analyzer. The program waits the completion of sweep. You can use this method instead of detecting the sweep end by monitoring the status register to synchronize the program with the analyzer.
- Equivalent SCPI Command
```

:INITiate:CONTinuous}\sqcup{OFF|O
:ABORt
:SENSe:SWEep:COUNtD1
:INITiate[:IMMediate]

```
- Example
```

OUTPUT 717;"SING"
OUTPUT 717;":INIT:CONT OFF"
OUTPUT 717;":SENS:SWE:COUN 1"
OUTPUT 717;":INIT"
EXECUTE "SING"

```

\section*{\(\mathbf{S L O P} \sqcup\{\mathbf{O F F}|\mathbf{O N}| 0 \mid \mathbf{1}\}\)}

Sets the power slope function ON or OFF. With the slope ON, the output power increases with frequency (starting at the selected power level). (Network analyzer only) (SLOPE ON off under (Source)
\begin{tabular}{c|ll} 
Parameter & & Description \\
\hline OFF or 0 & Power slope function OFF & \\
ON or 1 & Power slope function ON &
\end{tabular}
- Query Response
\(\{0 \mid 1\}<\) new line>< \({ }^{-}\)END>
- Equivalent SCPI Command
```

:SOURce:POWer[:LEVel][:IMMediate][:AMPLitude]:SLOPe:STATe\sqcup{OFF|ON|O|1}

```

\section*{SLOPE \(\sqcup<\) numeric \(>\)}

Compensates for the power loss versus the frequency sweep, by sloping the output power upwards proportionally to the frequency. (Network analyzer only) (SLOPE under (Source))
\begin{tabular}{c|l|l} 
Parameter & Range & Unit \\
\hline\(<\) numeric \(>\) & 0 to 2 & \(\mathrm{~dB} / \mathrm{GHz}\)
\end{tabular}
- Query Response
\(\{\) numeric \(\}<\) new line><<END>
- Equivalent SCPI Command
:SOURce:POWer [:LEVel] [:IMMediate] [:AMPLitude]:SLOPeL<numeric>

\section*{SMKR \(\{\mathbf{1 - 7}\} \sqcup\{\mathbf{O F F}|\mathbf{O N}| \mathbf{0} \mid \mathbf{1}\}\)}

Displays the specified sub-marker at the point of the marker (ON), or erases the sub-marker (OFF). (SUB MKR \(\{1-7\}\) under (Marker)
\begin{tabular}{c|l|} 
Parameter & \\
\hline OFF or 0 & Sub-marker ON \\
ON or 1 & Sub-marker OFF
\end{tabular}
- Query Response
\(\{0 \mid 1\}<n e w ~ l i n e><\) END \(>\)
- Equivalent SCPI Command
```

SMKR1ப{OFFION|O|1} :DISPlay[:WINDow]:TRACe{[1]|2}:MARKer2:STATeL{OFF|ON|O|1}
SMKR2\sqcup{OFFION|O|1} :DISPlay[:WINDow]:TRACe{[1]|2}:MARKer3:STATeU{OFF|ON|O|1}
SMKR3U{OFF|ON|O|1} :DISPlay[:WINDow]:TRACe{[1]|2}:MARKer4:STATeU{OFF|ON|O|1}
SMKR4U{OFFION|O|1} :DISPlay[:WINDow]:TRACe{[1]|2}:MARKer5:STATeL{OFF|ON|O|1}
SMKR5U{OFFION|O|1} :DISPlay[:WINDow]:TRACe{[1]|2}:MARKer6:STATeU{OFF|ON|O|1}
SMKR6\sqcup{OFFION|O|1} :DISPlay[:WINDow]:TRACe{[1]|2}:MARKer7:STATe\sqcup{OFF|ON|O|1}
SMKR7U{OFFION|O|1} :DISPlay[:WINDow]:TRACe{[1]|2}:MARKer8:STATeL{OFF|ON|O|1}

```
(TRACe[1] for the data trace; TRACe2 for the memory trace.)

\section*{SMKR \(\{1-7\} \cup\{\mathbf{O F F}|\mathbf{O N}| 0 \mid 1\}\)}

\section*{SMKRAUV \{1-7\}?}

Outputs the auxiliary amplitude value of the measurement value at the sub-marker position. See "Marker Readout" in Appendix H for the auxiliary amplitude value of each display format. (SUB MKR \(\{1-7\) \} under (Marker); Query only)
- Query Response
\{numeric\} <new line><EEND>
- Equivalent SCPI Command
```

SMKRAUV1? :CALCulate:EVALuate:Y2:VALue2?
SMKRAUV2? :CALCulate:EVALuate:Y3:VALue2?
SMKRAUV3? :CALCulate:EVALuate:Y4:VALue2?
SMKRAUV4? :CALCulate:EVALuate:Y5:VALue2?
SMKRAUV5? :CALCulate:EVALuate:Y6:VALue2?
SMKRAUV6? :CALCulate:EVALuate:Y7:VALue2?
SMKRAUV7? :CALCulate:EVALuate:Y8:VALue2?

```
- Example

OUTPUT 717;"SMKRAUV1?"
ENTER 717;A

\section*{SMKRP \(\{\) 1-7 \(\} \sqcup<\) numeric \(>\)}

Moves the sub-marker to the specified data point number.
\begin{tabular}{c|l} 
Parameter & \multicolumn{1}{c}{ Description } \\
\hline\(<\) numeric \(>\) & \begin{tabular}{l}
1 to "number of points" \\
(If \(<\) numeric \(>\) is 0 or less than 0, it is set to 1. \\
If \(<\) numeric \(>\) is greater than "number of points," it is set to "number of points.")
\end{tabular}
\end{tabular}
- Query Response
\{numeric\} <new line><EEND>
- Equivalent SCPI Command
```

SMKRP1ப<numeric> :CALCulate:EVALuate:Y2:XPOSition:POINt\sqcup<numeric>
SMKRP2ப<numeric> :CALCulate:EVALuate:Y3:XPOSition:POINt\sqcup<numeric>
SMKRP3ப<numeric> :CALCulate:EVALuate:Y4:XPOSition:POINt\sqcup<numeric>
SMKRP4\sqcup<numeric> :CALCulate:EVALuate:Y5:XPOSition:POINt\sqcup<numeric>
SMKRP5ப<numeric> :CALCulate:EVALuate:Y6:XPOSition:POINtப<numeric>
SMKRP6ப<numeric> :CALCulate:EVALuate:Y7:XPOSition:POINtப<numeric>
SMKRP7ப<numeric> :CALCulate:EVALuate:Y8:XPOSition:POINt\sqcup<numeric>
■ Example

```
```

OUTPUT 717;"SMKRP1 1"
OUTPUT 717;"SMKRP1?"
ENTER 717;A

```

\section*{SMKRPRM \(\{\) 1-7 \(\} \sqcup<\) numeric \(>\) [HZ \(\mid\) KHZ \(\mid\) MAHZ \(\mid\) GHZ \(\mid\) DBM \(]\)}

Moves the sub-marker to the specified sweep parameter value. (SUB MKR \{1-7\} under (Marker)
\begin{tabular}{c|l|l} 
Parameter & \multicolumn{1}{c|}{ Range } & \multicolumn{1}{c}{ Unit } \\
\hline\(<\) numeric \(>\) & start value to stop value & \begin{tabular}{l} 
Hz (frequency) \\
dBm (power)
\end{tabular}
\end{tabular}
- Query Response
\(\{\) numeric \(\}<\) new line><-END>
- Equivalent SCPI Command
\begin{tabular}{|c|c|}
\hline SMKRPRM1ப<numeric> & : CALCulate:EVALuate:Y2:XPOSitionப<numeric> \\
\hline SMKRPRM2ப<numeric> & : CALCulate: EVALuate:Y3:XPOSition \(\<\) numeric> \\
\hline SMKRPRM3ப<numeric> & : CALCulate: EVALuate:Y4:XPOSitionப<numeric> \\
\hline SMKRPRM4 <numeric> \(^{\text {c }}\) & : CALCulate:EVALuate:Y5:XPOSitionU<numeric> \\
\hline SMKRPRM5ப<numeric> & : CALCulate:EVALuate:Y6:XPOSition \(\triangle\) <numeric> \\
\hline SMKRPRM6ப<numeric> & : CALCulate: EVALuate:Y7:XPOSition \(\langle<n u m e r i c>\) \\
\hline SMKRPRM7ப<numeric> & : CALCulate: EVALuate:Y8:XP0Sitionப<numeric> \\
\hline
\end{tabular}

\section*{SMKRVAL \(\{\) 1-7\}?}

Outputs the primary part of the measurement value at the sub-marker position. (SUB MKR \{1-7\} under (Marker); Query only)
- Query Response
\(\{\) numeric \(\}<\) new line \(><\) ENDD \(>\)
- Equivalent SCPI Command
```

SMKRVAL1? :CALCulate:EVALuate:Y2:VALue1?
SMKRVAL2? :CALCulate:EVALuate:Y3:VALue1?
SMKRVAL3? :CALCulate:EVALuate:Y4:VALue1?
SMKRVAL4? :CALCulate:EVALuate:Y5:VALue1?
SMKRVAL5? :CALCulate:EVALuate:Y6:VALue1?
SMKRVAL6? :CALCulate:EVALuate:Y7:VALue1?
SMKRVAL7? :CALCulate:EVALuate:Y8:VALue1?

```

\section*{SMKRVAL\{1-7\}?}

\section*{SPAN \(\sqcup<\) numeric \(>\) [HZ \(|\mathbf{K H Z}| \mathbf{M A H Z}|\mathbf{G H Z}| \mathbf{D B M}]\)}

Sets the frequency span of a segment about a specified center frequency, or sets the frequency span of the list sweep table. ( \((\underline{S P A N})\) or SPAN under (Sweep)
\begin{tabular}{c|l|l} 
Parameter & \multicolumn{1}{|c|}{ Range } & \multicolumn{1}{c}{ Unit } \\
\hline\(<\) numeric \(>\) & \begin{tabular}{l}
0 to \(1.8199 \times 10^{9}(=1.8199 \mathrm{G})\) \\
0 to 20 or \(30^{1}\)
\end{tabular} & \begin{tabular}{l} 
Hz (frequency) \\
dBm (power)
\end{tabular}
\end{tabular}

1 The maximum range depends on the center value.
- Query Response
\(\{\) numeric \(\}<\) new line>< \(<\) END \(>\)
- Equivalent SCPI Command
\begin{tabular}{ll} 
Span & :SENSe:FREQuency:SPAND<numeric> (frequency) or \\
& :SOURCe:POWer:SPAN <numeric> (power) \\
Span under Sweep & :SENSe:LIST:SEGMent:FREQuency:SPANப<numeric>
\end{tabular}
(List sweep table)

SPECFWD \(\{\mathbf{M} \mid \mathbf{T}\} \sqcup<\) numeric \(1>[,<\) numeric \(2>[, \ldots[,<\) numeric \(7>]\)
Enters the standard numbers for the forward match (THRU) or forward transmission (THRU) calibration. (Network analyzer only) (FWD.MATCH, FWD.TRANS. under ( \(\overline{\text { Cal }}\) ); No query)
\begin{tabular}{l|ll} 
Parameter & & Description \\
\hline\(<\) numeric \(>\) & 1 to 8 &
\end{tabular}
- Equivalent SCPI Command
```

SPECFWDM :SENSe:CORRection:CKIT:CLASs9:STANdard\sqcup<numeric 1> [,<numeric 2>
[,... [,<numeric 7>]
SPECFWDT :SENSe:CORRection:CKIT:CLASs7:STANdard\sqcup<numeric 1> [,<numeric 2>
[,... [,<numeric %>]

```
- Example

OUTPUT 717;"SPECFWDM 1"
OUTPUT 717;":SENS:CORR:CKIT:CLAS9:STAN 1"

\section*{SPECIMP \(\{\mathbf{A}|\mathbf{B}| \mathbf{C}\} \sqcup<\) numeric \(1>[,<\) numeric \(\mathbb{Z}>[, \ldots[,<\) numeric \(7>]\)}

Enters the standard numbers for the first, second, or third standard class required for an impednace calibration. (SPECIFY CLASS under (Cal); No query. Impedance analyzer only.)
\begin{tabular}{c|lc} 
Parameter & & Description \\
\hline\(<\) numeric \(>\) & 1 to 8 &
\end{tabular}
- Equivalent SCPI Command

SPECREV \(\{\mathbf{M} \mid \mathbf{T}\} \sqcup<\) numeric \(1>[,<\) numeric \(2>[, \ldots[,<\) numeric \(7>]\)
```

SPECIMPA :SENSe:CORRection:CKIT:CLASs13:STANdard\sqcup<numeric 1>[,<numeric 2>
[,... [,<numeric 7>]
SPECIMPB :SENSe:CORRection:CKIT:CLASs14:STANdard\sqcup<numeric 1> [,<numeric 2>
[,... [,<numeric 7>]
SPECIMPC :SENSe:CORRection:CKIT:CLASs15:STANdard\sqcup<numeric 1>[,<numeric 2>
[,... [,<numeric 7>]

```

\section*{SPECRES \(\{\mathbf{I} \mid \mathbf{P}\} \sqcup<\) numeric \(1>[,<\) numeric \(2>[, \ldots[,<\) numeric \(7>]\)}

Enters the standard numbers for a response and isolation, or a response calibration. (Network analyzer only) (RESPONSE \& ISOL'N, RESPONSE under (Cal); No query)
\begin{tabular}{c|lc} 
Parameter & & Description \\
\hline\(<\) numeric \(>\) & 1 to 8 &
\end{tabular}
- Equivalent SCPI Command

SPECRESI :SENSe:CORRection:CKIT:CLASs12:STANdardப<numeric 1\(\rangle[,\langle\) numeric 2\(\rangle\) [, ... [,<numeric 7\(\rangle\) ]

SPECRESP :SENSe:CORRection:CKIT:CLASs11:STANdard \(\sqcup\langle\) numeric 1\(\rangle[,\langle\) numeric 2\(\rangle\) [, ... [,<numeric 7>]

\section*{SPECREV \(\{\mathbf{M} \mid \mathbf{T}\} \sqcup<\) numeric \(1>[,<\) numeric \(2>[, \ldots[,<\) numeric \(7>]\)}

Enters the standard numbers for the reverse match (THRU) or reverse transmission (THRU) calibration. (Network analyzer only) (REV.MATCH, REV.TRANS. under (Cal); No query)
\begin{tabular}{l|ll} 
Parameter & & Description \\
\hline\(\langle\) numeric \(\rangle\) & 1 to 8 &
\end{tabular}
- Equivalent SCPI Command

SPECREVM :SENSe:CORRection:CKIT:CLASs10:STANdardப<numeric 1>[,<numeric 2> [, ... [,<numeric \(7>\) ]

SPECREVT :SENSe:CORRection:CKIT:CLASs8:STANdardU<numeric \(1>[\),<numeric \(2>\) [,... [,<numeric \(\gg] \mathrm{f}\)
\(\operatorname{SPECREV}\{\mathbf{M} \mid \mathbf{T}\} \sqcup<\) numeric \(1>[,<\) numeric \(2>[, \ldots[,<\) numeric \(7>]\)
SPECS11 \(\{\mathbf{A}|\mathbf{B}| \mathbf{C}\} \sqcup<\) numeric \(1>[,<\) numeric \(2>[\), \(\ldots[,<\) numeric \(7>]\)
Enters the standard numbers for the first, second, or third standard class required for an \(S_{11}\) 1-port calibration. (Network analyzer only) (SPECIFY: S11A, S11B, S11C under (Cal); No query)
\begin{tabular}{c|lc} 
Parameter & & Description \\
\hline\(<\) numeric \(>\) & 1 to 8 &
\end{tabular}
- Equivalent SCPI Command

SPECS11A : SENSe:CORRection:CKIT:CLASs1:STANdardப<numeric 1\(\rangle[,\langle\) numeric 2> [, ... [,<numeric 7>]

SPECS11B :SENSe:CORRection:CKIT:CLASs2:STANdardப<numeric \(1>[,\langle\) numeric 2> [, ... [,<numeric 7>]

SPECS11C :SENSe:CORRection:CKIT:CLASs3:STANdardப<numeric \(1>[\),<numeric 2> [, ... [,<numeric \(\gg]\)

\section*{SPECS22 \(\{\mathbf{A}|\mathbf{B}| \mathbf{C}\} \sqcup<\) numeric \(1>[,<\) numeric \(2>[, \ldots[,<\) numeric \(7>]\)}

Enters the standard numbers for the first, second, or third standard class required for an \(\mathrm{S}_{22}\) 1-port calibration. (Network analyzer only) (SPECIFY: S22A, S22B, S22C under (Cal); No query)
\begin{tabular}{c|lc} 
Parameter & & Description \\
\hline\(<\) numeric \(>\) & 1 to 8 &
\end{tabular}
- Equivalent SCPI Command

SPECS22A :SENSe:CORRection:CKIT:CLASs4:STANdardU<numeric 1>[,<numeric 2>


SPECS22B :SENSe:CORRection:CKIT:CLASs5:STANdardU<numeric 1>[,<numeric 2> [, ... [,<numeric 7>]

SPECS22C :SENSe:CORRection:CKIT:CLASs6:STANdardU<numeric 1>[,<numeric 2> [, ... [, <numeric >>]

\section*{\(\mathbf{S P L D} \sqcup\{\mathbf{O F F}|\mathbf{O N}| \mathbf{0} \mid \mathbf{1}\}\)}

Sets the dual channel display mode. (SPLIT DISP ON off under ( \(\overline{\text { isplay })}\)
\begin{tabular}{c|l} 
Parameter & \multicolumn{1}{c}{ Description } \\
\hline OFF or 0 & Full-screen single graticule display \\
ON or 1 & Split display with two half-screen graticules
\end{tabular}
- Query Response
\(\{0 \mid 1\}<n e w ~ l i n e>\ll E N D>\)
- Equivalent SCPI Command
```

SPLD\sqcup{OFF|0} :DISPlay[:WINDow]:FORMatDFBACk
SPLD\sqcup{ON|1} :DISPlay[:WINDow]:FORMat\sqcupULOWer

```

\section*{SQUI}

Terminates editing a segment of the list sweep table. (SEGMENT QUIT under (Sweep); No query)
- Equivalent SCPI Command
:SENSe:LIST:SEGMent:QUIT

\section*{STAN \(\{\mathbf{A - G}\}\)}

Measures the calibration standard in the current standard class. (Network analyzer only) (OPEN, SHORT, THRU, OPEN [ ], SHORT [ ], defined std \{1-7\} under (Cal]; No query)
- Equivalent SCPI Command
```

STANA :SENSe:CORRection:COLLect[:ACQuire]DSTANdard1
STANB :SENSe:CORRection:COLLect[:ACQuire]USTANdard2
STANC :SENSe:CORRection:COLLect[:ACQuire]USTANdard3
STAND :SENSe:CORRection:COLLect[:ACQuire]USTANdard4
STANE :SENSe:CORRection:COLLect[:ACQuire] USTANdard5
STANF :SENSe:CORRection:COLLect[:ACQuire]DSTANdard6
STANG :SENSe:CORRection:COLLect[:ACQuire]DSTANdard7

```

\section*{STAR \(\sqcup<\) numeric \(>[\mathbf{H Z}|\mathbf{K H Z}| \mathbf{M A H Z}|\mathbf{G H Z}| \mathbf{D B M}]\)}

Sets the start value of a segment, or sets the start value of the list sweep table. (Start) or SEGMENT: START under (Sweep)
\begin{tabular}{c|l|l} 
Parameter & \multicolumn{1}{|c}{ Range } & \multicolumn{1}{c}{ Unit } \\
\hline\(<\) numeric \(>\) & \(100000(=100 \mathrm{k})\) to \(1.82 \times 10^{9}(=1.82 \mathrm{G})\) (Network & Hz (frequency) \\
analyzer) & \\
& \begin{tabular}{l} 
to \(1.82 \times 10^{9}(=1.82 \mathrm{G})\) (Spectrum analyzer) \\
-60 to 20
\end{tabular} & dBm (power)
\end{tabular}
```

STAR }\sqcup<\mathrm{ numeric>[HZ|KHZ|MAHZ|GHZ|DBM]

```
- Query Response
\{numeric\} <new line><EEND>
- Equivalent SCPI Command
```

START :SENSe:FREQuency:STARt\square<numeric> (frequency) or
:SOURce:POWer:STARtU<numeric> (power)
SEGMENT: START under (Sweep) :SENSe:LIST:SEGMent:FREQuency:STARtப<numeric>
(List sweep table)

```

\section*{STDD}

Terminates the standard definition. (Network and impedance analyzer only)
(STD DONE (DEFINED) under (Cal); No query)
- Equivalent SCPI Command
:SENSe:CORRection:CKIT:STANdard:SAVE

\section*{STDT \(\sqcup\{\) OPEN \(\mid\) SHOR \(\mid\) LOAD \(\mid\) DELA \(\mid\) ARBI \(\}\)}

Defines the standard type. (Network and impedance analyzer only) (STD TYPE: OPEN, SHORT, LOAD, DELAY/THRU, ARBITRARY IMPEDANCE under (Cal])
\begin{tabular}{c|l} 
Parameter & \multicolumn{1}{c}{ Description } \\
\hline OPEN & OPEN \\
SHOR & SHORT \\
LOAD & LOAD \\
DELA & Transmission line of specified length \\
ARBI & LOAD with an arbitrary impedance
\end{tabular}
- Query Response
\{OPEN|SHOR|LOAD|DELA|ARBI\} <new line>< \({ }^{\text {ENDD }}\) >
- Equivalent SCPI Command
:SENSe: CORRection:CKIT:STANdard:TYPE \(\sqcup\{O P E N|S H O R t| L O A D|D E L a y| A I M P e d a n c e\}\)

\section*{STOD \(\{\) DISK \(\mid\) MEMO \(\}\)}

Sets the storage device. (STOR DEV[ ] under (Save); No query; No equivalent SCPI command)
\begin{tabular}{c|l|} 
Parameter & \\
\hline STODDISK & Flexible disk drive \\
STODMEMO & RAM disk memory
\end{tabular}

\section*{STOP \(\sqcup<\) numeric \(>\) [HZ \(|\mathbf{K H Z}| \mathbf{M A H Z}|\mathbf{G H Z}| \mathbf{D B M}]\)}

Sets the stop value frequency of a segment, or the stop value of the list table. (STOP) or STOP under (Sweep)
\begin{tabular}{|c|c|c|}
\hline Parameter & Range & Unit \\
\hline <numeric> & \begin{tabular}{l}
\(100000(=100 \mathrm{k})\) to \(1.82 \times 10^{9}(=1.82 \mathrm{G})\) (Network analyzer) \\
0 to \(1.82 \times 10^{9}(=1.82 \mathrm{G})\) (Spectrum analyzer)
\[
-60 \text { to } 20
\]
\end{tabular} & \begin{tabular}{l}
Hz (frequency) \\
dBm (power)
\end{tabular} \\
\hline
\end{tabular}
- Query Response
\{numeric \(\}\) <new line><<END>
- Equivalent SCPI Command
\begin{tabular}{|c|c|}
\hline Stop & :SENSe:FREQuency:STOPப<numeric> (frequency) or :SOURce:POWer:STOPU<numeric> (power) \\
\hline Stop & :SENSe:LIST:SEGMent:FREQuency:STOPப<numeric> \\
\hline ist sweep table) & \\
\hline
\end{tabular}

\section*{SVCO}

Saves the modified version of the color set to the non-volatile memory. (SAVE COLORS under (Display); No query)
- Equivalent SCPI Command
: DISPlay:CMAP:STORe

\section*{SWET \(\sqcup<\) numeric \(>[\mathbf{S} \mid \mathbf{M S}]\)}

Sets the sweep time. (SWEEP TIME under (sweep)
\begin{tabular}{c|l|l} 
Parameter & \multicolumn{1}{|c|}{ Range } & Unit \\
\hline\(<\) numeric \(>\) & (depends on the analyzer's setting) & s
\end{tabular}
- Query Response
\(\{\) numeric \(\}\) <new line><-END>
- Equivalent SCPI Command
:SENSe:SWEep:TIMEப<numeric>

\section*{\(\mathbf{S W E T} \sqcup<\) numeric \(>[\mathbf{S} \mid \mathbf{M S}]\)}

\section*{SWETAUTO \(\sqcup\{\mathbf{O F F}|\mathbf{O N}| \mathbf{0} \mid \mathbf{1}\}\)}

Sets the automatic or manual sweep time. The automatic mode gives the fastest sweep time at the analyzer's current settings of the channel. (SWEEP TIME AUTO man under (Sweep))
\begin{tabular}{c|ll} 
Parameter & & Description \\
\hline OFF or 0 & Manual sweep time & \\
ON or 1 & Automatic sweep time &
\end{tabular}
- Query Response
\(\{0 \mid 1\}<\) new line><<END>
■ Equivalent SCPI Command
```

:SENSE:SWEep:TIME:AUTOD{OFF|ON|O|1}

```

\section*{\(\mathbf{S W P T} \sqcup\{\mathbf{L I N F} \mid\) LOGF|LIST \(\mid\) POWE \(\}\)}

Selects the sweep type. (SWEEP TYPE:IIN FREQ, LOG FREQ, LIST FREQ, POWER SWEEP under (Sweep)
\begin{tabular}{c|l} 
Parameter & \multicolumn{1}{c}{ Description } \\
\hline LINF & Linear frequency \\
LOGF & Log frequency (Network and impedance analyzer only) \\
LIST & Frequency list \\
POWE & Power (Network and impedance analyzer only)
\end{tabular}
- Query Response
\(\{\) LINF|LOGF|LIST|POWE \(\}<\) new line \(><\) ERND \(>\)
- Equivalent SCPI Command
```

SWPT\LINF :SENSe:FREQuency:MODEDSWEep
:SOURce:POWer:MODE\sqcupFIXed
:SENSe:SWEep:SPACing\LINear
SWPT\LOGF :SENSe:FREQuency:MODEDSWEep
:SOURce:POWer:MODE\sqcupFIXed
:SENSe:SWEep:SPACingDLOGarithmic
SWPT\sqcupLIST :SENSe:FREQuency:MODEDLIST
:SOURce:POWer:MODEDLIST
:SENSe:SWEep:SPACing\LINear
SWPTDPOWE :SENSe:FREQuency:MODEDFIXed
:SOURce:POWer:MODEDSWEep
:SENSe:SWEep:SPACing\LINear

```

\section*{TARL?}

Searches for the point having the parameter-specified value leftward from the right end of the range, and returns its stimulus. See "TARL?" in Appendix I for details, query response, and examples. (Instrument BASIC EXECUTE executable; No equivalent SCPI command; Query only)

\section*{TARR?}

Searches for the point having the parameter-specified value rightward from the left end of the range, and returns its stimulus. See "TARR?" in Appendix I for details, query response, and examples. (Instrument BASIC EXECUTE executable; No equivalent SCPI command; Query only)

\section*{TERI \(\sqcup<\) numeric \(>\) [ \(\mathbf{O H M} \mid \mathbf{K O H M}]\)}

Specifies the (arbitrary) impedance of the standard. (Network and impedance analyzer only) (TERMINAL IMPEDANCE under (Cal); No query)
\begin{tabular}{c|l|l} 
Parameter & Range & Unit \\
\hline\(<\) numeric \(>\) & 0 to \(10000(=10 \mathrm{k})\) & \(\Omega\)
\end{tabular}
- Equivalent SCPI Command
:SENSe:CORRection:CKIT:STANdard:TIMPedanceப<numeric>

\section*{TESS?}

Outputs the test set identifier. (Network analyzer only) (Query only)
- Query Response
\(\{0 \mid 1\}<\) new line \(><\) - END \(>\)
\begin{tabular}{c|l} 
Parameter & \\
\hline 0 & None \\
1 & S-parameter test set
\end{tabular}
- Equivalent SCPI Command
:SYSTem:COMMunicate:TSET?

\section*{THRR \(\sqcup<\) numeric \(>\)}

Sets threshold ripple height for waveform analysis commands. See "THRR" in Appendix I for details, query response, and examples. (Instrument BASIC EXECUTE executable; No equivalent SCPI command; Query only)

THRR \(\sqcup<\) numeric \(>\)
TINT \(\sqcup<\) numeric \(>\)
Adjusts the hue of the specified display element. (TINT under (Display); No equivalent SCPI command)
\begin{tabular}{c|l|l} 
Parameter & Range & Unit \\
\hline\(<\) numeric \(>\) & 0 to 100 & \(\%\)
\end{tabular}
- Query Response
\(\{\) numeric \(\}<\) new line><-END>

\section*{TITL \(\sqcup<\operatorname{string}>\)}

Sends the string to the title area on the display. (TITLE under (Display)
\begin{tabular}{c|lc} 
Parameter & & Description \\
\hline\(<\) string \(>\) & up to 53 characters &
\end{tabular}
- Query Response
\(\{\) string \(\}<\) new line \(><\) END \(>\)
- Equivalent SCPI Command
:DISPlay[:WINDow]:TEXT17[:DATA] ப<string>
- Example
```

OUTPUT 717;"TITL ""COMMENT"""
OUTPUT 717;"TITL?"
ENTER 717;A\$
OUTPUT 717;":DISP:TEXT17 ""COMMENT"""
OUTPUT 717;":DISP:TEXT17?"
ENTER 717;A\$

```

\section*{TMARG \(\sqcup<\) numeric \(>\)}

Specify the value for the top margin of printed paper. (TOP MARGIN under (Copy))
\begin{tabular}{c|l|l} 
Parameter & Range & \\
\hline\(<\) numeric \(>\) & 0 to 5 & Unit \\
\hline
\end{tabular}
- Query Response
\(\{\) numeric \(\}<\) new line \(><\) - END \(>\)
- Equivalent SCPI Command
: HCOPy:DRIVer:TOPMarg \(ப<\) numeric>

\section*{TOPV \(\sqcup<\) numeric \(>\)}

Defines the top border of the display and adjusts the scale value. (TOP VALUE under (Scale Ref); Impedance analyzer only.)
\begin{tabular}{c|c|l} 
Parameter & & Range
\end{tabular}
- Query Response
<numeric><new line>< \({ }^{\text {ENND }}>\)
- Equivalent SCPI Command
```

:DISPlay[:WINDow]:TRACe{1|2}:Y[:SCALe]:TOP\sqcup<numeric>

```

\section*{TRACK \(\sqcup\{\mathbf{O F F}|\mathbf{O N}| \mathbf{0} \mid \mathbf{1}\}\)}

Sets the search tracking function ON or OFF. (SRCH TRACK ON off under (Search)
- Query Response
\(\{0 \mid 1\}<\) new line><<END>
- Equivalent SCPI Command
```

TRACK\sqcup{0FF|O} :CALCulate:EVALuate:Y:XPOSition:TRACk\sqcupOFF
TRACK}\sqcup{0N|1} :CALCulate:EVALuate:Y:XPOSition:TRACkL
{MAXimum|MINimum|TARGet|PEAK|PALL|PLEFt|PRIGht}

```
\begin{tabular}{c|l|} 
Parameter & \\
\hline MAXimum & Maximum search \\
MINimum & Minimum search \\
TARGet & Target search \\
PEAK & Peak search \\
PALL & Peaks all \\
PLEFt & Peaks left \\
PRIGht & Peaks right
\end{tabular}

\section*{TRAD}

Completes the transmission calibration of the full or one-path 2-port calibration. (Network analyzer only) (TRANS. DONE under (Cal); No query)
- Equivalent SCPI Command
:SENSe:CORRection:COLLect:SAVE6
- Example

OUTPUT 717;"TRAD"
OUTPUT 717;"SENS:CORR:COLL:SAVE6"

\section*{TRAD}

\section*{TRAN}

Starts the transmission part of the full or one-path 2-port calibration. (Network analyzer only) (TRANSMISSION under (Cal; No query)
- Equivalent SCPI Command
:SENSe: CORRection: COLLect[:ACQuire] பTRAN2

\section*{TRGEVE \(\sqcup\{\) SWE \(\mid\) POIN \(\}\)}

Selects the trigger event mode. (Network and impedance analyzer only) (TRIG EVENT [ ] under (Trigger)
\begin{tabular}{c|ll} 
Parameter & & Description \\
\hline SWE & Trigger event on sweep & \\
POIN & Trigger event on point \({ }^{1}\) &
\end{tabular}

1 Available only when the trigger source is the GPIB, Manual, or External trigger.
- Query Response
\(\{\) SWE \(\mid\) POIN \(\}<\) new line>< END \(>\)
- Equivalent SCPI Command
:TRIGger:EVENt:TYPE \(\sqcup\) \{SWEeplPOINt \(\}\)

\section*{TRGP \(\sqcup\{\mathbf{P O S} \mid \mathbf{N E G}\}\)}

Sets the trigger signal polarity of an external signal connected to the rear panel EXT TRIGGER input. (TRIG PLRTY pos neg under (Trigger))
\begin{tabular}{c|l} 
Parameter & \multicolumn{1}{c}{ Description } \\
\hline POS & Positive trigger (low-to-high transition) \\
NEG & Negative trigger (high-to-low transition)
\end{tabular}
- Query Response
\(\{\) POS \(\mid\) NEG \(\}<\) new line \(><\) - END \(>\)
- Equivalent SCPI Command
:TRIGger:SLOPe \(\sqcup\{\) POSitive|NEGative\}

\section*{TRGS \(\sqcup\{\) INT \(\mid\) EXT \(\mid\) BUS \(\mid\) VID \(\mid\) MAN \(\mid\) GAT \(\}\)}

Selects the trigger source, which is common to both channels. (TRIGGER: [ ] under (Trigger)
\begin{tabular}{c|l} 
Parameter & \multicolumn{1}{c}{ Description } \\
\hline INT & Internal trigger \\
EXT & External trigger input from BNC on the rear panel \\
BUS & GPIB trigger \\
VID & Video trigger (Spectrum analyzer only) \\
MAN & Manual trigger \\
GAT & External gate trigger (Spectrum analyzer and option 1D6 only)
\end{tabular}
- Query Response
\{INT|EXT|BUS|VID|MAN|GAT\} <new line>< \({ }^{\text {END }}\) - \(>\)
- Equivalent SCPI Command
\begin{tabular}{|c|c|}
\hline TRGSUINT & \begin{tabular}{l}
:TRIGger:SOURceUINTernal1 \\
:SENSe:SWEep:GATed \(\sqcup\{0 F F \mid 0\}\)
\end{tabular} \\
\hline TRGSLEXT & \begin{tabular}{l}
:TRIGger:SOURceLEXTernal \\
:SENSe:SWEep:GATedப\{OFF|0\}
\end{tabular} \\
\hline TRGS \(\triangle\) BUS & \begin{tabular}{l}
:TRIGger:SOURceLBUS \\
:SENSe:SWEep:GATedப\{OFF|0\}
\end{tabular} \\
\hline TRGSபVID & \begin{tabular}{l}
:TRIGger:SOURce \(\llcorner\) INTernal2 \\
:SENSe:SWEep:GATedப\{0FF|0\}
\end{tabular} \\
\hline TRGS \(\triangle\) MAN & \begin{tabular}{l}
:TRIGger:SOURce \(\quad\) MANual \\
:SENSe:SWEep:GATedU\{OFF|0\}
\end{tabular} \\
\hline TRGS GGAT \(^{\text {a }}\) & \begin{tabular}{l}
:TRIGger:SOURceLEXTernal \\
:SENSe:SWEep:GATedU\{0N|1\}
\end{tabular} \\
\hline
\end{tabular}

\section*{USKEY}

Displays the user menu of the soft keys. The user menu display returns to the ordinary measurement keys when the program ends. (No query; No equivalent SCPI command)
The USKEY command is equivalent to executing the program shown below;
```

OUTPUT @Hp4396;"KEY 47"
OUTPUT @Hp4396;"KEY 0"
OUTPUT @Hp4396;"KEY 6"

```

\section*{USKEY}
\(\mathbf{V B W} \sqcup<\) numeric \(>[\mathbf{H Z}|\mathrm{KHZ}| \mathrm{MAHZ}]\)
Sets the bandwidth of the video bandwidth filter. (Spectrum analyzer only) (VIDEO BW under (Bw/Avg)
\begin{tabular}{c|c} 
Parameter & Description \\
\hline\(<\) numeric \(>\) & \(\mathrm{RBW}, \mathrm{RBW} / 3, \mathrm{RBW} / 10, \mathrm{RBW} / 30, \mathrm{RBW} / 100\), and RBW \(/ 300\)
\end{tabular}
- Query Response
\{numeric\} <new line><<END>
- Equivalent SCPI Command
:SENSe:BANDwidth[:RESolution]:AUTOU\{OFF|O\}
:SENSe:BANDwidth[:RESolution]ப<numeric>

\section*{VBWT \(\sqcup\{\) LIN \(\mid\) LOG \(\}\)}

Selects either the linear or logarithmic video filter. (VBW TYPE [LIN] or [LOG] under (Bw/Avg)
- Query Response
\{LIN|LOG\}<new line><<END>
- Equivalent SCPI Command
```

SENSe:BANDwidth:VIDeo:TYPE\sqcup{LIN|LOG}

```
- Examples
```

OUTPUT @Hp4396;"SENS:BAND:VID:TYPE LOG"
OUTPUT @Hp4396;"SENS:BAND:VID:TYPE?"
ENTER @Hp4396;Type\$
PRINT "Current VBW setting is ";Type\$

```

\section*{VELOFACT \(\sqcup<\) numeric \(>\)}

Enters the velocity factor used by the analyzer to calculate the equivalent electrical length. (Network and impedance analyzer only) (VELOCITY FACTOR under (Cal)
\begin{tabular}{c|l|l|l} 
Parameter & Range & Unit \\
\hline\(<\) numeric \(>\) & 0 to 10 & &
\end{tabular}
- Query Response
\{numeric\} <new line><<END>
- Equivalent SCPI Command
:SENSe:CORRection:RVELocityப<numeric>

\section*{VIDLVL \(\sqcup<\) numeric>}

Sets the video trigger level. (Spectrum analyzer only) (VIDEO under (Trigger)
\begin{tabular}{c|l|l} 
Parameter & Range & Unit \\
\hline\(<\) numeric \(>\) & 0 to 100 & \(\%\)
\end{tabular}
- Query Response
\(\{\) numeric \(\}<\) new line><<END>
- Equivalent SCPI Command
:TRIGger:LEVelப<numeric>

\section*{WIDSIN}

Searches for the cutoff point on the trace within the current cutoff points. (Network and impedance analyzer only; SEARCH IN under (Search); No query)
- Equivalent SCPI Command
```

:CALCulate:EVALuate:WIDTh:XPOSition:IN

```
- Example

OUTPUT 717;"WIDSIN"
OUTPUT 717;":CALC:EVAL:WIDT:XPOS:IN"

\section*{WIDSOUT}

Searches for the cutoff point on the trace outside of the current cutoff points. (Network and impedance analyzer only; SEARCH OUT under (Search); No query)
- Equivalent SCPI Command
```

:CALCulate:EVALuate:WIDTh:XPOSition:OUT

```

\section*{WIDT \(\sqcup\{\mathbf{O F F}|\mathbf{O N}| \mathbf{0} \mid \mathbf{1}\}\)}

Sets the bandwidth search feature ON or OFF. (Network and impedance analyzer only) (WIDTHS ON off under (Search))
\begin{tabular}{c|l} 
Parameter & \multicolumn{1}{c}{ Description } \\
\hline OFF or 0 & Bandwidth search feature OFF \\
ON or 1 & \begin{tabular}{l} 
Bandwidth search feature ON (calculates the center stimulus value, bandwidth, \(Q\), \\
insertion loss, and cutoff point deviation from the center of a bandpass or band reject \\
shape on the trace.)
\end{tabular}
\end{tabular}
- Query Response
\(\{0 \mid 1\}<\) new line><< END>
- Equivalent SCPI Command
: CALCulate:EVALuate:WIDTh:STATe \(\operatorname{SOFF}|O N| 0 \mid 1\}\)

\section*{\(\mathrm{WIDT} \sqcup\{\mathrm{OFF}|\mathrm{ON}| 0 \mid 1\}\)}

\section*{WIDV \(\sqcup<\) numeric \(>\) [DB \(\mid\) DEG \(|\mathbf{S}| \mathbf{O H M}]\)}

Sets an amplitude parameter that defines the start and stop points for a bandwidth search.
(Network and impedance analyzer only) (WIDTH VALUE under (Search)
\begin{tabular}{c|l|l} 
Parameter & \multicolumn{1}{|c}{ Range } & Format \\
\hline\(<\) numeric \(>\) & \(-5 \times 10^{5}\) to \(5 \times 10^{5}\) & Log magnitude format
\end{tabular}
- Query Response
\(\{\) numeric \(\}<\) new line>< - END>
- Equivalent SCPI Command
```

:CALCulate:EVALuate:WIDTh:Y\sqcup<numeric>

```

\section*{WIDVTYPE \(\sqcup\{\) DIVS2|MULS2|DIV2|FIXed \(\}\)}

Select Maker Width Value Type. When you use FIXed, you must specify the bandwidth value by using WIDV. (MKRVAL/( \(\sqrt{ } 2\) ), MKRVAL* \((\sqrt{ } / 2)\), MKRVAL/2, or FIXED VALUE under (Search) WIDTH [] WIDHT VALUE. Impedance analyzer only.)
- Query Response
\{DIVS2|MULS2|DIV2|FIX\}<new line>< \({ }^{\text {END }}>\)
- Equivalent SCPI Command
:CALCulate:EVALuate:WIDTh:Y:TYPEப\{DIVS2|MULS2|DIV2|FIXed,<numeric>\}
- Samples
```

OUTPUT @Hp4396;"WIDVTYPE DIV2"
OUTPUT @Hp4396;"WIDVTYPE FIXed"
OUTPUT @Hp4396;"WIDV ";3

```

\section*{WOPEN \(\sqcup<\) string \(>[,<\) numer \(i c>]\)}

If the specified file exists, this command makes it write-enabled; otherwise, creates a new file and makes it write-enabled. This command takes its arguments in a different way, depending on the file format. For a DOS format file you do not have to specify its file size, for a LIF format file you must. Specify the file size, 0 or greater, so that the file can contain the maximum number of bytes used. Note that only the BDAT type is available as the LIF file format.

The format and size of an existing file cannot be changed. Therefore, if you want to change them, delete the file itself using the PURG command and then create a new file using this command.

This command is used in combination with the WRITE command and the CLOSE commands, as shown in Figure 2-2. (No query)
\begin{tabular}{c|l} 
Parameter & \multicolumn{1}{c}{ Description } \\
\hline\(<\) string \(>\) & \begin{tabular}{l} 
File name of up to 12 characters including its extention (for the LIF format, up to 10 \\
characters)
\end{tabular} \\
\(<\) numeric \(>\) & File size (required only for the LIF format)
\end{tabular}

\section*{WRITE \(\sqcup<b l o c k>\)}

Writes data in a file that has been write-enabled using the WOPEN command. Written data must take the fixed length block format (see Figure 2-1) defined in IEEE488.2. The maximum length of data is 16 Kbytes. If data is greater than 16 Kbytes, execute this command repeatedly to write it. (No query)
Generally, this command is used in combination with the WOPEN command and the CLOSE command, as shown in Figure 2-2. (No query)
\begin{tabular}{c|l} 
Parameter & \multicolumn{1}{c}{ Description } \\
\hline\(\langle b l o c k>\) & Data in the fixed length block format
\end{tabular}

\section*{ZA}

Selects the impedance analyzer mode. (IMPEDANCE ANALYZER under (Meas)
- Query Response
\(\{0 \mid 1\}<\) new line \(><\) ENDD \(>\)
\begin{tabular}{c|l} 
Parameter & \multicolumn{1}{c}{ Description } \\
\hline 0 & Impedance analyzer mode is not selected. \\
1 & Impedance analyzer mode is selected.
\end{tabular}
- Equivalent SCPI Command
:INSTrument:TYPE \(\triangle Z A\)

\section*{ZMAPER \(\sqcup<\) numeric \(>\)}

Sets the zooming aperture value as a percentage of the span. (ZOOMING APERTURE under (Marker \(\rightarrow\) )
\begin{tabular}{c|l|l} 
Parameter & Range & Unit \\
\hline\(<\) numeric \(>\) & 0.01 to 100 of SPAN & \(\%\)
\end{tabular}
- Query Response
\(\{\) numeric \(\}<\) new line>< \(<\) END \(>\)
- Equivalent SCPI Command
: DATA [:DATA] \(\triangle M Z A P,<n u m e r i c>\)
■ Example
OUTPUT 717;"ZMAPER 50"
OUTPUT 717;"ZMAPER?"
ENTER 717;A
OUTPUT 717;":DATA MZAP,50"
OUTPUT 717;":DATA? MZAP"
ENTER 717;A

\section*{Common Commands}

\section*{*CLS}

Clears the Status Byte Register, and the Event Register of the Operation Status Register, the Standard Event Status Register, and the Event Status Register B (Instrument Event Status Register). (No query)
- Example

> OUTPUT 717;"*CLS"
\(* \mathbf{E S E} \sqcup<\) numeric \(>\)
Sets the enable bits of the Standard Event Status Register.
\begin{tabular}{c|c} 
Parameter & Description \\
\hline\(<\) numeric \(>\) & 0 to 255 (decimal expression of enable bits of the operation status register)
\end{tabular}
- Query Response
\(\{\) numeric \(\}<\) new line \(><\) END \(>\)
■ Example
```

OUTPUT 717;"*ESE 1"
OUTPUT 717;"*ESE?"
ENTER 717;A

```
*ESR?
Returns the contents of the Standard Event Status Register. (Query only)
- Query Response
\(\{\) numeric \(\}<\) new line \(><\) ENDD \(>\)
- Example
```

OUTPUT 717;"*ESR?"

```
ENTER 717;A

\section*{*IDN?}

Returns the analyzer's ID.
- Query Response
\(\{\) manufacturer \(\}\{\) model \(\}\{\) serial no. \(\}\) \{firmware rev. \(\}<\) new line \(>\ll \in \mathrm{END}>\)
- Example
```

OUTPUT 717;"*IDN?"
ENTER 717;A\$

```
*IDN?
*OPC
Tells the analyzer to set bit 0 (Operation Complete bit) in the Standard Event Status Register when it completes all pending operations.
*OPC? query places an ASCII character 1 into the analyzer's output queue when all pending operations have been completed.
- Query Response
\{1\} <new line>< -END>
- Example
```

OUTPUT 717;"*OPC"
OUTPUT 717;"*OPC?"
ENTER 717;A

```

\section*{*OPT?}

Queries the options installed. (Query only)
- Query Response
\{parameter\} <new line>< END>
\begin{tabular}{c|ll} 
Parameter & & Description \\
\hline\((\) Null \()\) & None & \\
1 C 2 & Instrument BASIC & \\
\(1 D 6\) & Time-gated spectrum analysis &
\end{tabular}
- Example
```

OUTPUT 717;"*OPT?"
ENTER 717;A\$

```
*PCB \(\sqcup<\) numeric \(>\)
Specifies the address of a controller that is temporarily passing GPIB control to the analyzer. (Option 1C2 only; No query)
\begin{tabular}{c|lc} 
Parameter & & Description \\
\hline\(<\) numeric \(>\) & 0 to 30 &
\end{tabular}
- Example
```

OUTPUT 717;"*PCB 0"

```

\section*{*RST}

Resets the analyzer to its default values, (see Appendix D of the Function Reference for information on the default values), stops sweeping and taking data, and resets the Instrument BASIC (option 1C2 only). (No query)
- Example

OUTPUT 717;"*RST"
\(* \mathbf{S R E} \sqcup<\) numeric \(>\)
Sets the enable bits of the Status Byte Register.
\begin{tabular}{c|c} 
Parameter & \\
\hline Description \\
\hline numeric \(>\) & 0 to 255 (decimal expression of enable bits of the status byte register)
\end{tabular}
- Query Response
\(\{\) numeric \(\}<\) new line>< \(\mathrm{END}>\)
- Example

OUTPUT 717;"*SRE 1"
OUTPUT 717;"*SRE?"
ENTER 717;A

\section*{*STB?}

Reads the Status Byte Register by reading the master summary status bit. (Query only)
- Query Response
\(\{\) numeric \(\}<\) new line>< \(\mathrm{END}>\)
- Example

OUTPUT 717;"*STB?"
ENTER 717;A

\section*{*TRG}

Triggers the analyzer when the trigger mode is set to BUS trigger. (No query)
- Example

OUTPUT 717;"*TRG"

\section*{*TST?}

Executes an internal self-test and returns the test result. (Query only)
- Query Response
\(\{\) numeric \(\}<\) new line \(><\) END \(>\)
\begin{tabular}{c|ll} 
Parameter & & Description \\
\hline 0 & Pass & \\
1 & Fail &
\end{tabular}

■ Example
OUTPUT 717;"*TST?"
ENTER 717;A

\section*{*WAI}

Makes the analyzer wait until all previously sent commands are completed. (No query)
- Example

OUTPUT 717;"*WAI"

\section*{SCPI Commands With No Equivalent Simple Command}

\section*{:CALCulate:MATH1[:EXPRession]:CATalog?}

Returns the available parameters that can be used with the
:CALCulate:MATH1[:EXPRession]:NAME command. (Query only)
- Query Response
"OFF, YREF, YTRA,ZREF,ZTRA,INVS,MP4,MP8,MP16" <new line><^END>
- Example
```

OUTPUT 717;":CALC:MATH1:CAT?"
ENTER 717;A\$

```

\section*{:CALCulate:MATH2[:EXPRession]:CATalog?}

Returns the available parameters that can be used with the : CALCulate: MATH2 [:EXPRession]:NAME command. (Query only)
- Query Response
"ADD,SUB, DIV,OFF" <new line>< \({ }^{-}\)END>
■ Example
```

OUTPUT 717;":CALC:MATH2:CAT?"
ENTER 717;A\$

```

\section*{:CALCulate:PATH?}

Returns the order in which CALCulate subsystems are to be performed.
- Query Response
"MATH1,FORM, AVER, MATH2,LIM" <new line><<END>
■ Example
```

OUTPUT 717;":CALC:PATH?"
ENTER 717;A\$

```

\section*{:PROGram:CATalog?}

Returns all the defined program names. The program name is always "PROG", because the analyzer's Instrument BASIC only executes a single program at a time. This command can be used from an external controller only. (Query only)
- Query Response
\{"PROG" \(\}<\) new line><<END>
- Example

OUTPUT 717;":PROG:CAT?"
ENTER 717;A\$

\section*{:PROGram[:SELected]:DEFine \(\sqcup<b l o c k>\)}

Creates and downloads programs. The DEFine query uploads programs. This command can be used from an external controller only.
\begin{tabular}{c|lc} 
Parameter & & Description \\
\hline\(<b l o c k>\) & program
\end{tabular}

The <block> must be arbitrary block program data containing the lines of program code. The first line of \(<\) block \(>\) must be a header, which shows the program size. There are two formats for the header as follows:

Allows the OUTPUT statement to send program line until END is specified in the OUTPUT statement.
\#ммM.... M Specifies the program size.
N specifies the number of digits that define the program size
M. . . . M is program size in byte (N digits)

Each line of the program must be separated by \(\langle\mathrm{CR}\rangle\) or \(\langle\mathrm{CR}\rangle\langle\mathrm{LF}\rangle\). When the size of the \(<b l o c k>\) exceeds the amount of available memory in the instrument, the program lines are saved up to the point of memory overflow.
In the response to the DEFine query, the selected program and its size are returned. The selected program must be in either the paused or stopped state for the program to be uploaded. The \(<b l o c k>\) is uploaded as definite length arbitrary block response data. The program size is returned in the first line as the header, then program lines are returned.
- Example
```

OUTPUT 717;":PROG:DEF \#O"
OUTPUT 717;"10 PRINT ""HELLO!"""
OUTPUT 717;"20 END"
OUTPUT 717;" ",END
DIM A$[100000]
OUTPUT 717;":PROG:DEF?"
ENTER 717 USING "%,2A";HEAD$! Gets the header.
B=VAL(HEAD$[2]) !
FOR I=1 TO B !
 ENTER 717 USING "%,A";HEAD$!
NEXT I !
ENTER 717 USING "-K";A\$! Gets the program.

```

\section*{:PROGram[:SELected]:DELete[:SELected]}

Deletes the program in the BASIC editor of the analyzer. This command can be used from an external controller only. (No query)
- Example

OUTPUT 717;":PROG:DEL"

\section*{:PROGram[:SELected]:DELete:ALL}

Deletes the program in the BASIC editor of the analyzer. This command can be used from an external controller only. (No query)
- Example

OUTPUT 717;":PROG:DEL:ALL"

\section*{:PROGram[:SELected]:EXECute \(\sqcup<\) string \(>\)}

Executes the program command. The program must be in either paused or stopped before the EXECute command is allowed. This command can be used from an external controller only. (No query)
\begin{tabular}{c|lc} 
Parameter & & Description \\
\hline\(<\) string \(>\) & Legal program command
\end{tabular}

\section*{■ Example}

OUTPUT 717;":PROG:EXEC ""STEP"""

\section*{:PROGram[:SELected]:MALLocate \(\sqcup\{<\) numeric \(>\mid\) DEFault \(\}\)}

Performs no function in the analzyer's Instrument BASIC. This command can be used from an external controller only.

\section*{:PROGram[:SELected]:NAME \(\sqcup<\) string \(>\)}

Performs no function in the analyzer's Instrument BASIC. This command can be used from an external controller only.
:PROGram[:SELected]:NUMBer \(\sqcup<\) string \(>,<\) numeric \(1>[,<\) numeric \(\mathscr{2}>[, \ldots\) [,\(<\) numeric \(n>\) ]
Sets or queries the contents of numeric program variables and arrays in the program on the BASIC editor of the analyzer. This command can be used from an external controller only.
\begin{tabular}{c|l} 
Parameter & \multicolumn{1}{c}{ Description } \\
\hline\(<\) string \(>\) & \begin{tabular}{l} 
Name of an existing variable in the selected program (either character data or string \\
data) \\
\(<\) numeric \(>\)
\end{tabular} \\
Variable value
\end{tabular}
- Query Response
\(\{\) numeric 1\(\}[\{\) numeric 2\(\}[\ldots\) [\{numeric \(n\}] \ldots]]<\) new line><<END>
( n is the number of the array.)
- Example

OUTPUT 717;":PROG:NUMB A,1"
OUTPUT 717;":PROG:NUMB? A"
ENTER 717;B

\section*{:PROGram[:SELected]:STATe \(\sqcup\{\) RUN \(\mid\) PAUSE|STOP|CONTinue \(\}\)}

Sets or queries the state of the program in the BASIC editor of the analyzer. The table below defines the affect of setting the state to the specified state from each of the possible current states. This command can be used from an external controller only.
\begin{tabular}{|c|c|c|c|}
\hline \multirow{2}{*}{ Desired State } & \multicolumn{3}{|c|}{ Current State } \\
\cline { 2 - 4 } & RUN & PAUSE & STOP \\
\hline RUN & error (-221) & RUN & RUN \\
CONT & error (-221) & RUN & error (-221) \\
PAUSE & PAUSE & PAUSE & STOP \\
STOP & STOP & STOP & STOP \\
\hline
\end{tabular}
- Query Response
\{"RUN"|"PAUS"|"STOP"|"CONT"\} <new line>< \({ }^{\text {CNND }}\) >
- Example

OUTPUT 717;":PROG:STAT ""STOP"""
OUTPUT 717;":PROG:STAT?"
ENTER 717;A\$
```

:PROGram[:SELected]:STRing $\sqcup<$ string (varname) $>,<$ string (value

1) $>[,<$ string (value 2) $>[, \ldots[,<$ string (value n) $>]$
```

Sets or queries the contents of string program variables and arrays in the program in the BASIC editor of the analyzer. If a string value is too long it is truncated when stored in the program's variable. This command can be used from an external controller only.
\begin{tabular}{c|l}
\multicolumn{1}{c|}{ Parameter } & \multicolumn{1}{c}{ Description } \\
\hline\(<\) string (varname)> & \begin{tabular}{l} 
Name of an existing variable in the selected program (either character data or string \\
data).
\end{tabular} \\
\(<\) string (value \(\rangle>\) & Variable value
\end{tabular}

\section*{- Query Response}
\(\{\) string 1\(\}[\{\operatorname{string} 2\}[\ldots[\{\operatorname{string} n] \ldots]]<\) new line \(>\ll \in \mathrm{END}>\)
( \(n\) is the number of the array.)
- Example

OUTPUT 717;":PROG:STR A,""HELLO"""
OUTPUT 717;":PROG:STR? A"
ENTER 717;B\$

\section*{:PROGram[:SELected]:WAIT}

Causes no further commands or queries to be executed until the defined program exits from the RUN state. That is, the program is either stopped or paused. This command can be used from an external controller only.
- Query Response
\(\{1\}<\) new line>< \({ }^{\wedge}\) END>
1 is returned when the program is either stopped or paused.
- Example

OUTPUT 717;":PROG:WAIT"
OUTPUT 717;":PROG:WAIT?"
ENTER 717;A
\begin{tabular}{|c|c|}
\hline Note
at & The following commands under the EXPLicit node perform the specified functions in the same manner as the corresponding commands under the SELected node. The EXPLicit commands are included in the analyzer's GPIB commands to maintain compatibility with other SCPI instruments. Therefore, you can use either the EXPLicit or the SELected commands for the analyzer. However, you should select one set and use it consistently to avoid confusion. \\
\hline
\end{tabular}
```

:PROGram:EXPLicit:DEFine \sqcup "PROG", $<$ block $>$
See ":PROGram[:SELected]:DEFineப<block>".
:PROGram:EXPLicit:DELete \downarrow "PROG"
See ":PROGram[:SELected]:DELete[:SELected]".
:PROGram:EXPLicit:EXECute \sqcup "PROG", $<$ string $>$
See ":PROGram[:SELected]:EXECuteப<string>".
:PROGram:EXPLicit:MALLocate \downarrow "PROG", $\{<$ numeric $>\mid$ DEFault $\}$
See ":PROGram[:SELected]:MALLocate $\sqcup\{<$ numeric $>\mid$ DEFault $\}$ ".
:PROGram:EXPLicit:NAME \sqcup "PROG", $<$ string $>$
See ":PROGram[:SELected]:NAMEU<string>".
:PROGram:EXPLicit:NUMBer \sqcup "PROG", $<$ varname $>,<$ numeric $1>$
$[,<$ numeric $2>[, \ldots[,<$ numeric $n>] \ldots]]$
See ":PROGram[:SELected]:NUMBer $\sqcup<$ string $>,<$ numeric $1>[,<$ numeric $2>[, \ldots[,<$ numeric
$n>$]".
:PROGram:EXPLicit:STATe \downarrow "PROG", $\{$ RUN|PAUSE|STOP|CONTinue $\}$
See ":PROGram[:SELected]:STATe $\{$ \{RUN|PAUSe|STOP|CONTinue $\}$ ".
:PROGram:EXPLicit:STRing \sqcup "PROG", $<$ varname $>,<$ string $1>[,<$ string 2 $>$
[, $\ldots[,<\operatorname{string} n>] \ldots]$
See ":PROGram[:SELected]:STRing $\langle<$ string (varname) $>,<$ string (value 1) $>[,<$ string (value 2) $>$
$[, \ldots[,<$ string (value $n)>]$ ".

```

\section*{:PROGram:EXPLicit:WAIT "PROG"}
```

See ":PROGram[:SELected]:WAIT".

```

\section*{:STATus:PRESet}

Clears the Operational and Questionable Status Register groups. Both event and enable registers are cleared. (No query)
- Example

OUTPUT 717;":STAT:PRES"

\section*{:STATus:QUEStionable:CONDition?}

Returns the contents of the condition register of the Questionable Register group. (Query only)
The analyzer has no operation that reports an event to the questionable register.

\section*{:STATus:QUEStionable:ENABle \(\sqcup<\) numeric \(>\)}

Sets or queries the enable register of the questionable register group.
The analyzer has no operation that reports an event to the questionable register.

\section*{:STATus:QUEStionable[:EVENt]?}

Returns the contents of the event register of the Questionable register group. (Query only)
The analyzer has no operation that reports an event to the questionable register.

\section*{:SYSTem:VERSion?}

Returns the value corresponding to the SCPI version to which the instrument complies. (Query only)
- Query Response
\(\{\) YYYY.V\} <new line \(><\) - END \(>\)
\begin{tabular}{c|l} 
Parameter & \multicolumn{1}{c}{ Description } \\
\hline YYYY & Year-version \\
V & Revision number for the year
\end{tabular}
- Example

OUTPUT 717;":SYST:VERS?"
ENTER 717;A\$

\section*{Service Related Commands}

Note
See the Service Manual for more information about each function.

\section*{:DIAG:EREFerence:STATe?}

Tells whether an external frequency reference signal is connected to the rear-panel EXT REF INPUT connector. (Query only)
- Query Response

\begin{tabular}{c|l} 
Parameter & \multicolumn{1}{c}{ Description } \\
\hline 0 & The external reference is not connected. \\
1 & The external reference is connected.
\end{tabular}
- Example

OUTPUT 717;":DIAG:EREF:STAT?"
ENTER 717;A

\section*{:DIAG:FREVision?}

Returns the current firmware revision information. (FIRMWARE REVISION under System) ; Query only)
- Query Response
"4396B REVN.NN MON DD YEAR HH:MM:SS" <new line><^END>
\begin{tabular}{c|l|} 
Parameter & \\
\hline N.NN & Rescription \\
MON & Implementation date (month) \\
DD & Implementation date (date) \\
YEAR & Implementation date (year) \\
HH & Implementation time (hour) \\
MM & Implementation time (minute) \\
SS & Implementation time (second)
\end{tabular}
- Example

OUTPUT 717;":DIAG:FREV?"
ENTER 717;A\$

\section*{:DIAG:INIT:RESult?}

Returns the result of the power on test. (Query only)
- Query Response
\(\{\) PASS \(\mid\) FAIL \(\}<\) new line \(><\) E END \(>\)
- Example

OUTPUT 717;":DIAG:INIT:RES?"
ENTER 717;A\$

\section*{:DIAG:SERVice:BUS:AZERo \(\sqcup\{\) OFF|ON|0|1\}}

Sets the Auto Zero Switch of the Bus Measurement. (AZ SWITCH ON off under (System)
- Query Response
\(\{0 \mid 1\}<\) new line \(><\) - END \(>\)
■ Example
OUTPUT 717;":DIAG:SERV:BUS:AZER ON"
OUTPUT 717;":DIAG:SERV:BUS:AZER?"
ENTER 717;A

\section*{:DIAG:SERVice:BUS:DC \(\sqcup<\) numeric \(>\)}

Selects the DC Bus Nodes of the Bus Measurement. (DC BUS [] under (System)
\begin{tabular}{c|lc} 
Parameter & & Description \\
\hline\(<\) numeric \(>\) & 0 to 26 &
\end{tabular}
- Query Response
\{numeric\} <new line>< \(\mathrm{END}>\)
- Example

OUTPUT 717;":DIAG:SERV:BUS:DC \(0^{\prime \prime}\)
OUTPUT 717;":DIAG:SERV:BUS:DC?"
ENTER 717;A

\section*{:DIAG:SERVice:BUS:FREQ \(\sqcup<\) numeric>}

Selects the Frequency Bus Nodes of the Bus Measurement. (FREQ BUS [ ] under (System)
\begin{tabular}{l|ll} 
Parameter & & Description \\
\hline\(<\) numeric \(>\) & 0 to 7 &
\end{tabular}
- Query Response
\{numeric\} <new line>< \(\mathrm{END}>\)
- Example

OUTPUT 717;":DIAG:SERV:BUS:FREQ \(0^{\prime \prime}\)
OUTPUT 717;":DIAG:SERV:BUS:FREQ?"
ENTER 717;A

\section*{:DIAG:SERVice:BUS:STATe \(\sqcup\{\) OFF \(\mid\) ON \(|0| 1\}\)}

Sets the Bus Measurement ON or OFF. (BUS MEAS ON off under (System)
\begin{tabular}{c|ll} 
Parameter & & Description \\
\hline OFF or 0 & Bus measurement OFF & \\
ON or 1 & Bus measurement ON &
\end{tabular}
- Query Response
\(\{0 \mid 1\}<\) new line \(><\wedge\) END \(>\)
- Example

OUTPUT 717;":DIAG:SERV:BUS:STAT ON"
OUTPUT 717;":DIAG:SERV:BUS:STAT?"
ENTER 717;A

\section*{:DIAG:SERVice:BUS:WAIT \(\sqcup<\) numeric \(>\)}

Waits starting the Bus Measurement for the specified count. (WAIT COUNT under (System)
\begin{tabular}{c|l} 
Parameter & \\
\hline <numeric \(>\) & 2 to 32767
\end{tabular}
- Query Response
\(\{\) numeric \(\}<\) new line \(><\) E END \(>\)
- Example

OUTPUT 717;":DIAG:SERV:BUS:WAIT 2"
OUTPUT 717;":DIAG:SERV:BUS:WAIT?"
ENTER 717;A

\section*{:DIAG:SERVice:CCONstant:FRESponse \(\sqcup\{\) OFF \(\mid\) ON \(|0| 1\}\)}

Sets the correction constants of the Frequency Response ON or OFF. (FRQ RSP CC ON off under (System)
\begin{tabular}{c|l} 
Parameter & \multicolumn{1}{c}{ Description } \\
\hline OFF or 0 & Frequency response correction constant OFF \\
ON or 1 & Frequency response correction constant ON
\end{tabular}
- Query Response
\(\{0 \mid 1\}<\) new line><<END>
- Example

OUTPUT 717;":DIAG:SERV:CCON:FRES ON"
OUTPUT 717;":DIAG:SERV:CCON:FRES?"
ENTER 717;A

\section*{:DIAG:SERVice:CCONstant:IFGain \(\sqcup\{\) OFF \(\mid\) ON \(|0| 1\}\)}

Sets the correction constant of the IF Gain Error ON or OFF. (IF GAIN CC ON off under (System)
\begin{tabular}{c|l} 
Parameter & \multicolumn{1}{c}{ Description } \\
\hline OFF or 0 & IF gain error correction constant OFF \\
ON or 1 & IF gain error correction constant ON
\end{tabular}
- Query Response
\(\{0 \mid 1\}<\) new line>< END>
- Example

OUTPUT 717;":DIAG:SERV:CCON:IFG ON"
OUTPUT 717;":DIAG:SERV:CCON:IFG?"
ENTER 717;A

\section*{:DIAG:SERVice:CCONstant:SOURce \(\sqcup\{\) OFF \(\mid\) ON \(|0| 1\}\)}

Sets the correction constant of the RF Output Level ON or OFF. (SOURCE CC ON off under (System)
\begin{tabular}{c|l} 
Parameter & Description \\
\hline OFF or 0 & RF output level correction constant OFF \\
ON or 1 & RF output level correction constant ON
\end{tabular}

\section*{:DIAG:SERVice:CCONstant:SOURce \(\sqcup\{0 \mathrm{FF}|\mathrm{ON}| 0 \mid 1\}\)}
- Query Response
\(\{0 \mid 1\}<n e w ~ l i n e><\) © \(E N D>\)
- Example

OUTPUT 717;":DIAG:SERV:CCON:SOUR ON"
OUTPUT 717;":DIAG:SERV:CCON:SOUR?"
ENTER 717;A

\section*{:DIAG:SERVice:CCONstant:XTAL \(\sqcup\{\) OFF \(\mid\) ON \(|0| 1\}\)}

Sets the correction constant of the Crystal Filter ON or OFF. (XTAL CC ON off under (System)
\begin{tabular}{c|l} 
Parameter & \multicolumn{1}{c}{ Description } \\
\hline OFF or 0 & Crystal filter correction constant OFF \\
ON or 1 & Crystal filter correction constant ON
\end{tabular}
- Query Response
\(\{0 \mid 1\}<\) new line><<END>
- Example
```

OUTPUT 717;":DIAG:SERV:CCON:XTAL ON"
OUTPUT 717;":DIAG:SERV:CCON:XTAL?"
ENTER 717;A

```

\section*{:DIAG:SERVice:IF:ADMX:MODE \(\sqcup\{\) AUTO|ALTernate|DEG0|DEG90\}}

Sets the A/D Multiplexer of the A6 Receiver IF. (A/D MUX [ ] under (System)
\begin{tabular}{c|lr} 
Parameter & & Description \\
\hline AUTO & Automatic & \\
ALTenate & Alternate & \\
DEG0 & \(0^{\circ}\) & \\
DEG90 & \(90^{\circ}\) &
\end{tabular}
- Query Response
\{AUTO|ALT|DEG0|DEG90\} <new line><<END>
- Example

OUTPUT 717;":DIAG:SERV:IF:ADMX:MODE AUTO"
OUTPUT 717;":DIAG:SERV:IF:ADMX:MODE?"
ENTER 717;A\$

\section*{:DIAG:SERVice:IF:BPFilter:MODE \(\sqcup\{\) AUTO \(\mid\) BW3M|BW1M|XTAL\}}

Sets the IF Band Pass Filter of the A6 Receiver IF. (IF BPF under (System)
\begin{tabular}{c|l|} 
Parameter & \multicolumn{1}{c}{ Description } \\
\hline AUTO & Automatic \\
BW3M & 3 MHz \\
BW1M & 1 MHz \\
XTAL & Crystal
\end{tabular}
- Query Response
\(\{\) AUTO|BW3M|BW1M|XTAL\} <new line><^END>
- Example

OUTPUT 717;":DIAG:SERV:IF:BPF:MODE AUTO"
OUTPUT 717;":DIAG:SERV:IF:BPF:MODE?"
ENTER 717;A\$

\section*{:DIAG:SERVice:IF:GAIN:MODE \(\sqcup\) \{AUTO|MANual\}}

Sets the IF Gain mode of the A6 Receiver IF to Auto or Manual. Setting this mode to Manual enables setting the Gain W, Gain X, Gain Y, and Gain Z values. (IF GAIN AUTO man under (System)
- Query Response
\(\{\) AUTO|MAN \(\}<\) new line \(>\ll{ }^{\wedge}\) END \(>\)
- Example
```

OUTPUT 717;":DIAG:SERV:IF:GAIN:MODE AUTO"
OUTPUT 717;":DIAG:SERV:IF:GAIN:MODE?"
ENTER 717;A\$

```

\section*{:DIAG:SERVice:IF:GAIN:W \(\sqcup\{\) AUTO|DB0|DB10\}}

Sets Gain W of the A6 Receiver IF. (GAIN W [] under (System])
\begin{tabular}{c|lc} 
Parameter & & Description \\
\hline AUTO & Automatic & \\
DB0 & 0 dB \\
DB10 & 10 dB &
\end{tabular}
- Query Response
\(\{\) AUTO \(\mid\) DB0 0 DB10 \(<\) new line \(><\) END \(>\)
- Example

OUTPUT 717;":DIAG:SERV:IF:GAIN:W AUTO"
OUTPUT 717;":DIAG:SERV:IF:GAIN:W?"
ENTER 717;A\$

\section*{:DIAG:SERVice:IF:GAIN: \(\sqcup \sqcup\{\) AUTO \(\mid\) DB0|DB18 \(\}\)}

Sets Gain X of the A6 Receiver IF. (GAIN X [ ] under (System)
\begin{tabular}{c|l|} 
Parameter & \\
\hline AUTO & Automatic \\
DB0 & 0 dB \\
DB18 & 18 dB
\end{tabular}
- Query Response
\{AUTO|DB0|DB18\} <new line><<END>
- Example

OUTPUT 717;":DIAG:SERV:IF:GAIN:X AUTO"
OUTPUT 717;":DIAG:SERV:IF:GAIN:X?"
ENTER 717;A\$

\section*{:DIAG:SERVice:IF:GAIN:Y \(\sqcup\{\) AUTO|DB0|DB6|DB12|DB18\}}

Sets Gain Y of the A6 Receiver IF. (GAIN Y [ ] under (system)
\begin{tabular}{c|l|} 
Parameter & \\
\hline AUTO & Automatic \\
DB0 & 0 dB \\
DB6 & 6 dB \\
DB12 & 12 dB \\
DB18 & 18 dB
\end{tabular}
- Query Response
\{AUTO|DB0|DB6|DB12|DB18\} <new line><<END>
- Example

OUTPUT 717;":DIAG:SERV:IF:GAIN:Y AUTO"
OUTPUT 717;":DIAG:SERV:IF:GAIN:Y?"
ENTER 717;A\$
:DIAG:SERVice:IF:LPFilter:MODE \(\sqcup\) \{AUTO|BW5K|BW15K|BW50K| BW150K|THRough\}
:DIAG:SERVice:IF:GAIN:Z \(\sqcup\) \{AUTO|DB0|DB2|DB4|DB18\}
Sets Gain Z of the A6 Receiver IF. (GAIN Z [ ] under (System)
\begin{tabular}{c|l|} 
Parameter & \\
\hline AUTO & Automatic \\
DB0 & 0 dB \\
DB2 & 2 dB \\
DB4 & 4 dB \\
DB18 & 18 dB
\end{tabular}
- Query Response
\{AUTO|DB0|DB2|DB4|DB18\} <new line>< END>
- Example

OUTPUT 717;":DIAG:SERV:IF:GAIN:Z AUTO"
OUTPUT 717;":DIAG:SERV:IF:GAIN:Z?"
ENTER 717;A\$
:DIAG:SERVice:IF:LPFilter:MODE \(\sqcup\) \{AUTO \(\mid\) BW5K \(\mid\) BW15K|BW50K| BW150K|THRough \}

Sets the IF Low Pass Filter of the A6 Receiver IF. (IF LPF [ ] under (System)
\begin{tabular}{c|l} 
Parameter & \multicolumn{1}{c}{ Description } \\
\hline AUTO & Automatic \\
BW5K & 5 kHz \\
BW15K & 15 kHz \\
BW50K & 50 kHz \\
BW150K & 150 kHz \\
THRough & Through
\end{tabular}
- Query Response
\{AUTO|BW5K|BW15K|BW50K|BW150K|THR\} <new line><<END>
- Example

OUTPUT 717;":DIAG:SERV:IF:LPF:MODE AUTO"
OUTPUT 717;":DIAG:SERV:IF:LPF:MODE?"
ENTER 717;A\$

\section*{:DIAG:SERVice:IF:RANGe:F \(\sqcup\{\) HIGH LOW \(\}\)}

Sets Range F of the A6 Receiver IF. (RANGE F: HIGH, LOW under (System)
■ Query Response
\(\{\) HIGH \(\mid\) LOW \(\}<\) new line \(><\) END \(>\)
■ Example
OUTPUT 717;":DIAG:SERV:IF:RANG:F HIGH"
OUTPUT 717;":DIAG:SERV:IF:RANG:F?"
ENTER 717;A\$

\section*{:DIAG:SERVice:IF:RANGe:MODE \(\sqcup\) AUTO \(\mid\) MANual \(\}\)}

Sets the Range mode of the A6 Receiver IF to Auto or Manual. Setting this mode to Manual enables setting Range F and Range R. (IF RANGE AUTO man under System)
- Query Response
\{AUTO|MAN\} <new line><<END>
- Example

OUTPUT 717;":DIAG:SERV:IF:RANG:MODE AUTO"
OUTPUT 717;":DIAG:SERV:IF:RANG:MODE?"
ENTER 717;A\$

\section*{:DIAG:SERVice:IF:RANGe:R \(\sqcup\{\) HIGH|LOW \(\}\)}

Sets Range R of the A6 Receiver IF. (RANGE R: HIGH, LOW under (System)
- Query Response
\(\{\) HIGH \(\mid\) LOW \(\}<\) new line \(><\) ²ND \(>\)
■ Example
OUTPUT 717;":DIAG:SERV:IF:RANG:R HIGH"
OUTPUT 717;":DIAG:SERV:IF:RANG:R?"
ENTER 717;A

\section*{:DIAG:SERVice:IF:SHBW:MODE \(\sqcup\{\) AUTO|NARRow|MIDDIe|WIDE \(\}\)}

Sets the Sample and Hold of the A6 Receiver IF. (S/H BW [ ] under (System)
- Query Response
\{AUTO|NARR|MIDD|WIDE\} <new line><<END>
- Example

OUTPUT 717;":DIAG:SERV:IF:SHBW:MODE AUTO"
OUTPUT 717;":DIAG:SERV:IF:SHBW:MODE?"
ENTER 717;A\$

\section*{:DIAG:SERVice:IF:TLOCal:MODE \(\sqcup\{\) AUTO \(\mid\) AC \(\mid\) DC \(\}\)}

Sets the 3rd Local Oscillator of the A6 Receiver IF. (S/H BW [ ] under System)
- Query Response
\{AUTO|AC|DC\} <new line>< END >
- Example

OUTPUT 717;":DIAG:SERV:IF:TLOC:MODE AUTO"
OUTPUT 717;":DIAG:SERV:IF:TLOC:MODE?"
ENTER 717;A\$

\section*{:DIAG:SERVice:MODE \(\sqcup\{\mathbf{O N} \mid \mathbf{1}\}\)}

Activates the service mode. (SERVICE MODE under System)
- Query Response
\(\{0 \mid 1\}<\) new line><<END>
- Example

OUTPUT 717;":DIAG:SERV:MODE ON"
OUTPUT 717;":DIAG:SERV:MODE?"
ENTER 717;A

\section*{:DIAG:SERVice:SOURce:ALCLoop \(\sqcup\{\) OPEN|CLOSe \(\}\)}

Sets the ALC Loop of the A3A2 ALC. (ALC LOOP ON off under (System)
- Query Response
\{OPEN|CLOS\}
- Example
```

OUTPUT 717;":DIAG:SERV:SOUR:ALCL OPEN"
OUTPUT 717;":DIAG:SERV:SOUR:ALCL?"
ENTER 717;A

```
:DIAG:SERVice:SOURce:ATTenuator \(\sqcup\{\) AUTO|DB0|DB10|DB20|DB30| DB40|DB50|DB60\}

Sets the Output Attenuator of the A3A2 ALC. (OUTPUT ATT under (System)
\begin{tabular}{c|l|} 
Parameter & \\
\hline AUTO & Automatic \\
DB0 & 0 dB \\
DB10 & 10 dB \\
DB20 & 20 dB \\
DB30 & 30 dB \\
DB40 & 40 dB \\
DB50 & 50 dB \\
DB60 & 60 dB
\end{tabular}
- Query Response
\(\{\mathrm{AUTO}|\mathrm{DB} 0| \mathrm{DB} 10|\mathrm{DB} 20| \mathrm{DB} 30|\mathrm{DB} 40| \mathrm{DB50\mid} \mathrm{DB} 60\}<\) new line \(><\) - END \(>\)
- Example

OUTPUT 717;":DIAG:SERV:SOUR:ATT AUTO"
OUTPUT 717;":DIAG:SERV:SOUR:ATT?"
ENTER 717;A\$

\section*{:DIAG:SERVice:SOURce:GAIN:DAC:MODE \(\sqcup\{\) AUTO|MANual \(\}\)}

Sets the Gain DAC mode of the A3A2 ALC to Auto or Manual. Setting this mode to Manual enables setting Gain DAC value. (GAIN DAC AUTO man under (System)
- Query Response
\(\{\) AUTO|MAN \(\}<\) new line \(>\ll\) END \(>\)
■ Example
OUTPUT 717;":DIAG:SERV:SOUR:GAIN:DAC:MODE AUTO"
OUTPUT 717;":DIAG:SERV:SOUR:GAIN:DAC:MODE?"
ENTER 717;A\$

\section*{:DIAG:SERVice:SOURce:GAIN:DAC:VALue \(\downarrow<\) numeric \(>\)}

Sets the Gain DAC value of the A3A2 ALC. (GAIN DAC VALUE under (System)
\begin{tabular}{l|ll} 
Parameter & & Description \\
\hline\(<\) numeric \(>\) & 0 to 15 &
\end{tabular}
- Query Response
\{numeric\} <new line><<END>
- Example

OUTPUT 717;":DIAG:SERV:SOUR:GAIN:DAC:VAL 0"
OUTPUT 717;":DIAG:SERV:SOUR:GAIN:DAC:VAL?"
ENTER 717;A

\section*{:DIAG:SERVice:SOURce:LEVel:DAC:MODE \(\sqcup\{\) AUTO|MANual\}}

Sets the Level DAC mode of the A3A2 ALC to Auto or Manual. Setting this mode to Manual enables setting the Level DAC value. (LVL DAC AUTO man under (system)
- Query Response
\{AUTO|MAN \}
- Example

OUTPUT 717;":DIAG:SERV:SOUR:LEV:DAC:MODE AUTO"
OUTPUT 717;":DIAG:SERV:SOUR:LEV:DAC:MODE?"
ENTER 717;A\$

\section*{:DIAG:SERVice:SOURce:LEVel:DAC:VALue \(\sqcup<\) numeric \(>\)}

Sets the Level DAC value of the A3A2 ALC. (LVL DAC VALUE under (system)
\begin{tabular}{c|lc} 
Parameter & & Description \\
\hline\(<\) numeric \(>\) & 0 to 4095 &
\end{tabular}
- Query Response
\{numeric\} <new line><<END>
- Example

OUTPUT 717;":DIAG:SERV:SOUR:LEV:DAC:VAL 0"
OUTPUT 717;":DIAG:SERV:SOUR:LEV:DAC:VAL?"
ENTER 717;A

\section*{:DIAG:SERVice:SOURce:MODE \(\sqcup\{\) AUTO|MANual\}}

Sets the Source mode of the A3A2 ALC to Auto or Manual. Setting this mode to Manual enables setting the ALC Loop, Output attenuator, Level DAC, and Gain DAC. (SOURCE AUTO man under (System)
- Query Response
\{AUTO|MANual\} <new line><<END>
- Example

OUTPUT 717;":DIAG:SERV:SOUR:MODE AUTO"
OUTPUT 717;":DIAG:SERV:SOUR:MODE?"
ENTER 717;A\$

\section*{:DIAG:SERVice:SYNThesizer:FLOCal:MODE \(\sqcup\{\) AUTO|SINGIe|TRIPIe\}}

Sets the 1st Local Oscillator of the A5 Synthesizer. (1st LO OSC [ ] under (System))
- Query Response
\(\{\) AUTO|SING|TRIP \(\}<\) new line \(><\) EEND \(>\)
- Example

OUTPUT 717;":DIAG:SERV:SYNT:FLOC:MODE AUTO"
OUTPUT 717;":DIAG:SERV:SYNT:FLOC:MODE?"
ENTER 717;A\$

\section*{:DIAG:SERVice:SYNThesizer:FN:MODE \(\sqcup\{\) AUTO|NARRow|WIDE \(\}\)}

Sets the Fractional N Oscillator of the A5 Synthesizer. (FN OSC [ ] under (System)
- Query Response
\(\{\) AUTO|NARR|WIDE \(\}<\) new line \(><\) E END \(>\)
- Example

OUTPUT 717;":DIAG:SERV:SYNT:FN:MODE AUTO"
OUTPUT 717;":DIAG:SERV:SYNT:FN:MODE?"
ENTER 717;A\$

\section*{:DIAG:SERVice:SYNThesizer:FREQuency:OFFSet \(\sqcup<\) numeric \(>\)}

Sets the Frequency Offset of the A5 Synthesizer. (Network analyzer only) (FREQUENCY OFFSET under (System)
\begin{tabular}{c|c|l} 
Parameter & Description & \\
\hline\(<\) numeric \(>\) & \(-8 \times 10^{9}(=-8 \mathrm{G})\) to \(8 \times 10^{9}(=8 \mathrm{G})\) & Hz
\end{tabular}
- Query Response
\(\{\) numeric \(\}<\) new line \(><\) ENDD \(>\)
■ Example
OUTPUT 717;":DIAG:SERV:SYNT:FREQ:OFFS 0"
OUTPUT 717;":DIAG:SERV:SYNT:FREQ:OFFS?"
ENTER 717;A

\section*{:DIAG:SERVice:SYNThesizer:STEP:DAC:MODE \(\sqcup\) \{AUTO|MANual\}}

Sets the Step DAC mode of the A5 Synthesizer to Auto or Manual. Setting this mode to Manual enables setting the Step DAC value. (STEP DAC under (System)
- Query Response
\(\{\) AUTO|MANual \(\}<\) new line \(><\) END \(>\)
- Example

OUTPUT 717;":DIAG:SERV:SYNT:STEP:DAC:MODE AUTO"
OUTPUT 717;":DIAG:SERV:SYNT:STEP:DAC:MODE?"
ENTER 717;A\$

\section*{:DIAG:SERVice:SYNThesizer:STEP:DAC:VALue \(\sqcup<\) numeric \(>\)}

Sets the Step DAC value of the A5 Synthesizer. (DAC VALUE under (System)
\begin{tabular}{c|lc} 
Parameter & & Description \\
\hline\(<\) numeric \(>\) & 0 to 4095 &
\end{tabular}
- Query Response
\{numeric\} <new line>< END >
■ Example
OUTPUT 717;":DIAG:SERV:SYNT:STEP:DAC:VAL 0"
OUTPUT 717;":DIAG:SERV:SYNT:STEP:DAC:VAL?"
ENTER 717;A\$

\section*{:DIAG:SERVice:SYNThesizer:STEP:LOOP \(\sqcup\{\) OPEN|CLOSe \(\}\)}

Sets the Step Oscillator Loop of the A5 Synthesizer. (LOOP open close under (System))
- Query Response
\(\{\) OPEN \(\mid\) CLOS \(\}<\) new line><
- Example

OUTPUT 717;":DIAG:SERV:SYNT:STEP:LOOP OPEN"
OUTPUT 717;":DIAG:SERV:SYNT:STEP:LOOP?"
ENTER 717;A\$

\section*{:DIAG:SERVice:SYNThesizer:STEP:MODE \(\sqcup\{\) AUTO \(\mid\) MANual \(\}\)}

Sets the Step Oscillator mode of the A5 Synthesizer to Auto or Manual. Setting this mode to Manual enables setting the Oscillator Output, Loop, Polarity, and Step DAC. (STEP OSC AUTO man under (System)
- Query Response
\(\{\) AUTO|MAN \(\}<\) new line \(>\ll{ }^{\wedge}\) END \(>\)
- Example

OUTPUT 717;":DIAG:SERV:SYNT:STEP:MODE AUTO"
OUTPUT 717;":DIAG:SERV:SYNT:STEP:MODE?"
ENTER 717;A\$

\section*{:DIAG:SERVice:SYNThesizer:STEP:OUTPut \(\sqcup\{\) OFF \(\mid\) ON \(|0| 1\}\)}

Sets the Step Oscillator Output ON or OFF of the A5 Synthesizer. (OSC OUT ON off under (System)
- Query Response
\(\{0 \mid 1\}<\) new line><< END>
- Example

OUTPUT 717;":DIAG:SERV:SYNT:STEP:OUTP ON"
OUTPUT 717;":DIAG:SERV:SYNT:STEP:OUTP?"
ENTER 717;A

\section*{:DIAG:SERVice:SYNThesizer:STEP:POLarity \(\sqcup\) \{AUTO|POSitive|NEGative \(\}\)}

Sets the Step Oscillator Polarity of the A5 Synthesizer. (POLARITY [ ] under (System))
- Query Response
\(\{\) AUTO \(\mid\) POS \(\mid\) NEG \(\}<\) new line \(><\) END \(>\)
- Example

OUTPUT 717;":DIAG:SERV:SYNT:STEP:POL AUTO"
OUTPUT 717;":DIAG:SERV:SYNT:STEP:POL?"
ENTER 717;A\$

\section*{:DIAG:TEST \(\sqcup<\) numeric \(>\)}

Selects the diagnostic tests. (TESTS, INTERNAL TESTS, EXTERNAL TESTS, ADJUSTMENT TESTS, DISPLAY TESTS, ALL EXT TESTS under System; No query)
\begin{tabular}{c|l} 
Parameter & \multicolumn{1}{c}{ Description } \\
\hline 0 & First internal test (ALL INT). \\
17 & First external test (FRONT PANEL DIAG). \\
41 & First adjustment test (DC OFFST/HLD STEP). \\
48 & First display test (TEST PATTERN 1). \\
53 & First ALL EXT test (ALL EXT 1). \\
58 & Miscellaneous test (IMPEDANCE TEST KIT).
\end{tabular}
- Example

OUTPUT 717;":DIAG:TEST 0"

\section*{:DIAG:TEST:CONTinue}

Continues the diagnostic test when the test is paused for user interaction. (CONTINUE under (system; No query)
- Example

OUTPUT 717;":DIAG:TEST:CONT"

\section*{:DIAG:TEST:EXECute}

Runs the selected diagnostic tests. (EXECUTE TEST under (System); No query)
- Example

OUTPUT 717;":DIAG:TEST:EXEC"

\section*{:DIAG:TEST:EXECute}

\section*{:DIAG:TEST:RESult? \(<\) numeric \(>\)}

Returns the diagnostic test result. (Query only)
\begin{tabular}{c|lc} 
Parameter & & Description \\
\hline\(<\) numeric \(>\) & Test number; 0 to 67 &
\end{tabular}
- Query Response
\{"PASS"|"FAIL"|"BUSY"|"NDON"|"DONE"\} <new line><<END>
\begin{tabular}{c|l} 
Parameter & \\
\hline "PASS" & Pass \\
"FAIL" & Fail \\
"NUSY" & In progress \\
"DONE" & Not done \\
DONE
\end{tabular}
- Example

OUTPUT 717;":DIAG:TEST:RES? 0" ENTER 717;A\$

\section*{A}

\section*{Manual Changes}

\section*{Introduction}

This appendix contains the information required to adapt this manual to earlier versions or configurations of the analyzer than the current printing date of this manual. The information in this manual applies directly to the 4396B Network/Spectrum/Impedance Analyzer serial number prefix listed on the title page of this manual.

\section*{Manual Changes}

To adapt this manual to your 4396B, see Table A-1 and Table A-2, and make all the manual changes listed opposite your instrument's serial number and firmware version.

Instruments manufactured after the printing of this manual may be different from those documented in this manual. Later instrument versions will be documented in a manual changes supplement that will accompany the manual shipped with that instrument. If your instrument's serial number is not listed on the title page of this manual or in Table A-1, it may be documented in a yellow MANUAL CHANGES supplement.

In additions to change information, the supplement may contain information for correcting errors (Errata) in the manual. To keep this manual as current and accurate as possible, Agilent Technologies recommends that you periodically request the latest MANUAL CHANGES supplement.

For information concerning serial number prefixes not listed on the title page or in the MANUAL CHANGE supplement, contact the nearest Agilent Technologies office.

Turn on the line switch or execute the *IDN? command by GPIB to confirm the firmware version. See the "*IDN?" in Chapter 2 for information on the *IDN? command.

Table A-1. Manual Changes by Serial Number
\begin{tabular}{|c|c|}
\hline Serial Prefix or Number & Make Manual Changes \\
\hline & \\
\hline
\end{tabular}

Table A-2. Manual Changes by Firmware Version
\begin{tabular}{|c|c|}
\hline Version & Make Manual Changes \\
\hline 1.00 & Change 1 \\
1.0 X & Change 2 \\
\hline
\end{tabular}

\section*{Serial Number}

Agilent Technologies uses a two-part, nine-character serial number that is stamped on the serial number plate (see Figure A-1) attached to the rear panel. The first four digits and the letter are the serial prefix and the last five digits are the suffix.


Figure A-1. Serial Number Plate

\section*{Change 1}

Please delete the command of "SAVDSTAC".

\section*{Change 2}

Please delete the following commands.
```

CLOSE
CWD?
FNAME?
FNUM?
FSIZE?
READ?
ROPEN
WOPEN
WRITE

```

B

\section*{Command Summary}

This appendix summarizes the GPIB commands (and SCPI commands) according to the equivalent front panel keys as follows. It also summarizes the GPIB only commands and the common commands.
- Chan 1
- Chan 2
- Meas
- Format
- Display
- Scale Ref
- Cal
- Sweep
- Source
- Trigger
- Start
- Stop
- Center
- Span
- Marker
- Marker \(\rightarrow\)
- Search
- Utility
- System
- Local
- Copy
- Save
- Recall
- Preset
- GPIB Only Commands


\section*{B-2 Command Summary}
\begin{tabular}{|c|c|c|}
\hline Front Panel Key & Simple Command & Equivalent SCPI Command \\
\hline Impedance Analyzer (Continued) & & \\
\hline CONDICT(G) & MEAS ARE & CALCulate:MATH1:NAME ADMittance CALCulate:FORMat REAL \\
\hline SUSCEPT(B) & MEAS AIM & CALCulate:MATH1:NAME ADMittance CALCulate:FORMat IMAGinary \\
\hline REFL.COEF:MAG(-I-) & MEAS RCM & CALCulate: MATH1:NAME OFF CALCulate:FORMat MLINear \\
\hline PHASE \(\theta_{\text {T }}\) ) & MEAS RCPH & CALCulate:MATH1:NAME OFF CALCulate:FORMat PHASe \\
\hline REAM(Tx) & MEAS RCR & CALCulate:MATH1:NAME OFF CALCulate:FORMat REAL \\
\hline lmag(ry) & MEAS RCIM & CALCulate:MATH1:NAME OFF CALCulate:FORMat IMAGinary \\
\hline CAPCITNCE:PRL(Cp) & MEAS CP & CALCulate:MATH1:NAME IMPedance CALCulate:FORMat CP \\
\hline SER(Cs) & MEAS CS & CALCulate:MATH1:NAME IMPedance CALCulate:FORMat CS \\
\hline INDUCTNCE:PRL(Lp) & MEAS LP & CALCulate:MATH1:NAME IMPedance CALCulate:FORMat LP \\
\hline SER(Ls) & MEAS LS & CALCulate:MATH1:NAME IMPedance CALCulate:FORMat LS \\
\hline RESISTNCE:PRL(RP) & MEAS RP & CALCulate:MATH1:NAME IMPedance CALCulate:FORMat RP \\
\hline SER(Rs) & MEAS RS & CALCulate:MATH1:NAME IMPedance CALCulate:FORMat RS \\
\hline D FACTOR & MEAS D & CALCulate:MATH1:NAME IMPedance CALCulate:FORMat D \\
\hline Q FACTOR & MEAS Q & CALCulate:MATH1:NAME IMPedance CALCulate:FORMat Q \\
\hline FIXTURE & MODIFIX & \begin{tabular}{l}
SYSTem:FIXTure:MODify \\
\(\rightarrow\) See Fixture menu
\end{tabular} \\
\hline \begin{tabular}{l}
ANAMZER TYPE \\
\(\rightarrow\) See Analyzer type menu
\end{tabular} & & \\
\hline Analyzer type menu & & \\
\hline NETWORK ANALYZER & NA & INSTrument:TYPE NA \\
\hline SPECTRUM ANALTZER & SA & INSTrument:TYPE SA \\
\hline IMPEDANCE ANAIMZER & ZA & INSTrument:TYPE ZA \\
\hline Conversion menu & & \\
\hline CONVERSION OFF & CONV OFF & CALCulate:MATH1[:EXPRession]:NAME OFF \\
\hline Z:Refl & CONV ZREF & CALCulate:MATH1[:EXPRession]:NAME ZREF \\
\hline Z:Trans & CONV ZTRA & CALCulate:MATH1[:EXPRession]:NAME ZTRA \\
\hline YRen & CONV YREF & CALCulate:MATH1[:EXPRession]:NAME YREF \\
\hline YTrans & CONV YTRA & CALCulate:MATH1[:EXPRession]:NAME YTRA \\
\hline 1s. & CONV ONEDS & CALCulate:MATH1[:EXPRession]:NAME INVS \\
\hline \multicolumn{3}{|l|}{MORE} \\
\hline CONVERSION 4*PHASE & CONV MP4 & CALCulate:MATH1[:EXPRession]:NAME MP4 \\
\hline 8*PHASE & CONV MP8 & CALCulate:MATH1[:EXPRession]:NAME MP8 \\
\hline 10*PMASE & CONV MP16 & CALCulate:MATH1[:EXPRession]:NAME MP16 \\
\hline REFITR & & \\
\hline RETURN & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Front Panel Key & Simple Command & Equivalent SCPI Command \\
\hline \begin{tabular}{l}
Detection menu \\
DETECTION POS PEAK \\
NEG PEAK \\
SAMPLE \\
RETURN
\end{tabular} & \begin{tabular}{l}
DET POS \\
DET NEG \\
DET SAM
\end{tabular} & SENSe:DETector[:FUNCtion] POSitive SENSe:DETector[:FUNCtion] NEGative SENSe:DETector[:FUNCtion] SAMPle \\
\hline \begin{tabular}{l}
Fixture Menu SEIECT FIXTURE FIXTURE: NONE 16191 \\
16192 \\
16193 \\
10194 \\
USER \\
RETURN \\
SAVE USER FXTR KIT \\
MODIFY [NONE] \\
DFFINE EXTENSION \\
IABEL FIXTURE \\
KIT DONE (MODIFIED)
\end{tabular} & \begin{tabular}{l}
FIXT NONE \\
FIXT 16191 \\
FIXT 16192 \\
FIXT 16193 \\
FIXT 16194 \\
FIXT USED \\
SAVUFIXT \\
MODIFIX \\
FIXE < numeric> \\
LABEFIX <string> \\
FIXKDONE
\end{tabular} & \begin{tabular}{l}
SYSTem:FIXTure NONE \\
SYSTem:FIXTure 16191 \\
SYSTem:FIXTure 16192 \\
SYSTem:FIXTure 16193 \\
SYSTem:FIXTure 16194 \\
SYSTem:FIXTure UDEFined \\
SYSTem:FIXTure:SAVE \\
SYSTem:FIXTure:MODify \\
SYSTem:FIXTure:DISTance < numeric> \\
SYSTem:FIXTure:LABel < string> \\
SYSTem:FIXTure:MODify:SAVE
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Front Panel Key & Simple Command & Equivalent SCPI Command \\
\hline Format & & \\
\hline Network Analyzer & & \\
\hline FORMAT:LOG MAG & FMT LOGM & DISPlay[:WINDow]:TRACe:GRATicule:FORMat RECTangle CALCulate:FORMat MLOGarithmic \\
\hline PHASE & FMT PHAS & DISPlay[:WINDow]:TRACe:GRATicule:FORMat RECTangle CALCulate:FORMat PHASe \\
\hline DELAY & FMT DELA & DISPlay[:WINDow]:TRACe:GRATicule:FORMat RECTangle CALCulate:FORMat GDELay \\
\hline SMITH IRe Im & FMT SMITH & DISPlay[:WINDow]:TRACe:GRATicule:FORMat SMITh CALCulate:FORMat COMPlex \\
\hline POLAR [Re Im] & FMT POLA & DISPlay[:WINDow]:TRACe:GRATicule:FORMat POLar CALCulate:FORMat COMPlex \\
\hline LIN MAG & FMT LINM & DISPlay[:WINDow]:TRACe:GRATicule:FORMat RECTangle CALCulate:FORMat MLINear \\
\hline SWR & FMT SWR & DISPlay[:WINDow]:TRACe:GRATicule:FORMat RECTangle CALCulate:FORMat SWR \\
\hline MORE & & \\
\hline FORMAT:REAI. & FMT REAL & DISPlay[:WINDow]:TRACe:GRATicule:FORMat RECTangle CALCulate:FORMat REAL \\
\hline MAGINARY & FMT IMAG & DISPlay[:WINDow]:TRACe:GRATicule:FORMat RECTangle CALCulate:FORMat IMAGinary \\
\hline EXPANDED PHASE & FMT EXPP & DISPlay[:WINDow]:TRACe:GRATicule:FORMat RECTangle CALCulate:FORMat UPHase \\
\hline ADMITTANCE [Re ImI & FMT ADMIT & DISPlay[:WINDow]:TRACe:GRATicule:FORMat ADMittance CALCulate:FORMat COMPlex \\
\hline RETURN & & \\
\hline Spectrum Analyzer & & \\
\hline FORMAT:SPECTRUM & FMT SPECT & SENSe:FUNCtion "Power \(\{1-4\}\) " \\
\hline NOISE & FMT NOISE & SENSe:FUNCtion "POWer \(\{1-4\}\) :PSDensity" \\
\hline UNIT: CBm & SAUNIT DBM & CALCulate:FORMat MLOGarithmic UNIT:POWer DBM \\
\hline dBV & SAUNIT DBV & CALCulate:FORMat MLOGarithmic UNIT:POWer DBV \\
\hline dBuV & SAUNIT DBUV & CALCulate:FORMat MLOGarithmic UNIT:POWer DBUV \\
\hline WATT & SAUNIT W & CALCulate:FORMat MLINear UNIT: POWer W \\
\hline VOLT & SAUNIT V & CALCulate:FORMat MLINear UNIT:POWer V \\
\hline Impedance Analyzer & & \\
\hline FORMAT: LIN Y-AXIS & FMT LINY & DISPlay[:WINDow]:TRACe:GRATicule:FORMat RECTangle DISPlay[:WINDow]:TRACe:Y:SPACe LINear \\
\hline LOG Y-AXIS & FMT LOGY & DISPlay[:WINDow]:TRACe:GRATicule:FORMat RECTangle DISPlay[:WINDow]:TRACe:Y:SPACe LOGarithmic \\
\hline POLAR CHART & FMT POLA & DISPlay[:WINDow]:TRACe:GRATicule:FORMat POLar CALCulate:FORMat COMPlex \\
\hline SMITH CHART & FMT SMITH & DISPlay[:WINDow]:TRACe:GRATicule:FORMat SMITh CALCulate:FORMat COMPlex \\
\hline ADMITTANCE CHART & FMT ADMIT & DISPlay[:WINDow]:TRACe:GRATicule:FORMat ADMittance CALCulate:FORMat COMPlex \\
\hline COMPLEX PLANE & FMT COMP & DISPlay[:WINDow]:TRACe:GRATicule:FORMat CPLane CALCulate:FORMat:COMPlex \\
\hline PHASE INIT IDEG & PHAU \(\{\mathrm{DEG} \mid\) RAD \(\}\) & CALCulate:FORMat:UNIT:ANGLe \(\{\mathrm{DEG} \mid\) RAD \(\}\) \\
\hline EXP PHASE ON Off & EXPP ON & CALCulate:FORMat UPHase \\
\hline EXP PHASE OM OFF & EXPP OFF & CALCulate:FORMat PHASe \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Front Panel Key & Simple Command & Equivalent SCPI Command \\
\hline (Display) & & \\
\hline DUAL CHAN ON OIf & DUAC \(\{\mathrm{ON} \mid \mathbf{1}\}\) & When channel 1 is active,
INSTrument[:SELect] CH2
INSTrument:STATe ON
INSTrument[:SELect] CH1
INSTrument:STATe ON
When channel 2 is active,
INSTrument[:SELect] CH1
INSTrument:STATe ON
INSTrument[:SELect] CH2
INSTrument:STATe ON \\
\hline & DUAC \(\{\mathrm{OFF} \mid 0\}\) & \begin{tabular}{l}
INSTrument[:SELect] \(\{\mathrm{CH} 1 \mid \mathrm{CH} 2\}\) INSTrument:STATe OFF \\
INSTrument[:SELect] \{CH1|CH2\}
\end{tabular} \\
\hline DISPLAY: DATA & DISP DATA & DISPlay[:WINDow]:TRACe1:STATe \(\{\mathrm{ON} \mid 1\}\) DISPlay[:WINDow]:TRACe2:STATe \(\{\mathrm{OFF} \mid 0\}\) \\
\hline MEMORY & DISP MEMO & DISPlay[:WINDow]:TRACe2:STATe \(\{\mathrm{ON} \mid 1\}\) DISPlay[:WINDow]:TRACe1:STATe \(\{\mathrm{OFF} \mid 0\}\) \\
\hline DATA \& MEMORY & DISP DATM & DISPlay[:WINDow]:TRACe1:STATe \(\{\mathrm{ON} \mid 1\}\) DISPlay[:WINDow]:TRACe2:STATe \(\{\mathrm{ON} \mid 1\}\) \\
\hline DATA - MEMORY & DATMEM & TRACe:COPY MTRace,DTRace \\
\hline \multicolumn{3}{|l|}{DATA HOLD IOFF} \\
\hline HOLIT: OFF & DHOLD OFF & CALCulate:AVERage:STATe \(\{\) OFF|0\} \\
\hline MAX & DHOLD MAX & CALCulate: AVERage:TYPE MAXimum CALCulate: AVERage:STATe \(\{\mathrm{ON} \mid 1\}\) \\
\hline MIN & DHOLD MIN & CALCulate: AVERage:TYPE MINimum CALCulate: AVERage:STATe \(\{\mathrm{ON} \mid \mathbf{1}\}\) \\
\hline RETURN & & \\
\hline \multicolumn{3}{|l|}{DATA MATH IDATAI} \\
\hline DATA MATH: DATA & MATH DATA & CALCulate:MATH2[:EXPRession]:NAME OFF \\
\hline DATA-MEM & MATH DMNM & CALCulate:MATH2[:EXPRession]:NAME SUB \\
\hline DATA MEM & MATH DPLM & CALCulate:MATH2[:EXPRession]:NAME ADD \\
\hline DATAMEM & MATH DDVM & CALCulate:MATH2[:EXPRession]:NAME DIV \\
\hline DEFAULT GAIN \& OFS & DEFGO & DATA[:DATA] GAIN, 1
DATA[:DATA] OFFS, 0 \\
\hline \multicolumn{3}{|l|}{OFFSET} \\
\hline MKR - OFFSET & MKROFS & DATA[:DATA] OFFS, MARKer \\
\hline OFFSET VAIUE & DATOVAL < numeric> & DATA[:DATA] OFFS, <numeric> \\
\hline & Datoval? & DATA[:DATA]? OFFS \\
\hline AUX OFFSET VALUE. & DATAOVAL < numeric> & DATA[:DATA] AOFF, <numeric> \\
\hline & DATAOVAL? & DATA[:DATA]? AOFF \\
\hline \multicolumn{3}{|l|}{RFTIURN} \\
\hline GAIN & DATGAIN < numeric> DATGAIN? & DATA[:DATA] GAIN, <numeric> DATA[:DATA]? GAIN \\
\hline RETURN & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Front Panel Key & Simple Command & Equivalent SCPI Command \\
\hline \multicolumn{3}{|l|}{MORE} \\
\hline SPLIT DISP ON Off & SPLD \(\{\mathrm{ON} \mid \mathbf{1}\}\) & DISPlay[:WINDow]:FORMat ULOWer \\
\hline & SPLD \(\{\mathrm{OFF} \mid 0\}\) & DISPlay[:WINDow]:FORMat FBACk \\
\hline \multicolumn{3}{|l|}{DISPLAT ALIUCATION} \\
\hline All. INSTRUMENT & DISA ALLI & DISPlay[:WINDow]: ALLocation INSTrument \\
\hline HALF INSTR MAIF BASIC & DISA HIHB & DISPlay[:WINDow]: ALLocation HIHB \\
\hline All. BASIC & DISA ALLB & DISPlay[:WINDow]:ALLocation BASic \\
\hline BASIC STATUS & DISA BASS & DISPlay[:WINDow]:ALLocation BSTatus \\
\hline RETIRN & & \\
\hline \multicolumn{3}{|l|}{EQUIV CKT MENU} \\
\hline \multicolumn{3}{|l|}{TITE} \\
\hline \multicolumn{3}{|l|}{\(\rightarrow\) See Title menu} \\
\hline \multicolumn{3}{|l|}{AD.IUST MISPI.AY} \\
\hline \multicolumn{3}{|l|}{\(\rightarrow\) See Adjust display menu} \\
\hline & & \[
\text { SYSTem:SECurity[:STATe] }\{O N \mid 1\}
\] \\
\hline RETURN & & \\
\hline \multicolumn{3}{|l|}{Equivalent Circuit Menu} \\
\hline \multicolumn{3}{|l|}{SELECT EQV CKT [A]} \\
\hline CKT A & EQUC CIRA & CALCulate:EVALuate:EPARameters:CIRCuit A \\
\hline B & EQUC CIRB & CALCulate:EVALuate:EPARameters:CIRCuit B \\
\hline C & EQUC CIRC & CALCulate:EVALuate:EPARameters:CIRCuit C \\
\hline D & EQUC CIRD & CALCulate:EVALuate:EPARameters:CIRCuit D \\
\hline E. & EQUC CIRE & CALCulate:EVALuate:EPARameters:CIRCuit E \\
\hline CALCULATE EQV PARAMS & CALECPARA & CALCulate:EVALulate:EPARameters DISPlay[:WINDow]:TEXT18:STATe \(\{\) ON| 1\(\}\) \\
\hline SIMULATE F-CHAR & SIMFCHAR & CALCulate:EVALulate:EPARameters:SIMulation \\
\hline \multicolumn{3}{|l|}{RETURN} \\
\hline DISP EQUIV PARM [OFF] & DISECPARA OFF & DISPlay[:WINDow]:TEXT18:STAT \(\{0 \mid \mathrm{OFF}\}\) \\
\hline DISP EQUUV PARM ION & DISECPARA ON & DISPlay[:WINDow]:TEXT18:STAT \(\{1 \mid \mathrm{ON}\}\) \\
\hline \multicolumn{3}{|l|}{DEFINE EQV PARAMS} \\
\hline PARAMETER R1 & DEFECR1 < numeric> & DATA[:DATA] EQR1, <numeric> \\
\hline C1 & DEFECC1 < numeric> & DATA[:DATA] EQC1, <numeric> \\
\hline 1.1 & DEFECL1 <numeric> & DATA[:DATA] EQL1, <numeric> \\
\hline co & DEFECC0<numeric> & DATA[:DATA] EQC0, <numeric \(>\) \\
\hline SIMULITE F-CHAR & SIMFCHAR & CALCulate:EVALulate:EPARameters:SIMulation \\
\hline RETIRN & & \\
\hline CALCOIATE EQV PARAMS & CALECPARA & CALCulate:EVALulate:EPARameters \\
\hline SIMULATE F-CHAR & SIMFCHAR & CALCulate:EVALulate:EPARameters:SIMulation \\
\hline RETURN & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Front Panel Key & Simple Command & Equivalent SCPI Command \\
\hline Adjust display menu & & \\
\hline INTENSITY & INTE < numeric> & DISPlay:BRIGhtness < numeric> \\
\hline BACKGROUND INTENSITY & BACI<numeric> & DISPlay:CONTrast < numeric> \\
\hline MODIFY COLORS & & \\
\hline CHIDATA & COLO CH1D & DISPlay:CMAP:COLor1:HSL < hue>,<sat>,<lum> \\
\hline CHI MEMIIMT IINE & COLO CH1M & DISPlay:CMAP:COLor2:HSL < hue>, <sat> , <lum> \\
\hline CH2 DATA & COLO CH2D & DISPlay:CMAP:COLor3:HSL < hue>, <sat>, <lum> \\
\hline CH2 MEMIIMT IINE & COLO CH2M & DISPlay:CMAP:COLor4:HSL < hue>, <sat> , <lum> \\
\hline GRATICUIE & COLO GRAT & DISPlay:CMAP:COLor5:HSL < hue>,<sat>,<lum> \\
\hline WARNING & COLO WARN & DISPlay:CMAP:COLor6:HSL < hue>, <sat>, <lum> \\
\hline MORE & & \\
\hline TEXT & COLO TEXT & DISPlay:CMAP:COLor7:HSL < hue>, <sat> , <lum> \\
\hline IBASIC & COLO IBT & DISPlay:CMAP:COLor8:HSL < hue>, <sat> ,<lum> \\
\hline MORE & & \\
\hline PEN 1 & COLO PEN1 & DISPlay:CMAP:COLor9:HSL < hue>, <sat> ,<lum> \\
\hline PEN 2 & COLO PEN2 & DISPlay:CMAP:COLor10:HSL < hue>, <sat>, <lum> \\
\hline PEN 3 & COLO PEN3 & DISPlay:CMAP:COLor11:HSL < hue>, <sat>, <lum> \\
\hline PEN 4 & COLO PEN4 & DISPlay:CMAP:COLor12:HSL < hue>, <sat>, <lum> \\
\hline PEN 5 & COLO PEN5 & DISPlay:CMAP:COLor13:HSL < hue>, <sat>, <lum> \\
\hline PEN 0 & COLO PEN6 & DISPlay:CMAP:COLor14:HSL < hue>, <sat>, <lum> \\
\hline RETURN & & \\
\hline RETURN & & \\
\hline RETITR & & \\
\hline DEFAUIT COLORS & DEFC & DISPlay:CMAP:DEFault \\
\hline SAVE COLORS & SVCO & DISPlay:CMAP:STORe \\
\hline RECALI. COLORS & RECC & DISPlay:CMAP:LOAD \\
\hline RFTURN & & \\
\hline Color adjust menu & & \\
\hline TINT & TINT < numeric> & \\
\hline BRIGHTNESS & CBRI<numeric> & \\
\hline COLOR & COLOR < numeric> & \\
\hline RESET COLOR & RSCO & DISPlay:CMAP:COLor \(\{1-14\}\) : DEFault \\
\hline RETIURN & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Front Panel Key & Simple Command & Equivalent SCPI Command \\
\hline \begin{tabular}{l}
Scale Ref \\
Network Analyzer \\
AUTO SCALE \\
SCAIEDIV \\
REFERENCE POSITION \\
REFERENCE VALIE \\
MKR - REFERENCE \\
SCAIE FOR [DATA] \\
D\&M SCALE [COLPLE] \\
ELECTRICAI DELAY MENU \\
MKR - DELAY \\
ELECTRICAI DELAY \\
PHASE OFFSET \\
RETURN
\end{tabular} & \begin{tabular}{l}
\[
\begin{aligned}
& \text { AUTO } \\
& \text { SCAL < numeric> } \\
& \text { REFP < numeric> } \\
& \text { REFV <numeric> } \\
& \text { MKRREF } \\
& \text { SCAF DATA } \\
& \text { SCAF MEMO } \\
& \text { SCAC }\{O F F|O N| 0 \mid 1\}
\end{aligned}
\] \\
MKRDELA \\
ELED < numeric> \\
PHAO <numeric>
\end{tabular} & ```
DISPlay[:WINDow]:TRACe{1|2}:Y[:SCALe]:AUTO ONCE
DISPlay[:WINDow]:TRACe{1|2}:Y[:SCALe]:PDIVision <numeric>
DISPlay[:WINDow]:TRACe{1|2}:Y[:SCALe]:RPOSition <numeric>
DISPlay[:WINDow]:TRACe{1|2}:Y[:SCALe]:RLEVel < numeric>
DISPlay[:WINDow]:TRACe{1|2}:Y[:SCALe]:RLEVel MARKer
DISPlay[:WINDow]:TRACe{1|2}:Y[:SCALe]:COUPle {OFF|ON|0|1}
SENSe:CORRection:EDELay2 MARKer
SENSe:CORRection:EDELay2 < numeric>
SENSe:CORRection:OFFSet:PHASe < numeric>
``` \\
\hline & \[
\begin{aligned}
& \text { ATTAUTO }\{\mathrm{OFF}|\mathrm{ON}| 0 \mid 1\} \\
& \text { ATT <numeric> } \\
& \text { SCAL <numeric }> \\
& \text { REFV <numeric> } \\
& \text { MKRREF } \\
& \text { SCAF DATA } \\
& \text { SCAF MEMO } \\
& \text { SCAC }\{O F F|O N| 0 \mid 1\} \\
& \text { MAXMLEV <numeric> }
\end{aligned}
\] & ```
SENSe:POWer:AC:ATTenuation:AUTO {OFF|ON|0| 1 }
SENSe:POWer:AC:ATTenuation:AUTO {OFF|0}
SENSe:POWer:AC: ATTenuation < numeric>
DISPlay[:WINDow]:TRACe{1|2}:Y[:SCALe]:PDIVision <numeric>
DISPlay[:WINDow]:TRACe{1|2}:Y[:SCALe]:RLEVel < numeric>
DISPlay[:WINDow]:TRACe{1|2}:Y[:SCALe]:RLEVel MARKer
DISPlay[:WINDow]:TRACe{1|2}:Y[:SCALe]:COUPle {OFF|ON|0|1}
SENSe:POWer:AC:RANGe[:UPPer] < numeric>
``` \\
\hline \begin{tabular}{l}
Impedance Analyzer \\
AUTO SCALE \\
SCALEDIV \\
REFERENCE POSITION \\
REFERENCE VALUE \\
MKR - REFERENCE \\
TOP VALUE \\
BOTTOM VALIE \\
MORE \\
SCALE FOR IDATA \\
DSM SCATE [COUPLE] \\
REFERENCE X VALUE \\
REFERENCE Y VALUE RETURN
\end{tabular} & \begin{tabular}{l}
AUTO \\
SCAL < numeric> \\
REFP < numeric> \\
REFV <numeric> \\
MKRREF \\
TOPV <numeric> \\
BOTV <numeric> \\
SCAF DATA \\
SCAF MEMO \\
SCAC \(\{\mathrm{OFF}|\mathrm{ON}| 0 \mid 1\}\) \\
REFX <numeric> \\
REFY <numeric>
\end{tabular} & \begin{tabular}{l}
DISPlay[:WINDow]:TRACe\{1|2\}:Y[:SCALe]:AUTO ONCE \\
DISPlay[:WINDow]:TRACe \(\{1 \mid 2\}: Y[: S C A L e]: P D I V i s i o n ~<n u m e r i c>~\) DISPlay[:WINDow]:TRACe \(\{1 \mid 2\}: Y[: S C A L e]: R P O S i t i o n ~<n u m e r i c>~\) DISPlay[:WINDow]:TRACe \(\{1 \mid 2\}: Y[: S C A L e]:\) RLEVel < numeric> DISPlay[:WINDow]:TRACe\{1|2\}:Y[:SCALe]:RLEVel MARKer DISPlay:TRACe \(\{1 \mid 2\}: Y[: S C A L e]: T O P<n u m e r i c>\) DISPlay:TRACe \(\{1 \mid 2\}: Y[: S C A L e]: B O T T o m ~<~ n u m e r i c>~\) \\
DISPlay[:WINDow]:TRACe \(\{1 \mid 2\}: Y[: S C A L e]: C O U P l e ~\{O F F|O N| 0 \mid 1\}\) DISPlay:TRACe \(\{1 \mid 2\}:\) X[:SCALe \(]:\) RLEVel < numeric> DISPlay:TRACe \(\{1 \mid 2\}: Y[: S C A L e]:\) RLEVel < numeric>
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Front Panel Key & Simple Command & Equivalent SCPI Command \\
\hline (Bw/Avg) & & \\
\hline Network Analyzer & & \\
\hline AVERAGING RESTART & AVERREST & SENSe:AVERage:CLEar \\
\hline AVERAGING ON Off & AVER \(\{\mathrm{OFF}|\mathrm{ON}| 0 \mid 1\}\) & SENSe:AVERage[:STATe] \(\{\mathrm{OFF}|\mathrm{ON}| 0 \mid 1\}\) \\
\hline AVERAGING FACTOR & AVERFACT < numeric> & SENSe:AVERage:COUNt < numeric> \\
\hline IF BW [40 kHz] & BW <numeric> & \begin{tabular}{l}
SENSe:BANDwidth[:RESolution]:AUTO \{OFF|0\} \\
SENSe:BANDwidth[:RESolution] <numeric>
\end{tabular} \\
\hline GROUP DELY APERTURE & GRODAPER < numeric> & CALCulate:GDAPerture:APERture < numeric> \\
\hline Spectrum Analyzer & BW <numeric> & SENSe:BANDwidth[:RESolution]:AUTO \{OFF \(\mid 0\}\) SENSe:BANDwidth[:RESolution] < numeric> \\
\hline AVERAGING RESTART & AVERREST & SENSe:AVERage:CLEar \\
\hline AVERAGING ON Off & AVER \(\{\mathrm{OFF}|\mathrm{ON}| 0 \mid 1\}\) & SENSe:AVERage[:STATe] \(\{\) OFF|ON|0|1 \(\}\) \\
\hline AVERAGING FACTOR & AVERFACT < numeric> & SENSe:AVERage:COUNt < numeric> \\
\hline RES BW AUTO man & BWAUTO \(\{\mathrm{OFF}|\mathrm{ON}| 0 \mid 1\}\) & SENSe:BANDwidth[:RESolution]:AUTO \{OFF|ON|O|1\} \\
\hline RES BW [3 MHz] & BW <numeric> & SENSe:BANDwidth[:RESolution]:AUTO \{OFF|0\} SENSe:BANDwidth[:RESolution] < numeric> \\
\hline RBW SPAN RATIC & BWSRAT < numeric> & SENSe:BANDwidth[:RESolution]:RATio < numeric> \\
\hline YIDEO BW & VBW <numeric> & SENSe:BANDwidth:VIDeo < numeric> \\
\hline Impedance Analyzer & & \\
\hline AVERAGING RESTART & AVERREST & SENSe:AVERage:CLEar \\
\hline AVERAGING ON Off & AVER \(\{\mathrm{OFF}|\mathrm{ON}| 0 \mid 1\}\) & SENSe:AVERage[:STATe] \(\{\) OFF|ON|0|1 \(\}\) \\
\hline AVERAGING FACTOR & AVERFACT < numeric> & SENSe:AVERage:COUNt < numeric> \\
\hline IF BW [ \(40 \mathrm{kl\mid z}\) ] & BW <numeric> & SENSe:BANDwidth[:RESolution] < numeric> \\
\hline
\end{tabular}

\section*{B-10 Command Summary}
\begin{tabular}{|c|c|c|}
\hline Front Panel Key & Simple Command & Equivalent SCPI Command \\
\hline Cal) & & \\
\hline Network Analyzer & & \\
\hline CORRECTION ON OIf & CORR \(\{\mathrm{OFF}|\mathrm{ON}| 0 \mid 1\}\) & SENSe:CORRection[:STATe] \(\{\) OFF|ON|0|1\} \\
\hline CAIIPRATE MENU & & \\
\hline CALIBRATE:NONE & CALI NONE & SENSe:CORRection:COLLect:METHod NONE \\
\hline RESPONSE & CALI RESP & SENSe:CORRection:COLLect:METHod RESPonse \\
\hline \(\rightarrow\) See Response menu & & \\
\hline RESPONSE \& ISOI N & CALI RAI & SENSe:CORRection:COLLect:METHod RAIsol \\
\hline \(\rightarrow\) See Response/isolation menu & & \\
\hline S11 1-PORT & CALI S111 & SENSe:CORRection:COLLect:METHod S111 \\
\hline \(\rightarrow\) See S11 1-port menu & & \\
\hline S22 1-PORT & CALI S221 & SENSe:CORRection:COLLect:METHod S221 \\
\hline \(\rightarrow\) See S22 1-port menu & & \\
\hline FUll. 2 -PORT & CALI FUL2 & SENSe:CORRection:COLLect:METHod TPORt \\
\hline \(\rightarrow\) See Full 2-port menu & & \\
\hline ONE PATH 2-PORT & CALI ONE2 & SENSe:CORRection:COLLect:METHod OPTPort \\
\hline \(\rightarrow\) See One-path 2-port menu & & \\
\hline RESUME CAL SEQUENCE & RESC & SENSe:CORRection:COLLect:RESume \\
\hline CAI KIT [7mm] & & \\
\hline CAL KIT:7mm & CALK APC7 & SENSe:CORRection:CKIT APC7 \\
\hline 3.5 mm & CALK APC35 & SENSe:CORRection:CKIT APC35 \\
\hline N 50 ohm & CALK N50 & SENSe:CORRection:CKIT N50 \\
\hline N 75 ohm & CALK N75 & SENSe:CORRection:CKIT N75 \\
\hline USER KIT & CALK USED & SENSe:CORRection:CKIT UDEFined \\
\hline SAVE USER KIT & SAVEUSEK & SENSe:CORRection:CKIT:MODify:SAVE \\
\hline MODIF [ [7mm] & MODI1 & SENSe:CORRection:CKIT:MODify \\
\hline \[
\begin{aligned}
& \rightarrow \text { See Modify calkit menu } \\
& \text { RETURN }
\end{aligned}
\] & & \\
\hline MORE. & & \\
\hline \begin{tabular}{l}
PORT EXTENSIONS \\
\(\rightarrow\) See Reference plane menu
\end{tabular} & & \\
\hline VELOCITY FACTOR & VELOFACT < numeric> & SENSe:CORRection:RVELocity < numeric> \\
\hline SET 70 & SETZ < numeric> & SENSe:CORRection:CIMPedance < numeric> \\
\hline RETURN & & \\
\hline Response standard menu & & \\
\hline defined std 1 & STANA & SENSe:CORRection:COLLect[:ACQuire] STANdard1 \\
\hline defined std 2 & STANB & SENSe:CORRection:COLLect[:ACQuire] STANdard2 \\
\hline defined std 3 & STANC & SENSe:CORRection:COLLect[:ACQuire] STANdard3 \\
\hline defined std 4 & STAND & SENSe:CORRection:COLLect[:ACQuire] STANdard4 \\
\hline defined std 5 & STANE & SENSe:CORRection:COLLect[:ACQuire] STANdard5 \\
\hline defined std 0 & STANF & SENSe:CORRection:COLLect[:ACQuire] STANdard6 \\
\hline defined std 7 & STANG & SENSe:CORRection:COLLect[:ACQuire] STANdard7 \\
\hline DONE: RESPONSE & RESPDONE & SENSe:CORRection:COLLect:SAVE2 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Front Panel Key & Simple Command & Equivalent SCPI Command \\
\hline \begin{tabular}{l}
Response/isolation menu \\
RESPONSE \\
\(\rightarrow\) See OPEN/SHORT/Response \\
standard menu \\
ISOL N STD \\
DONE RESP ISOL N CAI
\end{tabular} & \begin{tabular}{l}
RAIRESP \\
RAIISOL \\
RAID
\end{tabular} & \begin{tabular}{l}
SENSe:CORRection:COLLect[:ACQuire] RESP \\
SENSe:CORRection:COLLect[:ACQuire] ISOL \\
SENSe:CORRection:COLLect:SAVE3
\end{tabular} \\
\hline S11 1-port menu
[S11]: OPEN \({ }^{1}\)
SHORT \(^{1}\)
LOAT
DONE: 1-PORT CAI. & \begin{tabular}{l}
CLASS11A \\
CLASS11B \\
CLASS11C \\
SAV1
\end{tabular} & SENSe:CORRection:COLLect[:ACQuire] CS11A SENSe:CORRection:COLLect[:ACQuire] CS11B SENSe:CORRection:COLLect[:ACQuire] CS11C SENSe:CORRection:COLLect:SAVE4 \\
\hline S22 1-port menu
IS22I: OPEN \({ }^{1}\)
SHORT \(^{1}\)
LOAD
DONE: 1-PORT CAL. & \begin{tabular}{l}
CLASS22A \\
CLASS22B \\
CLASS22C \\
SAV1
\end{tabular} & SENSe:CORRection:COLLect[:ACQuire] CS22A SENSe:CORRection:COLLect[:ACQuire] CS22B SENSe:CORRection:COLLect[:ACQuire] CS22C SENSe:CORRection:COLLect:SAVE4 \\
\hline  & \begin{tabular}{l}
REFL \\
CLASS11A \\
CLASS11B \\
CLASS11C \\
CLASS22A \\
CLASS22B \\
CLASS22C \\
REFD \\
TRAN \\
FWDT \\
FWDM \\
REVT \\
REVM \\
TRAD \\
ISOL \\
OMII \\
FWDI \\
REVI \\
ISOD \\
SAV2
\end{tabular} & SENSe:CORRection:COLLect[:ACQuire] REFL2 SENSe:CORRection:COLLect[:ACQuire] CS11A SENSe:CORRection:COLLect[:ACQuire] CS11B SENSe:CORRection:COLLect[:ACQuire] CS11C SENSe:CORRection:COLLect[:ACQuire] CS22A SENSe:CORRection:COLLect[:ACQuire] CS22B SENSe:CORRection:COLLect[:ACQuire] CS22C SENSe:CORRection:COLLect:SAVE5 SENSe:CORRection:COLLect[:ACQuire] TRAN2 SENSe:CORRection:COLLect[:ACQuire] FWDT SENSe:CORRection:COLLect[:ACQuire] FWDM SENSe:CORRection:COLLect[:ACQuire] REVT SENSe:CORRection:COLLect[:ACQuire] REVM SENSe:CORRection:COLLect:SAVE6 SENSe:CORRection:COLLect[:ACQuire] ISOL2 SENSe:CORRection:COLLect[:ACQuire] OMII SENSe:CORRection:COLLect[:ACQuire] FWDI SENSe:CORRection:COLLect[:ACQuire] REVI SENSe:CORRection:COLLect:SAVE7 SENSe:CORRection:COLLect:SAVE8 \\
\hline
\end{tabular}

1 See OPEN/SHORT/Response standard menu when Type-N calkits or user calkit is selected.
\begin{tabular}{|c|c|c|}
\hline Front Panel Key & Simple Command & Equivalent SCPI Command \\
\hline  & \begin{tabular}{l}
REFL \\
CLASS11A \\
CLASS11B \\
CLASS11C \\
REFD \\
TRAN \\
FWDT \\
FWDM \\
TRAD \\
ISOL \\
OMII \\
FWDI \\
REVI \\
ISOD \\
SAV2
\end{tabular} & SENSe:CORRection:COLLect[:ACQuire] REFL2 SENSe:CORRection:COLLect[:ACQuire] CS11A SENSe:CORRection:COLLect[:ACQuire] CS11B SENSe:CORRection:COLLect[:ACQuire] CS11C SENSe:CORRection:COLLect:SAVE5 SENSe:CORRection:COLLect[:ACQuire] TRAN2 SENSe:CORRection:COLLect[:ACQuire] FWDT SENSe:CORRection:COLLect[:ACQuire] FWDM SENSe:CORRection:COLLect:SAVE6 SENSe:CORRection:COLLect[:ACQuire] ISOL2 SENSe:CORRection:COLLect[:ACQuire] OMII SENSe:CORRection:COLLect[:ACQuire] FWDI SENSe:CORRection:COLLect[:ACQuire] REVI SENSe:CORRection:COLLect:SAVE7 SENSe:CORRection:COLLect:SAVE8 \\
\hline \begin{tabular}{l}
OPEN/SHORT/Response standard menu \\
defined std 1 \\
defined std 2 \\
defined std 3 \\
defined std 4 \\
defined std 5 \\
defined std 0 \\
defined std? \\
DONE: OPENSSHORTS \\
Response
\end{tabular} & STANA
STANB
STANC
STAND
STANE
STANF
STANG
DONE & \begin{tabular}{l}
SENSe:CORRection:COLLect[:ACQuire] STANdard1 SENSe:CORRection:COLLect[:ACQuire] STANdard2 SENSe:CORRection:COLLect[:ACQuire] STANdard3 SENSe:CORRection:COLLect[:ACQuire] STANdard4 SENSe:CORRection:COLLect[:ACQuire] STANdard5 SENSe:CORRection:COLLect[:ACQuire] STANdard6 SENSe:CORRection:COLLect[:ACQuire] STANdard7 \\
SENSe:CORRection:COLLect:SAVE1
\end{tabular} \\
\hline Reference plane menu EXTENSIONS ON Off EXTENSION INPUT \(R\) EXTENSION INPUT A EXTENSION INPUT B EXTENSION PORT 1 EXTENSION PORT 2 RETURN & \begin{tabular}{l}
PORE \(\{\mathrm{OFF}|\mathrm{ON}| 0 \mid 1\}\) \\
PORTR <numeric> \\
PORTA <numeric> \\
PORTB <numeric> \\
PORT1 <numeric> \\
PORT2 <numeric>
\end{tabular} & \begin{tabular}{l}
SENSe:CORRection:EDELay:STATe \(\{\mathrm{OFF}|\mathrm{ON}| 0 \mid 1\}\) \\
SENSe:CORRection:EDELay:PORT3:TIME < numeric> \\
SENSe:CORRection:EDELay:PORT4:TIME < numeric> \\
SENSe:CORRection:EDELay:PORT5:TIME < numeric> \\
SENSe:CORRection:EDELay:PORT1:TIME < numeric> \\
SENSe:CORRection:EDELay:PORT2:TIME < numeric>
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Front Panel Key & Simple Command & Equivalent SCPI Command \\
\hline Modify calkit menu & & \\
\hline DEFINE STANDARD & & \\
\hline STD NO. 1 ISHORT & DEFS 1 & SENSe:CORRection:CKIT:SELect STANdard1 \\
\hline STD NO. 2 [OPEN] & DEFS 2 & SENSe:CORRection:CKIT:SELect STANdard2 \\
\hline STD NO.3 [LOAD] & DEFS 3 & SENSe:CORRection:CKIT:SELect STANdard3 \\
\hline STD NO. 4 IDEI THRU] & DEFS 4 & SENSe:CORRection:CKIT:SELect STANdard4 \\
\hline STD NO.S [LOAD] & DEFS 5 & SENSe:CORRection:CKIT:SELect STANdard5 \\
\hline STD NO. 6 [LOAD] & DEFS 6 & SENSe:CORRection:CKIT:SELect STANdard6 \\
\hline STD NO.7 [SHORT] & DEFS 7 & SENSe:CORRection:CKIT:SELect STANdard7 \\
\hline STD NO.8 [OPEN1 & DEFS 8 & SENSe:CORRection:CKIT:SELect STANdard8 \\
\hline SPECIFY CILASS & & \\
\hline SPECIFY: S11A & SPECS11A < value, . . > & SENSe:CORRection:CKIT:CLASs1:STANdard <n,n, . . > \\
\hline S11B & SPECS11B < value, . . > & SENSe:CORRection:CKIT:CLASs2:STANdard <n,n, . . > \\
\hline S11C & SPECS11C < value, . . > & SENSe:CORRection:CKIT:CLASs3:STANdard <n,n, .. > \\
\hline SPECIFY: S22A & SPECS22A < value, ... > & SENSe:CORRection:CKIT:CLASs4:STANdard <n,n, .. > \\
\hline S22B & SPECS22B < value, . . > & SENSe:CORRection:CKIT:CLASs5:STANdard <n,n, .. > \\
\hline S22C & SPECS22C < value, . . > & SENSe:CORRection:CKIT:CLASs6:STANdard <n,n, .. > \\
\hline MORE. & & \\
\hline SPECIFYFWI. TRANS. & SPECFWDT < value, ... > & SENSe:CORRection:CKIT:CLASs7:STANdard <n,n, .. > \\
\hline REV.TRANS. & SPECREVT < value, . . \gg & SENSe:CORRection:CKIT:CLASs8:STANdard <n,n, .. > \\
\hline FWD. MATCH & SPECFWDM < value, . . > & SENSe:CORRection:CKIT:CLASs9:STANdard <n,n, . . > \\
\hline REV.MATCH & SPECREVM < value, . . > & SENSe:CORRection:CKIT:CLASs10:STANdard <n,n, .. >> \\
\hline RESPOMSE & SPECRESP < value, . . > & SENSe:CORRection:CKIT:CLASs11:STANdard <n,n, .. >> \\
\hline RESPONSE \& ISON & SPECRESI < value, . . > & SENSe:CORRection:CKIT:CLASs12:STANdard <n,n, .. >> \\
\hline CLASS DONE (SPEC D) & CLAD & SENSe:CORRection:CKIT:SAVE CLASs \\
\hline CLASS DONE (SPEC'D) & CLAD & SENSe:CORRection:CKIT:SAVE CLASs \\
\hline LABEL CLASS & & \\
\hline IABEL: S11A & LABES11A < string> & SENSe:CORRection:CKIT:CLASs1:LABel < string> \\
\hline S11B & LABES11B < string> & SENSe:CORRection:CKIT:CLASs2:LABel < string> \\
\hline Sl1C & LABES 11 C < string> & SENSe:CORRection:CKIT:CLASs3:LABel < string> \\
\hline LABEL: S22A & LABES22A < string> & SENSe:CORRection:CKIT:CLASs4:LABel < string> \\
\hline S22B & LABES22B < string> & SENSe:CORRection:CKIT:CLASs5:LABel < string> \\
\hline S22C & LABES22C < string> & SENSe:CORRection:CKIT:CLASs6:LABel < string> \\
\hline MORE & & \\
\hline LABEL:FWD.TRANS. & LABEFWDT < string> & SENSe:CORRection:CKIT:CLASs7:LABel < string> \\
\hline REV.TRANS. & LABEREVT < string> & SENSe:CORRection:CKIT:CLASs8:LABel < string> \\
\hline FWD. MATCH & LABEFWDM < string> & SENSe:CORRection:CKIT:CLASs9:LABel < string> \\
\hline REV. MATCH & LABEREVM < string> & SENSe:CORRection:CKIT:CLASs10:LABel < string> \\
\hline RESPONSE & LABERESP < string> & SENSe:CORRection:CKIT:CLASs11:LABel < string> \\
\hline RESPONSF: \({ }^{\text {P }}\) ISO:N & LABERESI < string> & SENSe:CORRection:CKIT:CLASs12:LABel < string> \\
\hline LABEL DONE & & \\
\hline I.ABEL DONE & & \\
\hline L.ABEL KIT & LABK < string> & SENSe:CORRection:CKIT:LABel < string > \\
\hline KIT DONE (MODIFIED) & KITD & SENSe:CORRection:CKIT:SAVE ALL \\
\hline
\end{tabular}

\section*{B-14 Command Summary}

\begin{tabular}{|c|c|c|}
\hline Front Panel Key & Simple Command & Equivalent SCPI Command \\
\hline Impedance Analyzer & & \\
\hline CAIIBRATE MENU & CALI IMP & SENSe:CORRection:COLLect:METHod IMP \\
\hline OPEN \({ }^{1}\) & CLASIMPA & SENSe:CORRection:COLLect[:ACQuire] IMPA \\
\hline SHORT \({ }^{1}\) & CLASIMPB & SENSe:CORRection:COLLect[:ACQuire] IMPB \\
\hline LOAD & CLASIMPC & SENSe:CORRection:COLLect[:ACQuire] IMPC \\
\hline DONE:CAT. & SAVIMP & SENSe:CORRection:COLLect:SAVE \\
\hline RESUME CAI. SEQUENCE & RESC & SENSe:CORRection:COLLect:RESume \\
\hline FIXTURE COMPEN & & \\
\hline COMPEN MENU & COMP & SENSe:CORRection2:COLLect:METHod IMPedance \\
\hline OPEN & COMCA & SENSe:CORRection2:COLLect[: ACQuire] STANdard1 \\
\hline SHORT & COMCB & SENSe:CORRection2:COLLect[: ACQuire] STANdard2 \\
\hline LOAD & COMCC & SENSe:CORRection2:COLLect[: ACQuire] STANdard3 \\
\hline DONE:COMPEN & SAVCOM & SENSe:CORRection2:COLLect:SAVE \\
\hline RESUME COMP SEQ & RESCOM & SENSe:CORRection2:COLLect:RESume \\
\hline OPEN On OFF & COMCDATA \(\{\mathrm{ON} \mid \mathrm{OFF}\}\) & SENSe:CORRection2:OPEN \{ON|OFF|1|0\} \\
\hline SHORT OT OFF & COMCDATB \(\{\mathrm{ON} \mid \mathrm{OFF}\}\) & SENSe:CORRection2:SHORt \(\{\mathrm{ON}|\mathrm{OFF}| 1 \mid 0\}\) \\
\hline LOAD OM OFF & COMCDATC \(\{\mathrm{ON} \mid \mathrm{OFF}\}\) & SENSe:CORRection2:LOAD \(\{\mathrm{ON}|\mathrm{OFF}| \mathbf{1} \mid 0\}\) \\
\hline RETURN & & \\
\hline CAL KTI \MP 7 mm . & & \\
\hline CAL KIT. IMP 7 mm & CALK APC7 & SENSe:CORRection:CKIT APC7 \\
\hline 3.5 mm & CALK APC35 & SENSe:CORRection:CKIT APC35 \\
\hline N 508 & CALK N50 & SENSe:CORRection:CKIT N50 \\
\hline N 758 & CALK N75 & SENSe:CORRection:CKIT N75 \\
\hline USER KIT & CALK USED & SENSe:CORRection:CKIT UDEFined \\
\hline SAVE USER KIT & SAVEUSEK & SENSe:CORRection:CKIT:MODify:SAVE \\
\hline MODIFY (MP 7mm) & MODI1 & SENSe:CORRection:CKIT:MODify \\
\hline \begin{tabular}{l}
DEFINE STNADARD \\
\(\rightarrow\) See Define standard menu SPECIFY Class
\end{tabular} & & \\
\hline SPECIFY: IMP A & SPECIMPA < numeric> & :SENSe:CORRection:CKIT:CLASs13:STANdard \(<\) num1 \(>[,<\) num2 \(>[, \ldots[,<\) num \(7>]]]\) \\
\hline MP B & SPECIMPB < numeric> & :SENSe:CORRection:CKIT:CLASs14:STANdard \(<\) num1 \(>[,<\) num2 \(>[, \ldots[,<\) num7 \(>]]]\) \\
\hline MP C & SPECIMPC < numeric> & :SENSe:CORRection:CKIT:CLASs15:STANdard \(<\) num1 \(>[,<\) num2 \(>[, \ldots[,<\) num7 \(>]]]\) \\
\hline CLASS DONE & CLAD & SENSe:CORRection:CKIT:SAVE CLASs \\
\hline I.ABEI. CIASS & & \\
\hline I.ABEL: IMP A & LABEIMPA < string> & :SENSe:CORRection:CKIT:CLASs13:LABel <string> \\
\hline M M P & LABEIMPB < string> & :SENSe:CORRection:CKIT:CLASs14:LABel <string> \\
\hline MMP C & LABEIMPC < string> & :SENSe:CORRection:CKIT:CLASs15:LABel <string> \\
\hline L.ABEI KIT & LABK < string> & SENSe:CORRection:CKIT:LABel <string> \\
\hline KIT DONE (MODIFIED) & KITD & SENSe:CORRection:CKIT:SAVE ALL \\
\hline \begin{tabular}{l}
COMPEN KIT [USER] \\
\(\rightarrow\) See Compensation kit menu
\end{tabular} & & \\
\hline
\end{tabular}

1 See OPEN/SHORT/Response standard menu when Type-N calkits or user calkit is selected.

\section*{B-16 Command Summary}
\begin{tabular}{|c|c|c|}
\hline Front Panel Key & Simple Command & Equivalent SCPI Command \\
\hline PORT EXTENSIONS & & \\
\hline EXTENSION ON Off & PORE \(\{\mathrm{OFF}|\mathrm{ON}| 0 \mid 1\}\) & SENSe:CORRection:EDELay:STATe \(\{\) OFF|ON|0|1\} \\
\hline EXTENSION VALUE & PORTZ <numeric> & SENSe:CORRection1:EDELay:PORT6[:TIME] < numeric> \\
\hline VELOCITY FACTOR & VELOFACT < numeric> & SENSe:CORRection:RVELocity < numeric> \\
\hline RETIRN & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Front Panel Key & Simple Command & Equivalent SCPI Command \\
\hline Compensation Kit Menu & & \\
\hline SAVE COMPEN KIT & SAVUCOMK & SENSe:CORRection2:CKIT:MODify:SAVE \\
\hline MODIFY IUSER & MODICOMK & SENSe:CORRection2:CKIT:MODify \\
\hline DFFINE STANDARD & & \\
\hline OPEN CONDUCT(G) & DEFSOPENG < numeric> & SENSe:CORRection2:CKIT:STNAdard1:G < numeric> \\
\hline CAP.(C) & DEFSOPENC < numeric> & SENSe:CORRection2:CKIT:STNAdard1:C < numeric> \\
\hline SHORT RESIST.(R) & DEFSSHORR < numeric> & SENSe:CORRection2:CKIT:STNAdard2:R<numeric> \\
\hline INDUCT.(1) & DEFSSHORL < numeric> & SENSe:CORRection2:CKIT:STNAdard2:L < numeric> \\
\hline LOAT RESIST.(R) & DEFSLOADR < numeric> & SENSe:CORRection2:CKIT:STNAdard3:R < numeric> \\
\hline INDUCT.(1) & DEFSLOADL < numeric> & SENSe:CORRection2:CKIT:STNAdard3:L < numeric> \\
\hline STI DONE (DEFINED) & COMSDONE & SENSe:CORRection2:CKIT:STANdard:SAVE \\
\hline LABEL KIT & LABECOMK < string> & SENSe:CORRection2:CKIT:LABel < string> \\
\hline KIT DONE (MODIFIED) & COMKDONE & SENSe:CORRection2:CKIT:SAVE \\
\hline RETURN & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Front Panel Key & Simple Command & Equivalent SCPI Command \\
\hline Sweep & & \\
\hline Network/Impedance Analyzer & & \\
\hline SWEEP TMME AITO man & SWETAUTO \(\{\mathrm{OFF}|\mathrm{ON}| 0 \mid 1\}\) & SENSe:SWEep:TIME: AUTO \(\{\) OFF|ON|0|1\} \\
\hline SWEEP TME & SWET < numeric> & SENSe:SWEep:TIME < numeric> \\
\hline ham:s & & \\
\hline RETURN & & \\
\hline NUMBER OF POINTS & POIN < numeric> & SENSe:SWEep:POINts < numeric> \\
\hline COUPIED CH ON Off & COUC \(\{\mathrm{OFF}|\mathrm{ON}| 0 \mid 1\}\) & INSTrument:COUPle \(\{\mathrm{OFF}|\mathrm{ON}| 0 \mid 1\}\) \\
\hline SWEEP TYPE MENU & & \\
\hline SWEEP TYPE:IN FREQ & SWPT LINF & SENSe:FREQuency:MODE SWEep SOURce:POWer:MODE FIXed SENSe:SWEep:SPACing LINear \\
\hline LOG FREQ & SWPT LOGF & SENSe:FREQuency:MODE SWEep SOURce:POWer:MODE FIXed SENSe:SWEep:SPACing LOGarithmic \\
\hline MIST FREQ & SWPT LIST & SENSe:FREQuency:MODE LIST SOURce:POWer:MODE LIST SENSe:SWEep:SPACing LINear \\
\hline POWER SWEEP & SWPT POWE & SENSe:FREQuency:MODE FIXed SOURce:POWer:MODE SWEep SENSe:SWEep:SPACing LINear \\
\hline EDIT LIST & EDITLIST & \\
\hline SEGMENT & SEDI < numeric> & SENSe:LIST:SEGMent < numeric> \\
\hline EDIT & SEDI [<numeric>] & SENSe:LIST:SEGMent:EDIT \\
\hline \(\rightarrow\) See NA/ZA segment menu & & \\
\hline DELETE. & SDEL & SENSe:LIST:SEGMent:DELete \\
\hline ADI & SADD & SENSe:LIST:SEGMent:ADD \\
\hline \(\rightarrow\) See NA/ZA segment menu CLEAR LIST & CLEL & SENSe:LIST:CLEar \\
\hline LIST DONE & EDITDONE & SENSe:LIST:SAVE \\
\hline RETITRN & & \\
\hline NA/ZA segment menu & & \\
\hline SEGMENT: MKR - START & MKRSTAR & SENSe:LIST:SEGMent:FREQuency:STARt MARKer \\
\hline MKR - STOP & MKRSTOP & SENSe:LIST:SEGMent:FREQuency:STOP MARKer \\
\hline NUMBER Of POINTS & POIN < numeric> & SENSe:LIST:SEGMent:POINts < numeric> \\
\hline POWER & POWE < numeric> & SENSe:LIST:SEGMent:POWer < numeric> \\
\hline IF BW & BW <numeric> & SENSe:LIST:SEGMent:BANDwidth < numeric> \\
\hline MORE & & \\
\hline SEGMENT: START & STAR < numeric> & SENSe:LIST:SEGMent:FREQuency:STARt < numeric> \\
\hline STOP & STOP < numeric> & SENSe:LIST:SEGMent:FREQuency:STOP < numeric> \\
\hline CENTER & CENT <numeric> & SENSe:LIST:SEGMent:FREQuency:CENTer < numeric> \\
\hline SPAN & SPAN < numeric> & SENSe:LIST:SEGMent:FREQuency:SPAN < numeric> \\
\hline RETURN & & \\
\hline SEGMENT QUTT & SQUI & SENSe:LIST:SEGMent:QUIT \\
\hline SEGMENT DONE & SDON & SENSe:LIST:SEGMent:SAVE \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Front Panel Key & Simple Command & Equivalent SCPI Command \\
\hline Spectrum Analyzer & & \\
\hline SWEEP TME AUTO man & SWETAUTO \(\left\{\right.\) OFF|ON|0|1 \({ }^{\text {a }}\) \} & SENSe:SWEep:TIME:AUTO \(\{\mathrm{OFF}|\mathrm{ON}| 0 \mid \mathbf{1}\}\) \\
\hline SWEEP TME & SWET < numeric> & SENSe:SWEep:TIME < numeric> \\
\hline In:m: & & \\
\hline RETIRN & & \\
\hline SAMPLING NORMAL Tepet & REPTSMP \(\{\mathrm{OFF}|\mathrm{ON}| 0 \mid 1\}\) & SENSe:DETector:CONTinuous \(\{\) OFF|ON|0|1 \(\}\) \\
\hline NTMBER OF POINTS & POIN < numeric> & SENSe:SWEep:POINts < numeric> \\
\hline SWEEP TYPE MENU & & \\
\hline SWEEP TYPE:IIN FREQ & SWPT LINF & SENSe:FREQuency:MODE SWEep SOURce:POWer:MODE FIXed SENSe:SWEep:SPACing LINear \\
\hline IIST FREQ & SWPT LIST & SENSe:FREQuency:MODE LIST SOURce:POWer:MODE LIST SENSe:SWEep:SPACing LINear \\
\hline EDIT LIST & EDITLIST & \\
\hline SEGMENT & & SENSe:LIST:SEGMent < numeric> \\
\hline EDIT & SEDI [<numeric>] & SENSe:LIST:SEGMent:EDIT \\
\hline \(\rightarrow\) See SA segment menu & & \\
\hline DELETE. & SDEL & SENSe:LIST:SEGMent:DELete \\
\hline ADD & SADD & SENSe:LIST:SEGMent:ADD \\
\hline \(\rightarrow\) See SA segment menu CLEAR LIST & CLEL & SENSe:LIST:CLEar \\
\hline LIST DONE & EDITDONE & SENSe:LIST:SAVE \\
\hline RETIRN & & \\
\hline SA segment menu & & \\
\hline SEGMENT: MKR-START & MKRSTAR & SENSe:LIST:SEGMent:FREQuency:STARt MARKer \\
\hline MKR-STOP & MKRSTOP & SENSe:LIST:SEGMent:FREQuency:STOP MARKer \\
\hline NIMBER Of POINTS & POIN <numeric> & SENSe:LIST:SEGMent:POINts < numeric> \\
\hline POWER & POWE < numeric> & SENSe:LIST:SEGMent:POWer < numeric> \\
\hline RESAW & BW <numeric> & SENSe:LIST:SEGMent:BANDwidth < numeric> \\
\hline MORE. & & \\
\hline SEGMENT: START & STAR<numeric> & SENSe:LIST:SEGMent:FREQuency:STARt < numeric> \\
\hline STOP & STOP < numeric> & SENSe:LIST:SEGMent:FREQuency:STOP < numeric> \\
\hline CENTER & CENT < numeric> & SENSe:LIST:SEGMent:FREQuency:CENTer < numeric> \\
\hline SPAN & SPAN < numeric> & SENSe:LIST:SEGMent:FREQuency:SPAN < numeric> \\
\hline RETURN & & \\
\hline SEGMENT QUTT & SQUI & SENSe:LIST:SEGMent:QUIT \\
\hline SEGMENT DONE & SDON & SENSe:LIST:SEGMent:SAVE \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Front Panel Key & Simple Command & Equivalent SCPI Command \\
\hline \begin{tabular}{l}
Source \\
Network Analyzer POWER SLOPE SLOPE ON Off CW FREQ ATTENUATOR PORT 1 ATTENUATOR PORT 2 RF OUT ON Off
\end{tabular} & \begin{tabular}{l}
POWE < numeric> \\
SLOPE <numeric> \\
SLOP \(\{\mathrm{OFF}|\mathrm{ON}| 0 \mid 1\}\) \\
CWFREQ < numeric> \\
ATTP1 <numeric> \\
ATTP2 <numeric> \\
RFO \{OFF|ON|0|1\}
\end{tabular} & ```
SOURce:POWer[:LEVel][:IMMediate][:AMPLitude] < numeric>
SOURce:POWer[:LEVel][:IMMediate][:AMPLitude]:SLOPe < numeric>
SOURce:POWer[:LEVe1][:IMMediate][:AMPLitude]:SLOPe:STATe
{OFF|ON|O|1}
SOURce:FREQuency[:CW] <numeric>
OUTPut:ATTenuation1 < numeric>
OUTPut:ATTenuation2 < numeric>
SOURce:POWer:STATe {OFF|ON|O|1}
``` \\
\hline \begin{tabular}{l}
Spectrum Analyzer \\
POWER \\
RF OUT ON Off
\end{tabular} & \begin{tabular}{l}
POWE <numeric> \\
\(\mathrm{RFO}\{\mathrm{OFF}|\mathrm{ON}| 0 \mid \mathbf{1}\}\)
\end{tabular} & SOURce:POWer[:LEVel][:IMMediate][:AMPLitude] < numeric> SOURce:POWer:STATe \(\{\mathrm{OFF}|\mathrm{ON}| 0 \mid \mathbf{1}\}\) \\
\hline \begin{tabular}{l}
Impedance Analyzer POWER \\
CW FREQ \\
RF OUT ON Off
\end{tabular} & \begin{tabular}{l}
POWE < numeric> \\
CWFREQ < numeric> \\
RFO \{OFF|ON|O|1\}
\end{tabular} & ```
SOURce:POWer[:LEVel][:IMMediate][:AMPLitude] < numeric>
SOURce:FREQuency[:CW] <numeric>
SOURce:POWer:STATe {OFF|ON|O|1}
``` \\
\hline Trigger) & & \\
\hline SWEEP:HOLT & HOLD & INITiate:CONTinuous \(\{\mathrm{OFF} \mid 0\}\) ABORt \\
\hline SINGLE & SING & INITiate:CONTinuous \(\{\mathrm{OFF} \mid 0\}\) SENSe:SWEep:COUNt 1 INITiate[:IMMediate] \\
\hline NUMBER of GROUPS & NUMG < numeric> & \begin{tabular}{l}
INITiate:CONTinuous \(\{\mathrm{OFF} \mid 0\}\) \\
SENSe:SWEep:COUNt < numOfGroups> \\
INITiate[:IMMediate]
\end{tabular} \\
\hline CONTINUOUS & CONT & INITiate:CONTinuous \(\{\mathrm{ON} \mid \mathbf{1}\}\) \\
\hline TRIGGER:IFREE RUN & & \\
\hline FREE RUN & TRGS INT & TRIGger:SOURce INTernal1 SENSe:SWEep:GATed \(\{\mathrm{OFF} \mid 0\}\) \\
\hline EXTERNAI. & TRGS EXT & TRIGger:SOURce EXTernal SENSe:SWEep:GATed \(\{O F F \mid 0\}\) \\
\hline (GPIB) & TRGS BUS & \begin{tabular}{l}
TRIGger:SOURce BUS \\
SENSe:SWEep:GATed \(\{O F F \mid 0\}\)
\end{tabular} \\
\hline VIDEO \({ }^{1}\) & TRGS VID & TRIGger:SOURce INTernal2 SENSe:SWEep:GATed \(\{\mathrm{OFF} \mid 0\}\) \\
\hline & VIDLVL < numeric> & TRIGger:LEVel <numeric> \\
\hline MANIAL & TRGS MAN & TRIGger:SOURce MANual SENSe:SWEep:GATed \(\{\mathrm{OFF} \mid 0\}\) \\
\hline GATE [ LEVEL. \({ }^{1}\) & TRGS GAT & TRIGger:SOURce EXTernal SENSe:SWEep:GATed \{ON|1\} \\
\hline GATE CTlatillel. & GATCTL LEV & SENSe:SWEep:GATed:TRIGger LEVel \\
\hline EDGE & GATCTL EDG & SENSe:SWEep:GATed:TRIGger EDGE \\
\hline GATE DELAT & GATDLY <numeric> & SENSe:SWEep:GATed:DELay < numeric> \\
\hline GATE IENGTH RETURN & GATLEN < numeric> & SENSe:SWEep:GATed:LENGth < numeric> \\
\hline REFIURN & & \\
\hline TRIG EVENT \({ }^{2}\) & \begin{tabular}{l}
TRGEVE SWE \\
TRGEVE POIN
\end{tabular} & TRIGger:EVENt:TYPE SWEep TRIGger:EVENt:TYPE POINt \\
\hline TRIG PIRTTY POS nes & TRGP \{POS|NEG\} & TRIGger:SLOPe \{POSitive|NEGative \} \\
\hline MEASURE RESTART & REST & INITiate[:IMMediate]:AGAin:ALL \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Front Panel Key & Simple Command & Equivalent SCPI Command \\
\hline (Start) & STAR < numeric> & SENSe:FREQuency:STARt < numeric> (Frequency) or SOURce:POWer:STARt < numeric> (Power) \\
\hline Stop & STOP < numeric> & SENSe:FREQuency:STOP < numeric> (Frequency) or SOURce:POWer:STOP < numeric> (Power) \\
\hline Center & CENT < numeric> & SENSe:FREQuency:CENTer < numeric> (Frequency) or SOURce:POWer:CENTer < numeric> (Power) \\
\hline STEP SIZE AUTO man & CNTSAUTO \(\{\mathrm{OFF}|\mathrm{ON}| 0 \mid 1\}\) & SENSe:FREQuency:CENTer:STEP[:INCRement]:AUTO \{OFF|ON|0|1\} \\
\hline CENTER STEP SIZE & CNTS < numeric> & SENSe:FREQuency:CENTter:STEP[:INCRement] < numeric> \\
\hline MHR - CNTR STEP & MKRCSTE & SENSe:FREQuency:CENTter:STEP[:INCRement] MARKer \\
\hline MKR \(\triangle\) - CNTR STEP & MKRDCSTE & SENSe:FREQuency:CENTter:STEP[:INCRement] DMARker \\
\hline MKR - CENTER & MKRCENT & SENSe:FREQuency:CENTer MARKer (Frequency) or SOURce:POWer:CENTer MARKer (Power) \\
\hline MKR \(\triangle\) - CENTER & MKRDCENT & SENSe:FREQuency:CENTer DMARker (Frequency) or SOURce:POWer:CENTer DMARker (Power) \\
\hline PEAK - CENTER & PEAKCENT & SENSe:FREQuency:CENTer TPEak (Frequency) or SOURce:POWer:CENTer TPEak (Power) \\
\hline Span & SPAN < numeric> & SENSe:FREQuency:SPAN < numeric> (Frequency) or SOURce:POWer:SPAN <numeric> (Power) \\
\hline FULT SPAN & FULS & SENSe:FREQuency:SPAN:FULL (Frequency) or SOURce:POWer:SPAN:FULL (Power) \\
\hline ZERO SPAN & SPAN 0 & SENSe:FREQuency:SPAN 0 (Frequency) or SOURce:POWer:SPAN 0 (Power) \\
\hline MKRS-SPAN & MKRDSPAN & SENSe:FREQuency:SPAN DMARker (Frequency) or SOURce:POWer:SPAN DMARker (Power) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Front Panel Key & Simple Command & Equivalent SCPI Command \\
\hline Marker) & MKR \(\{\mathrm{OFF}|\mathrm{ON}| \mathbf{0} \mid 1\}\) & DISPlay[:WINDow]:TRACe:MARKer:ALL:STATe \(\{\mathrm{OFF}|\mathrm{ON}| 0 \mid 1\}\) \\
\hline \begin{tabular}{l}
Network/Impedance Analyzer \\
SUB MKR \\
\(\rightarrow\) See Sub-marker menu \\
CLEAR SUB MKR \\
\(\rightarrow\) See Sub-marker menu \\
PRESET MKRS \\
MKR ON IDATA] \\
MKR [WNCOUPLE] \\
MKR [CONT \\
\(\triangle\) MODE MENU \\
\(\rightarrow\) See NA/ZA Delta mode menu
\end{tabular} & \begin{tabular}{l}
PRSMKRS \\
MKRO DATA \\
MKRO MEMO \\
MKRCOUP \(\{\) OFF|ON|0|1\} \\
MKRCONT \(\{\mathrm{OFF}|\mathrm{ON}| 0 \mid 1\}\)
\end{tabular} & \begin{tabular}{l}
DISPlay[:WINDow]:TRACe:MARKer:ALL DEFault \\
CALCulate:EVALuate:ON "DTR" \\
CALCulate:EVALuate:ON "MTR" \\
CALCulate:EVALuate:COUPle \(\{\mathrm{OFF}|\mathrm{ON}| 0 \mid 1\}\) \\
CALCulate:EVALuate:INTerpolate \(\{\mathrm{OFF}|\mathrm{ON}| 0 \mid \mathbf{1}\}\)
\end{tabular} \\
\hline \begin{tabular}{l}
Spectrum Analyzer \\
SUB MIRR \\
\(\rightarrow\) See Sub marker menu \\
CLEAR SUB MKR \\
\(\rightarrow\) See Sub marker menu \\
PRESET MKRS \\
MKR ON IDATA \\
MKR [UNCOUPIE] \\
\(\triangle\) MODE MENU \\
\(\rightarrow\) See SA Delat mode menu
\end{tabular} & \begin{tabular}{l}
PRSMKRS \\
mKRO DATA \\
MKRO MEMO \\
MKRCOUP \(\{\mathrm{OFF}|\mathrm{ON}| 0 \mid 1\}\)
\end{tabular} & \begin{tabular}{l}
DISPlay[:WINDow]:TRACe:MARKer:ALL DEFault CALCulate:EVALuate:ON "DTR" \\
CALCulate:EVALuate:ON "MTR" \\
CALCulate:EVALuate:COUPle \(\{\mathrm{OFF}|\mathrm{ON}| 0 \mid 1\}\)
\end{tabular} \\
\hline \begin{tabular}{l}
NA/ZA Delta mode menu \(\triangle M K R\) \\
FIXED \(\triangle M K R\) \\
TRACKING \(\triangle\) MKR \\
\(\triangle M O D E\) OFF \\
\(\triangle M K R\) SWP PRM \\
\(\triangle\) MKR VALUE \\
\(\triangle\) MKR AUX VALUE RETURN
\end{tabular} & \begin{tabular}{l}
DMKR ON \\
DMKR FIX \\
DMKR TRAC \\
DMKR OFF \\
OUTPDMKR? \\
DMKRPRM < numeric> \\
DMKRVAL <numeric> \\
DMKRAUV <numeric>
\end{tabular} & ```
DISPlay[:WINDow]:TRACe:MARKer:RELative {ON|1}
DISPlay[:WINDow]:TRACe:MARKer:RELative:REFerence MARKer
DISPlay[:WINDow]:TRACe:MARKer:RELative {ON|1}
DISPlay[:WINDow]:TRACe:MARKer:RELative:REFerence FIXed
DISPlay[:WINDow]:TRACe:MARKer:RELative {ON|1}
DISPlay[:WINDow]:TRACe:MARKer:RELative:REFerence TRACked
DISPlay[:WINDow]:TRACe:MARKer:RELative {OFF|0}
CALCulate:EVALuate:REFerence:DATA?
CALCulate:EVALuate:REFerence:X < numeric>
CALCulate:EVALuate:REFerence:Y1 <numeric>
CALCulate:EVALuate:REFerence:Y2 < numeric>
``` \\
\hline \begin{tabular}{l}
SA Delta mode menu \(\triangle M K R\) \\
FIXED \(\triangle \mathrm{MHR}\) \\
TRACKING \(\triangle M K R\) \\
\(\triangle\) MODE OFF \\
\(\triangle M K R\) SWP PRM \\
\(\triangle \mathrm{MKR}\) VALTEE \\
RETURN
\end{tabular} & \begin{tabular}{l}
DMKR ON \\
DMKR FIX \\
DMKR TRAC \\
DMKR OFF \\
DMKRPRM <numeric> \\
DMKRVAL <numeric>
\end{tabular} & \begin{tabular}{l}
DISPlay[:WINDow]:TRACe:MARKer:RELative \{ON|1\} \\
DISPlay[:WINDow]:TRACe:MARKer:RELative:REFerence MARKer \\
DISPlay[:WINDow]:TRACe:MARKer:RELative \{ON|1\} \\
DISPlay[:WINDow]:TRACe:MARKer:RELative:REFerence FIXed \\
DISPlay[:WINDow]:TRACe:MARKer:RELative \{ON|1\} \\
DISPlay[:WINDow]:TRACe:MARKer:RELative:REFerence TRACked \\
DISPlay[:WINDow]:TRACe:MARKer:RELative \(\{\mathrm{OFF} \mid 0\}\) \\
CALCulate:EVALuate:REFerence: X < numeric> \\
CALCulate:EVALuate:REFerence:Y1<numeric>
\end{tabular} \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|}
\hline Front Panel Key & Simple Command & Equivalent SCPI Command \\
\hline Search & if mkr = off then MKR ON & DISPlay[:WINDow]:TRACe:MARKer:STATe \(\{\mathrm{ON} \mid \mathbf{1}\}\) \\
\hline Network Analyzer/Impedance Analyzer & & \\
\hline \begin{tabular}{l}
SEARCH: PEAK \\
\(\rightarrow\) See Peak menu
\end{tabular} & & \\
\hline & SEAM PEAK & CALCulate:EVALuate: Y:XPOSition:PEAK \\
\hline MAX & SEAM MAX & CALCulate:EVALuate:Y:XPOSition:MAXimum \\
\hline MIN & SEAM MIN & CALCulate:EVALuate: Y:XPOSition:MINimum \\
\hline TARGET & SEAM TARG & CALCulate:EVALuate:Y:XPOSition:TARGet <numeric> \\
\hline TARGET & SEATARG<numeric> & CALCulate:EVALuate:Y:XPOSition:TARGet <numeric> \\
\hline SEARCH LEFT & SEAL & CALCulate:EVALuate:Y:XPOSition:LTARget \\
\hline SEARCH RIGHT & SEAR & CALCulate:EVALuate: Y:XPOSition:RTARget \\
\hline STP MKR
\(\rightarrow\) See Sub-marker menu
RETURN & & \\
\hline \begin{tabular}{l}
MUITIPLE PEAKS \\
\(\rightarrow\) See Multiple peaks menu \\
WIDTHS [OFF
\end{tabular} & & \\
\hline SEARCH N & WIDSIN & CALCulate:EVALuate:WIDTh:XPOSition:IN \\
\hline SEARCH OUT & WIDSOUT & CALCulate:EVALuate:WIDTh:XPOSition:OUT \\
\hline WIDTHS ON Off & WIDT \(\{\mathrm{OFF}|\mathrm{ON}| 0 \mid 1\}\) & CALCulate:EVALuate:WIDTh:STATe \(\{\mathrm{OFF}|\mathrm{ON}| 0 \mid 1\}\) \\
\hline & OUTPMWID? & CALCulate:EVALuate:WIDTh:DATA? \\
\hline WIDTH VALUE & WIDV < numeric> & CALCulate:EVALuate:WIDTh:Y < numeric> \\
\hline \(\rightarrow\) See Width Value Menu for impedance analyzer RETURN & & \\
\hline SRCH TRACK ON OIf & TRACK \(\{\mathrm{OFF}|\mathrm{ON}| 0 \mid \mathbf{1}\}\) & CALCulate:EVALuate:Y:XPOSition:TRACk \{MAXimum| MINimum|TARGet|PEAK|PALL|PLEFt|PRIGht|OFF \(\}\) \\
\hline \begin{tabular}{l}
SRCH RANGE MENU \\
\(\rightarrow\) See Search range menu
\end{tabular} & & \\
\hline Spectrum Analyzer & & \\
\hline \begin{tabular}{l}
SEARCH: PEAK \\
\(\rightarrow\) See Peak menu
\end{tabular} & & \\
\hline & SEAM PEAK & CALCulate:EVALuate: Y:XPOSition:PEAK \\
\hline MAX & SEAM MAX & CALCulate:EVALuate: Y:XPOSition:MAXimum \\
\hline MN & SEAM MIN & CALCulate:EVALuate: Y:XPOSition:MINimum \\
\hline \begin{tabular}{l}
MULTIPIE PEAKS \\
\(\rightarrow\) See Multiple peaks menu
\end{tabular} & & \\
\hline SGNL TRACK ON Off & SGTRK \(\{\mathrm{OFF}|\mathrm{ON}| \mathbf{O} \mid \mathbf{1}\}\) & SENSe:TRACk:SIGNal:MARKer \(\{\) OFF|ON|O|1 \(\}\) \\
\hline SRCH TRACF ON Off & TRACK \(\{\mathrm{OFF}|\mathrm{ON}| 0 \mid \mathbf{1}\}\) & CALCulate:EVALuate:Y:XPOSition:TRACk \{MAXimum| MINimum|TARGet|PEAK|PALL|PLEFt|PRIGht|OFF\} \\
\hline \begin{tabular}{l}
SRCH RANGE MENU \\
\(\rightarrow\) See Search range menu
\end{tabular} & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Front Panel Key & Simple Command & Equivalent SCPI Command \\
\hline \begin{tabular}{l}
Peak menu \\
PEAK \\
NEXT PEAK \\
NEXT PEAK LEFT \\
NEXT PEAK RIGHT \\
PEAK DEF MENU \\
\(\rightarrow\) See Peak definition menu SUB MKR \\
\(\rightarrow\) See Sub-marker menu RETURN
\end{tabular} & \begin{tabular}{l}
SEAM PEAK \\
SEANPK \\
SEANPKL \\
SEANPKR
\end{tabular} & CALCulate:EVALuate:Y:XPOSition:PEAK CALCulate:EVALuate:Y:XPOSition:NPEak CALCulate:EVALuate:Y:XPOSition:LPEak CALCulate:EVALuate:Y:XPOSition:RPEak \\
\hline \begin{tabular}{l}
Multiple peaks menu \\
SEARCH: PEAKS ALI. \\
PEAKS RIGHT \\
PEAKS LEFT \\
PEAK DEF MENU \\
\(\rightarrow\) See Peak definition menu SRCH TRACK ON Off RETURN
\end{tabular} & SEAM PKSA SEAM PKSR SEAM PKSL
\[
\operatorname{TRACK}\{\mathrm{OFF}|\mathrm{ON}| 0 \mid \mathbf{1}\}
\] & \begin{tabular}{l}
CALCulate:EVALuate: Y:XPOSition:PALL \\
CALCulate:EVALuate: Y:XPOSition:PRIGht \\
CALCulate:EVALuate: Y:XPOSition:PLEFt \\
CALCulate:EVALuate: Y:XPOSition:TRACk \{MAXimum| MINimum|TARGet|PEAK|PALL|PLEFt|PRIGht|OFF\}
\end{tabular} \\
\hline ```
Peak definition menu
THRESHOLD ON Off
THRESHOLD VALUE
MKR - THRESHOLD
PEAK PLRTY POS neg \({ }^{1}\)
PEAK DEF: \(\triangle \mathrm{X}{ }^{1}\)
PEAK DEF: AY
MKR P PEAKDELTA \({ }^{1}\)
RETURN
``` & \begin{tabular}{l}
PKTHRE \(\{\mathrm{OFF}|\mathrm{ON}| 0 \mid \mathbf{1}\}\) \\
PKTHVAL <numeric> \\
MKRTHRE \\
PKPOL \{POS|NEG\} \\
PKDLTX < numeric> \\
PKDLTY < numeric> \\
MKRPKD
\end{tabular} & CALCulate:EVALuate:PEAK:THReshold:STATe \(\{\mathrm{OFF}|\mathrm{ON}| 0 \mid 1\}\) CALCulate:EVALuate:PEAK:THReshold < numeric> CALCulate:EVALuate:PEAK:THReshold MARKer CALCulate:EVALuate:PEAK:POLarity \{POSitive|NEGative\} CALCulate:EVALuate:PEAK:EXCursion: X <numeric> CALCulate:EVALuate:PEAK:EXCursion[:Y] <numeric> CALCulate:EVALuate:PEAK:EXCursion DMARker \\
\hline Width value menu MKRVAI ( \(/ \sqrt{ } / 2\) ) MKRVAI.-( \(\sqrt{ }\) 2) MKRVAL. 2 FIXED VALUE RETURN & \begin{tabular}{l}
WIDVTYPE DIVS2 \\
WIDVTYPE MULS2 \\
WIDVTYPE DIV2 \\
WIDVTYPE FIX \\
WIDV <numeric>
\end{tabular} & \begin{tabular}{l}
CALCulate:EVALuate:WIDTh:Y:TYPE DIVS2 \\
CALCulate:EVALuate:WIDTh:Y:TYPE MULS2 \\
CALCulate:EVALuate:WIDTh:Y:TYPE DIV2 \\
CALCulate:EVALuate:WIDTh:Y:TYPE FIXed,<numeric>
\end{tabular} \\
\hline Search range menu PART SRCH ON Off MKRA - SEARCH RNG MKR - LEFT RNG MKR - RTGIIT RNG RETURN & \begin{tabular}{l}
PARS \(\{\mathrm{OFF}|\mathrm{ON}| 0 \mid 1\}\) \\
SEARSTR \\
SEARSTRL \\
SEARSTRR
\end{tabular} & \begin{tabular}{l}
CALCulate:EVALuate:BAND:FULL[:STATe] \(\{\mathrm{OFF}|\mathrm{ON}| 0 \mid 1\}\) \\
CALCulate:EVALuate:BAND:SPAN DMARker \\
CALCulate:EVALuate:BAND:STARt MARKer \\
CALCulate:EVALuate:BAND:STOP MARKer
\end{tabular} \\
\hline
\end{tabular}

1 Network and impedance analyzer only
\begin{tabular}{|c|c|c|}
\hline Front Panel Key & Simple Command & Equivalent SCPI Command \\
\hline \begin{tabular}{l}
Utility \\
Network/Impedance Analyzer \\
MKR LIST ON off STATISTICS ON Off \\
MKR TIME ON Off \\
SMTHPOLAR MENI \\
\(\rightarrow\) See Circle data menu
\end{tabular} & \begin{tabular}{l}
MKRL \(\{\mathrm{OFF}|\mathrm{ON}| 0 \mid \mathbf{1}\}\) \\
MEASTAT \(\{\mathrm{OFF}|\mathrm{ON}| 0 \mid \mathbf{1}\}\) \\
OUTPMSTA? \\
MKRTIME \(\{\mathrm{OFF}|\mathrm{ON}| 0 \mid 1\}\)
\end{tabular} & \begin{tabular}{l}
DISPlay[:WINDow]:TEXT16:STATe \(\{\mathrm{OFF}|\mathrm{ON}| 0 \mid 1\}\) \\
CALCulate:EVALuate:MSTatistics[:STATe] \{OFF|ON|0|1\} \\
CALCulate:EVALuate:MSTatistics:DATA? \\
DISPlay[:WINDow]:TRACe:MARKer:UNIT:TIME \(\{\mathrm{OFF}|\mathrm{ON}| 0 \mid 1\}\)
\end{tabular} \\
\hline \begin{tabular}{l}
Circle data menu REAL IMAG \\
LIN MAG PHASE \\
LOG MAG PHASE \\
R . JX \\
G jB \\
SUR PHASE \\
RETURN
\end{tabular} & \begin{tabular}{l}
CIRF RI \\
CIRF LIN \\
CIRF LOG \\
CIRF RX \\
CIRF GB \\
CIRF SWR
\end{tabular} & CALCulate:EVALuate:R:FORMat RIMaginary CALCulate:EVALuate:R:FORMat MLIPhase CALCulate:EVALuate:R:FORMat MLOPhase CALCulate:EVALuate:R:FORMat RX CALCulate:EVALuate:R:FORMat GB CALCulate:EVALuate:R:FORMat SWRPhase \\
\hline Spectrum Analyzer MKR LIST ON off STATISTICS ON Off MKR TIME ON Off NOISE FORM ON Off & \[
\begin{aligned}
& \text { MKRL }\{\mathrm{OFF}|\mathrm{ON}| \mathbf{O} \mid \mathbf{1}\} \\
& \text { MEASTAT }\{\mathrm{OFF}|\mathrm{ON}| 0 \mid \mathbf{1}\} \\
& \text { OUTPMSTA? } \\
& \text { MKRTIME }\{\mathrm{OFF}|\mathrm{ON}| \mathbf{0} \mid \mathbf{1}\} \\
& \text { MKRNOI }\{\mathrm{OFF}|\mathrm{ON}| \mathbf{O} \mid \mathbf{1}\}
\end{aligned}
\] & \[
\begin{aligned}
& \text { DISPlay[:WINDow]:TEXT16:STATe }\{\mathrm{OFF}|\mathrm{ON}| 0 \mid 1\} \\
& \text { CALCulate:EVALuate:MSTatistics[:STATe] }\{\mathrm{OFF}|\mathrm{ON}| 0 \mid 1\} \\
& \text { CALCulate:EVALuate:MSTatistics:DATA? } \\
& \text { DISPlay[:WINDow]:TRACe:MARKer:UNIT:TIME }\{\mathrm{OFF}|\mathrm{ON}| 0 \mid 1\} \\
& \text { CALCulate:EVALuate:NOISe[:STATe] }\{\mathrm{OFF}|\mathrm{ON}| 0 \mid 1\}
\end{aligned}
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Front Panel Key & Simple Command & Equivalent SCPI Command \\
\hline System & & \\
\hline IBASIC & & \\
\hline Step & & PROGram[:SELected]:EXECute "STEP" \\
\hline Continue & & PROGram[:SELected]:STATe CONTinue or PROGram[:SELected]:EXECute "CONT" \\
\hline Run & & PROGram[:SELected]:STATe RUN or PROGram[:SELected]:EXECute "RUN" \\
\hline Pause & & PROGram[:SELected]:STATe PAUSe or PROGram[:SELected]:EXECute "PAUSE" \\
\hline Stop & & PROGram[:SELected]:STATe STOP or PROGram[:SELected]:EXECute "STOP" \\
\hline Edit & & PROGram[:SELected]:EXECute "EDIT" \\
\hline ASSIGN ®Hp4390 & & \\
\hline OUTPUT@Hp4396 & & \\
\hline ENTER @HP4396 & & \\
\hline END & & \\
\hline GOTO LINE & & \\
\hline RECALI LINE & & \\
\hline END EMIT & & \\
\hline ON KEY LABELS & & \\
\hline [USER DEFINE] & & \\
\hline CAT & & \\
\hline SAVE & & \\
\hline RE-SAVE & & \\
\hline GET & & \\
\hline Purge & & \\
\hline INITAIIZE & & \\
\hline MSI [INTERNAI MEMORY. & & \\
\hline SCRATCH & & \\
\hline RENumber & & \\
\hline LIST & & \\
\hline COMMAND ENTRY & & \\
\hline SELECT ILFTTER & & \\
\hline SPACE & & \\
\hline BACK SPACE & & \\
\hline ERASE TITIF & & \\
\hline DONE & & \\
\hline CANCEI. & & \\
\hline
\end{tabular}

\section*{B-28 Command Summary}
\begin{tabular}{|c|c|c|}
\hline Front Panel Key & Simple Command & Equivalent SCPI Command \\
\hline ClEAR IO & & \\
\hline RESET & & \\
\hline MEMORY PARTITION & & \\
\hline MIK RAM n\#K BASIC & & \\
\hline mmk RAM nmk BASIC & & \\
\hline mmK RAM MnK BASIC & & \\
\hline mmk RAM ПnK BASIC & & \\
\hline mmK RAM InK BASIC & & \\
\hline DONE. & & \\
\hline CHANGE YES & & \\
\hline NO & & \\
\hline CANCEI. & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Front Panel Key & Simple Command & Equivalent SCPI Command \\
\hline \multicolumn{3}{|l|}{SET ClOCK} \\
\hline \multicolumn{3}{|l|}{TME HH:MM:SS} \\
\hline \multicolumn{3}{|l|}{HOUR} \\
\hline \multicolumn{3}{|l|}{MIN} \\
\hline \multicolumn{3}{|l|}{SEC} \\
\hline ENTER & SETCTIME < \(\mathrm{h}, \mathrm{m}, \mathrm{s}>\) & SYSTem:TIME < hour>, <minute>, <second> \\
\hline \multicolumn{3}{|l|}{CANCEI.} \\
\hline \multicolumn{3}{|l|}{DATE DDMMY} \\
\hline \multicolumn{3}{|l|}{MON} \\
\hline \multicolumn{3}{|l|}{DAT} \\
\hline \multicolumn{3}{|l|}{TEAR} \\
\hline ENTER & SETCDATE < \(\mathrm{y}, \mathrm{m}, \mathrm{d}>\) & SYSTem:DATE < year>, < month>, <day> \\
\hline \multicolumn{3}{|l|}{CANCEL.} \\
\hline DATE MODE:MonDay Year & MONDYEAR & SYSTem:DATE:MODE MDY \\
\hline Day Mon Year & DAYMYEAR & SYSTem:DATE:MODE DMY \\
\hline \multicolumn{3}{|l|}{RETITR} \\
\hline \multicolumn{3}{|l|}{BEEPER MENU} \\
\hline BEEP DONE ON Off & BEEPDONE \{OFF|ON|O|1 \(\}\) & SYSTem:BEEPer1:STATe \(\{\) OFF|ON|O|1 \(\}\) \\
\hline BEEP WARN ON OIf & BEEPWARN \(\{\mathrm{OFF}|\mathrm{ON}| \mathbf{O} \mid 1\}\) & SYSTem:BEEPer2:STATe \(\{\mathrm{OFF}|\mathrm{ON}| 0 \mid 1\}\) \\
\hline \multicolumn{3}{|l|}{RETURN} \\
\hline \multicolumn{3}{|l|}{LIMIT MENU} \\
\hline MMIT IINE ON Off & LIMILINE \(\{\) OFF|ON|O|1 \(\}\) & CALCulate:LIMit:LINE \(\{\) OFF|ON|0|1 \(\}\) \\
\hline WMIT TEST ON Off & LIMITEST \(\{\) OFF|ON|O|1 \(\}\) & CALCulate:LIMit:STATe \(\{\) OFF|ON|0|1\} \\
\hline BEEP FAll ON Off & BEEPFAIL \(\{\mathrm{OFF}|\mathrm{ON}| 0 \mid 1\}\) & CALCulate:LIMit:BEEPer[:STATe] \{OFF|ON|0|1\} \\
\hline EDIT IMMT LINE & EDITLIML & \\
\hline SEGMENT & LIMSEDI < numeric> & CALCulate:LIMit:SEGMent < numeric> \\
\hline EDIT & LIMSEDI [<numeric>] & CALCulate:LIMit:SEGMent:EDIT \\
\hline DEIPTE & LIMSDEL & CALCulate:LIMit:SEGMent:DELete \\
\hline ADI & LIMSADD & CALCulate:LIMit:SEGMent:ADD \\
\hline CLEAR IIST & LIMCLEL & CALCulate:LIMit:CLEar \\
\hline \multicolumn{3}{|l|}{CIEAR IIST YES} \\
\hline \multicolumn{3}{|l|}{NO} \\
\hline DONE & LIMEDONE & CALCulate:LIMit:SAVE \\
\hline \multicolumn{3}{|l|}{WIMT LINE OFFSETS} \\
\hline SWP PARAM OFFSET & LIMIPRMO < numeric> & CALCulate:LIMit:CONTrol:OFFSet < numeric> \\
\hline AMPLITUDE OFFSET & LIMIAMPO < numeric> & CALCulate:LIMit:OFFSet < numeric> \\
\hline MKR \(\rightarrow\) AMP.OFS. & MKRAMPO & CALCulate:LIMit:OFFSet MARKer \\
\hline \multicolumn{3}{|l|}{RETURN} \\
\hline RETITR & & \\
\hline SERVICE MENU & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Front Panel Key & Simple Command & Equivalent SCPI Command \\
\hline Limit line entry menu SWP PARAM MKR-SWP PARAM IPPER LIMIT LOWER LIMT DELTA LIMIT MiDDIE VALIE MKR \(\rightarrow\) MIDDIE DONE & \begin{tabular}{l}
LIMPRM < numeric> \\
MKRSWPRM \\
LIMU < numeric> \\
LIML < numeric> \\
LIMD < numeric> \\
LIMM <numeric> \\
MKRMIDD \\
LIMSDON
\end{tabular} & CALCulate:LIMit:SEGMent:CONTrol[:DATA] <numeric> CALCulate:LIMit:SEGMent:CONTrol[:DATA] MARKer CALCulate:LIMit:SEGMent:UPPer < numeric> CALCulate:LIMit:SEGMent:LOWer <numeric> CALCulate:LIMit:SEGMent:DELTa < numeric> CALCulate:LIMit:SEGMent:MIDDle < numeric> CALCulate:LIMit:SEGMent:MIDDle MARKer CALCulate:LIMit:SEGMent:SAVE \\
\hline \begin{tabular}{l}
Local \\
SYSTEM CONTROLIER \\
ADDRESSABLE ONLY \\
SET ADDRESSES \\
ADDRESS:4396 \\
ADDRESS:CONTROLILER RETURN
\end{tabular} & ADDRCONT < numeric> & SYSTem:COMMunicate:GPIB2:ADDRess < numeric> \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Front Panel Key & Simple Command & Equivalent SCPI Command \\
\hline Copy) & & \\
\hline PRINT ISTANDARD. & PRINALL & HCOPy[:IMMediate] \\
\hline COPY ABORT & COPA & HCOPy:ABORt \\
\hline COPY SKET On OFF & PRSOFT \(\{\) OFF|ON|0|1 \(\}\) & HCOPy:DRIVer:SKEY \{OFF|ON|0|1 \(\}\) \\
\hline COPY TIME ON Off & COPT \(\{\mathrm{OFF}|\mathrm{ON}| 0 \mid 1\}\) & HCOPy:ITEM:TDSTamp:STATe \(\{\) OFF|ON \(|0| 1\}\) \\
\hline \begin{tabular}{l}
PRINT SETUP \\
\(\rightarrow\) See Print setup menu
\end{tabular} & & \\
\hline ORIENT IPORTRAIT & LANDSCAPE \{OFF|ON|O|1 \(\}\) & HCOPy:DRIVer:LANDScape \(\{\mathrm{OFF}|\mathrm{ON}| 0 \mid \mathbf{1}\}\) \\
\hline FORM FEEN ON Off & FORMFEED \(\{\mathrm{OFF}|\mathrm{ON}| 0 \mid 1\}\) & HCOPy:DRIVer:FORMFeed \(\{\mathrm{OFF}|\mathrm{ON}| 0 \mid 1\}\) \\
\hline \begin{tabular}{l}
MORE \\
\(\rightarrow\) See Copy more menu
\end{tabular} & & \\
\hline Copy more menu & & \\
\hline Network Analyzer & & \\
\hline LIST VALUES & LISV & \begin{tabular}{l}
DISPlay[:WINDow]:TEXT1:PAGE 1 \\
DISPlay[:WINDow]:TEXT1:STATe \(\{\mathrm{ON} \mid \mathbf{1}\}\)
\end{tabular} \\
\hline OPERATING PARAMETERS & OPEP & \begin{tabular}{l}
DISPlay[:WINDow]:TEXT2:PAGE 1 \\
DISPlay[:WINDow]:TEXT2:STATe \(\{\mathrm{ON} \mid \mathbf{1}\}\)
\end{tabular} \\
\hline \begin{tabular}{l}
CAI KIT DEFINITION \\
\(\rightarrow\) See Copy cal kit menu
\end{tabular} & & \\
\hline LIST SWEEP TABIE & & \\
\hline \(\rightarrow\) See Copy list sweep menu & & \\
\hline \begin{tabular}{l}
LIMIT TEST TABLE \\
\(\rightarrow\) See Copy limit test menu
\end{tabular} & & \\
\hline RFTURN & & \\
\hline Spectrum Analyzer & & \\
\hline LIST VALUES & LISV & DISPlay[:WINDow]:TEXT1:PAGE 1
DISPlay[:WINDow]:TEXT1:STATe \(\{\mathrm{ON} \mid 1\}\) \\
\hline OPERATING PARAMETERS & OPEP & DISPlay[:WINDow]:TEXT2:PAGE 1 DISPlay[:WINDow]:TEXT2:STATe \(\{\mathrm{ON} \mid \mathbf{1}\}\) \\
\hline \begin{tabular}{l}
LIST SWEEP TABLE \\
\(\rightarrow\) See Copy list sweep menu
\end{tabular} & & \\
\hline \begin{tabular}{l}
LIMIT TEST TABLE \\
\(\rightarrow\) See Copy limit test menu RETURN
\end{tabular} & & \\
\hline Impedance Analyzer & & \\
\hline LIST VALUES & LISV & \begin{tabular}{l}
DISPlay[:WINDow]:TEXT1:PAGE 1 \\
DISPlay[:WINDow]:TEXT1:STATe \(\{\mathrm{ON} \mid \mathbf{1}\}\)
\end{tabular} \\
\hline OPERATING PARAMETERS & OPEP & DISPlay[:WINDow]:TEXT2:PAGE 1 DISPlay[:WINDow]:TEXT2:STATe \(\{\mathrm{ON} \mid \mathbf{1}\}\) \\
\hline \begin{tabular}{l}
CAI KIT DEFINITION \\
\(\rightarrow\) See Copy cal kit menu
\end{tabular} & & \\
\hline COMPEN KIT DEFINITION & COMS & \begin{tabular}{l}
DISPlay[:WINDow]:TEXT20:PAGE 1 \\
DISPlay[:WINDow]:TEXT20:STATe ON
\end{tabular} \\
\hline \begin{tabular}{l}
LIST SWEEP TABLE \\
\(\rightarrow\) See Copy list sweep menu \\
LIMIT TEST TABLE \\
\(\rightarrow\) See Copy limit test menu RETURN
\end{tabular} & & \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|}
\hline Front Panel Key & Simple Command & Equivalent SCPI Command \\
\hline Print setup menu & & \\
\hline PRINT STANDARD & PRIS & HCOPy:DRIVer:COLor \(\{\mathrm{OFF} \mid 0\}\) \\
\hline COLOR & PRIC & HCOPy:DRIVer:COLor \(\{\mathrm{ON} \mid \mathbf{1}\}\) \\
\hline PRINT COLOR [FIXED] & PRICFIXE & HCOPy:DRIVer:CMAP:COLor FIXed \\
\hline & PRICVARI & HCOPy:DRIVer:CMAP:COLor VARiable \\
\hline DPI & DPI < numeric> & HCOPy:DRIVer:DPI < numeric> \\
\hline TOP MARGIN & TMARG<numeric> & HCOPy:DRIVer:TOPMarg < numeric> \\
\hline LFT MARGIN & LMARG<numeric> & HCOPy:DRIVer:LEFTMarg < numeric> \\
\hline DEFALIT SETYP & DFLT & HCOPy:DEFault \\
\hline \multicolumn{3}{|l|}{RETURN} \\
\hline \multicolumn{3}{|l|}{Screen menu} \\
\hline PRINT ISTANDARD & PRINALL & HCOPy:DRIVer:LANGuage PCL HCOPy[:IMMediate] \\
\hline COPY ABORT & COPA & HCOPy:ABORt \\
\hline COPY TIME ON Off & COPT \(\{\mathrm{OFF}|\mathrm{ON}| 0 \mid 1\}\) & HCOPy:ITEM:TDSTamp:STATe \(\{\) OFF|ON \(|0| 1\}\) \\
\hline \begin{tabular}{l}
PRINT SETUP \\
\(\rightarrow\) See Print setup menu
\end{tabular} & & \\
\hline NEXT PAGE & NEXP & DISPlay[:WINDow]:TEXT \(\{1-17\}\) :PAGE UP \\
\hline PREV PAGE & PREP & DISPlay[:WINDow]:TEXT\{1-17\}:PAGE DOWN \\
\hline RESTORE DISPI, AY & RESD & DISPlay[:WINDow]:TEXT \(\{1-17\}\) :STATe \(\{\) OFF \(\mid 0\}\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Front Panel Key & Simple Command & Equivalent SCPI Command \\
\hline Save) & & \\
\hline STATE & SAVDSTA < string> & MMEMory:STORe:STATe < string(file name) \(>\) [, < string(msus) \(>\) ] \\
\hline DATA ONIT & & \\
\hline SAVE BINARY & SAVDDAT < string> & MMEMory:STORe:TRACe SEL, <string(file name) \(>\) [, <string(msus) \(>\) ] \\
\hline SAVE ASClI & SAVDASC < string> & MMEMory:STORe:DINTerchange:TRACe SEL, <string(file name) \(>\) [, <string(msus) \(>]\) \\
\hline \begin{tabular}{l}
DEFINE SAVE DATA \\
\(\rightarrow\) See Define save data menu \\
STOR DEV [DISK]
\end{tabular} & STOD \(\{\) DISK|MEMO\} & \\
\hline GRAPHICS & SAVDTIF < string> & MMEMory:STORe:DINTerchange:TIFF < string(file name \()>[,<\) string(msus) \(>]\) \\
\hline 4396 A STATE & SAVDSTAC < string> & \\
\hline RE-SAVE FILE & RESAVD < string> & \begin{tabular}{l}
MMEMory:DELete < file_name> \([,<\) msus > ] \\
MMEMory:STORe: \(\{\) STATe|TRACe \(\}\) [SEL, \(]<\) file_name \(>\) [, \(<\) msus \(>\) ]
\end{tabular} \\
\hline file name & & \\
\hline PREV FILFS & & \\
\hline NEXT FILES & & \\
\hline RETURN & & \\
\hline FILETTMUITES & & \\
\hline PURGE FIIF & PURG < string> & MMEMory:DELete < file_name> [,<msus > ] \\
\hline file name & & \\
\hline PREV FILES & & \\
\hline \begin{tabular}{l}
NEXT FILES \\
\(\rightarrow\) See purge yes no menu
\end{tabular} & & \\
\hline STOR DEV [DISK) & STOD \{ DISK|MEMO\} & \\
\hline CREATE DIRECTORY & CRED < string> & MMEMory:CREate:DIRectory < string> \\
\hline CHANGE DIRECTORY & CHAD < string> & MMEMory:CDIRectory [<string>] \\
\hline COPY FILE & FILC < string>, <string>, <string>, <string> & MMEMory:COPY <string(s)>, < msus>, <string(d)>, <msus> \\
\hline file name & & \\
\hline PREV FILES & & \\
\hline NEXT FIIES & & \\
\hline STOR DEV [DISK] & STOD \(\{\) DISK \(\mid\) MEMO \(\}\) & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Front Panel Key & Simple Command & Equivalent SCPI Command \\
\hline INIHAMIZE DISK
INITALIZE: YES
NO
FORMAT IUFI
STOR DEV I I
RETURN
STOR DEV I I & \begin{tabular}{l}
INID \\
DISF LIF \\
DISF DOS \\
STOD \(\{\) DISK|MEMO \(\}\) \\
STOD \(\{\) DISK|MEMO \(\}\)
\end{tabular} & MMEMory:INITialize < msus>, \(\{\) LIF \(\mid\) DOS \(\}\) \\
\hline Define save data menu RAW ON off CAL ON off DATA ON Off MEM ON Off DATA TRACE ON Off MEM TRACE ON off RETURN & \[
\begin{aligned}
& \text { SAVRAW }\{\mathrm{ON} \mid \mathbf{1}\} \\
& \text { SAVRAW }\{\mathrm{OFF} \mid 0\} \\
& \text { SAVCAL }\{\mathrm{ON} \mid \mathbf{1}\} \\
& \text { SAVCAL }\{\mathrm{OFF} \mid 0\} \\
& \text { SAVDAT }\{\mathrm{ON} \mid \mathbf{1}\} \\
& \text { SAVDAT }\{\mathrm{OFF} \mid 0\} \\
& \text { SAVMEM }\{\mathrm{ON} \mid \mathbf{1}\} \\
& \text { SAVMEM }\{\mathrm{OFF} \mid 0\} \\
& \text { SAVDTRC }\{\mathrm{ON} \mid \mathbf{1}\} \\
& \text { SAVDTRC }\{\mathrm{OFF} \mid 0\} \\
& \text { SAVMTRC }\{\mathrm{ON} \mid \mathbf{1}\} \\
& \text { SAVMTRC }\{\mathrm{OFF} \mid 0\}
\end{aligned}
\] & MMEMory:STORe:ITEM:TRACe:SELect RAW
MMEMory:STORe:ITEM:TRACe:DELete RAW
MMEMory:STORe:ITEM:TRACe:SELect CCO
MMEMory:STORe:ITEM:TRACe:DELete CCO
MMEMory:STORe:ITEM:TRACe:SELect DATA
MMEMory:STORe:ITEM:TRACe:DELete DATA
MMEMory:STORe:ITEM:TRACe:SELect MEM
MMEMory:STORe:ITEM:TRACe:DELete MEM
MMEMory:STORe:ITEM:TRACe:SELect DTR
MMEMory:STORe:ITEM:TRACe:DELete DTR
MMEMory:STORe:ITEM:TRACe:SELect MTR
MMEMory:STORe:ITEM:TRACe:DELete MTR \\
\hline Purge yes no menu PURGE: YES NO & & \\
\hline \begin{tabular}{l}
Recall \\
file name \\
file name \\
file name \\
file name \\
PREV Fll Es \\
NEXT FILES \\
STOR DEV I I
\end{tabular} & \begin{tabular}{l}
RECD < string> \\
STOD \(\{\) DISK|MEMO \(\}\)
\end{tabular} & \begin{tabular}{l}
MMEMory:LOAD:STATe \(<\) file_name \(>[,<\) msus \(>\) ] (State) \\
MMEMory:LOAD:TRACe SEL, <file_name> [, \(<\) msus \(>\) ] (Data)
\end{tabular} \\
\hline Preset & PRES & SYSTem:PRESet \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Front Panel Key & Simple Command & Equivalent SCPI Command \\
\hline \begin{tabular}{l}
GPIB only commands \\
Marker related commands
\end{tabular} & \[
\begin{aligned}
& \text { MKR }\{\mathrm{ON} \mid 1\} \\
& \text { MKRPRM <numeric> } \\
& \text { OUTPMKR? } \\
& \text { MKRVAL? } \\
& \text { MKRAUV? } \\
& \text { MKRP <numeric> } \\
& \text { SMKRP }\{1-7\}<\text { numeric }>
\end{aligned}
\] & \begin{tabular}{l}
DISPlay[:WINDow]:TRACe:MARKer:STATe \(\{\mathrm{ON} \mid \mathbf{1}\}\) \\
CALCulate:EVALuate: Y:XPOSition <numeric> \\
CALCulate:EVALuate:Y:DATA? \\
CALCulate:EVALuate:Y:VALue1? \\
CALCulate:EVALuate: Y:VALue2? \\
CALCulate:EVALuate:Y:XPOSition:POINt <numeric> \\
CALCulate:EVALuate: \(\mathrm{Y}\{2-8\}\) :XPOSition:POINt < numeric>
\end{tabular} \\
\hline 8-bit IO related commands & \[
\begin{aligned}
& \text { INP8IO? } \\
& \text { OUT8IO <numeric }>
\end{aligned}
\] & \begin{tabular}{l}
SYSTem:COMMunicate:PARallel[:RECeive]:DATA? \\
SYSTem:COMMunicate:PARallel:TRANsmit:DATA <numeric>
\end{tabular} \\
\hline KEY related commands & \begin{tabular}{l}
KEY < NUMERIC> \\
ENKEY \\
DSKEY \\
USKEY
\end{tabular} & \[
\begin{aligned}
& \text { SYSTem:KEY < numeric> } \\
& \text { SYSTem:KLOCk }\{\mathrm{OFF} \mid 0\} \\
& \text { SYSTem:KLOCk }\{\mathrm{ON} \mid \mathbf{1}\}
\end{aligned}
\] \\
\hline Input/output data array related commands & \begin{tabular}{l}
INPURAW1 \\
INPURAW2 \\
INPURAW3 \\
INPURAW4 \\
INPUDATA \\
INPUDTRC \\
OUTPRAW1? \\
OUTPRAW2? \\
OUTPRAW3? \\
OUTPRAW4? \\
OUTPDATA? \\
OUTPDATAP? < numeric> \\
OUTPMEMO? \\
OUTPMEMOP? < numeric> \\
OUTPDTRC? \\
OUTPDTRCP? < numeric> OUTPMTRC? \\
OUTPMTRCP? < numeric> \\
OUTPSWPRM? \\
OUTPSWPRMP? \\
<numeric>
\end{tabular} & ```
DATA[:DATA] RAW1, \(\{<\) block \(>\mid<\) numeric \(\rangle[,<\) numeric \(\rangle]\}\)
DATA[:DATA] RAW2, \(\{<\) block \(>\mid<\) numeric \(>[,<\) numeric \(\rangle]\}\)
DATA[:DATA] RAW3, \(\{<\) block \(>\mid<\) numeric \(>[,<\) numeric \(>]\}\)
DATA[:DATA] RAW4, \(\{<\) block \(>\mid<\) numeric \(>[,<\) numeric \(>]\}\)
DATA[:DATA] DATA, \(\{<\) block \(>\mid<\) numeric \(>[,<\) numeric \(\rangle]\}\)
TRACe[:DATA] DTR, \(\{<\) block \(>\mid<\) numeric \(>[,<\) numeric \(>]\}\)
DATA[:DATA]? RAW1
DATA[:DATA]? RAW2
DATA[:DATA]? RAW3
DATA[:DATA]? RAW4
DATA[:DATA]? DATA
DATA[:DATA]:VALue? DATA, <point>
DATA[:DATA]? MEM
DATA[:DATA]:VALue? MEM,<point>
TRACe[:DATA]? DTR
TRACe[:DATA]:VALue? DTR,< point>
TRACe[:DATA]? MTR
TRACe[:DATA]:VALue? MTR, \(<\) point \(>\)
DATA[:DATA]? SPAR
DATA[:DATA]:VALue? SPAR,<point>
``` \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Front Panel Key & Simple Command & Equivalent SCPI Command \\
\hline Calibration and compensation related commands & ```
INPUCALC \(\{1-12\}\)
<numeric>
OUTPCALC\{1-12\}?
INPUCALK < numeric>
OUTPCALK?
SAVC
INPUCOMC \(\{1-3\}\)
OUTPCOMC \(\{1-3\}\) ?
``` & ```
DATA[:DATA] \(\operatorname{CCO}\{1-12\},\{<\) block \(>\mid<\) numeric \(>[,<\) numeric \(>]\}\)
DATA[:DATA]? CCO\{1-12\}
DATA[:DATA] CKIT, \(\{<\) block \(>\mid<\) numeric \(>[,<\) numeric \(>]\}\)
DATA[:DATA]? CKIT
SENSe:CORRection:COLLect:SAVE9
DATA[:DATA] CMP \(\{1-3\},\{<\) block \(>\mid<\) numeric \(>[,<\) numeric \(\rangle]\}\)
DATA[:DATA]? CMP\{1-3\}
``` \\
\hline Transfer data format related commands & \begin{tabular}{l}
FORM2 \\
FORM3 \\
FORM4 \\
FORM5
\end{tabular} & \begin{tabular}{l}
FORMat[:DATA] REAL,32 \\
FORMat[:DATA] REAL, 64 \\
FORMat[:DATA] ASCii \\
FORMat[:DATA] PACKed,32
\end{tabular} \\
\hline Limit test related commands & OUTPLIMF? OUTPFAIP? OUTPLIMM? & \[
\begin{aligned}
& \text { DATA[:DATA]? LFA } \\
& \text { DATA:POINts? LFA } \\
& \text { DATA[:DATA]? LMAR }
\end{aligned}
\] \\
\hline Error related command & OUTPERRO? & SYSTem:ERRor? \\
\hline Status byte related commands & \begin{tabular}{l}
CLES \\
ESB? \\
ESNB < numeric> \\
OSR? \\
OSE <numeric> \\
OSER? \\
OSPT < numeric> \\
OSNT < numeric>
\end{tabular} & ```
*CLS (Common Command)
STATus:INSTrument[:EVENt]?
STATus:INSTrument:ENABle < numeric>
STATus:OPERation:CONDition?
STATus:OPERation:ENABle<numeric>
STATus:OPERation[:EVENt]?
STATus:OPERation:PTRansition <numeric>
STATus:OPERation:NTRansition < numeric>
``` \\
\hline Test set related command & TESS? & SYSTem:COMMunicate:TSET? \\
\hline LCD display related command & \begin{tabular}{l}
SCRN \(\{\mathrm{OFF}|\mathrm{ON}| 0 \mid \mathbf{1}\}\) \\
BLIGHT \{OFF|ON|0|1 \(\}\)
\end{tabular} & \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|}
\hline Front Panel Key & Simple Command & Equivalent SCPI Command \\
\hline \multicolumn{3}{|l|}{3-term calibration commands} \\
\hline & INPUOPEA & \\
\hline & INPUSHOA & \\
\hline & INPULOAA & \\
\hline & INPUD & \\
\hline \multicolumn{3}{|l|}{File transfer commands} \\
\hline & CLOSE & \\
\hline & CWD? & \\
\hline & FNAME? < numeric> & \\
\hline & FNUM? & \\
\hline & FSIZE? < string> & \\
\hline & READ? & \\
\hline & ROPEN < string> & \\
\hline & WOPEN & \\
\hline & string \(>\) [,<numeric \(>\) ] & \\
\hline & WRITE < block> & \\
\hline \multicolumn{3}{|l|}{Common commands} \\
\hline & \({ }^{*} \mathrm{CLS}\) & \\
\hline & *IDN? & \\
\hline & *OPT? & \\
\hline & *RST & \\
\hline & *TST? & \\
\hline & *OPC & \\
\hline & *WAI & \\
\hline & \({ }^{*} \mathrm{CLS}\) & \\
\hline & *ESE < numeric> & \\
\hline & *ESR? & \\
\hline & *SRE < numeric> & \\
\hline & *STB? & \\
\hline & *TRG & \\
\hline & * \(\mathrm{PCB}<\) numeric> & \\
\hline
\end{tabular}

\section*{SCPI Commands Summary}

This appendix summarizes the SCPI commands in alphabetical order. It also shows the equivalent simple command when applicable.
\begin{tabular}{|c|c|c|c|}
\hline Command & Parameter & Note & \begin{tabular}{l}
Equivalent \\
Simple Command
\end{tabular} \\
\hline ABORt & & & HOLD \\
\hline \multicolumn{4}{|l|}{CALCulate} \\
\hline \multicolumn{4}{|l|}{: AVERage} \\
\hline :STATe & \{OFF|ON|O|1 \(\}\) & & DHOLD \\
\hline :TYPE & \{MAXimum|MINimum\} & & DHOLD \\
\hline \multicolumn{4}{|l|}{: EVALuate} \\
\hline \multicolumn{4}{|l|}{:BAND} \\
\hline \multicolumn{4}{|l|}{:FULL} \\
\hline [:STATe] & \{OFF|ON \(\}\) & & PARS \\
\hline :SPAN & DMARker & [no query] & SEARSTR \\
\hline :STARt & MARKer & [no query] & SEARSTRL \\
\hline :STOP & MARKer & [no query] & SEARSTRR \\
\hline :COUPle & \{OFF|ON|O|1 \(\}\) & & MKRCOUP \\
\hline \multicolumn{4}{|l|}{: EFFect} \\
\hline :ON & \{1|2\} & & CRSC \\
\hline :EPARameters & & CALECPARA & \\
\hline :CIRCuit \(\{\mathrm{A}|\mathrm{B}| \mathrm{C}|\mathrm{D}| \mathrm{E}\}\) & & EQUC & \\
\hline :SIMulation & & SIMFCHAR & \\
\hline :INTerpolate & \{OFF|ON|O|1 \(\}\) & & MKRCONT \\
\hline \multicolumn{4}{|l|}{:MSTatistics} \\
\hline :DATA? & & [query only] & OUTPMSTA? \\
\hline [:STATE] & \{OFF|ON|O|1 \(\}\) & & MEASTAT \\
\hline \multicolumn{4}{|l|}{:NOISe} \\
\hline [:STATe] & \{OFF|ON|0|1 \(\}\) & & MKRNOI \\
\hline :ON & \{"DTR"|"MTR"\} & & MKRO \\
\hline \multicolumn{4}{|l|}{:PEAK} \\
\hline \multicolumn{4}{|l|}{:EXCursion} \\
\hline :X & \(\{<\) numeric \(>\mid\) DMARker \(\}\) & & MKRPKD, PKDLTX \\
\hline [:Y] & \(\{<\) numeric \(>\mid\) DMARker \(\}\) & & MKRPKD, PKDLTY \\
\hline :POLarity & \{POSitive|NEGative\} & & PKPOL \\
\hline :THReshold & \(\{<\) numeric \(>\mid\) MARKer \(\}\) & & MKRTHRE, PKTHVAL \\
\hline :STATe & \{OFF|ON|O|1 \(\}\) & & PKTHRE \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Command & Parameter & Note & \begin{tabular}{l}
Equivalent \\
Simple Command
\end{tabular} \\
\hline \multicolumn{4}{|l|}{CALCulate (continued)} \\
\hline \multicolumn{4}{|l|}{: EVALuate (continued)} \\
\hline \multicolumn{4}{|l|}{:REFerence} \\
\hline : DATA? & & [query only] & OUTPDMKR? \\
\hline : X & < numeric> & & DMKRPRM \\
\hline :Y1 & <numeric> & & DMKRVAL \\
\hline :Y2 & <numeric> & & DMKRAUV \\
\hline \multicolumn{4}{|l|}{:WIDTh} \\
\hline :DATA? & & [query only] & OUTPMWID? \\
\hline :STATe & \{OFF|ON|0|1 \(\}\) & & WIDT \\
\hline :XPOSition & & & \\
\hline :IN & & [no query] & WIDSIN \\
\hline :OUT & & [no query] & WIDSOUT \\
\hline :Y & <numeric> & & WIDV \\
\hline :TYPE & \{DIVS2|MULS2|DIV2|FIXed \} & & WIDVTYPE \\
\hline \multicolumn{4}{|l|}{:Y[1]} \\
\hline :DATA? & & [query only] & OUTPMKR? \\
\hline :VALue1? & & [query only] & MKRVAL? \\
\hline :VALue2? & & [query only] & MKRAUV? \\
\hline :XPOSition & <numeric> & & MKRPRM \\
\hline :LPEak & & [no query] & SEANPKL \\
\hline :LTARget & & [no query] & SEAL \\
\hline :MAXimum & & [no query] & SEAM \\
\hline :MINimum & & [no query] & SEAM \\
\hline :NPEak & & [no query] & SEANPK \\
\hline :PALL & & [no query] & SEAM \\
\hline :PEAK & & [no query] & SEAM \\
\hline :PLEFt & & [no query] & SEAM \\
\hline :POINt & <numeric> & & MKRP \\
\hline :PRIGht & & [no query] & SEAM \\
\hline :RPEak & & [no query] & SEANPKR \\
\hline :RTARget & & [no query] & SEAR \\
\hline :TARGet & <numeric> & & SEAM, SEATARG \\
\hline :TRACk & \{MAXimum|MINimum|TARGet| PEAK|PALL|PLEFt|PRIGht|OFF\} & & TRACK \\
\hline :Y\{2-8\} & & & \\
\hline :DATA? & & [query only] & OUTPSMKR \(\{1-7\}\) ? \\
\hline :VALue1? & & [query only] & SMKRVAL \(\{1-7\}\) ? \\
\hline :VALue2? & & [query only] & SMKRAUV \(\{1-7\}\) ? \\
\hline : XPOSition & <numeric> & & SMKRPRM \(\{1-7\}\) \\
\hline :POINt & <numeric> & & SMKRP \(\{1-7\}\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Command & Parameter & Note & \begin{tabular}{l}
Equivalent \\
Simple Command
\end{tabular} \\
\hline \multicolumn{4}{|l|}{CALCulate (continued)} \\
\hline :FORMat & \{GDELay|REAL|IMAGinary| MLINear|MLOGarithmic|PHASe| UPHase|SWR|COMPlex\} & & FMT, SAUNIT \\
\hline :FORMat & \{RIMaginary|MLIPhase|MLOPhase| RX|GB|SWRPhase | MLINear| PHASe| UPHase| REAL| IMAGinary| CP|SC|LP|LS|D|Q|RP|RS|COMPlex\} & & FMT, SAUNIT, CIRF, MEAS \\
\hline \multicolumn{4}{|l|}{: UNIT} \\
\hline :ANGLe & \{DEG|RAD \(\}\) & & PHAU \\
\hline :GDAPerture & & & \\
\hline : APERture & < numeric> & & GRODAPER \\
\hline \multicolumn{4}{|l|}{\multirow[t]{2}{*}{:LIMit
\(\quad\) : BEEPer}} \\
\hline & & & \\
\hline [:STATe] & \{OFF|ON|O|1 \(\}\) & & BEEPFAIL \\
\hline :CLEar & & [no query] & LIMCLEL \\
\hline \multicolumn{4}{|l|}{:CONTrol} \\
\hline :OFFSet & <numeric> & & LIMIPRMO, MKRAMPO \\
\hline :LINE & \{OFF|ON|O|1 \(\}\) & & LIMILINE \\
\hline :OFFSet & \(\{<\) numeric \(>\) |MARKer \(\}\) & & LIMIAMPO \\
\hline :SAVE & & [no query] & LIMEDONE \\
\hline :SEGment & <numeric> & & LIMSEDI \\
\hline :ADD & & [no query] & LIMSADD \\
\hline \multicolumn{4}{|l|}{:CONTrol} \\
\hline [:DATA] & \(\{<\) numeric \(\rangle\) |MARKer \(\}\) & & LIMPRM, MKRSWPRM \\
\hline :DELete & & [no query] & LIMSDEL \\
\hline :DELTa & <numeric> & & LIMD \\
\hline :EDIT & & [no query] & LIMSEDI \\
\hline :LOWer & < numeric> & & LIML \\
\hline :MIDDle & \(\{<\) numeric \(>\) |MARKer \(\}\) & & LIMM, MKRMIDD \\
\hline :SAVE & & [no query] & LIMSDON \\
\hline :UPPer & < numeric> & & LIMU \\
\hline :STATe & \{OFF|ON|O|1 \(\}\) & & LIMITEST \\
\hline \multicolumn{4}{|l|}{:MATH1} \\
\hline \multicolumn{4}{|l|}{[:EXPRession]} \\
\hline :CATalog? & & [query only] & (None) \\
\hline :NAME & \{OFF|YREF|YTRA|ZREF|ZTRA| INVS|MP4|MP8|MP16\} & & CONV \\
\hline :NAME & \{OFF|YREF|YTRA|ZREF|ZTRA| INVS|MP4|MP8|MP16\} & (NA) & CONV \\
\hline & \{OFF|IMPedance|ADMittance\} & (ZA) & MEAS \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Command & Parameter & Note & \begin{tabular}{l}
Equivalent \\
Simple Command
\end{tabular} \\
\hline \begin{tabular}{l}
:MATH2 \\
[:EXPRession] \\
:CATalog? \\
:NAME \\
:PATH? \\
: AUTO
\end{tabular} & \[
\left\{\begin{array}{l}
\{\mathrm{ADD}|\mathrm{SUB}| \mathrm{DIV} \mid \mathrm{OFF}\} \\
\text { [query only] } \\
\text { ONCE }
\end{array}\right.
\] & \begin{tabular}{l}
[query only] \\
(None)
\end{tabular} & \begin{tabular}{l}
(None) \\
MATH \\
LVLCAL
\end{tabular} \\
\hline \begin{tabular}{l}
DATA \\
[:DATA]? \\
[:DATA] \\
:VALue? \\
:POINts?
\end{tabular} & \[
\left.\left.\begin{array}{l}
\{\text { LFA } \mid \text { LMAR } \mid \text { MEM } \mid \text { SPAR }\} \\
\{\text { AOFF } \mid \text { GAIN } \mid \text { MZAP }\},<\text { numeric }> \\
\text { CMP }\{1|2| 3\},<\text { numeric }> \\
\text { EQ }\{\text { R1 } \mid \text { C1 } \mid \text { L1 } \mid \text { C0 }\},<\text { numeric }> \\
\{\text { CCO }\{1-12\} \mid \text { DATA } \mid \text { RAW }\{1-4\}\}, \\
\{<\text { block }>\mid<\text { numeric }>[,<\text { numeric }>]\}
\end{array}\right\} \begin{array}{l}
\{\text { CKT }\},<\text { block }\rangle \\
\text { OFFS },\{<\text { numeric }>\mid \text { MARKer }\}
\end{array}\right\} \begin{aligned}
& \{\text { DATA } \mid \text { MEM } \mid \text { SPAR }\},<\text { point }>
\end{aligned}
\] & \begin{tabular}{l}
[query only] \\
INPUCALK \\
[query only] \\
[query only]
\end{tabular} & \begin{tabular}{l}
OUTPLIMF?, OUTPLIMM?, OUTPMEMO?, OUTPSWPRM? \\
DATAOVAL, DATGAIN, DEFGO, ZMAPER \\
INPUCOMC\{1|2|3\}, OUTPCOMC \(\{1|2| 3\}\) \\
\(\operatorname{DEREC}\{\mathrm{R} 1|\mathrm{C} 1| \mathrm{L} 1 \mid \mathrm{C} 0\}\) \\
INPUCALK, \\
INPUCALC\{1-12\}, \\
INPUDATA, INPURAW\{1-4\} \\
DATOVAL, DEFGO, MKROFS OUTPDATAP?, OUTPMEMOP?, OUTPSWPRMP? OUTPFAIP?
\end{tabular} \\
\hline  & \[
\begin{aligned}
& \{\text { OFF }|\mathrm{ON}| 0 \mid 1\} \\
& <\text { numeric }> \\
& <\text { numeric }> \\
& \{\text { OFF }|\mathrm{ON}| 0 \mid 1\} \\
& <\text { numeric }> \\
& \left\{\begin{array}{l}
\text { OFF }|\mathrm{ON}| 0 \mid 1\}
\end{array}\right. \\
& \{\mathrm{OFF}|\mathrm{ON}| 0 \mid 1\} \\
& \{\text { OFF }|\mathrm{ON}| 0 \mid 1\} \\
& \{\text { OFF }|\mathrm{ON}| 0 \mid 1\}
\end{aligned}
\] & \begin{tabular}{l}
[query only] [query only] \\
[query only]
\end{tabular} & \begin{tabular}{l}
(None) \\
(None)
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Command & Parameter & Note & \begin{tabular}{l}
Equivalent \\
Simple Command
\end{tabular} \\
\hline \multicolumn{4}{|l|}{DIAG (continued)} \\
\hline \multicolumn{4}{|l|}{:SERVice (continued)} \\
\hline \multicolumn{4}{|l|}{:IF} \\
\hline \multicolumn{4}{|l|}{:ADMX} \\
\hline :MODE & \{AUTO|ALTernate|DEGO|DEG90\} & & (None) \\
\hline \multicolumn{4}{|l|}{:BPFilter} \\
\hline :MODE & \{ AUTO|BW3M|BW1M|XTAL\} & & (None) \\
\hline \multicolumn{4}{|l|}{:GAIN} \\
\hline :MODE & \{AUTO|MANual \(\}\) & & (None) \\
\hline :W & \{ AUTO|DB0|DB10 & & (None) \\
\hline :X & \{ AUTO|DB0|DB18\} & & (None) \\
\hline :Y & \{ AUTO|DB0|DB6|DB12|DB18\} & & (None) \\
\hline :Z & \{AUTO|DB0|DB2|DB4|DB18\} & & (None) \\
\hline \multicolumn{4}{|l|}{:LPFilter} \\
\hline :MODE & \{ AUTO|BW5K|BW15K|BW50K| BW150K|THRough\} & & (None) \\
\hline \multicolumn{4}{|l|}{:RANGe} \\
\hline :F & \{HIGH|LOW \(\}\) & & (None) \\
\hline :MODE & \{AUTO|MANual \(\}\) & [no query] & (None) \\
\hline :R & \{HIGH|LOW\} & & (None) \\
\hline \multicolumn{4}{|l|}{:SHBW} \\
\hline :MODE & \{ AUTO|NARRow|MIDDle|WIDE \} & & (None) \\
\hline \multicolumn{4}{|l|}{:TLOCal} \\
\hline :MODE & \{ AUTO|AC|DC & & (None) \\
\hline :MODE & ON & & (None) \\
\hline \multicolumn{4}{|l|}{:SOURce} \\
\hline :ALCLoop & \{OPEN|CLOSe \(\}\) & & (None) \\
\hline : ATTenuator & \{ AUTO|DB0|DB10|DB20|DB30| DB40|DB50|DB60\} & & (None) \\
\hline \multicolumn{4}{|l|}{:GAIN} \\
\hline \multicolumn{4}{|l|}{:DAC} \\
\hline :MODE & \{AUTO|MANual \(\}\) & & (None) \\
\hline :VALue & <numeric> & & (None) \\
\hline \multicolumn{4}{|l|}{:LEVel} \\
\hline \multicolumn{4}{|l|}{:DAC} \\
\hline :MODE & \{AUTO|MANual \(\}\) & & (None) \\
\hline :VALue & < numeric> & & (None) \\
\hline :MODE & \{AUTO|MANual \(\}\) & & (None) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Command & Parameter & Note & \begin{tabular}{l}
Equivalent \\
Simple Command
\end{tabular} \\
\hline  & ```
\{ AUTO|SINGle|TRIPle \}
<numeric>
\{AUTO|NARRow|WIDE \}
\{AUTO|MANual\}
<numeric>
\{OPEN|CLOSe\}
\{AUTO|MANual\}
\(\{\mathrm{OFF}|\mathrm{ON}| 0 \mid 1\}\)
\{AUTO|POSitive|NEGative\}
<numeric>
< numeric>
``` & \begin{tabular}{l}
[no query] \\
[no query] \\
[no query] \\
[query only]
\end{tabular} & \begin{tabular}{l}
(None)
(None) \\
(None)
\end{tabular} \\
\hline DISPlay
:ANNotation
:BACKlight
\(\quad:\) FREQuency
:BRIGhtness
:CMAP
\(:\) COLor \(\{\mathbf{1 - 1 4 \}}\)
\(:\) DEFault
\(:\) HSL
\(:\) DEFault
\(:\) & \[
\begin{aligned}
& \{\mathrm{OFF}|\mathrm{ON}| 0 \mid 1\} \\
& \mathrm{OFF} \\
& \text { <numeric }> \\
& \\
& \text { <hue }>,<\text { sat }>,<\text { lum }> \\
& \\
& <\text { numeric }>
\end{aligned}
\] & \begin{tabular}{l}
[no query] \\
[no query] \\
[no query]
\end{tabular} & BLIGHT
FREO
INTE

RSCO
COLO
DEFC
RECC
SVCO
BACI \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Command & Parameter & Note & \begin{tabular}{l}
Equivalent \\
Simple Command
\end{tabular} \\
\hline \multicolumn{4}{|l|}{DISPlay (continued)} \\
\hline \multicolumn{4}{|l|}{[:WINDow]} \\
\hline :ALLocation & \{INSTrument|HIHB|BASic|BSTatus \(\}\) & & DISA \\
\hline :FORMat & \{FBACk|ULOWer\} & & SPLD \\
\hline \multicolumn{4}{|l|}{:TEXT 1 1-17\}} \\
\hline [:DATA] & <title_string> (only for TEXT17) & & TITL \\
\hline :PAGE & \(\{\) UP \(\mid\) DOWN \(\mid<\) numeric \(>\}\) (except TEXT16 and TEXT17) & & CALCASSI, CALS, DISL, DISLLIST, LISV, NEXP, OPEP, PREP \\
\hline :STATe & \begin{tabular}{l}
\{OFF|ON|O|1 \(\}\) \\
(except TEXT17)
\end{tabular} & & CALCASSI, CALS, DISL, DISLLIST, LISV, MKRL, OPEP, RESD \\
\hline :TEXT18 (18: Equivalent circuit parameters) & & & \\
\hline :STATe & \{OFF|ON|O|1 \(\}\) & & DESECPARA \\
\hline :TEXT19 (19: Equivalent circuit model) & & & \\
\hline :STATe & \{OFF|ON|O|1 \(\}\) & & DISECIRC \\
\hline :TEXT20 (20: Fixture compensation kit definition table) & & & \\
\hline :STATe & \{OFF|ON|O|1 \(\}\) & & COMS \\
\hline \(: \operatorname{TRACe}\{[1] \mid 2\}\) (1: Data Trace, 2: Memory Trace) & & & \\
\hline :GRATticule & & & \\
\hline :FORMat & \{RECTangle|POLar|SMITh| ADMittance \(\}\) & (NA) & FMT \\
\hline :FORMat & \{RECTangle|POLar|SMITh| ADMittance|CPLane\} & (ZA) & FMT \\
\hline :MARKer \(\{[1] \mid 2-8\}\) (1: Main Marker, 2-8: Sub Marker) & & & \\
\hline :ALL & DEFault & [no query] & PRSMKRS \\
\hline :STATe & \{OFF|ON|0|1\} (MARKer \(22-8\}\) only) & & MKR \\
\hline :RELative & \{OFF|ON|O|1 \(\}\) & & DMKR \\
\hline :REFerence & \{MARKer|FIXed|TRACked \(\}\) & & DMKR \\
\hline :STATe & \{OFF|ON|O|1\} (Only for MARKer\{2-8\}) & & SMKR \(\mathbf{1 - 7}^{\text {1-7 }}\) \\
\hline :UNIT & & & \\
\hline :TIME & \{OFF|ON|O|1 \(\}\) & & \\
\hline :X & & & \\
\hline [:SCALe] & & & \\
\hline :RLEVel & <numeric> & & REFX \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Command & Parameter & Note & Equivalent \\
\hline & ONCE
<numeric \(>\)
\(\{\) OFF \(|\mathrm{ON}| 0 \mid 1\}\)
\(<\) numeric \(>\)
\(\{<\) numeric \(>\mid\) MARKer \(\}\)
\(<\) numeric \(>\)
\(<\) numeric \(>\)
\(\{\) LINear \(\mid\) LOGarithmic \(\}\)
\(\{O F F|O N| 0 \mid 1\}\) & [no query] & AUTO
BOTV
SCAC
SCAL
REFV, REFY, MKRREF
REFP
TOPV
FMT \\
\hline FORMat
[:DATA] & \{ASCii|REAL,32|REAL,64|PACKed,32\} & & FORM2, FORM3, FORM4, FORM5 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Command & Parameter & Note & \begin{tabular}{l}
Equivalent \\
Simple Command
\end{tabular} \\
\hline & \[
\begin{aligned}
& \{\text { FIXed } \mid \text { VARiable }\} \\
& \{\mathrm{OFF}|\mathrm{ON}| 0 \mid 1\} \\
& <\text { numeric }> \\
& \{\mathrm{OFF}|\mathrm{ON}| 0 \mid 1\} \\
& \{\mathrm{OFF}|\mathrm{ON}| 0 \mid 1\} \\
& <\text { numeric }> \\
& \{\mathrm{OFF}|\mathrm{ON}| 0 \mid 1\} \\
& <\text { numeric }> \\
& \\
& \{\mathrm{OFF}|\mathrm{ON}| 0 \mid 1\}
\end{aligned}
\] & \begin{tabular}{l}
[No query] \\
[No query]
\end{tabular} & \begin{tabular}{l}
COPA DFLT \\
PRICFIXE, PRICVARI PRIC, PRIS DPI FORMFEED LANDSCAPE LMARG PRSOFT TMARG COPT
\end{tabular} \\
\hline \begin{tabular}{l}
INITiate \\
[:IMMediate] \\
: AGAin \\
:ALL \\
:CONTinuous
\end{tabular} & \{OFF|ON|O|1 \(\}\) & \begin{tabular}{l}
[no query] \\
[no query]
\end{tabular} & \begin{tabular}{l}
NUMG, SING \\
REST \\
CONT, HOLD, NUMG, SING
\end{tabular} \\
\hline \begin{tabular}{l}
INPut \\
:IMPedance
\end{tabular} & < numeric> & & INPZ \\
\hline \begin{tabular}{l}
INSTrument \\
:COUPle \\
:NSELect \\
[:SELect] \\
:STATe \\
:TYPE
\end{tabular} & \[
\begin{aligned}
& \{\mathrm{OFF}|\mathrm{ON}| 0 \mid 1\} \\
& \{\mathbf{1} \mid 2\} \\
& \{\mathrm{CH} 1 \mid \mathrm{CH} 2\} \\
& \{\mathrm{OFF}|\mathrm{ON}| 0 \mid \mathbf{1}\} \\
& \{\mathrm{NA}|\mathrm{SA}| \mathrm{ZA}\}
\end{aligned}
\] & & \begin{tabular}{l}
COUC \\
CHAN1, CHAN2 \\
CHAN1, CHAN2, DUAC \\
CHAN1, CHAN2, DUAC
NA, SA, ZA
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Command & Parameter & Note & \begin{tabular}{l}
Equivalent \\
Simple Command
\end{tabular} \\
\hline \multicolumn{4}{|l|}{MMEMory} \\
\hline :CDIRectory & [<string >] & [no query] & CHAD \\
\hline :COPY & \[
\begin{aligned}
& \text { <string(src)>>,<msus> } \\
& <\text { string(des)>, }
\end{aligned}
\] & [no query] & FILC \\
\hline : CREate & & & \\
\hline : DIRectory & <string> & [no query] & CRED \\
\hline : DELete & <file_name> [,<msus>] & [no query] & PURG, RESAVD \\
\hline :INITialize & <msus>, \{LIF|DOS\} & [no query] & INID \\
\hline :LOAD & & & \\
\hline :STATe & <file_name> [,<msus>] & & RECD \\
\hline :TRACe & SEL, \(<\) file_name \(>\) [,\(<\) msus \(>\)] & & RECD \\
\hline :STORe & & & \\
\hline :DINTerchange & & & \\
\hline :TIFF & <file_name> [, <msus>] & [no query] & SAVDTIF \\
\hline :TRACe & SEL, \(<\) file_name \(>\) [, <msus \(>\)] & & SAVDASC \\
\hline :ITEM & & & \\
\hline :TRACe & & & \\
\hline :CATalog? & & [query only] & \[
\begin{aligned}
& \text { SAVCAL?, SAVDAT?, } \\
& \text { SAVDTR?, SAVMEM?, } \\
& \text { SAVMTR?, SAVRAW? }
\end{aligned}
\] \\
\hline :DELete & \{CCO|DATA|DTR|MEM|MTR|RAW \(\}\) & [no query] & SAVCAL, SAVDAT, SAVDTR, SAVMEM, SAVMTR, SAVRAW \\
\hline :SELect & \{CCO|DATA|DTR|MEM|MTR|RAW \(\}\) & [no query] & SAVCAL, SAVDAT, SAVDTR, SAVMEM, SAVMTR, SAVRAW \\
\hline :STATe & <file_name> [,<msus>] & & SAVDSTA \\
\hline :TRACe & SEL, \(<\) file_name \(>\) [,\(<\) msus \(>\)] & & SAVDDAT \\
\hline \multicolumn{4}{|l|}{OUTPut} \\
\hline : ATTenuation\{1|2\} & <numeric> & & ATTP1, ATTP2 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Command & Parameter & Note & \begin{tabular}{l}
Equivalent \\
Simple Command
\end{tabular} \\
\hline \multicolumn{4}{|l|}{PROGram} \\
\hline :CATalog? & & [query only] & (None) \\
\hline :EXPLicit & & & \\
\hline :DEFine & <progname>, <program> & & (None) \\
\hline :DEFine? & <progname> & [query only] & (None) \\
\hline : DELete & <progname> & [no query] & (None) \\
\hline :EXECute & <progname>, <program command> & [no query] & (None) \\
\hline :MALLocate & <progname>, < nbytes>|DEFault \(\}\) & & (None) \\
\hline :NAME & <progname>, <program name> & & (None) \\
\hline :NUMBer & \[
\begin{aligned}
& \text { <progname }>,<\text { varname }> \\
& {[,<\text { nvalues }>]}
\end{aligned}
\] & & (None) \\
\hline :STATe & <progname>, \{RUN|PAUSe|STOP| CONTinue \(\}\) & & (None) \\
\hline :STRing & <progname>, <varname> [, <svalues>] & & (None) \\
\hline :WAIT & <progname> & & (None) \\
\hline \multicolumn{4}{|l|}{[:SELected]} \\
\hline :DEFine & <program> & & (None) \\
\hline :DELete & & & \\
\hline [:SELected] & & [no query] & (None) \\
\hline :ALL & & [no query] & (None) \\
\hline :EXECute & \[
\begin{aligned}
& \text { \{"RUN"|"PAUSE"|"STOP"| } \\
& \text { "STEP"|"CONT"\} }
\end{aligned}
\] & [no query] & (None) \\
\hline :MALLocate & \(\{<\) nbytes \(>\mid\) DEFault \(\}\) & & (None) \\
\hline :NAME & <program name> & & (None) \\
\hline :NUMBer & <varname> , \ll nvalues> \(\}\) & & (None) \\
\hline :STATe & \{RUN|PAUSe|STOP|CONTinue\} & & (None) \\
\hline :STRing & <varname> \(\{,<\) svalues> \(\}\) & & (None) \\
\hline :WAIT & & & (None) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Command & Parameter & Note & \begin{tabular}{l}
Equivalent \\
Simple Command
\end{tabular} \\
\hline \multicolumn{4}{|l|}{SENSe} \\
\hline : AVERage & & & \\
\hline :CLEar & & [no query] & AVERREST \\
\hline : COUNt & <numeric> & & AVERFACT \\
\hline [:STATe] & \{OFF|ON|0|1\} & & AVER \\
\hline :BANDwidth & & & \\
\hline [:RESolution] & < numeric> & & BW \\
\hline : AUTO & \{ \(\mathrm{OFF}|\mathrm{ON}| 0 \mid 1\}\) & & BW, BWAUTO \\
\hline :RATio & <numeric> & & BWSRAT \\
\hline :VIDeo & < numeric> & & VBW \\
\hline :TYPE & \{LINear|LOGarithmic \(\}\) & & VBWT \\
\hline :CORRection & & & \\
\hline :CIMPedance & < numeric> & & SETZ \\
\hline :CKIT & \{APC35|APC7|N50|N75|UDEFined\} & & CALK \\
\hline :CLASs \(\{1-12\}\) & & & \\
\hline :STANdard & \(<\mathrm{n}, \mathrm{n}, \ldots\rangle\) (max 7 items \()\) & [no query] & SPECS11A, SPECS11B, SPECS11C, SPECS22A, SPECS22B, SPECS22C, SPECFWDM, SPECFWDT, SPECRESI, SPECRESP, SPECREVM, SPECREVT \\
\hline :LABel & <string> & & \begin{tabular}{l}
LABEFWD \(\{\mathbf{T} \mid \mathbf{M}\}\), LABERES \(\{\mathrm{P} \mid \mathrm{I}\}\), \\
LABEREV \(\{\mathrm{T} \mid \mathrm{M}\}\), \\
LABES11 \(\{\mathrm{A}|\mathrm{B}| \mathrm{C}\}\), \\
LABES22 \(\{\mathrm{A}|\mathrm{B}| \mathrm{C}\}\)
\end{tabular} \\
\hline :LABel & <string> & & LABK \\
\hline :MODify & & [no query] & MODI1 \\
\hline :SAVE & [no query] & & SAVEUSEK \\
\hline :SAVE & \{ALL|CLASs \(\}\) & [no query] & CLAD, KITD \\
\hline :SELect & STANdard \(\{1-8\}\) & & DEFS \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Command & Parameter & Note & \begin{tabular}{l}
Equivalent \\
Simple Command
\end{tabular} \\
\hline \multicolumn{4}{|l|}{SENSe (continued)} \\
\hline \multicolumn{4}{|l|}{:CORRection (continued)} \\
\hline \multicolumn{4}{|l|}{:CKIT (continued)} \\
\hline \begin{tabular}{l}
\[
\text { :CLASs }\{1-13\}
\] \\
(continued)
\end{tabular} & & & \\
\hline :STANdard & & & \\
\hline :C0 & < numeric> & & C0 \\
\hline :C1 & <numeric> & & C1 \\
\hline :C2 & < numeric> & & C2 \\
\hline :LABel & <string> & & LABS \\
\hline :OCIMpedance & <numeric> & & OFSZ \\
\hline :ODELay & < numeric> & & OFSD \\
\hline :OLOSs & <numeric> & & OFSL \\
\hline :SAVE & & [no query] & STDD \\
\hline :TIMPedance & < numeric> & & TERI \\
\hline :TYPE & \{AIMPedance|DELay|LOAD|OPEN|
SHORt & & STDT \\
\hline \multicolumn{4}{|l|}{: COLLect} \\
\hline [:ACQuire] & \{CS11A|CS11B|CS11C|CS22A|CS22B| CS22C|FWDI|FWDM|FWDT|ISOL| ISOL2|OMII|REFL|REFL2|RESP| REVI|REVM|REVT|TRAN|TRAN2 STANdard \(\{1-7\}\}\) & [no query] & CLASS11\{A|B|C\}, CLASS22\{A|B|C\}, FWDI, FWDM, FWDT, ISOL, OMII, RAIISOL, RAIRESP, REFL, REVI, REVM, REVT, STAN\{A-G\}, TRAN \\
\hline :METHod & \{NONE|RESPonse|RAIsol| S111|S221|TPORt|OPTPort\} & & CALI \\
\hline :RESume & & [no query] & RESC \\
\hline :SAVE \(\{1-9\}\) & & [no query] & DONE, ISOD, RAID, REFD, RESPDONE, SAV1, SAV2, SAVC, TRAD \\
\hline \multicolumn{4}{|l|}{:EDELay[1]} \\
\hline \multicolumn{4}{|l|}{:PORT \(\{1-5\}\)} \\
\hline [:TIME] & <numeric> & & PORT1, PORT2, PORTA, PORTB, PORTR \\
\hline :STATe & \{OFF|ON|O|1 \(\}\) & & PORE \\
\hline :EDELay2 & \(\{<\) numeric \(>\mid\) MARKer \(\}\) & & ELED, MKRDELA \\
\hline \multicolumn{4}{|l|}{:OFFSet} \\
\hline [:MAGNitude] & < numeric> & & LVCDT \\
\hline :PHASe & <numeric> & & PHAO \\
\hline :RVELocity & <numeric> & & VELOFACT \\
\hline [:STATe] & \{OFF|ON|O|1 \(\}\) & & CORR \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Command & Parameter & Note & \begin{tabular}{l}
Equivalent \\
Simple Command
\end{tabular} \\
\hline :CORRection1 & & (ZA) & \\
\hline :CKIT (continued) & & & \\
\hline :CLASs \(\{13-15\}\) & & & \\
\hline :STANdard & \[
\begin{aligned}
& <\text { num1 }>[,<\text { num } 2>[, \ldots \\
& [,<\text { num7 }>]]]
\end{aligned}
\] & & \(\operatorname{SPECIMP}\{\mathrm{A}|\mathrm{B}| \mathrm{C}\}\) \\
\hline :LABel & < string> & & \(\operatorname{LABIMP}\{\mathrm{A}|\mathrm{B}| \mathrm{C}\}\) \\
\hline : COLLect & & & \\
\hline [: ACQuire] & STANdard \(\{1 \mid 2\}\) & [no query] & \(\operatorname{STAN}\{\mathrm{A} \mid \mathrm{B}\}\) \\
\hline [:ACQuire] & \(\operatorname{IMP}\{\mathrm{A}|\mathrm{B}| \mathrm{C}\}\) & [no query] & CALSIMP \(\{\mathrm{A}|\mathrm{B}| \mathrm{C}\}\) \\
\hline :METHod & \{NONE|IMP \(\}\) & & CALI \\
\hline :RESume & & & RESCOM \\
\hline :SAVE & & & SAVIMP \\
\hline :EDELay & & & \\
\hline :PORT6 & & & \\
\hline [:TIME] & <numeric> & & PORTZ \\
\hline :CORRection2 & & (ZA) & \\
\hline :CKIT & & & \\
\hline :LABel & <string> & & LABECOMK \\
\hline :MODify & & & MODICOMK \\
\hline :SAVE & & & SAVUCOMK \\
\hline :SAVE & & & COMKDONE \\
\hline :STANdard & & & \\
\hline :SAVE & & & COMSDONE \\
\hline :STANdard1 & & & \\
\hline :G & <numeric> & & DEFSOPENG \\
\hline :C & <numeric> & & DEFSOPENC \\
\hline :STANdard2 & & & \\
\hline :R & <numeric> & & DEFSSHORR \\
\hline :L & <numeric> & & DEFSSHORL \\
\hline :STANdard3 & & & \\
\hline :R & <numeric> & & DEFSLOADR \\
\hline :L & <numeric> & & DEFSLOADL \\
\hline : COLLect & & & \\
\hline :METHod & IMPedance & & COMP \\
\hline [:ACQuire] & STANdard \(\{1|2| 3\}\) & [no query] & COMC \\
\hline :SAVE & & & SAVCOM \\
\hline :RESUME & & & RESCOM \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|}
\hline Command & Parameter & Note & \begin{tabular}{l}
Equivalent \\
Simple Command
\end{tabular} \\
\hline \begin{tabular}{l}
SENSe (continued) \\
:POWer \\
: AC \\
: ATTenuation \\
:AUTO \\
:RANGe \\
[:UPPer] \\
:SWEep \\
:COUNt \\
:GATed \\
:DELay \\
:LENGth \\
:TRIGger \\
:POINts \\
:SPACing \\
:TIME \\
: AUTO \\
:TRACk \\
:SIGNal \\
:MARKer
\end{tabular} & & & ATT
ATT, ATTAUTO
MAXMLEV
NUMG, SING
TRGS
GATDLY
GATLEN
GATCTL
POIN
SWPT
SWET
SWETAUTO
SGTRK \\
\hline & ```
< numeric>
{<numeric> |TPEak|DMARker|
MARKer}
<numeric>
<numeric>
{OFF|ON|O|1}
{FIXed|LIST|SWEep}
{<numeric>|DMARker|MZAPerture}
{<numeric>|MARKer}
{OFF|ON|0|1}
{<numeric> |MARKer}
``` & [no query] & CWFREQ
CENT, MKRCENT,
MKRDCENT, PEAKCENT
POWE
SLOPE
SLOP
SWPT
MKRDSPAN, MKRZM, SPAN
FULS
MKRSTAR, STAR
RFO
MKRSTOP, STOP \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Command & Parameter & Note & \begin{tabular}{l}
Equivalent \\
Simple Command
\end{tabular} \\
\hline \multicolumn{4}{|l|}{STATus} \\
\hline :INSTrument & & & \\
\hline :ENABle & <numeric> & & ESNB \\
\hline [:EVENt]? & & [query only] & ESB? \\
\hline :OPERation & & & \\
\hline :CONDition? & & [query only] & OSR? \\
\hline :ENABle & <numeric> & & OSE \\
\hline [:EVENt]? & & [query only] & OSER? \\
\hline :NTRansition & < numeric> & & OSNT \\
\hline :PTRansition & <numeric> & & OSPT \\
\hline :PRESet & & & \\
\hline :QUEStionable & & & \\
\hline :CONDition? & & [query only] & \\
\hline :ENABle & < numeric> & & \\
\hline [:EVENt]? & & [query only] & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Command & Parameter & Note & \begin{tabular}{l}
Equivalent \\
Simple Command
\end{tabular} \\
\hline \multicolumn{4}{|l|}{SYSTem} \\
\hline \[
: \operatorname{BEEPer}\{\mathbf{1} \mid 2\}
\] & & & \\
\hline :STATe & \{ \(\mathrm{OFF}|\mathrm{ON}| 0 \mid 1\}\) & & BEEPDONE, BEEPWARN \\
\hline :COMMunicate & & & \\
\hline :PARallel & & & \\
\hline [:RECeive] & & & \\
\hline :DATA? & & [query only] & INP8IO? \\
\hline :TRANsmit & & & \\
\hline :DATA & <numeric> & [no query] & OUT8IO \\
\hline :TSET? & & [query only] & TESS? \\
\hline :DATE & <year>,<month>,<day> & & SETCDATE \\
\hline :MODE & \{DMY|MDY \(\}\) & & DAYMYEAR, MONDYEAR \\
\hline :ERRor? & & [query only] & OUTPERRO? \\
\hline :FIXTuer & \{NONE|HP16191|HP16192|HP16193| HP16194|USER\} & & FIXT \\
\hline :DISTance & <numeric> & & FIXE \\
\hline :LABel & <string> & & LABEFIX \\
\hline :MODify & & & MODIFIX \\
\hline :SAVE & & & FIXKDONE \\
\hline :SAVE & & & SAVUFIXT \\
\hline :KEY & <numeric> & & KEY \\
\hline :KLOCk & \{ \(\mathrm{OFF}|\mathrm{ON}| 0 \mid 1\}\) & & DSKEY, ENKEY \\
\hline :PRESet & & [no query] & PRES \\
\hline :SECurity & & & \\
\hline [:STATe] & ON & & FREO \\
\hline :TIME & <hour>,<minute>,<second> & & SETCTIME \\
\hline :VERSion? & & [query only] & (None) \\
\hline \multicolumn{4}{|l|}{TRACe} \\
\hline :COPY & \{MTRace, DTRace \(\}\) & [no query] & DATMEM \\
\hline [:DATA] & \(\{\) DTR \(\mid\) MTR \(\},\{<\) block \(>\mid<\) numeric \(>\) \([,<\) numeric \(>]\}\) & & INPUDTRC, OUTPDTRC?, OUTPMTRC? \\
\hline :VALue? & \(\{\mathrm{DTR} \mid \mathrm{MTR}\},<\) point \(>\) & [query only] & OUTPDTRCP?, OUTPMTRCP? \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Command & Parameter & Note & \begin{tabular}{l}
Equivalent \\
Simple Command
\end{tabular} \\
\hline \begin{tabular}{l}
TRIGger \\
:EVENt \\
:TYPE \\
:LEVel \\
:SLOPe \\
:SOURce
\end{tabular} & \begin{tabular}{l}
\{POINt|SWEep\} \\
<numeric> \\
\{POSitive|NEGative\} \\
\{BUS|EXTernal|INTernal1|INTernal2| \\
MANual\}
\end{tabular} & & \begin{tabular}{l}
TRGEVE \\
VIDLVL \\
TRGP \\
TRGS
\end{tabular} \\
\hline UNIT :POWer & \{DBM|DBUV|DBV|V|W & & S AUNIT \\
\hline
\end{tabular}

\section*{Status Reporting}

The Status byte register (STB) summarizes four status registers that indicate the internal condition of the analyzer. Figure D-1 shows the status reporting structure of the analyzer.


Figure D-1. Status Reporting Structure

The analyzer has a status reporting system to report the condition of the analyzer. The status bytes consist of 8-bit registers, with each bit representing a specific analyzer condition. The value of the Status Byte can be read by using SPOLL (717) statement from an external controller. This command reads a value directly from the analyzer without being set to remote. So, you can operate front panel keys while a controller is reading the Status Byte. Contents of the Status Byte can also be read by using the *STB? command. Reading the Status Byte does not affect the contents of the Status Byte. Table D-1 shows contents of Status Byte.

Table D-1. Status Bit Definitions of the Status Byte (STB)
\begin{tabular}{|c|l|l|}
\hline Bit & \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{c|}{ Description } \\
\hline 2 & \begin{tabular}{l} 
Event Status Register \\
B Summary Bit \\
Questionable Status \\
Register Summary Bit
\end{tabular} & \begin{tabular}{l} 
One of the enabled bits in Event Status Register B \\
(Instrument Event Status Register) has been set. \\
The analyzer has no operation to report the event to the \\
Questionable Status Register group. This register is available \\
to keep the consistency with other SCPI compatible \\
instruments. \\
A command has prepared information to be output, but it \\
has not been read yet. \\
One of the enabled bits in the Standard Event Status \\
Message in Output \\
Queue \\
Standard Event Status \\
Register Summary Bit \\
Register has been set.
\end{tabular} \\
6 & \begin{tabular}{l} 
Request Service \\
Operation Status \\
Register Summary Bit
\end{tabular} & \begin{tabular}{l} 
One of the enabled Status Byte bits is causing an SRQ. \\
One of the enabled bits in the Operation Status Register has \\
been set.
\end{tabular} \\
\hline
\end{tabular}

For example, to read the contents of Message in the output queue,
```

10 Stat=SPOLL (717)
20 Stb4=BIT(Stat,4)
30 PRINT Stb4
40 END

```

Figure D-2. Example of Reading Status Byte (1)
or,
```

ASSIGN @Hp4396 TO 717
OUTPUT @Hp4396;"*STB?"
ENTER @Hp4396;Stat
Stb4=BIT(Stat,4)
PRINT Stb4
END

```

Figure D-3. Example of Reading Status Byte (2)

The Standard Event Status Register (ESR), Event Status Register B (ESB; Instrument Event Status Register), and Operation Status Register (OSR) are subordinate to the Status Byte. Each
register can set a bit with a condition that is watched by status bit. A status bit is cleared when it is read by query or the CLES or *CLS command is executed.

Table D-2.
Status Bit Definitions of the Standard Event Status Register (ESR)
\begin{tabular}{|c|c|c|}
\hline Bit & Name & Description \\
\hline 0 & Operation Complete & A command for which OPC has been enabled, and completed an operation. \\
\hline 1 & Request Control & The analyzer has been commanded to perform an operation that requires control of a peripheral, and needs control of GPIB. \\
\hline 2 & Query Error & \begin{tabular}{l}
1. The analyzer has been addressed to talk, but there is nothing in the output queue to transmit. \\
2. Data in the Output Queue has been lost.
\end{tabular} \\
\hline 3 & Device Dependent Error & An error, other than a command error, a query error, and an execution error has occurred. \\
\hline 4 & Execution Error & \begin{tabular}{l}
1. A program data element following a header exceeded its input range, or is inconsistent with the analyzer's capabilities. \\
2. A valid program message could not be properly executed due to some analyzer condition.
\end{tabular} \\
\hline 5 & Command Error & \begin{tabular}{l}
1. An IEEE 488.2 syntax error has occurred. Possible violations include, a data element violated the analyzer listening formats or a data element type is unacceptable to the analyzer. \\
2. A semantic error that indicates an unrecognized header was received has occurred. Unrecognized headers include incorrect device-specific headers and incorrect or unimplemented IEEE 488.2 common commands. \\
3. A Group Execute Trigger (GET) was entered into the Input Buffer of a program message.
\end{tabular} \\
\hline 6 & User Request & The operator pressed a front panel key or an optional keyboard key or turned the rotary knob. \\
\hline 7 & Power ON & This bit is set when a power-on sequence occurs. \\
\hline
\end{tabular}

Table D-3. Status Bit Definitions of the Event Status Register B (ESB)
\begin{tabular}{|c|l|l|}
\hline Bit & \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{c|}{ Description } \\
\hline 0 & \begin{tabular}{l} 
SING, NUMG, or Cal \\
Std. Complete
\end{tabular} & \begin{tabular}{l} 
A single, group sweep, calibration, or compensation has been \\
completed since the last read of the register. Operates in \\
conjunction with SING or NUMG.
\end{tabular} \\
1 & \begin{tabular}{l} 
Service Routine \\
Waiting or Bus Trigger \\
Waiting
\end{tabular} & \begin{tabular}{l} 
1. An internal service routine has completed an operation, \\
or is waiting for an operator response. \\
2. The analyzer has set the manual trigger to the point mode \\
and is waiting for a manual trigger.
\end{tabular} \\
2 & Data Entry Complete \\
3 & \begin{tabular}{l} 
A terminator key has been pressed. \\
Limit Failed, Ch 2
\end{tabular} \\
4 & \begin{tabular}{l} 
Limit test failed on channel 2. \\
Limit Failed, Ch 1
\end{tabular} \\
6 & \begin{tabular}{l} 
Limit test failed on channel 1. \\
A marker search was executed on channel 2, but the target
\end{tabular} \\
7 & \begin{tabular}{l} 
Search Failed, Ch 1 \\
value was not found. \\
A marker search was executed on channel 1, but the target \\
Complete \({ }^{1}\)
\end{tabular} \\
8 & Reverement & \begin{tabular}{l} 
Ralue was not found. \\
One measurement point of a sweep has been completed.
\end{tabular} \\
9 & Forward GET & \begin{tabular}{l} 
A one-path 2-port calibration is active, and the analyzer has \\
stopped, waiting for the operator to connect the device for a \\
reverse measurement.
\end{tabular} \\
A one-path 2-port calibration is active, and the analyzer has \\
stopped, waiting for the operator to connect the device for a \\
forward measurement.
\end{tabular}

1 This bit is set only when the related bits of both SRE and ESNB are enabled.
In the case of the manual trigger on point mode, the analyzer accepts the next trigger while the current measurement is in progress (up to the number of points). Use bit 1 and bit 7 correctly to synchronize the measurement and external triggering. For example, 1) wait until bit 1 is set, 2) trigger, and 3) wait until bit \(\mathbf{7}\) is set.

Table D-4. Status Bit Definitions of the Operation Status Register (OSR)
\begin{tabular}{|c|l|l|}
\hline Bit & \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{c|}{ Description } \\
\hline 14 & Program running & An Instrument BASIC program is running. \\
9 & Printing & Data is being transfered to the printer. \\
\hline
\end{tabular}

Each status register has a register that enables generating a Service Request (SRQ) with a condition of a status bit. For instance, to generate an SRQ when the analyzer completes the specified number of sweeps, enable ESNB bit 1. Bit 1 of ESNB is the mask register for ESB 0 ("SING, NUMG, or Cal Std. Complete") which shows sweep completion and SRE bit 2. This enables a path from ESB bit 0 to generate an SRQ. Figure D-4 shows a program listing that can be used to generate an SRQ.
```

10 ASSIGN @Hp4396 TO 717
20 !
OUTPUT @Hp4396;"CLES" ! Clears status registers
OUTPUT @Hp4396;"ESNB 1" ! Enables mask register of "SING. NUMG. or
! Cal Std. Complete" of ESB
OUTPUT @Hp4396;"*SRE 4" ! Enables mask register of "Event Status
! ! Register B" of STB
!
ON INTR 7 GOTO End ! Declare SRQ interrupt
ENABLE INTR 7;2
OUTPUT @Hp4396;"SING" ! Execute single sweep
GOTO 120 ! Endless loop
!
End: ! Exit from loop when sweep is completed
END

```

Figure D-4. Example of Generating a Service Request (SRQ)

\section*{OSPT, OSNT}

\section*{OSPT (Operation Status Positive Transition Filter)}

Sets the positive transition filter. Setting a bit in OSPT will cause a 0 to 1 transition in the corresponding bit of the associated Operation Status Register (osR) to cause a 1 to be written in the associated bit of corresponding Operation Status Event Register (oser).

Bit 14 of the analyzer's OSR is used to show program status. When bit 14 of OSPT is set to 1 , starting a program causes a 1 to be written in bit 14 of OSER. (This sets bit 7 of STB to 1.)

\section*{OSNT (Operation Status Negative Transition Filter)}

Sets the negative transition filter. Setting a bit in the negative transition filter will cause a 1 to 0 transition in the corresponding bit of the associated Operation Status Register to cause a 1 to be written in the associated bit of corresponding Operation Status Event Register.

Bit 14 of the analyzer's OSR is used to show program status. When bit 14 of OSNT is set to 1 , stopping a program causes a 1 to be written in bit 14 of OSER. (This sets bit 7 of STB to 1.)

\section*{Trigger System}

\section*{Trigger System}

This section provides information about the trigger system of the analyzer. SCPI defines a common trigger model for several types of instruments. A trigger system allows you to have control of your measurements.

Information on the trigger system requires more technical expertise than most other topics covered in this chapter. But you can avoid having to learn the information in this chapter by using the :INITiate commands to make your measurements.

\section*{Analyzer Trigger System Configuration}

The trigger system synchronizes the analyzer measurement with specified events. Events include an GPIB trigger command or input pulse on the EXT TRIGGER input. The trigger system also allows you to specify the number of times to repeat a measurement and the delays between measurements.


Figure E-1. Trigger System Configuration

Figure E-1 shows the configuration of the analyzer trigger system. Each unshaded block is called a trigger state. The analyzer moves between adjacent states depending on its conditions. The power ON state is called the Idle state. You can force the analyzer to the idle state using the : ABORt or *RST command. The Initiate and Trigger Event Detection state branches to next state, whether the analyzer satisfies the specified conditions or not. The Sequence Operation state signals the instrument hardware to take a measurement and listens for a signal saying that the measurement has been taken.

\section*{Idle State}

The trigger system remains in the Idle state until it is initiated by :INITiate:IMMediate or :INITiate: CONTinuous ON. Once one of these conditions is satisfied, the trigger system exits downward to the Initiate state. Note that \(*\) RST sets :INITiate:CONTinuous OFF.

\section*{Initiate State}

If the trigger system is on a downward path, it travels directly through the Initiate state without restrictions. If the trigger system is on an upward path, and :INITiate: CONTinuous is ON, then it exits downward to an Trigger Event Detection state. If the trigger system is on an upward path and :INITiate: CONTinuous is OFF, then it exits upward to the Idle state.

\section*{Trigger Event Detection State}


Figure E-2. Inside an Trigger Event Detection State

SOURce

IMMediate

The :TRIGger: SOURce command specifies which particular input can generate the event required to continue the downward path. If the source chosen is a nonanalog signal such as IMMediate or BUS, then no further qualifications are required to generate an event. However when an INTernal1, INTernal2, or EXTernal analog signal is chosen, you can specify additional qualifications by using the appropriate LEVel and SLOPe commands. Sending *RST sets the SOURce to IMMediate.

The :TRIGger:IMMeditate command bypasses the event detection and DELay qualifications one time. The upward path through the Trigger Event Detection state contains only one condition. If the condition is satisfied, the trigger system exits upward.

\section*{Sequence Operation State}

The downward entrance to the Sequence Operation state forces the analyzer to start a measurement. An upward exit is not allowed until the measurement is complete.

\section*{E-2 Trigger System}

\section*{Calibration Types and Standard Classes, and Calibration Arrays}

Table F-1 lists which standard classes are required for each calibration type. Table F-2 specifies where the calibration coefficients are stored for different calibration types.

Table F-1. Calibration Types and Standard Classes
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Class & Response & Response and Isolation & \[
\begin{gathered}
S_{11} \\
\text { 1-port }
\end{gathered}
\] & \[
\underset{\text { 1-port }}{S_{22}}
\] & One-path 2-port & \[
\underset{2 \text {-port }}{\text { Full }}
\] & ZA calibration \\
\hline Response: & - & & & & & & \\
\hline \begin{tabular}{l}
Response and isolation \\
Response \\
Isolation
\end{tabular} & &  & & & & & \\
\hline \begin{tabular}{l}
Reflection: \({ }^{1}\) \\
S11A (opens) \\
S11B (shorts) \\
S11C (loads) \\
S22A (opens) \\
S22B (shorts) \\
S22C (loads)
\end{tabular} & & &  &  &  &  & \\
\hline \begin{tabular}{l}
Transmission: \({ }^{1}\) \\
Forward match \\
Forward thru \\
Reverse match \\
Reverse thru
\end{tabular} & & & & &  &  & \\
\hline \begin{tabular}{l}
Isolation: \({ }^{1}\) \\
Forward \\
Reverse \\
Impedance analyzer cal \\
IMPA (OPEN) \\
IMPB (SHORT) \\
IMPC (LOAD)
\end{tabular} & & & & & \[
\bullet
\] &  &  \\
\hline
\end{tabular}

\footnotetext{
1 These subheadings must be called when doing 2-port calibrations.
}

Table F-2. Calibration Array
\begin{tabular}{|c|c|c|c|c|}
\hline Array & Response \(^{1}\) & \begin{tabular}{c} 
Response and \(^{\text {Isolation }}{ }^{1}\)
\end{tabular} & \begin{tabular}{c} 
1-port \\
ZA cal
\end{tabular} & 2-port \({ }^{12}\) \\
\hline 1 & \(\mathrm{E}_{\mathrm{R}}\) or \(\mathrm{E}_{\mathrm{T}}\) & \(\mathrm{E}_{\mathrm{X}}\left(\mathrm{E}_{\mathrm{D}}\right)^{3}\) & \(\mathrm{E}_{\mathrm{D}}\) & \(\mathrm{E}_{\mathrm{DF}}\) \\
2 & & \(\mathrm{E}_{\mathrm{T}}\left(\mathrm{E}_{\mathrm{R}}\right)\) & \(\mathrm{E}_{\mathrm{S}}\) & \(\mathrm{E}_{\mathrm{SF}}\) \\
3 & & & \(\mathrm{E}_{\mathrm{R}}\) & \(\mathrm{E}_{\mathrm{RF}}\) \\
4 & & & & \(\mathrm{E}_{\mathrm{XF}}\) \\
5 & & & & \(\mathrm{E}_{\mathrm{LF}}\) \\
6 & & & & \(\mathrm{E}_{\mathrm{TF}}\) \\
7 & & & & \(\mathrm{E}_{\mathrm{DR}}\) \\
8 & & & & \(\mathrm{E}_{\mathrm{SR}}\) \\
9 & & & & \(\mathrm{E}_{\mathrm{RR}}\) \\
10 & & & \(\mathrm{E}_{\mathrm{XR}}\) \\
11 & & & \(\mathrm{E}_{\mathrm{LR}}\) \\
12 & & & & \(\mathrm{E}_{\mathrm{TR}}\) \\
\hline
\end{tabular}

1 Meaning of first subscript: \(D=\) directivity; \(S=\) source match; \(\mathrm{X}=\) crosstalk; \(\mathrm{L}=\) load match; \(\mathrm{T}=\) transmission tracking. Meaning of second subscript: \(\mathrm{F}=\) forward; \(\mathrm{R}=\) reverse.

2 One path, 2-port cal duplicates arrays 1 to 6 in arrays 7 to 12. 3 Response and isolation corrects for crosstalk and transmission tracking in transmission measurements, and for directivity and reflection tracking in reflection measurements.

\section*{Key Codes}

Figure G-1 shows the codes of the front panel keys for using the KEY GPIB command.


Figure G-1. Key Codes

\section*{Data Format and Data Levels}

\section*{Data Format}

The analyzer can transmit data over GPIB in four different formats. The type of format affects what kind of data array is declared (real or integer), because the format determines what type of data is transferred.
- Form 2

IEEE 32-bit floating point format. Figure H-1 shows the data transfer format of Form 2. In this mode, each number takes 4 bytes.


Figure H-1. Form 2 Data Transfer Format
- Form 3

IEEE 64-bit floating point format. Figure H-2 shows the data transfer format of Form 3. Data is stored internally in the 200/300 series computer with the IEEE 64 -bit floating point format, eliminating the need for any reformatting by the computer. In this mode, each number takes 8 bytes.


Figure H-2. Form 3 Data Transfer Format
- Form 4

ASCII data transfer format. In this mode, each number is sent as a 24-character string, each character being a digit, sign, or decimal point.

\section*{- Form 5}

MS-DOS \({ }^{\circledR}\) personal computer format. This mode is a modification of IEEE 32-bit floating point format with the byte order reversed. Form 5 also has a four-byte header that must be read in so that data order is maintained. In this mode, an MS-DOS \({ }^{\circledR}\) PC can store data internally without reformatting it.

\section*{Data Levels}

The analyzer has the following data arrays in internal memory:
- Raw data

These arrays store the results of all the preceding data processing operations. Note that the numbers here are still complex pairs.

When the Network analyzer mode and the full 2-port error correction are on, the raw data arrays contain all four S-parameter measurements required for accuracy enhancement.
- Error corrected data

The results of error correction are stored in the data arrays as complex number pairs.
- Formatted data

This is the array of data being displayed. It reflects all post-processing functions such as electrical delay, and the units of the array read out depends on the current display format.
- Calibration coefficients (Network and impedance analyzer only)

The results of a calibration are stored arrays of calibration coefficients that are used by the error correction routines. Each array corresponds to a specific error term in the error model. The calibration coefficients are read out with OUTPCALC\{1-12\}?.
- fixture compensation coefficients (Impedance analyzer only)

The results of a fixture compensation are stored arrays of fixture compensation coefficients that are used by the error correction routines. Each array corresponds to a specific error term in the error model. The fixture compensation coefficients are read out with OUTPCOMC\{1-3\}?.

Formatted data is generally the most useful, because it is the same information as that seen on the display. However, if post-processing is not necessary, as may be the case with smoothing, error corrected data is more desirable. Error corrected data also gives you the opportunity to load the data into the instrument and apply post-processing at a later time.

For more information of the data processing, refer to "Data Processing Flow" in chapter 12 of the Reference Manual.

\section*{Marker Readout}

The values specified by the marker, sub-marker, or delta-mareker can be read using the following commands.

OUTPMKR?, Amplitude value (Value 1), Auxiliary amplitude value (Value 2), Sweep
OUTPSMKR?, Parameter
OUTPDMKR?
MKRVAL?, Amplitude value (Value 1)
SMKRVAL\{1-7\}?
MKRAUV?,
Auxiliary amplitude value (Value 2)
SMKRAUV\{1-7\}?
The following table lists the amplitude value (value 1) and the auxiliary amplitude value (value 2) for each display format.

Table H-1. Marker Readout
\begin{tabular}{|c|c|c|c|c|}
\hline Analyzer Type & Display Format & Parameter of CIRF Command & Amplitude Value (Value 1) & \begin{tabular}{l}
Auxiliary \\
Amplitude \\
Value (Value 2)
\end{tabular} \\
\hline \multirow[t]{7}{*}{Network Analyzer} & Log Magnitude & - & Log Magnitude (dB) & 0 \\
\hline & \begin{tabular}{l}
Phase \\
Expanded Phase
\end{tabular} & - & Phase (degrees) & 0 \\
\hline & Delay & - & Delay (seconds) & 0 \\
\hline & \begin{tabular}{l}
Linear \\
Magnitude
\end{tabular} & - & Linear Magnitude & 0 \\
\hline & SWR & - & SWR & 0 \\
\hline & Real & - & Real & 0 \\
\hline & Imaginary & - & Imaginary & 0 \\
\hline Network/ impedance Analyzer \({ }^{1}\) & \begin{tabular}{l}
Smith Chart \\
Polar \\
Addmittance
\end{tabular} & \begin{tabular}{l}
RI \\
LIN \\
LOG \\
RX \\
GB \\
SWR
\end{tabular} & \begin{tabular}{l}
Real \\
Linear Magnitude \\
Log Magnitude (dB) \\
Resistance ( \(\Omega\) ) \\
Conductance (S) \\
SWR
\end{tabular} & \begin{tabular}{l}
Imaginary \\
Phase (degrees) \\
Phase ( \({ }^{\circ}\) ) \\
Reactance ( \(\Omega\) ) \\
Suseptance (S) \\
Phase ( \({ }^{\circ}\) )
\end{tabular} \\
\hline \multirow[t]{2}{*}{Spectrum Analyzer} & \begin{tabular}{l}
Spectrum \\
Measurement
\end{tabular} & - & Magnitude (dBm, \(\mathrm{dBV}, \mathrm{dB} \mu \mathrm{V}, \mathrm{W}\), or V\()^{2}\) & 0 \\
\hline & Noise Level Measurement & - & Magnitude (dBm, \(\mathrm{dBV}, \mathrm{dB} \mu \mathrm{V}, \mathrm{W}\), or V\()^{2}\) & 0 \\
\hline
\end{tabular}

\footnotetext{
1 For the other format than listed above in the impedance analyzer mode, the marker readout has the unit of the selected parameter by (Meas) key.
2 Unit is specified by the SAUNIT command. (default: dBm)
}

\section*{Waveform Analysis Commands}

The 4396A has added a command set that can be used to analyze waveforms of specific devices. The waveform analysis commands analyze and output the results using only a single command. This appendix provides information about the added waveform analysis commands.

The commands are divided into five groups as follows:
- Waveform analysis setup commands
- Maximum/Minimum/Mean search commands
- Ripple analysis commands
- Filter and Resonator analysis commands
- Equivalent circuit analysis commands

All of the commands that are described in this appendix are executable using the Instrument BASIC EXECUTE command. By using the EXECUTE command, you can execute the waveform analysis commands much faster than by using the OUTPUT statement. If you use Instrument BASIC, it is recommended that you use EXECUTE with the waveform analysis commands.
For detail information about EXECUTE command, see the Using Instrument BASIC with 4396 A manual.

\section*{Conventions and Definitions}

This section describes the conventions and definitions that are used to describe the waveform analysis commands.
(1) \(\rightarrow\) ANARANG
(2) \(\rightarrow\) Sets the stimulus range for the waveform....
(3) \(\rightarrow\) Syntax anaRang start, stop
(4) \(\rightarrow \quad\) Where,

0 start Start value of the analysis range
1 stop Stop value of the analysis range
(5) \(\rightarrow\) Query

Response
(6) \(\rightarrow\) Semantics
(1) \(\rightarrow\) Note
(8) \(\rightarrow\) Examples
\begin{tabular}{|c|c|}
\hline (1) & Command name. \\
\hline (2) & Command description. \\
\hline (3) & \begin{tabular}{l}
Command syntax \\
This part shows the syntax of the command. You must put a space between the command and the parameters.
\end{tabular} \\
\hline (4) & \begin{tabular}{l}
Command parameter description \\
The first column of the table lists the register number that is used by the EXECUTE command. You must put the parameter in the indicated register before using the EXECUTE command. For example (in the above case): \\
The second column lists the parameter name that is shown in the Syntax area. The third column describes the parameters.
\end{tabular} \\
\hline (5) & \begin{tabular}{l}
Query response. \\
This part shows what values will be returned as the query response. The description of the query response is similar to the description of the Syntax area shown above.
\end{tabular} \\
\hline (6) & \begin{tabular}{l}
Semantics \\
This part describes how the command obtains the values for the query response.
\end{tabular} \\
\hline (1) & \begin{tabular}{l}
Note \\
This part describes the required conditions or limitations when using the command.
\end{tabular} \\
\hline (8) & \begin{tabular}{l}
Examples \\
This part shows examples of how to use the command. Examples are provided for both HP BASIC on an external controller and Instrument BASIC on the analyzer.
\end{tabular} \\
\hline
\end{tabular}

\section*{I-2 Waveform Analysis Commands}

\section*{Waveform Analysis Setup Commands}

The following commands are used for setting up the conditions for waveform analysis:
- ANAOCH1
- ANAOCH2
- ANARANG
- ANARFULL
- ANAODATA
- ANAOMEMO
- THRR

The settings are effective for all of the waveform analysis commands.

\section*{ANAOCH1}

Selects channel 1 for waveform analysis.
Syntax ANAOCH1
Query boolean
Response
Where,
\begin{tabular}{|c|l|l|}
\hline Register & Parameter & \multicolumn{1}{c|}{ Description } \\
\hline 0 & boolean & \begin{tabular}{l}
1 or 0. Channel 1 is selected (1) or is not selected (0) for \\
waveform analysis.
\end{tabular} \\
\hline
\end{tabular}

Note The ANAOCH1 and ANAOCH2 channel setting is independent of the active channel setting.

\section*{ANAOCH2}

Selects channel 2 for waveform analysis.
Syntax ANAOCH2
Query boolean
Response
Where,
\begin{tabular}{|c|l|l|}
\hline Register & Parameter & \multicolumn{1}{c|}{ Description } \\
\hline 0 & boolean & \begin{tabular}{l} 
1 or 0. Channel 2 is selected (1) or is not selected (0) for \\
waveform analysis.
\end{tabular} \\
\hline
\end{tabular}

Note The ANAOCH1 and ANAOCH2 channel setting is independent of the active channel setting.

\section*{ANARANG}

Sets the stimulus range for waveform analysis commands by start and stop value.
Syntax ANARANG start, stop
Where,
\begin{tabular}{|c|l|l|}
\hline Register & Parameter & Description \\
\hline 0 & start & Start value of the analysis range. \\
\hline 1 & stop & Stop value of the analysis range. \\
\hline
\end{tabular}

Query start, stop
Response
Note - The waveform analysis range is independent of the marker search range.
- You can set the range for each channel independently. Therefore, you need to set the analysis channel using ANAOCH1 or ANAOCH2 before using ANARANG.
- The waveform analysis range will be truncated to fit the displayed stimulus range if the setting is exceeded.
- If the displayed stimulus range is changed, the waveform analysis range is set equal to the displayed range.
- Store the waveform analysis range setting using (SAVE) ALL or STATE ONLY.
- The waveform analysis range is set to equal to the displayed stimulus range when the power is turned on.

\section*{Examples For External Controller}
```

INPUT "Enter Start for Analysis Range.",Start
INPUT "Enter Stop for Analysis Range.",Stop
OUTPUT @Hp4396;"ANARANG ";Start,Stop

```

For Instrument BASIC
```

INPUT "Enter Start for Analysis Range.",Start
INPUT "Enter Stop for Analysis Range.",Stop
WRITEIO 8,0;Start
WRITEIO 8,1;Stop
EXECUTE "ANARANG"

```

\section*{ANARFULL}

Sets the waveform analysis range equal to the displayed stimulus range. (No Query)

\section*{Syntax ANARFULL}

Note - You can set the range for each channel independently. Therefore, you need to set the analysis channel using ANAOCH1 or ANAOCH2 before using ANARFULL.

\section*{ANAODATA}

Selects the date trace for waveform analysis.
Syntax anaOdata
Query boolean
Response
Where,
\begin{tabular}{|c|l|l|}
\hline Register & Parameter & \multicolumn{1}{c|}{ Description } \\
\hline 0 & boolean & \begin{tabular}{l}
1 or 0. Data trace is selected (1) or is not selected (0) for \\
waveform analysis.
\end{tabular} \\
\hline
\end{tabular}

Note - You can select the trace for each channel independently. Therefore, you need to set the analysis channel using ANAOCH1 or ANAOCH2 before using ANAODATA.

\section*{ANAOMEMO}

Selects the date trace for waveform analysis.
Syntax ANAOMEMO
Query boolean
Response
Where,
\begin{tabular}{|c|l|l|}
\hline Register & Parameter & \multicolumn{1}{c|}{ Description } \\
\hline 0 & boolean & \begin{tabular}{l}
1 or 0. Memory trace is selected (1) or is not selected (0) \\
for waveform analysis.
\end{tabular} \\
\hline
\end{tabular}

Note - You can select the trace for each channel independently. Therefore, you need to set the analysis channel using ANAOCH1 or ANAOCH2 before using ANAOMEMO.

\section*{THRR}

Sets threshold ripple height for waveform analysis commands.
Syntax THRR height
Where,
\begin{tabular}{|c|l|l|}
\hline Register & Parameter & Description \\
\hline 0 & height & (Peak height) - (negative peak height) \\
\hline
\end{tabular}


Figure I-1. THRR
Query height
Response
Semantics
- Ripple height is defined as the difference between the positive peak and the negative peak.
- Waveform analysis commands search only for ripples greater than the threshold value, any others are ignored.
Note - Default threshold value is 0 .

\section*{Examples For External Controller}
```

INPUT "Enter Pos. Peak Gain [dB].",Local_max
INPUT "Enter Neg. Peak Gain [dB].",Local_min
Height=Local_max-Local_min
OUTPUT @Hp4396;"THRR ";Height

```

For Instrument BASIC
```

INPUT "Enter Pos. Peak Gain [dB].",Local_max
INPUT "Enter Neg. Peak Gain [dB].",Local_min
Height=Local_max-Local_min
WRITEIO 8,0;Height
EXECUTE "THRR"

```

\section*{Maximum/Minimum/Mean Value Search Commands}

The following commands return the maximum, minimum, and mean value of a trace within the range specified using the ANARANG command.
- OUTPMAX?
- OUTPMIN?
- OUTPMINMAX?
- OUTPMEAN?
- PEAK?
- NEXPK?
- NUMLMAX?
- NUMLMIN?
- LMAX?
- LMIN?
- TARR?
- TARL?

\section*{OUTPMAX?}

Returns the maximum point value and its stimulus within the specified range. (Query only)
Syntax OUTPMAX?
Query \(M A X, f_{\max }\)
Response Where,
\begin{tabular}{|c|l|l|}
\hline Register & Parameter & Description \\
\hline 0 & \(M A X\) & Maximum value \\
\hline 1 & \(f_{\max }\) & Stimulus at maximum point (Frequency or Power) \\
\hline
\end{tabular}

\section*{Examples For External Controller}
```

OUTPUT @Hp4396;"OUTPMAX?"
ENTER @Hp4396;Max_value,F_max
PRINT Max_value,F_max

```

For Instrument BASIC
EXECUTE "OUTPMAX?"
PRINT READIO \((8,0), \operatorname{READIO}(8,1)\)

\section*{OUTPMIN?}

Returns the minimum point value and its stimulus within the specified range. (Query only)
Syntax OUTPMIN?

\section*{Query MIN, \(f_{\text {min }}\)}

Response
Where,
\begin{tabular}{|c|l|l|}
\hline Register & Parameter & Description \\
\hline 0 & \(M I N\) & Minimum value \\
\hline 1 & \(f_{\min }\) & Stimulus at minimum point (Frequency or Power) \\
\hline
\end{tabular}

\section*{OUTPMINMAX?}

Returns the maximum and minimum values and their stimulus values within the specified range. (Query only)
Syntax OUTPMINMAX?
Query MIN, \(f_{\text {min }}\), MAX, \(f_{\text {max }}\)
Response
Where,
\begin{tabular}{|c|l|l|}
\hline Register & Parameter & Description \\
\hline 0 & MIN & Minimum value \\
\hline 1 & \(f_{\min }\) & Stimulus at minimum point (Frequency or Power) \\
\hline 2 & MAX & Maximum value \\
\hline 3 & \(f_{\max }\) & Stimulus at maximum point (Frequency or Power) \\
\hline
\end{tabular}

\section*{Examples For External Controller}
```

OUTPUT @Hp4396;"OUTPMINMAX?"
ENTER @Hp4396;Min_value,F_min,Max_value,F_max
PRINT "MIN:",Min_value,F_min
PRINT "MAN:",Max_value,F_max

```

For Instrument BASIC
```

EXECUTE "OUTPMINMAX?"
PRINT "MIN:",READIO(8,0),READIO (8,1)
PRINT "MAX:",READIO(8,2),READIO (8,3)

```

\section*{OUTPMEAN?}

Returns the mean value within the specified range. (Query only)
Syntax OUTPMEAN?
Query mean
Response where,
\begin{tabular}{|c|l|ll|}
\hline Register & Parameter & Description \\
\hline 0 & mean & Mean value. & \\
\hline
\end{tabular}

\section*{Examples For External Controller}
```

OUTPUT @Hp4396;"OUTPMEAN?"
ENTER @Hp4396;Mean
PRINT Mean
For Instrument BASIC
EXECUTE "OUTPMEAN?"
PRINT READIO(8,0)

```

\section*{PEAK?}

Returns maximum peak and its stimulus within the specified range. (Query only)
Syntax PEAK?
Query \(\quad M A X_{\text {peak }}, f_{\text {maxpeak }}\)
Response Where,
\begin{tabular}{|c|l|l|}
\hline Register & Parameter & Description \\
\hline 0 & \(M A X_{\text {peak }}\) & Maximum peak value \\
\hline 1 & \(f_{\text {maxpeak }}\) & Stimulus at maximum peak \\
\hline
\end{tabular}

Semantics - The analyzer defines the searched value and point as a reference point for the next NEXPK? command. The reference point is stored using (SAVE) ALL or STATE ONLY.

Note If the search fails, the analyzer returns 0,0 .

\section*{Examples For External Controller}
```

OUTPUT @Hp4396;"PEAK?"
ENTER @Hp4396;Peak,F_maxpeak
PRINT "Peak:",Peak,"[dB],",F_maxpeak,"[Hz]"

```

For Instrument BASIC
EXECUTE "PEAK?"
PRINT "Peak:", READIO \((8,0), "[\mathrm{~dB}], ", \operatorname{READIO}(8,1), "[\mathrm{~Hz}] "\)

\section*{NEXPK?}

Returns the maximum peak having a value less than the value that was found using last PEAK? or NEXPK? command within the specified range. It also returns the corresponding stimulus value. (Query only)
Syntax NEXPK?
Query \(\quad\) Peak, \(f_{\text {Peak }}\)
Response
Where,
\begin{tabular}{|c|l|ll|}
\hline Register & Parameter & Description \\
\hline 0 & Peak & Searched peak value \\
\hline 1 & \(f_{\text {Peak }}\) & Searched stimulus \\
\hline
\end{tabular}

Note \(\quad\) The analyzer defines the searched value and point as a reference point for the next NEXPK? command. The reference point is stored using (SAVE ALL or STATE ONLY.
- If the multiple corresponded points are found, the analyzer returns right-hand nearest peak of the reference point.
- If the search fails, the analyzer returns 0,0 .

Examples For External Controller
```

OUTPUT @Hp4396;"NEXPK?"
ENTER @Hp4396;N_peak,F_npeak
PRINT N_peak,F_npeak

```

For Instrument BASIC
```

EXECUTE "PEAK?"
I=1
REPEAT
PRINT I,READIO (8,0),READIO(8,1)
EXECUTE "NEXPK?"
I=I+1
UNTIL READIO}(8,0)=

```

\section*{NUMLMAX?}

Returns the number of positive peaks within the specified range. (Query only)
Syntax NUMLMAX?
Query \(n\)
Response
Where,
\begin{tabular}{|c|l|ll|}
\hline Register & Parameter & Description \\
\hline 0 & \(n\) & Number of peaks \\
\hline
\end{tabular}

Note - If the search fails, the analyzer returns 0.
Examples For External Controller
```

OUTPUT @Hp4396;"NUMLMAX?"
ENTER @Hp4396;N
PRINT N

```

For Instrument BASIC
```

EXECUTE "NUMLMAX?"

```
PRINT READIO \((8,0)\)

\section*{NUMLMIN?}

Returns the number of negative peaks within the specified range. (Query only)
Syntax NUMLMIN?
Query \(n\)
Response
Where,
\begin{tabular}{|c|l|l|}
\hline Register & Parameter & Description \\
\hline 0 & \(n\) & Number of negative peaks \\
\hline
\end{tabular}

Note - If the search fails, the analyzer returns 0.

\section*{LMAX?}

Returns the \(n\)th positive peak counted from the left end of the range.
Syntax LMAX? \(n\)
Where,
\begin{tabular}{|c|l|l|}
\hline Register & Parameter & Description \\
\hline 0 & \(n\) & Peak counted from the left end of the range. \\
\hline
\end{tabular}

Query \(L M A X_{n}\)
Response Where,
\begin{tabular}{|c|l|ll|}
\hline Register & Parameter & Description \\
\hline 0 & \(L M A X_{n}\) & Value of \(n\)th peak & \\
\hline
\end{tabular}

Note \(\quad\) If the search fails, the analyzer returns \(3.40282346639 \mathrm{E}+38\).
Examples For External Controller
```

OUTPUT @Hp4396;"LMAX? 5"
ENTER @Hp4396;Lmax
PRINT Lmax

```

For Instrument BASIC
```

INPUT "?",N
WRITEIO 8,0;N
EXECUTE "LMAX?"
PRINT READIO(8,0)

```

\section*{LMIN?}

Returns the \(n\)th negative peak counted from the left end of the range.
Syntax LMIN? \(n\)
Where,
\begin{tabular}{|c|l|l|}
\hline Register & Parameter & Description \\
\hline 0 & \(n\) & Negative peak counted from the left end of the range. \\
\hline
\end{tabular}

Query \(\quad \operatorname{LMIN}_{n}\)
Response
Where,
\begin{tabular}{|c|l|l|}
\hline Register & Parameter & Description \\
\hline 0 & \(L M I N_{n}\) & Value of \(n\)th negative peak \\
\hline
\end{tabular}

Note ■ If the search fails, the analyzer returns 3.40282346639E+38.

\section*{TARR?}

Searches to the right for the point having the specified parameter-value from the left end of the range, and returns its stimulus.
Syntax TARR? target
Where,
\begin{tabular}{|c|l|ll|}
\hline Register & Parameter & Description \\
\hline 0 & target & Search value. & \\
\hline
\end{tabular}

Query \(\quad f_{\text {target }}\)
Response
Where,
\begin{tabular}{|c|l|l|}
\hline Register & Parameter & Description \\
\hline 0 & \(f_{\text {target }}\) & Stimulus of the first point found. \\
\hline
\end{tabular}

Note - If the search fails, the analyzer returns 0.
Examples For External Controller
```

INPUT "Enter Target Value.",Target
OUTPUT @Hp4396;"TARR? ";Target
ENTER @Hp4396;F_target
PRINT F_target

```

For Instrument BASIC
```

INPUT "Enter Target Value.",Target
WRITEIO 8,0;Target
EXECUTE "TARR?"
PRINT READIO(8,0)

```

\section*{TARL?}

Searches to the left for the point having the specified parameter-value from the right end of the range, and returns its stimulus.

\section*{Syntax TARL? target}

Where,
\begin{tabular}{|c|l|ll|}
\hline Register & Parameter & Description \\
\hline 0 & target & Search value. & \\
\hline
\end{tabular}

Query \(f_{\text {largel }}\)
Response
Where,
\begin{tabular}{|c|l|l|}
\hline Register & Parameter & \\
\hline 0 & \(f_{\text {target }}\) & Stimulus of the first point found. \\
\hline
\end{tabular}

Note
- If the search fails, the analyzer returns 0 .

\section*{Ripple Analysis Commands}

Ripple analysis commands analyze the ripples of the waveform and return the results.
- RPLPP?
- RPLHEI?
- RPLRHEI?
- RPLLHEI?

■ RPLENV?
- RPLMEA?
- RPLVAL?
- POLE?

\section*{RPLPP?}

Returns the maximum difference between the positive peak and the negative peak within the specified range. (Query only)

Syntax RPLPP?
Query \(\quad M A X_{d i f f}\)
Response Where,
\begin{tabular}{|c|l|l|}
\hline Register & Parameter & Description \\
\hline 0 & \(M A X_{\text {diff }}\) & Maximum difference between positive and negative peak. \\
\hline
\end{tabular}


Figure I-2. RPLPP?

Note - If the search fails, the analyzer returns 0.
Examples For External Controller
```

ASSIGN @Hp4396 TO 717
OUTPUT @Hp4396;"ANAOCH1;ANARFULL;ANAODATA"
OUTPUT @Hp4396;"RPLPP?"
ENTER @Hp4396;Max_diff
PRINT Max_diff;"[dB]"
END

```

For Instrument BASIC
```

EXECUTE "ANAOCH1"
EXECUTE "ANARFULL"
EXECUTE "ANAODATA"
EXECUTE "RPLPP?"
PRINT READIO(8,0);"[dB]"
END

```

\section*{RPLHEI?}

Returns the maximum difference between adjacent positive and negative peaks. (Query only)
Syntax RPLHEI?
Query value
Response
Where,
\begin{tabular}{|c|l|l|}
\hline Register & Parameter & \multicolumn{1}{c|}{ Description } \\
\hline 0 & value & \begin{tabular}{l} 
Maximum difference between adjacent positive and \\
negative peaks.
\end{tabular} \\
\hline
\end{tabular}


Figure I-3. RPLHEI?

Note - If the search fails, the analyzer returns 0.
Examples
For External Controller
```

ASSIGN @Hp4396 TO 717
OUTPUT @Hp4396;"ANAOCH1;ANARFULL;ANAODATA"
OUTPUT @Hp4396;"RPLHEI?"
ENTER @Hp4396;Adj_diff
PRINT Adj_diff;"[dB]"
END

```

For Instrument BASIC
```

EXECUTE "ANAOCH1"
EXECUTE "ANARFULL"
EXECUTE "ANAODATA"
EXECUTE "RPLHEI?"
PRINT READIO(8,0);"[dB]"
END

```

\section*{RPLRHEI?}

Returns the maximum difference between the positive peak and the right-hand adjacent negative peak. (Query only)
Syntax RPLRHEI?
Query value
Response Where,
\begin{tabular}{|c|l|l|}
\hline Register & Parameter & \multicolumn{1}{c|}{ Description } \\
\hline 0 & value & \begin{tabular}{l} 
Maximum difference between the positive peak and the \\
right-hand adjacent negative peak.
\end{tabular} \\
\hline
\end{tabular}


Figure I-4. RPLRHEI?

Note - If the search fails, the analyzer returns 0.

\section*{Examples}

For External Controller
```

ASSIGN @Hp4396 TO 717
OUTPUT @Hp4396;"ANAOCH1;ANARFULL;ANAODATA"
OUTPUT @Hp4396;"RPLRHEI?"
ENTER @Hp4396;Adj_diff
PRINT Adj_diff;"[dB]"
END

```

For Instrument BASIC
```

EXECUTE "ANAOCH1"
EXECUTE "ANARFULL"
EXECUTE "ANAODATA"
EXECUTE "RPLRHEI?"
PRINT READIO(8,0);"[dB]"
END

```

\section*{RPLLHEI?}

Returns the maximum difference between the positive peak and the left-hand adjacent negative peak. (Query only)
Syntax RPLLHEI?
Query value
Response Where,
\begin{tabular}{|c|l|l|}
\hline Register & Parameter & \multicolumn{1}{c|}{ Description } \\
\hline 0 & value & \begin{tabular}{l} 
Maximum difference between the positive peak and the \\
left-hand adjacent negative peak.
\end{tabular} \\
\hline
\end{tabular}


Figure I-5. RPLLHEI?
Note - If the search fails, the analyzer returns 0.

\section*{Examples}

For External Controller
```

ASSIGN @Hp4396 TO 717
OUTPUT @Hp4396;"ANAOCH1;ANARFULL;ANAODATA"
OUTPUT @Hp4396;"RPLLHEI?"
ENTER @Hp4396;Adj_diff
PRINT Adj_diff;"[dB]"
END

```

For Instrument BASIC
```

EXECUTE "ANAOCH1"
EXECUTE "ANARFULL"
EXECUTE "ANAODATA"
EXECUTE "RPLLHEI?"
PRINT READIO(8,0);"[dB]"
END

```

\section*{RPLENV?}

Returns the maximum height between the negative peak and the intersection of an imaginary slope line between the adjacent positive peaks. (Query only)
Syntax RPLENV?
Query value
Response
Where,
\begin{tabular}{|c|l|l|}
\hline Register & Parameter & \multicolumn{1}{c|}{ Description } \\
\hline 0 & value & \begin{tabular}{l} 
Maximum height between the negative peak and the \\
intersection of an imaginary slope line between the \\
adjacent positive peaks. (See Figure I-6.)
\end{tabular} \\
\hline
\end{tabular}


Figure I-6. RPLENV?

Note - If the search fails, the analyzer returns 0.
Examples
For External Controller
```

ASSIGN @Hp4396 TO 717
OUTPUT @Hp4396;"ANAOCH1;ANARFULL;ANAODATA"
OUTPUT @Hp4396;"RPLENV?"
ENTER @Hp4396;Env_diff
PRINT Env_diff;"[dB]"
END

```

For Instrument BASIC
```

EXECUTE "ANAOCH1"
EXECUTE "ANARFULL"
EXECUTE "ANAODATA"
EXECUTE "RPLENV?"
PRINT READIO(8,0);"[dB]"
END

```

\section*{RPLMEA?}

Returns the mean of the difference between the adjacent positive and negative peaks within the specified range. (Query only)

Syntax RPLMEA?
Query value
Response Where,
\begin{tabular}{|c|l|l|}
\hline Register & Parameter & \multicolumn{1}{c|}{ Description } \\
\hline 0 & value & \begin{tabular}{l} 
Mean of the difference between the adjacent positive and \\
negative peaks. (See Figure I-7)
\end{tabular} \\
\hline
\end{tabular}


Figure I-7. RPLMEA?
Note - If the search fails, the analyzer returns 0.

\section*{Examples}

For External Controller
```

ASSIGN @Hp4396 TO 717
OUTPUT @Hp4396;"ANAOCH1;ANARFULL;ANAODATA"
OUTPUT @Hp4396;"RPLMEA?"
ENTER @Hp4396;Mean_diff
PRINT Mean_diff;"[dB]"
END

```

For Instrument BASIC
```

EXECUTE "ANAOCH1"
EXECUTE "ANARFULL"
EXECUTE "ANAODATA"
EXECUTE "RPLMEA?"
PRINT READIO(8,0);"[dB]"
END

```

\section*{RPLVAL?}

Returns the maximum total of the differences between the negative peaks and the adjacent positive peaks on both sides and the stimulus of the corresponding negative peak. (Query only)
Syntax RPLVAL?
Query Rplval, stimulus
Response
Where,
\begin{tabular}{|c|l|l|}
\hline Register & Parameter & \multicolumn{1}{|c|}{ Description } \\
\hline 0 & \(R p l_{\text {val }}\) & \begin{tabular}{l} 
Maximum total of the differences between the negative \\
peaks and the adjacent positive peaks on both sides. (See \\
Figure I-8)
\end{tabular} \\
\hline 1 & stimulus & Stimulus of the corresponding negative peak \\
\hline
\end{tabular}


Figure I-8. RPLVAL?
Note - If the search fails, the analyzer returns 0.
Examples For External Controller
```

ASSIGN @Hp4396 TO 717
OUTPUT @Hp4396;"ANAOCH1;ANARFULL;ANAODATA"
OUTPUT @Hp4396;"RPLVAL?"
ENTER @Hp4396;Val,Stim
PRINT Val;"[dB]";Stim;"[Hz]"
END

```

For Instrument BASIC
```

EXECUTE "ANAOCH1"
EXECUTE "ANARFULL"
EXECUTE "ANAODATA"
EXECUTE "RPLVAL?"
PRINT READIO(8,0);"[dB]"
PRINT READIO(8,1);"[Hz]"
END

```

\section*{POLE?}

Returns the stimulus and value of the first negative peak found on each side of the maximum point that are below the specified value from the maximum peak. (Query only)

Syntax
POLE? \(D\)
Where,
\begin{tabular}{|c|l|l|}
\hline Register & Parameter & Description \\
\hline 0 & \(D\) & Difference from the maximum peak. \\
\hline
\end{tabular}

Query \(\quad x_{1}, \operatorname{stim}_{1}, x_{2}\), stim \(_{2}\)
Response
Where,
\begin{tabular}{|c|l|l|}
\hline Register & Parameter & \multicolumn{1}{c|}{ Description } \\
\hline 0 & \(x_{1}\) & Left negative peak value. \\
\hline 1 & stim & \\
\hline 2 & \(x_{2}\) & Stimulus of \(x_{1}\). \\
\hline 3 & stim \(_{2}\) & Right negative peak value. \\
\hline
\end{tabular}
- Maximum Value
Negative Peak


Figure I-9. POLE?
Note - If the search fails, the analyzer returns 0.
- Give the command parameter as a negative value. For instance, to specify 50 dB down from the maximum peak as a reference level, the parameter is -50 .

\section*{Examples For External Controller}
```

ASSIGN @Hp4396 TO 717
OUTPUT @Hp4396;"ANAOCH1;ANARFULL;ANAODATA"
OUTPUT @Hp4396;"POLE? -50"
ENTER @Hp4396;X1,S1,X2,S2
PRINT "LEFT :";X1;"[dB]";S1;"[Hz]"
PRINT "RIGHT:";X2;"[dB]";S2;"[Hz]"

```

\section*{END}

For Instrument BASIC
```

EXECUTE "ANAOCH1"
EXECUTE "ANARFULL"
EXECUTE "ANAODATA"
WRITEIO 8,0;-50
EXECUTE "POLE?"
PRINT "LEFT :";READIO(8,0);"[dB]";READIO(8,1);"[Hz]"
PRINT "RIGHT:";READIO(8,2);"[dB]";READIO(8,3);"[Hz]"
END

```

\section*{Filter and Resonator Analysis Commands}

The following commands are device related. They are easy to use for specific device analysis because they can output many parameters using only a single command.

■ OUTPFILT?
■ OUTPXFIL?
■ OUTPCFIL?
■ OUTPRESO?
■ OUTPRESR?
- OUTPRESF?

■ OUTPCERR?

\section*{OUTPFILT?}

Analyzes the filter and returns the parameters.
Syntax OUTPFILT? \(x\)
Where,
\begin{tabular}{|c|l|l|}
\hline Register & Parameter & Description \\
\hline 0 & \(x\) & The dB value down the bandwidth filter. \\
\hline
\end{tabular}

Query Loss, \(B W, f_{\text {cent }}, Q, \Delta f_{\text {lef }}, \Delta f_{\text {right }}\) (Total6)
Response
\begin{tabular}{|c|l|l|}
\hline Register & Parameter & \multicolumn{1}{|c|}{ Description } \\
\hline 0 & Loss & Insertion loss \\
\hline 1 & \(B W\) & \(x\) dB down bandwidth \\
\hline 2 & \(f_{\text {cent }}\) & Center frequency \\
\hline 3 & \(Q\) & Q (Quality factor) \\
\hline 4 & \(\Delta f_{\text {left }}\) & \begin{tabular}{l} 
Frequency difference between the left cutoff point and \\
the middle of the range.
\end{tabular} \\
\hline 5 & \(\Delta f_{\text {right }}\) & \begin{tabular}{l} 
Frequency difference between the right cutoff point and \\
the middle of the range.
\end{tabular} \\
\hline
\end{tabular}


Figure I-10. OUTPFILT?
Semantics - Insertion loss is the maximum value within the specified range.
- \(x \mathrm{~dB}\) bandwidth is the frequency difference between both of the \(x \mathrm{~dB}\) down cutoff points.
- Center frequency is the middle point of both cutoff points.
- Q is calculated using the following equation:
\[
Q=\frac{\sqrt{f_{c l} \times f_{c r}}}{B W}
\]

\section*{Note}
- If both of the two cutoff points are not found, the analyzer returns 0 for all values of the query response.

\section*{Examples For External Controller}
```

10 ASSIGN @Hp4396 TO 717
2 0 ~ C A L L ~ S w e e p (1) ~ ! ~ G o e s ~ t o ~ t h e ~ s u b r o u t i n e . ~
30 OUTPUT @Hp4396;"ANAOCH1;ANARFULL;ANAODATA"
40 OUTPUT @Hp4396;"OUTPFILT? -3"
50 ENTER @Hp4396;Loss,Bw,Fc,Q,Dfl,Dfr
60 PRINT "Loss:";Loss;"[dB] BW:";Bw;"[Hz]"
70 PRINT "fc:";Fc;"[Hz] Q:";Q
80 PRINT "Dfl:";Dfl;"[Hz] Dfr:";Dfr;"[Hz]"
90 END
100 SUB Sweep(Ch)! Sweep End Detection Subroutine
101 ! (Parameter: No. of channel)
110 ASSIGN @Hp4396 TO 717
120 ON INTR 7 GOTO Sweep_end
130 OUTPUT @Hp4396;"TRGS BUS"
140 OUTPUT @Hp4396;"ESNB 2; *SRE 4"
150 FOR I=1 TO Ch
160 OUTPUT @Hp4396;"*CLS;*OPC?"
170 ENTER @Hp4396;Opc
180 ENABLE INTR 7;2
190 TRIGGER @Hp4396
200 Waiting:GOTO Waiting
210 Sweep_end:!
220 NEXT I
230 SUBEND

```

For Instrument BASIC
```

1 0 ~ A S S I G N ~ @ H p 4 3 9 6 ~ T O ~ 8 0 0 ~
20 OUTPUT @Hp4396;"CENT 70MHZ; SPAN 100KHZ"
30 EXECUTE "SING"
40 EXECUTE "ANAOCH1"
50 EXECUTE "ANARFULL"
60 EXECUTE "ANAODATA"
70 WRITEIO 8,0;-50
80 EXECUTE "POLE?"
90 PRINT "Loss:";READIO(8,0);"[dB] BW:";READIO(8,1);"[Hz]"
100 PRINT "fc:";READIO(8,2);"[Hz] Q:";READIO(8,3)
110 PRINT "Dfl:";READIO(8,4);"[Hz] Dfr:";READIO(8,5);"[Hz]"
120 END

```

\section*{OUTPXFIL?}

Syntax OUTPXFIL? \(x_{1}, x_{2}, D, f_{1}, f_{2}\)
Where,
\begin{tabular}{|c|l|l|}
\hline Register & Parameter & \multicolumn{1}{c|}{ Description } \\
\hline 0 & \(x_{1}\) & The dB value down the bandwidth filter. (1) \(x_{1}[\mathrm{~dB}]\) \\
\hline 1 & \(x_{2}\) & The dB value down the bandwidth filter. (2) \(x_{2}[\mathrm{~dB}]\) \\
\hline 2 & \(D\) & \begin{tabular}{l} 
Difference from maximum value. (Same as POLE? \\
parameter.)
\end{tabular} \\
\hline 3 & \(f_{1}\) & Stop frequency of the range for the rejection level. \\
\hline 4 & \(f_{2}\) & Start frequency of the range for the spurious level. \\
\hline
\end{tabular}

Query Loss, \(B W, f_{\text {cent }}, Q, \Delta f_{\text {left }}, \Delta f_{\text {right } 11}, \Delta f_{\text {lefi2 }}, \Delta f_{\text {right } 2,}\), Pass, Reject, Spurious, Pole \(e_{x 1}\), Response Pole \(_{\text {stim1 }}\), Fole \(_{x z}\), Pole \(_{\text {stim } 2}\) (15)
\begin{tabular}{|c|c|c|}
\hline Register & Parameter & Description \\
\hline 0 & Loss & Insertion loss \\
\hline 1 & \(B W\) & \(x_{1} \mathrm{~dB}\) down bandwidth \\
\hline 2 & \(f_{\text {cent }}\) & Center frequency \\
\hline 3 & Q & Q \\
\hline 4 & \(\Delta f_{l e f t}\) & Frequency difference between the left cutoff point \(\left(f_{c l}\right)\) and the middle of the range. \\
\hline 5 & \(\Delta f_{\text {right }}\) & Frequency difference between the right cutoff point \(\left(f_{c r}\right)\) and the middle of the range. \\
\hline 6 & \(\Delta f_{l e f t}\) & Frequency difference between the left cutoff point ( \(f_{c l 2}\) ) and the middle of the range. \\
\hline 7 & \(\Delta f_{\text {right } 2}\) & Frequency difference between the left cutoff point ( \(f_{\text {cr2 }}\) ) and the middle of the range. \\
\hline 8 & Pass & Passband ripple \\
\hline 9 & Reject & Rejection level \\
\hline 10 & Spurious & Spurious level \\
\hline 11 & Pole \({ }_{x 1}\) & First negative peak found to the left of the maximum point. \\
\hline 12 & Pole stim 1 & Stimulus of Pole \({ }_{\text {xi }}\). \\
\hline 13 & Fole \({ }_{x}\) & First negative peaks found to the right of the maximum point. \\
\hline 14 & Pole stim \({ }^{\text {2 }}\) & Stimulus of Polexx2. \\
\hline
\end{tabular}


Figure I-11. OUTPXFIL?
Semantics - Insertion loss, \(x_{1}\) dB bandwidth, center frequency, \(Q, \Delta f_{\text {leff }}\), and \(\Delta f_{\text {right }}\) are the same as the responses of OUTPFILT?.
- \(\Delta f_{\text {left } 2}\) and \(\Delta f_{\text {right } 2}\) are the frequency differences between both sides at the \(x_{2} \mathrm{~dB}\) down cutoff points ( \(f_{c l 2}\) and \(f_{c r 2}\) ) and the middle of the range.
- Passband ripple is the frequency difference of the maximum positive peak and the minimum negative peak between the \(x_{1} \mathrm{~dB}\) down cutoff points \(\left(f_{c l}, f_{c r}\right)\).
- Rejection level is the frequency difference from the insertion loss to the maximum level in the range from the left edge of analysis range to \(f_{1}\).
- Spurious level is the frequency difference from the insertion loss to the maximum level between \(f_{\mathcal{Z}}\) and the right edge of analysis range.
- Pole \(_{x 1}\), Pole \(_{\text {stim } 1}\), Pole \(_{x 2}\), Pole \(_{\text {stim } 2}\) are the same as the query response of POLE? with the parameter \(D\).
Note - If both of the two \(x_{1} \mathrm{~dB}\) down cutoff points are not found, the analyzer returns 0 for all values of the query response.
- If both of the two \(x_{2} \mathrm{~dB}\) down cutoff points are not found, the analyzer returns 0 for \(\Delta f_{\text {left }}\) and \(\Delta f_{\text {right }}\).
- If the corresponding peak for POLE? is not found, the analyzer returns 0 for Pole \(_{x 1}\), Pole \(e_{\text {stim1 }}\), Fole \(e_{x 2}\), and Pole stim .

\section*{Examples For External Controller}
```

10 ASSIGN @Hp4396 TO 717
20 OUTPUT @Hp4396;"CENT 70MHZ; SPAN 100KHZ"
30 CALL Sweep(1) ! Goes to sub routine.
40 OUTPUT @Hp4396;"ANAOCH1;ANARFULL;ANAODATA"
5 0 ~ O U T P U T ~ @ H p 4 3 9 6 ; " O U T P X F I L ? ~ - 3 , - 1 0 , - 5 0 , 6 9 . 9 8 M H z , 7 0 . 0 2 M H z " '
60 ENTER @Hp4396;Loss,Bw,Fc,Q,Dfl,Dfr,Dfl2,Dfr2,Pass,Reject,
Spurious,Pole1,Fp1,Pole2,Fp2
70 PRINT "Loss:";Loss;"[dB] BW:";Bw;"[Hz] fc:";Fc;"[Hz]"
80 PRINT "Q:";Q;" Dfl:";Dfl;"[Hz] Dfr:";Dfr;"[Hz]"
90 PRINT "Dfl2:";Dfl2;"[Hz] Dfr2:";Dfr2;"[Hz] Pass:";Pass;"[dB]"

```
```

100 PRINT "Reject:";Reject;"[dB] Spurious:";Spurious;"[dB]"
110 PRINT "Pole (left):";Pole1;"[dB] ";Fp1;"[Hz]"
120 PRINT "Pole (right):";Pole2;"[dB] ";Fp2;"[Hz]"
1 3 0 ~ E N D

```

For Instrument BASIC
```

1 0 ~ A S S I G N ~ @ H p 4 3 9 6 ~ T O ~ 8 0 0 ~
20 OUTPUT @HP4396;"CENT 70MHZ; SPAN 100KHZ"
30 EXECUTE "SING"
40 EXECUTE "ANAOCH1"
50 EXECUTE "ANARFULL"
60 EXECUTE "ANAODATA"
70 WRITEIO 8,0;-3
80 WRITEIO 8,1;-10
90 WRITEIO 8,2;-50
100 WRITEIO 8,3;6.998E+7
110 WRITEIO 8,4;7.002E+7
120 EXECUTE "OUTPXFIL?"
130 PRINT "Passband Ripple:";READIO(8,8);"[dB]"
140 PRINT "Rejection Level:";READIO(8,9);"[dB]"
150 PRINT "Spurious Level:";READIO(8,10);"[dB]"
160 END

```

\section*{OUTPCFIL?}

Analyzes the filter at the nominal frequency, and returns the parameters.
Syntax OUTPCFIL? \(f_{c}, x_{1}, x_{2}, D, f_{1}, f_{z}\)
Where,
\begin{tabular}{|c|l|l|}
\hline Register & Parameter & \multicolumn{1}{c|}{ Description } \\
\hline 0 & \(f_{c}\) & Nominal frequency \\
\hline 1 & \(x_{1}\) & The dB value down the bandwidth filter. (1) \(x_{1}[\mathrm{~dB}]\) \\
\hline 2 & \(x_{2}\) & The dB value down the bandwidth filter. (2) \(x_{2}[\mathrm{~dB}]\) \\
\hline 3 & \(D\) & \begin{tabular}{l} 
Difference from maximum value. (Same as POLE? \\
parameter.)
\end{tabular} \\
\hline 4 & \(f_{1}\) & Stop frequency of the range for the rejection level. \\
\hline 5 & \(f_{z}\) & Start frequency of the range for the spurious level. \\
\hline
\end{tabular}

Query Loss, Loss \(_{c}, B W, f_{\text {cent }}, Q, \Delta f_{l e f 1}, \Delta f_{\text {right }}, \Delta f_{l e f t}, \Delta f_{\text {right }}\), Pass, Reject, Spurious, Pole \({ }_{x 1}\), Response Pole \(_{\text {stim1 }}\), Pole \(_{x 2}\), Pole stim \(^{2}\) (Total 16)
\begin{tabular}{|c|c|c|}
\hline Register & Parameter & Description \\
\hline 0 & Loss & Insertion loss \\
\hline 1 & Loss \(_{\text {c }}\) & Const Loss \\
\hline 2 & \(B W\) & \(x_{1} \mathrm{~dB}\) down bandwidth \\
\hline 3 & \(f_{\text {cent }}\) & Center frequency \\
\hline 4 & \(Q\) & Q \\
\hline 5 & \(\Delta f_{l e f}\) & Frequency difference between the left cutoff point \(\left(f_{c l}\right)\) and the middle of the range. \\
\hline 6 & \(\Delta f_{\text {right }}\) & Frequency difference between the right cutoff point ( \(f_{c r}\) ) and the middle of the range. \\
\hline 7 & \(\Delta f_{\text {left }}\) & Frequency difference between the left cutoff point ( \(f_{c l 2}\) ) and the middle of the range. \\
\hline 8 & \(\Delta f_{\text {right } 2}\) & Frequency difference between the left cutoff point ( \(f_{\text {crz }}\) ) and the middle of the range. \\
\hline 9 & Pass & Passband ripple \\
\hline 10 & Reject & Rejection level \\
\hline 11 & Spurious & Spurious level \\
\hline 12 & Pole \(_{\text {x1 }}\) & First negative peaks found to the left of the maximum point. \\
\hline 13 & Fole \({ }_{\text {stim } 1}\) & Stimulus of Pole \({ }_{x 1}\). \\
\hline 14 & Pole \(_{\text {x } 2}\) & First negative peak found to the right of the maximum point. \\
\hline 15 & Polestim \(^{2}\) & Stimulus of Pole \(x_{2}\). \\
\hline
\end{tabular}


Figure I-12. OUTPCFIL?
Semantics
- Insertion loss, rejection level, spurious level, Pole \(_{x 1}\), Pole \(_{\text {stim1 }}\), Pole \(e_{x 2}\), and Pole stimz are the same as the responses of OUTPXFIL?.
- The const loss is the value of the point that is specified by command parameter, \(f_{c}\).
- \(x_{1} \mathrm{~dB}\) bandwidth is the frequency difference between two \(x_{1} \mathrm{~dB}\) down cutoff points ( \(f_{c l}, f_{c r}\) ) from the const loss point.
- Center frequency is the middle point of \(f_{c l}\) and \(f_{c r}\).
- \(Q\) is calculated using the following equation:
\[
Q=\frac{\sqrt{f_{c l} \times f_{c r}}}{B W}
\]
- \(\Delta f_{l e f t}\) and \(\Delta f_{\text {right }}\) are the frequency differences between both sides at the \(x_{1} \mathrm{~dB}\) down cutoff points ( \(f_{c l}\) and \(f_{c r}\) ) and \(f_{c}\).
- \(\Delta f_{l e f t 2}\) and \(\Delta f_{\text {right } 2}\) are the frequency differences between both sides at the \(x_{2} \mathrm{~dB}\) down cutoff points ( \(f_{c l 2}\) and \(f_{c r 2}\) ) and \(f_{c}\).
- Passband ripple is the frequency difference of maximum positive peak and minimum negative peak between \(x_{1} \mathrm{~dB}\) down cutoff points ( \(f_{c l 1}, f_{c r 1}\) ).
Note - If both of the two \(x_{1} \mathrm{~dB}\) down cutoff points are not found, the analyzer returns 0 for all values of the query response.
- If both of the two \(x_{2} \mathrm{~dB}\) down cutoff points are not found, the analyzer returns 0 for \(\Delta f_{\text {left }}\) and \(\Delta f_{\text {right } 2}\).
- If the corresponding peak for POLE? is not found, the analyzer returns 0 for Pole \(_{x 1}\), Pole \(e_{\text {stiml }}\), Pole \(x_{x 2}\), and Pole stim \(^{2}\).

\section*{Examples For External Controller}
```

10 ASSIGN @Hp4396 TO 717
20 OUTPUT @Hp4396;"CENT 70MHZ; SPAN 100KHZ"
30 CALL Sweep(1) ! Goes to sub routine. (See OUTPFILT?)
40 OUTPUT @Hp4396;"ANAOCH1;ANARFULL;ANAODATA"

```
```

5 0 ~ O U T P U T ~ @ H p 4 3 9 6 ; " O U T P C F I L ? ~ 7 0 M H z , - 3 , - 1 0 , - 5 0 , 6 9 . 9 8 M H z , 7 0 . 0 2 M H z " '
60 ENTER @Hp4396;Loss,Lc,Bw,Fc,Q,Dfl,Dfr,Dfl2,Dfr2,Pass,Reject,
Spurious,Pole1,Fp1,Pole2,Fp2
70 PRINT "Loss:";Loss;"[dB] Const Loss:";Lc;"[dB]"
80 PRINT "BW:";Bw;"[Hz] Fc:";Fc;"[Hz]"
90 PRINT "Q:";Q;" DFl:";Dfl;"[Hz] DFr:";Dfr;"[Hz]"
100 PRINT "Dfl2:";Dfl2;"[Hz] Dfr2:";Dfr2;"[Hz] Pass:";Pass;"[dB]"
110 PRINT "Reject:";Reject;"[dB] Spurious:";Spurious;"[dB]"
120 PRINT "Pole (left):";Pole1;"[dB] ";Fp1;"[Hz]"
130 PRINT "Pole (right):";Pole2;"[dB] ";Fp2;"[Hz]"
140 END

```

For Instrument BASIC
```

1 0 ~ A S S I G N ~ @ H p 4 3 9 6 ~ T O ~ 8 0 0 ~
20 OUTPUT @Hp4396;"CENT 70MHZ; SPAN 100KHZ"
30 EXECUTE "SING"
4 0 ~ E X E C U T E ~ " A N A O C H 1 " ~
50 EXECUTE "ANARFULL"
6 0 ~ E X E C U T E ~ " A N A O D A T A " ~
70 WRITEIO 8,0;7.E+7
80 WRITEIO 8,1;-3
90 WRITEIO 8,2;-10
100 WRITEIO 8,3;-50
110 WRITEIO 8,4;6.998E+7
120 WRITEIO 8,5;7.002E+7
130 EXECUTE "OUTPCFIL?"
140 PRINT "Const Loss:";READIO(8,1);"[dB]"
1 5 0 ~ E N D

```

\section*{OUTPRESO?}

Returns resonator specific parameters. (Query only)
Syntax OUTPRESO?
Query \(\quad Z_{r}, f_{r}, Z_{a}, f_{a}\) (Total 4)
Response
Where,
\begin{tabular}{|c|l|l|}
\hline Register & Parameter & \multicolumn{1}{c|}{ Description } \\
\hline 0 & \(Z_{r}\) & Resonant impedance \\
\hline 1 & \(f_{r}\) & Resonant frequency \\
\hline 2 & \(Z_{a}\) & Anti-resonant impedance \\
\hline 3 & \(f_{a}\) & Anti-resonant frequency \\
\hline
\end{tabular}


Figure I-13. OUTPRESO?

Semantics ■ OUTPRESO? executes the following actions and returns their values:
1. Searches for the \(0^{\circ}\) phase point from the left edge of the analysis range.
2. Defines the first point found as the resonant point, and then returns its impedance and its frequency.
3. Defines the next point found as the anti-resonant point, and then returns its impedance and its frequency.
Note You must select the following conditions to use this command:
\(\square\) Dual Channel \& Coupled Channel: ON
\(\square\) Impedance Conversion: ON
\(\square\) Analysis channel: LOG MAG format
\(\square\) Non-analysis channel: Phase format
- OUTPRESO? returns the first two found \(0^{\circ}\) phase point events if there are more than three corresponding points.
- If there is only one \(0^{\circ}\) phase point in the range, OUTPRESO? defines that point as a resonant point and returns 0 for \(Z_{a}\) and \(f_{a}\).
- If there is no \(0^{\circ}\) point, OUTPRESO? returns 0 for all parameters.
- If the impedance conversion is off, OUTPRESO? returns the magnitude ( dB ) at the \(0^{\circ}\) phase point.

\section*{Examples For External Controller}
```

10 ASSIGN @Hp4396 TO 717
20 OUTPUT @Hp4396;"DUAC ON; COUC ON"
30 OUTPUT @Hp4396;"CHAN2; FMT PHAS"
40 OUTPUT @Hp4396;"CHAN1; FMT LOGM; CONV ZTRA"
5 0 ~ O U T P U T ~ @ H p 4 3 9 6 ; " C E N T ~ 7 0 M H Z ; ~ S P A N ~ 1 0 0 K H Z " '
6 0 ~ C A L L ~ S w e e p (2) ~ ! ~ G o e s ~ t o ~ s u b ~ r o u t i n e . ~ (S e e ~ O U T P F I L T ?) ~
61 ! Parameter is 2 because of Dual Channel ON.
70 OUTPUT @Hp4396;"ANAOCH1;ANARFULL;ANAODATA"
80 OUTPUT @Hp4396;"OUTPRESO?"
90 ENTER @Hp4396;Zr,Fr,Za,Fa
100 PRINT "Resonant:";Zr;"[ohm],";Fr;"[Hz]"
110 PRINT "Anti-Resonant:";Za;"[ohm],";Fa;"[Hz]"
1 2 0 ~ E N D

```

For Instrument BASIC
```

ASSIGN @Hp4396 TO 800
OUTPUT @Hp4396;"DUAC ON; COUC ON"
OUTPUT @Hp4396;"CHAN2; FMT PHAS"
OUTPUT @Hp4396;"CHAN1; FMT LOGM; CONV ZTRA"
OUTPUT @Hp4396;"CENT 70MHZ; SPAN 100KHZ"
EXECUTE "SING" ! This line waits for the end of both channel sweep.
EXECUTE "ANAOCH1"
EXECUTE "ANARFULL"
90 EXECUTE "ANAODATA"
100 EXECUTE "OUTPRESO?"
110 PRINT "Resonant:";READIO(8,0);"[ohm] ";READIO(8,1);"[Hz]"
120 PRINT "Anti-Resonant:";READIO(8,2);"[ohm] ";READIO(8,3);"[Hz]"
130 END

```

\section*{OUTPRESR?}

Returns the resonator specific parameters. (Query only)
Syntax OUTPRESR?
Query \(Z_{r}, f_{r}, Z_{a}, f_{a}, R p l_{l}, R p l_{z}, R p l_{3}(\) Total 7)
Response
Where,
\begin{tabular}{|c|l|l|}
\hline Register & Parameter & \multicolumn{1}{c|}{ Description } \\
\hline 0 & \(Z_{r}\) & Resonant impedance \\
\hline 1 & \(f_{r}\) & Resonant frequency \\
\hline 2 & \(Z_{a}\) & Anti-resonant impedance \\
\hline 3 & \(f_{a}\) & Anti-resonant frequency \\
\hline 4 & \(R p l_{1}\) & \begin{tabular}{l} 
Maximum left height of the ripple where is on the left side \\
of the resonant point.
\end{tabular} \\
\hline 5 & \(R p l_{2}\) & \begin{tabular}{l} 
Maximum height right of the ripple that is between the \\
resonant and anti-resonant points.
\end{tabular} \\
\hline 6 & \(R p l_{3}\) & \begin{tabular}{l} 
Maximum height left of the ripple that is on the right side \\
of the resonant point.
\end{tabular} \\
\hline
\end{tabular}


Figure I-14. OUTPRESR?

Semantics - OUTPRESR? executes the following actions:
1. Searches for the \(0^{\circ}\) phase point from the left edge of the analysis range.
2. Defines the first point found as the resonant point, and then returns its impedance and its frequency.
3. Defines the next point found as the anti-resonant point, and then returns its impedance and its frequency.
4. Returns the maximum height of the ripple, \(R p l_{1}\), that is the difference between the peak and left adjacent negative peak.
5. Returns the maximum height of the ripple, \(R p l_{2}\), that is the difference between the peak and right adjacent negative peak.
6. Returns the maximum height of the ripple, \(R p l_{3}\), that is the difference between the peak and left adjacent negative peak.
Note You must select the following conditions to use this command:
- Dual Channel \& Coupled Channel: ON
\(\square\) Impedance Conversion: ON
\(\square\) Analysis channel: LOG MAG format
\(\square\) Non-analysis channel: Phase format
- OUTPRESR? returns the first two \(0^{\circ}\) phase point events found if there are more than three corresponding points points.
- If there is only one \(0^{\circ}\) phase point in the range, OUTPRESR? defines that point as a resonant point and returns 0 for \(Z_{a}, f_{a}, R p l_{1}, R p l_{2}\), and \(R p l_{s}\).
- If there is no \(0^{\circ}\) point, OUTPRESR? returns 0 for all parameters.

Examples For External Controller
```

10 ASSIGN @Hp4396 TO 717
20 OUTPUT @Hp4396;"DUAC ON; COUC ON"
30 OUTPUT @Hp4396;"CHAN2; FMT PHAS"
40 OUTPUT @Hp4396;"CHAN1; FMT LOGM; CONV ZTRA"
5 0 ~ O U T P U T ~ @ H p 4 3 9 6 ; " C E N T ~ 7 0 M H Z ; ~ S P A N ~ 1 0 0 K H Z " '
60 CALL Sweep(2) ! Goes to sub routine. (See OUTPFILT?)
70 OUTPUT @Hp4396;"ANAOCH1;ANARFULL;ANAODATA"
80 OUTPUT @Hp4396;"OUTPRESR?"
90 ENTER @Hp4396;Zr,Fr,Za,Fa,R1,R2,R3
100 PRINT "Resonant:";Zr;"[ohm],";Fr;"[Hz]"
110 PRINT "Anti-Resonant:";Za;"[ohm],";Fa;"[Hz]"
120 PRINT "Ripple L:";R1;"[dB]"
130 PRINT "Ripple M:";R2;"[dB]"
140 PRINT "Ripple R:";R3;"[dB]"
150 END

```

For Instrument BASIC
```

1 0 ~ A S S I G N ~ @ H p 4 3 9 6 ~ T O ~ 8 0 0 ~
2 0 ~ O U T P U T ~ @ H p 4 3 9 6 ; " D U A C ~ O N ; ~ C O U C ~ O N " ~
30 OUTPUT @Hp4396;"CHAN2; FMT PHAS"
40 OUTPUT @Hp4396;"CHAN1; FMT LOGM; CONV ZTRA"
5 0 ~ O U T P U T ~ @ H p 4 3 9 6 ; " C E N T ~ 7 0 M H Z ; ~ S P A N ~ 1 0 0 K H Z " '
6 0 ~ E X E C U T E ~ " S I N G " ~
70 EXECUTE "ANAOCH1"
80 EXECUTE "ANARFULL"
90 EXECUTE "ANAODATA"
100 EXECUTE "OUTPRESR?"
110 PRINT "Resonant:";READIO(8,0);"[ohm],";READIO(8,1);"[Hz]"
120 PRINT "Anti-Resonant:";READIO(8,2);"[ohm],";READIO(8,3);"[Hz]"
130 PRINT "Ripple L:";READIO(8,4);"[dB]"
140 PRINT "Ripple M:";READIO (8,5);"[dB]"
150 PRINT "Ripple R:";READIO(8,6);"[dB]"
160 END

```

\section*{OUTPRESF?}

Returns the resonator specific parameters. (Query only)
Syntax OUTPRESF? \(x_{1}, x_{2}\)
Where,
\begin{tabular}{|c|l|l|}
\hline Register & Parameter & Description \\
\hline 0 & \(x_{1}\) & Value down from the maximum peak. \\
\hline 1 & \(x_{2}\) & Value above the maximum peak. \\
\hline
\end{tabular}

Query \(\quad f_{s}, f_{p}, f_{s 1}, f_{s z}, f_{p 1}, f_{p 2}(\) Total 6\()\)
Response
Where,
\begin{tabular}{|c|l|l|}
\hline Register & Parameter & \multicolumn{1}{c|}{ Description } \\
\hline 0 & \(f_{s}\) & Middle point frequency between \(f_{s 1}\) and \(f_{s z}\). \\
\hline 1 & \(f_{p}\) & Middle point frequency between \(f_{p 1}\) and \(f_{p 2}\). \\
\hline 2 & \(f_{s 1}\) & \begin{tabular}{l} 
Left one of the two points \(x_{1} \mathrm{~dB}\) down from the maximum \\
peak.
\end{tabular} \\
\hline 3 & \(f_{s z}\) & \begin{tabular}{l} 
Right one of the two points \(x_{1} \mathrm{~dB}\) down from the \\
maximum peak.
\end{tabular} \\
\hline 4 & \(f_{p 1}\) & \begin{tabular}{l} 
Left one of the two points \(x_{2} \mathrm{~dB}\) above the minimum \\
negative peak.
\end{tabular} \\
\hline 5 & \(f_{p 2}\) & \begin{tabular}{l} 
Right one of the two points \(x_{2} \mathrm{~dB}\) above the minimum \\
negative peak.
\end{tabular} \\
\hline
\end{tabular}


Figure I-15. OUTPRESF?
Semantics - OUTPRESF? executes the following actions:
1. Searches for the maximum peak in the analysis range.
2. Searches for the \(x_{1} \mathrm{~dB}\) below points on both sides, and defines the first found left and right side points as \(f_{s 1}\) and \(f_{s 2}\), respectively.
3. Defines the middle point between \(f_{s 1}\) and \(f_{s 2}\) to \(f_{s}\).
4. Searches for the \(x_{2} \mathrm{~dB}\) above points on both sides, and defines the first found left and right side points as \(f_{p 1}\) and \(f_{p 2}\), respectively.
5. Defines the middle point between \(f_{p 1}\) and \(f_{p 2}\) as \(f_{p}\).

Note - If there is no corresponding peak in the range, OUTPRESF? returns 0 for all parameters.
- If the maximum peak cannot be found, OUTPRESF? returns 0 for \(f_{s}, f_{s 1}\), and \(f_{s 2}\).

■ If the minimum negative peak cannot be found, OUTPRESF? returns 0 for \(f_{p}, f_{p 1}\), and \(f_{p 2}\).
- Specify the negative value for \(x_{1}\) and positive value for \(x_{2}\).

\section*{Examples For External Controller}
```

ASSIGN @Hp4396 TO 717
OUTPUT @Hp4396;"FMT LOGM; CENT 60.06MHz; SPAN 20kHz"
CALL Sweep(1) ! Goes to sub routine. (See OUTPFILT?)
OUTPUT @Hp4396;"ANAOCH1;ANARFULL;ANAODATA"
OUTPUT @Hp4396;"OUTPRESF? -3dB,3dB"
ENTER @Hp4396;Fs,Fp,Fs1,Fs2,Fp1,Fp2
PRINT "Series-Resonant:";Fs;"[Hz]"
PRINT "Parallel-Resonant:";Fp;"[Hz]"
END

```

For Instrument BASIC
```

ASSIGN @Hp4396 TO 800
OUTPUT @Hp4396;"FMT LOGM"
OUTPUT @Hp4396;"CENT 60.06MHz; SPAN 20kHz"
EXECUTE "SING"
EXECUTE "ANAOCH1"
EXECUTE "ANARFULL"
EXECUTE "ANAODATA"
WRITEIO 8,0;-3
WRITEIO 8,1;3
EXECUTE "OUTPRESF?"
PRINT "Series-Resonant:";READIO(8,0);"[Hz]
PRINT "Pararel-Resonant:";READIO(8,1);"[Hz]
END

```

\section*{OUTPCERR?}

Returns the ceramic resonator specific parameters. (Query only)
Syntax OUTPCERR?
Query \(\quad Z_{r}, f_{r}, Z_{a}, f_{a}, R p l_{1}, R p l_{2}, R p l_{3}(\) Total7)
Response
Where,
\begin{tabular}{|c|l|l|}
\hline Register & Parameter & \multicolumn{1}{c|}{ Description } \\
\hline 0 & \(Z_{r}\) & Resonant impedance \\
\hline 1 & \(f_{r}\) & Resonant frequency \\
\hline 2 & \(Z_{a}\) & Anti-resonant impedance \\
\hline 3 & \(f_{a}\) & Anti-resonant frequency \\
\hline 4 & \(R p l_{1}\) & \begin{tabular}{l} 
Maximum height of the ripple that is on the left side of \\
the resonant point.
\end{tabular} \\
\hline 5 & \(R p l_{2}\) & \begin{tabular}{l} 
Maximum height of the ripple that is between the \\
resonant and anti-resonant points.
\end{tabular} \\
\hline 6 & \(R p l_{3}\) & \begin{tabular}{l} 
Maximum height of the ripple that is on the right side of \\
the resonant point.
\end{tabular} \\
\hline
\end{tabular}


Figure I-16. OUTPCERR?

Semantics - You need to select the LOG MAG format (FMT LOGM) and turn impedance conversion on (CONV ZTRA) to use this command.
- OUTPCERR? executes the following actions:
1. Searches for the minimum negative peak in the range and defines it as a resonant point. Then returns the resonant impedance, \(Z_{r}\), and resonant frequency, \(f_{r}\).
2. Searches for the maximum peak in the range and defines it as a anti-resonant point. Then returns the anti-resonant impedance, \(Z_{a}\), and anti-resonant frequency, \(f_{p}\).
3. Returns the maximum height of the ripple, \(R p l_{1}\), that is the difference between the peak and left adjacent negative peak.
4. Returns the maximum height of the ripple, \(R p l_{2}\), that is the difference between the peak and right adjacent negative peak.
5. Returns the maximum height of the ripple, \(R p l_{s}\), that is the difference between the peak and left adjacent negative peak.

Note - This command can be used when the LOG MAG format (FMT LOGM) is selected. If another format is selected, OUTPCERR? returns 0 for all parameters.
- If no corresponding ripple is found, OUTPCERR? returns 0 .

\section*{Examples}
```

10 ASSIGN @Hp4396 TO 717
20 OUTPUT @Hp4396;"FMT LOGM; CONV ZTRA; CENT 60.02MHz; SPAN 20kHz"
30 CALL Sweep(1) ! Goes to sub routine. (See OUTPFILT?)
40 OUTPUT @Hp4396;"ANAOCH1;ANARFULL;ANAODATA"
50 OUTPUT @Hp4396;"OUTPCERR?"
60 ENTER @Hp4396;Zr,Fr,Za,Fa,R1,R2,R3
70 PRINT "Resonant:";Zr;"[ohm],";Fr;"[Hz]"
80 PRINT "Anti-Resonant:";Za;"[ohm],";Fa;"[Hz]"
90 PRINT "Ripple L:";R1;"[dB]"
100 PRINT "Ripple M:";R2;"[dB]"
110 PRINT "Ripple R:";R3;"[dB]"
1 2 0 ~ E N D

```

For Instrument BASIC
```

10 ASSIGN @Hp4396 TO 800
20 OUTPUT @Hp4396;"FMT LOGM"
30 OUTPUT @Hp4396;"CENT 60.02MHz; SPAN 20kHz"
4 0 ~ E X E C U T E ~ " S I N G " ~
50 EXECUTE "ANAOCH1"
60 EXECUTE "ANARFULL"
70 EXECUTE "ANAODATA"
80 EXECUTE "OUTPCERR?"
90 PRINT "Resonant:";READIO(8,0);"[ohm],";READIO(8,1);"[Hz]"
100 PRINT "Anti-Resonant:";READIO(8,2);"[ohm],";READIO(8,3);"[Hz]"
110 PRINT "Ripple L:";READIO(8,4);"[dB]"
120 PRINT "Ripple M:";READIO(8,5);"[dB]"
130 PRINT "Ripple R:";READIO(8,6);"[dB]"
1 4 0 ~ E N D

```

\section*{Equivalent circuit analysis commands}

The following commands are for the equivalent circuit analysis. They are easy to use for specific device analysis because they can output many parameters using only a single command.
- EQUCPARA?
\(\square\) EQUM
- EQUCPARS?
- EQUCO?
- EQUCPARS4?

\section*{EQUCPARA?}

Returns the six-device equivalent circuit parameters of the crystal resonator. (Query only)
Syntax EQUCPARA?
Query \(\quad C_{0}, C_{1}, L_{1}, R_{1}, G_{0}, R_{0}\) (Total 6)
Response Where,
\begin{tabular}{|c|l|l|}
\hline Register & Parameter & \\
\hline 0 & \(C_{0}\) & Parallel capacitance \\
\hline 1 & \(C_{1}\) & Moscription \\
\hline 2 & \(L_{1}\) & Motional inductance \\
\hline 3 & \(R_{1}\) & Motional resistance \\
\hline 4 & \(G_{0}\) & Electrode conductance \\
\hline 5 & \(R_{0}\) & Electrode resistance \\
\hline
\end{tabular}


Figure I-17. Six-Device Equivalent Circuit of Crystal Resonator

Semantics E EQUCPARA? executes the following actions:
1. Obtains the admittance characteristic circle diagram.
2. Obtains the maximum conductance. ( \(G_{\max }\) )
3. Obtains frequencies \(f_{1}\) and \(f_{2}\left(f_{1}<f_{2}\right)\) of the two points where the conductance is half the maximum conductance ( \(G_{\max }\) ).
4. Calculates \(f_{s}\) by \(f_{s}=\sqrt{f_{1} \times f_{2}}\).
5. Obtains susceptance \(B_{f s}\) at \(f_{s}\).
6. Calculates \(\omega_{s}\) by \(\omega_{s}=2 \times \pi \times f_{s}\).
7. Assumes that the frequency at which the phase becomes \(0^{\circ *}\) near the parallel resonance frequency is \(f_{a}\), and obtains its conductance \(G_{a}\).
8. Calculates \(\omega_{a}\) by \(\omega_{a}=2 \times \pi \times f_{a}\).
9. Assumes that the frequency at which the phase becomes \(0^{\circ *}\) near the series resonance frequency is \(f_{r}\).
10. Calculates the constants using the above values and the following equations:
\[
\begin{aligned}
Q_{s} & =\frac{f_{s}}{f_{2}-f_{1}} & C_{0}{ }^{\prime}=\frac{B_{1}+B_{2}}{2 \omega_{s}} \\
L_{1} & =\frac{Q_{s}}{\omega_{s} G_{\text {max }}} & R_{1}=\frac{C_{0}{ }^{\prime}}{C_{0} G_{\text {max }}} \\
C_{1} & =\frac{G_{\text {max }}}{\omega_{s} Q_{s}} & R_{0}=\frac{1}{G_{\text {max }}}-R_{1} \\
C_{0} & =\frac{B_{f s}}{\omega_{s}} & G_{0}=G_{a}-\frac{R_{1} \omega_{a}{ }^{2} C_{0}{ }^{2}}{1+R_{0} R_{1} \omega_{a}{ }^{2} C_{0}{ }^{2}}
\end{aligned}
\]
* "EQUCPARA?" interpolates the \(0^{\circ}\) phase points even if it does not exist in measured data.

■ If the number of points between the maximum peak point \(\left(f_{B \max }\right)\) and the minimum peak point \(\left(f_{B m i n}\right)\) of the conductance is less than 10 points, EQUCPARA? approximates an admittance circle. The circle approximation can be performed if there are 3 points for analysis. You can specify how many points are used for circle approximation using the EQUM command to reduce the analysis time.

■ If EQUCPARA? fails the circle approximation, 0 will be return for all parameters.
- If there are only 2 points for analysis, EQUCPARA? returns four-device equivalent circuit parameters. In this case, EQUCPARA? returns 0 for \(G_{0}\) and \(R_{0}\).

■ If there is only 1 point for analysis, EQUCPARA? returns 0 for all parameters.
EQUM value

Note You must select the following conditions or Polar format to use this command: \(\square\) Dual Channel \& Coupled Channel: ON
\(\square\) Impedance Conversion: ON
\(\square\) Analysis channel: LOG MAG format
\(\square\) Non-analysis channel: Phase format
If another format is selected, 0 will be returned for query response.
Examples For External Controller
```

10 ASSIGN @Hp4396 TO 717
20 OUTPUT @Hp4396;"FMT POLA; CONV YTRA; CENT 60.06MHz; SPAN 20kHz"
30 CALL Sweep(1) ! Goes to sub routine. (See OUTPFILT?)
40 OUTPUT @Hp4396;"ANAOCH1;ANARFULL;ANAODATA"
50 OUTPUT @Hp4396;"EQUCPARA?"
6 0 ENTER @Hp4396;C0,C1,L1,R1,G0,R0
70 PRINT "C0:";C0;" C1:";C1
80 PRINT "L1:";L1;" R1:";R1
90 PRINT "GO:";GO;" RO:";RO
100 END

```

\section*{For Instrument BASIC}
```

10 ASSIGN @Hp4396 TO 800
20 OUTPUT @Hp4396;"FMT POLA; CONV YTRA"
30 OUTPUT @Hp4396;"CENT 60.06MHZ; SPAN 20kHZ"
40 EXECUTE "SING"
50 EXECUTE "ANAOCH1"
60 EXECUTE "ANARFULL"
70 EXECUTE "ANAODATA"
80 WRITEIO 8,0;4
90 EXECUTE "EQUM"
100 EXECUTE "EQUCPARA?"
110 PRINT "CO:";READIO(8,0);" C1:";READIO(8,1)
120 PRINT "L1:";READIO(8,2);" R1:";READIO(8,3)
130 PRINT "GO:";READIO(8,4);" R0:";READIO(8,5)
1 4 0 ~ E N D

```

\section*{EQUCPARS?}

Outputs the six-device equivalent circuit parameters of the crystal resonator. (Query only)
Syntax EQUCPARS?
Query \(\quad C_{0}, C_{1}, L_{1}, R_{1}, f_{s}, f_{a}, f_{r}, f_{1}{ }^{*}, f_{Z}{ }^{*}, G_{0}, R_{0}\) (Total 11)
Response
\({ }^{*} f_{1}<f_{2}\)
For information about each parameter, see "EQUCPARA?".
Note - You must select the following conditions or Polar format to use this command:
\(\square\) Dual Channel \& Coupled Channel: ON
\(\square\) Impedance Conversion: ON
\(\square\) Analysis channel: LOG MAG format
\(\square\) Non-analysis channel: Phase format
If another format is selected, 0 will be returned for query response.

\section*{EQUC0? value}

Returns the parallel capacitance \(\left(C_{0}\right)\) of the equivalent circuit of the resonator at the specified frequency. (Query only)

\section*{Syntax EQUC0? value}

Where,
\begin{tabular}{|c|l|ll|}
\hline Register & Parameter & & Description \\
\hline 0 & value & Frequency for \(C_{\theta}\) & \\
\hline
\end{tabular}

Query \(C_{0}\)
Response
Where,
\begin{tabular}{|c|l|ll|}
\hline Register & Parameter & & Description \\
\hline 0 & \(C_{0}\) & Parallel capacitance & \\
\hline
\end{tabular}

Semantics - \(C_{0}\) is calculated using the following equation:
\[
C_{0}=\frac{B_{s}}{\omega_{s}}
\]

Where,
\(B_{s} \quad\) Imaginary part of the point on \(f_{s}\).
\(\omega_{s} \quad=2 \pi f_{s}\)
\(f_{s} \quad\) Frequency that is specified by the command parameter.
- If the impedance conversion is selected, \(C_{0}\) is calculated using the following equation:
\[
C_{0}=\frac{-1}{B_{s} \times \omega_{s}}
\]

Note You must select the following conditions or Polar format to use this command:
\(\square\) Dual Channel \& Coupled Channel: ON
\(\square\) Impedance Conversion: ON
\(\square\) Analysis channel: LOG MAG format
\(\square\) Non-analysis channel: Phase format
If another format is selected, 0 will be returned for query response.
- If the specified frequency is out of analysis range, 0 will be returned.
- If \(B_{\mathrm{s}}\) is 0 when the impedance conversion is selected, EQUC0? returns 0 .

\section*{Examples \\ For External Controller}
```

10 ASSIGN @Hp4396 TO 717
20 OUTPUT @Hp4396;"DUAC ON; COUC ON"
30 OUTPUT @Hp4396;"CHAN2; FMT PHAS"
40 OUTPUT @Hp4396;"CHAN1; FMT LOGM; CONV ZTRA"
5 0 ~ O U T P U T ~ @ H p 4 3 9 6 ; " C E N T ~ 6 0 . 0 6 M H z ; ~ S P A N ~ 2 0 k H z " ~
6 0 ~ C A L L ~ S w e e p (2) ~ ! ~ G o e s ~ t o ~ s o b ~ r o u t i n e . ~ (S e e ~ O U T P F I L T ?) ~
7 0 ~ O U T P U T ~ @ H p 4 3 9 6 ; " A N A O C H 1 ; A N A R F U L L ; A N A O D A T A " ~
80 OUTPUT @Hp4396;"EQUCO? 60.06MHz"

```
```

90 ENTER @Hp4396;C0
100 PRINT "CO:";CO
110 END

```

\section*{For Instrument BASIC}
```

10 ASSIGN @Hp4396 TO 800
20 OUTPUT @Hp4396;"FMT POLA"
30 OUTPUT @Hp4396;"CENT 60.06MHZ; SPAN 20kHZ"
4 0 ~ E X E C U T E ~ " S I N G " ~
50 EXECUTE "ANAOCH1"
60 EXECUTE "ANARFULL"
70 EXECUTE "ANAODATA"
80 WRITEIO 8,0;6.006E+7
90 EXECUTE "EQUCO?"
100 PRINT "CO:";READIO(8,0)
110 END

```

\section*{EQUCPARS4?}

Returns the 4-device equivalent circuit parameters of the crystal resonator. (Query only)
Syntax EQUCPARS4?
Query \(\quad C_{0}, C_{1}, L_{1}, R_{1}, f_{s}, f_{a}, f_{r}, f_{1}, f_{2}(\operatorname{Tota1} 9)\)
Response Where,
\begin{tabular}{|c|l|l|}
\hline Register & Parameter & \multicolumn{1}{c|}{ Description } \\
\hline 0 & \(C_{0}\) & Parallel capacitance \\
\hline 1 & \(C_{1}\) & Motional capacitance \\
\hline 2 & \(L_{1}\) & Motional inductance \\
\hline 3 & \(R_{1}\) & Motional resistance \\
\hline 4 & \(f_{s}\) & Motional (parallel) resonant frequency \\
\hline 5 & \(f_{a}\) & Anti-resonant frequency \\
\hline 6 & \(f_{r}\) & Resonant frequency \\
\hline 7 & \(f_{1}\) & \begin{tabular}{l} 
Frequency at the point where the half of maximum \\
conductance.
\end{tabular} \\
\hline 8 & \(f_{2}\) & \begin{tabular}{l} 
Frequency at the point where the half of maximum \\
conductance. \(\left(f_{1}<f_{2}\right)\)
\end{tabular} \\
\hline
\end{tabular}


Figure I-18. Four-Device Equivalent Circuit of Crystal Resonator

Semantics - You need to select the polar format (FMT POLA) and turn the admittance conversion on to use this command.
- EQUCPARS4? executes the following actions:
1. Obtains the admittance characteristic circle diagram. (See Figure I-19.)
2. Obtains the susceptance ( \(B_{f s}\) ) and its frequency \(\left(f_{s}\right)\) at the maximum conductance ( \(G_{\max }\) ) point.
3. Obtains frequencies \(f_{1}\) and \(f_{2}\left(f_{1}<f_{2}\right)\) of the two points where the conductance is half the maximum conductance ( \(G_{\max }\) ).
4. Assumes that the frequency at which the phase becomes \(0^{\circ}\) near the parallel resonance frequency is \(f_{a}\).
5. Assumes that the frequency at which the phase becomes \(0^{\circ}\) near the series resonance frequency is \(f_{r}\).
6. Calculates the constants using the above values and the following equations:
\[
\begin{array}{rlrl}
C_{0} & =\frac{f_{r}{ }^{2}}{f_{a}^{2}-f_{r}^{2}} \times C_{1} & & \\
C_{1} & =\frac{1}{Q R_{1} 2 \pi f_{s}} & Q=\left|\frac{f_{s}}{f_{2}-f_{1}}\right| \\
L_{1} & =\frac{Q R_{1}}{\rho} & R_{1}=\frac{1}{G_{\max }}
\end{array}
\]

If there are no \(f_{r}\) and \(f_{a}\) points on the admittance chart, \(C_{0}\) is calculated using the following equation:
\[
C_{0}=\frac{B_{f s}}{2 \pi f_{s}}
\]

Where, \(B_{f s}\) is the susceptance at the \(G_{\max }\) point.


Figure I-19. Admittance Characteristic Circle Diagram

Note * This command is only available when Polar format and the admittance conversion is on. If these are not selected, 0 will be returned.

\section*{Examples For External Controller}
```

10 ASSIGN @Hp4396 TO 717
20 OUTPUT @Hp4396;"FMT POLA; CONV YTRA; CENT 60.06MHz; SPAN 20kHz"
30 CALL Sweep(1) ! Goes to sub routine. (See OUTPFILT?)
40 OUTPUT @Hp4396;"ANAOCH1;ANARFULL;ANAODATA"
50 OUTPUT @Hp4396;"EQUCPARS4?"
60 ENTER @Hp4396;C0,C1,L1,R1
70 PRINT "C0:";C0;" C1:";C1
80 PRINT "L1:";L1;" R1:";R1
90 END

```

For Instrument BASIC
```

10 ASSIGN @Hp4396 TO 800
20 OUTPUT @Hp4396;"FMT POLA; CONV YTRA"
30 OUTPUT @Hp4396;"CENT 60.06MHZ; SPAN 20kHZ"
40 EXECUTE "ANAOCH1"
50 EXECUTE "ANARFULL"
60 EXECUTE "ANAODATA"
70 EXECUTE "EQUCPARS4?"
80 PRINT "C0=";READIO(8,0);",C1=";READIO(8,1)
90 PRINT "L1=";READIO(8,2);",R1=";READIO(8,3)
100 END

```

\section*{Error Messages}

This section lists the error messages that are displayed on the analyzer display or transmitted by the instrument over GPIB. Each error message is accompanied by an explanation, and suggestions are provided to help in solving the problem. Where applicable, references are provided to the related chapter of the appropriate manual. The messages are listed in numerical order.

In the explanation of many error commands, section numbers of the IEEE standard 488.2 are included. Refer to them for further information about an error with these IEEE section numbers.

\section*{+0 No error}

The error queue is empty. Every error in the queue has been read (OUTPERRO? query) or the queue was cleared by power-on or the *CLS command.

\section*{1 CAN'T SET RBW AUTO IN ZERO SPAN}

The RBW AUTO mode cannot be selected in the zero span. The RBW must be specified manually in the zero span. See Chapter 2 of the Function Reference. (spectrum analyzer mode only).

\section*{10 ADDITIONAL STANDARDS NEEDED}

Error correction for the selected calibration class cannot be computed until all the necessary standards have been measured.

\section*{11 CALIBRATION REQUIRED}

No valid calibration coefficients were found when you attempted to turn calibration on. See Task Reference for information on how to perform calibration.

\section*{12 NO CALIBRATION CURRENTLY IN PROGRESS}

The RESUME CAL SEQUENCE softkey is not valid unless a calibration is in progress. Start a new calibration. See "Cal key" in the Function Reference .

\section*{13 CALIBRATION ABORTED}

The calibration in progress was terminated due to a change of the active channel or stimulus parameters.

\section*{14 NOT VALID FOR PRESENT TEST SET}

The calibration requested is inconsistent with the test set present. This message occurs in the following situations:
- A full 2-port calibration is requested with a test set other than an S-parameter test set.
- A one-path 2-port calibration is requested with an S-parameter test set (this procedure is typically used with a transmission/reflection test set).

A maximum of seven standards can be defined for any class. See "Modifying Calibration Kits" in the Function Reference .

\section*{16 CURRENT PARAMETER NOT IN CAL SET}

GPIB only. Correction is not valid for the selected measurement parameter.

\section*{17 BACKUP DATA LOST}

Data checksum error on the battery backup memory has occurred. The battery is recharged for approximately 10 minutes after power was turned on.

\section*{18 NOT ALLOWED IN LIST SWEEP}

The level cal cannot be executed in the list sweep. The sweep type must be the linear frequency (spectrum analyzer mode only). See Chapter 5 of the Function Reference.

\section*{19 UNEXPECTED DATA DETECTED: CAL ABORTED}

The signal measured for the level cal is not adequate for the calibration signal. (spectrum analyzer mode only.) See Chapter 5 of the Function Reference.

\section*{26 PRINTER: not on, not connected, out of paper}

The printer does not respond to control. Verify power to the printer, and check the interface connection between the analyzer and the printer.

\section*{34 NO VALID MEMORY TRACE}

If a memory trace is to be displayed or otherwise used, a data trace must first be stored to memory.

\section*{44 OVERLOAD ON INPUT B}

45 OVERLOAD ON INPUT A

46 OVERLOAD ON INPUT R

47 OVERLOAD ON INPUT S
The power level at one of the four receiver inputs exceeds a certain level greater than the maximum input level.

\section*{48 PHASE LOCK LOOP UNLOCKED}

Sever error. Contact your nearest Agilent Technologies office.

\section*{49 POWER FAILED ON \(n n n\)}

Sever error. Contact your nearest Agilent Technologies office. One or more power is failed. \(n n n\) is one of \(-5 \mathrm{~V},-15 \mathrm{~V},+5 \mathrm{~V},+15 \mathrm{~V},+65 \mathrm{~V}\), and PostRegHot. It shows that which power line is failed. When this error occurs, the system halts so a controller cannot read this error by GPIB.

\section*{Messages-2}

\section*{50 CONT SWITCHING MAY DAMAGE MECH SWITCH}

RF output power switch or input attenuator switch at input \(S\) is switching sweep by sweep, because RF power level or the input attenuator setting is different between two channels and the dual channel is turn on. To avoid premature wearing out of the output power switch and input attenuator switch, change trigger type to HOLD, SINGLE, or NUMBER of GROUP to hold sweep after measurement required. Or turn off the dual channel, or set the power level and the input attenuator of both channels to the same setting.

51 MEASUREMENT INVALID AT \(\mathbf{f}<=\mathbf{1 M H Z}\), IFBW \(>=\mathbf{1 0 K H Z}\)
This message will displayed when whole frequency measured is less than or equal to 1 MHz and IFBW is set to 10 kHz or 40 kHz because the network measurement performance is not warranted at frequency \(\leq 1 \mathrm{MHz}\) with 10 kHz or 40 kHz IFBW.

\section*{54 TOO MUCH DATA}

Either there is too much binary data to send to the analyzer when the data transfer format is FORM 2, FORM 3 or FORM 5, or the amount of data is greater than the number of points.

\section*{55 NOT ENOUGH DATA}

The amount of data sent to the analyzer is less than that expected (GPIB only ).

\section*{56 OPTION NOT INSTALLED}

This error occurs when an GPIB command which is optional command is sent and the analyzer is not installed the option (GPIB only ). Please confirm options installed to the analyzer using *OPT? command (see "*OPT?" in Chapter 2.)

\section*{64 TOO MANY SEGMENTS}

The maximum number of segments for the limit line table is 18. See Chapter 8 of the Task Reference.

\section*{74 CURRENT EDITING SEGMENT SCRATCHED}

The current editing segment for the list table and the limit line is scratched when the following cases occur (GPIB only) :
- When EDITLIST (edit list table) command is received while editing a segment for the list table.
- When EDITLIML (edit limit line) command is received while editing a segment for the limit line.

Send LIMSDON (limit segment done) or SDON (segment done) to terminate editing segment.

\section*{75 COMMAND IGNORED - SEGMENT NOT DONE YET}

The GPIB command the analyzer received is ignored, because the segment is editing (GPIB only). Send LIMSDON (limit segment done) or SDON (segment done) to terminate editing segment. (See "LIMSDON" in Chapter 2 and "SDON" in Chapter 2.)

\section*{76 SEGMENT START/STOP OVERLAPPED}

Segments are not allowed to be overlapped. Reenter appropriate value for start or stop value of segments to avoid that segment is not overlapped.

TOO MANY SEGMENTS OR POINTS
Frequency list mode is limited to 31 segments or 801 points.

\section*{78 TOO SMALL POINTS OR TOO LARGE STOP}

STOP + SPAN/(NOP-1) is out of sweep range. Increase NOP or change STOP value to lower frequency to avoid this error.

\section*{82 CAN'T CHANGE- ANOTHER CONTROLLER ON BUS}

The analyzer cannot assume the mode of system controller until the active controller is removed from the bus or relinquishes the bus. See Chapter 7 of the GPIB Programming Guide.

\section*{83 FORMAT NOT VALID FOR MEASUREMENT}

The conversion function except the 1/S and the multiple phase modes is not valid for the Smith, admittance, and SWR formats.

\section*{84 ANALYZER TYPE MISMATCH}

The analyzer receives a command that is not available for the current analyzer type. Please confirm GPIB command or change analyzer type before sending the command.

\section*{93 NO DATA TRACE}

The MARKER ON [DATA] is selected when the data trace is not displayed.

\section*{94 NO MEMORY TRACE}

The MARKER ON [MEMORY] is selected when the memory trace is not displayed.

\section*{95 NO MARKER DELTA - SPAN NOT SET}

The MKRA-SPAN softkey requires that delta marker mode be turned on.

\section*{96 NO MARKER DELTA - RANGE NOT SET}

The MKRA-SEARCH RNG softkey requires that delta marker is turned on.

\section*{98 NO ACTIVE MARKER}

The marker \(\rightarrow\) command cannot be execute when no marker is displayed on the screen. Turn on the marker before executing the marker \(\rightarrow\) commands.

\section*{99 CAN'T CHANGE WHILE DUAL CHAN OFF}

The Cross channel cannot be turned on when dual channel is off. Turn on the dual channel before the cross channel is turned on.

\section*{110 SAVE ERROR}

A serious error, for example physically damaged disk surface, is detected on saving a file.

\section*{Messages-4}

A serious error, for example corrupted data, is detected on recalling a file, and this forced the analyzer to be PRESET.

\section*{112 INVALID FILE NAME}

GPIB only. The file name for the RECALL, PURGE, or RE-SAVE function must have a "_D" or "_S" extension for LIF format.

\section*{113 NO STATE/DATA FILES ON DISK}

There are no files on the flexible disk with extensions, "_D" or "_S" for LIF format, or "STA" or ".DTA" for DOS format.

\section*{114 CAN'T SAVE GRAPHICS WHEN COPY IN PROGRESS}

If you attempt to save graphics when a print is in progress, this error message is displayed.

\section*{115 LIF-DOS COPY NOT ALLOWED}

If you try to copy a file between the RAM disk and the flexible disk when the format of the RAM disk is different from the format of the flexible disk, this message is displayed.

\section*{116 NO STATE/DATA FILES ON MEMORY}

There are no files on the RAM disk memory with extensions, "_D" or "_S" for LIF format, or "STA" or ".DTA" for DOS format.

119 NO DATA TRACE DISPLAYED
The SCALE FOR [DATA] is selected when the data trace is not displayed.

\section*{120 NO MEMORY TRACE DISPLAYED}

The SCALE FOR [MEMORY] is selected when the memory trace is not displayed.

\section*{124 LIST TABLE EMPTY OR INSUFFICIENT TABLE}

The frequency list is empty. To implement the list frequency mode, add segments to the list table.

\section*{125 CAN'T SET SLOPE ON IN POWER SWEEP}

The slope function can be turned on in frequency sweep.

\section*{126 CAN'T CHANGE NUMBER OF POINTS}

The number of points of the spectrum analyzer mode cannot be to change manually, except in zero span.

\section*{127 CAN'T SET SWEEP TIME AUTO IN ZERO SPAN}

The automatic sweep time cannot be in zero span of the spectrum analyzer mode. (The network analyzer mode allows that the automatic sweep time is turned on.)

The repetitive sampling is turn on when span must be zero, the sweep type must be linear frequency, and the trigger source must be EXT or VIDEO only. Confirm the analyzer setting and set appropriate setting for the repetitive sampling mode.

\section*{129 Repet Smpling : LIN FREQ ONLY}

The repetitive sampling is turn on when span must be zero, the sweep type must be linear frequency, and the trigger source must be EXT or VIDEO only. Confirm the analyzer setting and set appropriate setting for the repetitive sampling mode.

\section*{130 Repet Smpling : TRIG = EXT OR VIDEO ONLY}

The repetitive sampling is turn on when span must be zero, the sweep type must be linear frequency, and the trigger source must be EXT or VIDEO only. Confirm the analyzer setting and set appropriate setting for the repetitive sampling mode.

\section*{131 FREQUENCY SWEEP ONLY}

The sweep type must be frequency sweep when the center step size is set.

\section*{133 CAN'T CHANGE ON LIST SWEEP}

When list sweep is selected, the following parameters are not allowed to be changed:
■ CENTER, SPAN, START, STOP
- NOP
- IFBW or RBW
- POWER

Modify the list table to change these parameters in the list sweep.

\section*{134 CAN'T COUPLE IN CURRENT INPUTS}

When one channel measures a ratio measurement, and the other one measures an absolute measurement (for example: \(\mathrm{A} / \mathrm{R}\) and B ), COUPLED CH can not be turned on.

\section*{135 COUPLED CHAN - BETWEEN NA \& NA OR ZA \& ZA}

The analyzer types of both channels must be the network analyzer mode when the coupled channel is turned on.

\section*{141 INSUFFICIENT MEMORY}

If a lot of tasks is executed at same time, memory might be insufficient for a while. (For example, running Instrument BASIC program, printing a screen, and sending or receiving data array by GPIB are required at same time.) Please wait until finishing some tasks then execute the next task.

\section*{146 ON POINT NOT ALLOWD FOR THE CURRENT TRIG}

The trigger event mode cannot be changed to the ON POINT mode because the current trigger source setting does not allow the ON POINT mode. The trigger event ON POINT mode is available for only MANUAL, EXTERNAL, and BUS trigger sources of the network analyzer mode.

\section*{Messages-6}

\section*{INVALID DATE}

The date entered to set the real time clock is invalid. Reenter correct date.

\section*{193 POWER ON TEST FAILED}

An internal test fails in the power on sequence (the power on self-test fails). Contact your nearest Agilent Technologies office or see the Service Manual for troubleshooting.

\section*{194 EEPROM WRITE ERROR}

Data cannot be stored properly into the EEPROM on the A1 CPU, when performing the display background adjustment or updating correction constants in the EEPROM using the adjustment program. See the Service Manual for troubleshooting.

\section*{195 ALL INT TEST FAILED}

An "internal test 0: ALL INT" fails. See the Service Manual for troubleshooting.

\section*{196 FLASH MEMORY CHECK SUM ERROR}

The data (firmware) stored in the A1 flash memory are invalid. This message is displayed in the bootloader menu. See the Service Manual for troubleshooting.

\section*{197 BACKUP SRAM CHECK SUM ERROR}

An "internal test 1: A1 CPU" fails. The data (GPIB Address and so on) stored in the A1 CPUs BACKUP SRAM are invalid. Replace the A1 CPU with a new one. See the Service Manual for troubleshooting.

\section*{198 EEPROM CHECK SUM ERROR}

An "internal test 1: A1 CPU" fails. The data (Correction Constants and so on) stored in the A1 CPU's EEPROM are invalid. See the Service Manual for troubleshooting.

\section*{199 DSP CHIP TEST FAILED}

An "internal test 1: A1 CPU" fails. The A1 CPU's DSP (Digital Signal Processor) does not work properly. Replace the A1 CPU with a new one. See the Service Manual for troubleshooting.

\section*{200 F-BUS TIMER CHIP TEST FAILED}

An "internal test 1: A1 CPU" fails. The A1 CPU's F-BUS (Frequency Bus) timer does not work properly. Replace the A1 CPU with a new one. See the Service Manual for troubleshooting.

\section*{201 RTC CHIP TEST FAILED}

An "internal test 1: A1 CPU" fails. The A1 CPU's RTC (Real Time Clock) does not work properly. Replace the A1 CPU with a new one. See the Service Manual for troubleshooting.

\section*{202 KEY CHIP TEST FAILED}

An "internal test 1: A1 CPU" fails. The A1 CPU's front keyboard control chip does not work properly. Replace the A1 CPU with a new one. See the Service Manual for troubleshooting.

\section*{FDC CHIP TEST FAILED}

An "internal test 1: A1 CPU" fails. The A1 CPU's FDC (Flexible Disk drive control) ship does not work properly. Replace the A1 CPU with a new one. See the Service Manual for troubleshooting.

\section*{204 HP-IB CHIP TEST FAILED}

An "internal test 1: A1 CPU" fails. The A1 CPU's GPIB chip does not work properly. Replace the A1 CPU with a new one. See the Service Manual for troubleshooting.

\section*{205 HP-HIL CHIP TEST FAILED}

An "internal test 1: A1 CPU" fails. The A1 CPU's HP-HIL control chip does not work properly. Replace the A1 CPU with a new one. See the Service Manual for troubleshooting.

\section*{206 CPU INTERNAL SRAM R/W ERROR}

An "internal test 2: A1 VOLATILE MEMORY" fails. The A1 CPU's internal SRAM does not work properly. Replace the A1 CPU with a new one. See the Service Manual for troubleshooting.

\section*{207 CPU BACKUP SRAM R/W ERROR}

An "internal test 2: A1 VOLATILE MEMORY" fails. The A1 CPU's BACKUP SRAM does not work properly. Replace the A1 CPU with a new one. See the Service Manual for troubleshooting.

\section*{208 DSP SRAM R/W ERROR}

An "internal test 2: A1 VOLATILE MEMORY" fails. The DSP's SRAM on the A1 CPU does not work properly. Replace the A1 CPU with a new one. See the Service Manual for troubleshooting.

\section*{209 DUAL PORT SRAM R/W ERROR}

An "internal test 2: A1 VOLATILE MEMORY" fails. The DSP's dual port SRAM on the A1 CPU does not work properly. Replace the A1 CPU with a new one. See the Service Manual for troubleshooting.

\section*{210 POST REGULATOR OUTPUT VOLTAGE OUT OF SPEC}

An "internal test 4: A2 POST REGULATOR" fails. A power supply voltage of the A2 post-regulator is out of its limits. See the Service Manual for troubleshooting.

211 GND LEVEL OUT OF SPEC
An "internal test 4: A2 POST REGULATOR" fails. The voltage of the GND (Ground) at the DC bus node 26 is out of its limits. See the Service Manual for troubleshooting.

\section*{212 FAN POWER OUT OF SPEC}

An "internal test 4: A2 POST REGULATOR" fails. The voltage of the fan power supply at the DC bus node 11 is out of its limits. See the Service Manual for troubleshooting.

\section*{Messages-8}

\section*{FAILURE FOUND FROM A/D MUX TO A/D CONVERTER}

An "internal test 5: A6 A/D CONVERTER" fails. A trouble is found on the signal path from the A/D multiplexer to A/D converter on the A6 receiver IF. See the Service Manual for troubleshooting.

\section*{214 REF OSC TEST FAILED}

An "internal test 6: A5 REFERENCE OSC" fails. The reference oscillator on the A5 synthesizer does not work properly. See the Service Manual for troubleshooting.

\section*{215 FRACTIONAL N OSC TEST FAILED}

An "internal test 7: A5 FRACTIONAL N OSC" fails. The fractional N oscillator on the A5 synthesizer does not work properly. See the Service Manual for troubleshooting.

216 STEP OSC TEST FAILED
An "internal test 8: A5 STEP OSC" fails. The step oscillator on the A5 synthesizer does not work properly. See the Service Manual for troubleshooting.

\section*{217 1st LO OSC TEST FAILED}

An "internal test 9: A4A1 1ST LO OSC" fails. The 1st LO OSC (first local oscillator) on the A4A1 1st LO does not work properly. See the Service Manual for troubleshooting.

\section*{218 2nd LO OSC TEST FAILED}

An "internal test 10: A3A2 2ND LO" fails. The 2nd LO OSC (second local oscillator) on the A3A2 2nd LO does not work properly. See the Service Manual for troubleshooting.

\section*{219 3rd LO OSC TEST FAILED}

An "internal test 12: A6 3RD LO OSC" fails. The 3rd LO OSC (third local oscillator) on the A6 receiver IF does not work properly. See the Service Manual for troubleshooting.

\section*{220 SOURCE OSC TEST FAILURE}

An "internal test 13: A3A1 SOURCE OSC" fails. The source oscillator on the A3A1 ALC does not work properly. See the Service Manual for troubleshooting.

\section*{221 DC OFFSET TOO BIG ON 0 DEG PATH}

An "internal test 14: A6 3rd IF DC OFFSET" fails. The DC offset on \(0^{\circ}\) path of the A6 receiver IF is larger than its limit. See the Service Manual for troubleshooting.

\section*{222 DC OFFSET TOO BIG ON 90 DEG PATH}

An "internal test 14: A6 3rd IF DC OFFSET" fails. The DC offset on \(90^{\circ}\) path of the A6 receiver IF is larger than its limit. See the Service Manual for troubleshooting.

\section*{223 SAMPLE FREQUENCY OUT OF SPEC}

An "internal test 15: A6 SEQUENCER" fails. The sampling frequency of the sample/hold circuit on the A6 receiver IF is out of its limits. See the Service Manual for troubleshooting.

\section*{ALC TEST FAILED}

An "internal test 16: A3A1 ALC" fails. The ALC (Auto Level Control) circuit on the A3A1 ALC does not work properly. See the Service Manual for troubleshooting.

\section*{225 \\ A3 DIVIDER OUTPUT FREQUENCY OUT OF SPEC}

An "internal test 11: A3A1 DIVIDER" fails. The output frequency of the divider circuit on the A3A1 ALC is out of its limits. See the Service Manual for troubleshooting.

\section*{226 FLOPPY DISK DRIVE FAILURE FOUND}

An "external test 18: DSK DR FAULT ISOL'N" fails. The A53 built-in FDD (flexible disk drive) does not work properly. Replace the A53 FDD with a new one. See the Service Manual for troubleshooting.

\section*{227 POWER SWEEP LINEARITY OUT OF SPEC}

An "external test 19: POWER SWEEP LINEARITY" fails. See the Service Manual for troubleshooting.

\section*{228 OUTPUT ATTENUATOR ACCURACY OUT OF SPEC}

An "external test 20: OUTPUT ATTENUATOR" fails. See the Service Manual for troubleshooting.

\section*{229 INPUT ATTENUATOR ACCURACY OUT OF SPEC}

An "external test 21: INPUT ATTENUATOR" fails. See the Service Manual for troubleshooting.

\section*{230 RF OUT TO S-INPUT FLATNESS TEST FAILED}

An "external test 22: RF TO S LVL \& FLTNESS" fails. See the Service Manual for troubleshooting.

\section*{231 S-INPUT TO A-INPUT CROSSTALK TEST FAILED}

An "external test 23: S TO A CROSSTALK" fails. See the Service Manual for troubleshooting.
232 S-INPUT LEVEL COMPRESSION TEST FAILED
An "external test 24: S INPUT COMPRESSION" fails. See the Service Manual for troubleshooting.

\section*{233}

S-INPUT RESIDUAL RESPONSE OUT OF SPEC
An "external test 25: S INPUT RESIDUALS" fails. See the Service Manual for troubleshooting.
1st LO LEAKAGE TEST FAILED
An "external test 25: S INPUT RESIDUALS" fails. See the Service Manual for troubleshooting.

\section*{235 S-INPUT NOISE LEVEL OUT OF SPEC}

An "external test 26: S INPUT NOISE LEVEL" fails. See the Service Manual for troubleshooting.

\section*{Messages-10}

An "external test 27: FRACTION SPURIOUS" fails. See the Service Manual for troubleshooting.

An "external test 28: RF TO A LVL \& FLTNESS" fails. See the Service Manual for troubleshooting.

\section*{238 R-INPUT TO A-INPUT CROSSTALK OUT OF SPEC}

An "external test 29: NA CROSSTALK \& NOISE" fails. See the Service Manual for troubleshooting.

\section*{239 R-INPUT TO B-INPUT CROSSTALK OUT OF SPEC}

An "external test 29: NA CROSSTALK \& NOISE" fails. See the Service Manual for troubleshooting.

\section*{240 R-INPUT NOISE LEVEL OUT OF SPEC}

An "external test 29: NA CROSSTALK \& NOISE" fails. See the Service Manual for troubleshooting.

\section*{241 A-INPUT NOISE LEVEL OUT OF SPEC}

An "external test 29: NA CROSSTALK \& NOISE" fails. See the Service Manual for troubleshooting.

\section*{242 B-INPUT NOISE LEVEL OUT OF SPEC}

An "external test 29: NA CROSSTALK \& NOISE" fails. See the Service Manual for troubleshooting.

\section*{243 R-INPUT LEVEL COMPRESSION TEST FAILED}

An "external test 30: R INPUT COMPRESSION" fails. See the Service Manual for troubleshooting.

\section*{244 RANGING ACCURACY TEST FAILED}

An "external test 31: RANGING" fails. See the Service Manual for troubleshooting.

\section*{245 A/R RATIO ACCURACY OUT OF SPEC}

An "external test 32: A/R RATIO ACCURACY" fails. See the Service Manual for troubleshooting.

\section*{246 A/R RATIO RAW RESPONSE TEST FAILED" \({ }^{\prime}\)}

An "external test 32: A/R RATIO ACCURACY" fails. See the Service Manual for troubleshooting.

\section*{247 A-INPUT LEVEL COMPRESSION TEST FAILED}

An "external test 33: A INPUT COMPRESSION" fails. See the Service Manual for troubleshooting.

An "external test 34: B/R RATIO ACCURACY" fails. See the Service Manual for troubleshooting.

\section*{249 \\ B/R RAW RESPONSE TEST FAILED}

An "external test 34: B/R RATIO ACCURACY" fails. See the Service Manual for troubleshooting.

\section*{250 B-INPUT LEVEL COMPRESSION TEST FAILED}

An "external test 35: B INPUT COMPRESSION" fails. See the Service Manual for troubleshooting.

\section*{251 SA RES FILTER 3 DB BW OUT OF SPEC}

An "external test 36: RESOLUTION BANDWIDTH" fails. See the Service Manual for troubleshooting.

\section*{252 SA RES FILTER SHAPE FACTOR OUT OF SPEC}

An "external test 36: RESOLUTION BANDWIDTH" fails. See the Service Manual for troubleshooting.

\section*{253 SA RES FILTER TRACK NOISE TEST FAILED}

An "external test 36: RESOLUTION BANDWIDTH" fails. See the Service Manual for troubleshooting.

254 SA RES FILTER SWITCHING UNC. OUT OF SPEC
An "external test 36: RESOLUTION BANDWIDTH" fails. See the Service Manual for troubleshooting.

\section*{255 IF GAIN SWITCHING UNC. OUT OF SPEC}

An "external test 37: IF GAIN" fails. See the Service Manual for troubleshooting.
256 SIDE BAND LEVEL OUT OF SPEC
An "external test 38: PHASE NOISE" fails. See the Service Manual for troubleshooting.
257 SA NON-HARMONIC SPURIOUS OUT OF SPEC
An "external test 39: SPURIOUS" fails. See the Service Manual for troubleshooting.

\section*{258 X-TAL FILTER RESPONSE OUT OF SPEC}

An "external test 40: X'TAL FILTER RESPONSE" fails. See the Service Manual for troubleshooting.

\section*{259 X-TAL FILTER RAW RESPONSE TEST FAILED}

An "external test 40: X'TAL FILTER RESPONSE" fails. See the Service Manual for troubleshooting.

\section*{Messages-12}

\section*{ALL EXT TEST FAILED}
"External tests 63 to 67 " fails. See the Service Manual for troubleshooting.

\section*{261 IMPEDANCE ADAPTER TEST FAILED}

An error occured while performing the impedance adapter test. Contact your nearest Agilent Technologies office or follow the instructions in the Service Manual to repair the product.

\section*{267 COMPENSATION REQUIRED}

OPEN On OFF, SHORT On OFF or LOAD on OFF key is pressed when the fixture compensation is not being performed. The fixture compensation is required before you attempt to press these keys.

\section*{268 NO COMPENSATION CURRENTLY IN PROGRESS}

ESUME COMP SEQ is pressed when the fixture compensation is not susupended. Press
COMPEN MENU to start the fixture compensation.
270 COMPENSATION STD LIST UNDEFINED
The value of the calibration kit used for the fixture compensation is not defined. Define the value using MODIFY

\section*{-100 Command error}

This is a generic syntax error that the analyzer cannot detect more specific errors. This code indicates only that a command error, as defined in IEEE 488.2, 11.5.1.1.4, has occurred.

\section*{-101 Invalid character}

A syntax element contains a character that is invalid for that type. For example, a header containing an ampersand (SENSE\&).

\section*{-102 Syntax error}

An unrecognized command or data type was encountered. For example, a string was received when the analyzer was not expecting to receive a string.

\section*{-103 Invalid separator}

The parser was expecting a separator and encountered an illegal character. For example, the semicolon was omitted after a program message unit, *RST:TRIG.

\section*{-104 Data type error}

The parser recognized an unallowed data element. For example, numeric or string data was expected but block data was encountered.

\section*{-105}

\section*{GET not allowed}

A Group Execute Trigger (GET) was received within a program message (see IEEE 488.2, 7.7).

More parameters were received than expected for the header. For example, the \(*\) SRE command only accepts one parameter, so receiving \(* \operatorname{SRE} 4,16\) is not allowed.

\section*{-109 Missing parameter}

Fewer parameters were received than required for the header. For example, the \(*\) SRE command requires one parameter, so receiving only \(*\) SRE is not allowed.

\section*{-110 Command header error}

An error was detected in the header. This error message is used when the analyzer cannot detect the more specific errors described for errors - 111 through -119 .

\section*{-111 Header separator error}

A character that is not a legal header separator was encountered while parsing the header. For example, no white space followed the header, thus \(*\) SRE 4 is an error.

\section*{-112 Program mnemonic too long}

The header contains more than twelve characters (see IEEE 488.2, 7.6.1.4.1).

\section*{-113 Undefined header}

The header is syntactically correct, but it is undefined for the analyzer. For example, *XYZ is not defined for the analyzer.

\section*{-114 Header Suffix out of range}

The value of a numeric suffix attached to a program mnemonic makes the header invalid.

\section*{-120 Numeric data error}

This error, as well as errors -121 through -129 , are generated when parsing a data element that appears to be numeric, including the nondecimal numeric types. This particular error message is used if the analyzer cannot detect a more specific error.

\section*{-121 Invalid character in number}

An invalid character for the data type being parsed was encountered. For example, an alpha character in a decimal numeric or a " 9 " in octal data.

\section*{-123 Exponent too large}

The magnitude of the exponent was larger than 32000 (see IEEE 488.2, 7.7.2.4.1).

\section*{-124 Too many digits}

The mantissa of a decimal numeric data element contains more than 255 digits excluding leading zeros (see IEEE 488.2, 7.7.2.4.1).

\section*{-128 Numeric data not allowed}

A legal numeric data element was received, but the analyzer does not accept it in this position for a header.

\section*{\(-130\) \\ Suffix error}

This error, as well as errors -131 through -139 , are generated when parsing a suffix. This particular error message is used if the analyzer cannot detect a more specific error.

\section*{-131 Invalid suffix}

The suffix does not follow the syntax described in IEEE 488.2, 7.7.3.2, or the suffix is inappropriate for the analyzer.

\section*{-134 Suffix too long}

The suffix contained more than 12 characters (see IEEE 488.2, 7.7.3.4).

\section*{-138 Suffix not allowed}

A suffix was encountered after a numeric element that does not allow suffixes.

\section*{-140 Character data error}

This error, as well as errors -141 through -148 , are generated when analyzing the syntax of a character data element. This particular error message is used if the analyzer cannot detect a more specific error.

\section*{-141 Invalid character data}

Either the character data element contains an invalid character or the particular element received is not valid for the header.

\section*{-144 Character data too long}

The character data element contains more than twelve characters (see IEEE 488.2, 7.7.1.4).

\section*{-148 Character data not allowed}

A legal character data element was encountered where prohibited by the analyzer.

\section*{-150 String data error}

This error, as well as errors -151 and -158 , are generated when analyzing the syntax of a string data element. This particular error message is used if the analyzer cannot detect a more specific error.

\section*{-151 Invalid string data}

A string data element was expected, but was invalid for some reason (see IEEE 488.2, 7.7.5.2). For example, an END message was received before the terminal quote character.

\section*{-158 String data not allowed}

A string data element was encountered but was not allowed by the analyzer at this point in parsing.

\section*{-160 Block data error}

This error, as well as errors -161 and -168 , are generated when analyzing the syntax of a block data element. This particular error message is used if the analyzer cannot detect a more specific error.

\section*{-161 Invalid block data}

A block data element was expected, but was invalid for some reason (see IEEE 488.2, 7.7.6.2). For example, an END message was received before the length was satisfied.

\section*{-168 Block data not allowed}

A legal block data element was encountered but was not allowed by the analyzer at this point in parsing.

\section*{-200 Execution error}

This is the generic syntax error that the analyzer cannot detect more specific errors. This code indicates only that an execution error as defined in IEEE 488.2, 11.5.1.1.5 has occurred.

\section*{-210 Trigger error}

A trigger related error occurred. This error message is used when the analyzer cannot detect the more specific errors described for errors -211 through -219.

\section*{-211 Trigger ignored}

A GET, *TRG, or triggering signal was received and recognized by the analyzer but was ignored because of analyzer timing considerations. For example, the analyzer was not ready to respond.

\section*{-213 Init ignored}

A request for a measurement initiation was ignored as another measurement was already in progress.

\section*{-220 Parameter error}

Indicates that a program data element related error occurred. This error message is used when the analyzer cannot detect the more specific errors described for errors -221 through -229 .

\section*{-221 Settings conflict}

A legal program data element was parsed but could not be executed due to the current device state (see IEEE 488.2, 6.4.5.3 and 11.5.1.1.5).

Data out of range
A legal program data element was parsed but could not be executed because the interpreted value was outside the legal range as defined by the analyzer (see IEEE 488.2, 11.5.1.1.5).

\section*{-223 \\ Too much data}

A legal program data element of block, expression, or string type was received that contained more data than the analyzer could handle due to memory or related device-specific requirements.

\section*{\(-224\) \\ Illegal parameter value}

Used where exact value, from a list of possibilities, was expected.

The analyzer has insufficient memory to perform the requested operation.

\section*{-230 Data corrupt or stale}

Possibly invalid data. New reading started but not completed since last access.

\section*{-231 Data questionable}

Measurement accuracy is suspect.

\section*{-240 Hardware error}

A legal program command or query could not be executed because of a hardware problem in the analyzer. Definition of what constitutes a hard ware problem is completely device-specific. This error message is used when the analyzer cannot detect the more specific errors described for errors -241 through -249 .

\section*{-241 Hardware missing}

A legal program command or query could not be executed because of missing analyzer hardware. For example, an option was not installed.

\section*{-250 Mass storage error}

A mass storage error occurred. This error message is used when the analyzer cannot detect the more specific errors described for errors -251 through -259 .

\section*{-256 File name not found}

A legal program command could not be executed because the file name on the device media was not found: for example, an attempt was made to read or copy a nonexistent file.

\section*{-257 File name error}

A legal program command or query could not be executed because the file name on the device media was in error. For example, an attempt was made to copy to a duplicate file name. The definition of what constitutes a file name error is device-specific.

\section*{-280 Program error}

A downloaded program-related execution error occurred. This error message is used when the analyzer cannot detect the more specific errors described for errors -281 through -289 .

\section*{-281 Cannot create program}

An attempt to create a program was unsuccessful. A reason for the failure might include not enough memory.

\section*{-282 Illegal program name}

The name used to reference a program was invalid. For example, redefining an existing program, deleting a nonexistent program, or in general, referencing a nonexistent program.

An attempt was made to reference a nonexistent variable in a program.

\section*{-284 Program currently running}

Certain operations dealing with programs may be illegal while the program is running. For example, deleting a running program might not be possible.

\section*{-285 Program syntax error}

A syntax error appears in a downloaded program. The syntax used when parsing the downloaded program is device-specific.

\section*{-286 Program runtime error}

A program runtime error of the Instrument BASIC has occurred. To get a more specific error information, use the ERRM\$ or ERRN command of the Instrument BASIC.

\section*{-310 System error}

Some error, termed "system error" by the analyzer, has occurred.

\section*{-311 Memory error}

An error was detected in the analyzer's memory.

\section*{-330 Self-test failed}

A self-test failed. Contact your nearest Agilent Technologies office or see the Service Manual for troubleshooting.

\section*{-350 Queue overflow}

A specific code entered into the queue in lieu of the code that caused the error. This code indicates that there is no room in the queue and an error occurred but was not recorded.

\section*{-400 Query errors}

This is the generic query error that the analyzer cannot detect more specific errors. This code indicates only that a query error as defined in IEEE 488.2, 11.5.1.1.7 and 6.3 has occurred.

\section*{-410 Query INTERRUPTED}

A condition causing an interrupted query error occurred (see IEEE 488.2, 6.3.2.3). For example, a query followed by DAB or GET before a response was completely sent.

\section*{-420 Query UNTERMINATED}

A condition causing an unterminated query error occurred (see IEEE 488.2, 6.3.2.2). For example, the analyzer was addressed to talk and an incomplete program message was received by the controller.

\section*{-430 Query DEADLOCKED}

A condition causing a deadlocked query error occurred (see IEEE 488.2, 6.3.1.7). For example, both input buffer and output buffer are full and the analyzer cannot continue.

\section*{Index}

\section*{B}
\(<b l o c k>, 1-7\)
C
calibration array, F-1
calibration coefficent, H-2
calibration type, F-1
command abbreviation, 1-5
common command, 1-3
convention, 2-2

\section*{D}
data format, \(\mathrm{H}-1\)
data level, H-2
data transfer, H-1
E
error corrected data, H-2
error message, Messages-1
Event Status Register B, D-1, D-3

\section*{F}
formatted data, \(\mathrm{H}-2\)

\section*{I}

Instrument Event Status Register, D-1, D-3

\section*{K}
key code, G-1

\section*{M}
manual changes, A-1

\section*{N}
<numeric>, 1-6
0
Operation Status Negative Transition Filter, D-5
Operation Status Positive Transition Filter, D-5
Operation Status Register, D-1, D-4
OSNT, D-5
OSPT, D-5
Q
Questionable Status Register Bit, D-1

\section*{R}
raw data, \(\mathrm{H}-2\)

\section*{\(\mathbf{S}\)}

SCPI command, 1-3
serial number, A-2
simple command, 1-3
standard class, F-1
Standard Event Status Register, D-1, D-3
Status Byte, D-1, D-2
status reporting, D-1
<string>, 1-6
suffix, 1-6
T
trigger system, E-1

\section*{REGIONAL SALES AND SUPPORT OFFICES}

For more information about Agilent Technologies test and measurement products, applications, services, and for a current sales office listing, visit our web site: http://www.agilent.com/find/tmdir. You can also contact one of the following centers and ask for a test and measurement sales representative.

11/29/99

\section*{United States:}

Agilent Technologies
Test and Measurement Call Center
P.O.Box 4026

Englewood, CO 80155-4026
(tel) 18004524844

\section*{Canada:}

Agilent Technologies Canada Inc.
5150 Spectrum Way
Mississauga, Ontario
L4W 5G1
(tel) 18778944414

\section*{Europe:}

Agilent Technologies
Test \& Measurement
European Marketing Organization
P.O.Box 999

1180 AZ Amstelveen
The Netherlands
(tel) (31 20) 5479999

\section*{Japan:}

Agilent Technologies Japan Ltd.
Call Center
9-1, Takakura-Cho, Hachioji-Shi,
Tokyo 192-8510, Japan
(tel) (81) 426567832
(fax) (81) 426567840

\section*{Latin America:}

Agilent Technologies
Latin American Region Headquarters
5200 Blue Lagoon Drive, Suite \#950
Miami, Florida 33126
U.S.A.
(tel) (305) 2674245
(fax) (305) 2674286

\section*{Australia/New Zealand:}

Agilent Technologies Australia Pty Ltd
347 Burwood Highway
Forest Hill, Victoria 3131
(tel) 1-800 629485 (Australia)
(fax) (61 3) 92720749
(tel) 0800738378 (New Zealand)
(fax) (64 4) 8026881

\section*{Asia Pacific:}

Agilent Technologies
24/F, Cityplaza One, 1111 King's Road, Taikoo Shing, Hong Kong
(tel) (852)-3197-7777
(fax) (852)-2506-9284```


[^0]:    - Query Response
    $\{$ numeric $\}<$ new line $><$ ELND $>$
    - Equivalent SCPI Command

    ```
 :SENSe:POWer:AC:ATTenuation:AUTOD{OFF|O}
 :SENSe:POWer:AC:ATTenuationப<numeric>
    ```

[^1]:    :CALCulate:EVALuate:PEAK:THReshold $\sqcup$ MARKer

[^2]:    1 Can be set only when the trigger source is the external or video trigger, the frequency span is 0 Hz , and the sweep

