Measurement Guide and Programming
Examples

PSA and ESA Series Spectrum Analyzers

This manual provides documentation for the following instruments:

Agilent Technologies PSA Series
E4443A (3 Hz - 6.7 GHz)
E4445A (3 Hz - 13.2 GHZz)
E4440A (3 Hz - 26.5 GHZz)
E4446A (3 Hz - 44 GHz)
E4448A (3 Hz - 50 GHz)

Agilent Technologies ESA-E Series
E4401B (9 kHz - 1.5 GHz)
E4402B (9 kHz - 3.0 GHZz)
E4404B (9 kHz - 6.7 GHZz)
E4405B (9 kHz - 13.2 GHZz)
E4407B (9 kHz - 26.5 GHZz)

Agilent Technologies ESA-L Series
E4411B (9 kHz - 1.5 GHz)
E4403B (9 kHz - 3.0 GHz)
E4408B (9 kHz - 26.5 GHZz)

Agilent Technologies

Manufacturing Part Number: E4401-90482
Supersedes: E4401-90466

Printed in USA
April 2004

© Copyright 1999 - 2004 Agilent Technologies

WARNING

CAUTION

NOTE

Notice

The information contained in this document is subject to change
without notice.

Agilent Technologies makes no warranty of any kind with regard to this
material, including but not limited to, the implied warranties of
merchantability and fitness for a particular purpose. Agilent
Technologies shall not be liable for errors contained herein or for
incidental or consequential damages in connection with the furnishing,
performance, or use of this material.

Safety Information

The following safety symbols are used throughout this manual.
Familiarize yourself with the symbols and their meaning before
operating this instrument.

Warning denotes a hazard. It calls attention to a procedure
which, if not correctly performed or adhered to, could result in
injury or loss of life. Do not proceed beyond a warning note
until the indicated conditions are fully understood and met.

Caution denotes a hazard. It calls attention to a procedure that, if not
correctly performed or adhered to, could result in damage to or
destruction of the instrument. Do not proceed beyond a caution sign
until the indicated conditions are fully understood and met.

Note calls out special information for the user’s attention. It provides
operational information or additional instructions of which the user
should be aware.

The instruction documentation symbol. The product is
A marked with this symbol when it is necessary for the
user to refer to the instructions in the documentation.

This symbol is used to mark the on position of the
I power line switch.

| This symbol is used to mark the standby position of the
O power line switch.

This symbol indicates that the input power required is
AC.

%

WARNING

WARNING

WARNING

CAUTION

This is a Safety Class 1 Product (provided with a protective
earth ground incorporated in the power cord). The mains plug
shall be inserted only in a socket outlet provided with a
protected earth contact. Any interruption of the protective
conductor inside or outside of the product is likely to make the
product dangerous. Intentional interruption is prohibited.

No operator serviceable parts inside. Refer servicing to
qualified personnel. To prevent electrical shock do not remove
covers.

If this product is not used as specified, the protection provided
by the equipment could be impaired. This product must be used
in a normal condition (in which all means for protection are
intact) only.

Always use the three-prong AC power cord supplied with this product.
Failure to ensure adequate grounding may cause product damage.

Where to Find the Latest Information

Documentation is updated periodically. For the latest information about
Agilent Technologies PSA and ESA spectrum analyzers, including
firmware upgrades and application information, please visit the
following Internet URL.:

http://www.agilent.com/find/psa

http://www.agilent.com/find/esa

Microsoftd is a U.S. registered trademark of Microsoft Corporation.

BluetoothO is a trademark owned by its proprietor and used under
license.

Contents

—
Y
=2
©
o
=4
0
o
]
=
®
]
=
(2]

1. Recommended Test Equipment

2. Measuring Multiple Signals

Comparing Signals on the Same ScreenUsing MarkerDelta 12
Comparing Signals on the Same Screen Using Marker DeltaPair 14
Comparing Signals not on the Same Screen Using Marker Delta 15
Resolving Signalsof Equal Amplitude 17
Resolving Small SignalsHiddenby LargeSignals, 20
Decreasing the Frequency Span AroundtheSignal 22
3. Measuring a Low-Level Signal
Reducing Input AttenUationt e e 26
Decreasing the Resolution Bandwidth 28
Using the Average Detector and Increased Sweep Time 29
TraCe AVEIAgING .« v vttt et e e e e 30

4. Improving Frequency Resolution and Accur acy
Using a Frequency Counter to Improve Frequency Resolution and Accuracy 32

5. Tracking Drifting Signals

Measuring a Source’ sFrequency Drift 36

Tracking aSignal e 38
6. Making Distortion M easur ements

Identifying Analyzer Generated Distortion i 40

Third-Order Intermodulation Distortion e 42

Measuring TOI Distortion with a One-Button Measurement 44

M easuring Harmonics and Harmonic Distortion with a One-Button Measurement 45

7. Measuring Noise

Measuring SIgnal-to-NOISEot e 48
Measuring Noise Usingthe NoiseMarker i, 50
Measuring Noise-Like SignalsUsingMarker Pairs, 52
Measuring Noise-Like Signals Using the Channel Power Measurement 54

8. Making Time-Gated M easurements

GeneratingaPulsed-RFFM Signal e 58
Connecting the Instruments to Make Time-Gated Measurements 61
Gated LOMeasurement (PSA)ot 62
Gated Video Measurement (ESA)t e 64
Gated FFT Measurement (PSA)t e e e e e 66

0
2
c
3]
:
c
o
]
—
o
2
3
|_

Contents

9. Measuring Digital Communications Signals

Making Burst Power Measurementst 68
Making Statistical Power Measurements (CCDF) 71
Making Adjacent Channel Power (ACP) Measurementsooiiivninnn.. 74
Making Multi-Carrier Power (MCP) MeasurementS, 77
10.Using External Millimeter Mixers (Option AY Z)
Making Measurements With Agilent 11970 SeriesHarmonic Mixers 82
Setting Harmonic Mixer BiasCurrentt 84
Entering Conversion-Loss Correction Datafor HarmonicMixers 85
Making Measurements with Agilent 11974 Series Preselected Harmonic Mixers 86

Frequency Tracking Calibration with Agilent 11974 Series Preselected Harmonic Mixers .88

11.Demodulating AM and FM Signals

Measuring the Modulation Rateof an AM Signal 92
Measuring the Modulation Index of an AM Signal 94
Demodulating an AM Signal Usingthe ESA Series i, 96
Demodulating an FM Signal Using the ESA-E Series (Requires Option BAA) 98
12.Using Segmented Sweep (ESA-E Series Spectrum Analyzers)
Measuring HarmonicsUsing Standard Sweep 102
Measuring HarmonicsUsing Segmented Sweep e 104
Using Segmented Sweep WithLimitLines........... 106
Using Segmented Sweep to Monitor the Cellular Activity of acdmaOneBand 108
13.Stimulus Response M easur ements (ESA Options 1DN and 1DQ)
Making a Stimulus Response Transmission Measurement 112
Calculating the N dB Bandwidth Using StimulusResponse 114
Measuring Stop Band Attenuation Using Log Sweep (ESA-E Series) 116
Making a Reflection Calibration Measurement, 118
Measuring Return Loss using the Reflection Calibration Routine 120

14.Demodulating and Viewing Television Signals
(ESA-E Series Option B7B)

Demodulating and Viewing TelevisonSignals 122

Measuring Depth of Modulation e 126
15.Concepts

Resolving Closely Spaced Signals oo e 130

Harmonic Distortion CalCulationst e 132

Time Gating CoNCEPLSottt e e e 133

TrGOEr CONCEPLS . . ottt ittt et e et e e e e 153

Contents

o

)

e

g

]
AM and FM Demodulation CONCEPS« v v e e e e e e e e 157 @
Stimulus Response Measurement ConCepts oottt 158

16.ESA/PSA Programming Examples

Examplesincluded inthisChapter: i 164
Finding Additional Examplesand More Information............................. 165
Programming Examples Information and Requirements 166
Programming inCUsINgthe VTL e e 167
Using C to Make a Power Suite ACPR Measurement on acdmaOne Signal 176

Using C to Seria Poll the Analyzer to Determine when an Auto-alignment is Complete . 179
Using C and Service Request (SRQ) to Determine When a Measurement is Complete .. 182

Using Visual Basic® 6to CaptureaScreenimage 188
Using Visual Basic® 6to Transfer Binary TraceData 192
Using Agilent VEE to Transfer TraceData 197
17.ESA Programming Examples
Examplesincluded inthisChapter: e 200
Programming Examples System Requirementscooiiiirennnnen.n. 201
Using C with Marker Peak Search and Peak Excursion Measurement Routines 202
Using C for Marker Delta Mode and Marker Minimum Search Functions 206
Using C to Perform Internal Self-Alignment i .. 210
Using C to Read Trace Datain an ASCII Format (over GPIB) 214
Using C to Read Trace Datain a32-Bit Real Format (over GPIB) 218
Using C to Read Trace Datain an ASCII Format (over RS-232) 223
Using C to Read Trace Datain a 32-bit Real Format (over RS-232) 228
Usng Cto Add LIimit Lines i e e e e 233
USiNg CtOMEaSUrE NOISEottt e e e e et 239
Using C to Enter Amplitude CorrectionData 243
Using Cto Determineif anError hasOccurred 247
Using C to Measure Harmonic Distortion (over GPIB) 253
Using C to Measure Harmonic Distortion (over RS-232), 261
Using C to Make Faster Power AveragingMeasurementscoovvnn.. 269
18.PSA Programming Examples
Examplesincluded inthisChapter: i 278
Programming Examples Information and Requirements 279
Using C with Marker Peak Search and Peak Excursion Measurement Routines 280
Using C for Saving and Recalling Instrument StateData 283
Using Cto SaveBinary TraceDatat 287
Using C to Make a Power Calibration Measurement for a GSM Mobile Handset 291
Using C with the CALCulate:DATA:COMPress?RMSCommand 297
Using C Over Socket LAN (UNIX) ... e e e 303

Contents

8

5

©)

IS

@

3

= Using C Over Socket LAN (WIindowsNT)t 323
Using Java Programming Over Socket LAN i i 326
Using the VX1 Plug-N-Play Driver inLabVIEW®, 335
Using LabVIEW® 6to Makean EDGE GSM Measurement 336
Using Visual Basic® .NET withtheIVI-ComDrivero, 338
Using Agilent VEE to Capture the Equivalent SCPI Learn String 342

Recommended Test Equipment

Py
(1)
o
o
3
3
[¢)
>
Q.
9]
o
o
@
m
QO
c
o
3
@
>S5
—+

.
c
(]
£

=
=}
(o

LLl
2

|_

©
()
©
c
()
£
£
(@]
(8}
(&)
@

NOTE

Recommended Test Equipment

To find descriptions of specific analyzer functions, for the ESA, refer to
the Agilent Technologies ESA Series Spectrum Analyzers
User's/Programmer’s Reference Guide and for the PSA, refer to the
Agilent Technologies PSA Series Spectrum Analyzers User's and
Programmer’s Reference Guide.

Test Equipment Specifications Recommended Model

Signal Sources

Signal Generator (2) 0.25 MHz to 4.0 GHz | E443XB series or
Ext Ref Input E4438C

Adapters

Type-N (m) to BNC (f) (3) 1250-0780

Termination, 50 Q 908A

Type-N (m)

Cables

(3) BNC, 122-cm (48-in) 10503A

Miscellaneous

Directional Bridge 86205A
Bandpass Filter Center Frequency:
200 MHz
Bandwidth: 10 MHz
Lowpass Filter (2) Cutoff Frequency: 0955-0455
300 MHz
RF Antenna 08920-61060

10 Chapter 1

<
®
D
0
c
=
>
Q
<
c
E
°
®
(<2
Q
>
o
0

Measuring Multiple Signals

11

o
©
c

=

(99}

Q@
o

=
S

P
(@]
=

=
S
7
@
(]
p=

Figure 2-1

Step 1.

Step 2.

Step 3.

Measuring Multiple Signals
Comparing Signals on the Same Screen Using Marker Delta

Comparing Signals on the Same Screen Using
Marker Delta

Using the analyzer, you can easily compare frequency and amplitude
differences between signals, such as radio or television signal spectra.
The analyzer delta marker function lets you compare two signals when
both appear on the screen at one time.

In this procedure, the analyzer 10 MHz signal is used to measure
frequency and amplitude differences between two signals on the same
screen. Delta marker is used to demonstrate this comparison.

An Example of Comparing Signals on the Same Screen

Signals you want
to compare

]

/

Preset the analyzer:
Press Preset, Factory Preset (if present).

(PSA)
a. Enable the rear panel 10 MHz output.

Press System, Reference, 10 MHz Out (On).

b. Connect the 10 Mz QUT (SW TCHED) from the rear panel to the front
panel RF input.

(ESA)
Connect the rear panel 10 Mz REF QUT to the front panel RF input.

Set the analyzer center frequency, span and reference level to view the
10 MHz signal and its harmonics up to 50 MHz:

Press FREQUENCY Channel, Center Freq, 30, MHz.
Press SPAN X Scale, Span, 50, MHz.
Press AMPLITUDE Y Scale, Ref Level, 10, dBm.

12 Chapter2

Measuring Multiple Signals
Comparing Signals on the Same Screen Using Marker Delta

Step 4. Place a marker at the highest peak on the display (10 MHZz):
Press Peak Search.

The Next Pk Right and Next Pk Left softkeys are available to move the
marker from peak to peak. The marker should be on the 10 MHz
reference signal:

Step 5. Anchor the first marker and activate a second marker:
Press Marker, Delta.

The label on the first marker now reads 1R indicating that it is the
reference point.

Step 6. Move the second marker to another signal peak using the front-panel
knob or by using the Peak Search key:

Press Peak Search, Next Peak or
Press Peak Search, Next Pk Right or Next Pk Left.

The amplitude and frequency difference between the markers is
displayed in the active function block. For ESA see the left side of
Figure 2-2 and the right side for PSA.

Figure 2-2 Using the Delta Marker Function (ESA left, PSA right)
Hkrl & Mkr

Atten 26 dB

20.000000 MHz
Larw |-55.26 dB ‘Il

<
®
D
0
c
=
>
Q
<
c
E
°
®
(<2
Q
>
o
0

-
"M W*‘M‘W ‘MMWW _

NOTE The resolution of the marker readings can be increased by turning on
the frequency count function.

Chapter 2 13

Measuring Multiple Signals
Comparing Signals on the Same Screen Using Marker Delta Pair

Comparing Signals on the Same Screen Using
Marker Delta Pair

In this procedure, the analyzer 10 MHz signal is used to measure
frequency and amplitude differences between two signals on the same
screen using the delta pair marker function.

Step 1. Refer to the previous procedure “Comparing Signals on the Same
Screen Using Marker Delta” on page 12 and follow steps 1, 2 and 3.

Step 2. Turn on Delta Pair reference marker to compare the 10 MHz signal and
the 30 MHz signal:

Press Peak Search, Marker, Delta Pair (ref).
Note that the Delta Pair marker does not anchor the first marker.

Step 3. Use the knob or Peak Search to move the second marker (labeled 1) to
the 30 MHz peak:

Press Peak Search, Next Peak or Next Pk Right.
Step 4. Use the front panel knob to move the ref marker to the 20 MHz peak:

The active function displays the amplitude and frequency difference
between the 20 MHz and 30 MHz peaks as shown in Figure 2-3.

ight)

Figure 2-3 Using the Delta Pair Marker Function (ESA left, PSAr
. . a Mkrl

Mkr1 1. ~ N
o 4B 1 1 dBm Atten 28 dB

Ref Marker " |Ref Marker Freq

2@.%[‘1@@@@ MHz © 120.090000 MHz
121&|l3 dB
i
|

AC Coupled

o
©
c

=

(99}

Q@
o

=
S

P
(@]
=

=
S
7
@
(]

p=

|
| ;

!
T
i '|',.|f',“ \,‘,-.,.‘i‘"‘a'u‘l_,.‘r

N

NOTE In Figure 2-3 notice that the active function readout has moved to the
top left of the analyzer display. The active function position has three
positions: top, center and bottom. To modify the active function position:

Press Display, Active Fctn Position, Top (Center, or Bottom).

Center position is the factory default setting.

14 Chapter2

Measuring Multiple Signals
Comparing Signals not on the Same Screen Using Marker Delta

Comparing Signals not on the Same Screen
Using Marker Delta

Measure the frequency and amplitude difference between two signals
that do not appear on the screen at one time. (This technique is useful
for harmonic distortion tests when narrow span and narrow bandwidth
are necessary to measure the low level harmonics.)

In this procedure, the analyzer 10 MHz signal is used to measure
frequency and amplitude differences between one signal on screen and
one signal off screen. Delta marker is used to demonstrate this
comparison.

Figure 2-4 Comparing One Signal on Screen with One Signal Off Screen

Signals you want
to compare

Step 1. Preset the analyzer:
Press Preset, Factory Preset (if present).

Step 2. (PSA)
a. Enable the rear panel 10 MHz output:

<
®
D
%)
c
=
>
Q
<
c
E
°
®
2]
Q
>
o
o

Press System, Reference, 10 MHz Out (On).

b. Connect the 10 Mz QUT (SW TCHED) from the rear panel to the front
panel RF input:

(ESA)
Connect the rear panel 10 Mz REF QUT to the front panel RF input.

Chapter 2 15

o
©
c

=

(99}

Q@
o

=
S

P
(@]
=

=
S
7
@
(]
p=

Step 3.

Step 4.

Step 5.

Step 6.

Figure 2-5

Step 7.

Measuring Multiple Signals
Comparing Signals not on the Same Screen Using Marker Delta

Set the center frequency, span and reference level to view only the
10 MHz signal:

Press FREQUENCY Channel, Center Freq, 10, MHz.
Press SPAN X Scale, Span, 5, MHz.
Press AMPLITUDE Y Scale, Ref Level, 10, dBm.

Place a marker on the 10 MHz peak and then set the center frequency
step size equal to the marker frequency (10 MHZz):

Press Peak Search.
Press Marker -, Mkr — CF Step.

Activate the marker delta function:

Press Marker, Delta.

Increase the center frequency by 10 MHz:
Press FREQUENCY Channel, Center Freq, 1.

The first marker moves to the left edge of the screen, at the amplitude
of the first signal peak.

Figure 2-5 shows the reference annotation for the delta marker (1R) at
the left side of the display, indicating that the 10 MHz reference signal
is at a lower frequency than the frequency range currently displayed.

The delta marker appears on the peak of the 20 MHz component. The
delta marker annotation displays the amplitude and frequency
difference between the 10 and 20 MHz signal peaks.

Marker a
10.000000 MHz

-37.84 dB

‘|| I‘u §oaifty . 1 wlil
I||,‘.||l'|‘|‘lI ﬂw I||J|‘l"r1l1lu|n'‘II'|I|I'1' ill.-lfll"ll"' ||"Ill|¢"~.l'“ "ﬁ|'|,f'|||{.,"I.H|"‘|,f'."-"1'| i]".\[#]Hlfrl W nlu'ﬂl]q.l"l"']|~|\ir"lt|‘||I' 'MJ "l"wlfll‘ll ll\hl J""lw 4 |l||| I\"II‘|'

MHz
kHz

Turn the markers off;

Press Marker, Off.

16 Chapter2

Step 1.
Figure 2-6

Step 2.

Step 3.
NOTE

Measuring Multiple Signals
Resolving Signals of Equal Amplitude

Resolving Signals of Equal Amplitude

In this procedure a decrease in resolution bandwidth is used in
combination with a decrease in video bandwidth to resolve two signals
of equal amplitude with a frequency separation of 100 kHz. Notice that
the final RBW selection to resolve the signals is the same width as the
signal separation while the VBW is slightly narrower than the RBW.

Connect two sources to the analyzer input as shown in Figure 2-6.

Setup for Obtaining Two Signals

SPECTRUM
SIGNAL GENERATOR SIGNAL GENERATOR ANALYZER
" N S /—
5 S88=8 o0 (13 % = gemg
EI:I I:IEI o En =]
§ ﬁg EEE =2 § EIOIJ; EE
iL OO0 ooo o ok Bog 8o
RF
Output
O
DIRECTIONAL
COUPLER

pI790b

Set one source to 300 MHz. Set the frequency of the other source to
300.1 MHz. Set both source amplitudes to —20 dBm. The amplitude of
both signals should be approximately —20 dBm at the output of the
bridge.

Setup the analyzer to view the signals:

Press Preset, Factory Preset (if present).

Press FREQUENCY Channel, Center Freq, 300, MHz.
Press BW/Avg, Res BW, 300, kHz.

Press SPAN X Scale, Span, 2, MHz.

A single signal peak is visible. See Figure 2-7 for an ESA example.

If the signal peak is not present on the display, span out to 20 MHz,
turn signal tracking on, span back to 2 MHz and turn signal tracking
off.:

Press SPAN, Span, 20, MHz.

Press Peak Search, FREQUENCY, Signal Track (Qn).
Press SPAN, 2, MHz.

Press FREQUENCY, Signal Track (Off)

Chapter 2 17

<
®
D
%)
c
=
>
Q
<
c
E
°
®
2]
Q
>
o
o

Measuring Multiple Signals
Resolving Signals of Equal Amplitude

Figure 2-7 Unresolved Signals of Equal Amplitude (ESA)

Atten 18 dB

Step 4. Change the resolution bandwidth (RBW) to 100 kHz so that the RBW
setting is less than or equal to the frequency separation of the two
signals:

Press BW/Avg, Res BW, 100, kHz.

Notice that the peak of the signal has become flattened indicating that
two signals may be present.

Step 5. Decrease the video bandwidth to 10 kHz:

Atten 1@ dB

(2]

[Press Video BW, 10, kHz.

(@]

0 Two signals are now visible as shown with the ESA on the left side in
%_ Figure 2-8 and the PSA on the right side. Use the front-panel knob or
= step keys to further reduce the resolution bandwidth and better resolve
= the signals.

g

B Figure 2-8 Resolving Signals of Equal Amplitude (ESA left, PSA right)

@

(]

=

#YEH 18 kHz

18 Chapter2

Measuring Multiple Signals
Resolving Signals of Equal Amplitude

As the resolution bandwidth is decreased, resolution of the individual
signals is improved and the sweep time is increased. For fastest
measurement times, use the widest possible resolution bandwidth.
Under factory preset conditions, the resolution bandwidth is “coupled”
(or linked) to the span.

Since the resolution bandwidth has been changed from the coupled
value, a # mark appears next to Res BWin the lower-left corner of the
screen, indicating that the resolution bandwidth is uncoupled. (For
more information on coupling, refer to the Auto Couple key description
in the Agilent Technologies ESA Spectrum Analyzers
User’'s/Programmer’s Reference Guide and the PSA Spectrum
Analyzers User’s/Programmer’s Reference Guide.)

NOTE To resolve two signals of equal amplitude with a frequency separation
of 200 kHz, the resolution bandwidth must be less than the signal
separation so a resolution bandwidth of 100 kHz must be used. (For
analyzers that use a 1-3-10 RBW step sequence, a 100 kHz RBW is the
best choice for signal separation, but for high performance analyzers,
like the PSA, a 180 kHz RBW can be selected by fine tuning the RBW
filters at 10% increments.) Filter widths above 200 kHz exceed the
200 kHz signal separation and would not resolve the signals.

<
®
D
%)
c
=
>
Q
<
c
E
°
®
2]
Q
>
o
o

Chapter 2 19

o
©
c

=

(99}

Q@
o

=
S

P
(@]
=

=
S
7
@
(]

p=

Step 1.
Step 2.

Step 3.

NOTE

Step 4.

NOTE

Measuring Multiple Signals
Resolving Small Signals Hidden by Large Signals

Resolving Small Signals Hidden by Large
Signals

This procedure uses narrow resolution bandwidths to resolve two input
signals with a frequency separation of 155 kHz and an amplitude
difference of 60 dB.

Connect two sources to the analyzer input as shown in Figure 2-6.

Set one source to 300 MHz at —10 dBm. Set the second source to
300.05 MHz, so that the signal is 50 kHz higher than the first signal.
Set the amplitude of the signal to =70 dBm (60 dB below the first
signal).

Set the analyzer as follows:

Press Preset, Factory Preset (if present).

Press FREQUENCY Channel, Center Freq, 300, MHz.
Press BW/Avg, 30, kHz.

Press SPAN X Scale, Span, 500, kHz.

If the signal peak is not present on the display, span out to 20 MHz,
turn signal tracking on, span back to 2 MHz and turn signal tracking
off:

Press SPAN, Span, 20, MHz.

Press Peak Search, FREQUENCY, Signal Track (Qn).
Press SPAN, 2, MHz.

Press FREQUENCY, Signal Track (Cf f).

Set the 300 MHz signal to the reference level:

Press Peak Search, Mkr -, Mkr — Ref Lvl.

The ESA 30 kHz filter shape factor of 15:1 (PSA is 4.1:1) has a
bandwidth of 450 kHz at the 60 dB point (PSA has a BW of 123 kHz).
The half-bandwidth (225 kHz for ESA and 61.5 kHz for PSA) is NOT
narrower than the frequency separation of 50 kHz, so the input signals
can not be resolved.

20 Chapter2

Figure 2-9 Signal Resolutlon with a 30 kHz RBW (ESA left, PSA right)

Measuring Multiple Signals
Resolving Small Signals Hidden by Large Signals

Mkrl

63 dBm Atten 8 dB Flif 14.25 dBm Atten 16 dB

Marker ‘
300.000300 MHz /
ofv |-14.24 dBm [

Marker
300.003000

14 “ﬂH l'"‘

YEW 38 kH= YBH 30 kHz

Step 5. Reduce the resolution bandwidth filter to view the smaller hidden
signal. Place a delta marker on the smaller signal:

Press BW/Avg, 1, kHz.
Press Peak Search, Marker, 50, kHz.

NOTE The ESA 1 kHz filter shape factor of 15:1 (PSA is 4.1:1) has a
bandwidth of 15 kHz at the 60 dB point (PSA has a BW of 4.1 kHz). The
half-bandwidth (7.5 kHz for ESA and 2.05 kHz for PSA) is narrower
than 50 kHz, so the input signals can be resolved.

ith a1 kHz RBW (ESA left, PSA rlght)

Figure 2-10 Signal Resolutlon

i

Marker a
50.008 kHz
-59/77 dB

un" iIn

Atten 16 dB

Marker a
50.000 kHz

v |-60.00 dB !

ML«@VWWMWW ” W‘#"*‘MM!««.MWW i

VEH 1 kHz 50 [

A ‘.\,\h,ﬂ

Akt W

YEW 1 kHz

NOTE

To determine the resolution capability for intermediate amplitude
differences, assume the filter skirts between the 3 dB and 60 dB points
are parabolic, like an ideal Gaussian filter. The resolution capability is
approximately:

. OLAf 2
12.04dB * Feory

where Af is the separation between the signals.

Chapter 2 21

<
®
D
0
c
=
>
Q
<
c
E
°
®
(<2
Q
>
o
0

o
©
c

=

(99}

Q@
o

=
S

P
(@]
=

=
S
7
@
(]
p=

Step 1.

Step 2.

Step 3.

Step 4.

Step 5.

NOTE

Measuring Multiple Signals
Decreasing the Frequency Span Around the Signal

Decreasing the Frequency Span Around the
Signal

Using the analyzer signal track function, you can quickly decrease the
span while keeping the signal at center frequency. This is a fast way to
take a closer look at the area around the signal to identify signals that
would otherwise not be resolved.

This procedure uses signal tracking and span zoom to view the analyzer
50 MHz reference signal in a 200 kHz span.

Perform a factory preset:
Press Preset, Factory Preset (if present).

Enable the internal 50 MHz amplitude reference signal of the analyzer
as follows:

(PSA)
Press Input/Output, Input Port, Amptd Ref.

(ESA E4401B and E4411B)
Press Input/Output, Amptd Ref (On).

(ESA E4402B, E4403B, E4404B, E4405B, E4407B and E4408B)
Connect a cable from the front panel AMPTD REF OUT to the analyzer
RF input:

Press Input/Output, Amptd Ref Out (Cn).

Set the start frequency to 20 MHz and the stop frequency to 1 GHz:

Press FREQUENCY Channel, Start Freq, 20, MHz.
Press FREQUENCY Channel, Stop Freq, 1, GHz.

Place a marker at the peak:
Press Peak Search.

Turn on the signal tracking function to move the signal to the center of
the screen (if it is not already positioned there):

Press FREQUENCY Channel, Signal Track (On).

See the left-side of figure Figure 2-11. (Note that the marker must be on
the signal before turning signal track on.)

Because the signal track function automatically maintains the signal at
the center of the screen, you can reduce the span quickly for a closer
look. If the signal drifts off of the screen as you decrease the span, use a
wider frequency span. (You can also use Span Zoom, in the SPAN menu,
as a quick way to perform the Peak Search, FREQUENCY, Signal Track,
SPAN key sequence.)

22 Chapter2

Measuring Multiple Signals
Decreasing the Frequency Span Around the Signal

Step 6. Reduce span and resolution bandwidth to zoom in on the marked
signal:

Press SPAN X Scale, Span, 200, kHz.

NOTE If the span change is large enough, the span decreases in steps as
automatic zoom is completed. See Figure 2-11 on the right side. You can
also use the front-panel knob or step keys to decrease the span and
resolution bandwidth values.

Step 7. Turn off signal tracking:

Press FREQUENCY Channel, Signal Track (Cf).

Figure 2-11 Signal Tracking

Atten 18 dB Atten

Span
200.0000000 kHz

Fpitfa PJ\""".‘."’M it

VEW 3 MHz ep ¢ 0 3H VBH 1 kHz

LEFT: Signal tracking on before span decrease
RIGHT: After zooming in on the signal

<
®
D
W
c
=
>
Q
<
c
E
°
®
(<2
Q
>
o
o

Chapter 2 23

Measuring Multiple Signals
Decreasing the Frequency Span Around the Signal

o
©
c

=

(99}

Q@
o

=
S

P
(@]
=

=
S
7
@
(]

p=

24 Chapter2

Measuring a Low-Level Signal

<
@
D
»
c
=
=
Q
@
—
=}
5
~
@
<
@
(]
Q
=
Q

25

=
c
2
2]
°
>
]
T
2
3]
-
©
o
c
=
>
]
@
Q
=

CAUTION

Step 1.

Step 2.

Step 3.

Step 4.

Step 5.

Figure 3-1

Measuring a Low-Level Signal
Reducing Input Attenuation

Reducing Input Attenuation

The ability to measure a low-level signal is limited by internally
generated noise in the spectrum analyzer. The measurement setup can
be changed in several ways to improve the analyzer sensitivity.

The input attenuator affects the level of a signal passing through the
instrument. If a signal is very close to the noise floor, reducing input
attenuation can bring the signal out of the noise.

Ensure that the total power of all input signals at the analyzer RF
input does not exceed +30 dBm (1 watt).

Preset the analyzer:
Press Preset, Factory Preset (if present).

Set the frequency of the signal source to 300 MHz. Set the source
amplitude to =80 dBm. Connect the source RF OUTPUT to the analyzer
RF INPUT.

Set the center frequency, span and reference level:

Press FREQUENCY Channel, Center Freq, 300, MHz.
Press SPAN X Scale, Span, 5, MHz.
Press AMPLITUDE Y Scale, Ref Level, 40, —dBm.

Move the desired peak (in this example, 300 MHZz) to the center of the
display:

Press Peak Search, Marker O, Mkr O CF.

Reduce the span to 1 MHz (as shown in Figure 3-1) and if necessary
re-center the peak:

Press Span, 1, MHz.

Measuring a Low-Level Signal (ESA Display)

A
O

f

RN NN.
I I I R I B B B
[T

BH 18 kHz VEH 18 kHz

26 Chapter 3

Step 6.

Step 7.

Figure 3-2

CAUTION

NOTE

Measuring a Low-Level Signal
Reducing Input Attenuation

Set the attenuation to 20 dB:
Press AMPLITUDE Y Scale, Attenuation, 20, dB.

Note that increasing the attenuation moves the noise floor closer to the
signal level.

A “#” mark appears next to the At t en annotation at the top of the
display, indicating that the attenuation is no longer coupled to other
analyzer settings.

To see the signal more clearly, set the attenuation to 0 dB:
Press AMPLITUDE, Attenuation, 0, dB.

See Figure 3-2 shows 0 dB input attenuation.

Measuring a Low-Level Signal Using 0 dB
Mkrl 3

HEEENN.
HEEEEENEEN
HERRRENEEN
A A I Y U I B
pogas | |) | | | |
HEEEN .
L L [

Attenuation (ESA)
1H:

N .

AP
A
N

nlM

kHz y 2

When you finish this example, increase the attenuation to protect the
analyzer's RF input:

Press AMPLITUDE Y Scale, Attenuation (Aut 0) or press Auto Couple.

All figures in this chapter are screen captures from an ESA. Display
and numerical results may be different for a PSA.

Chapter 3 27

<
@
i}
»
c
=
=
Q
@
—
=}
5
~
@
<
@
(]
Q
=
Q

=
c
2
2]
°
>
]
T
2
3]
-
©
o
c
=
>
]
@
Q
=

Step 1.

Step 2.

Figure 3-3

RBW Selections

Measuring a Low-Level Signal
Decreasing the Resolution Bandwidth

Decreasing the Resolution Bandwidth

Resolution bandwidth settings affect the level of internal noise without
affecting the level of continuous wave (CW) signals. Decreasing the
RBW by a decade reduces the noise floor by 10 dB.

Refer to the first procedure “Reducing Input Attenuation” on page 26 of
this chapter and follow steps 1, 2 and 3.

Decrease the resolution bandwidth:
Press BW/Avg, |.

The low-level signal appears more clearly because the noise level is
reduced (see Figure 3-3).

Decreasing Resolution Bandwidth

3.000000000 k- |

YBH 3 kHz lp

A “#” mark appears next to the Res BWannotation in the lower left
corner of the screen, indicating that the resolution bandwidth is
uncoupled.

You can use the step keys to change the RBW in a 1-3-10 sequence.

For ESA, RBWs below 1 kHz are digital and have a selectivity ratio of
5:1 while RBWs at 1 kHz and higher have a 15:1 selectivity ratio. The
ESA's maximum RBW is 5 MHz and the minimum is 1 Hz (optional).

All PSA RBWs are digital and have a selectivity ratio of 4.1:1. For PSA,
choosing the next lower RBW for better sensitivity increases the sweep
time by about 10:1 for swept measurements, and about 3:1 for FFT
measurements (within the limits of RBW). Using the knob or keypad,
you can select RBWs from 1 Hz to 3 MHz in approximately 10%
increments, plus 4, 5, 6 and 8 MHz. This enables you to make the trade
off between sweep time and sensitivity with finer resolution.

28 Chapter 3

Measuring a Low-Level Signal
Using the Average Detector and Increased Sweep Time

Using the Average Detector and
Increased Sweep Time

When the analyzer’s noise masks low-level signals, changing to the
average detector and increasing the sweep time smooths the noise and
improves the signal’s visibility. Slower sweeps are required to average
more noise variations.

Step 1. Refer to the first procedure “Reducing Input Attenuation” on page 26 of
this chapter and follow steps 1, 2 and 3.

Step 2. Select the average detector:
Press Det/Demod, Detector, Average.

A “#” mark appears next to the Avg annotation, indicating that the
detector has been chosen manually (see Figure 3-4).

Step 3. Increase the sweep time to 100 ms:
Press Sweep, Sweep Time, 1.

Note how the noise smooths out, as there is more time to average the
values for each of the displayed data points.

Step 4. With the sweep time at 100 ms, change the average type to
log averaging:

(ESA) Press BW/Avg, Avg Type, Video Avg.
(PSA) Press BW/Avg, Avg/VBW Type, Log-Pwr.

Figure 3-4 Varying the Sweep Time with the Average Detector
f -48 dBm dB

SvetpThe || | | | |
legGns | | | | |
I

<
@
i}
»
c
=
=
Q
@
—
=}
5
~
@
<
@
(]
Q
=
Q

Chapter 3 29

=
c
2
2]
°
>
]
T
2
3]
-
©
o
c
=
>
]
@
Q
=

|
NOTE
Step 1.
Step 2.
Step 3.
NOTE

Measuring a Low-Level Signal
Trace Averaging

Trace Averaging

Averaging is a digital process in which each trace point is averaged with
the previous average for the same trace point. Selecting averaging,
when the analyzer is autocoupled, changes the detection mode (from
peak in ESA and normal in PSA) to sample, smoothing the displayed
noise level. ESA sample mode displays the instantaneous value of the
signal at the end of the time or frequency interval represented by each
display point (for PSA it is the center of the time or frequency interval),
rather than the value of the peak during the interval. Sample mode
may not measure a signal’'s amplitude as accurately as normal mode,
because it may not find the true peak.

This is a trace processing function and is not the same as using the
average detector (as described on page 29).

Refer to the first procedure “Reducing Input Attenuation” on page 26 of
this chapter and follow steps 1, 2 and 3.

Turn video averaging on:
Press BW/Avg, Average (On).

As the averaging routine smooths the trace, low level signals become
more visible. Aver age 100 appears in the active function block.

With average as the active function, set the number of averages to 25:
Press 25, Enter.

Annotation on the left side of the graticule shows the type of averaging
(the annotation for ESA is VAvg and is LgAv for PSA), and the number
of traces averaged.

Changing most active functions restarts the averaging, as does toggling
the Average key. Once the set number of sweeps completes, the analyzer
continues to provide a running average based on this set number.

If you want the measurement to stop after the set number of sweeps,
use single sweep: Press Sweep, Sweep (to select Single), or press Single
and then toggle the Average key.

30 Chapter 3

Q
>
o
>
(@]
(@]
c
=
Q
(9]
<

uonnjosay Aouanbai4 Buinoidw

Improving Frequency Resolution
and Accuracy

31

[
o
=]
E;
o
[%0]
(O]
nd
>
[&]
c
(]
S
o
(]
S
LL
(@]
<
>
o
S
Q.
E

>
)
8
=]
o
3]
<

i
c
@®©

Step 1.

Step 2.

Step 3.

Step 4.

NOTE

Step 5.

NOTE

Improving Frequency Resolution and Accuracy
Using a Frequency Counter to Improve Frequency Resolution and Accuracy

Using a Frequency Counter to Improve
Frequency Resolution and Accuracy

This procedure uses the spectrum analyzer internal frequency counter
to increase the resolution and accuracy of the frequency readout.

Preset the analyzer:
Press Preset, Factory Preset (if present).
Enable the internal 50 MHz amplitude reference signal as follows:

(PSA)
Press Input/Output, Input Port, Amptd Ref.

(ESA E4401B and E4411B)
Press Input/Output, Amptd Ref (On).

(ESA E4402B, E4403B, E4404B, E4405B, E4407B and E4408B)
Connect a cable from the front panel AMPTD REF OUT to the analyzer
RF input:

Press Input/Output, Amptd Ref Out (Cn).

Set the center frequency to 50 MHz and the span to 80 MHz:

Press FREQUENCY Channel, Center Freq, 50, MHz.
Press SPAN X Scale, Span, 80, MHz.

Turn the frequency counter on:

(ESA) Press Freq Count.
(PSA) Press Marker Fctn, Marker Count, Marker Count (On).

The frequency and amplitude of the marker and the word Mar ker
appears in the active function area (this is not the counted result). The
counted result appears in the upper-right corner of the display to the
right-side of Ont r 1.

Move the marker, with the front-panel knob, half-way down the skirt of
the signal response.

Notice that the readout in the active frequency function changes while
the counted frequency result (upper-right corner of display) does not.
See Figure 4-1. To get an accurate count, you do not need to place the
marker at the exact peak of the signal response.

Marker count properly functions only on CW signals or discrete spectral
components. The marker must be > 25 dB above the displayed noise
level.

32 Chapter 4

Figure 4-1

Step 6.
NOTE

Step 7.
NOTE

Using a Frequency Counter to Improve Frequency Resolution and Accuracy

Using Marker Counter (ESA Display)

Improving Frequency Resolution and Accuracy

Atten 18 dB

Q
>
o
>
(@]
(@]
c
=
Q
(9]
<

uonnjosay Aouanbai4 Buinoidw

Marker
52.40000@ MHz

-44.28 dBm

o

YBH 1 MHz

Change counter resolution:

ESA frequency-counter resolution can be set from 1 Hz to 100 kHz by
pressing Freq Count, Resolution.

PSA frequency-counter resolution is fixed at 0.001 Hz for 2 ms and
longer gate times. Longer gate times allow for greater averaging of
signals whose frequency is "noisy", at the expense of throughput.

For PSA,

if the Gate Time (under the Marker Count menu) is an integer

multiple of the length of a power-line cycle (20 ms for 50 Hz power,

16.67 ms

for 60 Hz power), the counter rejects incidental modulation at

the power line rate. The shortest Gate Time that rejects both 50 and 60
Hz modulation is 100 ms (100 ms is the default Gate Time setting when

set to Aut

0).

The marker counter remains on until turned off. Turn off the marker

counter:

(ESA) Press Freqg Count, Marker Count (Off). Or Press Marker, Off.
(PSA) Press Marker Fctn, Marker Count, Marker Count (Off). Or Press
Marker, Off.

When using the built-in frequency counter function with the ESA, if the
ratio of the resolution bandwidth to the span is too small (less than or
equal to 0.002), the Mar ker Count: Wden Res BWmessage appears on
the display. It indicates that the resolution bandwidth is too narrow.

Chapter 4

33

Improving Frequency Resolution and Accuracy
Using a Frequency Counter to Improve Frequency Resolution and Accuracy

c
o
=
=
o
[%2)
4]
z
>

&0
c5
o O
& <
o

L5
=
> ©
=
S
)
-
S
E

34 Chapter 4

_|
=
Q
o
=
>
(@]
)
=
=
=
>
(@]
2
«Q
>S5
=
[2)

Tracking Drifting Signals

35

v
©
c

2

n
o
c

=

b=
=

@]
o

§=

-
o
@®©
S
l_

Step 1.

Step 2.

Step 3.

Step 4.

Step 5.

Step 6.

NOTE

Tracking Drifting Signals
Measuring a Source’s Frequency Drift

Measuring a Source’s Frequency Drift

The analyzer can measure the short- and long-term stability of a
source. The maximum amplitude level and the frequency drift of an
input signal trace can be displayed and held by using the
maximum-hold function. You can also use the maximum hold function if
you want to determine how much of the frequency spectrum a signal
occupies.

This procedure using signal tracking to keep the drifting signal in the
center of the display. The drifting is captured by the analyzer using
maximum hold.

Connect the signal generator to the analyzer input.

Set the signal generator frequency to 300 MHz with an amplitude of
-20 dBm.

Set the analyzer center frequency, span and reference level.

Press Preset, Factory Preset (if present).

Press FREQUENCY Channel, Center Freq, 300, MHz.
Press SPAN X Scale, Span, 10, MHz.

Press AMPLITUDE Y Scale, Ref Level, 10, -dBm.

Place a marker on the peak of the signal and turn signal tracking on:

Press Peak Search.
Press FREQUENCY Channel, Signal Track (On).

Reduce the span to 500 kHz:

Press SPAN, Span Zoom, 500, kHz.

Notice that the signal is held in the center of the display.
Turn off the signal track function:

Press FREQUENCY Channel, Signal Track (Off).

Measure the excursion of the signal with maximum hold:

(ESA) Press View/Trace, Max Hold.
(PSA) Press Trace/View, Max Hold.

As the signal varies, maximum hold maintains the maximum responses
of the input signal.

Annotation on the left side of the screen indicates the trace mode. For
example, ML S2 S3 indicates trace 1 is in maximum-hold mode, trace 2
and trace 3 are in store-blank mode.

36 Chapter5

Step 7.

Step 8.

Figure 5-1

Tracking Drifting Signals
Measuring a Source’s Frequency Drift

Activate trace 2 (trace 2 should be underlined) and change the mode to
continuous sweeping:

(ESA) Press View/Trace, Trace (2).
(PSA) Press Trace/View, Trace (2).
Press Clear Write.

Trace 1 remains in maximum hold mode to show any drift in the signal.

Slowly change the frequency of the signal generator + 50 kHz in 1 kHz
increments. Your analyzer display should look similar to Figure 5-1.

Viewing a Drifting Signal With Max Hold and Clear Write

|IJ.|,|]f"'| |{|] il
Wbl g
i |f']’ | LU;J [LII\ I'lL,-'I.n l""nr'u"iﬂ'l |

]lﬂ

N
I
k

VBH 4.7 kHz

Chapter 5 37

_|
=
Q
o
=
>
(@]
)
=
=
=
>
(@]
2
«Q
>S5
=
[2)

Tracking Drifting Signals
Tracking a Signal

Tracking a Signal

The signal track function is useful for tracking drifting signals that
drift relatively slowly by keeping the signal centered on the display as
the signal drifts. This procedure tracks a drifting signal.

Note that the primary function of the signal track function is to track
unstable signals, not to track a signal as the center frequency of the
analyzer is changed. If you choose to use the signal track function when
changing center frequency, check to ensure that the signal found by the
tracking function is the correct signal.

Step 1. Set the source frequency to 300 MHz with an amplitude of -20 dBm.
Step 2. Set the analyzer center frequency at a 1 MHz offset:

Press Preset, Factory Preset (if present).
Press FREQUENCY Channel, Center Freq, 301, MHz.
Press SPAN X Scale, Span, 10, MHz.

v
©
c

2

n
o
c

=

b=
=

@]
o

§=

-
o
@®©
S

l_

Step 3. Turn the signal tracking function on:

Press FREQUENCY Channel, Signal Track (On).

Notice that signal tracking places a marker on the highest amplitude
peak and then brings the selected peak to the center of the display.
After each sweep the center frequency of the analyzer is adjusted to
keep the selected peak in the center.

Step 4. Turn the delta marker on to read signal drift:
Press Marker, Delta.
Step 5. Tune the frequency of the signal generator in 100 kHz increments.

Notice that the center frequency of the analyzer also changes in
100 kHz increments, centering the signal with each increment.

Figure 5-2 Tracking a Drlftlng Signal (ESA left, PSA right)

Atten 18 dB

I I
arkor s | | L[] [
Losgooamiz | [\ [[[| |
A

Marker a
1.000000 MHz

0.00 dB

VEH 188 kHz

38 Chapter5

<
Q
<
>
(o]
=
(%]
—
]
=
=
]
=
=
®
Q
(%]
c
=
®
3
®
=)
—
[%2]

Making Distortion
Measurements

39

Making Distortion Measurements
Identifying Analyzer Generated Distortion

Identifying Analyzer Generated Distortion

High level input signals may cause analyzer distortion products that
could mask the real distortion measured on the input signal. Using
trace 2 and the RF attenuator, you can determine which signals, if any,
are internally generated distortion products.

Using a signal from a signal generator, determine whether the
harmonic distortion products are generated by the analyzer.

Step 1. Connect the signal generator to the analyzer input.
Step 2. Set the source frequency to 200 MHz with an amplitude of 0 dBm.
Step 3. Set the analyzer center frequency and span:

Press Preset, Factory Preset (if present).
Press FREQUENCY Channel, Center Freq, 400, MHz.
Press SPAN X Scale, Span, 500, MHz.

The signal produces harmonic distortion products (spaced 200 MHz
from the original 200 MHz signal) in the analyzer input mixer as shown
in Figure 6-1.

Figure 6-1 Harmonic Distortion (ESA left, PSA right)

Atten 10 dB

Atten 18 dB

Span
500.0000000 MHz

%)
a2
=
[}
(S
o
S
=
(2]
©
5}
=
c
o
=
S
o
2
2
@]
o
§=
4
©
=

g

YBH 3 MHz

Step 4. Change the center frequency to the value of the first harmonic:
Press Peak Search, Next Peak, Marker -, Mkr - CF.

Step 5. Change the span to 50 MHz and re-center the signal:

Press SPAN X Scale, Span, 50, MHz.
Press Peak Search, Marker -, Mkr — CF.

Step 6. Set the attenuation to 0 dB:

Press AMPLITUDE Y Scale, Attenuation, 0, dB.

40 Chapter 6

Step 7.

Step 8.

Step 9.

Figure 6-2

Making Distortion Measurements
Identifying Analyzer Generated Distortion

To determine whether the harmonic distortion products are generated
by the analyzer, first save the trace data in trace 2 as follows:

(ESA) Press View/Trace, Trace (2), Clear Write.
(PSA) Press Trace/View, Trace (2), Clear Write.

Allow trace 2 to update (minimum two sweeps), then store the data
from trace 2 and place a delta marker on the harmonic of trace 2:

Press View.
Press Peak Search, Marker, Delta.

The analyzer display shows the stored data in trace 2 and the measured
data in trace 1. The AMkr 1 amplitude reading is the difference in
amplitude between the reference and active markers.

Increase the RF attenuation to 10 dB:
Press AMPLITUDE Y Scale, Attenuation, 10, dB.

Notice the AMkr 1 amplitude reading. This is the difference in the
distortion product amplitude readings between 0 dB and 10 dB input
attenuation settings. If the AMkr 1 amplitude absolute value is
approximately 21 dB for an input attenuator change, the distortion is
being generated, at least in part, by the analyzer. In this case more
input attenuation is necessary. See Figure 6-2.

RF Attenuation of 10 dB

#Atten 16 dB

The AMNKr 1 amplitude reading comes from two sources:

1) Increased input attenuation causes poorer signal-to-noise ratio. This
can cause the AMKr 1 to be positive.

2) The reduced contribution of the analyzer circuits to the harmonic
measurement can cause the AMNKr 1 to be negative.

Large AMKr 1 measurements indicate significant measurement errors.
Set the input attenuator to minimize the absolute value of AMr 1.

Chapter 6 41

<
Q
<
>
(@]
o
n
—
o
=
=
o
=)
<
@
Q
n
c
=
@
=
[}
>
—
(2]

%)
a2
=
[}
(S
o
S
=
(2]
©
5}
=
c
o
=
S
o
2
2
@]
o
§=
4
©
=

Step 1.

Figure 6-3

NOTE

Step 2.

Making Distortion Measurements
Third-Order Intermodulation Distortion

Third-Order Intermodulation Distortion

Two-tone, third-order intermodulation distortion is a common test in
communication systems. When two signals are present in a non-linear
system, they can interact and create third-order intermodulation
distortion products that are located close to the original signals. These
distortion products are generated by system components such as
amplifiers and mixers.

For the quick setup TOI measurement example, refer to “Measuring
TOI Distortion with a One-Button Measurement” on page 44.

This procedure tests a device for third-order intermodulation using
markers. Two sources are used, one set to 300 MHz and the other to
301 MHz.

Connect the equipment as shown in Figure 6-3. This combination of
signal generators, low pass filters, and directional coupler (used as a
combiner) results in a two-tone source with very low intermodulation
distortion. Although the distortion from this setup may be better than
the specified performance of the analyzer, it is useful for determining
the TOI performance of the source/analyzer combination. After the
performance of the source/analyzer combination has been verified, the
device-under-test (DUT) (for example, an amplifier) would be inserted
between the directional coupler output and the analyzer input.

Third-Order Intermodulation Equipment Setup

SPECTRUM
ANALYZER

()

IGNAL GENERATOR

(72]

IGNAL GENERATOR

@1

00000 000

300 MHz LOW
PASS FILTER

300 MHz LOW
PASS FILTER DIRECTIONAL

COUPLER

nl7Q1h

The coupler should have a high degree of isolation between the two
input ports so the sources do not intermodulate.

Set one source (signal generator) to 300 MHz and the other source to
301 MHZz, for a frequency separation of 1 MHz. Set the sources equal in
amplitude as measured by the analyzer (in this example, they are set to
-5 dBm).

42 Chapter 6

Step 3.

Step 4.

Step 5.

Step 6.

Step 7.

Step 8.

Step 9.

Step 10.

Figure 6-4

Making Distortion Measurements
Third-Order Intermodulation Distortion

Set the analyzer center frequency and span:

Press Preset, Factory Preset (if present).
Press FREQUENCY Channel, Center Freq, 300.5, MHz.
Press SPAN X Scale, Span, 5, MHz.

Reduce the RBW until the distortion products are visible:
Press BW/Avg, Res BW, |.
Set the mixer level to improve dynamic range:

(ESA) Press AMPLITUDE Y Scale, More, Max Mixer Lvl, —=30, dBm.
(PSA) Press AMPLITUDE Y Scale, More, More, Max Mixer Lvl, =30, dBm.

The analyzer automatically sets the attenuation so that a signal at the
reference level has a maximum value of =30 dBm at the input mixer.

Move the signal to the reference level:

Press Peak Search, Mkr -, Mkr - Ref Lvl.

Reduce the RBW until the distortion products are visible:
Press BW/Avg, Res BW, 1.

Activate the second marker and place it on the peak of the distortion
product (beside the test signal) using the Next Peak key.

Press Marker, Delta, Peak Search, Next Peak.
Measure the other distortion product:
Press Marker, Normal, Peak Search, Next Peak.

Measure the difference between this test signal and the second
distortion product (see Figure 6-4):

Press Delta, Peak Search, Next Peak.

Measuring the Distortion Product

Ref -11.54 dBm Atten 5 dB

Marker a
1.000000 MHz
-68.26 dB

1 \
AR AL
I B A - L‘
" \JF.‘irl\Ijir"u’l,‘_i'f\“'ﬂﬂt..‘hl W LAY o l‘f...,w.‘f\--«.,\,w\,’u_..,‘ll‘,“l.;..l i

VBH 3 kHz

Chapter 6 43

<
Q
<
>
(@]
o
n
—
o
=
=
o
=)
<
@
Q
n
c
=
@
=
[}
>
—
(2]

%)
a2
=
[}
(S
o
S
=
(2]
©
5}
=
c
o
=
S
o
2
2
@]
o
§=
4
©
=

Step 1.

Step 2.

Step 3.

Figure 6-5

Making Distortion Measurements
Measuring TOI Distortion with a One-Button Measurement

Measuring TOI Distortion with a One-Button
Measurement

One-button power measurements are a part of the Power Suite
measurement utility and are standard on all ESA and PSA models.
Power Suite uses preset analyzer states to measure some of the more
common RF power tests. You can modify the preset states in the Power
Suite measurements, giving you the flexibility to modify analyzer
settings. Power Suite also has preset states for cellular, Bluetooth and
WiFi radio formats for fast, accurate and repeatable measurements.

This procedure uses the intermodulation one-button test from the
Power Suite Measure menu to automate the TOl measurement. It is
measuring the TOI performance as in the previous procedure
“Third-Order Intermodulation Distortion” on page 42.

Refer to the second procedure “Third-Order Intermodulation
Distortion” on page 42 of this chapter and follow steps 1 and 2.

Set the analyzer center frequency to 300.5 MHz:

Press Preset, Factory Preset (if present).
Press FREQUENCY Channel, Center Freq, 300.5, MHz.

Measure the intermodulation products using the Power Suite
measurement tools:

Press Measure, More, Intermod (TOI).

Measuring the Distortion Products with Power Suite

Ch Freq 3865 MHz Trig Free
Intermod {TOD)

44 Chapter 6

Step 1.

Step 2.

Step 3.

Step 4.

Step 5.

Step 6.

Step 7.

Step 8.

Making Distortion Measurements

Measuring Harmonics and Harmonic Distortion with a One-Button
Measurement

Measuring Harmonics and Harmonic
Distortion with a One-Button Measurement

This procedure measures the harmonics of the 10 MHz reference output
signal. The harmonics and total harmonic distortion are measured
using the one-button automated harmonic measurement.

Preset the analyzer:
Press Preset, Factory Preset (if present).

Connect the ESA 10 MHz reference output from the rear of the
analyzer to the INPUT. For PSA turn the internal 10 MHz reference
signal on:

(PSA) Press System, Reference, 10MHz Out (On).
Set the analyzer reference level, center frequency and RBW.

Press AMPLITUDE Y Scale, Ref Level, 10, dBm.
Press FREQUENCY Channel, Center Freq, 10, MHz.
Press BW/Avg, Res BW, 300, kHz.

Run the Power Suite harmonic distortion measurement:

Press Measure, More, Harmonic Distortion.

Set the number of harmonic distortion measurement averages to 3:
Press Meas Setup, Avg Number (On), 3, Enter

Set the average mode to exponential to continuously update the result
after each subsequent sweep:

Press Meas Setup, Avg Mode (Exp).

Repeat average mode clears the averaged result after the specified
number of averages is complete.

Optimize the analyzer’'s dynamic range settings:
Press Meas Setup, Optimize Ref Level.
Display the total harmonic distortion:

(ESA) Press View/Trace, Harmonics & THD.
(ESA) Press Trace/View, Harmonics & THD.

Chapter 6 45

<
Q
<
>
(@]
o
n
—
@]
=
=
o
=)
<
D
Q
n
c
=
@D
=
D
>
—
(2]

%)
a2
=
[}
(S
o
S
=
(2]
©
5}
=
c
o
=
S
o
2
2
@]
o
§=
4
©
=

Figure 6-6

NOTE

Step 9.

Making Distortion Measurements

Measuring Harmonics and Harmonic Distortion with a One-Button
Measurement

Measuring the Harmonic Distortion
' Ch Freq —-——- Trig Free
Harmonic Distortion f

Amplitude

|3 c

-11114 dBs

The amplitudes of the harmonics are listed relative to the fundamental
frequency.

An asterisk (*) appearing next to the total harmonic distortion value
indicates that the ideal resolution bandwidths for one or more
harmonics could not be set. These harmonics for which the resolution
bandwidths could not be set are flagged with an asterisk beside their
amplitude value. The measurement is still accurate as long as the
signal has little or no modulation.

Exit out of the harmonic distortion measurement:

Press MEASURE, Meas Off.

46 Chapter 6

Measuring Noise

=
¢}
Q
wn
c
=
=]

(@]
Z
)
[%2)
(9]

47

Measuring Noise
Measuring Signal-to-Noise

Measuring Signal-to-Noise

Signal-to-noise is a ratio used in many communication systems as an
indication of noise in a system. Typically the more signals added to a
system adds to the noise level, reducing the signal-to-noise ratio
making it more difficult for modulated signals to be demodulated. This
measurement is also referred to as carrier-to-noise in some
communication systems.

The signal-to-noise measurement procedure below may be adapted to
measure any signal in a system if the signal (carrier) is a discrete tone.
If the signal in your system is modulated, it is necessary to modify the
procedure to correctly measure the modulated signal level.

In this example the 50 MHz amplitude reference signal is used as the
fundamental signal. The amplitude reference signal is assumed to be
the signal of interest and the internal noise of the analyzer is measured
as the system noise. To do this, you need to set the input attenuator
such that both the signal and the noise are well within the calibrated
region of the display.

Step 1. Preset the analyzer:
Press Preset, Factory Preset (if present).
Step 2. Enable the internal 50 MHz amplitude reference signal as follows:

(PSA)
Press Input/Output, Input Port, Amptd Ref.

(ESA E4401B and E4411B)
Press Input/Output, Amptd Ref ().

(ESA E4402B, E4403B, E4404B, E4405B, E4407B and E4408B)
Connect a cable from the front panel AMPTD REF OUT to the analyzer
RF input:

Press Input/Output, Amptd Ref Out (On).

Step 3. Set the center frequency, span, reference level and attenuation:

Press FREQUENCY Channel, Center Freq, 50, MHz.
Press SPAN X Scale, Span, 1, MHz.

Press AMPLITUDE Y Scale, Ref Level, -10, dBm.
Press AMPLITUDE Y Scale, Attenuation, 40, dB.

Step 4. Place a marker on the peak of the signal and then place a delta marker
in the noise at a 200 kHz offset:

Press Peak Search.
Press Marker, Delta, 200, kHz.

©
2
o
Z
o
c
=
S
0
©
[}
p=

Step 5. Turn on the marker noise function to view the signal-to-noise

48 Chapter7

Figure 7-1

NOTE

Measuring Noise
Measuring Signal-to-Noise

measurement results:

(ESA) Press Marker, More, Function, Marker Noise.
(PSA) Press Marker Fctn, Marker Noise.

Measuring the Signal-to-Noise

#Atten 48 dB

Marker a
200.000 kHz

V‘W ""\f‘ i"~r‘J’11f'fll1\l| I,ud"\ l|'ﬂ| hlww i'l‘| |1'f‘\||]||ﬂ|,.||.

YBH 180 kHz

Read the signal-to-noise in dB/Hz, that is with the noise value
determined for a 1 Hz noise bandwidth. If you wish the noise value for a
different bandwidth, decrease the ratio by 10x log(BW) . For example, if
the analyzer reading is =70 dB/Hz but you have a channel bandwidth of
30 kHz:

SIN = —70 dB/Hz + 10 x log(30 kHz) = —25.23 dB/ (30 kHz)

The display detection mode is now average. If the delta marker is closer
than one quarter of a division away from the edge of the response to the
discrete signal, the amplitude reference signal in this case, there is a
potential for error in the noise measurement. See “Measuring Noise
Using the Noise Marker” on page 50.

Chapter 7 49

=
D
Q
n
c
=
=]

(@]
Z
)
(%)]
(9]

©
2
o
Z
o
c
=
S
0
©
[}
p=

Step 1.

Step 2.

Step 3.

NOTE

Step 4.

Measuring Noise
Measuring Noise Using the Noise Marker

Measuring Noise Using the Noise Marker

This procedure uses the marker function, Marker Noise, to measure
noise in a 1 Hz bandwidth. In this example the noise marker
measurement is made near the 50 MHz reference signal to illustrate
the use of Marker Noise.

Enable the internal 50 MHz reference signal of the analyzer:

(PSA)
Press Input/Output, Input Port, Amptd Ref.

(ESA E4401B and E4411B)
Press Input/Output, Amptd Ref (On).

(ESA E4402B, E4403B, E4404B, E4405B, E4407B and E4408B)
Connect a cable from the front panel AMPTD REF OUT to the INPUT:
Press Input/Output, Amptd Ref Out (Cn).

Preset the analyzer and modify the analyzer settings:

Press Preset, Factory Preset (if present).

Press FREQUENCY Channel, Center Freq, 49.98, MHz.
Press SPAN X Scale, Span, 100, kHz.

Press AMPLITUDE Y Scale, Ref Level, =10, dBm.
Press AMPLITUDE Y Scale, Attenuation, 40, dB.

Activate the noise marker:

(ESA) Press Marker, More, Function, Marker Noise.
(PSA) Press Marker Fctn, Marker Noise.

Note that display detection automatically changes to “Avg”; average
detection calculates the noise marker from an average value of the
displayed noise. Notice that the noise marker floats between the
maximum and the minimum displayed noise points. The marker
readout is in dBm (1 Hz) or dBm per unit bandwidth.

For noise power in a different bandwidth, add 10 x log(BW) . For example,
for noise power in a 1 kHz bandwidth, dBm (1 kHz), add 10 x log(1000) or
30 dB to the noise marker value.

ESA average detection is available for firmware revisions A.08.00 and
later. Earlier firmware revisions earlier use sample detection for
marker noise calculations.

Reduce the variations of the sweep-to-sweep marker value by
increasing the sweep time:

Press Sweep, Sweep Time, 3, s.

50 Chapter7

Step 5.

Step 6.

Figure 7-2

2000040 Mz

Step 7.

Measuring Noise
Measuring Noise Using the Noise Marker

Increasing the sweep time when the average detector is enabled allows
the trace to average over a longer time interval, thus reducing the
variations in the results (increases measurement repeatability).

Move the marker to 50 MHz (left display Figure 7-2):

Press Marker.
Rotate the front-panel knob until the noise marker reads 50 MHz.

The noise marker value is based on the mean of 5% of the total number
of sweep points centered at the marker. The points that are averaged
span one-half of a division. Notice that the marker does not go to the
peak of the signal because there are not enough points at the peak of
the signal. The noise marker is also averaging points below the peak
due to the narrow RBW.

Widen the resolution bandwidth to allow the marker to make a more
accurate peak power measurement using the noise marker:

Press BW/Avg, Res BW, 10, kHz.
Press Marker.

Noise Marker (Left - ESA 1 kHz RBW, Right - PSA 10 kHz RBW))
5k 7 rl E

Marker
50.000000 MHz

PAva |Noise -B5.47 dBm(le)

VEH 18 kHz

YEW 18 kHz

Set the analyzer to zero span at the marker frequency:

Press Mkr -, Mkr - CF.
Press SPAN X Scale, Zero Span.
Press Marker.

Note that the marker amplitude value is now correct since all points
averaged are at the same frequency and not influenced by the shape of
the bandwidth filter.

Remember that the noise marker calculates a value based on an
average of the points around the frequency of interest. Generally when
making power measurements using the noise marker on discrete
signals, first tune to the frequency of interest and then make your
measurement in zero span (time-domain).

Chapter 7 51

=
¢}
Q
wn
c
=
=]

(@]
Z
)
[%2)
(9]

©
2
o
Z
o
c
=
S
0
©
[}
p=

Step 1.

Step 2.

Step 3.

Step 4.

Step 5.

Step 6.

Measuring Noise
Measuring Noise-Like Signals Using Marker Pairs

Measuring Noise-Like Signals Using Marker
Pairs

Marker pairs let you measure power over a frequency span. The
markers allow you to easily and conveniently select any arbitrary
portion of the displayed signal. However, while the analyzer, when
autocoupled, makes sure the analysis is power-responding (rms
voltage-responding), you must set all of the other parameters.

Preset the analyzer:
Press Preset, Factory Preset (if present).
Set the center frequency, span, reference level and attenuation:

Press FREQUENCY Channel, Center Freq, 50, MHz.
Press SPAN X Scale, Span, 100, kHz.

Press AMPLITUDE Y Scale, Ref Level, -20, dBm.
Press AMPLITUDE Y Scale, Attenuation, 40, dB.

Turn on the marker span pair to setup the band power measurement in
step 5:

Press Marker, Span Pair, Span Pair (Span), 40, kHz.
Set the resolution and video bandwidths:

Press BW/Avg, Res BW, 1, kHz.
Press BW/Avg, Video BW, 10, kHz.

Common practice is to set the resolution bandwidth from 1% to 3% of
the measurement (marker) span, 40 kHz in this example. For ESA, the
video bandwidth should be at least ten times wider than the resolution
bandwidth.

Measure the total noise power between the markers:

(ESA) Marker, More, Function, Band Power.
(PSA) Marker Fctn, Band/Intvl.

Add a discrete tone to see the effects on the reading. Enable the internal
50 MHz amplitude reference signal of the analyzer as follows:

(PSA)
Press Input/Output, Input Port, Amptd Ref.

(ESA E4401B and E4411B)
Press Input/Output, Amptd Ref ().

(ESA E4402B, E4403B, E4404B, E4405B, E4407B and E4408B)
Connect a cable from the front panel AMPTD REF OUT to the analyzer
RF input:

Press Input/Output, Amptd Ref Out (On).

52 Chapter7

Measuring Noise
Measuring Noise-Like Signals Using Marker Pairs

Figure 7-3 Band Power Marker Power Measurement (ESA left, PSA right)

Ref —28 dBm #Atten 48 dB

Marker Span
48.000 kHz
Band Pwr -24.99 dBm

M e

#VEBH 18 kHz

Step 7. Set the marker span pair to Cent er to move the markers (set at 40 kHz
span) around without changing the span. Use the front-panel knob to
move the band power markers and note the change in the power
reading:

Press Marker, Span Pair (Center), then rotate front-panel knob.

NOTE You can also use Delta Pair to set the measurement start and stop points
independently.

=
¢}
Q
wn
c
=
=]
(@]
Z
)
[%2)
(9]

Chapter 7 53

©
2
o
Z
o
c
=
S
0
©
[}
p=

Step 1.

Step 2.

Step 3.

Step 4.

Step 5.

Step 6.

Measuring Noise
Measuring Noise-Like Signals Using the Channel Power Measurement

Measuring Noise-Like Signals Using the
Channel Power Measurement

You may want to measure the total power of a noise-like signal that
occupies some bandwidth. Typically, channel power measurements are
used to measure the total (channel) power in a selected bandwidth for a
modulated (noise-like) signal. Alternatively, to manually calculate the
channel power for a modulated signal, use the noise marker value and
add 10 x log(channel BW) . However, if you are not certain of the
characteristics of the signal, or if there are discrete spectral components
in the band of interest, you can use the channel power measurement.
This example uses the noise of the analyzer, adds a discrete tone, and
assumes a channel bandwidth of 50 kHz. If desired, a specific signal
may be substituted.

Preset the analyzer:

Press Preset, Factory Preset (if present).

Set the center frequency:

Press FREQUENCY Channel, Center Freq, 50, MHz.
Start the channel power measurement:

Press MEASURE, Channel Power.

Configure the display to show the combined spectrum view with
channel power limits (span highlighted in blue):

(ESA) Press View/Trace, Combined.
(PSA) Press Trace/View, Combined.

Turn averaging on:
Press Meas Setup, Avg Number (On).

Add a discrete tone to see the effects on the reading. Enable the internal
50 MHz amplitude reference signal of the analyzer as follows:

(PSA)
Press Input/Output, Input Port, Amptd Ref.

(ESA E4401B and E4411B)
Press Input/Output, Amptd Ref (On).

(ESA E4402B, E4403B, E4404B, E4405B, E4407B and E4408B)
Connect a cable from the front panel AMPTD REF OUT to the analyzer
RF input:

Press Input/Output, Amptd Ref Out (Cn).

54 Chapter7

Measuring Noise
Measuring Noise-Like Signals Using the Channel Power Measurement

Step 7. Optimize the analyzer reference level setting:
Press Meas Setup, Optimize Ref Level.

Your display should be similar to Figure 7-4.

Figure 7-4 Measuring Channel Power (ESA left, PSA right)

Ch Freq 50 bz Trig Free Ch Freq 50 MHz Trig Free
Channel Power Auverages: 18]

Number of Averages 18

Channel Poner -

[
I
L“"llrk'l"\rlﬂlﬂw lr""‘Jﬁelﬁr"\f'lf“f"’. i

25.8
odBm,

!

L s i
H

Channel Power Power Spectral Density

-24.99 dBm /2.0000 MHz -86.08 dBm/Hz

Channel Power Power Spectral Density

-20.18 dBm /2.0000 MHz -83.19 dBm/Hz

The power reading is essentially that of the tone; that is, the total noise
power is far enough below that of the tone that the noise power
contributes very little to the total.

The algorithm that computes the total power works equally well for
signals of any statistical variant, whether tone-like, noise-like, or
combination.

=
D
Q
n
c
=
=]

(@]
Z
S,
(%)]
(9]

Chapter 7 55

Measuring Noise
Measuring Noise-Like Signals Using the Channel Power Measurement

©
2
o
Z
o
c
=
S
0
©
[}
p=

56 Chapter7

<
)
=
=}
(o]
=
e
b
@
>
@
o
<
@
b
[%)]
c
@
3
@
=1
(7]

Making Time-Gated
Measurements

57

%
2
c
)
£
o
e
S
0
@©
]
=
=
D
2
[1+]
Q
o)
E
'—
)
£
X
©
=

Making Time-Gated Measurements
Generating a Pulsed-RF FM Signal

Generating a Pulsed-RF FM Signal

Traditional frequency-domain spectrum analysis provides only limited
information for certain signals. Examples of these difficult-to-analyze
signal include the following:

e Pulsed-RF

« Time multiplexed

= Interleaved or intermittent

« Time domain multiple access (TDMA) radio formats
< Modulated burst

The time gating measurement examples use a simple
frequency-modulated, pulsed-RF signal. The goal is to eliminate the
pulse spectrum and then view the spectrum of the FM carrier as if it
were continually on, rather than pulsed. This reveals low-level
modulation components that are hidden by the pulse spectrum.

Refer back to these first three steps to setup the pulse signal, the
pulsed-RF FM signal and the oscilloscope settings when performing the
gated LO procedure (page 62), the gated video procedure (page 64) and
gated FFT procedure (page 66).

For an instrument block diagram and instrument connections see
“Connecting the Instruments to Make Time-Gated Measurements” on
page 61.

Step 1. Setup the pulse signal with a period of 5 ms and a width of 4 ms:
There are many ways to create a pulse signal. This example
demonstrates how to create a pulse signal using a pulse generator or by
using the internal function generator in the ESG. See Table 8-1 for
setup information of a pulse generator and Table 8-2 for setup
information of the internal generator of the ESG. Select either the pulse
generator or a second ESG to create the pulse signal. You need two
ESGs if you want to use the ESG internal function generator to create a
pulse signal.

Table 8-1 81100 Family Pulse Generator Settings
Period 5 ms (or pulse frequency equal to 200 Hz)
Pulse width 4 ms
High output level 25V
Waveform pulse
Low output level 25V
Delay 0 or minimum

58 Chapter 8

Making Time-Gated Measurements
Generating a Pulsed-RF FM Signal

Table 8-2 ESG #2 Internal Function Generator (LF OUT) Settings
LF Out Source FuncGen
LF Out Waveform Pulse
LF Out Period 5ms
LF Out Width (pulse 4 ms
width)
LF Out Amplitude 25Vp
LF Out On
RF On/Off Off
Mod On/Off On

Step 2. Set up ESG #1 to transmit a pulsed-RF signal with frequency
modulation. Set the FM deviation to 1 kHz and the FM rate to 50 kHz:

ESG #1 generates the pulsed FM signal by frequency modulating the
carrier signal and then pulse modulating the FM signal. The pulse
signal created in step 1 is connected to the EXT 2 | NPUT (on the front of
ESG #1). The ESG RF QUTPUT is the pulsed-RF FM signal to be
analyzed by the spectrum analyzer.

Table 8-3 ESG #1 Instrument Connections
Frequency 40 MHz
Amplitude 0dBm
Pulse On
Pulse Source Ext2 DC
FM On
FM Path 1
FM Dev 1 kHz
FM Source Internal
FM Rate 50 kHz
RF On/Off On
Mod On/Off On

Chapter 8 59

<
o
=
=]
(o]
=
e
b
@
>
@
o
<
@
0
[%)]
c
@
3
@
=1
(7]

Making Time-Gated Measurements
Generating a Pulsed-RF FM Signal

Step 3. Set up the oscilloscope to view the trigger, gate and RF signals (see
Figure 8-1 for an example of the oscilloscope display):

Table 8-4 Agilent Infiniium Oscilloscope with 3 or more input channels:
Instrument Connections

Timebase 1 ms/div

%
2
c
)
£
o
e
S
0
@©
]
=
=
D
2
[1+]
Q
o)
E
'—
)
£
X
©
=

Channel 1 ON, 2 V/div, OFFSET =2V, DC coupled, 1 M Q input,
connect to the pulse signal (ESG LF QUTPUT or pulse
generator QUTPUT). Adjust channel 1 settings as
necessary.

Channel 2 ON, 500 mV/div, OFFSET =2V, DC coupled, 1 M Q
input, connect to the ESA GATEEH SWP QUT
connector or PSA TR GGER 2 QUT connector on the
spectrum analyzer. Adjust channel 2 settings as
needed when gate is active.

Channel 3 ON, 500 mV/div, OFFSET =0V, DC coupled, 50 Q
input, connect to the ESG RF QUTPUT pulsed-RF
signal. Adjust channel 3 settings as necessary.

Channel 4 OFF
Trigger Edge, channel 1, level = 1.5V, or as needed
Figure 8-1 Viewing the Gate Timing with an Oscilloscope

File Control Setup Messure Analyze Utilies Help 12:35 PM Eile Contol Setp Meeswe Analyze Uilies Help 12:45 P

oo/t /N | ECER o] i =

Figure 8-1 oscilloscope channels:
1. Channel 1 (left display, top trace) - the trigger signal.

2. Channel 2 (left display, bottom trace) - the gate signal (gate signal is
not be active until the gate is on in the spectrum analyzer).

3. Channel 3 (right display) - the RF output of the signal generator.

60 Chapter 8

Making Time-Gated Measurements
Connecting the Instruments to Make Time-Gated Measurements

<
)
=
=]
(o]
=
e
b
@
>
@
o
<
@
0
[%)]
c
@
3
@
=1
(7]

|
Connecting the Instruments to Make
Time-Gated Measurements
Figure 8-2 shows a block diagram of the test setup. ESG #1 produces a
pulsed FM signal by using an external pulse signal. The external pulse
signal is connected to the front of the ESG #1 to the EXT 2 | NPUT to
control the pulsing. The pulse signal is also used as the trigger signal.
The oscilloscope is useful for illustrating timing interactions between
the trigger signal and the gate. PSA Gate View could be used in place of
the oscilloscope.
Using this measurement setup allows you to view all signal spectra on
the spectrum analyzer and all timing signals on the oscilloscope. This
setup is helpful when you perform gated measurements on unknown
signals.
Figure 8-2 Instrument Connection Diagram

(ESA) (ESA)

GATE TRIG/ GATE/HI

EXTTRIG IN SWP OUT

Pulse Generator or (PSA) (PSA)
ESG #2 Signal Generator TRIGGERN | TRIGGER 2 QUT
(Pulsed Signal) ESA or PSA Oscilloscope
(ESG) LF OUTPUT Spectrum Analyzer
(Pulse Gen) OUTPUT
RF INPUT 4
VW _EXT 2 INPUT (Front)
ESG #1 Signal Generator |re output

(FM Signal)

Pulsed FM Signal

Chapter 8 61

%
2
c
)
£
o
e
S
0
@©
]
=
=
D
2
[1+]
Q
o)
E
'—
)
£
X
©
=

Making Time-Gated Measurements
Gated LO Measurement (PSA)

Gated LO Measurement (PSA)

This procedure utilizes gated LO to gate the FM signal. For concept and
theory information about gated LO see “How Time Gating Works” on
page 135.

Step 1. Set the PSA center frequency, span and reference level:

Press FREQUENCY Channel, Center Freq, 40, MHz.
Press SPAN X Scale, Span, 500, kHz.
Press AMPLITUDE Y Scale, Ref Level, =15, dBm.

In Figure 8-4 (left), the moving signals are a result of the pulsed signal.
Using delta markers with a time readout, notice that the period of the
spikes is at 5 ms (the same period as the pulse signal). Using time
gating, these signals are be blocked out, leaving the original FM signal.

Step 2. Set the gate source to the rear external trigger input:

Press Sweep, Gate Setup, Gate Source, Ext Rear.

Step 3. Set the gate delay to 2 ms and the gate length to 1 ms. Check that the

gate trigger is set to positive:

Press Sweep, Gate Setup, Delay, 2, ms.
Press Sweep, Gate Setup, Length, 1, ms.
Press Sweep, Gate Setup, Polarity (Pos).

Step 4. Use the PSA gate view display to confirm the gate “on” time is during

Figure 8-3

the RF burst interval (alternatively you could also use the oscilloscope
to view the gate settings):

Press Sweep, Gate Setup, Gate View (On).

Viewing the PSA Gate Settings with Gated LO

5 dBm Atten 16 dB

\BW 4.7 kHz

In Figure 8-3 the gray vertical line (the far left line outside of the RF
envelope) represents the location equivalent to a zero gate delay.

62 Chapter 8

NOTE

Step 5.

Figure 8-4

Making Time-Gated Measurements
Gated LO Measurement (PSA)

In Figure 8-3 the vertical green parallel bars represent the gate
settings. The first (left) bar is set at the delay time while the second
(right) bar is set at the gate length, measured from the first bar. The
trace of the signal in this time-domain view is the RF envelope. The
gate signal is triggered off of the positive edge of the trigger signal.

When positioning the gate, a good starting point is to have it extend
from 20% to 80% of the way through the pulse (for the PSA with
linear-phase RBW filters).

While gate view mode is on, move the gate delay, length and polarity
around. Notice the changes in the vertical gate bars while making your
changes. Set the gate delay, length and polarity back to the step 3
settings.

The PSA time gate triggering mode uses positive and negative edge
triggering. Level triggering is not available.

Turn the gate view off and enable the gate settings (see the right-side
display in Figure 8-4):

Press Sweep, Gate Setup, Gate View (Off).
Press Sweep, Gate (On).

Pulsed-RF FM Signal (Left), Gated FM Signal (Right)

tef -15 dBm Atten 10 dB Ref -15 dBm Atten 18 dB

HJW | ,,I |'l|“lr“‘J

Step 6.

w '. W I'\ W |1J U“"' S '*Jl|'ﬂh"" | I!f i *“'Ullw‘.\'n'

\
\

1
J I

YEH 4.7 kHz : 4. VBM 4.7 kHz

Turn off the pulse modulation on ESG #1 by pressing Pulse, Pulse so
that Off is selected.

Notice that the gated spectrum is much cleaner than the ungated
spectrum (as seen in Figure 8-4). The spectrum you see with the gate on
is the same as a frequency modulated signal without being pulsed. The
displayed spectrum does not change and in both cases, you can see the
two low-level modulation sidebands caused by the narrow-band FM.

Chapter 8 63

<
)
=
=}
(o]
=
e
b
@
>
@
o
<
@
b
[%)]
c
@
3
@
=1
(7]

%
2
c
)
£
o
e
S
0
@©
]
=
=
D
2
[1+]
Q
o)
E
'—
)
£
X
©
=

Step 1.
Step 2.
NOTE
Figure 8-5

Making Time-Gated Measurements
Gated Video Measurement (ESA)

Gated Video Measurement (ESA)

This procedure utilizes gated video to gate the FM signal. For concept
and theory information about gated video see “How Time Gating
Works” on page 135.

Set the ESA center frequency, span and reference level:

Press FREQUENCY Channel, Center Freq, 40, MHz.
Press SPAN X Scale, Span, 500, kHz.
Press AMPLITUDE Y Scale, Ref Level, 0, dBm.

Set analyzer sweep time to 2005 ms:
Press Sweep, Sweep Time, 2005, ms.

For gated video, the calculated sweep time should be set to at least

sweep points x PRI (pulse repetition interval) to ensure that the gate is on at least
once during each of the 401 sweep points. In this example, the PRI is

5 ms, so you should set the sweep time to 401 times 5 ms, or 2005 ms. If
the sweep time is set too fast, some trace points may show values of
zero power or other incorrect low readings. If the trace seems
incomplete or erratic, try a longer sweep time.

Good practices for determining the minimum sweep time for
gated video:

In the event that the signal is not noisy, the sweep time can be set to
less than # sweep points x PRI (pulse repetition interval) (as calculated above).
Instead of using PRI in the previous sweep time calculation, we can use
the “gate off time” where sweep time equals # sweep points x gate off time. 1IN
our example we could use a sweep time of 401 points times 4 ms or
1.604 s. Increase the width of video bandwidth to improve the
probability of capturing the pulse using “gate off time”. If trace points
are still showing values of zero power, increase the sweep time by small
increments until there are no more dropouts.

YBH 3 kHz

64 Chapter 8

Making Time-Gated Measurements
Gated Video Measurement (ESA)

Step 3. Set the gate delay to 2 ms and the gate length to 1 ms. Check that the
gate control is set to edge with a positive trigger:

Press Sweep, Gate, Gate Control (Edge).
Press Edge Gate, Slope (Pos).

Press Gate Delay, 2, ms.

Press Gate Length, 1, ms.

<
)
=
=}
(o]
=
e
b
@
>
@
o
<
@
b
[%)]
c
@
3
@
=1
(7]

Step 4. Turn the gate on:

Press Sweep, Gate, Gate (On).

Figure 8-6 Viewing the FM Signal of a Pulsed RF Signal using Gated Video

VEW 3 kHz

Step 5. Notice that the gated spectrum is much cleaner than the ungated
spectrum (as seen in Figure 8-5). The spectrum you see is the same as a
frequency modulated signal without being pulsed. To prove this, turn
off the pulse modulation on ESG #1 by pressing Pulse, Pulse so that Off
is selected. The displayed spectrum does not change.

Step 6. Check the oscilloscope display and ensure that the gate is positioned
under the pulse. The gate should be set so that it is on somewhere
between 25% to 80% of the pulse. If necessary, adjust gate length and
gate delay. Figure 8-7 shows the oscilloscope display when the gate is
positioned correctly (the bottom trace).

Figure 8-7 The Oscilloscope Display

L o] e =T H

Chapter 8 65

%
2
c
)
£
o
e
S
0
@©
]
=
=
D
2
[1+]
Q
o)
E
'—
)
£
X
©
=

Step 1.

Step 2.

Step 3.

Figure 8-8

NOTE

Making Time-Gated Measurements
Gated FFT Measurement (PSA)

Gated FFT Measurement (PSA)

This procedure utilizes gated FFT to gate the FM signal. For concept
and theory information about gated FFT see “How Time Gating Works”
on page 135.

Set the PSA center frequency, span and reference level:

Press FREQUENCY Channel, Center Freq, 40, MHz.
Press SPAN X Scale, Span, 500, kHz.
Press AMPLITUDE Y Scale, Ref Level, =15, dBm.

Set the trigger to the external rear trigger input:
Press Trig, Ext Rear.

Select the minimum resolution bandwidth required:
Press BW/Avg, Res BW (Auto).

The duration of the analysis required is determined by the RBW. Divide
1.83 (always constant) by 4 ms to calculate the minimum RBW. The
pulse width in our case is 4 ms so we need a minimum RBW of 458 Hz.
In this case because the RBW is so narrow let the analyzer choose the
RBW for the current analyzer settings (span). Check that the RBW is
greater than 458 Hz.

With the above PSA settings, the RBW should be 4.7 kHz. Note that the
measurement speed is faster than the gated LO example. Typically
gated FFT is faster than gated LO for spans less than 10 MHz.

Vary the RBW settings and note the signal changes shape as the RBW
transitions from 1 kHz to 300 Hz.

Viewing the Gated FFT Measurement Results from the PSA

Atten 18 dB

If the trigger event needs to be delayed use the Trig Delay function under
the Trig menu. It is recommended to apply some small amount of trigger
delay to allow time for the pulse modulator to settle.

66 Chapter 8

<
@
D
7]
c
=
)
1=
Q
5
Q)
o
3
3
c
3.
o
2
o
=}
7]

Measuring Digital
Communications Signals

67

%
c
(]

i

L
c
=
S
S
@]

®)

I

=y

(@]
o
=

=
=
7
@
5]

=

NOTE

Step 1.

Step 2.

Step 3.

Step 4.

Step 5.

Measuring Digital Communications Signals
Making Burst Power Measurements

Making Burst Power Measurements

PSA and ESA spectrum analyzers make power measurements on
digital communication signals fast and repeatable by providing a
comprehensive suite of power-based one-button automated
measurements with pre-set standards-based format setups. The
automated measurements also include pass/fail functionality that allow
the user to quickly check if the signal passed the measurement.

ESA spectrum analyzer sweep times: In zero-span, ESA can sweep as
fast as 10 us with 2 points displayed. For 101 points, the minimum
sweep time is 1 ms. Option AYX or B7D is recommended when faster
sweep times are required.

The following example demonstrates how to make a burst power
measurement on a Bluetooth signal broadcasting at 2.402 GHz.

Using an ESG, setup a Bluetooth signal transmitting DH1 packets
continuously at 2.402 GHz and -10 dBm and connect the RF OUTPUT
to the spectrum analyzer RF INPUT.

Preset the analyzer, set the analyzer center frequency to 2.402 GHz:

Press Preset, Factory Preset (if present).
Press FREQUENCY Channel, Center Freq, 2.402, GHz.

Set the analyzer radio mode to BluetoothO and check to make sure
packet type DH1 is selected:

Press Mode Setup, Radio Std, More, Bluetooth.
Press Mode Setup, Radio Std Setup, Packet Type (DH1).

Select the burst power one-button measurement from the measure
menu and optimize the reference level:

Press MEASURE, More, Burst Power.
Press Meas Setup, Optimize Ref Level.

View the results of the burst power measurement using the full screen
(See Figure 9-1):

Press Display, Full Screen.

68 Chapter9

Figure 9-1
NOTE
Step 6.
NOTE
Step 7.
Step 8.

Measuring Digital Communications Signals
Making Burst Power Measurements

Full Screen Display of Burst Power Measurement Results

#Atten & dB

#WBH 50 MHz

Amplitude Threshold

CMea Width)
-12.47 dBm

Current Data

Press the Return key to exit the full screen display without changing
any parameter values.

Select one of the following three trigger methods to capture the bursted
signal (RF burst is recommended, if available):

Press Trig, RF Burst.

For more information on trigger selections see “Trigger Concepts” on
page 153.

Although the trigger level allows the analyzer to detect the presence of
a burst, the time samples contributing to the burst power measurement
are determined by the threshold level, as described next.

Set the relative threshold level above which the burst power
measurement is calculated:

Press Meas Setup, Threshold LvI (Rel), -10, dB.

The burst power measurement includes all points above the threshold
and no points below. The threshold level is indicated on the display by
the green horizontal line (for video triggering it is the upper line). In
this example, the threshold level has been set to be 10 dB below the
relative level of the burst. The mean power of the burst is measured
from all data above the threshold level.

Set the burst width to measure the central 200 us of the burst:

Press Meas Setup, Meas Method, Measured Burst Width, Burst Width
(Man), 200, ps.

The burst width is indicated on the screen by two vertical white lines.
Manually setting the burst width allows you to make it a long time
interval (to include the rising and falling edges of the burst) or to make
it a short time interval, measuring a small central section of the burst.

Chapter 9 69

<
@
D
7]
c
=
)
1=
Q
5
Q)
o
3
3
c
3.
o
2
o
=}
7]

%
c
(]

i

L
c
=
S
S
@]

®)

I

=y

(@]
o
=

=
=
7
@
5]

=

NOTE

NOTE

Step 9.

Figure 9-2

Measuring Digital Communications Signals
Making Burst Power Measurements

If you set the burst width manually to be wider than the screen’s
display, the vertical white lines move off the edges of the screen. This
could give misleading results as only the data on the screen can be
measured.

The BluetoothO standard states that power measurements should be
taken over at least 20% to 80% of the duration of the burst.

Increase the sweep time to display more than one burst at a time:
Press Sweep, Sweep Time, 6200, us (or 6.2, ms).

The screen display shows several bursts in a single sweep as in
Figure 9-2. The burst power measurement measures the mean power of
the first burst, indicated by the vertical white lines.

Setting Burst Width (Left) Displaying Multiple Bursts (Right)

DHL Ch Freq 2.482 GHz Trig RF B |DHL Ch Freq 2.402 GHz Trig RF B

Burst Power

Full Burst Hidth:

NOTE

=Bluetooth [N |G. oo =Bluetooth |
Sweep Time 6.200 ms

.74 r;_iE'im #Atten G dB

LH*'*["'\“||"N*" Mﬁ"h‘"r""'lﬂ'mlj l\ﬁm‘r‘h“u'p., g

#UBH 58 MHz Sysen BAE) #UBH 58 MHz

Amplitude Threshold]] Amplitude Threshold
Current Data (Me Jurst Midthy Current Data

Output Pur Max Pt i Output

715- o 7 d ‘ " 5 ¥ .

Although the burst power measurement still runs correctly when
several bursts are displayed simultaneously, the timing accuracy of the
measurement is degraded. For the best results (including the best
trade-off between measurement variations and averaging time), it is
recommended that the measurement be performed on a single burst.

70 Chapter9

NOTE

Step 1.

Step 2.

Step 3.

Step 4.

Measuring Digital Communications Signals
Making Statistical Power Measurements (CCDF)

Making Statistical Power Measurements
(CCDF)

CCDF can be measured with ESA-E series analyzers with option AYX
or B7D and with all PSA series analyzers.

Complementary cumulative distribution function (CCDF) curves
characterize a signal by providing information about how much time
the signal spends at or above a given power level. The CCDF
measurement shows the percentage of time a signal spends at a
particular power level. Percentage is on the vertical axis and power (in
dB) is on the horizontal axis.

All CDMA signals, and W-CDMA signals in particular, are
characterized by high power peaks that occur infrequently. It is
important that these peaks are preserved otherwise separate data
channels can not be received properly. Too many peak signals can also
cause spectral regrowth. If a CDMA system works well most of the time
and only fails occasionally, this can often be caused by compression of
the higher peak signals.

The following example shows how to make a CCDF measurement on a
W-CDMA signal broadcasting at 1.96 GHz.

Using an ESG, setup a W-CDMA signal transmitting at 1.96 GHz and
-10 dBm. Connect the RF OUTPUT to the spectrum analyzer RF
INPUT.

Preset the analyzer and set the center frequency to 1.96 GHz:

Press Preset, Factory Preset (if present).
Press FREQUENCY Channel, Center Freq, 1.96, GHz.

Set the analyzer radio mode to 3GPP W-CDMA as a base station device:

Press Mode Setup, Radio Std, 3GPP W-CDMA.
Press Mode Setup, Radio Std Setup, Device (BTS).

Select the CCDF one-button measurement from the measure menu and
then optimize the reference level and attenuation settings suitable for
the CCDF measurement:

Press MEASURE, Power Stat CCDF.
Press Meas Setup, Optimize Ref Level.

Chapter 9 71

<
@
D
7]
c
=
)
1=
Q
5
Q)
o
3
3
c
3.
o
2
o
=}
7

%
c
(]

i

L
c
=
S
S
@]

®)

I

=y

(@]
o
=

=
=
7
@
5]

=

Measuring Digital Communications Signals
Making Statistical Power Measurements (CCDF)

Figure 9-3 Power Stat CCDF Measurement on a W-CDMA Signal

Base Ch Freq 1.96 GHz Trig Free
CCDF 36PP H-CDHA [EEMNEE |]

Center 1.960000000 G

Average Power
-15.51 dBm

52.12%

Step 5. Store your current measurement trace for future reference:
Press Display, Store Ref Trace.

When the power stat CCDF measurement is first made, the graphical
display should show a signal typical of pure noise. This is labelled
Gaussian, and is shown in aqua. Your CCDF measurement is displayed
as a yellow plot. You have stored this measurement’s plot to make for
easy comparison with subsequent measurements.

Step 6. Display the stored trace:
Press Display, Ref Trace (On).

The stored trace from your last measurement is displayed as a magenta
plot (as shown in Figure 9-4), and allows direct comparison with your
current measurement.

Figure 9-4 Storing and Displaying a Power Stat CCDF Measurement

Base Ch Freq 1.96 GHz Trig Free
CCOF 3GPP W-CDMA [MITES

Average Power
-15.49 dBm

72 Chapter9

Step 7.
Figure 9-5
NOTE

Step 8.
NOTE

Step 9.

Measuring Digital Communications Signals
Making Statistical Power Measurements (CCDF)

Change the measurement bandwidth to 1 MHz:

Press Meas Setup, Meas BW, 1, MHz.

Reducing the measurement bandwidth to 1 MHz

Base Ch Freq 1.96 GHz Trig Free
CCDF #3GPP H-CDMA [14

Average Power
-21.06 dBm
43.18%

<
@
D
7]
c
=
)
1=
Q
5
Q)
o
3
3
c
3.
o
2
o
=}
7]

If you choose a measurement bandwidth setting that the analyzer
cannot display, it automatically sets itself to the closest available
bandwidth setting.

Change the number of measured points from 100,000 (100k) to 1,000
(1Kk):

Press Meas Setup, Counts, 1, kpoints.

Reducing the number of points decreases the measurement time,
however the number of points is a factor in determining measurement
uncertainty and repeatability. Notice how the displayed plot loses a lot
of its smoothness. You are gaining speed but reducing repeatability and
increasing measurement uncertainty.

The number of points collected per sweep is dependent on the sampling
rate and the measurement interval. The number of samples that have
been processed are indicated at the top of the screen. The graphical plot
is continuously updated so you can see it getting smoother as
measurement uncertainty is reduced and repeatability improves.

Change the scaling of the X-axis to 1 dB per division to optimize your
particular measurement:

Press SPAN X Scale, Scale/Div, 1, dB.

Chapter 9 73

%
c
(]

i

L
c
=
S
S
@]

®)

I

=y

(@]
o
=

=
=
7
@
5]

=

Step 1.

Step 2.

Step 3.

Step 4.

NOTE

Measuring Digital Communications Signals
Making Adjacent Channel Power (ACP) Measurements

Making Adjacent Channel Power (ACP)
Measurements

The adjacent channel power (ACP) measurement is also referred to as
the adjacent channel power ratio (ACPR) and adjacent channel leakage
ratio (ACLR). We use the term ACP to refer to this measurement.

ACP measures the total power (rms voltage) in the specified channel
and up to six pairs of offset frequencies. The measurement result
reports the ratios of the offset powers to the main channel power.

The following example shows how to make an ACP measurement on a
W-CDMA base station signal broadcasting at 1.96 GHz.

Using an ESG, setup a W-CDMA signal transmitting at 1.96 GHz and
—-10 dBm. Connect the RF OUTPUT to the spectrum analyzer RF
INPUT.

Preset the analyzer, set the analyzer center frequency to 1.96 GHz.

Press Preset, Factory Preset (if present).
Press FREQUENCY Channel, Center Freq, 1.96, GHz.

Set the analyzer radio mode to 3GPP W-CDMA as a base station device:

Press Mode Setup, Radio Std, 3GPP W-CDMA.
Press Mode Setup, Radio Std Setup, Device (BTS).

Select the adjacent channel power one-button measurement from the
measure menu and then optimize the reference level and attenuation
settings suitable for the ACP measurement (see Figure 9-6):

Press MEASURE, ACP.
Press Meas Setup, Optimize Ref Level.

Optimize Ref Level protects against input signal overloads, but does not
necessarily set the input attenuation and reference level for optimum
measurement dynamic range.

To improve the measurement repeatability, increase the sweep time to
smooth out the trace (average detector must be selected). Measurement
repeatability can be traded off with sweep time.

To increase dynamic range, Noise Correction can be used to factor out
the added power of the noise floor effects. Noise correction is very useful
when measuring signals near the noise floor of the analyzer.

74 Chapter9

Figure 9-6
Step 5.
Step 6.
NOTE
Step 7.

Measuring Digital Communications Signals
Making Adjacent Channel Power (ACP) Measurements

ACP Measurement on a Base Station W-CDMA Signal
Base Ch Freq 1.96 GHz Trig Free

Adj Channel Power 36pp W-cone |

#Atten 4 dB

. IJ\:-hiﬂ'-‘.ll.(dpm]Uﬂ
| i

The frequency offsets, channel integration bandwidths, and span
settings can all be modified from the default settings selected by the
radio standard.

Two vertical white lines indicate the bandwidth limits of the central
channel being measured.

Offsets A and B are designated by the adjacent pairs of red and yellow
lines, in this case: 5 MHz and 10 MHz from the center frequency
respectively.

Select the combined spectrum and bar graph view of the results:

(ESA) Press View/Trace, Combined.
(PSA) Press Trace/View, Combined.

View the results using the full screen:
Press Display, Full Screen.

Press the Return key to exit the full screen display without changing
any parameter values.

Define a new third pair of offset frequencies:
Press Meas Setup, Offset/Limits, Offset (C), Offset Freq (On), 15, MHz.

This third pair of offset frequencies is offset by 15.0 MHz from the
center frequency (the outside offset pair) as shown in Figure 9-7. Three
further pairs of offset frequencies (D, E and F) are also available.

Chapter 9 75

<
@
D
7]
c
=
)
1=
Q
5
Q)
o
3
3
c
3.
o
2
o
=}
7]

%
c
(]

i

L
c
=
S
S
@]

®)

I

=y

(@]
o
=

=
=
7
@
5]

=

Measuring Digital Communications Signals
Making Adjacent Channel Power (ACP) Measurements

Figure 9-7 Measuring a Third Adjacent Channel
Base Ch Freq 1.96 GHz Trig Fres

Adj Channel Power +36PP H-coMe |

Offset Freq 15.00000000 MHz

Step 8. Set pass/fail limits for each offset:

Press Meas Setup, Offset/Limits, Offset (A), Neg Offset Limit, -55, dB, Pos
Offset Limit, -55, dB, Offset (B), Neg Offset Limit, =65, dB, Pos Offset Limit,
-65, dB, Offset (C), Neg Offset Limit, —65, dB, Pos Offset Limit, -65, dB.

Step 9. Turn the limit test on:
Press Meas Setup, More, Limit Test (On).

In Figure 9-8 notice that offset A has passed, however offsets B and C
have failed. Power levels that fall below our specified -65 dB for offsets
B and C, fail. Failures are identified by the red letter “F” next to the
levels (dBc and dBm) listed in the lower portion of the window called,
“RMS Results”. The offset bar graph is also shaded red to identify a

failure.
Figure 9-8 Setting Offset Limits
Base Ch Freq 1.96 GHz Trig Free

Adj Channe! Parer =26PP W-coMA I I

NOTE You may increase the repeatability by increasing the sweep time.

76 Chapter9

NOTE

Step 1.

Step 2.

Step 3.

Step 4.

Step 5.

Measuring Digital Communications Signals
Making Multi-Carrier Power (MCP) Measurements

Making Multi-Carrier Power (MCP)
Measurements

The multi-carrier power measurement measures the total power of up
to 12 carriers and their adjacent channels for up to three pairs of offset
frequencies. The offset frequency properties can be modified, including
the offset frequency, the integration bandwidth and upper/lower limits.
The carrier parameters can also be modified including carrier width,
carrier integration bandwidth and whether the carrier is on or off. MCP
can be setup with no radio standard selected or with radio standard
settings for 1S-95 and W-CDMA. Results for carriers without power
present are displayed relative to the reference carrier. Results for
adjacent channels are displayed in absolute power (dBm).

The following example shows how to make an MCP measurement on a
W-CDMA base station broadcasting with 8 carriers on and with two
carriers off. The transmitting carriers are spaced at 5 MHz intervals at
the following frequencies: 977.5 MHz, 982.5 MHz, 987.5 MHz,

992.5 MHz, 1.0075 GHz, 1.0125 GHz, 1.0175 GHz and 1.0225 GHz.

Recommended equipment: The Agilent ESG signal generators can
be used to transmit W-CDMA multi-carrier signals of up to 4 carriers.
The multi-carrier signal parameters can be modified including channel
setup, frequency offset and carrier power. An alternative way to setup
multiple carriers is to use multiple ESGs, each transmitting one
W-CDMA signal.

Connect a W-CDMA signal with multiple carriers broadcasting at the
frequencies stated above.

Set the center frequency of the analyzer to the midpoint of all the
carriers:

Press Preset, Factory Preset (if present).
Press FREQUENCY Channel, Center Freq, 1, GHz.

Set the analyzer radio mode to 3GPP W-CDMA as a base station device:

Press Mode Setup, Radio Std, 3GPP W-CDMA.
Press Mode Setup, Radio Std Setup, Device (BTS).

Select the multi-carrier power one-button measurement from the
measure menu and then optimize the reference level and attenuation
settings suitable for the MCP measurement:

Press MEASURE, Multi Carrier Power.
Press Meas Setup, Optimize Ref Level.

Set the carrier number to 10 (in our multi-carrier setup we have 8
carriers without 2 middle carriers):

Chapter 9 77

<
@
D
7]
c
=
)
1=
Q
5
Q)
o
3
3
c
3.
o
2
o
=}
7

Measuring Digital Communications Signals
Making Multi-Carrier Power (MCP) Measurements

Press Meas Setup, Carrier Setup, Carriers, 10, Enter.
Step 6. Configure carrier 5 to have no power present:

Press Meas Setup, Carrier Setup, Configure Carriers, Carrier, 5, Enter,
Carrier Pwr Present (No).

Step 7. Repeat step 6, configuring carrier 6 to have no power present.
Step 8. Display the results in full screen view (see Figure 9-9):

Press Display, Full Screen.

Figure 9-9 MCP Measurement on a Base Station W-CDMA Signal

PR e,

%
c
(]

i

L
c
=
S
S
@]

®)

I

=y

(@]
o
=

=
=
7
@
5]

=

In this example, the intermodulation falls outside the transmit
channels which are marked by the colored vertical lines. The white set
indicates the reference carrier. The red sets contain the carriers with
power present and the blue lines mark the carriers without power
present. Limits for the upper and lower offsets can also be set as shown
in the example: “Making Adjacent Channel Power (ACP)
Measurements” on page 74.

NOTE Press the Return key to exit the full screen display without changing
any parameter values.

Step 9. View the results table of carriers 7-10:
Press Meas Setup, Carrier Result, 7, Enter.

Step 10. View the results in a combined spectrum and bar graph (see
Figure 9-10):

(ESA) Press View/Trace, Combined.
(PSA) Press Trace/View, Combined.

78 Chapter9

Measuring Digital Communications Signals
Making Multi-Carrier Power (MCP) Measurements

Figure 9-10 Combined Spectrum and Bar Graph View
- Agilent 16:22:31 Apr 15, 2882

Base Ch Freq 1 GHz Trig Free
Multi~Carrier Power 26Pp W-coMn I

Carrier 5

Step 11. Save the results file to a disk.
Press File, Save, Type, More, Measurement Results, Save Now.

The results are stored in a comma separated values format to be viewed
by any personal computer spreadsheet application. All data shown on
the display is included in this file.

<
@
D
7]
c
=
)
1=
Q
5
Q)
o
3
3
c
3.
o
2
o
=}
7

Chapter 9 79

Measuring Digital Communications Signals
Making Multi-Carrier Power (MCP) Measurements

%
c
(]

i

L
c
=
S
S
@]

®)

I

=y

(@]
o
=

=
=
7
@
5]

=

80 Chapter9

10

Using External Millimeter
Mixers (Option AYZ)

81

CcC
@
5
«Q
-
X
-~ D
O3
2
(@]

5 £
> =
SE
N3
—
D
=
z
X
D
=
(73]

2]
S
(O]
X
S
S
(]
2
(]
E
S
i
c
S
(]
g
x
L
(@]
<
(2]
D

)
<
c
i
=3
e

Step 1.

Figure 10-1

—

Using External Millimeter Mixers (Option AYZ)
Making Measurements With Agilent 11970 Series Harmonic Mixers

Making Measurements With Agilent 11970
Series Harmonic Mixers

External harmonic mixers can be used to extend the frequency range of
the E4407B, E4440A, E4446A and E4448A spectrum analyzers. Agilent
Technologies manufactures external mixers that do not require biasing
and cover frequency ranges from 18 GHz to 110 GHz. For frequency
ranges from 110 GHz up to 325 GHz, other mixers are available from
other manufacturers (these mixers may require biasing). The Agilent
Technologies E4407B, E4440A, E4446A, and E4448A spectrum
analyzers support harmonic mixers and preselected harmonic mixers.

When using harmonic mixers, multiple mixing products are shown on
the analyzer display. The output of a harmonic mixer contains the sum
and difference frequencies of the input signal with the LO and all of its
harmonics. To display the correct signal, signal identification can be
used to remove all undesired mixing products. Once the correct signal is
identified, signal identification must be turned off to measure the
amplitude accurately.

Connect the signal source and harmonic mixer to the analyzer as shown
in Figure 10-1.

Instrument Connections with a 11970 Series Harmonic Mixer
Spectrum Analyzer

(

[ade]

-y

Q

IFINPUT ShA Cable

a00o0 gooon
0000 gonon
0 [ooooo

o [EAREGAH

ShA Cable

a oo oono

[

15t LO QUTPUT

Agilent 11970 SERIES
HARMONIC MIXER

SIGNAL
SOURCE

CAUTION

The analyzer local oscillator output power is approximately +16 dBm.
Be sure that your external harmonic mixer can accommodate the power
level before connecting it to the analyzer.

NOTE

Agilent 5061-5458 SMA type cables should be used to connect the mixer
IF and LO ports to the analyzer. Do not over-tighten the cables. The
maximum torque should not exceed 112 N-cm (10 in-Ib.)

82 Chapter 10

Step 2.

Step 3.

Step 4.

Step 5.

Step 6.

Figure 10-2

Using External Millimeter Mixers (Option AYZ)
Making Measurements With Agilent 11970 Series Harmonic Mixers

Perform a factory preset:
Press Preset, Factory Preset (if present).

Set up a high frequency signal on a microwave signal generator (no
modulation required). Set the frequency to 35 GHz and the amplitude
to 0 dBm.

Select external mixing, and then select band A (from 26.5 to 40 GHz):

Press Input/Output, Input Mixer, Input Mixer (EXxt).
Press Ext Mix Band, 26.5-40 GHz (A).

The IF output of a harmonic mixer contains a signal at the
intermediate frequency of the analyzer whenever the harmonic
frequency of the LO and the frequency of the RF differ by the
intermediate frequency. As a result, within a single harmonic band, a
single input signal can produce multiple responses on the analyzer
display, only one of which is valid (see the left display in Figure 10-2).
These responses come in pairs, where members of the valid response
pair are separated by 642.8 MHz and either the right-most (for negative
harmonics) or left-most (for positive harmonics) member of the pair is
the correct response.

Turn on the signal identification feature to show the real signal
response at 35 GHz (by default, the type of signal identification is
Image Suppress):

Press Input/Output, Input Mixer, Signal ID (On).

Place a marker on the real signal and turn off signal identification
before making the final amplitude measurement:

Press Peak Search.
Press Signal Ident (Off).

Signal Identification (Left - Signal Id Off; Right - Signal Id On)

Mkrl 35.61 GHz
Ext Mix -15.76 dBm

Signal Ident On, Amptd Uncal

|

wid ‘Hy‘.,\,J ‘N,A"J'uWL~|‘.‘\.I.) L,._,:,\,,A

YBH 3 MHz

Chapter 10 83

CcC
@
5
«Q
-
X
-~ D
O3
2
(@]

5 £
> =
SE
N3
—
D
=
<
X
D
=
(73]

2]
S
(O]
X
S
S
(]
2
(]
E
S
i
c
S
(]
g
x
L
(@]
<
(2]
D

)
<
c
i
=3
e

Step 1.

Step 2.

Step 3.

CAUTION

NOTE

Using External Millimeter Mixers (Option AYZ)
Setting Harmonic Mixer Bias Current

Setting Harmonic Mixer Bias Current

The Agilent 11970 Series harmonic mixers do not require an external
bias current. Harmonic mixers that require bias can also be used. The
conversion loss calibration data for mixers requiring an external bias
current are most accurate when the correct bias conditions are applied.

Before continuing, complete the previous procedure “Making
Measurements With Agilent 11970 Series Harmonic Mixers” on page 82
to set up the analyzer for external mixing in the band of interest.

Activate the bias:

Press Input/Output, Input Mixer, Mixer Config, Mixer Bias (On)

A +l or - appears in the display annotation indicating bias is on.
Enter the desired bias current in mA.

The mixer bias is supplied from the | F | NPUT port of the analyzer.

The open-circuit bias voltage can be as great as £3.5 V through a source

resistance of 500 ohms. Such voltage levels may appear when recalling
an instrument state in which a bias setting has been stored.

The bias value that appears on the analyzer display is expressed in
terms of short-circuit current (that is, the current that would flow if the
| F 1 NPUT were shorted to ground). The actual current flowing into the
mixer is less.

84 Chapter 10

Step 1.

Step 2.

Step 3.

Using External Millimeter Mixers (Option AYZ)
Entering Conversion-Loss Correction Data for Harmonic Mixers

Entering Conversion-Loss Correction Data for
Harmonic Mixers

You may want to correct your measurement for the conversion-loss of
the external harmonic mixer that you are using. The amplitude
correction feature can be used for this.

Access the correction factor tables for editing:
Press AMPLITUDE Y Scale, More, Corrections, Other.

You must enter a set of amplitude correction values for the desired
frequency range. Select a correction set for use with external mixing.
The recommended correction set is Other.

Edit the conversion loss data for the mixer in use. For Agilent 11970
Series harmonic mixers and Agilent 11974 Series preselected harmonic
mixers, these values are listed on the mixer:

Press Edit.

The data consists of frequency/amplitude pairs. You can enter a single
average value for correction over the entire frequency band. Or you can
improve frequency response accuracy by entering multiple correction
points across the band. Up to 200 points may be defined for each set.

Once the desired correction points are entered, you must turn on the
correction function to improve display calibration:

Press Return, Correction (On).

Verify that the correction factors have been applied to the display data
points by checking under the Corrections menu that Apply Corrections is
set to Yes.

Once you have entered the correction set, save the correction set in
internal memory or on floppy disk for future reference.

Chapter 10 85

CcC
@
5
«Q
-
X
-~ D
O3
2
o

5 £
> =
SE
N3
—
D
=
<
X
D
=
(7))

2]
S
(O]
X
S
S
(]
2
(]
E
S
i
c
S
(]
g
x
L
(@]
<
(2]
D

)
<
c
i
=3
e

Step 1.

Figure 10-3

Using External Millimeter Mixers (Option AYZ)

Making Measurements with Agilent 11974 Series Preselected Harmonic
Mixers

Making Measurements with Agilent 11974
Series Preselected Harmonic Mixers

Preselected mixers apply a tracking filter to the input signal before
sending it to the mixer. This makes the displayed results easier to
understand because it eliminates the multiple mixing products that are
displayed using harmonic mixers (see “Making Measurements With
Agilent 11970 Series Harmonic Mixers” on page 82).

Connect the signal source and preselected mixer to the analyzer as
shown in Figure 10-3.

Instrument Connections with a Preselected Harmonic Mixer

Spectrum Analyzer

PRE-SEL TUNE

Step 2.

Step 3.

Step 4.

Step 5.

Step 6.

v ouT
ol
1stLO
QOUTPUT
TUNE Agilent 11974
N Series Mixer
S Cable LOIN
| " SIGNAL
ShA Cable ‘F/ —~ RF Input SOURCE
ouT POWER

SUPPLY
Lrer.,
Preselector
o Poweer

Power Supply

Bremixs
Configure the analyzer for preselected external mixing:

Press Input/Output, Input Mixer, Input Mixer (Ext), Mixer Config, Mixer Type
(Presel).

If necessary, adjust the tracking of the preselected harmonic mixer
using the procedure “Frequency Tracking Calibration with Agilent
11974 Series Preselected Harmonic Mixers” on page 88.

Select the desired mixing band. In this example an Agilent 11974Q (33
to 50 GHz mixer) is used:

Press Input/Output, Input Mixer, Ext Mix Band, 33-50 GHz (Q).

Set the microwave source to a frequency of 40 GHz and an amplitude of
-15 dBm.

Enter the conversion-loss data for the mixer, to calibrate the amplitude

86 Chapter 10

Using External Millimeter Mixers (Option AYZ)
Making Measurements with Agilent 11974 Series Preselected Harmonic
Mixers

of the display. The conversion-loss versus frequency data is on the
calibration label on the bottom of the Agilent 11974, or on the supplied
calibration sheet.

Use the procedure “Entering Conversion-Loss Correction Data for
Harmonic Mixers” on page 85.

Step 7. To complete the amplitude calibration process, the preselector must be
adjusted at each frequency of interest. Before making final amplitude
measurements with the analyzer, perform the following:

Press Peak Search.
Press SPAN X Scale, Span Zoom, 10, MHz.
Press AMPLITUDE Y Scale, Presel Center.

The final amplitude measurement can now be read out with a marker.
See Figure 10-4.

Figure 10-4 Amplitude Reading of the Preselected Response

Ref -10 dBm
Peak

Log

10

dB/

II"H’n],.&MU"'ﬂ"H '|\.‘ i YT M
ty ’ l " '”‘l' "‘] |"!h\'1" IqlJ ‘M '.‘f',ﬁl b\vlﬂr%lﬂ‘]’r'l

Span 1
VBH 100 kHz Sweep 5 ms

CcC
@
5
«Q
-
X
-~ D
O3
2
o

5 £
> =
SE
N3
—
D
=
<
X
D
=
(7))

Chapter 10 87

2]
S
(O]
X
S
S
(]
2
(]
E
S
i
c
S
(]
g
x
L
(@]
<
(2]
D

)
<
c
i
=3
e

Table 10-1

Step 1.

Step 2.

Step 3.

Step 4.

Step 5.

Step 6.

Step 7.

Using External Millimeter Mixers (Option AYZ)

Frequency Tracking Calibration with Agilent 11974 Series Preselected
Harmonic Mixers

Frequency Tracking Calibration with Agilent
11974 Series Preselected Harmonic Mixers

This procedure is used to align the frequency of the preselector filter of
the Agilent 11974 to the tuned frequency of the analyzer. This
procedure should be followed any time that the Agilent 11974 is
connected to a different analyzer. The calibration should be periodically
checked.

Connect the signal source and preselected mixer to the analyzer as
shown in Figure 10-3.

Set the Agilent 11974 rear-panel switches “Agilent 70907B” and
“LEDS” to the ON position, and the other two switches to the OFF
position, in order for the Agilent 11974 to properly scale to the tune
signal of the analyzer.

Configure the analyzer for a preselected external mixer:

Press Preset, Factory Preset (if present).
Press Input/Output, Input Mixer, Input Mixer (Ext), Mixer Config, Mixer Type
(Presel).

Set the desired frequency band of operation for your mixer:

Press Input/Output, Input Mixer, Ext Mix Band, then select external mixing
band (bands A, Q, U or V).

Set the preselector adjustment to 0 MHz:

Press AMPLITUDE Y Scale, Presel Adjust, 0, MHz.

Set the analyzer to zero span:

Press SPAN X Scale, Zero Span.

Set the center frequency to the value in Table 10-1 for your mixer:
Press FREQUENCY Channel, Center Freq, frequency value.

On the rear panel of the Agilent 11974, adjust the corresponding
potentiometer until one or both of the green LEDs are lit.

Sart Frequency Preselector Adjustment

Mixer Analyzer Center | Potentiometer
Agilent P/N Frequency

11974A 26.5 GHz “26.5 GHz Adjust”
11974Q 33.0 GHz “33.0 GHz Adjust”
11974U 40.0 GHz “40.0 GHz Adjust”

88 Chapter 10

Using External Millimeter Mixers (Option AYZ)
Frequency Tracking Calibration with Agilent 11974 Series Preselected
Harmonic Mixers

Table 10-1 Sart Frequency Preselector Adjustment (Continued)

Mixer Analyzer Center | Potentiometer
Agilent P/N Frequency

11974V 50.0 GHz “50.0 GHz Adjust”

Step 8. Change the analyzer center frequency to the value indicated in
Table 10-2 and again adjust the corresponding potentiometer on the
rear panel of the Agilent 11974 until one or both of the green LEDs are

lit.
Table 10-2 Sop Frequency Preselector Adjustment

Mixer Analyzer Center | Potentiometer
Agilent P/N Frequency

11974A 40.0 GHz “40.0 GHz Adjust”
11974Q 50.0 GHz “50.0 GHz Adjust”
11974U 60.0 GHz “60.0 GHz Adjust”
11974V 75.0 GHz “75.0 GHz Adjust”

Step 9. Repeat steps 6 and 7 until the green LEDs are lit at both frequencies.

CcC
@
5
«Q
-
X
-~ D
O3
2
o

5 £
> =
SE
N3
—
D
=
<
X
D
=
(7))

Chapter 10 89

Using External Millimeter Mixers (Option AYZ)

Frequency Tracking Calibration with Agilent 11974 Series Preselected
Harmonic Mixers

(%]
S
(]
X
=
S
[¢]
Ef\
E>
=<

c
25
S =
g2
x
L
o
k=
[%2)
)

90 Chapter 10

11 Demodulating AM and FM
Signals

O
@
=
o
Q
=
@
=
>
Q
>
<
o
S
o
m
<
)
Q
=
o
»

91

v
©
c

2

n

=

LL

©
C
@®©

=
<
o

E

kS|
>

°
o
(S
[y

(@]

Step 1.

Step 2.

Step 3.

Step 4.

Step 5.

Step 6.

Step 7.

Demodulating AM and FM Signals
Measuring the Modulation Rate of an AM Signal

Measuring the Modulation Rate of an AM
Signal

This section demonstrates how to determine parameters of an AM
signal, such as modulation rate and modulation index (depth) by using
frequency and time domain measurements (see the concepts chapter
“AM and FM Demodulation Concepts” on page 157 for more
information). Using the ESA built-in AM demodulator, you can also
tune-in and listen to an AM signal (“Demodulating an AM Signal Using
the ESA Series” on page 96).

To obtain an AM signal, you can either connect a source transmitting
an AM signal, or connect an antenna to the analyzer input and tune to a
commercial AM broadcast station. For this demonstration an RF source
is used to emulate an AM signal.

Connect an Agilent ESG RF signal source to the analyzer INPUT. Set
the ESG frequency to 300 MHz and the amplitude to -10 dBm. Set the
AM depth to 80%, the AM rate to 1 kHz and turn AM on.

Preset the analyzer and then set the center frequency, span, RBW and
the sweep time:

Press Preset, Factory Preset (if present).

Press FREQUENCY Channel, Center Freq, 300, MHz.
Press SPAN X Scale, Span, 500, kHz.

Press BW/Avg, Res BW, 30, kHz.

Press Sweep, Sweep Time, 20, ms.

Set the y-axis units to volts:

Press AMPLITUDE Y Scale, More, Y-Axis Units, Volts.

Position the signal peak near the reference level:

Press AMPLITUDE Y Scale, Ref Level, (rotate front-panel knob).
Change the y-scale type to linear:

Press AMPLITUDE Y Scale, Scale Type (Lin).

Set the analyzer in zero span to make time-domain measurements:

Press SPAN X Scale, Zero Span.
Press Sweep, Sweep Time, 5, ms.

Use the video trigger to stabilize the trace:
Press Trig, Video.

Since the modulation is a steady tone, you can use video trigger to
trigger the analyzer sweep on the waveform and stabilize the trace,
much like an oscilloscope. See Figure 11-1.

92 Chapter 11

NOTE

Step 8.
NOTE
Figure 11-1

Demodulating AM and FM Signals
Measuring the Modulation Rate of an AM Signal

If the trigger level is set too high or too low when video trigger mode is
activated, the sweep stops. You need to adjust the trigger level up or
down with the front-panel knob until the sweep begins again.

Measure the AM rate using delta markers:

Press Peak Search, Marker, Delta, Peak Search, Next Pk Right or Next Pk
Left.

Use markers and delta markers to measure the AM rate. Place the
marker on a peak and then use a delta marker to measure the time
difference between the peaks (this is the AM rate of the signal)

Make sure the delta markers above are placed on adjacent peaks. See
Figure 11-1. The frequency or the AM rate is 1 divided by the time
between adjacent peaks:

AM Rate =1/1.0 ms = 1 kHz

The spectrum analyzer can also make this rate calculation by changing
the marker readout to inverse time.

Press Marker, More, Readout, Inverse Time.

In this example we calculated the time between time-domain peaks at
the frequency of the peak of the AM signal. To make this measurement
more accurately, set the center frequency to a point on the AM signal
where the slope of the AM signal’s skirt is steep and then set the
analyzer in zero span. Set the analyzer sweep time to about 2 times the
modulation rate and increase the number of sweep points.

Another way to calculate the modulation rate would be to view the
signal in the frequency domain and measure the delta frequency
between the peak of the carrier and the first sideband.

Measuring Time Parameters

Atten 10 dB

: .
|
Marker o | ||

1889000000 ns

(1092 7]

Chapter 11 93

O
@
=
o
Q
=
Q
=
>
Q
>
<
o
S
o
n
<
)
Q
=
o
»

v
©
c

2

n

=

LL

©
C
@®©

=
<
o

E

kS|
>

°
o
(S
[y
(@]

Step 1.

Step 2.

Step 3.

Step 4.

Step 5.

Demodulating AM and FM Signals
Measuring the Modulation Index of an AM Signal

Measuring the Modulation Index of an AM
Signal

This procedure demonstrates how to use the spectrum analyzer as a
fixed-tuned (time-domain) receiver to measure the modulation index as
a percent AM value of an AM signal. Using the ESA built-in AM
demodulator, you can also tune-in and listen to an AM signal
(“Demodulating an AM Signal Using the ESA Series” on page 96).

Follow steps 1 through 7 of the procedure “Measuring the Modulation
Rate of an AM Signal” on page 92.

Turn off all markers and place the analyzer in free run trigger mode:

Press Marker, Off.
Press Trig, Free Run.

Increase the sweep time and decrease the VBW so that the waveform is
displayed as a flat horizontal signal:

Press Sweep, Sweep Time, 5, s.
Press BW/Avg, Video BW, 30, Hz.

Center the flat waveform at the mid-point of the y-axis and then widen
the VBW and decrease the sweep time to display the waveform as a sine
wave:

Press AMPLITUDE Y Scale, Ref Level.
Press BW/Avg, Video BW, 100, kHz.
Press Sweep, Sweep Time, 5, ms.

Measure the modulation index of the AM signal:

To measure the modulation index as % AM, read the trace as follows
(see Figure 11-2 for display examples): 100% AM extends from the top
graticule down to the bottom graticule. 80% AM (as in this example) is
when the top of the signal is at 1 division below the top graticule and 1
division above the bottom graticule. To determine % AM of your signal
count each y-axis division as 10%.

94 Chapter 11

Demodulating AM and FM Signals
Measuring the Modulation Index of an AM Signal

Figure 11-2 AM Signal Measured in the Time Domain

| | | |
[Trigger Level ‘II
"31.9:5 mUIJ

#YBH 188 kHz

LEFT: 100% AM Signal (Modulation Index = 1)
RIGHT: 80% AM Signal (Modulation Index = 0.8)

Chapter 11 95

O
@
=
o
Q
=
@
=
>
Q
>
<
o
S
o
m
<
)
Q
=
o
»

v
©
c

2

n

=

LL

©
C
@®©

=
<
o

E

kS|
>

°
o
(S
[y

(@]

NOTE
Step 1.
Step 2.
Step 3.
Step 4.
Figure 11-3

Step 5.

Step 6.

Demodulating AM and FM Signals
Demodulating an AM Signal Using the ESA Series

Demodulating an AM Signal Using the ESA
Series

The demodulation functions listed in the menu under Det/Demod allow
you to demodulate and hear signal information displayed on the
analyzer. Simply place a marker on a signal of interest, set the analyzer
in zero span, activate AM demodulation, turn the speaker on, and then
listen.

AM demodulation is not available on the PSA Series spectrum
analyzers.

Perform a factory preset:
Press Preset, Factory Preset (if present).
Connect an antenna to the analyzer input.

Select a frequency range on the analyzer, such as the range for AM
radio broadcasts. For example, the frequency range for AM broadcasts
in the United States is 550 kHz to 1650 kHz:

Press FREQUENCY, Start Freq, 550, kHz, Stop Freq, 1650, kHz.
Place a marker on the signal of interest (see Figure 11-3):

Press Peak Search, Next Pk Right or Next Pk Left.

AM Broadcast Signals

Atten 16 dB

- II n n
I '

\ (!
T
i mi
| 'gl "

| I
TRt . v T ’ﬂ
bW i thfu-‘ "\.*,-"*1';|||-,n,,“\' Iy 'm,i,shfn,.w K

YEW 18 kHz

Set the frequency of the signal of interest to center frequency:

Press Peak Search, Next Pk Right or Next Pk Left (as necessary), Marker -,
and Mkr - CF.

Reduce the span to 1 MHz by using the step down key (1) and Mkr - CF

96 Chapter 11

Step 7.

Step 8.

Step 9.

Step 10.

Step 11.

Step 12.

Step 13.

NOTE

Demodulating AM and FM Signals
Demodulating an AM Signal Using the ESA Series

multiple times, keeping the signal of interest in the center of the
display until the span is 1 MHz:

Press SPAN X Scale, Span, (1), Mkr - CF.

Set the analyzer into time-domain with zero span:
Press SPAN X Scale, Zero Span.

Change the resolution bandwidth to 100 kHz:
Press BW/Avg, Res BW, 100, kHz.

Set the top of the signal near the top of the display by changing the
reference level with the front-panel knob:

Press AMPLITUDE Y Scale, rotate front-panel knob.

Set the amplitude scale to linear and then re-adjust the reference level
to keep the signal centered in the display:

Press AMPLITUDE Y Scale, Scale Type (Lin).
Press AMPLITUDE Y Scale, Ref Level, rotate front-panel knob.

Set the detector type to sample and turn on AM demodulation:

Press Det/Demod, Detector, Sample.
Press Det/Demod, Demod, AM.

Listen to the demodulated AM signal (adjust the volume as necessary):
Press Det/Demod, Demod, Speaker (On).
Measure the modulation index (AM depth as a percentage):

Press Sweep Time, 5, s.

Press BW/Avg, Video BW, 30, Hz.

Press AMPLITUDE Y Scale, Ref Level (use the front-panel knob to adjust
the trace to the middle of the screen).

Press BW/Avg, Video BW, 100, kHz.

Press Sweep, Sweep Time, 5, ms.

The middle horizontal graticule line represents 0% AM,; the top and
bottom horizontal lines represent 100% AM.

The signal to the speaker is interrupted during retrace because the
analyzer is performing automatic alignment routines. To eliminate the
interruption and clicks between sweeps, turn the auto alignment
function off by pressing System, Alignments, Auto Align, Off.

Refer to the specifications for information about operating the analyzer
with the alignments turned off.

Chapter 11 97

O
®
=
o
o
=
Q
=
>
Q
>
<
o
S
o
n
<
N
Q
=
o
»

v
©
c

2

n

=

LL

©
C
@®©

=
<
o

E

kS|
>

o
o
(S
[y

(@]

NOTE

Step 1.

Step 2.

NOTE

Step 3.

Step 4.

Step 5.

Step 6.

Demodulating AM and FM Signals
Demodulating an FM Signal Using the ESA-E Series (Requires Option BAA)

Demodulating an FM Signal Using the ESA-E
Series (Requires Option BAA)

This section demonstrates how to demodulate and listen to an FM
signal using the ESA built-in FM demodulator with option BAA.

Using the ESA's built in FM demodulator you can tune to an FM signal
and view the results of the detector output as displayed in the time
domain. Alternatively, the demodulated signal is also available as an
audio output (to the speaker or headphone jack) and as video output (on
the rear panel of the ESA).

FM demodulation is not available on the PSA Series spectrum
analyzers.

Perform a factory preset:

Press Preset, Factory Preset (if present).

Use an ESG RF source or an antenna for an FM signal to analyze. In
this example an ESG is used transmitting at 300 MHz with FM
deviation of 10 kHz and FM rate of 1 kHz.

If you are using a broadcast FM signal in the United States, for
example, the FM channels are broadcasting between 87.7 MHz to
107.7 MHz.

Before continuing with the demodulation of the FM signal, calibrate the
demodulator:
Press System, Alignments, Align Now, FM demod.

Set the center frequency to the center of the FM signal (in this case
300 MH2z):

Press FREQUENCY Channel, Center Freq, 300, MHz.
Set the analyzer to zero span for time-domain analysis:

Press SPAN X Scale, Zero Span.
Press Sweep, Sweep Time, 4, ms.

Set the resolution bandwidth to capture the full bandwidth of the FM
signal. To calculate the required bandwidth use
RBW = ((2 x Frequency Deviation) + (2 x Modulation Rate))

In our case the RBW should be: (2 x 10 kHz) + (2 x 1 kHz) = 22 kHz
With ESA's 1-3-10 sequence RBW selections, choose the next highest
RBW of 30 kHz:

98 Chapter 11

Step 7.

Step 8.

Figure 11-4

Step 9.

Demodulating AM and FM Signals
Demodulating an FM Signal Using the ESA-E Series (Requires Option BAA)

Press BW/Avg, Res BW, 30, kHz.

Turn on the FM demodulator:

Press Det/Demod, Demod, FM.

Change the vertical scaling:

Press AMPLITUDE Y Scale, Scale/Div, 5, kHz.

FM Demodulation (ESG FM Signal with 10 kHz Deviation)

Arten 18 dB

my!

/00000000

\VE

Calculate the FM deviation using markers with max hold and min hold
functionality (also note that each division has 5 kHz of FM deviation if
you wanted to visually calculate the deviation):

Press View/Trace, Max Hold.

Wait until the trace appears to be a flat line before continuing to the
next button sequence below:

Press Marker, Delta, View/Trace, Min Hold.

The value on the screen from the delta value of max hold and min hold
is the peak-to-peak deviation value. We are interested in the average
value which we can calculate by dividing the peak-to-peak value by 2.
In our case it should be approximately 20 kHz/2 or 10 kHz.

Chapter 11 99

O
@
=
o
Q
=
@
=
>
Q
>
<
o
S
o
n
<
)
Q
=
Q.
n

Demodulating AM and FM Signals
Demodulating an FM Signal Using the ESA-E Series (Requires Option BAA)

Figure 11-5 Calculating Frequency Deviation

Atten 18 dB

o | L]
s
Mﬂ--------
ogavosdgon s | | |

VBH 38 kHz

Step 10. Take a single sweep of the demodulated signal and then calculate the
FM rate using delta markers on adjacent peaks. Change the marker
readout value to inverse time for a frequency calculation of the FM rate:

Press Marker, Off.

Press View/Trace, Clear Write.

Press Single, Peak Search, Marker, Delta, Peak Search, Next Pk Right (or
Next Pk Left).

Press Marker, More, Readout, Inverse Time.

Figure 11-6 Calculating Modulation Rate

VEW 38 kHz

Step 11. Listen to the FM signal (first put the analyzer back into continuous
sweeping mode):

Press Sweep, Sweep (Cont).
Press Det/Demod, Demod, Speaker (On).

Adjust the volume of the internal speaker with the volume knob on the
front-panel. Alternatively you can also use the headphone jack (located
below the 3.5 inch floppy disk drive).

v
©
c

2

n
=
LL

©
c
@®©
=
<
o

E

kS|
>

°
o
(S
[y
(@]

100 Chapter 11

12

Using Segmented Sweep (ESA-E
Series Spectrum Analyzers)

101

(s19zAeuy wnioads salias

C
“
>
Q
w
®
Q
3
®
=
®
a
[92)
=
®
@
o
H
2]
>
o

U
<
0
S
o
)
]
=
9]
e
g
g
c
o
S
o
9]
9]
)
£
[2)
-

Series Spectrum Analyzers)

Step 1.

Step 2.

Step 3.

Step 4.

Step 5.

Using Segmented Sweep (ESA-E Series Spectrum Analyzers)
Measuring Harmonics Using Standard Sweep

Measuring Harmonics Using Standard Sweep

This procedure measures the fundamental 50 MHz signal plus the
second and third harmonics. Compare the measurement times with this
procedure, sweeping from 20 MHz to 170 MHz versus the next
procedure “Measuring Harmonics Using Segmented Sweep” on page
104.

Preset the instrument:
Press Preset, Factory Preset (if present).
Use the analyzer internal 50 MHz amplitude reference signal:

For ESA model numbers E4401B and E4411B, use the internal 50 MHz
amplitude reference signal.
Press Input/Output, Amptd Ref (On).

For all other ESA model numbers connect a cable between the
front-panel AMPTD REF OUT to the analyzer INPUT.
Press Input/Output, Amptd Ref Out (On).

Set the frequency span to view the fundamental signal, second
harmonic and third harmonic:

Press FREQUENCY Channel, Start Freq, 20, MHz, Stop Freq, 170, MHz.
Press AMPLITUDE Y Scale, Ref Level, -20, dBm.

Set the resolution bandwidth and video bandwidth:

Press BW/Avg, Res BW, 1, kHz.
Press BW/Avg, Video BW, 1, kHz.

Place a marker at the 50 MHz signal (you may need to wait for a
minute until the analyzer sweeps past 50 MHZz):

Press Peak Search.

Refer to Figure 12-1 to see the result of this first measurement in this
example. Notice the minimum sweep time is set at 193.3 seconds in
order to provide accurate data. If you attempt to enter a faster sweep
time, the Meas Uncal message is shown in the upper right corner of the
display.

102 Chapter 12

Using Segmented Sweep (ESA-E Series Spectrum Analyzers)
Measuring Harmonics Using Standard Sweep

Figure 12-1 Measuring Harmonics with Standard Sweep
Mkrl 5

(s19zAeuy wnioads salias

C
“
>
Q
w
®
Q
3
o
=
®
Q
[92)
=
®
®
o
=
2]
>
o

Marker
50.000000 MH=z

-20.21 HBm

YBH 1 kHz

Chapter 12 103

U
<
0
S
o
)
]
=
9]
e
g
g
c
o
S
o
9]
9]
)
£
[2)
-

Series Spectrum Analyzers)

Step 1.

Step 2.

Step 3.

Step 4.

Step 5.

Step 6.

Step 7.

Using Segmented Sweep (ESA-E Series Spectrum Analyzers)
Measuring Harmonics Using Segmented Sweep

Measuring Harmonics Using Segmented
Sweep

Segmented sweep allows you to define many bands of interest and
display them as a single trace. Although the following examples only
involve a maximum of 3 segments, you can set up the trace to display 32
segments simultaneously.

This procedure uses segmented sweep to measure the 50 MHz
fundamental signal, the second harmonic and the third harmonic.
Compare the measurement time differences between the previous
procedure, “Measuring Harmonics Using Standard Sweep” on page 102
and this procedure using segmented sweep. Segmented sweep is faster
than sweeping the full span to capture the fundamental signal to the
third harmonic.

Preset the instrument:
Press Preset, Factory Preset (if present).

Turn on the internal 50 MHz amplitude reference signal as in step 2
from the “Measuring Harmonics Using Standard Sweep” on page 102,
section above.

Set the reference level and attenuation:

Press AMPLITUDE Y Scale, Ref Level, =20, dBm.
Press AMPLITUDE Y Scale, Attenuation, 5, dB.

Open the segmented sweep editor:
Press Sweep, Segmented, Modify, Edit.

Three segments are going to be set up, as in Figure 12-2 below, to view
the fundamental signal, second harmonic and third harmonic.

Set the first segment parameters:

Press Segment, 1, Enter.
Press Center Freq, 50, MHz.
Press Span, 100, kHz.
Press Video BW, 30, Hz.

Set the second segment parameters:

Press Segment, 2, Enter.
Press Center Freq, 100, MHz.
Press Span, 100, kHz.

Press Video BW, 30, Hz.

Set the third segment parameters:

Press Segment, 3, Enter.

104 Chapter 12

Using Segmented Sweep (ESA-E Series Spectrum Analyzers)
Measuring Harmonics Using Segmented Sweep

Press Center Freq, 150, MHz.
Press Span, 100, kHz.
Press Video BW, 30, Hz.

Notice that the total sweep time for the 3 segments is only 8.13 seconds
(plus a minimal time for transitions between segments). This is
considerably shorter than the 193.3 seconds required to view the same
signals without segmented sweep.

(s19zAeuy wnioads salias

C
“
>
Q
w
®
Q
3
o
=
®
Q
[92)
=
®
®
o
=
2]
>
o

Figure 12-2 Reducing Sweep Time with Segmented Sweep

Atten 5 dB

|'I‘\""‘u o

30.00000000 H 1

vy ittt

SRRV AU U | NS

Chapter 12 105

U
<
0
S
o
)
]
=
9]
e
g
g
c
o
S
o
9]
9]
)
£
[2)
-

Series Spectrum Analyzers)

Step 1.

Step 2.

Step 3.

Step 4.

Step 5.

Step 6.

Step 7.

Step 8.

Step 9.

Using Segmented Sweep (ESA-E Series Spectrum Analyzers)
Using Segmented Sweep With Limit Lines

Using Segmented Sweep With Limit Lines

Segmented sweep can also use other standard spectrum analyzer
functionality, such as limit lines. In this procedure three segments are
used. In the first segment, the limit lines are used to verify that the
sighal phase noise is acceptable. The second and third segments are
used to verify the harmonic signals are below a specified amplitude.

Connect the 10 MHz REF OUT from the rear panel to the front-panel
INPUT. Preset the instrument:

Press Preset, Factory Preset (if present).

Place the peak of the fundamental signal at the top of the graticule:
Press AMPLITUDE Y Scale, Ref Level, 8, dBm.

Open the segmented sweep editor:

Press Sweep, Segmented, Modify, Edit.

Display the fundamental signal in the first segment:

Press Segment, 1, Enter.
Press Center Freq, 10, MHz.
Press Span, 500, kHz.
Press Res BW, 3, kHz.
Press Video BW, 30, Hz.
Press Points, 1000, Enter.

Display the second harmonic in the second segment:

Press Segment, 2, Enter.
Press Center Freq, 20, MHz.
Press Span, 100, kHz.

Display the third harmonic in the third segment:

Press Segment, 3, Enter.
Press Center Freq, 30, MHz.
Press Span, 100, kHz.

Open the limit line editor:
Press Display, Limits, Limit 1, Type (Upper), Edit.
Enter the limit line data from Table 12-1 below. To enter the table data:

Press Point, 1, Enter, Frequency, 9.75, MHz, Amplitude, -80, dBm,
Connected (Yes).

Begin the next limit line point:

Press Tab [.

106 Chapter 12

Table 12-1

Using Segmented Sweep (ESA-E Series Spectrum Analyzers)
Using Segmented Sweep With Limit Lines

Step 10. Enter points 2 through 11 from Table 12-1:

Limit Line Data

Point Frequency | Amplitude | Connected
1 9.75 MHz —-80dBm Yes
2 9.8 MHz - 75dBm Yes
3 9.9 MHz -70dBm Yes
4 9.95 MHz 6 dBm Yes
5 10.05 MHz 6dBm Yes
6 10.1 MHz -70dBm Yes
7 10.2 MHz - 75dBm Yes
8 10.25 MHz -80dBm Yes
9 19.95 MHz -30dBm Yes
10 29.95 MHz -15dBm Yes
11 30.05 MHz -15dBm Yes

Step 11. Turn the limits on:

Step 12.

Figure 12-3

Press Return, Limit (On).

Turn the limit test on to determine if the fundamental signal and

harmonics pass:

Press Test (On).

Segmented Sweep with Limit Line Test

hig

This procedure can verify compliance with phase noise and harmonics
specifications. You can save this instrument state and limit lines in a
“setup” type file for future applications (File, Save, Type, Setup,

Save Now). Replace the 10 MHz reference signal of the analyzer with
the device under test (DUT) to create a similar measurement.

Chapter 12 107

(s19zAeuy wnioads salias

C
2
>
Q
wn
)
Q
3
®
=
®
a
[92)
=
®
@
o
=
2]
>
o

Using Segmented Sweep (ESA-E Series Spectrum Analyzers)
Using Segmented Sweep to Monitor the Cellular Activity of a cdmaOne Band

Using Segmented Sweep to Monitor the
Cellular Activity of a cdmaOne Band

In this example set up two segments to monitor the forward and reverse
links of a U.S. 1S-95A cellular band. The third segment is used to zoom
in on an area of interest. You can use any communications band of
interest in your area to duplicate this example.

Series Spectrum Analyzers)

U
<
0
S
o
)
]
=
9]
e
g
g
c
o
S
o
9]
9]
)
£
[2)
-

Step 1. Perform a factory preset:
Press Preset, Factory Preset (if present).
Step 2. Turn on the internal preamp (if installed):
Press AMPLITUDE Y Scale, More, Int Preamp (On).
Step 3. Open the segmented sweep editor:
Press Sweep, Segmented, Modify, Edit.
Step 4. Monitor the activity in the cdmaOne band with the first segment:

Press Center Freq, 836.5, MHz.
Press Span, 25, MHz.
Press Res BW, 10, kHz.

Step 5. Set the reference level to place the signal in the middle of the display:
Press AMPLITUDE Y Scale, Ref Level, 40, -dBm.
Step 6. Monitor the activity of the base station with the second segment:

Press Sweep, Segmented, Modify, Edit, Segment, 2, Enter.
Press Center Freq, 881.5, MHz.

Press Span, 25, MHz.

Press Res BW, 10, kHz.

Figure 12-4 Monitoring the Reverse and Forward Links

108 Chapter 12

Step 7.

Step 8.

Step 9.

Step 10.

Figure 12-5

Using Segmented Sweep (ESA-E Series Spectrum Analyzers)
Using Segmented Sweep to Monitor the Cellular Activity of a cdmaOne Band

Locate the frequency of the cdmaOne signal with a marker:
Press Marker, then rotate front-panel knob.

Notice that in this example, there are two cdmaOne carriers located at
882.23 MHz, as shown in Figure 12-4.

Set the center frequency of segment 3 to 882.23 MHz:

Press Sweep, Segmented, Modify, Edit, Segment, 3, Enter.
Press Center Freq, 882.23, MHz.

Set the span to greater than twice the cdmaOne bandwidth (2 times
1.2288 MHZz) since there are two cdma carriers side-by-side:

Press Span, 2.7, MHz.
Press Res BW, 10, kHz.

Set trace 1 to maximum hold and set trace 2 to minimum hold:

Press Trace/View, Trace 1, Max Hold.
Press Trace/View, Trace 2, Min Hold.

Monitoring Cellular Bands in Segmented Sweep

i Atten 5 dB

N kﬁf\u‘*\""‘wﬁ,ﬁ{ psE Fag
W‘@'mwmw

Figure 12-5 displays the results of this setup over an extended period of
time. As expected, the minimum hold trace of segment 1 shows no
continuously present carriers. This is indicative of cellular activity. If a
persistent signal exists, it may represent the presence of an interfering
carrier. In this example, segment 3 shows continuous transmission of
the carrier without interference.

Chapter 12 109

(s19zAeuy wnioads salias

C
“
>
Q
w
®
Q
3
®
=
®
a
[92)
=
®
@
o
=
2]
>
o

Using Segmented Sweep (ESA-E Series Spectrum Analyzers)
Using Segmented Sweep to Monitor the Cellular Activity of a cdmaOne Band

Series Spectrum Analyzers)

U
<
0
S
o
)
]
=
9]
e
g
g
c
o
S
o
9]
9]
)
£
[2)
-

110 Chapter 12

wn
=,
52
>C
Om
S %
= wm
o ©
S5 O
0w =

)
5o
22
5%
Qo c
o2
C3
=1
»

13 Stimulus Response
Measurements (ESA Options 1DN
and 1DQ)

111

%)
2
=
o
S
o
S
=
7
@©
o}
p=
©
)
c
o
o
(%]
[}
o
(2]
S
=
S
=
n

(ESA Options 1DN and 1DQ)

Step 1.

Figure 13-1

Step 2.

Step 3.

Step 4.

CAUTION

NOTE

Stimulus Response Measurements (ESA Options 1DN and 1DQ)
Making a Stimulus Response Transmission Measurement

Making a Stimulus Response Transmission
Measurement

The procedure below describes how to use a built-in tracking generator
to measure the rejection of a band pass filter, a type of transmission
measurement. Refer to the concepts chapter “Stimulus Response
Measurement Concepts” on page 158 for more information a making
stimulus response measurements including adjusting the tracking
generator output power and measuring the N dB bandwidth.

To measure the rejection of a band pass filter, connect the equipment as
shown in Figure 13-1. A 200 MHz bandpass filter as the DUT.

Transmission Measurement Test Setup
SPECTRUM ANALYZER

Perform a factory preset:
Press Preset, Factory Preset (if present).
View the rejection of the bandpass filter. Set a wide RBW:

Press FREQUENCY Channel, Center Freq, 200, MHz.
Press SPAN X Scale, Span, 100, MHz.
Press BW/Avg, Res BW, 3, MHz.

Turn on the tracking generator:

Press Source, Amplitude (On), —10, dBm.

Excessive signal input may damage the DUT. Do not exceed the
maximum power that the device under test can tolerate.

To reduce ripples caused by source return loss, use 10 dB (E4401B or
E4411B) or 8 dB (all other models) or greater tracking generator output
attenuation. Tracking generator output attenuation is normally a
function of the source power selected. However, the output attenuation
may be controlled in the Source menu.

112 Chapter 13

Step 5.

Step 6.

Step 7.

Step 8.

Step 9.

Step 10.

Figure 13-2

Stimulus Response Measurements (ESA Options 1DN and 1DQ)
Making a Stimulus Response Transmission Measurement

Put the sweep time into stimulus response auto coupled mode:
Press Sweep, Swp Coupling (SR).
Increase measurement sensitivity and smooth the noise:

Press BW/Avg, Res BW, 30, kHz.
Press BW/Avg, Video BW, 300, Hz.

A decrease in displayed amplitude is caused by tracking error.
Use peak tracking to correct the frequency offset:
Press Source, Tracking Peak.

Tracking error occurs when the output frequency of the tracking
generator is not exactly matched to the input frequency of the analyzer.
The amplitude should return to the value that was displayed prior to
the decrease in resolution bandwidth.

Connect the cable from the tracking generator output to the analyzer
input. Store the frequency response in trace 3 and normalize:

Press View/Trace, More, Normalize, Store Ref (1 - 3), Normalize (On).

See “Normalization Concepts” on page 159 for information on
normalization.

Reconnect the DUT to the analyzer and change the normalized
reference position:

Press View/Trace, More, Normalize, Norm Ref Posn.
Measure the rejection of the bandpass filter:
Press Marker, 200, MHz, Delta, 45, MHz.

The marker readout displays the rejection of the filter at 45 MHz above
the center of the bandpass. See Figure 13-2.

Measure the Rejection Range

Atten 18 dB

Marker &
4500000 MH

~77.49 dB

Chapter 13 113

wn
=,
52
>C
Om
S %
= wm
o ©
S5 O
0w =

)
5o
22
5%
Qo c
o2
C3
=1
»

%)
2
=
o
S
o
S
=
7
@©
o}
p=
©
)
c
o
o
(%]
[}
o
(2]
S
=
S
=
n

(ESA Options 1DN and 1DQ)

Step 1.

Figure 13-3

Step 2.

Step 3.

Step 4.

CAUTION

NOTE

Stimulus Response Measurements (ESA Options 1DN and 1DQ)
Calculating the N dB Bandwidth Using Stimulus Response

Calculating the N dB Bandwidth Using
Stimulus Response

This procedure uses the tracking generator for transmission stimulus
response measurements to calculate the 3 dB bandwidth of a 200 MHz
bandpass filter. See the concepts section “Measuring Device
Bandwidth” on page 160 for more information on this measurement.

To measure the rejection of a bandpass filter, connect the equipment as
shown in Figure 13-3. This example uses a 200 MHz bandpass filter.

Transmission Measurement Test Setup
SPECTRUM ANALYZER

bl73b

Perform a factory preset:
Press Preset, Factory Preset (if present).
Set the center frequency, span and the resolution bandwidth:

Press FREQUENCY Channel, Center Freq, 200, MHz.
Press SPAN X Scale, Span, 100, MHz.
Press BW/Avg, Res BW, 10, kHz.

Turn on the tracking generator and set the output power to —10 dBm:

Press Source, Amplitude (On), —10, dBm.

Excessive signal input may damage the DUT. Do not exceed the
maximum power that the device under test can tolerate.

To reduce ripples caused by source return loss, use 10 dB (E4401B or
E4411B) or 8 dB (all other models) or greater tracking generator output
attenuation. Tracking generator output attenuation is normally a
function of the source power selected.

114 Chapter 13

Stimulus Response Measurements (ESA Options 1DN and 1DQ)
Calculating the N dB Bandwidth Using Stimulus Response

Step 5. Put the sweep time of the analyzer into stimulus response auto coupled
mode:

Press Sweep, Swp Coupling (SR).

Auto coupled sweep times are usually much faster for stimulus
response measurements than they are for spectrum analyzer (SA)
measurements. If necessary, adjust the reference level to place the
signal on screen.

Step 6. Activate the N dB bandwidth function (See Figure 13-4):

Press Peak Search, More, N dB Points (On).

Figure 13-4 AM Signal Measured in the Time Domain

Atten 18 dB

N-dB
-60.80 dB
NdB 6309

2}
i
0=
gm
=T
= wm
O ©T
> O
n S

7))
5o
&
59
Q -
oS
Ca
=1
(V)]

"
'y,

By)
i IM

Lo
&1 F'-‘|"I\Ii'ul\.,.\,\l-"rlll' ¥ "I,-‘-"‘.‘"u".lf“"""'"‘rF ﬂf\|l'|\n"\,|'-|lu"‘\rl iy

an 1

VEH 10 kHz) VBN 18 kHz

LEFT: N dB Bandwidth Measurement at -3 dB
RIGHT: N dB Bandwidth Measurement at -60 dB

NOTE The knob or the data entry keys can be used to change the N dB value
from -3 dB to —60 dB to measure the 60 dB bandwidth of the filter.

Step 7. Turn off the N db Points measurement:

Press N dB Points (Off).

Chapter 13 115

%)
2
=
o
S
o
S
=
7
@©
o}
p=
©
)
c
o
o
(%]
[}
o
(2]
S
=
S
=
n

(ESA Options 1DN and 1DQ)

Step 1.

Figure 13-5

Step 2.

Step 3.

Step 4.

Step 5.

Step 6.

CAUTION

Stimulus Response Measurements (ESA Options 1DN and 1DQ)
Measuring Stop Band Attenuation Using Log Sweep (ESA-E Series)

Measuring Stop Band Attenuation Using Log
Sweep (ESA-E Series)

When measuring filter characteristics, it is useful to look at the
stimulus response over a wide frequency range. Setting the analyzer
x-axis (frequency) to display logarithmically provides this function.

The following example uses the tracking generator to measure the stop
band attenuation of a 10 MHz low pass filter.

To measure the response of a low pass filter, connect the equipment as
shown in Figure 13-5. This example uses a 10 MHz low pass filter.

Transmission Measurement Test Setup
SPECTRUM ANALYZER

Perform a factory preset:
Press Preset, Factory Preset (if present).
Set the start and stop frequencies:

Press FREQUENCY Channel, Start Freq, 100, kHz.
Press FREQUENCY Channel, Stop Freq, 1, GHz.
Press FREQUENCY Channel, Scale Type (Log).

Set the resolution bandwidth to 10 kHz:

Press BW/Avg, Res BW, 10, kHz.

For E4407B analyzers with option UKB, set the input coupling to DC:
Press Input, Coupling (DC).

Turn on the tracking generator and if necessary, set the output power to
—10 dBm:

Press Source, Amplitude (On), —10, dBm.

Excessive signal input may damage the DUT. Do not exceed the
maximum power that the device under test can tolerate.

116 Chapter 13

Step 7.

Step 8.

Step 9.

Step 10.

Step 11.

Step 12.

Step 13.

Figure 13-6

Stimulus Response Measurements (ESA Options 1DN and 1DQ)
Measuring Stop Band Attenuation Using Log Sweep (ESA-E Series)

Put the sweep time into stimulus response auto coupled mode:
Press Sweep, Swp Coupling (SR).
Adjust the reference level if necessary to place the signal on screen.

Connect the cable (but not the DUT) from the tracking generator output
to the analyzer input. Store the frequency response into trace 3 and
normalize:

Press View/Trace, More, Normalize, Store Ref (1 - 3), Normalize (On).

Reconnect the DUT to the analyzer. Note that the units of the reference
level have changed to dB, indicating that this is now a relative
measurement.

To change the normalized reference position:
Press View/Trace, More, Normalize, Norm Ref Posn, 9, Enter.
Place the reference marker at the specified cutoff frequency:

Press Marker, Delta Pair (Ref), 10, MHz.

99}
=,
52
>C
Om
S %
= wm
oo
S5 O
0w =

)
5o
22
5%
Qo c
o2
C3
=1
n

Place the second marker at 20 MHz:

Press Delta Pair (Delta), 20, MHz.

In this example, the attenuation over this frequency range is
63.32 dB/octave (one octave above the cutoff frequency).

Use the front-panel knob to place the marker at the highest peak in the
stop band to determine the minimum stop band attenuation. In this
example, the peak occurs at 708.76 MHz. The attenuation is 54.92 dB.

Minimum Stop Band Attenuation

DeltalMarker
718.762733 MH=

-54/92 dB

YBH 18 kHz

Chapter 13 117

%)
2
=
o
S
o
S
=
7
@©
o}
p=
©
)
c
o
o
(%]
[}
o
(2]
S
=
S
=
n

(ESA Options 1DN and 1DQ)

Step 1.

Figure 13-7
NOTE
Step 2.
Step 3.
Step 4.

Stimulus Response Measurements (ESA Options 1DN and 1DQ)
Making a Reflection Calibration Measurement

Making a Reflection Calibration Measurement

The following procedure makes a reflection measurement using a
coupler or directional bridge to measure the return loss of a filter. This
example uses a 200 MHz bandpass filter as the DUT.

The calibration standard for reflection measurements is usually a short
circuit connected at the reference plane (the point at which the device
under test (DUT) is connected.) See Figure 13-7. A short circuit has a
reflection coefficient of 1 (0 dB return loss). It reflects all incident power
and provides a convenient 0 dB reference.

Connect the DUT to the directional bridge or coupler as shown in
Figure 13-7. Terminate the unconnected port of the DUT.

Reflection Measurement Short Calibration Test Setup
SPECTRUM ANALYZER

Reference Plane

Coupled :
Port]
1 SHORT
: CIRCUIT
\ X . —
DUT
DIRECTIONAL

BRIDGE/COUPLER

If possible, use a coupler or bridge with the correct test port connector
for both calibrating and measuring. Any adapter between the test port
and DUT degrades coupler/bridge directivity and system source match.
Ideally, you should use the same adapter for the calibration and the
measurement. Be sure to terminate the second port of a two port device.

Connect the tracking generator output of the analyzer to the directional
bridge or coupler.

Connect the analyzer input to the coupled port of the directional bridge
or coupler.

Perform a factory preset:

Press Preset, Factory Preset (if present).

118 Chapter 13

Step 5.

CAUTION

Step 6.

Step 7.

Step 8.

NOTE

Figure 13-8

Stimulus Response Measurements (ESA Options 1DN and 1DQ)
Making a Reflection Calibration Measurement

Turn on the tracking generator and set the output power to —10 dBm:

Press Source, Amplitude (On), —10, dBm.

Excessive signal input may damage the DUT. Do not exceed the
maximum power that the device under test can tolerate.

Set the center frequency, span and resolution bandwidth:

Press FREQUENCY Channel, Center Freq, 200, MHz.
Press SPAN X Scale, Span, 100, MHz.
Press BW/Avg, Res BW, 3, MHz.

Replace the DUT with a short circuit.
Normalize the trace:
View/Trace, More, Normalize, Store Ref (1 - 3), Normalize (On).

This activates the trace 1 minus trace 3 function and display the results
in trace 1 (see Figure 13-8). The normalized trace or flat line represents
0 dB return loss. Normalization occurs each sweep. Replace the short
circuit with the DUT.

wn
=,
52
>C
Om
S %
= wm
o ©
S5 O
0w =

)
5o
22
5%
Qo c
o2
C3
=1
»

Since the reference trace is stored in trace 3, changing trace 3 to
Clear Write invalidates the normalization.

Short Circuit Normalized

Chapter 13 119

%)
2
=
o
S
o
S
=
7
@©
o}
p=
©
)
c
o
o
7
[}
o
o
S
=
S
=
n

(ESA Options 1DN and 1DQ)

Step 1.

Step 2.

NOTE

Figure 13-9

Stimulus Response Measurements (ESA Options 1DN and 1DQ)
Measuring Return Loss using the Reflection Calibration Routine

Measuring Return Loss using the Reflection
Calibration Routine

This procedure uses the reflection calibration routine in the proceeding
procedure “Making a Reflection Calibration Measurement” on page 118
to calculate the return loss of the 200 MHz bandpass filter. See the
concepts section “Converting Return Loss to VSWR” on page 160 to find
the VSWR for the measured return loss.

After calibrating the system with the above procedure, reconnect the
filter in place of the short circuit without changing any analyzer
settings.

Use the marker to read return loss. Position the marker with the
front-panel knob to read the return loss at that frequency:

Press Marker, rotate front-panel knob.
Or you can use the Min Search function to measure return loss by

pressing Peak Search, Min Search, a marker is placed at the point where
the return loss is maximized. See Figure 13-9.

Measuring the Return Loss of the Filter
Mkrl 2853

Marker
205.300000 MHz
-12.87 dB

120 Chapter 13

_|
@
D
S5
v 3
o O
S Q
(__n_E
a 2
Q=
D3
,(_n\g
g Ma
0
> <
m 2
n =
@
@D
w

14 Demodulating and Viewing
Television Signals
(ESA-E Series Option B7B)

121

0
Q@
c’h

(]
.gm
.e'ﬁ
> 0
cy
(U(f)
S
=
R
3(/)
T C
SE
£.0
a3
T
I—

Step 1.

Step 2.

NOTE
Step 3.
Step 4.
Step 5.
NOTE

Demodulating and Viewing Television Signals (ESA-E Series Option B7B)
Demodulating and Viewing Television Signals

Demodulating and Viewing Television Signals

ESA-E Series with option B7B (TV trigger and picture on screen) allows
you to trigger the sweep of the analyzer on a specific television line of a
demodulated TV waveform. Option B7B also allows you to view the
television picture represented by the TV waveform on the color LCD
display of the analyzer.

This procedure sets up the analyzer to trigger on the TV video
waveform and to view the picture of the TV signal on the analyzer.

For more information on TV trigger setup see the concepts chapter “TV
Trigger Setup Menu Functions” on page 154.

Connect a source which contains suitable TV carrier signals (for
example, terrestrial broadcast or CATV signals).

Disable the background alignment process while viewing TV pictures:
Press System, Alignments, Auto Align, Off.

This is necessary to prevent the background alignment process from
interrupting the signal paths of the analyzer during the sweep retrace
period so as to maintain a constant, uninterrupted video waveform.

After viewing the TV waveform or picture, re-enable the background
alignment process by pressing System, Alignments, Auto Align, All. If the
background alignment has been disabled for more than 60 minutes or
the ambient temperature has changed more than 3 degrees centigrade,
press System, Alignments, Align Now, All to ensure measurement
accuracy. See the Specifications and Characteristics Chapter for your
analyzer model in the specifications guide, for information about
alignment requirements.

Set the center frequency of the analyzer to match the TV video carrier
frequency and set the span to 20 MHz to capture the TV channel:

Press FREQUENCY Channel, then enter the desired value and units.
Press SPAN X Scale, Span, 20, MHz.

Auto couple the analyzer settings:

Press Auto Couple, Auto All (if present, newer software only).

Adjust the reference level of the analyzer to the peak video carrier level:
Press AMPLITUDE Y Scale, then use the knob or step keys.

If the signal is weak and accompanied by excessive noise, you may

choose to enable the internal preamp, if installed, to improve the
sighal-to-noise ratio. Press AMPLITUDE, More, Int Preamp (On).

122 Chapter 14

Demodulating and Viewing Television Signals (ESA-E Series Option B7B)
Demodulating and Viewing Television Signals

When viewing the spectrum, for analog TV channels, there should be a
strong, “noise-like” video carrier at the center frequency, a weaker,
“noise-like” chrominance sub-carrier located 3.58 MHz (NTSC
standard) or 4.3 to 4.4 MHz (PAL or SECAM standards) above the video
carrier, and a tightly-grouped sound carrier located 4.5 to 6.5 MHz
above the video carrier. If you are viewing broadcast or cable TV
signals, the lower adjacent channel sound carrier may be very close to
the video carrier at the center frequency.

Step 6. Change the RBW to 3 MHz:
Press BW/Avg, Res BW, 3, MHz.

If the test signal does not have adjacent channels present, change the
resolution bandwidth to 5 MHz. If strong adjacent channel signals are
present (primarily the sound carrier of the lower adjacent channel), set
the RBW to 1 MHz.

Step 7. Set the amplitude scale type of the analyzer to linear:
Press AMPLITUDE Y Scale, Scale Type (Lin).

Step 8. Set the detector mode of the analyzer to sample:
Press Det/Demod, Detector, Sample.

Step 9. Set the analyzer in time-domain span:
Press SPAN X Scale, Zero Span.

Step 10. Adjust the reference level so that the signal peaks are within half of a
division of the top of the display.

Press AMPLITUDE Y Scale, then use the knob or arrow keys.
Step 11. Set up the TV trigger properties:

Press Trig, TV Trig Setup.

Press Field, Entire Frame, Sync (Pos) (or Sync (Neg) for SECAM signals.
Press Standard, then select the appropriate standard for the video
signal.

Press TV Source, SA.

_|
@
D

S5
® 3
o O
S Q
(__/)_E
a 2
Q=
D3
2
ma
wm

> <
m 2
v =
@
@D
w

Step 12. Enable the TV trigger:
Press Trig, TV.

The default line number for triggering can be changed to any value
from 1 to 525 or from 1 to 625, depending on the selected video
standard.

Step 13. Decrease the sweep time to view several TV lines (if you have option
AYX or B7D):

Press Sweep, Sweep Time, 500, ys.

Chapter 14 123

Demodulating and Viewing Television Signals (ESA-E Series Option B7B)
Demodulating and Viewing Television Signals

A time domain display of the demodulated TV waveform will now be
visible. The signals used for Figure 14-1 were produced by a Phillips
PM 5518-TX Color TV Pattern Generator.

Figure 14-1 Demodulated RF Waveform

Ref 11 mV Atten 5 dB Ref 10.96 mY Atten 5 dB
Peak

Lin | f
mE

TV Trigger Line

Center 55.25 MHz Span @ Hz
Res BH 3 MHz VBH 3 MHz #Sweep 500 ps

LEFT: NTSC; PAL is Similar
RIGHT: SECAM

If Trig, TV is the active function, the line number used to trigger the
analyzer sweep can be changed to examine the different parts of the
video waveform. The line numbering scheme varies with TV standard,
but TV test patterns will often be inserted in or near line 17.

Step 14. Set a long sweep time of 100 seconds to minimize disruption of the
analog signal path during the instrument retrace to optimize picture
guality:

Press Sweep, Sweep Time, 100, s.

Step 15. To obtain the best color picture quality with NTSC and PAL signals, set
the center frequency 1.75 MHz above the video carrier frequency:

Press FREQUENCY Channel, CF Step, 1.75, MHz, Center Freq, [l

0
Q@
c’h

(]
.gm
.e'ﬁ
> 0
cy
(ts(f)
S
=
R
3(./)
T C
SE
£.0
a3
T
I—

Setting the center frequency above the video carrier frequency centers
the analyzer's tuned frequency between the video carrier and the color
subcarrier.

Step 16. Turn on the spectrum analyzer display into a TV monitor:

Press Trig, TV Trig Setup, TV Monitor.

124 Chapter 14

Demodulating and Viewing Television Signals (ESA-E Series Option B7B)
Demodulating and Viewing Television Signals

Figure 14-2 TV Picture Display

-
E
=
=
B
E:
i
It

When the picture is active, you can adjust the value of the function that
was active prior to enabling the picture. For example, if center
frequency was the active function and the frequency step size was set to
the TV channel frequency spacing, you can increment or decrement
through the TV channels by pressing the step keys ((11) of the analyzer.
If resolution bandwidth was the active function, you can increase or
decrease the amount of filtering to deal with strong adjacent channel
signals.

NOTE When using the knob to vary the value of the active function, be aware
that the instrument settings will not be updated until you stop turning
the knob. Make small movements of the knob with frequent pauses.

_|
@
D

g
® 3
o O
>S5 O
g)_E
o &
=}

D3
28
mga
wm

> <
n 2
(/)5'
a
@D
w

Chapter 14 125

0
Q@
c’h

(]
g(n
.e'ﬁ
> 0
cy
(U(f)
S
=
R
3(/)
T C
SE
£.0
a3
T
I—

NOTE

Step 1.

Step 2.

Step 3.

Step 4.

Step 5.

Demodulating and Viewing Television Signals (ESA-E Series Option B7B)
Measuring Depth of Modulation

Measuring Depth of Modulation

The depth of modulation provides a measure of the percentage of
amplitude modulation (AM) on the visual carrier. With Option B7B, the
analyzer can be used to measure the horizontal synchronization pulse
level and vertical interval test signal (VITS) white level on an
individual TV line from which a calculation of percent AM can be made.
Note that this measurement method will not be valid for some types of
scrambled video signals.

This procedure measures depth of modulation on an individual TV line.

For more information on TV trigger setup see the concepts chapter “TV
Trigger Setup Menu Functions” on page 154.

Before continuing, be sure you have performed the steps in
“Demodulating and Viewing Television Signals” on page 122 at the
beginning of the section to display a TV waveform with linear scaling.

Trigger on a TV line that has a test signal containing the reference
white level within the waveform (100 IRE) such as the FCC, NTC-7 or
ITU Composite Test Signal (typically found at or near line 17 within
field 1 or field 2):

Press Trig, TV, and enter a line number.

Set the sweep time to 80 us (option AYX or B7D required) to view a
complete TV line:

Press Sweep, Sweep Time, 80, pus.
Set the resolution bandwidth and the video bandwidth to 1 MHz:

Press BW/Avg, Res BW, 1, MHz.
Press BW/Avg, Video BW, 1, MHz.

Turn on video averaging to 10 averages:
Press BW/Avg, Average (On), 10, Enter.

This minimizes the waveform variations caused by the presence of
additional RF signals near the picture carrier, as well as waveform
noise or jitter.

Enable a normal marker and using the front-panel knob move the
marker within the sync tip (NTSC or PAL waveforms) or the white level
(SECAM waveforms) at the top of the waveform:

Press Marker, Normal, then rotate the front-panel knob (or press Peak
Search).

126 Chapter 14

Demodulating and Viewing Television Signals (ESA-E Series Option B7B)
Measuring Depth of Modulation

Step 6. Enable a delta marker and using the front-panel knob move the delta
marker within the white level (NTSC or PAL waveforms) or the sync tip
(SECAM waveforms) at the bottom of the waveform:

Press Marker, Delta, then rotate front-panel knob (or press Peak Search,
Min Search).

Figure 14-3 Measuring Marker Delta (%) for Depth of Modulation (NTSC)
a Mkrl -12.6 ps
Ref 8.317 mV Atten 5 dB o
Samp
Lin

\ | “
Mngber A r\l
12 6000000 bq‘
VAvg 14 26 / Y
10 ‘ |

H1 S2 \

$3 TS e I‘

N
i

Span @ Hz
#UBH 1 MHz #Sweep 80 ps

The depth of modulation (in percent) can now be determined by
subtracting the marker readout (in percent) from 100. A typical value
would be 87.5%.

_|
@
D

S5
® 3
o O
S Q
) c
a 2
Q=
D3
2
ma
wm

> <
m 2
v =
@
@D
w

Chapter 14 127

Demodulating and Viewing Television Signals (ESA-E Series Option B7B)
Measuring Depth of Modulation

0
Q@
c’h

(]
.gm
.e'ﬁ
> 0
cy
(U(f)
S
=
R
3(./)
T C
SE
£0
a3
T
I—

128 Chapter 14

H

129

Concepts

15

Concepts

Concepts
Resolving Closely Spaced Signals

Resolving Closely Spaced Signals

Resolving Signals of Equal Amplitude

Two equal-amplitude input signals that are close in frequency can
appear as a single signal trace on the analyzer display. Responding to a
single-frequency signal, a swept-tuned analyzer traces out the shape of
the selected internal IF (intermediate frequency) filter (typically
referred to as the resolution bandwidth or RBW filter). As you change
the filter bandwidth, you change the width of the displayed response. If
a wide filter is used and two equal-amplitude input signals are close
enough in frequency, then the two signals will appear as one signal. If a
narrow enough filter is used, the two input signals can be discriminated
and appear as separate peaks. Thus, signal resolution is determined by
the IF filters inside the analyzer.

The bandwidth of the IF filter tells us how close together equal
amplitude signals can be and still be distinguished from each other. The
resolution bandwidth function selects an IF filter setting for a
measurement. Typically, resolution bandwidth is defined as the 3 dB
bandwidth of the filter. However, resolution bandwidth may also be
defined as the 6 dB or impulse bandwidth of the filter.

Generally, to resolve two signals of equal amplitude, the resolution
bandwidth must be less than or equal to the frequency separation of the
two signals. If the bandwidth is equal to the separation and the video
bandwidth is less than the resolution bandwidth, a dip of
approximately 3 dB is seen between the peaks of the two equal signals,
and it is clear that more than one signal is present.

For ESA spectrum analyzers when the resolution bandwidth is = 1 kHz
and for PSA spectrum analyzers in swept mode, to keep the analyzer
measurement calibrated, sweep time is automatically set to a value
that is inversely proportional to the square of the resolution bandwidth

(1/BW2). So, if the resolution bandwidth is reduced by a factor of 10, the
sweep time is increased by a factor of 100 when sweep time and
bandwidth settings are coupled. For the shortest measurement times,
use the widest resolution bandwidth that still permits discrimination of
all desired signals. Sweep time is also a function of which detector is in
use, peak detector sweeps as fast or more quickly than sample or
average detectors. The ESA allows you to select from 1 kHz to 3 MHz
resolution bandwidths in a 1, 3, 10 sequence and select a 5 MHz
resolution bandwidth. The PSA allows RBW selections up to 8 MHz in
the same steps as ESA and it has the flexibility to fine tune RBWs in
increments of 10% for a total of 160 RBW settings. The ESA and PSA
have CISPR bandwidths (200 Hz, 9 kHz and 120 kHz at -6 dB) for
maximum measurement flexibility. The PSA also has MIL EMI
bandwidths of 10 Hz, 100 Hz, 1 kHz, 10 kHz, 100 kHz and 1 MHz.

130 Chapter 15

NOTE

Figure 15-1

Concepts
Resolving Closely Spaced Signals

For best sweep times and keeping the analyzer calibrated set the sweep
time (Sweep, Sweep Time) to Auto, and the auto sweep time (Sweep, Auto
Sweep Time) to Norm. Use the widest resolution bandwidth that still

permits resolution of all desired signals.

For ESA-E Series Spectrum Analyzers:

Option 1DR adds narrower resolution bandwidths, from 10 Hz to

300 Hz, in a 1-3-10 sequence and 200 Hz CISPR bandwidth. These
bandwidths are digitally implemented and have a much narrower
shape factor than the wider, analog resolution bandwidths. Also, the
auto coupled sweep times when using the digital resolution bandwidths
are much faster than analog bandwidths of the same width. For
analyzers with Option 1DR, firmware revision A.08.00 and greater, and
Option 1D5 which adds a high-stability frequency precision reference to
the analyzer, resolution bandwidths of 1 Hz and 3 Hz are also available.

Resolving Small Signals Hidden by Large Signals

When dealing with the resolution of signals that are close together and
not equal in amplitude, you must consider the shape of the IF filter of
the analyzer, as well as its 3 dB bandwidth. (See “Resolving Signals of
Equal Amplitude” on page 130 for more information.) The shape of a
filter is defined by the selectivity, which is the ratio of the 60 dB
bandwidth to the 3 dB bandwidth. If a small signal is too close to a
larger signal, the smaller signal can be hidden by the skirt of the larger
signal.

To view the smaller signal, select a resolution bandwidth such that k is
less than a (see Figure 15-1). The separation between the two signals
(a) must be greater than half the filter width of the larger signal (k),
measured at the amplitude level of the smaller signal.

The digital filters in the ESA and PSA have filter widths about
one-third as wide as typical analog RBW filters. This enables you to
resolve close signals with a wider RBW (for a faster sweep time).

RBW Requirements for Resolving Small Signals

[—— 0 ——»

k <a

Chapter 15 131

s1deouo)d

Concepts

Concepts
Harmonic Distortion Calculations

Harmonic Distortion Calculations

The analyzer provides a one-button automated measurement for
harmonic measurements (from the second to the tenth harmonic) and
provides a calculation of the total harmonic distortion for continuous
wave signals or complex digitally modulated carriers.

When the harmonic distortion measurement is activated, the analyzer
searches for the fundamental and determines the frequencies of the
harmonics. The analyzer then changes to zero span, and measures the
amplitude of each harmonic. The analyzer calculates the total harmonic
distortion by dividing the root-sum-squares of the harmonic voltages by
the fundamental signal voltage and then provides the result as a
percentage.

%THD = 100 x

Where:

%THD = Total Harmonic Distortion as a percentage
h = harmonic number
Hnax = Maximum Harmonic Value listed

Ej, = voltage of harmonic h
E¢ = voltage of fundamental signal

Example of a THD calculation:

If the number of harmonics selected is 5 (H,5x = 5) and the measured
values are as follows:

E; = 5dBm = 3.162 mW = 397.6 mV

E, = -42dBc = -37 dBm = 199.5 nW = 3.159 mV
E; = —26 dBc = —21 dBm = 7.943 pW = 19.93 mV
E, = -49 dBc = —44 dBm = 39.81 nW = 1.411 mV
Es = 36 dBc = —31 dBm = 794.3 nW = 6.302 mV
then,
THD = 100 x J3.159 mv?+19.93 mv? + 1.411mv2 + 6,301 mv? _ —

397.6 mV

132 Chapter 15

Figure 15-2

Concepts
Time Gating Concepts

Time Gating Concepts

Introduction: Using Time Gating on a Simplified
Digital Radio Signal
This section shows you the concepts of using time gating on a simplified

digital radio signal. “Making Time-Gated Measurements” on page 57
demonstrates time gating examples using the ESA and PSA.

Figure 15-2 shows a signal with two radios, radio 1 and radio 2, that are
time-sharing a single frequency channel. Radio 1 transmits for 1 ms
then radio 2 transmits for 1 ms.

Simplified Digital Mobile-Radio Signal in Time Domain

|
<>

1 ms

We want to measure the unique frequency spectrum of each
transmitter.

A spectrum analyzer without time gating cannot do this. By the time
the spectrum analyzer has completed its measurement sweep, which
lasts about 50 ms, the radio transmissions switch back and forth 25
times. Because the radios are both transmitting at the same frequency,
their frequency spectra overlap, as shown in Figure 15-3. The spectrum
analyzer shows the combined spectrum; you cannot tell which part of
the spectrum results from which signal.

s1deouo)d

Chapter 15 133

Concepts

Concepts
Time Gating Concepts

Figure 15-3 Frequency Spectra of the Combined Radio Signals

o
LT

NMW T 'MW

Time gating allows you to see the separate spectrum of radio 1 or
radio 2 to determine the source of the spurious signal, as shown in

Figure 15-4.
Figure 15-4 Time-Gated Spectrum of Radio 1
Pl W
.,Ml'ﬂ \r\\'m
s_’// ‘\\
Figure 15-5 Time-Gated Spectrum of Radio 2

| I\MW

oL, i ke

Time gating lets you define a time window (or time gate) of when a
measurement is performed. This lets you specify the part of a signal
that you want to measure, and exclude or mask other signals that
might interfere.

e

134 Chapter 15

Concepts
Time Gating Concepts

How Time Gating Works

Time gating is achieved by the spectrum analyzer selectively
interrupting the path of the detected signal, with a gate, as shown in
Figure 15-7 and Figure 15-8. The gate determines the times at which it
captures measurement data (when the gate is turned “on,” under the
Gate menu, the signal is being passed, otherwise when the gate is “off,”
the signal is being blocked). Under the right conditions, the only signals
that the analyzer measures are those present at the input to the
analyzer when the gate is on. With the correct spectrum analyzer
settings, all other signals are masked out.

There are typically two main types of gating conditions, edge and level:

= With edge gating, the gate timing is controlled by user parameters
(gate delay and gate length) following the selected (rising or falling)
edge of the trigger signal. The gate passes a signal on the edge of the
trigger signal (after the gate delay time has been met) and blocks the
signal at the end of the gate length.

With edge gating, the gate control signal is usually an external
periodic TTL signal that rises and falls in synchronization with the
rise and fall of the pulsed radio signal. The gate delay is the time the
analyzer waits after the trigger event to enable the gate (see Figure
15-6).

< With level gating, the gate will pass a signal when the gate signal
meets the specified level (high or low). The gate blocks the signal
when the level conditions are no longer satisfied (level gating does
not use gate length or gate delay parameters).

Figure 15-6 Edge Trigger Timing Relationships

Positive Edge Trigger Negative Edge Trigger

Signal

Trigger ‘ ‘

Gate

< >| ———le——>
Delay LengthI Delay l LengthI

With Agilent PSA and ESA spectrum analyzers, there are three
different implementations for time gating; gated LO, gated video and
gated FFT. Gated LO and gated FFT are only available on the PSA
spectrum analyzers while gated video is only available on the ESA.

s1deouo)d

Chapter 15 135

Concepts

Concepts
Time Gating Concepts

Gated LO Concepts (PSA Spectrum Analyzers)

Gated LO is a very sophisticated type of time gating that sweeps the LO
only while the gate is “on” and the gate is passing a signal. See Figure
15-7 for a simplified block diagram of gated LO operation. Notice that
the gate control signal controls when the scan generator is sweeping
and when the gate passes or blocks a signal. This allows the analyzer to
sweep only during the periods when the gate passes a signal. Since
gated LO only sweeps during periods when the gate is “on” and the gate
is passing a signal, gated LO results in faster measurements than gated
video.

Figure 15-7 Gated LO PSA Spectrum Analyzer Block Diagram
RF IF resolution Envelope Video
step . BANAWIdin | jog detector bandwidth Peak/sample Analog-digital
oftenuator ~ Mixer fitter amplifier (IF fo video) filter detector converter
RF pass
i NH>— WS —
(hold) | 12 A
) 4
N € > Display logic
LOC.Ol Scan generator +
oscillator WN
A
Gate
control
NOTE Gated LO is available on all PSA models with firmware release A.04.12

or greater and the appropriate hardware. See service notes E4440A-09,
E4443A-08, E4445A-08, E4446A-06 or E4448A-07 for more information
on the hardware requirements.

Gated Video Concepts (ESA Spectrum Analyzers)

Gated video may be thought of as a simple gate switch, which connects
the signal to the input of the spectrum analyzer. When the gate is “on”
(under the Gate menu) the gate is passing a signal. When the gate is
“off,” the gate is blocking the signal. Whenever the gate is passing a
signal, the analyzer sees the signal. In Figure 15-8 notice that the gate
is placed after the envelope detector and before the video bandwidth
filter in the IF path (hence “gated video™).

The RF section of the spectrum analyzer responds to the signal. The
selective gating occurs before the video processing. This means that
there are some limitations on the gate settings because of signal
response times in the RF signal path.

136 Chapter 15

Concepts
Time Gating Concepts

With video gating the analyzer is continually sweeping, independent of
the position and length of the gate. The analyzer must be swept at a
minimum sweep time (see the sweep time calculations later in this
chapter) to capture the signal when the gate is passing a signal.
Because of this, video gating is typically slower than gated LO and
gated FFT.

Figure 15-8 Gated Video ESA Spectrum Analyzer Block Diagram
; Video
RF IF resolution)
: banawidih veope banawidth
o Mi filter Flog — dofecior fitter Peak/sample Analog-digital
. aftenuator Ixer amplifier (IF iro video) detector converter
N A
input /\ | = 0 N <
Gate A
Y
<& > Display logic
LOC.Ol Scan generator +
oscillator wv\/\wm‘/
NOTE Gated video is available only on the Agilent ESA-E Series spectrum

analyzers (E4401B, E4402B, E4404B, E4405B and E4407B) with option
1D6.

Gated FFT Concepts (PSA Spectrum Analyzer)

Gated FFT (Fast-Fourier Transform) is an FFT measurement which
begins when the trigger conditions are satisfied.

The process of making a spectrum measurement with FFTs is
inherently a “gated” process, in that the spectrum is computed from a
time record of short duration, much like a gate signal in swept-gated
analysis.

Using the PSA in FFT mode, the duration of the time record to be gated
is:

FFT Time Record (to be gated) = 183

RBW

The duration of the time record is within a tolerance of approximately
3% for resolution bandwidths up through 1 MHz. Unlike swept gated
analysis, the duration of the analysis in gated FFT is fixed by the RBW,
not by the gate signal. Because FFT analysis is faster than swept
analysis (up to 10 MHz), the gated FFT measurements can have better
frequency resolution (a narrower RBW) than swept analysis for a given
duration of the signal to be analyzed.

s1deouo)d

Chapter 15 137

Concepts

Concepts
Time Gating Concepts

Figure 15-9 Gated FFT Timing Diagram

Extemal
trigger

:FFT
¢ window
: multiplier

Trigger delay
(Positive edge ~ 1.83/RBW
trigger event) : :

Apparent
v(t)

i ,

Time Gating Basics (Gated LO and Gated Video)
The gate passes or blocks a signal with the following conditions:

= Trigger condition - Usually an external transistor-transistor logic
(TTL) periodic signal for edge triggering and a high/low TTL signal
for level triggering.

= Gate delay - The time after the trigger condition is met when the
gate will pass a signal (for edge triggering).

= Gate length - The gate length setting determines the length of time a
gate will pass a signal (for edge triggering).

To understand time gating better, consider a spectrum measurement
performed on two pulsed-RF signals sharing the same frequency
spectrum. You will need to consider the timing interaction of three
signals with this example:

= The composite of the two pulsed-RF signals.

138 Chapter 15

Figure 15-10

Concepts
Time Gating Concepts

e The gate trigger signal (a periodic TTL level signal).

< The gate signal. This TTL signal is low when the gate is "off"
(blocking) and high when the gate is "on" (passing).

The timing interactions between the three signals are best understood
if you observe them in the time domain (see Figure 15-10).

The main goal is to measure the spectrum of signal 1 and determine if it
has any low-level modulation or spurious signals.

Because the pulse trains of signal 1 and signal 2 have almost the same
carrier frequency, their spectra overlap. Signal 2 will dominate in the
frequency domain due to its greater amplitude. Without gating, you
won't see the spectrum of signal 1; it is masked by signal 2.

To measure signal 1, the gate must be on only during the pulses from
signal 1. The gate will be off at all other times, thus excluding all other
signals. To position the gate, set the gate delay and gate length, as
shown in Figure 15-10, so that the gate is on only during some central
part of the pulse. Carefully avoid positioning the gate over the rising or
falling pulse edges. When gating is activated, the gate output signal
will indicate actual gate position in time, as shown in the line labeled
"Gate."

Timing Relationship of Signals During Gating

#1 #2 #1 #2

Signal

Trigger
|

1]
| Sa‘e | | Gate |
I elay | Delay
Gate © (0)
Gate Gate
Length Length
(L) L)

Once the spectrum analyzer is set up to perform the gate measurement,
the spectrum of signal 1 is visible and the spectrum of signal 2 is
excluded, as shown if Figure 15-12. In addition, when viewing signal 1,
you also will have eliminated the pulse spectrum generated from the
pulse edges. Gating has allowed you to view spectral components that
otherwise would be hidden.

s1deouo)d

Chapter 15 139

Concepts

Figure 15-11

Figure 15-12

Figure 15-13

Figure 15-14

Concepts
Time Gating Concepts

Signal within pulse #1 (time-domain view)

#1

‘ aj159e

Using Time Gating to View Signal 1 (spectrum view)

[*

jl \IU i
fmﬂmﬂtw ‘uss.ﬁ!mrmm

Moving the gate so that it is positioned over the middle of signal 2
produces a result as shown in Figure 15-14. Here, you see only the
spectrum within the pulses of signal 2; signal 1 is excluded.

Signal within pulse #2 (time-domain view)

#H2

1 aj160e

Using Time Gating to View Signal 2 (spectrum view)

140 Chapter 15

Concepts
Time Gating Concepts

Measuring a Complex/Unknown Signal

NOTE The steps below help to determine the spectrum analyzer settings when
using time gating. The steps apply to the time gating approaches using
gated LO on the PSA and gated video on the ESA.

This example shows you how to use time gating to measure a very
specific signal. Most signals requiring time gating are fairly complex
and in some cases extra steps may be required to perform a
measurement.

Step 1. Determine how your signal under test appears in the time domain and
how it is synchronized to the trigger signal.

You need to do this to position the time gate by setting the delay
relative to the trigger signal. To set the delay, you need to know the
timing relationship between the trigger and the signal under test.
Unless you already have a good idea of how the two signals look in the
time domain, you can examine the signals with an oscilloscope to
determine the following parameters:

= Trigger type (edge or level triggering)

= Pulse repetition interval (PRI), which is the length of time between
trigger events (the trigger period).

e Pulse width, or 1

= Signal delay (SD), which is the length of time occurring between the
trigger event and when the signal is present and stable. If your
trigger occurs at the same time as the signal, signal delay will be
zero.

s1deouo)d

Chapter 15 141

Concepts

Figure 15-15

Step 2.

Step 3.

Concepts
Time Gating Concepts

Time-domain Parameters

PRI

v

y
v

Signal
I
I
I
sp | |
| —
Trigger :
I
| I
Gate I‘ D (Gate Delay)
|
I sur |SUT=D-5D)
J—————>]
Time (ms)—I | | | | | | | | |
(ms)—] 1 | | | | | | 1 |
0 1 2 3 4 5 6 7 8 9

In Figure 15-15, the parameters are:
= Pulse repetition interval (PRI) is 5 ms.
e Pulse width (1) is 3 ms.

< Signal delay (SD) is 1 ms for positive edge trigger (0.8 ms for
negative edge trigger).

e Gate delay (D) is 2.5 ms.
e Setup time (SUT) is 1.5 ms.
Set the spectrum analyzer sweep time:

PSA: Sweep time does not affect the results of gated LO unless the
sweep time is set too fast. In the event the sweep time is set too fast,
Meas Uncal appears on the screen and the sweep time will need to be
increased.

ESA: Sweep time does affect the results from gated video. The sweep
time must be set accordingly for correct time gating results. The sweep
time should be set to at least the number of sweep points - 1 multiplied
by the PRI (pulse repetition interval).

Locate the signal under test on the display of the spectrum analyzer.
Set the center frequency and span to view the signal characteristics
that you are interested in measuring. Although the analyzer is not yet
configured for correct gated measurements, you will want to determine
the approximate frequency and span in which to display the signal of
interest. If the signal is erratic or intermittent, you may want to hold
the maximum value of the signal with Max Hold (located under the

142 Chapter 15

Step 4.

Figure 15-16

Concepts
Time Gating Concepts

View/Trace (ESA) or Trace/View (PSA) menu) to determine the frequency
of peak energy.

To optimize measurement speed, set the span narrow enough so that
the display will still show the signal characteristics you want to
measure. For example, if you wanted to look for spurious signals within
a 200 kHz frequency range, you might set the frequency span to just
over 200 kHz.

Determine the setup time and signal delay to set up the gate signal.
Turn on the gate and adjust the gate parameters including gate delay
and gate length as shown below.

Generally, the gate should be positioned over a part of the signal that is
stable, not over a pulse edge or other transition that might disturb the
spectrum. Starting the gate at the center of the pulse gives a setup time
of about half the pulse width. Setup time describes the length of time
during which that signal is present and stable before the gate comes on.
The setup time (SUT) must be adequately long enough for the RBW
filters to settle following the burst-on transients. Signal delay (SD) is
the length of time after the trigger, but before the signal of interest
occurs and becomes stable. If the trigger occurs simultaneously with the
signal of interest, SD is equal to zero, and SUT is equal to the gate
delay. Otherwise, SUT is equal to the gate delay minus SD. See Figure
15-16.

Positioning the Gate

\ 4

Signal

[

!_ Ti2 | |
" f——
I
|
l

Gate Sut

There is flexibility in positioning the gate, but some positions offer a
wider choice of resolution bandwidths. A good rule of thumb is to
position the gate from 20% to 80% of the burst for PSA, and 25% to 80%
of the burst for ESA. Doing so provides a reasonable compromise
between setup time and gate length.

s1deouo)d

Chapter 15 143

Concepts

Figure 15-17

Figure 15-18

Concepts
Time Gating Concepts

Best Position for Gate

Signal

Bad Bad Acceptable Best

As a general rule, you will obtain the best measurement results if you
position the gate relatively late within the signal of interest, but
without extending the gate over the trailing pulse edge or signal
transition. Doing so maximizes setup time and provides the resolution
bandwidth filters of the spectrum analyzer the most time to settle
before a gated measurement is made. "Relatively late," in this case,
means allowing a setup time of approximately 2 divided by the
resolution bandwidth (see step 5 for RBW calculations).

As an example, if you want to use a 1 kHz resolution bandwidth for
measurements, you will need to allow a setup time of at least 2 ms.

Note that the signal need not be an RF pulse. It could be simply a
particular period of modulation in a signal that is continuously
operating at full power, or it could even be during the off time between
pulses. Depending on your specific application, adjust the gate position
to allow for progressively longer setup times (ensuring that the gate is
not left on over another signal change such as a pulse edge or
transient), and select the gate delay and length that offer the best
signal-to-noise ratio on the display.

If you were measuring the spectrum occurring between pulses, you
should use the same (or longer) setup time after the pulse goes away,
but before the gate goes on. This lets the resolution bandwidth filters
fully discharge the large pulse before the measurement is made on the
low-level interpulse signal.

Setup Time for Interpulse Measurement

Signal

Gate SuT

144 Chapter 15

Concepts
Time Gating Concepts

Step 5. The resolution bandwidth will need to be adjusted for gated LO and
gated video. The video bandwidth will only need to be adjusted for gated
video.

Resolution Bandwidth:

The resolution bandwidth you can choose is determined by the gate
position, so you can trade off longer setup times for narrower resolution
bandwidths. This trade-off is due to the time required for the
resolution-bandwidth filters to fully charge before the gate comes on.
Setup time, as mentioned, is the length of time that the signal is
present and stable before the gate comes on.

Figure 15-19 Resolution Bandwidth Filter Charge-Up Effects

Signal

Gate

suT |
—>

RBW Filter r
Charging N\ J

Because the resolution-bandwidth filters are band-limited devices, they
require a finite amount of time to react to changing conditions.
Specifically, the filters take time to charge fully after the analyzer is
exposed to a pulsed signal.

Because setup time should be greater than filter charge times, be sure

| 2 216
that: (ESA)SUT > REW and (PSA)SUT > RBW+ 3.3us
3
PSA)Gate Length > —5— + 1.5
(PSA)GateLength > ooty + 151s

where SUT is the same as the gate delay in this example. In this
example with SUT equal to 1.5 ms, for ESA, RBW is greater than 2/1.5
ms; that is, RBW is greater than 1333 Hz. The resolution bandwidth
should be set to the next larger value, 3 kHz.

Video Bandwidth:

Just as the resolution bandwidth filter needs a finite amount of time to
charge and discharge, so does the video filter, which is a post-detection
filter used mainly to smooth the measurement trace. Regardless of the
length of the real RF pulse, the video filter sees a pulse no longer than
the gate length, and the filter will spend part of that time charging up.

s1deouo)d

Chapter 15 145

Concepts

Step 6.

Concepts
Time Gating Concepts

Reducing the video-bandwidth filter too fast causes the signal to appear
to drop in amplitude on the screen.

If you are in doubt about the proper video bandwidth to choose, set it to
its maximum and reduce it gradually until the detected signal level
drops slightly. Then reset it to the value it was at just before the signal
dropped.

Leave both RBW and VBW in the manual mode, not Auto. This is
important so that they will not change if the span is changed. The
setting readout on the bottom line of the analyzer screen should show a
"#" sign next to the function names (for example, #Res BW #VBW and
#Sweep), indicating that they have been set manually.

Setting the ESA VBW:

To ensure that a true peak value is obtained before the gate goes off, the
video filter must have a charge time of less than the gate length. For
this purpose, you can approximate the charge time of the video filter as
1/VBW, where VBW is the -3 dB bandwidth of the video filter.

1

(ESA)VBW

For example using ESA, if you use a 1 kHz video bandwidth for noise
smoothing, you need a gate length greater than 1 ms. Alternatively, if
you use a gate as narrow as 1 s, you should use a video filter of 1 MHz.

Therefore, you will want to be sure that: gate length >

Setting the PSA VBW:

For gated LO measurements the VBW filter acts as a track-and-hold
between sweep times. With this behavior, the VBW does not need to
resettle on each restart of the sweep.

Adjust span as necessary, and perform your measurement.

The analyzer is set up to perform accurate measurements. Freeze the
trace data by activating single sweep, or by placing your active trace in
view mode. Use the markers to measure the signal parameters you
chose in step 1. If necessary, adjust span, but do not decrease resolution
bandwidth, video bandwidth, or sweep time.

146 Chapter 15

Concepts
Time Gating Concepts

"Quick Rules" for Making Time-Gated Measurements

This section summarizes the rules described in the previous sections.

Table 15-1 Determining Spectrum Analyzer Settings for Viewing a Pulsed
RF Signal
Spectrum Spectrum Analyzer Setting Comments
Analyzer
Function

Sweep Time
(gated video

Set the sweep time to be equal
to or greater than

Because the gate must be on at least
once per trace point, the sweep time

only - ESA) . should be set such that the sweep time
(number of sweep points - 1) x L
ulse repetition interval (PRI): for each trace point is gre_atelr than or
P ' equal to the pulse repetition interval.
Gate Delay The gate delay is equal to the The gate delay must be set so that the

signal delay plus one-fourth the
pulse width:

Gate Delay = Signal Delay + 1/4

gating captures the pulse. If the gate
delay is too short or too long, the gating
can miss the pulse or include resolution
bandwidth transient responses.

Gate Length

The gate length minimum is
equal to one-fourth the pulse
width (maximum about
one-half):

Gate Length = 1/4

(PSA) Gate Length > 3/RBW +
1.5 us

If the gate length is too long, the signal
display can include transients caused by
the spectrum analyzer filters.

The recommendation for gate placement
can be between 20% to 80% of the pulse
for PSA and 25% to 80% of the pulse for
ESA.

Resolution Set the resolution bandwidth: The resolution bandwidth must be wide
Bandwidth (ESA) RBW > 2/(Gate Delay enough_ so that th_e cha_rglng fclme for the
Signal Delay) resolution bandwidth filters is less than
9 Y the pulse width of the signal.
(PSA) RBW > 2.16/(Gate Delay
- Signal Delay) + 3.3 us
Video Set the video bandwidth: The video bandwidth must be wide
Bandwidth enough so that the rise times of the video

(ESA) VBW > 1/gate length

bandwidth does not attenuate the signal
(in gated video applications). There are
no requirements for PSA VBW settings
using gated LO.

Chapter 15

147

s1deouo)d

Concepts

Figure 15-20

Concepts

Time Gating Concepts

Gate Positioning Parameters

Signal

Trigger

Gate

PRI

SD

T

I
|
I
I SuT

a—

D (Gate Delay)

L (Gate Length)

Most control settings are determined by two key parameters of the
signal under test: the pulse repetition interval (PRI) and the pulse
width (7). If you know these parameters, you can begin by picking some
standard settings. Table 15-2 and Table 15-3 summarize the
parameters for a signal whose trigger event occurs at the same time as
the beginning of the pulse (in other words, SD is 0). If your signal has a
non-zero delay, just add it to the recommended gate delay.

Table 15-2 Suggested Initial Settings for Known Pulse Width (1) and Zero
Signal Delay
Pulse width (1) Gate Delay Resolution Gate Length Video Bandwidth
(SD + 1/2) Bandwidth (t/14) (1/gate length)
(2>SUT) ESA gated video
only
4 s 3us 1 MHz 1ps 1 MHz
10 ps 5us 1 MHz 3us 1 MHz
50 ps 25 us 100 kHz 13 ps 100 kHz
63.5 s 32 us 100 kHz 16 ps 100 kHz
100 ps 50 us 100 kHz 25 us 100 kHz
500 us 250 us 10 kHz 125 ps 10 kHz
1ms 500 us 10 kHz 250 us 10 kHz
5ms 25ms 1 kHz 1.25ms 1 kHz
10 ms 5ms 1 kHz 25ms 1 kHz
16.6 ms 8.3 ms 1 kHz 4 ms 1 kHz
33 ms 16.5 ms 1 kHz 8 ms 1 kHz
50 ms 25 ms 1 kHz 13 ms 1 kHz
100 ms 50 ms 1 kHz 25 ms 1 kHz
2130 ms 65 ms 1 kHz 33ms 1 kHz
148 Chapter 15

Concepts
Time Gating Concepts

NOTE Table 15-3 below applies only to ESA spectrum analyzers. PSA gated
LO time gating is not affected by analyzer sweep times (unless the
sweep time is set too fast, Meas Uncal appears on the screen and the
sweep time will need to be increased).

Table 15-3 Suggested Sweep Times for an ESA at 401 Sweep Points and a

Known Pulse Repetition Interval or Pulse Repetition
Frequency

Pulse Repetition Pulse Repetition Sweep Time (Minimum)*

Interval (PRI) Frequency (PRF)

50 us 20 kHz 20.1 ms

100 ps 10 kHz 40.1 ms

500 ps 2 kHz 201 ms

1ms 1 kHz 401 ms

5ms 200 Hz 2.01s

10 ms 100 Hz 4.01s

16.7 ms 60 Hz 6.7s

20 ms 50 Hz 8.02s

33.3ms 30 Hz 13.4s

50 ms 20 Hz 20.1s

100 ms 10 Hz 40.1s

>170 ms Use the MAX HOLD trace function and take several measurement sweeps.

* The number of sweep points can be set to values between 101 and 8192. The minimum
sweep time is equal to the (number of sweep points minus 1) times (pulse repetition

interval).

Table 15-4 If You Have a Problem with the Time-Gated Measurement
Symptom Possible Causes Suggested Solution
(ESA only) Erratic analyzer | 1) Sweep rate too fast to Increase sweep time until
trace with random vertical | ensure at least one gate dropouts disappear. See
lines or dropouts extending | occurrence per trace point. | Table 15-3 for sweep time
below the peak trace 2) Detector may be set to calculations.
amplitude. something other than peak,

sample or average.

s1deouo)d

Chapter 15 149

Concepts

Table 15-4

Concepts

Time Gating Concepts

If You Have a Problem with the Time-Gated Measurement

Symptom

Possible Causes

Suggested Solution

Erratic analyzer trace with
dropouts that are not
removed by increasing
analyzer sweep time;
oscilloscope view of gate
output signal jumps
erratically in time domain.

Gate Delay may be greater
than trigger repetition
interval.

Reduce Gate Delay until it
is less than trigger interval.

For PSA check Gate View to
make sure the gate delay is
timed properly.

Gate does not trigger.

1) Gate trigger voltage may
be too low.

2) Gate may not be
activated.

3) (PSA) Gate Source
selection may be wrong.

Ensure gate trigger reaches
TTL levels. Check to see if
other connections to trigger
signal may be reducing
voltage. If using an
oscilloscope, check that all
inputs are high impedance,
not 50 Q.

Display spectrum does not
change when the gate is
turned on.

Insufficient setup time.

Increase setup time for the
current resolution
bandwidth, or increase
resolution bandwidth.

Displayed spectrum too low
in amplitude.

Resolution bandwidth or
video bandwidth filters not
charging fully.

Widen resolution
bandwidth or video
bandwidth, or both.

150

Chapter 15

NOTE

Figure 15-21

Concepts
Time Gating Concepts

Using the Edge Mode or Level Mode for Triggering

PSA spectrum analyzers use edge mode triggering. ESA spectrum
analyzers can use edge or level triggering modes.

Depending on the trigger signal that you are working with, you can
trigger the gate in one of two separate modes: edge or level. This
gate-trigger function is separate from the normal external trigger
capability of the spectrum analyzer, which initiates a sweep of a
measurement trace based on an external TTL signal.

Edge Mode

Edge mode lets you position the gate relative to either the rising or
falling edge of a TTL trigger signal. The left diagram of Figure 15-21
shows triggering on the positive edge of the trigger signal while the
right diagram shows negative edge triggering.

Example of key presses to initiate positive edge triggering:
(ESA) Press Sweep, Gate, Edge Gate, Slope (Pos).
(PSA) Press Sweep, Gate Setup, Polarity (Pos).

Using Positive or Negative Edge Triggering

Positive Edge Trigger Negative Edge Trigger

Signal

Trigger

Gate

7'y

bl »| le——}——
Delay "Len gth ! Delay " Length |

Level Mode (ESA)

In level gate-control mode, an external trigger signal opens and closes
the gate. Either the TTL high level or TTL low level opens the gate,
depending on the setting of Level Gate. Gate delay and gate length
control functions are not applicable when using level mode triggering.
Level mode is useful when your trigger signal occurs at exactly the
same time as does the portion of the signal you want to measure.

s1deouo)d

Chapter 15 151

Concepts

Concepts
Time Gating Concepts

Noise Measurements Using Time Gating

Time gating can be used to measure many types of signals. However,
they must be repetitive and for ESA, have a TTL timing trigger signal
available to synchronize the gate. Noise is not a repetitive signal, so if
you need to use gating when measuring noise, you should understand
the impact on the measurement results.

To measure the power accurately of a noisy signal, or noise-like signal
with time gating, a sample or average detector should be used. Average
and sample detection is available for both ESA and PSA spectrum
analyzers when time gating is on.

If peak detection is used during a gated measurement the power
reading will be higher than if average detection is used. The resulting
value increases as the time interval increases, because the probability
of finding the statistically rarer larger peaks increases. For very
accurate noise measurements using the gated function, the impact of
these considerations must be calculated based on the current spectrum
analyzer settings.

The equation below can be used to calculate a correction value for the
measured noise using peak detection. Subtract the correction from the
measured value.

Correction = 10 log,,| IN(2TTBW, + €)]

where;:

BW; is the impulse bandwidth
ESA is approximately 1.62 x resolution bandwidth, for
resolution bandwidths =1 kHz.
PSA is approximately 1.5 x resolution bandwidth, for
resolution bandwidths <3 MHz.

T is the time interval over which the peak detection
occurs and is equal to the sweep time/(number of sweep
points - 1).

Refer to Agilent Technologies Application Note 1303, page 18, for more
details.

152 Chapter 15

NOTE

Concepts
Trigger Concepts

Trigger Concepts

Selecting a Trigger

If you are using an ESA with firmware revision A.07.xx or lower, you
can use video and external triggering as set up below in numbers 1 and
2. If you have firmware A.08.xx or later and Option B7E with board
part number E4401-60224 or higher, RF burst triggering is also
available (recommended for this example). PSA can use video, external
and RF burst triggering.

To determine the ESA firmware revision number and hardware board
part number:

Press System, More, Show System.
Press System, More, Show Hdwr.

1. Video Triggering

Video triggering controls the sweep time based on the detected and
VBW filtered envelop signal to steady the bursted signal on the
display and to synchronize the measurement with the burst of
interest. Video triggering triggers the measurement at the point at
which the rising signal crosses the video trigger horizontal green line
on the display:

Press Trig, Video, -30, dBm.
2. External Triggering

In the event that you have an external trigger available that can be
used to synchronize with the burst of interest, connect the trigger
signal to the rear of the ESA using the GATE TRGEXT TR G IN
(TTL) input connector. For the PSA use either the trigger input
connector on the front (EXT TRI GEER | N) or the rear (TR GGER | N) of
the instrument. It might be necessary to adjust the trigger level (as
indicated by the lower horizontal green line) by rotating the front
panel knob or by entering the numeric value on the keypad.

(ESA) Press Trig, External.
(PSA) Press Trig, Ext Front or Ext Rear.

3. RF Burst Triggering

RF burst triggering occurs in the IF circuitry chain, as opposed to
after the video detection circuitry with video triggering. In the event
video triggering is used, the detection filters are limited to the
maximum width of the resolution bandwidth filters. Set the analyzer
in RF burst trigger mode (RF burst is a default trigger for PSA):

Press Trig, RF Burst.

Chapter 15 153

s1deouo)d

Concepts

Table 15-5

Concepts
Trigger Concepts

TV Trigger

TV Trigger Setup Menu Functions

e TV Source

When TV Source is set to SA, the analyzer demodulates the TV
signal, by using the analyzer as a fixed tuned receiver. This allows
stable, zero span sweeps of the baseband video waveform (band
limited by the RBW and VBW filters).

When TV Source is set to EXT VIDEO IN, an external baseband video
signal may be used to produce the TV line trigger. In this case, an
external TV tuner can be used to obtain the baseband waveform of
the given RF carrier for triggering the analyzer sweep. This will
allow the analyzer to be used in swept mode for measurements of the
RF spectrum to synchronize to the video modulation. The EXT VIDEO
IN connector is located on the rear panel of the analyzer.

TV Standard

Selection of a TV standard establishes the number of TV lines and
the kind of color encoding method that is used. The number of TV
lines establishes the defaults for the TV line counting circuits of the
analyzer and the color encoding method is used to properly set up
the TV picture display circuits. Option B7B supports both 525 line
and 625 line systems and can provide a color TV picture output for
NTSC and PAL color encoding methods. A black and white picture is
provided for the SECAM method.

The ability to display a color picture is limited by the bandwidth
settings of the analyzer (resolution bandwidth and video
bandwidth). However, baseband video signals input to the EXT
VIDEO IN connector on the rear panel of the analyzer are minimally
filtered, allowing a full color display of NTSC or PAL TV signals.

TV Standard | Number of | Approximate | Color Color
Lines per Field Rate Encoding Subcarrier
Frame Method Frequency
NTSC-M 525 60 Hz NTSC 3.58 MHz
NTSC-Japan 525 60 Hz NTSC 3.58 MHz
(no pedestal)
PAL-M 525 60 Hz PAL 4.43 MHz
PAL-B,D,G,H,I | 625 50 Hz PAL 4.43 MHz
PAL-N 625 50 Hz PAL 4.43 MHz
PAL-N 625 50 Hz PAL 3.58 MHz
Combination

154

Chapter 15

Table 15-5

Concepts
Trigger Concepts

TV Standard | Number of | Approximate | Color Color
Lines per Field Rate Encoding Subcarrier
Frame Method Frequency
SECAM 625 50 Hz SECAM 4.406 MHz,
4.250 MHz
= Field

A television image or frame is composed of 525 (or 625 lines)
delivered in two successive fields of 262.5 (or 312.5 lines) interlaced
together on a CRT when displayed.

When Field is set to Entire Frame, the line count starts at line one in
field one (often referred to as the “odd field”) and ends at 525 (or 625)
in field two (often referred to as the “even field”).

When Field is set to Field One or Field Two, the line count begins at “1”
with the first full line in the selected field and ends at count 263 (or
313) for Field One, and 262 (or 312) for Field Two.

Sync

Analog broadcast or cable television signals are usually amplitude
modulated on an RF carrier. For NTSC and PAL broadcasts,
typically the RF carrier amplitude is maximized at the sync tips of
the baseband video waveform and minimized at the “white” level.
This results in a demodulated waveform on the analyzer where the
sync pulses are on top, or positive (Sync (Pos)).

With SECAM broadcasts, typically the RF carrier amplitude is
minimized at the sync tips of the video waveform and maximized at
the “white” level. This results in a waveform on the analyzer where
the sync pulses are at the bottom, or negative (Sync (Neg)).

A normal baseband video waveform for all TV standards will have
the sync tips on the bottom. When TV Source is set to Ext Video In,
Sync should be set to Neg.

TV Monitor

When TV Monitor is pressed, the picture represented by the video
waveform selected with TV Source is presented on the LCD display of
the analyzer. The picture can only be viewed, not printed or saved.
Pressing a key that normally brings up a menu restores the original
graphical display with the selected menu enabled.

s1deouo)d

Chapter 15 155

Concepts

Concepts
Trigger Concepts

Trigger Settings and Fast Time Domain Sweeps

Trigger delay can be used to move the sweep trigger point arbitrarily
across a given TV line or lines to allow closer examination of waveform
patterns (Press Trig, Trig Delay, and enter a delay time).

In fast sweeps (20 us to less than 5 ms), there may be up to one trace
point of variation in the start time of the waveform digitalization
process with respect to the actual TV trigger pulse. This randomness
leads to the appearance of visual jitter on the LCD display of the
analyzer. In this situation, video averaging may be used (N = 5, for
example) to improve the “visual stability” of the displayed waveform.
This type of jitter does not occur when sweep times are set greater than
or equal to 5 ms where digitalization begins less than 100 ns after the

trigger pulse in that mode (much less than 1 trace point of jitter).

156 Chapter 15

Concepts
AM and FM Demodulation Concepts

AM and FM Demodulation Concepts

Demodulating an AM Signal Using the Analyzer as a
Fixed Tuned Receiver (Time-Domain)

The zero span mode can be used to recover amplitude modulation on a
carrier signal.

The following functions establish a clear display of the waveform:

= Triggering stabilizes the waveform trace by triggering on the
modulation envelope. If the modulation of the signal is stable, video
trigger synchronizes the sweep with the demodulated waveform.

e Linear display mode should be used in amplitude modulation (AM)
measurements to avoid distortion caused by the logarithmic
amplifier when demodulating signals.

= Sweep time to view the rate of the AM signal.

< RBW and VBW are selected according to the signal bandwidth.

Demodulating an FM Signal Using the Analyzer as a
Fixed Tuned Receiver (Time-Domain)

To recover the frequency modulated signal, a spectrum analyzer can be
used as a manually tuned receiver (zero span). However, in contrast to
AM, the signal is not tuned into the passband center, but to one slope of
the filter curve as Figure 15-22.

Figure 15-22 Determining FM Parameters using FM to AM Conversion

A Frequency Response
of the IF_Filter

AM Signal

of

2Af Peak
FM Signal

Here the frequency variations of the FM signal are converted into
amplitude variations (FM to AM conversion). The reason we want to
measure the AM component is that the envelope detector responds only
to AM variations. There are no changes in amplitude if the frequency
changes of the FM signal are limited to the flat part of the RBW (IF
filter). The resultant AM signal is then detected with the envelope

detector and displayed in the time domain.

s1deouo)d

Chapter 15 157

Concepts

NOTE

Concepts
Stimulus Response Measurement Concepts

Stimulus Response Measurement Concepts

Stimulus response measurements require option 1DN or 1DQ with ESA
spectrum analyzers.

Stimulus Response Overview

Stimulus response measurements require a source to stimulate a device
under test (DUT), a receiver to analyze the frequency response
characteristics of the DUT, and, for return loss measurements, a
directional coupler or bridge. Characterization of a DUT can be made in
terms of its transmission or reflection parameters. Examples of
transmission measurements include flatness and rejection. Return loss
is an example of a reflection measurement.

A spectrum analyzer combined with a tracking generator forms a
stimulus response measurement system. With the tracking generator
as the swept source and the analyzer as the receiver, operation is the
same as a single channel scalar network analyzer. The tracking
generator output frequency must be made to precisely track the
analyzer input frequency for good narrow band operation. A narrow
band system has a wide dynamic measurement range. This wide
dynamic range will be illustrated in the following example.

There are three basic steps in performing a stimulus response
measurement, whether it is a transmission or a reflection
measurement. The first step is to set up the analyzer, the second is to
normalize, and the last step is to perform the measurement.

Tracking Generator Unleveled Condition

When using the tracking generator, the message TG unl evel ed may
appear. The TG unl evel ed message indicates that the tracking
generator source power (Source, Amplitude) could not be maintained at
the selected level during some portion of the sweep. If the unleveled
condition exists at the beginning of the sweep, the message will be
displayed immediately. If the unleveled condition occurs after the sweep
begins, the message will be displayed after the sweep is completed. A
momentary unleveled condition may not be detected when the sweep
time is short. The message will be cleared after a sweep is completed
with no unleveled conditions.

The unleveled condition may be caused by any of the following:

= Start frequency is too low or the stop frequency is too high. The
unleveled condition is likely to occur if the true frequency range
exceeds the tracking generator frequency specification (especially
the low frequency specification).

158 Chapter 15

NOTE

Concepts
Stimulus Response Measurement Concepts

= Source attenuation may be set incorrectly (select Attenuation (Auto)
for optimum setting).

= The source power may be set too high or too low, use Amplitude (Off)
then Amplitude (On) to reset it.

= The source power sweep may be set too high, resulting in an
unleveled condition at the end of the sweep. Use Power Sweep (Off)
then Power Sweep (On) to decrease the amplitude.

= Reverse RF power from the device under test detected by the
tracking generator ALC (automatic level control) system.

Sweeping in Stimulus Response Auto Coupled Mode

Auto coupled sweep times are usually much faster for stimulus
response measurements than they are for spectrum analyzer (SA)
measurements.

In the stimulus response mode, the Q of the DUT can determine the
fastest rate at which the analyzer can be swept. (Q is the quality factor,
which is the center frequency of the DUT divided by the bandwidth of
the DUT.) To determine whether the analyzer is sweeping too fast, slow
the sweep and note whether there is a frequency or amplitude shift of
the trace. Continue to slow the sweep until there is no longer a

frequency or amplitude shift.

Normalization Concepts

To make a transmission measurement accurately, the frequency
response of the test system must be known. Normalization is used to
eliminate this error from the measurement. To measure the frequency
response of the test system, connect the cable (but not the DUT) from
the tracking generator output to the analyzer input.

Press View/Trace, More, Normalize, Store Ref (1 - 3), Normalize (On).

The frequency response of the test system is automatically stored in
trace 3 and a normalization is performed. This means that the active
displayed trace is now the ratio of the input data to the data stored in
trace 3. (The reference trace is Trace 3 with firmware revision A.04.00
and later)

When normalization is on, trace math is being performed on the active
trace. The trace math performed is (trace 1 — trace 3 + the normalized
reference position), with the result placed into trace 1. Remember that
trace 1 contains the measurement trace, trace 3 contains the stored
reference trace of the system frequency response, and normalized
reference position is indicated by arrowheads at the edges of the
graticule.

Since the reference trace is stored in trace 3, changing trace 3 to
Clear Write will invalidate the normalization.

Chapter 15 159

s1deouo)d

Concepts

Concepts
Stimulus Response Measurement Concepts

Reconnect the DUT to the analyzer. Note that the units of the reference
level have changed to dB, indicating that this is now a relative
measurement. Change the normalized reference position:

Press View/Trace, More, Normalize, Norm Ref Posn.

Arrowheads at the left and right edges of the graticule mark the
normalized reference position, or the position where 0 dB insertion loss
(transmission measurements) or 0 dB return loss (reflection
measurements) will normally reside. You can change the position of the
normalized trace, within the range of the graticule by entering a

position number.

Measuring Device Bandwidth

It is often necessary to measure device bandwidth, such as when testing
a bandpass filter. There is a key in the Peak Search menu that will
perform this function. The device signal being measured must be
displayed before activating the measurement. The span must include
the full response.

Activate the measurement by toggling the N dB Points key to On. The
analyzer places arrow markers at the -3 dB points on either side of the
response and reads the bandwidth. For other bandwidth responses
enter the number of dB down desired, from -1 dB to —80 dB.

No other signal can appear on the display within N dB of the highest
signal. The measured signal cannot have more than one peak that is
greater than or equal to N dB. A signal must have a peak greater than
the currently defined peak excursion to be identified. The default value
for the peak excursion is 6 dB.

Measurements are made continuously, updating at the end of each
sweep. This allows you to make adjustments and see changes as they
happen. The single sweep mode can also be used, providing time to
study or record the data.

The N dB bandwidth measurement error is typically £1% of the span.

Converting Return Loss to VSWR

Return loss can be expressed as a voltage standing wave ratio (VSWR)
value using the following table or formula:

Table 15-6 Power to VSWR Conversion
Return VSWR Return | VSWR Return VSWR || Return VSWR || Return VSWR
Loss Loss Loss Loss Loss
(dB) (dB) (dB) (dB) (dB)
4.0 4.42 14.0 1.50 18.0 1.29 28.0 1.08 38.0 1.03
6.0 3.01 14.2 1.48 18.5 1.27 285 1.08 385 1.02

160 Chapter 15

Concepts

Stimulus Response Measurement Concepts

Table 15-6 Power to VSWR Conversion
Return | VSWR || Return | VSWR Return | VSWR || Return | VSWR || Return VSWR
Loss Loss Loss Loss Loss
(dB) (dB) (dB) (dB) (dB)
8.0 2.32 144 1.47 19.0 1.25 29.0 1.07 39.0 1.02
10.0 1.92 14.6 1.46 19.5 1.24 29.5 1.07 39.5 1.02
10.5 1.85 14.8 1.44 20.0 1.22 30.0 1.07 40.0 1.02
11.0 1.78 15.0 1.43 20.5 1.21 30.5 1.06 40.5 1.02
11.2 1.76 15.2 1.42 21.0 1.20 31.0 1.06 41.0 1.02
11.4 1.74 15.4 141 21.5 1.18 31.5 1.05 41.5 1.02
11.6 1.71 15.6 1.40 22.0 1.17 32.0 1.05 42.0 1.02
11.8 1.69 15.8 1.39 225 1.16 325 1.05 42.5 1.02
12.0 1.67 16.0 1.38 23.0 1.15 33.0 1.05 43.0 1.01
12.2 1.65 16.2 1.37 23.5 1.14 33.5 1.04 43.5 1.01
12.4 1.63 16.4 1.36 24.0 1.13 34.0 1.04 44.0 1.01
12.6 1.61 16.6 1.35 24.5 1.13 34.5 1.04 44.5 1.01
12.8 1.59 16.8 1.34 25.0 1.12 35.0 1.04 45.0 1.01
13.0 1.58 17.0 1.33 255 1.11 355 1.03 45.5 1.01
13.2 1.56 17.2 1.32 26.0 111 36.0 1.03 46.0 1.01
13.4 1.54 17.4 131 26.5 1.10 36.5 1.03 46.5 1.01
13.6 1.53 17.6 1.30 27.0 1.09 37.0 1.03 47.0 1.01
13.8 151 17.8 1.30 27.5 1.09 37.5 1.03 47.5 1.01
—RL
1+10%°
VSWR = E—TY
1-10 %

Where: RL is the measured return loss value.

VSWR is sometimes stated as a ratio. For example: 1.2:1 “one point two
to one” VSWR. The first number is the VSWR value taken from the
table or calculated using the formula. The second number is always 1.

Chapter 15

161

s1deouo)d

Concepts

Concepts
Stimulus Response Measurement Concepts

162

Chapter 15

m
2]
>
=
he)
(%]
>
3
o
Q
o
3
3
=}
Q
m
X
)
El
=3
@
(]

16 ESA/PSA Programming
Examples

163

ESA/PSA Programming Examples
Examples Included in this Chapter:

Examples Included in this Chapter:

The following C and Visual Basic examples work with both the ESA
Series and the PSA Series of spectrum analyzers. There is also a section
on programming in C using the Agilent VTL (VISA transition library).

(%]
Q
[oR
S
@
x
L
(o))
£
£
S
o
(o)
o
=
[a
<
N
o
=
<
n
1]

Programming using the Agilent VTL.:

e “Programming in C Using the VTL” on page 167
Programming Examples for ESA and PSA spectrum analyzers:

= “Using C to Make a Power Suite ACPR Measurement on a cdmaOne
Signal” on page 176

= “Using C to Serial Poll the Analyzer to Determine when an
Auto-alignment is Complete” on page 179

« “Using C and Service Request (SRQ) to Determine When a
Measurement is Complete” on page 182

= “Using Visual Basic® 6 to Capture a Screen Image” on page 188
= “Using Visual Basic® 6 to Transfer Binary Trace Data” on page 192
= “Using Agilent VEE to Transfer Trace Data” on page 197

Visual Basic is a registered trademark of Microsoft Corporation.

164 Chapter 16

ESA/PSA Programming Examples
Finding Additional Examples and More Information

Finding Additional Examples and More
Information

These examples are available on the Agilent Technologies PSA Series
documentation CD-ROM or the ESA Series documentation CD-ROM.
They can also be found from the URLSs:

http://ww agi | ent. com find/ esa
http://ww agil ent. coni find/ psa

VXI plug&play drivers: There are additional examples that use the VXI
plug&play instrument drivers. These examples are included in the
on-line documentation in the driver itself. The driver allows you to use
several different programming languages including: VEE, LabVIEW, C,
C++, and BASIC. The software drivers can also be found at the above
URLs.

Interchangeable Virtual Instruments COM (IVI-COM) drivers: Develop
system automation software easily and quickly. IVI-COM drivers take full
advantage of application development environments such as Visua Studio
using Visual Basic, C# or Visual C++ aswell as Agilent’s Test and
Measurement Toolkit. You can now develop application programs that are
portable across computer platforms and 1/0 interfaces. With 1VI-COM
drivers you do not need to have in depth test instrument knowledge to
develop sophisticated measurement software. 1VI-COM drivers provide a
compatible interface to all. COM environments. The IVI-COM software
drivers can be found at the URL

http://ww agi |l ent. com find/ivi-com

IntuiLink software: There are additional examples that use the
IntuiLink software. IntuiLink allows you to capture screen and trace
data for display and manipulation in the Windows COM environment.
These examples are included on the Intuilink CD. The latest version of
IntuiLink can also be found at the URL

http://wwmv agil ent. conmifind/intuilink

Chapter 16 165

m
2]
>
—
he)
(%]
>
3
o
Q
o
3
3
=}
Q
m
X
)
El
=3
@
(]

ESA/PSA Programming Examples
Programming Examples Information and Requirements

Programming Examples Information and
Requirements

= The programming examples were written for use on an IBM
compatible PC.

0
Q
o
S
©
x
L
)
£
S
S
o
[S)
o
S
o
<
n
a8
~
<
(2]
L

= The programming examples use C, Visual Basic and VEE
programming languages.

= The programming examples use GPIB and LAN interfaces.

< Many of the examples use the SCPI programming commands,
though there are some that use the plug&play or IV1.com drivers.

= Most of the examples are written in C using the Agilent VISA
transition library.

The VISA transition library must be installed and the GPIB card
configured. The Agilent I/O libraries contain the latest VISA

transition library and is available at: ww. agi | ent. comliolib

166 Chapter 16

ESA/PSA Programming Examples
Programming in C Using the VTL

Programming in C Using the VTL

The C programming examples that are provided are written using the C
programming language and the Agilent VTL (VISA transition library).
This section includes some basic information about programming in the
C language. Note that some of this information may not be relevant to
your particular application. (For example, if you are not using VXI
instruments, the VXI references will not be relevant).

Refer to your C programming language documentation for more details.
(This information is taken from the manual “VISA Transition Library”,
part number E2090-90026.) The following topics are included:

“Typical Example Program Contents” on page 168
“Linking to VTL Libraries” on page 169

“Compiling and Linking a VTL Program” on page 169
“Example Program” on page 171

“Including the VISA Declarations File” on page 171
“Opening a Session” on page 172

“Device Sessions” on page 172

“Addressing a Session” on page 174

“Closing a Session” on page 175

Chapter 16 167

m
2]
>
—
he)
(%]
>
3
o
Q
o
3
3
>3
Q
m
X
)
E
=3
@
(]

(%]
Q
[oR
S
@
x
L
(o))
£
£
S
o
(o)
o
=
[a
<
N
o
=
<
n
1]

ESA/PSA Programming Examples
Programming in C Using the VTL

Typical Example Program Contents

The following is a summary of the VTL function calls used in the
example programs.

vi sa. h

Vi Sessi on

This file is included at the beginning of the file to
provide the function prototypes and constants defined
by VTL.

The Vi Sessi on is a VTL data type. Each object that
will establish a communication channel must be
defined as Vi Sessi on.

vi OpenDef aul t RM You must first open a session with the default

vi Open

vi Printf
vi Scanf

vi Cl ose

resource manager with the vi OpenDef aul t RM
function. This function will initialize the default
resource manager and return a pointer to that resource
manager session.

This function establishes a communication channel
with the device specified. A session identifier that can
be used with other VTL functions is returned. This call
must be made for each device you will be using.

These are the VTL formatted 1/0O functions that are
patterned after those used in the C programming
language. The vi Pri nt f call sends the IEEE 488.2

* RST command to the instrument and puts itin a
known state. The vi Pri nt f call is used again to query
for the device identification (* | DN?). The vi Scanf call
is then used to read the results.

This function must be used to close each session. When
you close a device session, all data structures that had
been allocated for the session will be de-allocated.
When you close the default manager session, all
sessions opened using the default manager session will
be closed.

168

Chapter 16

ESA/PSA Programming Examples
Programming in C Using the VTL

Linking to VTL Libraries
Your application must link to one of the VTL import libraries:
32-bit Version:
C: \ VXI PNP\ W NO5\ LI B\ MSC\ VI SA32. LI B for Microsoft compilers
C: \ VXI PNP\ W N95\ LI B\ BC\ VI SA32. LI B for Borland compilers
16-bit Version:
C: \ VXI PNP\ W N\ LI B\ MSC\ VI SA. LI B for Microsoft compilers
C:\ VXI PNP\ W N\ LI B\ BQ\ VI SA. LI B for Borland compilers

m
2]
>
—
he)
(%]
>
3
o
Q
o
3
3
=}
Q
m
X
)
El
=3
@
(]

See the following section, “Compiling and Linking a VTL Program” for
information on how to use the VTL run-time libraries.

Compiling and Linking a VTL Program

32-bit Applications

The following is a summary of important compiler-specific
considerations for several C/C++ compiler products when developing
WIN32 applications.

For Microsoft Visual C++ version 2.0 compilers:
e SelectProject | Update Al Dependenci es from the menu.

e SelectProject | Settings fromthe menu. Click on the C/ C++
button. Select Code Gener ati on from the Use Run- Ti e
Li brari es list box. VTL requires these definitions for WIN32. Click
on OK to close the dialog boxes.

e Select Project | Settings from the menu. Click on the Li nk
button and add vi sa32.1i b tothe Cbject / Library Mdul es
list box. Optionally, you may add the library directly to your project
file. Click on CK to close the dialog boxes.

< You may wish to add the include file and library file search paths.
They are set by doing the following:

1. Select Tool s | Options from the menu.
2. Click on the Di r ect ori es button to set the include file path.

3. Select | ncl ude Fil es from the Show Di rectori es For list
box.

4. Click on the Add button and type in the following:
C: \ VXI PNP\ W N95\ | NCLUDE

5. SelectLi brary Fil es from the Show Di rectori es For list
box.

Chapter 16 169

ESA/PSA Programming Examples
Programming in C Using the VTL

6. Click on the Add button and type in the following:
C: \ VXI PNP\ W N95\ LI B\ MSC

For Borland C++ version 4.0 compilers:

= You may wish to add the include file and library file search paths.
They are set under the Qoti ons | Proj ect menu selection. Double
click on Di rect ori es from the Topi cs list box and add the following:

C\ VXI PNP\ W NO5\ | NCLUDE
C \ VXI PN\ WN95\ LI B\ BC

(%]
Q
[oR
S
@
x
L
(o))
£
£
S
o
(o)
o
=
[a
<
N
o
=
<
n
1]

16-bit Applications

The following is a summary of important compiler-specific
considerations for the Windows compiler.

For Microsoft Visual C++ version 1.5:
= To set the memory model, do the following:
1. Select Options | Project.

2. Click on the Conpi | er button, then select Menory Model from
the Cat egory list.

3. Click on the Model list arrow to display the model options, and
select Lar ge.

4. Click on CK to close the Conpi | er dialog box.

= You may wish to add the include file and library file search paths.
They are set under the Qpti ons | Directories menu selection:

C\ VXI PN\ W N\ | NCLUDE
C\VXIPNP\WN LI B\ M5C

Otherwise, the library and include files should be explicitly specified
in the project file.

170 Chapter 16

ESA/PSA Programming Examples
Programming in C Using the VTL

Example Program

This example program queries a GPIB device for an identification
string and prints the results. Note that you must change the address.

[*idn.c - programfilenane */

#i ncl ude "vi sa. h"
#i ncl ude <stdi o. h>

void main ()

{

/*QOpen session to GPIB device at address 18 */

Vi OpenDef aul t RM (&def aul t RM ;

Vi Open (defaultRM GPIBO::18::1NSTR', VI _NULL,
VI _NULL, &vi);

/[*Initialize device */

viPrintf (vi, "*RST\n");

/*Send an *IDN? string to the device */

printf (vi, "*IDN?\n");

/*Read results */
vi Scanf (vi, "%", &buf);

[*Print results */
printf ("lInstrument identification string: %\n", buf);

/* Cl ose sessions */
vi Cl ose (vi);
vi Cl ose (defaultRM;

Including the VISA Declarations File

For C and C++ programs, you must include the vi sa. h header file at
the beginning of every file that contains VTL function calls:

#i ncl ude "visa. h"

This header file contains the VISA function prototypes and the
definitions for all VISA constants and error codes. The vi sa. h header
file includes the vi sat ype. h header file.

The vi sat ype. h header file defines most of the VISA types. The VISA
types are used throughout VTL to specify data types used in the
functions. For example, the vi QoenDef aul t RMfunction requires a
pointer to a parameter of type Vi Sessi on. If you find Vi Sessi on in the
vi sat ype. h header file, you will find that Vi Sessi on is eventually
typed as an unsigned long.

Chapter 16 171

m
2]
>
—
he)
(%]
>
3
o
Q
o
3
3
=}
Q
m
X
)
El
=3
@
(]

(%]
Q
[oR
S
@
x
L
(o))
£
£
S
o
(o)
o
=
[a
<
N
o
=
<
n
1]

NOTE

ESA/PSA Programming Examples
Programming in C Using the VTL

Opening a Session

A session is a channel of communication. Sessions must first be opened
on the default resource manager, and then for each device you will be
using. The following is a summary of sessions that can be opened:

< A resource manager session is used to initialize the VISA system.
It is a parent session that knows about all the opened sessions. A
resource manager session must be opened before any other session
can be opened.

= A device session is used to communicate with a device on an
interface. A device session must be opened for each device you will be
using. When you use a device session you can communicate without
worrying about the type of interface to which it is connected. This
insulation makes applications more robust and portable across
interfaces. Typically a device is an instrument, but could be a
computer, a plotter, or a printer.

All devices that you will be using need to be connected and in working
condition prior to the first VTL function call (vi QpenDef aul t RM). The
system is configured only on the first vi QpenDef aul t RMper process.
Therefore, if vi QpenDef aul t RMis called without devices connected and
then called again when devices are connected, the devices will not be
recognized. You must close ALL resource manager sessions and re-open
with all devices connected and in working condition.

Device Sessions

There are two parts to opening a communications session with a
specific device. First you must open a session to the default resource
manager with the vi QoenDef aul t RMfunction. The first call to this
function initializes the default resource manager and returns a session
to that resource manager session. You only need to open the default
manager session once. However, subsequent calls to vi GpenDef aul t RM
returns a session to a unique session to the same default resource
manager resource.

Next, you open a session with a specific device with the vi pen
function. This function uses the session returned from

vi QpenDef aul t RMand returns its own session to identify the device
session. The following shows the function syntax:

viOpenDefaultRM (sesn);

viOpen (sesn, rsrcName, accessMode, timeout, vi);

172 Chapter 16

ESA/PSA Programming Examples
Programming in C Using the VTL

The session returned from vi QoenDef aul t RMmust be used in the sesn
parameter of the vi Qpen function. The vi Qpen function then uses that
session and the device address specified in the rsrcName parameter to
open a device session. The vi parameter in vi Qoen returns a session
identifier that can be used with other VTL functions.

Your program may have several sessions open at the same time by
creating multiple session identifiers by calling the vi Qpen function
multiple times.

The following summarizes the parameters in the previous function
calls:

sesn This is a session returned from the vi QpenDef aul t RM
function that identifies the resource manager session.

rsrcName This is a unique symbolic name of the device (device
address).

accessMode This parameter is not used for VTL. Use VI_NULL.
timeout This parameter is not used for VTL. Use VI_NULL.

Vi This is a pointer to the session identifier for this
particular device session. This pointer will be used to
identify this device session when using other VTL
functions.

The following is an example of opening sessions with a GPIB
multimeter and a GPIB-VXI scanner:

Vi Sessi on defaul tRM dnm scanner;

vi OpenDef aul t RM &def aul t RM) ;

vi Open (defaultRM "GPIBO::22::1NSTR', VI _NULL,
VI _NULL, &dmm);

vi Open (defaultRM "GPIB-VXI0::24::1NSTR", VI _NULL,
VI _NULL, &scanner);

vi Cl ose (scanner);
vi d ose (dmm;
vi Cl ose(defaul t RV ;

The above function first opens a session with the default resource
manager. The session returned from the resource manager and a device
address is then used to open a session with the GPIB device at address
22. That session will now be identified as dmm when using other VTL
functions. The session returned from the resource manager is then used
again with another device address to open a session with the GPIB-VXI
device at primary address 9 and VXI logical address 24. That session
will now be identified as scanner when using other VTL functions. See
the following section for information on addressing particular devices.

Chapter 16 173

m
2]
>
—
he)
(%]
>
3
o
Q
o
3
3
>3
Q
m
X
)
El
=3
@
(]

(%]
Q
[oR
S
@
x
L
(o))
£
£
S
o
(o)
o
=
[a
<
N
o
=
<
n
1]

NOTE

ESA/PSA Programming Examples
Programming in C Using the VTL

Addressing a Session

As seen in the previous section, the rsrcName parameter in the vi Qoen
function is used to identify a specific device. This parameter is made up
of the VTL interface name and the device address. The interface name
is determined when you run the VTL Configuration Utility. This name
is usually the interface type followed by a number. The following table
illustrates the format of the rsrcName for the different interface types:

Interface Syntax

VXI VXI [board]::VXI logical address[::INSTR]

GPIB-VXI GPIB-VXI [board]::VXI logical address[::INSTR]

GPIB GPIB [board]::primary address[::secondary address][::INSTR]

The following describes the parameters used above:

board This optional parameter is used if you have more than
one interface of the same type. The default value for
board is 0.

VSI logical

address This is the logical address of the VXI instrument.

primary

address This is the primary address of the GPIB device.

secondary

address This optional parameter is the secondary address of the
GPIB device. If no secondary address is specified, none
is assumed.

INSTR This is an optional parameter that indicates that you

are communicating with a resource that is of type
INSTR, meaning instrument.

If you want to be compatible with future releases of VTL and VISA, you
must include the INSTR parameter in the syntax.
The following are examples of valid symbolic names:

X10::24::INSTR Device at VXI logical address 24 that is of VISA type
INSTR.

VXI12::128 Device at VXI logical address 128, in the third VXI
system (VXI2).

GPIB-VXI10::24 A VXI device at logical address 24. This VXI device is
connected via a GPIB-VXI command module.

GPIBO0::7::0 A GPIB device at primary address 7 and secondary
address 0 on the GPIB interface.

174 Chapter 16

ESA/PSA Programming Examples
Programming in C Using the VTL

The following is an example of opening a device session with the GPIB
device at primary address23.

Vi Sessi on defaul tRM vi;

vi OpenDef aul t RM (&def aul t RM ;
vi Open (defaultRM "GPIBO::23::INSTR', VI _NULL, VI NULL, &i);

vi Cl ose(vi);

vi Cl ose (defaultRM;

Closing a Session

The vi A ose function must be used to close each session. You can close
the specific device session, which will free all data structures that had

been allocated for the session. If you close the default resource manager
session, all sessions opened using that resource manager will be closed.

Since system resources are also used when searching for resources
(vi Fi ndRsr c) or waiting for events (vi Wi t OnEvent), the vi d ose
function needs to be called to free up find lists and event contexts.

Chapter 16 175

m
2]
>
—
he)
(%]
>
3
o
Q
o
3
3
=}
Q
m
X
)
El
=3
@
(]

(%]
Q
[oR
S
@
x
L
(o))
£
£
S
o
(o)
o
=
[a
<
N
o
=
<
n
1]

ESA/PSA Programming Examples
Using C to Make a Power Suite ACPR Measurement on a cdmaOne Signal

Using C to Make a Power Suite ACPR
Measurement on a cdmaOne Signal

This C programming example (ACPR.c) can be found on the
Documentation CD.

Example:

/***

*

*

*

*

*

ACPR c
Adj acent Channel Power Measurement using Power Suite

Agi | ent Technol ogi es 2001

I nstrument Requi renent s:
PSAwith firmware version >= A 02.00 or

ESA with firmare version >= A 08.00
Note: You can sel ect which ACPR radi o standard you woul d |i ke by
changi ng the standard for the RAD O STANDARD commrand.

This exanpl e sets the radio standard to | S95.

Note: For PSA, ensure that you are SA node before running this program

***/

#i ncl ude <stdi o. h>

#i ncl ude <stdlib. h>

#i ncl ude <string. h>

#i ncl ude "visa. h"

void main ()

{

[*program vari abl e*/
Vi Session defaul tRM vi PSA;

Vi Status vi St atus =0;
Vi Char _M _FAR cResul t[2000] = {0};
int i Num =0;

176 Chapter 16

ESA/PSA Programming Examples
Using C to Make a Power Suite ACPR Measurement on a cdmaOne Signal

int i SwpPnts = 401;

doubl e freq, val ue;

static Vi Char *cToken ;

| ong | Count =0L;

char sTracelnfo [1024]= {0};

FI LE *fDat aFi | e;

unsi gned | ong | Byt esRetri eved;

char *psaSetup = // PSA setup initialization
"*RST; *CLS;" // Reset the device and clear status
":INT: GONT 0;"// Set analyzer to single sweep node
": RADI O STANDARD | S95";// Set the Radio Standard to | S95

/*open session to GPIB device at address 18 */
vi St at us=vi penDef aul t RM (&def aul t RV ;

vi Status=vi pen (defaultRM "GPl B0O::18::INSTR', M _NULL, VI _NULL, &viPSA);

/ *check openi ng sessi on sucess*/

i f(viStatus)

{
printf("Could not open a session to GPIB device at address 18!\ n");
exit(0);

}

/*Increase tinmeout to 20 sec*/
vi Set At tri but e(vi PSA VI _ATTR _TMD VALUE, 20000) ;

/*Send setup commands to instrument */

vi Printf(vi PSA "%\ n", psaSet up);
/*CGet the center freq fromuser*/
printf("Wat is the center carrier frequency in Mz?\n");

scanf("%Wf", &req);

/*Set the center freqg*/
viPrintf(vi PSA "freq:center %f MEZ\n",freq);

[*Perform an ACPR neasur enent */

Chapter 16 177

m
2]
>
—
he)
(%]
>
3
o
Q
o
3
3
=}
Q
m
X
)
El
=3
@
(]

ESA/PSA Programming Examples
Using C to Make a Power Suite ACPR Measurement on a cdmaOne Signal

vi Queryf (vi PSA "9\ n", "%t","READ ACP?; *wai " , & Num, cResult);

/*Renmove the "," fromthe ASC | data for anal yzi ng data*/
cToken = strtok(cResult,",");

(%]
Q
[oR
S
@
x
L
(o))
£
£
S
o
(o)
o
=
[a
<
N
o
=
<
n
1]

/*Save data to an ASCI| to a file, by renoving the "," token*/
fDataFi | e=fopen("C\\ACPR txt","w");
fprintf(fDataFile, "ACPR exe Qutput\nAgilent Technol ogi es 2001\ n\n");

fprintf(fDataFile, "Pl ease read Prograner’s Reference for an\n");
fprintf(fDataFil e, "explanation of returned results.\n\n");

whil e (cToken != NULL)

{
| Count ++;
val ue = atof (cToken);
fprintf(fDataFile,"\tReturn value[%l] = %f\n", | Count, val ue);
cToken =strtok(NULL,",");

}

fprintf(fDataFile, "\nTotal nunber of return points of ACPR neasurenent :[%l]
\n\n", | Count);

fclose(fDataFile);

/*print message to the standard out put*/
printf("The The ACPR Measurenent Result was saved to C\\ACPR txt file\n\n");

/* O ose session */
vi d ose (viPSA);
vi d ose (defaul tRV);

178 Chapter 16

ESA/PSA Programming Examples

Using C to Serial Poll the Analyzer to Determine when an Auto-alignment is
Complete

Using C to Serial Poll the Analyzer to
Determine when an Auto-alignment is
Complete

This C programming example (SerAlign.c) can be found on the
Documentation CD.

Example:

/***

*

*

*

*

*

SerAlign.c
Serial Poll Aignment Routine
Agi | ent Technol ogi es 2001

I nstrument Requirenents:
PSA Series Spectrum Anal yzer or
ESA Series Spectrum Anal yers or
VSA Series Transnitter Tester

Thi s program denonstrates how to
1) Performan instrunent alignment.
2) Poll the instrument to deternine when the operation is conplete.

3) Query to determine if the alignnent was successfuly conpl et ed.

**/

#i ncl ude <stdi o. h>

#i ncl ude <stdlib. h>

#i ncl ude <w ndows. h>

#i ncl ude "vi sa. h"

void main ()

{

/ *program vari abl es*/

Vi Sessi on defaul tRM vi PSA;
Vi Status vi Status = 0;
ViUuntl6 esr,stat;

Chapter 16 179

m
2]
>
—
he)
(%]
>
3
o
Q
o
3
3
=}
Q
m
X
)
El
=3
@
(]

ESA/PSA Programming Examples
Using C to Serial Poll the Analyzer to Determine when an Auto-alignment is
Complete

long | Result = 0;
long | Qoc = 0;
char cEnter = O;

/*open session to GPIB device at address 18 */
vi St at us=vi penDef aul t RV (&def aul t RV ;
vi Status=vi pen (defaul tRM "GPl BO::18::INSTR', VI _NULL, VI _NULL, &i PSA);

(%]
Q
[oR
S
@
x
L
(o))
£
£
S
o
(o)
o
=
[a
<
N
o
=
<
n
1]

/ *check openi ng sessi on sucess*/

i f(viStatus)

{
printf("Could not open a session to GPIB device at address 18!'\n");
exit(0);

}

/*increase tineout to 60 sec*/
vi Set Attri but e(vi PSA VI _ATTR_TMD_VALUE, 60000) ;

/*Ad ear the anal yzer*/

vi d ear (vi PSA);

/*A ear all event registers*/
vi Printf(viPSA "*CLS\n");

/* Set the Status Event Enabl e Register */
vi Printf(viPSA "*ESE 1\n");

[*Initiate sel f-alignnent*/
vi Printf(vi PSA "CAL: ALL\n");

/* Send the (peration conpl ete command so that the
stand event register will be set to 1 once
the pending alignnment comrand is conplete */

vi Printf(viPSA "*OPQN");

[* print message to standard out put */

180 Chapter 16

ESA/PSA Programming Examples

Using C to Serial Poll the Analyzer to Determine when an Auto-alignment is
Complete

printf("Performng self-alignnent.\n");

/* Serial pole the instrument for operation conplete */
whi | e(1)
{

m
2]
>
—
he)
(%]
>
3
o
Q
o
3
3
=}
Q
m
X
)
El
=3
@
(]

vi Quer yf (vi PSA, "*ESR\ n", "% d", &esr) ;
printf(".");
if (esr & 1) break;//l ook for operation conplete bit

Sl eep (1000);// wait 1000ns before polling again

/* Query the Status Questionable Condition Register */
vi Quer yf (vi PSA, ": STAT: QUES: CAL: COND?\ n", "% d", &st at) ;

/*Determine if alignnment was successful */
if (stat)

printf("\nAignment not successful\n\n");
el se

printf("\nAignment successful\n\n");

/*reset tinmeout to 5 sec*/
vi Set At tri but e(vi PSA VI _ATTR_TMD VALUE, 5000) ;

/*print message to the standard out put*/
printf("Press Return to exit program\n\n");
scanf (" %", &Enter);

/* d ose session */
vi d ose (vi PSA);
vi d ose (defaul tRV);

Chapter 16 181

(%]
9
[oR
S
@
x
L
(o))
£
£
S
o
(o)
o
=
[a
<
N
o
=
<
n
1]

ESA/PSA Programming Examples

Using C and Service Request (SRQ) to Determine When a Measurement is
Complete

Using C and Service Request (SRQ) to
Determine When a Measurement is Complete

This C programming example (SRQ.c) can be found on the
Documentation CD.

/***

*

*

*

SRQ C
Det ermi ne when a neasurenent is done by waiting for SRQ

and readi ng Status Register

I nstrunent Requi renents:
PSA/ ESA EMC Seri es Spectrum Anal yzers.

This C programm ng denonstrates how

A. Set the service request mask to assert SRQ when
either a neasurenment is uncalibrated or an error
nmessage has occurred.

B. Initiate a sweep and wait for the SRQ interupt
Poll all instruments and report the nature of the

interrupt on the spectrum anal yzer

You have a royalty-free right to use, nodify, reproduce and distribute
the Sanple Application Files (and/or any nodified version) in any way
you find useful, provided that you agree that Agilent Technol ogi es has

no warranty, obligations or liability for any Sanple Application Files.

Agi | ent Technol ogi es provi des programm ng exanples for illustration only,
Thi s sanpl e program assunmes that you are famliar wth the programm ng

| anguage bei ng denonstrated and the tools used to create and debug
procedures. Agilent Technol ogi es support engineers can hel p explain the
functionality of Agilent Technol ogi es software conponents and associ at ed
commands, but they will not nodify these sanples to provi de added

functionality or construct procedures to neet your specific needs.

Copyright © 1999- 2004 Agilent Technologies Inc. Al rights reserved.

182 Chapter 16

ESA/PSA Programming Examples

Using C and Service Request (SRQ) to Determine When a Measurement is
Complete

***/

#i ncl ude <stdio. h>
#i ncl ude <wi ndows. h>

#i ncl ude "vi sa. h"

Vi Sessi ondef aul t RM vi SA;
Vi St at user r St at us;

Vi Addr i Address;

i nt i SrqCccurred=0;
char cBuf [3] ={ 0};

[*Wait until SRQis generated and for the handler to be called. Print
something while waiting. When interrupt occurs it will be handl ed by
i nterrupt handl er*/

voi d Wit For SRQ)

{
long | Count = OL;
i SrqCccurred =0;
for (I Count =0; (I Count<10) && (i SrqCccurred ==0); | Count ++)
{
I ong | Count 2 =0;
printf(".");
while ((lCount2++ < 100) && (i SrqCccurred ==0))
{
Sl eep(10);
}
}
}

[*Interrupt handler,trigger event handler */

Vi Status M _FUNCH nySrgHdl r (Vi Sessi on vi SA, Vi Event Type event Type, Vi Event
ctx, Vi Addr userHdl r)

{
ViU nt16 i StatusByte;

Chapter 16 183

m
2]
>
—
he)
(%]
>
3
o
Q
o
3
3
=}
Q
m
X
)
El
=3
@
(]

(%]
Q
[oR
S
@
x
L
(o))
£
£
S
o
(o)
o
=
[a
<
N
o
=
<
n
1]

ESA/PSA Programming Examples

Using C and Service Request (SRQ) to Determine When a Measurement is
Complete

/* Make sure it is an SRQ event, ignore if stray event*/
i f (event Type! =M1 EVENT_SERVI CE_ REQ

{
printf ("\'n Stray event typeOx%x\n", event Type);
/*Return successful | y*/
return VI _SUCCESS;

}

/* When an interrupt occurs, determ ne which device generated the interrupt
(if an instrument other than the PSA/ ESA generates the interrupt, sinply report
"Instrument at GPI B Address xxx Has Generated an Interrupt").*/

printf ("\'n\n SRQ event occurred!\n");

/*CGet the GPIB address of the insrument, which has interrupted*/
vi Quer yf (vi SA, " SYST: COW GPI B: SELF: ADDR?\ n", "% ", cBuf);

printf ("\'n Instrument at GPIB address % has generated an interrupt!\n", cBuf);

/*CGet the status byte*/
/[* If the PSA/ESA generated the interrupt, determne the nature of the

i nterrupt;

did the neasurenent conplete or an error message occur ?*/
vi Queryf (vi SA, "*ESR\n", "%l", & StatusByte);
if ((Ox01 & i StatusByte))
printf("\n SRQ message:\t Measurenent conplete\n");
else if ((Ox02 | 0x10 | Ox20 & i StatusByte))
printf ("\'n SRQ message:\t Error Message Cccurred\n");

/*Return successful | y*/

i SrqCccurred =1,

vi ReadSTB(vi SA, & St at usByt e);
return VI_SUCCESS,

}

/* Main Progrant/
voi d mai n()

{

184 Chapter 16

ESA/PSA Programming Examples

Using C and Service Request (SRQ) to Determine When a Measurement is
Complete

/ *Program Vari abl es*/

Vi Status vi Status = 0;
long | Qoc=0;

m
2]
>
—
he)
(%]
>
3
o
Q
o
3
3
=}
Q
m
X
)
El
=3
@
(]

/* pen a GPl B session at address 18*/
vi St at us=vi penDef aul t RV &def aul t RV ;
vi Stat us=vi pen(defaul t RV "GPl BO: : 18", VI _NULL, VI _NULL, &vi SA) ;

i f(viStatus)

{
printf("Could not open a session to GPIB device at address 18!\ n");
exit(0);

}

/* Set 1/Otimeout to twenty seconds */

vi Set Att ri but e(vi SA VI _ATTR_TMD_VALUE, 20000)

/*d ear the instrument*/

vi A ear (vi SA) ;

/| *Reset the instrunent*/

viPrintf(vi SA "*RST\n");

/*Q ear the status byte of the instrunent*/

viPrintf(vi SA"*CLS\n");

/*Put the anal yzer in a single sweep*/

viPrintf(viSA"INT:CONT 0 \n");

/* Change the instrunent node to Spectrum Anal ysis */
viPrintf(vi SA":INST: NSEL 1\n");

/*Set the anal yzer resolution bandwi dth to 300 Khz*/
vi Printf(vi SA "SENS: BAND: RES 300 KHz\n");

/*Set the anal yzer to 10MEz span*/
vi Printf(viSA "SENS: FREQ SPAN 10MHz\ n");

Chapter 16 185

ESA/PSA Programming Examples
Using C and Service Request (SRQ) to Determine When a Measurement is
Complete

[*Initiate a sweep*/
ViPrintf(viSA"INT.IMN");

/ *Make sure the previous comrand has been conpl et ed*/
vi Queryf (vi SA, "*CPCAn", "%l", & pc);

if (!'1Qpc)

{

(%]
Q
[oR
S
@
x
L
(o))
£
£
S
o
(o)
o
=
[a
<
N
o
=
<
n
1]

printf("\nProgram Abort! error ocurred: |ast comand was not
conpl eted!'\ n");

exit(0);

}

/* Set the service request mask to assert SRQ when either a neasurenent
is conpleted or an error nessage has occurred. */

vi Printf(viSA "*SRE 96\n");

vi Printf(viSA "*ESE 35\n");

/* Configure the conputer to respond to an interrupt*/

/*install the handler and enable it */

vi I nstal | Handl er (vi SA, VI _EVENT_SERVI CE REQ nySrqHdl r, i Address);
vi Enabl eEvent (vi SA, VI _EVENT SERVICE REQ VI _HNDLR VI _NULL) ;

/* Print Comment to user */

printf("Sending illegal conmmand 'IDN and then waiting for SRQn");

/*Send an undefined command to the device*/
ViPrintf(viSA"IDNNN");

/*Vait for SRQ */
Wi t For SRQ) ;

/*Set video averaging to 50 sweeps and turn averagi ng On*/
vi Printf(vi SA ": SENS: AVER TYPE LPOWN : SENS: AVER COUN 50; : SENS: AVER STAT O\ n");

/* Print Comment to user */

printf("\nlnitiating measurement and waiting for SRQ when measurenent

186 Chapter 16

ESA/PSA Programming Examples

Using C and Service Request (SRQ) to Determine When a Measurement is
Complete

done.\n");

/*Initiate the sweeps and set the *OPC bit after the sweeps are conpl et ed*/

ViPrintf(viSA":INT:.IM*CPQn");

m
2]
>
—
he)
(%]
>
3
o
Q
o
3
3
=}
Q
m
X
)
El
=3
@
(]

[*Wait for SRQ */
Wi t For SRQ)) ;

/*D sable and uninstall the interrupt handl er*/
vi D sabl eEvent (vi SA, VI _EVENT_SERVICE REQ VI _H\DLR);
vi Uni nstal | Handl er (vi SA, VI _EVENT_SERVI CE_ REQ nySrgHdl r, i Address);

/*Q ear the instrunent status register*/

viPrintf(viSA"*SRE 0 \n");

/*Q ear the status byte of the instrunent*/

viPrintf(vi SA"*CLS\n");

/*d ose the session*/
vi A ose(vi SA) ;
vi d ose(defaul t RV ;

Chapter 16 187

ESA/PSA Programming Examples
Using Visual Basic® 6 to Capture a Screen Image

Using Visual Basic® 6 to Capture a Screen
Image

This is a Visual Basic example that stores the current screen image on
your PC. The program works with the ESA or PSA Series spectrum
analyzers. The bas file (screen.bas) and a compiled executable
(screen.exe) can be found on the Documentation CD.

(%]
Q
[oR
S
@
x
L
(o))
£
£
S
o
(o)
o
=
[a
<
N
o
=
<
n
1]

This example:

1. Stores the current screen image on the instrument’s flash as
C:PICTURE.GIF.

2. Transfers the image over GPIB or LAN and stores it on your PC in
the current directory as picture.gif.

3. The file C:PICTURE.GIF is then deleted from the instrument’s
flash.

NOTE This example uses GPIB address 18 for the spectrum analyzer.

Copyright (c) 1999- 2003 Agilent Technologies Inc. Al rights reserved.

You have a royalty-free right to use, nodify, reproduce and distribute
the Sanple Application Files (and/or any nodified version) in any way
you find useful, provided that you agree that Agilent Technol ogi es has

no warranty, obligations or liability for any Sanple Application Files.

Agi | ent Technol ogi es provi des programmi ng exanples for illustration only,
Thi s sanpl e program assurmes that you are famliar wth the programm ng

| anguage bei ng denonstrated and the tools used to create and debug
procedures. Agilent Technol ogi es support engineers can hel p explain the
functionality of Agilent Technol ogi es software conponents and associ at ed
commands, but they will not nodify these sanples to provi de added

functionality or construct procedures to neet your specific needs.

To develop VISA applications in Mcrosoft Visual Basic, you first need
to add the Visual Basic (VB) declaration file in your VB project as a

Modul e. This file contains the VI SA function definitions and const ant

188 Chapter 16

ESA/PSA Programming Examples
Using Visual Basic® 6 to Capture a Screen Image

"’ declarations needed to make VI SA calls from Visual Basic.

" To add this nmodule to your project in VB 6, fromthe nenu, select

"' Project->Add Modul e, select the "Existing’ tab, and browse to the

"' directory containing the VB Declaration file, select visa32.bas, and

press ’ Qpen’ .

m
2]
>
—
he)
(%]
>
3
o
Q
o
3
3
>3
Q
m
X
)
El
=3
@
(]

'’ The name and | ocation of the VB declaration file depends on whi ch
operating systemyou are using. Assumng the 'standard’ VI SA directory
"* of C\ProgramFiles\VISA or the 'standard’ VX pnp directory of

" C\WXlIpnp, the visa32.bas file can be located in one of the foll ow ng:

n \'wi nnt\ agvi sa\i ncl ude\ vi sa32. bas - Wndows NI/ 2000/ XP

v \wi nnt\i ncl ude\ vi sa32. bas - Wndows NI/ 2000/ XP
v \'wi n95\i ncl ude\ vi sa32. bas - Wndows 95/98/ Me
' screen. bas

" The followi ng exanple programis witten for the PSA and ESA Series
Spectrum Anal yzers. It stores the current screen inage on the

" instrument’s flash as CPICTURE @ F. It then transfers the inage over
" @PIB or LAN and stores the image on your PCin the current directory

as picture.gif. The file CPICTURE GQF is then deleted on the

instrument’s fl ash.

PR R R R R R T N T N T T O T O T T T T O T O T T T N T T T O T T T T T T I T I |

ption Explicit

Private Sub Main()

" Declare Variables used in the program

D mstatus As Long "MI SA function status return code

D mdefrm As Long "Session to Default Resource Manager
Dmvi As Long " Session to instrument

Dmx As I|nteger "Loop Variabl e

DmArrayPtr(1) As Long 'Array of Pointers
D m Resul t sArray(50000) As Byte 'results array, Big enough to hold a GF

Dmlength As Long "Nunber of bytes returned frominstrument
D mfnum As | nt eger "File Nunber to used to open file to store data
DmisQpen As Boolean ’'Bool ean flag used to keep track of open file

Chapter 16 189

ESA/PSA Programming Examples
Using Visual Basic® 6 to Capture a Screen Image

D m headerl ength As Long 'l ength of header

"Set the default nunber of bytes that will be contained in the
"ResultsArray to 50,000 (50kB)
| engt h = 50000

(%]
Q
[oR
S
@
x
L
(o))
£
£
S
o
(o)
o
=
[a
<
N
o
=
<
n
1]

"Set the array of pointers to the addresses of the variabl es
ArrayPtr(0) = VarPtr(length)
ArrayPtr(1) = VarPtr(Resul tsArray(0))

"Delete picture.gif fileif it exists
On Error Resune Next
Kill "picture.gif"

On Error GoTo Error_Handl er

" (pen the default resource nanager session

status = vi QpenDef aul t RM defrnj

" (pen the session. Note: For PSA, to use LAN, change the string to

© O "TCPIPO: 1 XXX, XXX, XXX. XXX: 1 inst0:: I NSTR' where xxxxx is the | P address
status = vi Qpen(defrm "GPl B0::18::1NSTR', 0, 0, vi)

If (status < 0) Then GoTo Vi saError Handl er

" Set the I/Otimeout to fifteen seconds
status = viSetAttribute(vi, VI_ATTR TMD VALUE, 15000)
If (status < 0) Then GoTo Vi saErrorHandl er

"Store the current screen inmage on flash as C PICTURE A F
status = viVPrintf(vi, ":MMEMSTOR SCR’'CPICTURE A F " + Chr$(10), 0)
If (status < 0) Then GoTo Vi saErrorHandl er

"Gab the screen image file fromthe instrument
status = viVQueryf(vi, ": WEMDATA? "CPICTUREQAF " + Chr$(10), _
"O%ty", ArrayPtr(0))

190 Chapter 16

ESA/PSA Programming Examples
Using Visual Basic® 6 to Capture a Screen Image

"Delete the tenpory file on the flash named C PICTURE G F
status = viVPrintf(vi, ":MWWEMDEL 'C PICTURE A F " + Chr$(10), 0)
If (status < 0) Then (To Vi saError Handl er

"dose the vi session and the resource nmanager session
Call vid ose(vi)
Call vid ose(defrm

m
2]
>
—
he)
(%]
>
3
o
Q
o
3
3
=}
Q
m
X
)
El
=3
@
(]

"Store the results in a text file

fnum= FreeFile() ’'Get the next free file nunber
pen "picture.gif" For Binary As # num

i sQpen = True

headerl ength = 2 + (Chr$(ResultsArray(1)))

For x = headerlength To length - 2

Put # num , ResultsArray(x)

Next x

" Intentionally flowinto Error Handler to close file
Error_Handl er:

" Raise the error (if any), but first close the file

If isCpen Then d ose #f num

If Err Then Err.Raise Err.Nunber, , Err.Description

Exit Sub

Vi saError Handl er:
DmstrVisaErr As String * 200
Cal | vi StatusDesc(defrm status, strVisaErr)
MsgBox "*** Error : " & strVisaErr, vbExclamation, "VISA Error Message"
Exit Sub
End Sub

Chapter 16 191

ESA/PSA Programming Examples
Using Visual Basic® 6 to Transfer Binary Trace Data

Using Visual Basic® 6 to Transfer Binary Trace
Data

This is a Visual Basic example that gets binary trace data from the
instrument. Binary data transfers are faster than the default ASCII
transfer mode, because less data is sent over the bus. This example
works with the ESA or PSA Series spectrum analyzers. The bas file
(bintrace.bas) and a compiled executable (bintrace.exe) can be found on
the Documentation CD.

(%]
Q
[oR
S
@
x
L
(o))
£
£
S
o
(o)
o
=
[a
<
N
o
=
<
n
1]

This example:

1. Queries the IDN (identification) string from the instrument.

2. While in Spectrum Analysis mode, it reads the trace data in binary
format (Real,32 or Real,64 or Int,32).

3. Stores the data is then to a file "bintrace.txt".

NOTE This example uses GPIB address 18 for the spectrum analyzer.

Copyright (c) 1999- 2003 Agilent Technologies Inc. Al rights reserved.

You have a royalty-free right to use, nodify, reproduce and distribute
the Sanple Application Files (and/or any nodified version) in any way
you find useful, provided that you agree that Agilent Technol ogi es has

no warranty, obligations or liability for any Sanple Application Files.

Agi | ent Technol ogi es provi des programmi ng exanples for illustration only,
Thi s sanpl e program assurmes that you are famliar wth the programm ng

| anguage bei ng denonstrated and the tools used to create and debug
procedures. Agilent Technol ogi es support engineers can hel p explain the
functionality of Agilent Technol ogi es software conponents and associ at ed
commands, but they will not nodify these sanples to provi de added

functionality or construct procedures to neet your specific needs.

To develop VISA applications in Mcrosoft Visual Basic, you first need
to add the Visual Basic (VB) declaration file in your VB project as a

Modul e. This file contains the VI SA function definitions and const ant

192 Chapter 16

ESA/PSA Programming Examples
Using Visual Basic® 6 to Transfer Binary Trace Data

"’ declarations needed to make VI SA calls from Visual Basic.

" To add this nmodule to your project in VB 6, fromthe nenu, select

"' Project->Add Modul e, select the "Existing’ tab, and browse to the

"' directory containing the VB Declaration file, select visa32.bas, and

press ’ Qpen’ .

m
2]
>
—
he)
(%]
>
3
o
Q
o
3
3
>3
Q
m
X
)
El
=3
@
(]

'’ The name and | ocation of the VB declaration file depends on whi ch
operating systemyou are using. Assumng the 'standard’ VI SA directory
"* of C\ProgramFiles\VISA or the 'standard’ VX pnp directory of

" C\WXlIpnp, the visa32.bas file can be located in one of the foll ow ng:

n \'wi nnt\ agvi sa\i ncl ude\ vi sa32. bas - Wndows NI/ 2000/ XP
v \wi nnt\i ncl ude\ vi sa32. bas - Wndows NI/ 2000/ XP
v \'wi n95\i ncl ude\ vi sa32. bas - Wndows 95/98/ Me

PR R R R R R T N T N T T O T T T T T T N T N T T N T T T R B T N T T T TR T I |

bi ntrace. bas

" The follow ng exanple programis witten for the PSA and ESA Series
" Spectrum Anal yzers. It queries the IDN string fromthe instrunent

" and then reads the trace data in Spectrum Anal ysis nmode in binary

" format (Real,32 or Real,64 or Int,32). The data is then stored to a
" file "bintrace.txt".

" Binary transfers are faster than the default ASA| transfer node,

" because less data is sent over the bus.

PR I R R R R T N T N T T O T T T T T T N T O T T T T T T T T T T T T T T TR T I |

ption Explicit

Private Sub Main()

" Declare Variables used in the program

D mstatus As Long "MI SA function status return code
D mdefrm As Long "Session to Default Resource Manager
Dmvi As Long " Session to instrument

DmstrRes As String * 100 ’'Fixed length string to hold *IDN? Results
Dmx As |nteger "Loop Variabl e

D moutput As String "output string variable

DmArrayPtr(1) As Long 'Array of Pointers

Chapter 16 193

ESA/PSA Programming Examples
Using Visual Basic® 6 to Transfer Binary Trace Data

D mResul tsArray(8192) As Single '"trace elenent array of Real, 32 val ues
"For Real , 64 data use Double. For Int,32 data use Long

D mlength As Long "Nunber of trace elenents return frominstrunent
D mfnum As | nteger "File Nunber to used to open file to store data

D misQoen As Boolean ’'Boolean flag used to keep track of open file

(%]
Q
[oR
S
@
x
L
(o))
£
£
S
o
(o)
o
=
[a
<
N
o
=
<
n
1]

"Set the default nunber of trace elements to the ResultsArray size
"Note: PSA and ESA currently support up to 8192 trace points
length = 8192

"Set the array of pointers to the addresses of the variabl es
ArrayPtr(0) = VarPtr(length)
ArrayPtr(1) = VarPtr(ResultsArray(0))

On Error GoTo Error_Handl er

" (pen the default resource nanager session

status = vi QpenDef aul t RM defrnj

" (pen the session. Note: For PSA, to use LAN, change the string to

© O "TCPIPO: 1 XXX, XXX, XXX. XXX: 1 inst0:: I NTSR' where xxxxx is the | P address
status = vi Qpen(defrm "GPl B0::18::1NSTR', 0, 0, vi)

If (status < 0) Then GoTo Vi saErrorHandl er

" Set the I/Otimeout to five seconds
status = viSetAttribute(vi, VI_ATTR TMD VALUE, 5000)
If (status < 0) Then GoTo Vi saErrorHandl er

"Ask for the devices's *IDN string.
status = viVPrintf(vi, "*IDN?" + Chr$(10), 0)
If (status < 0) Then GoTo Vi saErrorHandl er

"Read back the IDN string fromthe instrument
status = viVScanf(vi, "%", strRes)
If (status < 0) Then GoTo Vi saErrorHandl er

194 Chapter 16

ESA/PSA Programming Examples
Using Visual Basic® 6 to Transfer Binary Trace Data

"Print the IDN string results in a message box
MsgBox (strRes)

" Change the instrument node to Spectrum Anal ysis
status = viVPrintf(vi, ":INST:NSEL 1" + Chr$(10), 0)
If (status < 0) Then (To Vi saError Handl er

' Set instrument trace data format to 32-bit Real

" Note: For higher precision use 64-bit data, ":FORM REAL, 64"
" For faster data transfer for ESA use ":FORM INT, 32"
status = viVPrintf(vi, ":FORM REAL, 32" + Chr$(10), 0)

If (status < 0) Then GTo Vi saError Handl er

"Set Anal yzer to single sweep node
status = viVPrintf(vi, ":INT: GONT 0" + Chr$(10), 0)
If (status < 0) Then GTo Vi saErrorHandl er

"Trigger a sweep and wait for sweep to conplete
status = viVPrintf(vi, ":INT:IM*WA" + Chr$(10), 0)
If (status < 0) Then GTo Vi saError Handl er

"Query the trace data fromthe instrument

"Note: Change the "%tzb" to "%tZb" for Real, 64 data

' For Int,32 | eave the nodifier as "%zb"

status = vi VQueryf (vi, ":TRAC DATA? TRACE1l" + Chr$(10), _
"ogtzb", ArrayPtr(0))

"d ose the vi session and the resource manager session
Call vid ose(vi)
Call vid ose(defrm

"Print nunber of elenents returned

MsgBox (" MNunber of trace elenents returned = " & | ength)

"Oreate a string fromthe ResultsArray to output to a file

For x = 0 To length - 1

Chapter 16 195

m
2]
>
—
he)
(%]
>
3
o
Q
o
3
3
>3
Q
m
X
)
El
=3
@
(]

ESA/PSA Programming Examples
Using Visual Basic® 6 to Transfer Binary Trace Data

output = output & ResultsArray(x) & vbQOrlLf
Next X

"Print Results to the Screen
MsgBox (out put)

0
Q
o
S
©
x
L
)
£
S
S
o
[S)
o
S
o
<
n
a8
~
<
(2]
L

"Store the results in a text file

fnum= FreeFile() ’'Get the next free file nunber
Qpen "bintrace. txt" For Qutput As #f num

i spen = True

Print #fnum out put

" Intentionally flowinto Error Handler to close file
Error_Handl er:

" Raise the error (if any), but first close the file

If isQpen Then d ose #f num

If Err Then Err.Raise Err.Nunber, , Err.Description

Exit Sub

Vi saError Handl er:
DmstrVisabErr As String * 200
Call vi StatusDesc(defrm status, strVisaErr)
MsgBox "*** Error : " & strVisaErr, vbExclanation, "M SA Error Message"
Exit Sub
End Sub

196 Chapter 16

ESA/PSA Programming Examples
Using Agilent VEE to Transfer Trace Data

Using Agilent VEE to Transfer Trace Data

This VEE programming example transfers trace data from a PSA or ESA
series spectrum analyzer. The program supports data transfer types to
integer 32, rea 32, real 64 and ASCII data.

VEE Window Capture of “tracetransfer.vee”:

[YEE Pro - tracetransfer.vee

File Edit iew Debug Flow Device L0 Data Display Window Help

=lolx]

NEES

LR = B R A A =

fracefransfer.vee Ei Main

L@ main

~| Note Pad "

The following Agilent VEE Program
transfers trace data in multiple
iformats. This progran is for reference
oLy,

Supports ESA and PSA Series Spectrum
linalyzers.

E54 defaults 401 Sweep Points
P34 Defaults 601 Trace Points

= Getintager 32 Data

WURITE TEXT "FORMDATA Il 0
WRITE TEXT "INIT.CONT OFF" EOL
WWRITE TEXT "INIT:IMM;SAA EOL |
WRITE TEXT "TRACEDATA? TRACE1" EOLT |
READ BINBLOCK x INT32 ARRAY™ El

\meger-&fl’race Data |

fA NAS
Integer 32 Trace Data Plot

- Get Real 32 Data

YWRITE TEXT "FORM

WRITE TERT “INIT:.COMT OFF" EOL -
WRITE TEXT "INIT:IMM;SWAN" EOL]
WIRITE TEXT "TRACE DATA? TRACET" EOLT | |
READ BINBLOCK x REALIZ ARRAY™ l]

Real Sz'ﬁace Data |

i i
Real 32 Trace Data Plot

E Get Real fi4 Data

WURITE TEXT "FORMDATA REAL 4" EQ
WRITE TEXT “IMIT.CONT OFF" EOL
WWRITE TEXT "INIT:IMM;SAA EOL

WRITE TEXT "TRACE:DATA? TRACET" EOL

READ BINBLOCK x REALE4 ARRAY™ :.J |

Real 64 Trace Data |

Ah Al
Real 64 Trace Data Plot

Get ASCI Data

' -Sweap Pointa | =| l

!

=
=
)

Ready

YWRITE TE! : A EQL
WRITE TEXT "INIT.CONT OFF" EOL
WURITE TEXT "INIT:IMb A" EOL

WIRITE TEXT "TRACE DATA? TRACET" EOL

VERTE

READ TEXT x REALE4 ARRAY.SWEPNTS ..'_I

[E PR
[ASCll Trace Data I

l ASCI Trace Data Plat

IMEE 8 | FROE [MoD| [ER | 4
-

Chapter 16

197

m
w
>
—
he)
w
>
3
o
Q
o
3
3
>3
Q
m
X
)
=
=l
@
(]

ESA/PSA Programming Examples
Using Agilent VEE to Transfer Trace Data

0
Q
o
S
©
x
L
)
£
S
S
o
[S)
o
S
o
<
n
a8
~
<
(2]
L

198 Chapter 16

m
2]
>
I
o

Q
o
3
3.
>

)
m
x
)
3
§=3
@
)

17 ESA Programming Examples

199

ESA Programming Examples
Examples Included in this Chapter:

ExamplesIncluded in this Chapter:

This chapter includes C programming examples of how to program the ESA series
using SCPI commands. Twelve examples are written for ESA analyzerswith GPIB
interface (Option A4H). Three examples are written for ESA analyzers with an
RS-232 interface (Option 1A X). These examples do not apply to analyzers that
have Option 290 (8590 Series Programming Code Compatibility).

“Using C with Marker Peak Search and Peak Excursion Measurement
Routines’ on page 202

“Using C for Marker Delta Mode and Marker Minimum Search Functions” on
page 206

“Using C to Perform Internal Self-Alignment” on page 210
“Using C to Read Trace Datain an ASCII Format (over GPIB)” on page 214

“Using C to Read Trace Datain a 32-Bit Real Format (over GPIB)” on page
218

“Using C to Read Trace Datain an ASCII Format (over RS-232)” on page 223

“Using C to Read Trace Datain a 32-hit Real Format (over RS-232)” on page
228

“Using C to Add Limit Lines’ on page 233

(%]
Q
Qo
S
S
x
n
(@]
£
S
S
o
(@]
°
a
<
0
L

“Using C to Measure Noise” on page 239

“Using C to Enter Amplitude Correction Data’ on page 243

“Using C to Determine if an Error has Occurred” on page 247

“Using C to Measure Harmonic Distortion (over GPIB)” on page 253
“Using C to Measure Harmonic Distortion (over RS-232)” on page 261

“Using C to Make Faster Power Averaging Measurements’ on page 269

200 Chapter 17

ESA Programming Examples
Programming Examples System Requirements

Programming Examples System Requirements

The ESA Series examples were written for use on an IBM compatible PC
configured as follows:

Pentium processor

Windows 95/98/2000/X P or Windows NT 4.0 operating system

C programming language

National Instruments GPIB interface card (for analyzers with Option A4H)
National Instruments VISA Transition Libraries (VTL)

COM1 serial port configured as follows (for analyzers with Option 1A X)

* 9600 baud

e 8databits

e 1stop bit

e no parity bits

* hardware flow control

A HP/Agilent 82341C card may be substituted for the National Instruments GPIB,
and the HP VISA libraries may be substituted for the National Instruments VISA
Transition Libraries. If substitutions are made, the subdirectories for the include
and library files will be different than those listed in the following paragraphs.
Refer to the documentation for your interface card and the VISA libraries for
details.

Chapter 17

201

m
n
>
3
o

Q
o
3
3.
>

Q
m
x
)
3

§=3
®
7]

ESA Programming Examples

Using C with Marker Peak Search and Peak Excursion Measurement
Routines

Using C with Marker Peak Search and Peak Excursion
M easurement Routines

This C programming example (mkpksrch.c) can be found on the Documentation
CD.

/**/

/* Using Marker Peak Search and Peak Excursion */
/* */
g /* This exanple is for the E44xxB ESA Spectrum Anal yzers */
8 /* and E740xA EMC Anal yzers. */
IS
b ” !
= /* This C programmi ng exanpl e does the foll ow ng. */
= /* The SCPI instrunent commands used are given as */
% /* reference. */
a /* */
09_ /* - Opens a GPI B session at address 18 */
(</E) /* - Oears the Anal yzer */
W /* *CLS */
/* - Resets the Anal yzer */
/* *RST */
/* - Sets the anal yzer center frequency, span and units */
/* SENS: FREQ CENT freq */
/* SENS: FREQ SPAN freq */
/* UN T: POV DBM */
/* - Set the input port to the 50 Mz anplitude reference */
/* CAL: SOUR STAT ON */
/* - Set the anal yzer to single sweep node */
/* N T: CONT O */
/* - Pronpt the user for peak excursion and set them */
/* CALC. MARK: PEAK: EXC dB */
/* - Set the peak threshold to -90 dBm */
/* TRAC. MATH PEAK: THR STAT ON */
/* TRAC. MATH PEAK: THR - 90 */
/* - Trigger a sweep and wait for sweep to conplete */
/* INT: 1 MM *WA */
/* - Set the marker to the maxi mum peak */
/* CALC. MARK: MAX */
/* - Query and read the marker frequency and anplitude */
/* CALC. MARK: X? */
/* CALC. MARK: Y? */
/* - Oose the session */

/**/

202 Chapter 17

ESA Programming Examples

Using C with Marker Peak Search and Peak Excursion Measurement
Routines

y
u
i
i
u
i
i

ncl ude <stdi o. h>
ncl ude <stdlib. h>
ncl ude <nath. h>

ncl ude <coni o. h>
ncl ude <ctype. h>
ncl ude <string. h>
ncl ude "visa. h"

#define hpESA | DN E4401B "Hew ett-Packard, E4401B'
#define hpESA | DN E4411B "Hew ett-Packard, E4411B'
#def i nehpEMC | DN_E7401A "Hewl ett - Packard, E7401A"

Vi Session defaul tRM vi ESA
Vi Status errStatus;

Vi Char cl dBuf f[256] = {0};
char cEnter = 0;

i nt i Result = 0;

/*Set the input port to 50MH anplitude reference*/
voi d Rout e50MHzSi gnal ()

{

m
n
>
3
o

Q
o
3
3.
>

)
m
x
)
3

§=3
@
7]

vi Queryf (vi ESA, "*IDN?\n", "%", &cldBuff);
i Result = (strncnp(cldBuff, hpESA | DN E4401B, strlen(hpESA | DN E4401B)) &&

strncnp(cldBuff, hpESA | DN E4411B, strlen(hpESA | DN E4411B)) && strncnp(cl dBuff,
hpEMC | DN _E7401A, strl en(hpEMC | DN E7401A)));

if(iResult == 0)

{
/*Set the input port to the 50ME anplitude reference for the nodel s*/
/ *E4401B, E4411B and E7401A*/
vi Printf(vi ESA "CAL: SOUR STAT ON \n");
}
el se
{
/* For the anal yzers having frequency linits >= 3G+, pronpt the user*/
/* to connect the anplitude reference output to the input*/
printf ("Connect AMPTD REF QUT to the INPUT \n");
printf ("...... Press Return to continue \n");
scanf("9%", &Enter);
/*Externally route the 50M+z Signal */
vi Printf(vi ESA "CAL: SOUR STAT ON \n");
}

voi d mai n()

Chapter 17 203

ESA Programming Examples

Using C with Marker Peak Search and Peak Excursion Measurement
Routines

/*Program Vari abl es*/
Vi Status vi Status

doubl e dar ker Freq
doubl e dMar ker Anpl
float fPeakExcursion =0;
long | Qoc = OL;

I
e e

/*Qpen a (Pl B session at address 18.*/

vi St at us=vi penDef aul t RM &def aul t RV ;

vi St at us=vi pen(def aul t RV "GPl BO: : 18", VI _NULL, VI _NULL, &vi ESA);

i f(viStatus)

{
printf("Could not open a session to GPI B device at address 18!\n");
exit(0);

}

/*Q ear the instrunent*/

vi d ear (vi ESA) ;

(%]
Q
Qo
S
S
x
n
(@]
£
S
S
o
(@]
°
a
<
0
L

/*Reset the instrunent*/
vi Printf(vi ESA "*RST\n");

/*Set Y-Axis units to dBnt/
viPrintf(vi ESA, "UNT. PONDBMn");

/*Set the analyzer center frequency to 50MHZ*/
vi Printf(vi ESA " SENS: FREQ CENT 50e6\n");

/*Set the anal yzer span to 50MHz*/
vi Printf(vi ESA " SENS: FREQ SPAN 50e6\n");

/*D splay the program headi ng */
printf("\n\t\t Marker Program\n\n");

[* Check for the instrument model nunber and route the 50MHz signal accordingly*/
Rout e50M+Si gnal () ;

/*Set anal yzer to single sweep node*/
viPrintf(viESA "INT:CONT 0 \n");

/*User enters the peak excursion val ue*/
printf("\t Enter PEAK EXCURSION in dB: ");
scanf ("% ", & PeakExcursi on);

/*Set the peak excursion*/
vi Printf(vi ESA " CALC MARK: PEAK: EXC %4f DB \ n", f PeakExcur si on) ;

204 Chapter 17

ESA Programming Examples

Using C with Marker Peak Search and Peak Excursion Measurement
Routines

/*Set the peak thresold */
vi Printf(vi ESA "CALC. MARK PEAK: THR -90 \n");

/*Trigger a sweep and wait for conpl etion*/
viPrintf(viESA"INT. I MM *WAI\Nn");

/*Set the marker to the maxi mum peak*/
vi Printf(vi ESA "CALC MARK MAX \ n");

/*Query and read the marker frequency*/
vi Quer yf (vi ESA, "CALC. MARK: X? \n", "% f", &Mar ker Freq) ;
printf("\n\t RESULT: Marker Frequency is: %f ML \n\n", dMarker Freq/ 10e5);

/*Query and read the marker anplitude*/
vi Quer yf (vi ESA, "CALC. MARK Y2An", "% f", &dMar ker Anpl) ;
printf("\t RESULT: Marker Anplitude is: %f dBm\n\n", dvarker Anpl);

/*d ose the session*/
vi A ose(vi ESA) ;
vi d ose(defaul t RV ;

m
n
>
3
o

Q
o
3
3.
>

)
m
x
)
3

§=3
@
7]

Chapter 17 205

ESA Programming Examples
Using C for Marker Delta Mode and Marker Minimum Search Functions

Using C for Marker Delta Mode and Marker Minimum
Sear ch Functions

This C programming example (mkrdelta.c) can be found on the Documentation
CD.

/**/

/* Using Marker Delta Mbde and Marker M ni mum Search */
/* */
g /* This exanple is for the E44xxB ESA Spectrum Anal yzers */
8 /* and E740xA EMC Anal yzers. */
IS
b ” !
= /* This C programmi ng exanpl e does the foll ow ng. */
= /* The SCPI instrunent commands used are given as */
% /* reference. */
a /* */
09_ /* - Opens a GPI B session at address 18 */
(</E) /* - Oears the Anal yzer */
w /* - Resets the Anal yzer */
/* *RST */
/* - Set the input port to the 50 MHz anplitude reference */
/* CAL: SOUR STAT ON */
/* - Set the anal yzer to single sweep node */
/* N T: GONT O */
/* - Pronpts the user for the start and stop frequencies */
/* - Sets the start and stop frequencies */
/* SENS: FREQ START freq */
/* SENS: FREQ STCP freq */
/[* - Trigger a sweep and wait for sweep conpl etion */
/* INT: 1 MM *WA */
/* - Set the marker to the maxi mum peak */
/* CALC. MARK: MAX */
/* - Set the anal yzer to activate the delta marker */
/* CALC. MARK: MDE DELT */
/[* - Trigger a sweep and wait for sweep conpl etion */
/* INT: 1 MM *WA */
/* - Set the marker to the mni mumanplitude node */
/* CALC MMARK: M N */
/* - Query and read the marker anplitude */
/* CALC. MARK: Y? */
/* - dose the session */

/**/

#i ncl ude <stdio. h>

206 Chapter 17

ESA Programming Examples
Using C for Marker Delta Mode and Marker Minimum Search Functions

#i ncl ude <stdlib. h>
#i ncl ude <mat h. h>
#i ncl ude <coni o. h>
#i ncl ude <ctype. h>
#i ncl ude <string. h>
#i ncl ude "visa. h"

#define hpESA | DN E4401B "Hew ett - Packard, E4401B'
#define hpESA | DN E4411B "Hew ett-Packard, E4411B'
#define hpEMC | DN E7401A "Hew ett-Packard, E7401A"

Vi Session defaul t RM vi ESA
Vi Status errStatus;

Vi Char cl dBuf f[256] ={0};
char cEnter = 0;

i nt i Result =0;

/*Set the input port to the 50Mi anplitude reference*/
voi d Rout e50MHzSi gnal ()
{
vi Queryf (vi ESA, "*IDNAAn", "%", &cldBuff);
i Result = (strncnp(cldBuff, hpESA | DN E4401B, strlen(hpESA | DN E4401B)) &&

strncnp(cldBuff, hpESA | DN E4411B, strlen(hpESA | DN E4411B)) && strncnp(cl dBuff,
hpEMC | DN E7401A, strlen(hpEMC | DN E7401A)));

if(iResult == 0)

m
n
>
3
o

Q
o
3
3.
>

)
m
x
)
3

§=3
@
7]

{
/*Set the input port to the 50M& anplitude reference for the nodel s*/
/* EA401B, E4411B and E7401A¢/
vi Printf(vi ESA "CAL: SOUR STAT ON \n");
}
el se
{
/* For the anal yzers having frequency linits >= 3G4, pronpt the user*/
/* to connect the anplitude reference output to the input*/
printf ("Connect AMPTD REF QUT to the INPUT \n");
printf ("...... Press Return to continue \n");
scanf("9%", &Enter);
/*Externally route the 50Miz Signal */
vi Printf(vi ESA "CAL: SOUR STAT ON \n");
}

voi d mai n()

{

/ *Program Vari abl e*/

Chapter 17 207

ESA Programming Examples
Using C for Marker Delta Mode and Marker Minimum Search Functions

Vi Status vi Status = 0;

doubl e dStartFreq =0. 0;

doubl e dStopFreq =0. 0;

doubl e diarker Anplitude = 0. 0;
long | Qpc =0L;

/* pen an GPI B session at address 18*/

vi St at us=vi penDef aul t RM &def aul t RV ;

vi St at us=vi pen(defaul t RV "GPl BO: : 18", VI _NULL, VI _NULL, &vi ESA) ;

i f(viStatus)

{
printf("Could not open a session to GPI B device at address 18!\n");
exit(0);

}

/*Q ear the instrument*/

vi d ear (vi ESA) ;

/ *Reset the instrunent*/
vi Printf(vi ESA "*RST\n");

(%]
Q
Qo
S
S
x
n
(@]
£
S
S
o
(@]
°
a
<
0
L

/*D splay the program headi ng */
printf("\n\t\t Marker Delta Program\n\n");

/*Check for the instrunent nodel nunber and route the 50MHz signal accordingly*/
Rout e50MHzSi gnal () ;

/*Set the anal yzer to single sweep node*/
viPrintf(vi ESA "IN T: CONT 0\ n");

/*Pronpt the user for the start frequency*/
printf("\t Enter the Start frequency in Mz ");

/*The user enters the start frequency*/
scanf ("% f", &IStartFreq);

/*Pronpt the user for the stop frequency*/
printf("\t Enter the Stop frequency in Mz ");

/*The user enters the stop frequency*/
scanf ("% f", &St opFreq) ;

/*Set the anal yzer to the val ues given by the user*/
vi Printf(vi ESA "SENS: FREQ STAR % f MHZ \n;: SENS: FREQ STCP %l f
MHZ\ n", dStart Freq, dSt opFreq) ;

/*Trigger a sweep, wait for conpletion*/

208 Chapter 17

ESA Programming Examples
Using C for Marker Delta Mode and Marker Minimum Search Functions

viPrintf(viESA"INT. I MM *WAI\N");

/*Set the marker to the maxi mum peak*/
vi Printf(vi ESA "CALC MARK MAX\ n") ;

/*Set the anal yzer to activate delta narker node*/
vi Printf(viESA "CALC MARK: MDE DELT\ n");

[*Trigger a sweep, wait for conpletion*/
viPrintf(viESA"INT. I MM *WAI\N");

/*Set the marker to mnimum anplitude*/
vi Printf(vi ESA "CALC MARK M N\ n");

/*Query and read the marker anplitude*/
vi Quer yf (vi ESA, "CALC. MARK Y2\ n", "% f", &dMar ker Anpl i t ude) ;

[*print the narker anplitude*/
printf("\n\n\t RESULT: Marker Anplitude Delta =%l f dB\n\n", dvarker Anplitude);

m
n
>
3
o

Q
o
3
3.
>

)
m
x
)
3

§=3
@
7]

/*d ose the session*/
vi A ose(vi ESA) ;
vi d ose(defaul t RV ;

Chapter 17 209

ESA Programming Examples
Using C to Perform Internal Self-Alignment

Using C to Perform Internal Self-Alignment

This C programming example (intalign.c) can be found on the Documentation CD.

/**/

/* Performing Internal Self-alignnent */
/* */
/* This exanple is for the E44xxB ESA Spectrum Anal yzers */
/* and E740xA EMC Anal yzers. */
g | * * [
g' /* This exanpl e shows two ways of executing an internal */
) /* self-alignnent. The first denonstrates using the *QPC? */
chD /* query to deternine when the alignnent has conpleted. The */
E /* second denonstrates using the query formof the CAL: ALL */
= /* command to not only determ ne when the alignnment has */
g /* been conpl eted, but the pass/fail status of the align- */
DE_’ /* ment process. */
< /* */
f_/u) /* This C programmi ng exanpl e does the follow ng. */
/* The SCPI instrunment commands used are given as */
/* reference. */
/* */
/* - Opens a GPIB session at address 18 */
/* - Oears the Anal yzer */
/* *CLS */
/* - Resets the Anal yzer */
/* *RST */
/* - VISA function sets the time out to infinite */
/* - Initiate sel f-alignment */
/* CAL: ALL */
/* - Query for operation conplete */
/* *OPC? */
/* - Query for results of self-alignnent */
/* CAL: ALL? */
/* - Report the results of the sel f-alignment */
/* - dose the session */

/**/

#i ncl ude <stdio. h>
#i ncl ude <stdlib. h>
#i ncl ude <mat h. h>
#i ncl ude <ctype. h>
#i ncl ude <string. h>
#i ncl ude "vi sa. h"

210 Chapter 17

ESA Programming Examples
Using C to Perform Internal Self-Alignment

#define hpESA | DN E4401B "Hew ett - Packard, E4401B'
#define hpESA | DN E4411B "Hew ett-Packard, E4411B'
#def i nehpEMC | DN E7401A "Hewl ett-Packard, E7401A"

Vi Session defaul t RM vi ESA
Vi Status errStatus;
Vi Char cl dBuf f [256] = {0} ;
char cEnter = 0;

i nt i Result = 0;
o
/*Set the input port to 50MHz anplitude reference*/ i
voi d Rout e50MHzSi gnal () g
{ 5
e
vi Queryf (vi ESA, "*IDN?\n", "%", &cldBuff); 5
i Result = (strncnp(cldBuff, hpESA | DN E4401B, strlen(hpESA | DN E4401B)) && ‘fn
strncnp(cldBuff, hpESA | DN E4411B, strlen(hpESA | DN E4411B)) && strncnp(cl dBuff, %
hpEMC_| DN_E7401A, strlen(hpEMC_| DN E7401A))); 3
if(iResult ==0) =
{ (2]
/*Set the input port to the 50ME anplitude reference for the nodel s*/
/ *E4401B, E4411B, and E7401A*/
vi Printf(vi ESA "CAL: SOUR STAT ON \n");
}
el se
{
/* For the anal yzers having frequency linits >= 3G4#, pronpt the user*/
/* to connect the anplitude reference output to the input*/
printf ("Connect AMPTD REF QUT to the INPUT \n");
printf ("...... Press Return to continue \n");
scanf("9%", &Enter);
/*Externally route the 50M+z Signal */
vi Printf(vi ESA "CAL: SOUR STAT ON \n");
}

voi d nai n()

{
/ *Program Vari abl es*/
Vi Status vi Status = 0;
long | Qpc =0OL;
long | Result =0L;

/* Cpen a @GPl B session at address 18*/

Chapter 17 211

ESA Programming Examples
Using C to Perform Internal Self-Alignment

vi St at us=vi penDef aul t RM &def aul t RV ;

vi St at us=vi pen(def aul t RV "GPl BO: : 18", VI _NULL, VI _NULL, &vi ESA) ;

i f(vi Status)

{
printf("Could not open a session to GPI B device at address 18!'\n");
exit(0);

}

/*Qd ear the instrunent*/

vi d ear (vi ESA) ;

/*Reset the instrument*/
vi Printf(vi ESA "*RST\n");

/*D splay the program headi ng */
printf("\n\t\t Internal Self-Aignment Program\n\n");

/*Check for the instrunment nodel nunber and route the 50MHz-si gnal accordingly*/
Rout e50MHzSi gnal () ;

(%]
Q
Qo
S
S
x
n
(@]
£
S
S
o
(@]
°
a
<
0
L

/*VI SA function sets the time out to infinite for this specified session*/
vi Set Attribute(vi ESA, VI_ATTR TMO VALUE, VI _TMD INFIN TE);
printf("\t Performng first self alignment "),

/*Initiate a self-alignnent */
vi Printf(vi ESA "CAL: ALL\n");

/*Query for operation conplete*/

vi Queryf (vi ESA, "*CPCAAn", "%l", & pc);

printf ("\n\n\t First Self Alignment is Done \n\n");

if (!'1Qpc)

{
printf("Program Abort! error ocurred: |ast conmand was not conpleted!\n");
exit(0);

}

printf ("\n\n\t Press Return to continue with next alignment \n\n");

scanf ("9%", &Enter);

printf("\t Performng next self alignment "),

/* Query for self-alignnent results*/
vi Quer yf (vi ESA, "CAL: ALL?\An", "%l", & Resul t);
if (I Result)
printf ("\n\n\t Self-alignnent Failed \n");
el se
printf ("\n\n\t Self-alignnent Passed \n");

/* Query for operation conplete*/

212 Chapter 17

ESA Programming Examples
Using C to Perform Internal Self-Alignment

vi Queryf (vi ESA, "*COPCA\n", "%l", & pc);

if ('l Qpc)

{
printf("Program Abort! error ocurred: |ast command was not conpl eted!\n");
exit(0);

}

/*d ose the session*/

vi A ose(vi ESA) ;

vi 0 ose(defaul t RV ;

m
2]
>
3
o

Q
o
3
3.
>

)
m
x
)
3

§=3
@
)

Chapter 17 213

ESA Programming Examples
Using C to Read Trace Data in an ASCIl Format (over GPIB)

Using C to Read Trace Data in an ASCI| Format (over

GPIB)
This C programming example (ascigpib.c) can be found on the Documentation
CD.
/**/
/* Reading Trace Data using ASC| Fornmat (GPlB) */
/* */
g /* This exanple is for the E44xxB ESA Spectrum Anal yzers */
8 /* and E740xA EMC Anal yzers. */
IS
b ” !
= /* The required SCPI instrument commands are given as */
= /* reference. */
% /* */
§’ /* - Opens a GPIB session at address 18 */
g [* - Odears the Anal yzer */
(</E) /* - Resets the Anal yzer */
W /* *RST */
/* - Set the input port to the 50 Mz anplitude reference */
/* E4411B or E4401B */
/* CAL: SOUR STAT ON */
/* EA4402, E4403B, E4404BE, 4405B, E4407B or E4408B */
/* Pronpt to connect AMPTD REF QUT to | NPUT */
/* CAL: SOUR STAT ON */

/* - Query for the nunber of sweep points (only applies to */
/* firmware revisions A 04.00 and later); default is 401 */

/* SENS: SVEE: PO N? */
/* - Sets the anal yzer center frequency to 50 Mtz */
/* SENS: FREQ CENT 50 MHZ */
/* - Sets the anal yzer span to 50 MHz */
/* SENS: FREQ SPAN 50 MHz */
/* - Set the anal yzer to single sweep node */
/* INT: CONT O */
/* - Trigger a sweep and wait for sweep to conplete */
/* INT: | MM *WAI */
/* - Specify units in dBm */
/* UN T: POV DBM */
/* - Set the anal yzer trace data to ASO | */
/* FORM DATA: ASC */
[* - Trigger a sweep and wait for sweep to conplete */
/* INT: | MM *WAI */
/* - Query the trace data */
/* TRAC DATA? TRACEL */

214 Chapter 17

ESA Programming Examples
Using C to Read Trace Data in an ASCII Format (over GPIB)

/* - Remove the "," fromthe ACSI| data */
/* - Save the trace data to an ASCl| file */
/* - dose the session */

/**/

ncl ude <stdi o. h>
ncl ude <stdlib. h>
ncl ude <mat h. h>
ncl ude <coni o. h>
ncl ude <ctype. h>
ncl ude <string. h>
ncl ude "visa. h"

4
iy
y
iy
iy
y
i

#define hpESA | DN E4401B "Hew ett - Packard, E4401B'
#define hpESA | DN E4411B "Hewl ett-Packard, E4411B'
#def i nehpEMC | DN_E7401A "Hewl ett - Packard, E7401A"

Vi Session defaul t RM vi ESA
Vi Status errStatus;

Vi Char cl dBuf f[256] ={0};
char cEnter =0;

i nt i Result =0;

m
n
>
3
o

Q
o
3
3.
>

)
m
x
)
3

§=3
@
7]

/*Set the input port to 50MHz anplitude reference*/
voi d Rout e50MHzSi gnal ()
{
vi Queryf (vi ESA, "*IDNAn", "%", &cldBuff);
i Result = (strncnp(cldBuff, hpESA | DN E4401B, strlen(hpESA | DN E4401B)) &&

strncnp(cldBuff, hpESA | DN E4411B, strlen(hpESA | DN E4411B)) && strncnp(cl dBuff,
hpEMC | DN E7401A, strlen(hpEMC | DN E7401A)));

if(iResult == 0)

{
/*Set the input port to the 50M& anplitude reference for the nodel s*/
[*E4401B, E4411B and E7401A*/
vi Printf(vi ESA "CAL: SOUR STAT ON \n");

}

el se

{

/* For the anal yzers having frequency lints >= 3G4, pronpt the user*/
/* to connect the anplitude reference output to the input*/

printf ("Connect AMPTD REF QUT to the INPUT \n");

printf ("...... Press Return to continue \n");

scanf("9%", &Enter);

/*Externally route the 50Miz Si gnal */
vi Printf(vi ESA "CAL: SOUR STAT ON \n");

Chapter 17 215

ESA Programming Examples
Using C to Read Trace Data in an ASCIl Format (over GPIB)

voi d mai n()
{
/*Program Vari abl e*/
Vi Status vi Status = 0;
/*Di mension cResult to 13 bytes per sweep point, 8192 sweep poi nts maxi munt/
Vi Char M _FAR cResul t[106496] = {0};
FILE *f TraceFi | e;

a static Vi Char *cToken ;
g— int i Num =0;

) int i SwpPnts = 401;

chn [ong | Count =0L;

£ l ong | Qoc=0;

S

5

= /*INumset to 13 tines nunber of sweep points, 8192 sweep points maxi munt/
09_ i Num =106496;

< | Count =0;

0

T

/* pen a GPI B session at address 18*/

vi St at us=vi penDef aul t RM &ef aul t RV ;

vi St at us=vi pen(def aul t RV "GPl BO: : 18", VI _NULL, VI _NULL, &vi ESA);
i f(viStatus)

{

printf("Could not open a session to GPI B device at address 18!'\n");
exit(0);

}

/* dear the instrument */

vi d ear (vi ESA) ;

/*Reset the instrunent. This will set nunber of sweep points to default of 401*/
vi Printf(vi ESA "*RST\n");

/*D splay the program headi ng */
printf("\n\t\t Read in Trace Data using ASC| Format (GPIB) Program\n\n");

[* Check for the instrument model nunber and route the 50MH signal accordingly*/
Rout e50MHzSi gnal () ;

[*Query nunber of sweep points per trace (firmware revision A 04.00 and later)*/
/*For firmware revisions prior to A 04.00, the nunber of sweep points is 401*/
i SwpPnts = 401;

vi Quer yf (vi ESA, " SENSE: SWEEP: PA NTS?\ n", " %", & SwpPnt s) ;

/*Set the anal yzer center frequency to 50MHz*/

216 Chapter 17

ESA Programming Examples
Using C to Read Trace Data in an ASCII Format (over GPIB)

vi Printf(vi ESA "SENS: FREQ CENT 50 MHz\n");

/*Set the anal yzer to 50MH Span*/
vi Printf(vi ESA " SENS: FREQ SPAN 50 MHz\n");

/*Set the anal yzer to single sweep node */
viPrintf(viESA"INT:.CONT 0 \n");

[*Trigger a sweep and wait for sweep to conplete */
viPrintf(viESA"INT. I MM *WAI\N");

/* Specify units in dBn¥/
viPrintf(vi ESA "UNT: PONDBM\n");

/*Set anal yzer trace data format to ASC | Format*/
vi Printf(vi ESA "FCRM DATA ASC \n");

[*Trigger a sweep and wait for sweep to conplete */
viPrintf(viESA"INT: I MM *WAI\n");

m
n
>
3
o

Q
o
3
3.
>

)
m
x
)
3

§=3
@
7]

/*Query the Trace Data using ASCI| Fornat */
vi Queryf (vi ESA "%\ n", "%t ", " TRAC DATA? TRACE1" , & Num, cResult);

/*Renove the "," fromthe ASC | trace data for anal yzing data*/
cToken = strtok(cResult,",");
/*Save trace data to an ASCIl to a file, by removing the "," token*/
f TraceFi | e=fopen("C \\tenp\\ ReadAscGpi b. txt","w");
fprintf(fTraceFile, "ReadAsc@i b. exe Qut put\nAgil ent Technol ogi es 2000\ n\n");
fprintf(fTraceFile, "\t Amlitude of point[%l] =%s dBm n",| Count+1, cToken);
whil e (cToken != NULL)
{
| Count ++;
cToken =strtok(NULL,",");
if (1 Count !=iSapPnts)
fprintf(fTraceFile, "\tAmlitude of point[%l] =%s
dBm n", | Count +1, cToken) ;
}

fprintf(fTraceFile,"\nThe Total trace data points of the spectrum are :[%]
\n\n", | Count);

fcl ose(fTraceFile);

/*d ose the session*/
vi A ose(vi ESA) ;
vi 0 ose(defaul t RV ;

}

Chapter 17 217

ESA Programming Examples
Using C to Read Trace Data in a 32-Bit Real Format (over GPIB)

Using C to Read Trace Data in a 32-Bit Real Format

(over GPIB)
This C programming example (32btgpib.c) can be found on the Documentation
CD.
/**/
/* Reading Trace Data using 32-bit Real Format (GPlIB) */
/* */
g /* This exanple is for the E44xxB ESA Spectrum Anal yzers */
8 /* and E740xA EMC Anal yzers. */
IS
b ” !
= /* This C programmi ng exanpl e does the foll ow ng. */
= /* The SCPI instrunent commands used are given as */
% /* reference. */
a /* */
09_ /* - Opens a GPI B session at address 18 */
(</E) /* - Oears the Anal yzer */
w /* - Resets the Anal yzer */
/* *RST */
/* - Set the input port to the 50 MHz anplitude reference */
/* CAL: SOUR STAT ON */
[* - Query for the nunber of sweep points (for firmare */
/* revisions A 04.00 and later). Default is 401. */
/* SENS: SVEE: PO N? */
/* - Calculate the nunber of bytes in the header */
/* - Set the anal yzer to single sweep node */
/* N T: GONT O */
/* - Sets the anal yzer center frequency and span to 50 M */
/* SENS: FREQ CENT 50 MHZ */
/* SENS: FREQ SPAN 50 MHZ */
/* - Specify 10 dB per division for the anplitude scale in */
/* and dBm Units */
/* DI SP: WND: TRAC: Y: SCAL: PDI V 10 dB */
/* UN T: POV DBM */
/* - Set the anal yzer trace data to 32-bit Real */
/* FCRM DATA: REAL, 32 */
/* - Set the binary order to swap */
/* FCRM BORD SWAP */
/* - Trigger a sweep and wait for sweep to conplete */
/* INT: 1 MM *WA */
/* - Calculate the nunber of bytes in the trace record */
/* - Query the trace data */
/* TRAC. DATA? TRACEL */

218 Chapter 17

ESA Programming Examples
Using C to Read Trace Data in a 32-Bit Real Format (over GPIB)

/* - Remove the "," fromthe ACSI| data */
/* - Save the trace data to an ASCl| file */
/* - dose the session */

/**/

y
i
u
i
i
u
i

ncl ude <stdi o. h>
ncl ude <stdlib. h>
ncl ude <mat h. h>

ncl ude <coni o. h>
ncl ude <ctype. h>
ncl ude <string. h>
ncl ude "visa. h"

#define hpESA | DN E4401B "Hew ett- Packard, E4401B'
#define hpESA |IDN E4411B "Hew ett-Packard, E4411B'
#defi ne hpEMC | DN_E7401A "Hewl ett - Packard, E7401A"

Vi Session defaul t RM vi ESA
Vi Char cl dBuf f [256] ;
char cEnter =0;

i nt i Result =0;

m
n
>
3
o

Q
o
3
3.
>

)
m
x
)
3

§=3
@
7]

voi d Rout e50MHzSi gnal ()
{
vi Queryf (vi ESA, "*IDNAAn", "%", &cldBuff);

i Result = (strncnp(cldBuff, hpESA | DN E4401B, strlen(hpESA | DN E4401B)) &&
strncnp(cldBuff, hpESA | DN E4411B, strlen(hpESA | DN E4411B)) && strncnp(cl dBuff,
hpEMC | DN_E7401A, strlen(hpEMC | DN E7401A)));

if(iResult == 0)

{
/*Set the input port to the 50M¥E internal reference source for the nodel s*/
/ *E4401B, E4411B and E7401A*/
vi Printf(vi ESA "CAL: SOUR STAT ON \n");
}
el se
{
/* For the anal yzers having frequency limts >= 3G+, pronpt the user to*/
/* connect the anplitude reference output to the input*/
printf ("Connect AMPTD REF QUT to the I NPUT \n");
printf ("...... Press Return to continue \n");
scanf ("%", &Enter);
/*Externally route the 50Mtz Signal */
vi Printf(vi ESA "CAL: SOUR STAT ON \n");
}
}

Chapter 17 219

(%]
Q
Qo
S
S
x
n
(@]
£
S
S
o
(@]
°
a
<
0
L

ESA Programming Examples
Using C to Read Trace Data in a 32-Bit Real Format (over GPIB)

voi d mai n()
{
/ *Program Vari abl es*/
Vi Status vi Status= 0;
Vi Char M _FAR cResul t[5000] = {0};
Vi Real 32 dTraceArray[401] = {0};
char cBufferlnfo[6]= {0};
I ong | Nunber Byt es =0L;
long | Qpc =0L;
unsi gned | ong | Ret Count = OL;
int iSize =0;
/*BytesPerPoint is 4 for Real32 or Int32 formats, 8 for Real 64, and 2 for U nt16*/
int iBytesPerPnt = 4;
int i SwpPnts = 401;
i nt i Dat aByt es=1604;
i nt i Header Byt es=6;
FI LE *f Tr aceFi | e;

/* Cpen a GPI B session at address 18*/

vi St at us=vi penDef aul t RV &def aul t RV) ;

vi St at us=vi Qpen(def aul t RM "GPl BO: : 18", VI _NULL, VI _NULL, &vi ESA) ;

i f(viStatus)

{
printf("Could not open a session to GPl B device at address 18!'\n");
exit(0);

}

/*d ear the instrunent */

vi d ear (vi ESA) ;

/*Reset the instrunent. This will set nunber of sweep points to default of 401*/
viPrintf(vi ESA "*RST\n");

/*Di splay the program headi ng */
printf("\n\t\t Read in Trace Data using 32-bit Real Format (using GPIB) \n\n");

/* Set the input port to the 50ME anplitude reference*/
Rout e50MHzSi gnal () ;

/*Query nunber of sweep points per trace (firmware revision A 04.00 and later)*/
/*For firmware revisions prior to A 04.00, the nunmber of sweep points is 401*/

i SwpPnt s=401;

vi Quer yf (vi ESA, " SENSE: SWEEP: PO NTS?\ n", " %", & SwpPnt s) ;

/*Cal cul ate nunber of bytes in the header. The header consists of the "#" sign*/
/*followed by a digit representing the nunber of digits to follow The digits */

220 Chapter 17

ESA Programming Examples
Using C to Read Trace Data in a 32-Bit Real Format (over GPIB)

/*whi ch follow represent the nunber of sweep points multiplied by the nunber */
/*of bytes per point. */
i HeaderBytes = 3; /*i DataBytes >3, plus increment for "#" and "n"*/
i Dat aBytes = (i SwpPnt s*i Byt esPerPnt);
| Nunber Byt es = i Dat aByt es;
while ((iDataBytes = (iDataBytes / 10)) > 0)
{
i Header Byt es++;

/*Set anal yzer to single sweep nmode */
viPrintf(viESA "INT:CONT 0 \n");

/*Set the anal yzer to 50MHz-center frequency */
vi Printf(vi ESA " SENS: FREQ CENT 50 MHZ\n");

/*Set the anal yzer to 50M& Span */
vi Printf(vi ESA " SENS: FREQ SPAN 50 MHZ\n");

m
n
>
3
o

Q
o
3
3.
>

)
m
x
)
3

§=3
@
7]

/* Specify dB per division of each vertical division and Units */
vi Printf(vi ESA "D SP: WND: TRAC. Y: SCAL: PDI V 10dB\n");
vi Printf(vi ESA "UN T: PONDBM n");

/*Set anal yzer trace data format to 32-bit Real */
vi Printf(vi ESA "FCRM DATA REAL, 32 \n");

/*Set the binary byte order to SWAP */
vi Printf(vi ESA "FORM BORD SWAP\n") ;

/*Trigger a sweep and wait for sweep to conpl et e*/
viPrintf(viESA"INT: I MM*WAI\n");

/*Cal cul ate size of trace record. This will be sum of HeaderBytes, NunberBytes*/
/*(the actual data bytes) and the "/n" terninator*/
i Size = | Nunber Byt es +i Header Byt es+1;

/*Cet trace header data and trace data */
vi Printf (vi ESA "TRAC. DATA? TRACEL\n");
vi Read (vi ESA, (Vi Buf)cResult,i Size, & Ret Count);

/*Extract the trace data*/
nmentpy(dTraceArray, cResul t +i Header Byt es, (si ze_t) | Nunber Byt es) ;

/*Save trace data to an ASA Il file*/
fTraceFi | e=fopen("C \\tenp\\ ReadTrace32Goi b. txt","w'");
fprintf(fTraceFil e, "ReadTrace32@i b. exe Qut put\nAgilent Technol ogi es 2000\ n\ n");

Chapter 17 221

ESA Programming Examples
Using C to Read Trace Data in a 32-Bit Real Format (over GPIB)

fprintf(fTraceFile,"The%d trace data points of the
spectrum\n\n", (I Nunber Bytes/ 4));

for (long i=0;i<l NunberBytes/ 4;i ++)

fprintf(fTraceFile, "\tAnplitude of point[%l] =%.2If
dBmn",i+1, dTraceArray[i]);
fcl ose(fTraceFile);

/*d ose the session*/
vi A ose(vi ESA) ;

vi 0 ose(defaul t RV ;

}

0
Qo
o
S
@
X
L
o
i
S
S
o
o
2
o
<
(92}
L

222 Chapter 17

ESA Programming Examples
Using C to Read Trace Data in an ASCIl Format (over RS-232)

Using C to Read Trace Datain an ASCI| Format (over

RS-232)

This C programming example (ascrs232.c) can be found on the Documentation

CD.
/**/
/* Reading Trace Data using ASCl| Fornat (RS- 232) */
/* */
/* This exanple is for the E44xxB ESA Spectrum Anal yzers */
/* and E740xA EMC Anal yzers. */
/* */
/* This C programmi ng exanpl e does the foll ow ng. */
/* The SCPI instrunent comrands used are given as */
/* reference. */
/* */
/* - Qpens an RS-232 session at COML/ COMR */
/[* - Oears the Anal yzer */
/* - Resets the Anal yzer */
/* *RST */
[* - Set the input port to the 50 Mz anplitude reference */
/* CAL: SOR STAT ON */
/* - Query for the nunber of sweep points (for firmare */
/* revisions A 04.00 and later). Default is 401. */
/* SENS: SVE: PO N? */
/* - Set the anal yzer to single sweep node */
/* INIT: GONT O */
/* - Sets the anal yzer center frequency and span to 50 Mz */
/* SENS: FREQ CENT 50 MHZ */
/* SENS: FREQ SPAN 50 MHZ */
[* - Trigger a sweep */
/* INT: 1 MM */
[* - Check for operation conplete */
/* *OPC? */
/* - Specify dBm Unit */
/* UN T: POV DBM */
/[* - Set the anal yzer trace data ASC | */
/* FCRM DATA: ASC */
[* - Trigger a sweep */
/* INT: 1 MM */
/* - Check for operation conplete */
/* *OPC? */
/* - Query the trace data */
/* TRAC. DATA? TRACEL */

Chapter 17

223

m
n
>
3
o

Q
o
3
3.
>

)
m
x
)
3

§=3
@
7]

ESA Programming Examples
Using C to Read Trace Data in an ASCIl Format (over RS-232)

/* - Renove the "," fromthe ACSI| data */
/* - Save the trace data to an ASAIl file */
/* - dose the session */

/**/

4
iy
iy
i’
iy
iy
i

ncl ude <stdi o. h>
ncl ude <stdlib. h>
ncl ude <nat h. h>

ncl ude <coni o. h>
ncl ude <ctype. h>
ncl ude <string. h>
ncl ude "visa. h"

#define hpESA | DN E4401B "Hew ett-Packard, E4401B"
#define hpESA | DN E4411B "Hewl ett-Packard, E4411B"
#define hpEMC | DN E7401A "Hew ett-Packard, E7401A"

Vi Session defaul t RV vi ESA
Vi Status errStatus;

Vi Char cl dBuf f[256] ={0};
char cEnter ={0};

i nt i Result =0;

(%]
Q
Qo
S
S
x
n
(@]
£
S
S
o
(@]
°
a
<
0
L

/*Set the input port to 50MHz anplitude reference*/

voi d Rout e50MHSi gnal ()

{

vi Queryf (vi ESA, "*IDNAAn", "%", &cldBuff);

i Result = (strncnp(cldBuff, hpESA | DN E4401B, strlen(hpESA | DN E4401B)) &&

strncnp(cldBuf f, hpESA | DN E4411B, strlen(hpESA | DN E4411B)) && strncnp(cl dBuff,
hpEMC | DN_E7401A, strlen(hpEMC | DN E7401A)));

if(iResult == 0)

{
/*Set the input port to the 50Mt anplitude reference for the nodel s*/
/| *E4411B and E4401B*/
vi Printf(vi ESA "CAL: SOUR STAT ON \n");

}

el se

{

/* For the analyzers having frequency limts >= 3G+, pronpt the user to/*
/* connect the anplitude reference output to the input*/

printf ("Connect AMPTD REF QUT to the I NPUT \n");

printf ("...... Press Return to continue \n");

scanf ("%", &Enter);

/*Externally route the 50Mt Signal */
vi Printf(vi ESA "CAL: SOUR STAT ON \n");

224 Chapter 17

ESA Programming Examples
Using C to Read Trace Data in an ASCIl Format (over RS-232)

voi d mai n()
{
/*Program Vari abl e*/
Vi Status vi Status = 0;
/*Di mension cResult to 13 bytes per sweep point, 8192 sweep poi nts maxi munt/
Vi Char M _FAR cResul t[106496] = {0};
FILE *f TraceFi | e;
static Vi Char *cToken;
int iNum =0;
int iSwpPnts = 401,
[ong | Count =0L;
l ong | Qoc=0L;

/*INumset to 13 tines nunber of sweep points, 8192 sweep points maxi munt/
i Num =106496;
| Count =0;

m
n
>
3
o

Q
o
3
3.
>

)
m
x
)
3

§=3
@
7]

/* pen a serial session at COML */

vi St at us=vi penDef aul t RM &ef aul t RV ;

if (viStatus =vi Qpen(defaul tRM"ASRL1: : I NSTR', VI _NULL, VI _NULL, &i ESA) =
V1 _SUCCESS)

{

printf("Could not open a session to ASRL device at COML!\n");
exit(0);

}

/* dear the instrument */

vi d ear (vi ESA) ;

/*Reset the instrunent. This will set nunber of sweep points to default of 401*/
vi Printf(vi ESA "*RST\n");

/*D splay the program headi ng */
printf("\n\t\tRead in Trace Data using ASCI| Fornmat (RS232) Program\n\n");

/* Check for the instrunent nodel nunber and route the 50MHz signal accordingly*/
Rout e50MHzSi gnal () ;

/*Query nunber of sweep points per trace (firmware revision A 04.00 and |later)*/
/*For firmware revisions prior to A 04.00, the nunber of sweep points is 401 */
i SwpPnts = 401;

vi Quer yf (vi ESA, " SENSE: SWEEP: PQ NTS?\ n", " %", & SwpPnt s) ;

/*Set the anal yzer center frequency to 50MHz */

Chapter 17 225

ESA Programming Examples
Using C to Read Trace Data in an ASCIl Format (over RS-232)

vi Printf(vi ESA "SENS: FREQ CENT 50 MHz\n");

/*Set the anal yzer to 50MH Span*/
vi Printf(vi ESA " SENS: FREQ SPAN 50 MHz\n");

/*set the anal yzer to single sweep node*/
viPrintf(viESA"INT:CONT 0 \n");

[*Trigger a spectrum neasurenent*/
viPrintf(viESA"INT:IMM\n");

/*Read the operation conplete query*/

vi Queryf (vi ESA, "*CPCA\n", "%l", & pc);
if ('l Qpc)

{

printf("Program Abort! error ocurred: |ast command was not conpleted!\n");
exit(0);

}

/*Specify units in dBn¥/

viPrintf(vi ESA "UNT: PONDBM\n");

(%]
Q
Qo
S
S
x
n
(@]
£
S
S
o
(@]
°
a
<
0
L

/*Set anal yzer trace data format to ASC | Format*/
vi Printf(vi ESA "FCRM DATA ASC \n");

/*Trigger a spectrum neasurement*/
viPrintf(viESA"INT:IMM\n");

/*Read the operation conplete query */

vi Queryf (vi ESA, "*COPCA\n", "%l", & pc);

if (!l Qpc)

{
printf("Program Abort! error ocurred: |ast command was not conpleted!\n");
exit(0);

}

/*Query the Trace Data using ASCI| Fornat */

vi Queryf (vi ESA "%\ n", "%#t"," TRAC DATA? TRACEL" , & Num, cResult);

/*Rermove the "," fromthe ASC | trace data for analyzing data*/
cToken = strtok(cResult,",");
/*Save trace data to an ASCI| to a file, by removing the "," token*/
fTraceFi | e=fopen("C \\tenp\\ ReadAscRS232. t xt","w');
fprintf(fTraceFile, "ReadAscRS232. exe Qut put\nHew ett-Packard 1999\ n\n");
fprintf(fTraceFile,"\tAmlitude of point[%] =%s dBmn",| Count+1, cToken);
whil e (cToken !'= NULL)

{

226 Chapter 17

ESA Programming Examples
Using C to Read Trace Data in an ASCIl Format (over RS-232)

| Count ++;
cToken =strtok(NULL,",");
if (I Count != iSwpPnts)
fprintf(fTraceFile, "\tAmlitude of point[%l] =%s
dBm n", | Count +1, cToken) ;

}

fprintf(fTraceFile,"\nThe Total trace data points of the spectrum are :[%]
\n\n", | Count);

fcl ose(fTraceFile);

/*d ose the session*/
vi d ose(vi ESA) ;

vi d ose(defaul t RV ;

}

m
2]
>
3
o

Q
o
3
3.
>

)
m
x
)
3

§=3
@
7]

Chapter 17 227

ESA Programming Examples
Using C to Read Trace Data in a 32-bit Real Format (over RS-232)

Using C to Read Trace Data in a 32-bit Real Format
(over RS-232)

This C programming example (32brs232.c) can be found on the Documentation
CD.

/**/

/* Reading Trace Data using 32-bit Real Format (RS- 232) */
/* */
g /* This exanple is for the E44xxB ESA Spectrum Anal yzers */
8 /* and E740xA EMC Anal yzers. */
IS
b ” !
= /* This C programmi ng exanpl e does the foll ow ng. */
= /* The SCPI instrunent commands used are given as */
% /* reference. */
a /* */
09_ /* - Opens an RS-232 session at COML/ COMR */
(</E) /* - Oears the Anal yzer */
w /* - Resets the Anal yzer */
/* *RST */
/* - Set the input port to the 50 MHz anplitude reference */
/* CAL: SOUR STAT ON */
[* - Query for the nunber of sweep points (for firmare */
/* revision A 04.00 and later). Default is 401. */
/* SENS: SVEE: PO N? */
/* - Calculate the nunber of bytes in the header */
/* - Set the anal yzer to single sweep node */
/* INT: CONT O */
/* - Sets the anal yzer center frequency and span to 50 M */
/* SENS: FREQ CENT 50 MHZ */
/* SENS: FREQ SPAN 50 MHZ */
/* - Specify 10 dB per division for the anplitude scale in */
/* and dBm Units */
/* Dl SP: WND: TRAC: Y: SCAL: PDI V 10 dB */
/* UN T: POV DBM */
/* - Set the anal yzer trace data to 32-bit Real */
/* FORM DATA: REAL, 32 */
/* - Set the binary order to swap */
/* FORM BCORD SWAP */
/* - Trigger a sweep */
/* INT: 1 MV */
/* - Check for operation conplete */
/* *QPC? */
/* - Calculate the nunber of bytes in the trace record */

228 Chapter 17

ESA Programming Examples
Using C to Read Trace Data in a 32-bit Real Format (over RS-232)

/* - Set VISAtineout to 60 seconds, to allow for slower */
/* transfer times caused by hi gher nunber of sweep points */
/* at | ow baud rates. */
/* - Set VISAto terninate read after buffer is enpty */
/* - Query the trace data */
/* TRAC. DATA? TRACEL */
/* - Reset VISAtineout to 3 seconds */
/* - Rermove the "," fromthe ACSI| data */
/* - Save the trace data to an ASC | file */
/* - dose the session */

/**/

y
u
i
u
u
i
u

ncl ude <stdi o. h>
ncl ude <stdlib. h>
ncl ude <nath. h>
ncl ude <coni o. h>
ncl ude <ctype. h>
ncl ude <string. h>
ncl ude "visa. h"

m
n
>
3
o

Q
o
3
3.
>

)
m
x
)
3

§=3
@
7]

#define hpESA | DN E4401B "Hewl ett-Packard, E4401B'
#define hpESA | DN E4411B "Hewl ett - Packard, E4411B'
#def i nehpEMC | DN_E7401A "Hewl ett - Packard, E7401A"

Vi Session defaul tRM vi ESA
Vi Status errStatus;

Vi Char cl dBuf f[256] = {0};
char cEnter = O;

i nt i Result = 0;

/*Set the input port to 50MH anplitude reference*/
voi d Rout e50MHzSi gnal ()

{

vi Queryf (vi ESA, "*IDNAAn", "%", &cldBuff);

i Result = (strncnp(cldBuff, hpESA | DN E4401B, strlen(hpESA | DN E4401B)) &&
strncnp(cldBuff, hpESA | DN E4411B, strlen(hpESA | DN E4411B)) && strncnp(cl dBuff,
hpEMC | DN _E7401A, strl en(hpEMC | DN E7401A)));

if(iResult == 0)

{
/*Set the input port to the 50ME anplitude reference for the nodel s*/
/ *E4411B and E4401B*/
vi Printf(vi ESA "CAL: SOUR STAT ON \n");

}

el se

{

Chapter 17 229

ESA Programming Examples
Using C to Read Trace Data in a 32-bit Real Format (over RS-232)

/* For the anal yzers having frequency linmts >= 3G, pronpt the user to*/
/* connect the anplitude reference output to the input*/

printf ("Connect AMPTD REF QUT to the INPUT \n");

printf ("...... Press Return to continue \n");

scanf ("9%", &Enter);

/*Externally route the 50MHz Signal */
vi Printf(vi ESA "CAL: SOUR STAT ON \n");

}
}
[%0]
Q
g— voi d mai n()
g {
x
chn / *Program Vari abl es*/
E Vi Status vi Status= O;
= Vi Char _M _FAR cResul t[1024000] = {0};
2 Vi Real 32 dTraceArray[1024] = {0};
09_ char cBufferinfo[7]= {0};
< I ong | Nunber Byt es =0L;
fﬁ long | Qpc =0L;
unsi gned | ong | Ret Count = OL;
int iSize = 0;

/*BytesPerPnt is 4 for Real 32 or Int32 formats, 8 for Real 64, and 2 for U nt16*/
int iBytesPerPnt = 4;

int i SwpPnts = 401; / *Nunber of points per sweep*/

int iDataBytes = 1604;/*Nunber of data points, assum ng 4 bytes per point*/

int i HeaderBytes = 6; /*Nunber of bytes in the header, assum ng 1604 data bytes*/
FI LE *f TraceFi | e;

/* Cpen a serial session at COML */

vi St at us=vi penDef aul t RV &def aul t RV) ;

if (viStatus =vi pen(defaultRM"ASRL1: : I NSTR', VI _NULL, VI _NULL, &vi ESA) !=

Ml _SUCCESS)

{
printf("Could not open a session to ASRL device at CoML!!\n");
exit(0);

}

/*d ear the instrument */

vi d ear (vi ESA) ;

/*Reset the instrunent. This will set nunber of sweep points to default of 401*/
viPrintf(vi ESA "*RST\n");

/*D splay the program headi ng */
printf("\n\t\t Read in Trace Data using ASC | Format (using RS-232) Program\n\n"
)i

230 Chapter 17

ESA Programming Examples
Using C to Read Trace Data in a 32-bit Real Format (over RS-232)

/* Set the input port to the internal 50MHz reference source */
Rout e50MHzSi gnal () ;

[*Query nunber of sweep points per trace (firmware revision A 04.00 or later)*/
/*For firmware revisions prior to A 04.00, the nunber of sweep points is 401 */
i SwpPnts = 401;

vi Quer yf (vi ESA, " SENSE: SWEEP: PO NTS?\ n", " %", & SwpPnt s) ;

/*Cal cul ate nunber of bytes in the header. The header consists of the "#" sign*/
/*followed by a digit representing the nunber of digits to follow The digits */
/*whi ch follow represent the nunber of sweep points multiplied by the nunber */
/*of bytes per point. */
i HeaderBytes = 3; /*iDataBytes >0, plus increment for "#' and "n" */
i Dat aBytes = (i SwpPnt s*i Byt esPerPnt);

| Nunber Byt es = i Dat aByt es;
while ((iDataBytes = (iDataBytes / 10)) > 0)
{

i Header Byt es++;

m
n
>
3
o

Q
o
3
3.
>

)
m
x
)
3

§=3
@
7]

/*Set anal yzer to single sweep nmode */
viPrintf(viESA"INT:CONT 0 \n");

/* Set the anal yzer to 50MHz-center frequency */
vi Printf (vi ESA "SENS: FREQ CENT 50 MHZ\n");

/*Set the anal yzer to 50M& Span */
vi Printf (vi ESA " SENS: FREQ SPAN 50 MHZ\ n");

/* Specify dB per division of each vertical division & Units */
vi Printf(vi ESA "D SP: WND: TRAC. Y: SCAL: PDI V 10dB\ n") ;
viPrintf(vi ESA "UN T: PONDBM n");

[*Set anal yzer trace data format to 32-bit Real */
vi Printf(vi ESA "FCORM DATA REAL, 32\n");

/*Set the binary byte order to SWAP */
vi Printf(vi ESA "FORM BORD SWAP\Nn");

[*Trigger a sweep */
ViPrintf(viESA"INT.IMAN");

/*Read the operation conpl ete query */
vi Queryf (vi ESA, "*COPCAn", "%l", & pc);
if (!1Qpc)

Chapter 17 231

ESA Programming Examples
Using C to Read Trace Data in a 32-bit Real Format (over RS-232)

printf("Program Abort! error ocurred: |ast conmand was not conpl eted!\n");
exit(0);
}
/*Cal cul ate size of trace record. This will be the sum of HeaderBytes, Nunber*/
/*Bytes (the actual data bytes) and the "\n" termnator*/
i Size = | NunberBytes + i HeaderBytes + 1;

/*Increase tineout to 60 sec*/
vi Set Attri but e(vi ESA, VI _ATTR TMD VALUE, 60000) ;

/*Set RS-232 interface to termnate when the buffer is enpty*/
vi Set Attribute(vi ESAVI_ATTR ASRL_ END | N VI _ASRL_END NONE) ;

/*Get trace header data and trace data*/
vi Printf (vi ESA " TRAC. DATA? TRACEL\n");
vi Read (vi ESA (Vi Buf)cResult,i Size, & Ret Count);

/*Reset tinmeout to 3 sec*/
vi Set Attri but e(vi ESA VI _ATTR TMD VALUE, 3000) ;

(%]
Q
Qo
S
S
x
n
(@]
£
S
S
o
(@]
°
a
<
0
L

/*Extract the trace data*/
mencpy(dTraceArray, cResul t +i Header Byt es, (si ze_t) | Nunber Byt es) ;

/*Save trace data to an ASA | file*/
f TraceFi | e=fopen("C \\tenp\\ ReadTr ace32Rs232. txt","w");
fprintf(fTraceFile, "ReadTrace32Rs232. exe Qut put\nHew ett-Packard 1999\ n\n");

fprintf(fTraceFile,"The%d trace data points of the
spectrum\n\n", (I Nunber Bytes/ 4));

for (long i=0;i<l Nunber Byt es/i Byt esPerPnt ;i ++)

fprintf(fTraceFile, "\tAnplitude of point[%l] =%.2|f
dBmn",i+1, dTraceArray[i]);

fcl ose(fTraceFile);

/*d ose the session*/
vi A ose(vi ESA) ;

vi d ose(defaul t RV ;

}

232 Chapter 17

ESA Programming Examples
Using C to Add Limit Lines

Using C to Add Limit Lines

This C programming example (limlines.c) can be found on the Documentation CD.

/**/

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

Wsing Limt Lines */
*/

This exanple is for the E44xxB ESA Spectrum Anal yzers */
and E740xA EMC Anal yzers. */
*/

Thi s C programmi ng exanpl e does the foll ow ng. */
The SCPI instrunent commands used are given as */
ref erence. */
*/

*/

- pen a GPIB session at address 18. */
- Uear the anal yzer. */
*CLR */

- Reset the anal yzer. */
*RST */

- Set Y-Axis Units to dBm */
UN T: POV DBM */

- Define the upper limt line to have frequency/ */
anpl i tude pairs. */
CALC: LLI NE1: CONT: DOM FREQ */

CALC. LLI NE1: TYPE UPP */

CALC. LLI NE1: DI SP ON */

CALC. LLI NE1: DATA freql, anpl, 1, freqg2, anp2, 1. .. */

- Define the lower Iimt line to have frequency/anplitude*/
pairs. */
CALC: LLI NE2: CONT: DOM FREQ */

CALC. LLI NE2: TYPE LOWV */

CALC. LLI NE2: DI SP ON */

CALC. LLI NE2: DATA freql, anpl, 1, freqg2, anp2, 1. .. */

- Turn the limt line test function on. */
CALC: LLI NE2: STAT ON */

- Set the anal yzer to a center frequency of 50 MHz, span */
to 20 Mz, and resol ution bandwi dth to 1 M. */
SENS: FREQ SPAN 20 MHz */

SENS: FREQ CENT 50 MHz */
SENS:BWD RES 1 MZ */

- Turn the linit line test function on. */
- Set the anal yzer reference level to 0 dBm */
Dl SP: WND: TRAC: Y: SCAL: RLEV 0 */

Chapter 17

233

m
n
>
3
o

Q
o
3
3.
>

)
m
x
)
3

§=3
@
7]

ESA Programming Examples
Using C to Add Limit Lines

/* - Set the input port to the 50 Mz anplitude reference. */

/* CAL: SOUR STAT ON */
/* - Check to see if limt line passes or fails. |t should */
/* pass. */
/* CALC LLINE: FAI L? */
/* - Pause for 5 seconds. */
/* - Deactivate the 50 Mz al i gnnment signal. */
/* CAL: SOUR STAT CFF */
[* - The limt line test should fail. */
/* - O ose the session. */

/**/

ncl ude <stdio. h>

ncl ude <stdlib. h>

ncl ude <mat h. h>

ncl ude <coni o. h>

ncl ude <ctype. h>

ncl ude <string. h>

#i ncl ude <w ndows. h>

#i ncl ude "vi sa. h"

#define YIELD Sl eep(5000)

y
i
i
#.
i
i

(%]
Q
Qo
S
S
x
n
(@]
£
S
S
o
(@]
°
a
<
0
L

#define hpESA | DN E4401B "Hew ett-Packard, E4401B"
#define hpESA | DN E4411B "Hewl ett-Packard, E4411B"
#defi ne hpEMC | DN E7401A "Hewl ett - Packard, E7401A"

Vi Session defaul t RM vi ESA
Vi Status errStatus;

Vi Char cl dBuf f[256] = {0};
char cEnter = 0;

i nt i Result = 0;

long ILimtTest =0L;

/*Set the input port to 50M+z anplitude reference*/
voi d Rout e50MHSi gnal ()
{
vi Queryf (vi ESA, "*IDNAAn", "%", &cldBuff);
i Result = (strncnp(cldBuff, hpESA | DN E4401B, strlen(hpESA | DN E4401B)) &&

strncnp(cldBuf f, hpESA | DN E4411B, strlen(hpESA | DN E4411B)) && strncnp(cl dBuff,
hpEMC_| DN_E7401A, strlen(hpEMC | DN E7401A)));

if(iResult == 0)

{
/*Set the input port to the 50ME anplitude reference for the nodel s*/
/ *E4401B, E4411B, and E7401A*/
vi Printf(vi ESA "CAL: SOUR STAT ON \n");

}

234 Chapter 17

ESA Programming Examples
Using C to Add Limit Lines

el se

/* For the anal yzers having frequency linits >= 3G+4, pronpt the user*/
/* to connect the anplitude reference output to the input*/

printf ("Connect AMPTD REF QUT to the INPUT \n");

printf ("...... Press Return to continue \n");

scanf("9%", &Enter);

/*Externally route the 50MHz Signal */
vi Printf(vi ESA "CAL: SOUR STAT ON \n");

} o
>
) T
o
void printResult() %
{ e
vi Queryf (vi ESA, "CALC CLIMFAILAn", "%d", & LimtTest); 5
if (ILimtTest!=0) p
{)
printf ("\n\t..Limt Line Failed..... \n"); é
vi Queryf (vi ESA, "CALC LLI NE1: FAI LA n", "%d", & LimtTest); @
if (ILimtTest==0)
printf ("\n\t...... Limt Linel Passed \n");
else printf ("\n\t...... Limt Linel Failed \n");
vi Queryf (vi ESA, "CALC LLI NE2: FAI LA n", "%d", & LimtTest);
if (ILimtTest==0)
printf ("\n\t...... Limt Line2 Passed \n");
else printf ("\n\t...... Limt Line2 Failed \n");
}
el se
printf ("\n\t..Limt Test Pass\n");

}

voi d mai n()

{
/ *Program Vari abl e*/
Vi Status vi Status = 0;
long | Qoc =0L;

/* Cpen a @GPl B session at address 18*/

vi St at us=vi penDef aul t RV &def aul t RV) ;

vi St at us=vi Qpen(def aul t RM "GPl BO: : 18", VI _NULL, VI _NULL, &vi ESA) ;
i f(viStatus)

{

printf("Could not open a session to GPl B device at address 18!'\n");

Chapter 17 235

ESA Programming Examples
Using C to Add Limit Lines

exit(0);
}
/*d ear the instrunent*/
vi d ear (vi ESA) ;

/ *Reset the instrunent*/
vi Printf(vi ESA "*RST\n");

/* Check for the instrument nodel nunber and route the 50MHz si gnal accordingly*/
/ *Rout e50MHSi gnal () ;

/*D splay the program headi ng */
printf("\n\t\t Limt Lines Program\n\n");

/*Set the Y-Axis Units to dBm */
vi Printf(vi ESA, "UN T: PONDBM n");

/*Set to Frequency Donai n Mode*/
vi Printf(vi ESA "CALC LLI NE1: CONT: DCM FREQ n") ;

(%]
Q
Qo
S
S
x
n
(@]
£
S
S
o
(@]
°
a
<
0
L

/*Delete any current linmt line and define the upper limt line
to have the followi ng frequency/anplitude pairs*/
vi Printf(vi ESA "CALC LLI NEL: TYPE UPPA\Nn");

[* Turn on di spl ay*/
vi Printf(vi ESA "CALC LLINEL: DI SP O\ n");

/*Send the upper linit |ine data*/
vi Printf(vi ESA "CALC LLI NEL: DATA 40EQ6, - 50, 1, 45EO06, - 20, 1, 50EOQ6, - 15, 1,
55E06, - 20, 1, 60EO06, -50, 1\ n");

/* Turn on displ ay*/
vi Printf(viESA "CALC LLINEL: DISP O\ n");

/*Delete any current linmt line and define the lower limt |ine
to have the foll owi ng frequency/anplitude pairs*/
vi Printf(vi ESA "CALC LLI NE2: TYPE LONN");

/*Send the lower Iimt |ine data*/

vi Printf(vi ESA "CALC LLI NE2: DATA
40E06, - 100, 1, 49. 99E06, - 100, 1, 50E06, - 30, 1, 50. 01EO06, - 100, 1, 60E06, - 100, 1\ n");

[* Turn on di spl ay*/
vi Printf(vi ESA "CALC LLINE2: DI SP O\ n");

/*Turn the limt line test function on.*/

236 Chapter 17

ESA Programming Examples
Using C to Add Limit Lines

vi Printf(vi ESA "CALC. LLI NE2: STAT O\ n") ;

/*Set the anal yzer to a center frequency of 50 Miz, span to 20 Mz,
and resol ution bandwidth to 1 M. */
vi Printf(vi ESA "SENS: FREQ CENT 50e6\n");
vi Printf(vi ESA " SENS: FREQ SPAN 20e6\n");
vi Printf(vi ESA "SENS: BWD RES 1e6\n");

/*Set the anal yzer reference level to O dBm¥/
vi Printf(vi ESA "D SP. WND TRAC. Y: SCAL: RLEV 0 \n");

m
/* Check for the instrument nodel nunber and route the 50MHz-si gnal accordingly*/ %
Rout e50MHzSi gnal () ; 3

(o]

o
[*Trigger a spectrum neasurenent*/ g
viPrintf(viESA"INT:IMM\n"); 5
/ *Check for operation conplete */ ‘fn

&
vi Queryf (vi ESA, "*COPCA\n", "%l", & pc); é
if (!10pc) @
{

printf("Program Abort! error ocurred: |ast conmand was not conpl eted!\n");
exit(0);

}

/*Check to see if limt line passes or fails. It should pass.*/

printf ("\n\t Limt Line status after activating the 50M& signal \n");

[*Print the limts line result*/
printResult();

[*Pause for 5 seconds*/
Yl ELD,

/*Deactivate the 50 Mz al i gnnment signal.*/
vi Printf(vi ESA "CAL: SOUR STAT GFR\n");

/*Trigger a spectrum neasurement */
viPrintf(viESA"INT:IMM\n");

/ *Check for operation conplete */

vi Queryf (vi ESA, "*CPCA\n", "%l", & pc);

if (!l Qpc)

{
printf("Program Abort! error ocurred: |ast conmand was not conpl eted!\n");
exit(0);

Chapter 17 237

ESA Programming Examples
Using C to Add Limit Lines

/* The linmt line test should fail.*/
printf ("\n\t Limt Line status after de-activating the 50M& signal \n");

/*Print the limts line result*/
printResult();

/*d ose the session*/
vi d ose(vi ESA);
vi d ose(defaul tRV) ;

0
Qo
o
S
@
X
L
o
i
S
S
o
o
2
o
<
(92}
L

238 Chapter 17

ESA Programming Examples
Using C to Measure Noise

Using C to Measure Noise

This C programming example (noise.c) can be found on the Documentation CD.

/**/

/* Measuring Noi se */
/* */
/* This exanple is for the E44xxB ESA Spectrum Anal yzers */
/* and E740xA EMC Anal yzers. */
| * */ m
/* This C programmi ng exanpl e does the foll ow ng. */ i
/* The SCPI instrunent comrands used are given as */ o
/* reference. */ %
| * * | 3
/* - Qpens a GPIB session at address 18 */ 2
/* - Qears the Anal yzer */ ‘fn
/* - Resets the Anal yzer */)
/* *RST % 2
/* - Sets the center frequency and span */ 3
/* SENS: FREQ CENT 50 M */
/* SENS: FREQ SPAN 10 M */
/* - Set the input port to the 50 Mz anplitude reference */
/* CAL: SOUR STAT ON */
/* - Set the anal yzer to single sweep node */
/* INT: QONT O */
[* - Trigger a sweep and wait for sweep conpl etion */
/* INT: I MM *WA */
/* - Set the marker to the nmaxi num peak */
/* CALC. MARK: VAX */
/* - Set the anal yzer to active delta narker */
/* CALC MARK: MCDE DELT */
[* - Set the delta nmarker to 2 MZ */
/* CALC MARK: X 2E+6 */
/* - Activate the noise marker function */
/* CALC MARK: FUNC NO S */
/* - Trigger a sweep and wait for sweep conpl etion */
/* INT: I MM *WA */
[* - Query the nmarker delta anplitude fromthe anal yzer */
/* CALC MARK: Y? */
/* - Report the narker delta anplitude as the carrier to */
/* noi se ratio in dBc/ Hz */
/* - dose the session */

/**/

Chapter 17 239

ESA Programming Examples
Using C to Measure Noise

ncl ude <stdi o. h>
ncl ude <stdlib. h>
ncl ude <mat h. h>
ncl ude <coni o. h>
ncl ude <ctype. h>
ncl ude <string. h>
ncl ude "visa. h"

4
iy
iy
iy
iy
i’
i

#defi ne hpESA | DN E4401B "Hewl ett - Packard, E4401B"
#defi ne hpESA | DN E4411B "Hewl ett-Packard, E4411B"

a #def i nehpEMC | DN_E7401A "Hewl ett - Packard, E7401A"
g

) M Session defaul t RV vi ESA;
chn Vi Status errStatus;

E Vi Char cl dBuf f [256] = {0O};
= char CEnter = 0,

g i nt i Result = 0;

o -0l -

£ | ong | Qoc =0L;

<

0

T

/*Set the input port to 50M+z anplitude reference*/
voi d Rout e50MHzSi gnal ()

{

vi Queryf (vi ESA, "*IDNAAn", "%", &cldBuff);
i Result = (strncnp(cldBuff, hpESA | DN E4401B, strlen(hpESA | DN E4401B)) &&

strncnp(cldBuf f, hpESA | DN E4411B, strlen(hpESA | DN E4411B)) && strncnp(cl dBuff,
hpEMC | DN_E7401A, strlen(hpEMC | DN E7401A)));

if(iResult == 0)

{
/*Set the input port to the 50Mt anplitude reference for the nodel s*/
/| *E4401B, E4411B anmd E7401A¢/
vi Printf(vi ESA "CAL: SOUR STAT ON \n");
}
el se
{
/* For the anal yzers having frequency lints >= 3GHz, pronpt the user*/
/* to connect the anplitude reference output to the input*/
printf ("Connect AMPTD REF QUT to the I NPUT \n");
printf ("...... Press Return to continue \n");
scanf ("%", &Enter);
/*Externally route the 50Mt& Signal */
vi Printf(vi ESA "CAL: SOUR STAT ON \n");
}
}

240 Chapter 17

ESA Programming Examples
Using C to Measure Noise

voi d mai n()

{

/*Program Vari abl es*/
Vi Status vi Status = 0;
doubl e divar kAnmp =0. 0;

l ong | Qoc=0L;

/*Qpen a (Pl B session at address 18*/

vi St at us=vi penDef aul t RM &def aul t RV ;

vi St at us=vi pen(defaul t RV "GPl BO: : 18", VI _NULL, VI _NULL, &vi ESA) ;

i f(viStatus)

{
printf("Could not open a session to GPl B device at address 18!'\n");
exit(0);

}

/*Qd ear the Instrunent*/

vi d ear (vi ESA) ;

/*Reset the |nstrument*/
vi Printf(vi ESA "*RST\n");

m
n
>
3
o

Q
o
3
3.
>

)
m
x
)
3

§=3
@
7]

/*D splay the program headi ng */
printf("\n\t\t Noise Program\n\n");

[* Check for the instrunent nmodel nunber and route the 50MHz signal accordingly*/
Rout e50MHzSi gnal () ;

/*Set the anal yzer center frequency to 50MHz*/
vi Printf (vi ESA " SENS: FREQ CENT 50e6\n");

/*Set the anal yzer span to 10Miz*/
vi Printf(vi ESA " SENS: FREQ SPAN 10e6\n");

/*Set the anal yzer in a single sweep node*/
viPrintf(viESA "INT:CONT 0 \n");

[*Trigger a sweep and wait for sweep conpl eti on*/
viPrintf(viESA"INT: I M *WAI \n");

/*Set the marker to the maxi mum peak*/
vi Printf(vi ESA "CALC MARK: MAX \ n");

/*Check for operation conplete*/

vi Queryf (vi ESA, "*CPCA\n", "%l", & c);
if (!lQpc)

{

Chapter 17 241

ESA Programming Examples
Using C to Measure Noise

printf("Program Abort! error ocurred: |ast command was not conpleted!\n");
exit(0);

/*Set the anal yzer in a single sweep node*/
viPrintf(viESA"INT:CONT 0 \n");

/*Trigger a spectrum neasurement*/
viPrintf(viESA"INT:IMM\n");

/*Set the anal yzer in active delta nmarker node*/
vi Printf(vi ESA "CALC MARK: MCDE DELT \n");

/*Set the marker delta frequency to 2 MHz. This places the
active narker two divisions to the right of the input signal.*/
vi Printf(vi ESA "CALC MARK: X 2E+6 \n");

/*Activate the noi se marker function.*/
vi Printf(vi ESA "CALC MARK FUNC NOS \n");

(%]
Q
Qo
S
S
x
n
(@]
£
S
S
o
(@]
°
a
<
0
L

[*Trigger a sweep and wait for sweep conpl eti on*/
viPrintf(viESA"INT: I MM*WAl \n");

/*Query and read the marker delta anplitude fromthe anal yzer*/
vi Quer yf (vi ESA, "CALC MARK Y? \n", "% f", &iMar KA) ;

/*Report the narker delta anplitude as the carrier-to-noise ratio in dBc/ Hz*/
printf("\t Marker Anplitude =%l f dBc/Hz\n", dvar KAmp) ;

/*d ose the session*/
vi A ose(vi ESA) ;

vi d ose(defaul t RV ;

}

242 Chapter 17

ESA Programming Examples
Using C to Enter Amplitude Correction Data

Using C to Enter Amplitude Correction Data

This C programming example (amplcorr.c) can be found on the Documentation
CD.

/**/

/* Entering Anplitude Correction Data */
/* */
/* This exanple is for the E44xxB ESA Spectrum Anal yzers */
/* and E740xA EMC Anal yzers. */ m
| * * [>
/* This C programmi ng exanpl e does the foll ow ng. */ 5-9
/* The SCPI instrunent comrands used are given as */ %
/* reference. */ g
| * * [=
/* - Qpens a GPIB session at address 18 */ ‘fn
/* - dears the Anal yzer x| >
/* - Resets the Anal yzer */ é
/* *RST */ o
/* - Sets the stop frequency to 1.5 G& */
/* SENS: FREQ STCP 1.5 Gz */
/* - Set the input port to the 50 Mi anplitude reference */
/* CAL: SOUR STAT ON */

[* - Enter anplitude correction frequency/anplitude pairs: */
/* 0 Hz/ 0 dB 100 MHz/5 dB, 1 GH/-5 dB, 1.5 GHz/ 10 dB */

/* SENS: CCRR CSET1: DATA 0, 0, 100ES6, 5. 0, 1. OE9, -5. 0, . .. */
/* - Activate anplitude correction */
/* SENS: CCRR CSET1: DATA */
/* SENS: CORR CSET1: ALL: STAT ON */
/[* - Query the anal yzer for the anplitude corection factors */
/* SENS: CCRR CSET1: DATA? */
[* - Store themin an array */
/[* - Display the array */
/* - dose the session */

/**/

ncl ude <stdi o. h>
ncl ude <stdlib. h>
ncl ude <mat h. h>
ncl ude <coni o. h>
ncl ude <ctype. h>
ncl ude <string. h>
ncl ude "visa. h"

y
u
u
i
u
4
i

Chapter 17 243

ESA Programming Examples
Using C to Enter Amplitude Correction Data

#defi ne hpESA | DN E4401B "Hewl ett - Packard, E4401B"
#define hpESA | DN E4411B "Hew ett - Packard, E4411B"
#defi ne hpEMC | DN E7401A "Hewl ett-Packard, E7401A"

Vi Session defaul tRM vi ESA;
Vi Status errStatus;
Vi Char cl dBuf f[256] = {0};

char cEnter = 0;
i nt i Result = 0;
3 /*Set the input port to 50MHz amplitude reference*/
g— voi d Rout e50MHzSi gnal ()
g {
x
w
(@)
E vi Queryf (vi ESA, "*IDNAAn", "%", &cldBuff);
= i Result = (strncnp(cldBuff, hpESA | DN E4401B, strlen(hpESA | DN E4401B)) &&
© strncnp(cldBuf f, hpESA | DN E4411B, strlen(hpESA | DN E4411B)) && strncnp(cl dBuff,
2 hpEMC | DN_E7401A, strlen(hpEMC | DN E7401A)));
a if(iResult == 0)
<
A {
/*Set the input port to the 50Mt anplitude reference for the nodel s*/
| *E4401B, E4411B, and E7401A*/
vi Printf(vi ESA "CAL: SOUR STAT ON \n");
}
el se
{
/* For the analyzers having frequency limts >= 3GH, pronpt the user*/
/* to connect the anplitude reference output to the input*/
printf ("Connect AMPTD REF QUT to the I NPUT \n");
printf ("...... Press Return to continue \n");
scanf ("%", &Enter);
/*Externally route the 50Mtz Signal */
vi Printf(vi ESA "CAL: SOUR STAT ON \n");
}
}

voi d mai n()
{
/ *Program Vari abl es*/
Vi Char _M _FAR cResul t[1024] ={0};
Vi Real 64 VI _FAR aReal Array[2] [100] ={0};
Vi Status vi Status = 0;
int i Num =0;
int i NoOf Points =0;
long | Count = 0;

244 Chapter 17

ESA Programming Examples
Using C to Enter Amplitude Correction Data

I ong | Freq=0L;

[ong | Anpl t d=1;
static Vi Char *cToken;

/*No of anplitude corrections points */
i Nof Poi nts = 4;

/* (pen a (Pl B session at address 18*/

vi St at us=vi penDef aul t RM &def aul t RV ;

vi St at us=vi pen(defaul t RV "GPl BO: : 18", VI _NULL, VI _NULL, &vi ESA) ;

i f(viStatus)

{
printf("Could not open a session to GPl B device at address 18!'\n");
exit(0);

}

/*Q ear the instrunent*/

vi d ear (vi ESA) ;

/*Reset the instrument*/
vi Printf(vi ESA "*RST\n");

m
n
>
3
o

Q
o
3
3.
>

)
m
x
)
3

§=3
@
7]

/*D splay the program headi ng */
printf("\n\t\t Anplitude Correction Program\n\n");

/*Set the stop frequency to 1.5 Gz */
vi Printf(vi ESA "SENS: FREQ STCP 1.5 GHz\ n");

/* Check for the instrunent nmodel nunber and route the 50MHz signal accordingly*/
Rout e50MHzSi gnal () ;

/* Purge any currently-1loaded anplitude correction factors*/
vi Printf(vi ESA "SENS: CORR CSET1: DEL \n");

/* Enter anp cor frequency/anplitude pairs:

0 Hz, 0 dB, 100 Mz, 5 dB, 1 GHz, -5 dB, 1.5G4, 10*/
vi Printf(vi ESA "SENS: CORR CSET1: DATA ");
viPrintf(viESA "0, 0.0,");
vi Printf(vi ESA "100.E6, 5.0,");
viPrintf(viESA "1.E9, -5.0,");
vi Printf(vi ESA "1.5E9, 10 \n");

/* Activate anplitude correction. Notice that the noise floor slopes
up from0O Hz to 100 MHz, then downward by 10 dB to 1 Gz, then upwards
again by 15 dBto 1.5 Gt.*/

vi Printf(vi ESA "SENS: OORR CSET1: STATE ON \n");

vi Printf(vi ESA "SENS: CORR CSET: ALL: STAT ON \n");

Chapter 17 245

ESA Programming Examples
Using C to Enter Amplitude Correction Data

/*Query the anal yzer for its anplitude correction factors */
vi Quer yf (vi ESA, " SENS: OCORR CSET1: DATA?" |, "o6" , &cResult);

/*Rermove the "," fromthe anplitude correction for anal yzi ng dat a*/
cToken = strtok(cResult,",");

/*Store the array (frequency) value into a two-di mensional real array*/
aReal Array[| Freq=0][| Count=0] = atof(cToken);

a /*Rermove the "," fromthe anplitude correction for anal yzi ng dat a*/
E’- cToken =strtok(NULL,",");
2
chn /*Store the array(anplitude) value into a two-di mensional real array*/
£ aReal Array[| Anpl t d=1] [| Count] = at of (cToken);
£ while (cToken != NULL)
g {
(@]
09_ | Count ++;
< if (ICount == i NoCf Poi nts)
{0 {
| Count --;
br eak;
}
/*Renove the "," fromthe anplitude correction for anal yzi ng data*/
cToken =strtok(NULL,",");
/*Store the array (frequency) value into a two-dinensional real array*/
aReal Array[| Freq] [l Count] = at of (cToken);
cToken =strtok(NULL,",");
/*Store the array (anplitude) value into a two-dimensional real array*/
aReal Array[| Anpl td][1 Count] = atof (cToken);
}

/*Di splay the contents of the array.*/

for (long i=0;i<=lCount;i++)

{
printf("\tFrequency of point[%] =%f MAz\n",i,aReal Array[l Freq][i]/1e6);
printf("\tAmlitude of point[%l] =%f dB\n",i,aReal Array[l Anpltd][i]);

}

/*d ose the session*/

vi A ose(vi ESA) ;

vi 0 ose(defaul t RV ;

}

246 Chapter 17

ESA Programming Examples
Using C to Determine if an Error has Occurred

Using C to Determineif an Error has Occurred

This C programming example (error.c) can be found on the Documentation CD.

/**/

/* Determne if an error has occurred */
/* */
/* This exanple is for the E44xxB ESA Spectrum Anal yzers */
/* and E740xA EMC Anal yzers. */
| * */ m
/* This C programmi ng exanpl e does the foll ow ng. */ i
/* The SCPI instrunent comrands used are given as */ o
/* reference. */ %
| * * | 3
/* - Qpens a GPIB session at address 18 */ 2
/* - Qears the Anal yzer */ ‘fn
/* *CLS */ P
/* - Resets the Anal yzer */ -3
| * * RST */ a
/* - Sets the service request mask to assert SRQ when */
/* either a neasurenment is uncalibrated or an error */
/* nmessage has occurred. */
/* STAT: QUES: ENAB 512 */
/* STAT: QUES: | NT: ENAB 8 */
/* *ESE 35 */
/* *SRE 104 */
/* - Set the center frequency to 500M% and span to 100M& */
/* SENS: FREQ CENT 500 MHz */
/* SENS: FREQ SPAN 100 Mz */
/* - Set the analyzer to an uncalibrated state */
/* - Wien an interrupt occurs, poll all instrunents */
/* - Report the nature of the interrupt on the ESA anal yzer */
/* - Pause 5 seconds to observe the anal yzer */
/* - Sets the service request nmask to assert SRQ when */
/* either a neasurement is uncalibrated or an error */
/* nmessage has occurred. */
/* *ESE 35 */
/* *SRE 96 */
/* - Send an illegal comrand to the ESA */
/* IDN (illegal command) */
[* - Wien an interrupt occurs, poll all instruments */
/* - Report the nature of the interrupt on the ESA anal yzer */
/* - dear the anal yzer status registers */
/* *SRE 0 */

Chapter 17 247

(%]
Q
Qo
S
S
x
n
(@]
£
S
S
o
(@]
°
a
<
0
L

ESA Programming Examples
Using C to Determine if an Error has Occurred

/* *ESE O */
/* STAT: QUES: ENAB 0 */
/* STAT: QUES: | NT: ENAB 0 */
/* *CLS */
/* - Continue nonitoring for an interrupt */
/* - dose the session */

/**/

4
i
#.
i
#.
i
i
#.

ncl ude <stdio. h>
ncl ude <stdlib. h>
ncl ude <nat h. h>
ncl ude <coni o. h>
ncl ude <ctype. h>
ncl ude <string. h>
ncl ude <w ndows. h>
ncl ude "visa. h"

#define hpESA | DN E4401B "Hew ett-Packard, E4401B"
#define hpESA | DN F4411B "Hew ett-Packard, E4411B"
#define hpEMC | DN E7401A "Hew ett-Packard, E7401A"
#define YIELD Sl eep(10)

Vi Session defaul t RM vi ESA;
Vi Status errStatus;

Vi Char cldBuf f[256] = {0};
char cEnter =0;

i nt i Result =0;

i nt i SrqCccurred = 0;

char cBuf[3]={0};

/*Wait until SRQis generated and for the handler to be called. Print
sonmet hing while waiting. Wien interrupt occurs it will be handl ed by
i nterrupt handl er*/

voi d Wi t For SRQ()

{
long | Count = OL;
i SrqCccurred =0;
printf ("\t\nWaiting for an SRQto be generated ...");
for (1Count =0; (| Count<10) && (i SrqCccurred ==0); | Count ++)
{

I ong | Count 2 =0;

printf(".");

while ((IGCount2++ < 100) && (i SrqCccurred ==0))

{

248 Chapter 17

ESA Programming Examples
Using C to Determine if an Error has Occurred

Yl ELD,
}
}
printf("\n");
}

/*Set the input port to 50MH anplitude reference*/
voi d Rout e50MHzSi gnal ()

{
o

vi Queryf (vi ESA, "*IDNAn", "%", &cldBuff); i
i Result = (strncnp(cldBuff, hpESA | DN E4401B, strlen(hpESA | DN E4401B)) && 3
strncnp(cldBuff, hpESA | DN E4411B, strlen(hpESA | DN E4411B)) && strncnp(cl dBuff, Q
hpEMC | DN E7401A, strlen(hpEMC | DN E7401A))); %
if(iResult == 0) 3
{ @

/*Set the input port to the 50M& anplitude reference for the nodel s*/ [

[*E4401B, E4411B and E7401A*/ %

vi Printf(vi ESA "CAL: SOUR STAT ON \n"); -%
} ()]
el se
{

/* For the analyzers having frequency linits >= 3GH, pronpt the user*/

/* to connect the anplitude reference output to the input*/

printf ("Connect AMPTD REF QUT to the INPUT \n");

printf ("...... Press Return to continue \n");

scanf("9%", &Enter);

/*Externally route the 50MHz Si gnal */

vi Printf(vi ESA "CAL: SOUR STAT ON \n");
}
}

[*Interrupt handler,trigger event handler */

Vi Status M _FUNCH sSrqgHdl r (Vi Session vi ESA, Vi Event Type event Type, Vi Event
ctx, Vi Addr userHdlr)

{
Vi Ul nt16 i StatusByte=0;
long | Cond = OL;

/* Make sure it is an SRQ event, ignore if stray event*/
if (eventType! =V _EVENT_SERVI CE_REQ
{
printf ("\n Stray event typeOx%x\n", event Type);
/*Return successful | y*/

Chapter 17 249

ESA Programming Examples
Using C to Determine if an Error has Occurred

return VI _SUCCESS;

}

/* Wien an interrupt occurs, determ ne which device generated the interrupt
(if an instrunment other than the ESA generates the interrupt, sinply report
"Instrument at GPIB Address xxx Has Generated an Interrupt").*/

printf ("\'n SRQ Event Cccurred!\n");

printf ("\n ... Oiginal Device Session =%1ld\n", vi ESA);

/*CGet the GPIB address of the insrunent, which has interrupted*/
vi Quer yf (vi ESA, " SYST: COMW @GPl B: SELF: ADDR?\ n", "% ", cBuf);
printf ("\n Instrument at GPIB Address %s Has Cenerated an Interrupt!\n", cBuf);

/*Get the status byte*/
/* If the ESA generated the interrupt, determne the nature of the interrupt
either a neasurenent is uncalibrated or an error nessage has occurred?*/
vi Quer yf (vi ESA, "STAT: QUES: | NT: EVEN?2\ n", "%l", & StatusByte);
if ((Ox08 & i StatusByte))
printf("\n SRQ nmessage:\t Measurenent uncalibrated\n");

(%]
Q
Qo
S
S
x
n
(@]
£
S
S
o
(@]
°
a
<
0
L

/* If the ESA generated the interrupt, determne the nature of the interrupt;
did is the neasurenment conplete or an error message occur ?*/
vi Queryf (vi ESA, "*ESR?\n", "%", & StatusByte);
if ((iStatusByte !'=0) &% (0x01 & i StatusByte))
printf("\n SRQ nmessage:\t Measurenent conplete\n");
elseif ((iStatusByte !'=0) &% (0x02 | Ox10 | 0x20 & i StatusByte))
printf ("\'n SRQ message:\t Error Message Qccurred\n®);

/*Return successful | y*/

i SrqCccurred =1

vi ReadSTB(vi ESA, & StatusByte);
return VI _SUCCESS;

}

voi d mai n()

{

/ *Program Vari abl es*/
Vi Status vi Status = 0;
| ong | Qoc= OL;

i nt i | ntNun¥ O;

| ong | Count = OL;

/* Open a GPI B session at address 18*/

vi St at us=vi penDef aul t RV &lef aul t RV) ;

vi St at us=vi Qpen(def aul t RM "GPl BO: : 18", VI _NULL, VI _NULL, &vi ESA) ;
i f(viStatus)

{

250 Chapter 17

ESA Programming Examples
Using C to Determine if an Error has Occurred

printf("Could not open a session to GPI B device at address 18!'\n");
exit(0);

}

/*Q ear the instrument*/

vi d ear (vi ESA) ;

/ *Reset the instrunent*/
vi Printf(vi ESA "*RST\n");

/*Q ear the status byte of the instrunent*/
vi Printf(vi ESA "*CLS\n");

/*D splay the program headi ng */
printf("\n\t\t Status register - Determne if an Error has Qccurredin\n");

/* Check for the instrunent nmodel nunber and route the 50MHz-signal accordingly*/
Rout e50MHzSi gnal () ;

/[*Put the anal yzer in single sweep*/
viPrintf(viESA "INT:CONT 0 \n");

m
n
>
3
o

Q
o
3
3.
>

)
m
x
)
3

§=3
@
7]

/*Set the service request mask to assert SRQ when either a neasurenent
is uncalibrated (i.e. "Meas Uncal " displayed on screen) or an error
nessage has occurred. */
vi Printf(vi ESA " STAT: QUES: ENAB 512\ n");

vi Printf(vi ESA "STAT: QUES: | NT: ENAB 8\ n");
vi Printf(vi ESA "*ESE 35\n");
vi Printf(vi ESA "*SRE 104\ n");

/*Configure the conputer to respond to an interrupt,install the handl er
and enable it */

vi I nstal | Handl er (vi ESA, VI _EVENT_SERVI CE_ REQ sSrqgHdl r, Vi Addr (10));

vi Enabl eEvent (vi ESA, VI _EVENT SERVICE REQ VI _HNDLR M _NULL) ;

i SrqCccurred =0;

/*Set the anal yzer to a 500 Mz center frequency*/
vi Printf (vi ESA "SENS: FREQ CENT 500 MHZ \n");

/*Set the anal yzer to a 100 Mz span*/
vi Printf (vi ESA "SENS: FREQ SPAN 100 MHZ\ n");

/*Set the analyzer to a auto resolution BW/
vi Printf(vi ESA " SENS: BAND: RES: AUTO 1\ n");

/*Set the anal yzer to a Auto Sweep Ti ne*/
vi Printf(vi ESA " SENS: SWE TI ME: AUTO 1\ n");

Chapter 17 251

(%]
Q
Qo
S
S
x
n
(@]
£
S
S
o
(@]
°
a
<
0
L

ESA Programming Examples
Using C to Determine if an Error has Occurred

/*Al'l ow anal yzer to sweep several tines.*/
viPrintf(viESA"INT:CONT 1 \n");

/*Manual |y coupl e sweeptime to 5ns. reduce resolution BWto 30 KHz.
"Meas Uncal " shoul d be displayed on the screen, and an interrupt should
be generated. */

viPrintf(vi ESA "SENS:SWETIME 5 ns \n");

vi Printf(vi ESA "SENS: BAND: RES 30 KHZ \n");

[*Wait for SRQ/
Wi t For SRQ) ;

/*Pause for 5 seconds to observe "Meas Uncal " message on ESA displ ay*/
Sl eep(5000) ;

/* Set the service request mask to assert SRQ when either a neasurenent
is conpleted or an error nessage has occurred. */

vi Printf(vi ESA "*SRE 96\n");

vi Printf(vi ESA "*ESE 35\n");

/*Send an undefi ned command to t he devi ce*/
viPrintf(vi ESA "IDNN");

[*Wait for SRQ/
Wi t For SRQ) ;

/*Di sabl e and uninstall the interrupt handl er*/
vi b sabl eEvent (vi ESA, VI _EVENT_SERVICE REQ VI _H\DLR);
vi Uni nstal | Handl er (vi ESA, VI _EVENT_SERVI CE REQ sSrqHdl r, Vi Addr (10));

/*CA ear the instrunent status register*/
viPrintf(viESA "*SRE 0 \n");
viPrintf(vi ESA "*ESE 0 \n");

vi Printf(vi ESA " STAT: QJES: ENAB 0\ n") ;

vi Printf(vi ESA "STAT: QUES: | NT: ENAB 0\ n");

/*d ear the status byte of the instrunent*/
viPrintf(viESA "*QLS\n");

/*d ose the session*/
vi A ose(vi ESA) ;

vi d ose(defaul t RV ;

}

252

Chapter 17

ESA Programming Examples
Using C to Measure Harmonic Distortion (over GPIB)

Using C to Measure Harmonic Distortion (over GPIB)

This C programming example (harmgpib.c) can be found on the Documentation
CD.

/**/

/* Measuring Harnonic D stortion (GPlB) */
/* */
/* This exanple is for the E44xxB ESA Spectrum Anal yzers */
/* and E740xA EMC Anal yzers. */ m
| * * [>
/* This C programmi ng exanpl e does the foll ow ng. */ 5-9
/* The SCPI instrunent comrands used are given as */ %
/* reference. */ g
| * * [=
/* - Qpens a GPIB session at address 18 */ ‘fn
/* - dears the Anal yzer x| >
/* *OLS x| 3
/* - Resets the Anal yzer */ §
/* *RST */
/[* - Set the input port to the 50 MHz reference */
/* CAL: SOUR STAT ON */
/[* - Set the anal yzer center frequency to the fundarent al */
/* SENS: FREQ CENT freq */
/* - Set the anal yzer to 10 ME span */
/* SENS: FREQ SPAN 10 MHZ */
[* - Set the anal yzer to single sweep node */
/* NI T: CONT O */
[* - Take a sweep and wait for sweep conpl etion */
/* INT: 1 MM *WA */
/* - Performthe peak search */
/* CALC. MARK: MAX */
/[* - Set the marker to reference |evel */
/* CALC. MARK: SET: RLEV */
[* - Take a sweep and wait for sweep conpl etion */
/* INT: 1 MM *WA */
/* - Performthe peak search */
/* CALC. MARK: MAX */
/* - Change VISA tineout to 60 seconds */
/* - Activate signal track */
/* CALC. MARK: TRCK: STAT CN */
[* - Performnarrow span and wait */
/* SENS: FREQ SPAN 10e4 */
[* - Check for operation conplete */

Chapter 17 253

ESA Programming Examples
Using C to Measure Harmonic Distortion (over GPIB)

/* *COPC? */
/* - De-activate signal track */
/* CALC MARK: TRCK: STAT COFF */
/* - Reset VI SA timeout to 3 seconds */
/* - Set units to dBm */
/* UN T: POV DBM */
/* - Take a sweep and wait for sweep conpl etion */
/* INT: 1 MM */
/* *OPC? */
/* - Performthe peak search */
a /* CALC. MARK: MAX */
E’- /* - Read the narker anplitude,this is the fundamental Level */
) /* CALC. MARK: Y? */
chn /* - Change the anplitude units to volts */
£ /* UN T: PONV */
g [* - Take a sweep */
2 /* INT: | MV */
e /* - Check for operation conplete */
= /* *CPC? %
fﬁ /* - Read the marker anplitude in volts, this is the */
/* fundanmental anplitude in volts. */
/* CALC. MARK: Y? */
/* - Read the narker frequency */
/* CALC MARK: X? */
/* - Measure each harmonic anplitude as foll ows: */
/* Set the span to 20 Mt */
/* SENS: FREQ SPAN 20 MHZ */
/* Set the center frequency to the desired harnonic */
/* SENS: FREQ CENT <freq> */
/* Take a sweep and wait for operation conplete */
/* INT: 1 MM */
/* * CPC? */
/* Per f orm peak search */
/* CALC: MARK: MAX */
/* Set VISAtineout to 60 seconds */
/* Activate signal track */
/* CALC. MARK: TRCK: STAT ON */
/* Zoomdown to a 100 kHz span */
/* SENS: FREQ SPAN 10E4 */
/* Take a sweep and wait for operation conplete */
/* INT: 1 MM */
/* *CPC? */
/* Signal track off */
/* CALC. MARK: TRCK: STAT OFF */
/* Reset VISA tinmeout to 3 seconds */
/* Perf orm Peak Search */

254 Chapter 17

ESA Programming Examples
Using C to Measure Harmonic Distortion (over GPIB)

/* CALC: MARK: MAX */

/* Set marker anplitude in volts */

/* UN T: POV V */

/* Query, read the marker anplitude in volts */

/* CALC. MARK: Y? */

/* Change the anplitude units to dBmand read the */

/* nmar ker anpl it ude. */

/* UN T: PON DBM */

/* - Calculate the relative anplitude of each harnonic */

/* reletive to the fundarent al */

/* - Calculate the total harmonic distortion */ m

/* - Display the fundanental anplitude in dBm fundanmental */ i

/* frequency in MHz, relative anplitude of each harmonic */ 3

/* in dBc and total harmonic distortion in percent */ %

/* - dose the session */ 3

/**/ g
(o]
m

#i ncl ude <stdio. h> S

#i ncl ude <stdlib. h> E

#i ncl ude <mat h. h> @

ncl ude <coni o. h>
ncl ude <ctype. h>
ncl ude <string. h>
ncl ude "visa. h"

i
u
u
i

#define hpESA | DN E4401B "Hew ett - Packard, E4401B'
#define hpESA | DN E4411B "Hew ett-Packard, E4411B'
#def i nehpEMC | DN_E7401A "Hewl ett - Packard, E7401A"

Vi Session defaul t RM vi ESA
Vi Status errStatus;

Vi Char cl dBuf f [256] = {0} ;
char cEnter = 0;

i nt i Resul t 0;

| ong | Qoc =0L;

/*Set the input port to 50MH anplitude reference*/
voi d Rout e50MHzSi gnal ()

{

vi Queryf (vi ESA, "*IDNAAn", "%", &cldBuff);

i Result = (strncnp(cldBuff, hpESA | DN E4401B, strlen(hpESA | DN E4401B)) &&
strncnp(cldBuff, hpESA | DN E4411B, strlen(hpESA | DN E4411B)) && strncnp(cl dBuff,
hpEMC | DN _E7401A, strl en(hpEMC | DN E7401A)));

if(iResult == 0)
{

Chapter 17 255

ESA Programming Examples
Using C to Measure Harmonic Distortion (over GPIB)

/*Set the input port to the 50M& anplitude reference for the nodel s*/
/ *E4401B, E4411B, and E7401A*/
vi Printf(vi ESA "CAL: SOUR STAT ON \n");

}
el se
{
/* For the anal yzers having frequency lints >= 3G+4, pronpt the user*/
/* to connect the anplitude reference output to the input*/
printf ("Connect AMPTD REF QUT to the INPUT \n");
printf ("...... Press Return to continue \n");
a scanf ("9%", &Enter);
E’- /*Externally route the 50MHz Signal */
) vi Printf(vi ESA "CAL: SOUR STAT ON \n");
“é, }
£ }
& |
= voi d TakeSweep()
e {
i /*Take a sweep and wait for the sweep conpl etion*/
fﬁ viPrintf(viESA"INT:IMAN");
vi Queryf (vi ESA, "*COPCA\n", "%l", & pc);
if ('l Qpc)
{
printf("Program Abort! Error occurred: |ast command was not conpleted! \n");
exit(0);
}
}

voi d mai n()

{

/ *Program Vari abl es*/

Vi Status vi Status = 0;
doubl e dFundarental = 0.0;
doubl e dHar nfreq =0. 0;
float fHarm10] ={0.0};
fl oat fHarnDbni 10]={0. 0};
float fRel Anptd[10]={0.0};
fl oat fFundaAnpt dDom=0. O;
doubl e dFundaAnpt dv=0. 0;
doubl e dMarkerFreq = 0.0;
doubl e dPrcntDi stort =0.0;
doubl e dSunBquare =0. 0;
long | MaxHarmoni ¢ =0L;
long | Num=OL;

/*Setting default val ues*/

256 Chapter 17

ESA Programming Examples
Using C to Measure Harmonic Distortion (over GPIB)

| MaxHar noni ¢ =5;
dFundanent al =50. O;

/* pen a GPI B session at address 18*/

vi St at us=vi penDef aul t RM &def aul t RV ;

vi St at us=vi pen(defaul t RV "GPl BO: : 18", VI _NULL, VI _NULL, &vi ESA) ;

i f(viStatus)

{
printf("Could not open a session to GPI B device at address 18!\n");
exit(0);

}

/*Q ear the instrument*/

vi d ear (vi ESA) ;

/ *Reset the instrunent*/
vi Printf(vi ESA "*RST\n");

/*D splay the program headi ng */
printf("\n\t\t Harnonic Distortion Program\n\n");

m
n
>
3
o

Q
o
3
3.
>

)
m
x
)
3

§=3
@
7]

/* Check for the instrunent nodel nunber and route the 50MHz-signal accordingl y*/
Rout e50MHzSi gnal () ;

/*Pronpt user for fundanental frequency*/
printf("\t Enter the input signal fundamental frequency in Mz ");

/*The user enters fundanental frequency*/
scanf ("% f", &dFundanent al) ;

/*Set the anal yzer center frequency to the fundanental frequency. */
vi Printf(vi ESA "SENS: FREQ CENT %l f MHZ \n; ", dFundanent al) ;

/*Set the anal yzer to 10MH& Span */
vi Printf (vi ESA "SENS: FREQ SPAN 10 MHZ\n");

/*Put the anal yzer in a single sweep */
viPrintf(viESA "INT:CONT 0 \n");

[*Trigger a sweep, wait for sweep conpl etion*/
viPrintf(viESA"INT: I MM *WAI\nNn");

/*Performa peak search */
vi Printf(vi ESA "CALC MARK: MAX \ n");

/* Place the signal at the reference |evel using the
mar ker-to-ref erence | evel comrand and take sweep */

Chapter 17 257

(%]
Q
Qo
S
S
x
n
(@]
£
S
S
o
(@]
°
a
<
0
L

ESA Programming Examples
Using C to Measure Harmonic Distortion (over GPIB)

vi Printf(vi ESA "CALC. MARK: SET: RLEV \n");

[*Trigger a sweep, wait for sweep conpl eti on*/
viPrintf(viESA"INT. I MM *WAI\Nn");

/*Performa peak search */
vi Printf(vi ESA "CALC MARK MAX \ n");

/*increase tineout to 60 sec*/
vi Set Attri but e(vi ESA, VI _ATTR TMD VALUE, 60000) ;

/*Performactivate signal track */
vi Printf(vi ESA "CALC MARK: TRCK: STAT ON \n");

/*Take a sweep and wait for the sweep conpl etion*/
TakeSweep() ;

/[*Perform narrow span and wait */
vi Printf(vi ESA " SENS: FREQ SPAN 10e4 \n");

/*Take a sweep and wait for the sweep conpl etion*/
TakeSweep() ;

/*De activate the signal track */
vi Printf(vi ESA "CALC MARK: TRCK: STAT CFF \n");

/*Reset tineout to 3 sec*/
vi Set Attribut e(vi ESA VI _ATTR _TMD VALUE, 3000) ;

/*Set units to DBM/
viPrintf(vi ESA "UNT: PONDBM\n");

/*Performa peak search */
vi Printf(vi ESA "CALC MARK MAX \ n");

/*Read the marker anplitude, this is the fundanmental anplitude
in dBm*/
vi Quer yf (vi ESA, "CALC. MARK YA n", "%f", & FundaAnpt dDbn);

/*Change the anplitude units to Volts */
viPrintf(vi ESA "UNT: PONV \n");

/*Read the marker anplitude in volts, This is the fundanental anplitude
in Volts (necessary for the THD cal cul ation).*/
vi Quer yf (vi ESA, "CALC. MARK Y2\ n", "% f", &dFundaAmpt dV) ;

258 Chapter 17

ESA Programming Examples
Using C to Measure Harmonic Distortion (over GPIB)

/*Read the nmarker frequency. */
vi Quer yf (vi ESA "CALC. MARK: X? \n","% f", &Mar ker Freq) ;
dFundanent al = dMar ker Freq;

[*Measure each harnonic anplitude as foll ows: */
for (I Nume2; | Nunx=| MaxHar noni c; | Num+)

{

/*Measuring the Harnoni c No#[%] nessage */
printf("\n\t Measuring the Harnmonic No [%] \n",|Num);

/*Set the span to 20 MHz*/
vi Printf(vi ESA "SENS: FREQ SPAN 20 MHZ \n");

/*Set the center frequency to the nom nal harnonic frequency*/
dHar nFreq = | Nun¥ dFundarrent al ;
vi Printf(vi ESA "SENS: FREQ CENT %l f HZ \n; ", dHar nFreq) ;

/*Take a sweep and wait for the sweep conpl etion*/
TakeSweep() ;

/*Performa peak search and wait for conpletion */
vi Printf(vi ESA "CALC MARK MAX\ n") ;

/*increase tineout to 60 sec*/
vi Set Attribut e(vi ESA, VI _ATTR_TMO VALUE, 60000) ;

/*Activate signal track */
vi Printf(vi ESA "CALC. MARK: TRCK: STAT O\ n");

/*Zoom down to a 100 kHz span */
vi Printf (vi ESA " SENS: FREQ SPAN 10e4\n");

/*Take a sweep and wait for the sweep conpl eti on*/
TakeSweep() ;

/* Signal track off */
vi Printf(vi ESA "CALC MARK: TRCK: STAT CFR\n");

/*Reset tineout to 3 sec*/
vi Set Attribut e(vi ESA VI _ATTR TMD VALUE, 3000) ;

/*Set Marker Anplitude in Volts*/
viPrintf(vi ESA "UNT: POVWnN");

/*Performa peak search and wait for conpletion*/
vi Printf(vi ESA "CALC MARK MAX\ n") ;

Chapter 17 259

m
n
>
3
o

Q
o
3
3.
>

)
m
x
)
3

§=3
@
7]

(%]
Q
Qo
S
S
x
n
(@]
£
S
S
o
(@]
°
a
<
0
L

ESA Programming Examples
Using C to Measure Harmonic Distortion (over GPIB)

/*Query and read the Marker Anmplitude in Volts*/
/[*Store the result in the array.*/
vi Quer yf (vi ESA, "CALC. MARK: Y2\ n","odf", & HarmM | Nunj);

/*Change the anplitude units to DBM */
viPrintf(vi ESA "UN T: PONDBM n");

/* Read the marker anplitude */
vi Quer yf (vi ESA, "CALC. MARK: Y2\ n", "9df", & HarnDonjl Nunj);
}

/*Sum the square of each element in the fHarnV array. Then
calculate the relative anplitude of each harnmonic rel ative
to the fundanmental */

for (1 Nume2; | Nunx=| MaxHar moni c; | Numk+)

{
dSunsquar e= dSunBquare + (pow (doubl e(fHarnmV[I Nunj) ,2.0));
/* Relative Anplitude */
fRel Arptd[| Nunj = fHarnDonj | Nunj - f FundaAnpt dDom ;

}

/*Calculate the total harmonic distortion by dividing the square root of
the sumof the squares (dSuntBquare) by the fundamental anplitude in Volts
(dFundaAnpt dV) . Mul tiply this value by 100 to obtain a result in percent*/
dPrcntDistort = ((sqrt(doubl e (dSunBquare))) /dFundaAnptdV) *100 ;

[*Fundanment al anplitude in dBm*/
printf("\n\t Fundamental Anplitude: %l f dB \n\n",f FundaAnpt dDbn);

/ *Fundanent al Frequency in Mi*/
printf("\t Fundarmental Frequency is: %l f ML \n\n", dFundamrent al / 10e5) ;

/*Rel ati ve anplitude of each harnonic in dBc*/
for (1 Nume2; | Nunx=| MaxHar moni c; | Numk+)

printf("\t Relative anplitude of Harnonic[%l]: %l f dBc
\n\n", | Num fRel Anptd[1 Nunj);

/*Total harnonic distortion in percent*/
printf("\t Total Harmonic Distortion: %l f percent \n\n",dPrcntDi stort);

/*d ose the session*/
vi A ose(vi ESA) ;

vi 0 ose(defaul t RV ;

}

260 Chapter 17

ESA Programming Examples
Using C to Measure Harmonic Distortion (over RS-232)

Using C to Measure Harmonic Distortion (over RS-232)

This C programming example (harmrs23.c) can be found on the Documentation
CD.

/**/

/* Measuring Harnonic Distortion (RS 232) */
/* */
/* This exanple is for the E44xxB ESA Spectrum Anal yzers */
/* and E740xA EMC Anal yzers. */ m
| * * [>
/* This C programmi ng exanpl e does the foll ow ng. */ 5-9
/* The SCPI instrunent comrands used are given as */ %
/* reference. */ g
| * * [=
/* - Qpens an RS-232 session to the COML serial port */ ‘fn
/* - dears the Anal yzer x| >
/* *OLS x| 3
/* - Resets the Anal yzer */ §
/* *RST */
/[* - Set the input port to the 50 MHz reference */
/* CAL: SOUR STAT ON */
/[* - Set the anal yzer center frequency to the fundarent al */
/* SENS: FREQ CENT freq */
/* - Set the anal yzer to 10 ME span */
/* SENS: FREQ SPAN 10 MHZ */
[* - Set the anal yzer to single sweep node */
/* NI T: CONT O */
[* - Trigger a sweep and wait for sweep conpl etion */
/* INT: 1 MM *WA */
/* - Performthe peak search */
/* CALC. MARK: MAX */
/[* - Set the marker to reference |evel */
/* CALC. MARK: SET: RLEV */
/[* - Trigger a sweep and wait for sweep conpl etion */
/* INT: 1 MM *WA */
/* - Performthe peak search */
/* CALC. MARK: MAX */
/* - Change VISA tineout to 60 seconds */
/* - Activate signal track */
/* CALC. MARK: TRCK: STAT CN */
[* - Performnarrow span and wait */
/* SENS: FREQ SPAN 10e4 */
[* - Check for operation conplete */

Chapter 17 261

ESA Programming Examples
Using C to Measure Harmonic Distortion (over RS-232)

/* *COPC? */
/* - De-activate signal track */
/* CALC MARK: TRCK: STAT COFF */
/* - Reset VI SA timeout to 3 seconds */
/* - Set units to dBm */
/* UN T: POV DBM */
/* - Take a sweep and wait for sweep conpl etion */
/* INT: 1 MM */
/* *OPC? */
/* - Performthe peak search */
a /* CALC. MARK: MAX */
E’- /* - Read the narker anplitude,this is the fundamental Level */
) /* CALC. MARK: Y? */
chn /* - Change the anplitude units to volts */
£ /* UN T: PONV */
g [* - Take a sweep */
2 /* INT: | MV */
e /* - Check for operation conplete */
= /* *CPC? %
fﬁ /* - Read the marker anplitude in volts, this is the */
/* fundanmental anplitude in volts. */
/* CALC. MARK: Y? */
/* - Read the narker frequency */
/* CALC MARK: X? */
/* - Measure each harmonic anplitude as foll ows: */
/* Set the span to 20 Mt */
/* SENS: FREQ SPAN 20 MHZ */
/* Set the center frequency to the desired harnonic */
/* SENS: FREQ CENT <freq> */
/* Take a sweep and wait for operation conplete */
/* INT: 1 MM */
/* * CPC? */
/* Per f orm peak search */
/* CALC: MARK: MAX */
/* Set VISAtineout to 60 seconds */
/* Activate signal track */
/* CALC. MARK: TRCK: STAT ON */
/* Zoomdown to a 100 kHz span */
/* SENS: FREQ SPAN 10E4 */
/* Take a sweep and wait for operation conplete */
/* INT: 1 MM */
/* *CPC? */
/* Signal track off */
/* CALC. MARK: TRCK: STAT OFF */
/* Reset VISA tinmeout to 3 seconds */
/* Perf orm Peak Search */

262 Chapter 17

ESA Programming Examples
Using C to Measure Harmonic Distortion (over RS-232)

/* CALC: MARK: MAX */

/* Set marker anplitude in volts */

/* UN T: POV V */

/* Query, read the marker anplitude in volts */

/* CALC. MARK: Y? */

/* Change the anplitude units to dBmand read the */

/* nmar ker anpl it ude. */

/* UN T: PON DBM */

/* - Calculate the relative anplitude of each harnonic */

/* reletive to the fundarent al */

/* - Calculate the total harmonic distortion */ m

/* - Display the fundanental anplitude in dBm fundanmental */ i

/* frequency in MHz, relative anplitude of each harmonic */ 3

/* in dBc and total harmonic distortion in percent */ %

/* - dose the session */ 3

/**/ g
(o]
m

#i ncl ude <stdio. h> S

#i ncl ude <stdlib. h> E

#i ncl ude <mat h. h> @

ncl ude <coni o. h>
ncl ude <ctype. h>
ncl ude <string. h>
ncl ude <vi sa. h>

i
u
u
i

#define hpESA | DN E4401B "Hew ett - Packard, E4401B'
#define hpESA | DN E4411B "Hew ett-Packard, E4411B'
#def i nehpEMC | DN_E7401A "Hewl ett - Packard, E7401A"

Vi Session defaul t RM vi ESA
Vi Status errStatus;

Vi Char cl dBuf f [256] = {0} ;
char cEnter = 0;

i nt i Result = 0;

| ong | Qoc =0L ;

/*Set the input port to 50MH anplitude reference*/
voi d Rout e50MHzSi gnal ()

{

vi Queryf (vi ESA, "*IDNAAn", "%", &cldBuff);

i Result = (strncnp(cldBuff, hpESA | DN E4401B, strlen(hpESA | DN E4401B)) &&
strncnp(cldBuff, hpESA | DN E4411B, strlen(hpESA | DN E4411B)) && strncnp(cl dBuff,
hpEMC | DN _E7401A, strl en(hpEMC | DN E7401A)));

if(iResult == 0)
{

Chapter 17 263

ESA Programming Examples
Using C to Measure Harmonic Distortion (over RS-232)

/*Set the input port to the 50Mt anplitude reference for the nodel s*/
/ *E4411B, E4401B*/
vi Printf(vi ESA "CAL: SOUR STAT O\\n");

}
el se
{
/* For the anal yzers having frequency lints >= 3Gz, pronpt the user*/
/* to connect the anplitude reference output to the input*/
printf ("Connect AMPTD REF QUT to the I NPUT \n");
printf ("...... Press Return to continue \n");
scanf ("%", &Enter);
/*Externally route the 50Mt Signal */
vi Printf(vi ESA "CAL: SQUR STAT O\\Nn");
}
}

voi d TakeSweep()

{

/*Take a sweep and wait for the sweep conpl etion*/
viPrintf(viESA"INT:IMANn");

vi Queryf (vi ESA, "*CPC\n", "%l", & pc);

(%]
Q
Qo
S
S
x
n
(@]
£
S
S
o
(@]
°
a
<
0
L

if ('l Qpc)

{
printf("ProgramAbort! Error occurred: |last command was not conpleted! \n");
exit(0);

}

}

voi d mai n()

{

/ *Program Vari abl es*/

Vi Status vi Status = 0;
doubl e dFundanental = 0.0;
doubl e dHarnfFreq = 0.0;
float fHarnM 10] ={0.0};
fl oat fHarnDbni10]={0. 0};
float fRel Anptd[10]={0.0};
fl oat fFundaAnpt dDon+0. O;
doubl e dFundaAnpt dv=0. 0;
doubl e dvarkerFreq = 0. 0;
doubl e dPrcntDistort =0.0;
doubl e dSunfquare =0. 0;
long | MaxHarmoni ¢ =0L;
long | NumeOL;

264 Chapter 17

ESA Programming Examples
Using C to Measure Harmonic Distortion (over RS-232)

[*Setting default val ues*/
| MaxHar noni ¢ =5;
dFundanent al =50. 0;

/* pen a serial session at COML */

vi St at us=vi penDef aul t RM &def aul t RV ;

if (viStatus =vi Qpen(defaul tRM"ASRL1: : I NSTR', VI _NULL, VI _NULL, &i ESA) =

VI _SUCCESS)

{
printf("Could not open a session to ASRL device at COML!\n");
exit(0);

}

/*Q ear the instrument*/

vi d ear (vi ESA) ;

/ *Reset the instrunent*/
vi Printf(vi ESA "*RST\n");

m
n
>
3
o

Q
o
3
3.
>

)
m
x
)
3

§=3
@
7]

/*D splay the program headi ng */
printf("\n\t\t Harnonic Distortion Program\n\n");

/* Check for the instrunent nodel nunber and route the 50MHz-signal accordingl y*/
Rout e50MHzSi gnal () ;

/*Pronpt user for fundanental frequency*/
printf("\t Enter the input signal fundamental frequency in Mz ");

/*The user enters fundanental frequency*/
scanf ("% f", &Fundanent al) ;

/*Set the anal yzer center frequency to the fundanental frequency. */
vi Printf(vi ESA " SENS: FREQ CENT %l f MHZ2\ n", dFundanent al) ;

/*Set the anal yzer to 10MH& Span */
vi Printf (vi ESA "SENS: FREQ SPAN 10 MHZ\n");

/*Put the anal yzer in a single sweep node */
viPrintf(vi ESA "IN T: CONT 0\ n");

[*Trigger a sweep, wait for sweep conpl etion*/
viPrintf(viESA"INT: I MM *WAI\n");

/*Performa peak search */
vi Printf(vi ESA "CALC MARK MAX\ n");

Chapter 17 265

ESA Programming Examples
Using C to Measure Harmonic Distortion (over RS-232)

/* Place the signal at the reference level using the
mar ker-to-ref erence | evel conmmand and take sweep */
vi Printf(vi ESA "CALC. MARK SET: RLEM\ n") ;

/*Trigger a sweep, wait for sweep conpl eti on*/
viPrintf(viESA"INT. I MM *WAI\Nn");

/*Performa peak search */
vi Printf(vi ESA "CALC MARK MAX\ n") ;

/*Increase tinmeout to 60 sec*/
vi Set Attri but e(vi ESA, VI _ATTR TMD VALUE, 60000) ;

/*Performactivate signal track */
vi Printf(vi ESA "CALC MARK TRCK: STAT ON\n");

/*Take a sweep and wait for the sweep conpl etion*/
TakeSweep() ;

(%]
Q
Qo
S
S
x
n
(@]
£
S
S
o
(@]
°
a
<
0
L

/*Perform narrow span and wait */
vi Printf(vi ESA " SENS: FREQ SPAN 10e4\n");

/*Take a sweep and wait for the sweep conpl etion*/
TakeSweep() ;

/*De activate the signal track */
vi Printf(vi ESA " CALC. MARK TRCK: STAT GFR\n");

/*Reset tinmeout to 3 sec*/
vi Set Attri but e(vi ESA, VI _ATTR TMD VALUE, 3000) ;

/[*Set units to dBnt/
viPrintf(vi ESA "UNT: PONDBMn");

/*Performa peak search */
vi Printf(vi ESA "CALC MARK MAX\ n") ;

/*Read the marker anplitude, this is the fundamental anplitude
in dBm*/
vi Quer yf (vi ESA, "CALC. MARK YA n", "%f", & FundaAnpt dDbn);

/*Change the anplitude units to Volts */
viPrintf(vi ESA "UNT: PONVWnN");

/*Read the marker anplitude in volts, This is the fundanental anplitude
in Volts (necessary for the THD cal cul ation).*/

266 Chapter 17

ESA Programming Examples
Using C to Measure Harmonic Distortion (over RS-232)

vi Quer yf (vi ESA, "CALC. MARK: Y2An", "% f", &dFundaAnpt dV) ;

/*Read the narker frequency. */
vi Quer yf (vi ESA, "CALC. MARK: X? \n","% f", &Mar ker Freq) ;
dFundanent al = dMar ker Freq;

/*Measure each harnonic anplitude as foll ows: */
for (I Nume2; | Nunx=| MaxHar moni c; | Numt+)

{

/*Measuring the Harnoni c No#[%] message */
printf("\n\t Measuring the Harmonic No [%l] \n",| Num);

/*Set the span to 20 MHz*/
vi Printf (vi ESA " SENS: FREQ SPAN 20 MHZ\ n");

/*Set the center frequency to the nom nal harnonic frquency*/
dHarnfFreq = | Num * dFundarent al ;
vi Printf(vi ESA "SENS: FREQ CENT %l f Hz\ n", dHar nfr eq) ;

[*Take a sweep and wait for the sweep conpl eti on*/
TakeSweep() ;

/*Performa peak search and wait for conpletion */
vi Printf(vi ESA "CALC MARK MAX\ n");

/*Increase tinmeout to 60 sec*/
vi Set Attribute(vi ESA VI _ATTR TMD VALUE, 60000) ;

[*Activate signal track */
vi Printf(vi ESA "CALC MARK TRCK: STAT ON\n");

/*Zoom down to a 100 KHz span */
vi Printf(vi ESA " SENS: FREQ SPAN 10e4\n");

/[*Take a sweep and wait for the sweep conpl eti on*/
TakeSweep() ;

/* Signal track off */
vi Printf(vi ESA "CALC MARK: TRCK: STAT GFR\n");

/*Reset tinmeout to 3 sec*/
vi Set Attribut e(vi ESA VI _ATTR_TMD VALUE, 3000) ;

/[*Set marker anplitude in Volts*/
vi Printf(vi ESA "UN T: PONWN");

Chapter 17 267

m
n
>
3
o

Q
o
3
3.
>

)
m
x
)
3

§=3
@
7]

(%]
Q
Qo
S
S
x
n
(@]
£
S
S
o
(@]
°
a
<
0
L

ESA Programming Examples
Using C to Measure Harmonic Distortion (over RS-232)

/*Performa peak search and wait for conpl eti on*/
vi Printf(vi ESA "CALC MARK MAX\ n") ;

/*Query and read the marker anplitude in Volts*/
/*Store the result in the fHarnV array. */
vi Quer yf (vi ESA, "CALC. MARK Y2An","9%df", & HarmM | Nunj);

/ *Change the anplitude units to dBm */
viPrintf(vi ESA "UNT:. PONVDBMn");

/* Read the marker anplitude */
vi Quer yf (vi ESA, "CALC. MARK YA n", "9%df", & HarnbDbnjl Nunj);
}

/*Sum the square of each elenment in the fHarnV array and cal cul ate
the relative anplitude of each harmonic relative to the fundanental */
for (1 Nume2; | Nunx=| MaxHar moni c; | Numk+)

{
dSunBquar e= dSunbquare + (pow (doubl e(fHarmV[I Nunj) ,2.0));
/* Relative Anplitude */
fRel Arptd[| Nunj = fHarnDonj | Nunj - f FundaAnpt dDom ;

}

/*Cal culate the total harnonic distortion by dividing the square root of
the sumof the squares (dSuntBquare) by the fundamental anplitude in Volts
(dFundaAnpt dV) . Mul tiply this value by 100 to obtain a result in percent*/
dPrcntDistort = ((sqrt(doubl e (dSunBquare))) /dFundaAnptdV) *100 ;

/ *Fundament al anplitude in dBm */
printf("\nFundanmental Anplitude: %l f dB \n", f FundaAnpt dDbn);

/ *Fundarent al frequency in Mi*/
printf("Fundanmental Frequency is: %l f ME \n", dFundanental / 10e5);

/*Rel ative anplitude of each harnonic in dBc*/
for (1 Nume2; | Nunx=l MaxHar moni c; | Numk+)

printf("Relative anplitude of Harnonic[%l]: %l f dBc
\n", I Num f Rel Anptd[| Nunj);

/*Total harnonic distortion in percent*/
printf("Total Harnonic Distortion: %l f percent\n",dPrcntDi stort);

/*d ose the session*/
vi A ose(vi ESA) ;

vi d ose(defaul t RV ;

}

268

Chapter 17

ESA Programming Examples
Using C to Make Faster Power Averaging Measurements

Using C to Make Faster Power Averaging M easurements

This C programming example (average.c) can be found on the Documentation CD.

/**/

/* Average.c Agilent Technol ogi es 1999 */

/* */

/* This C programmi ng exanpl e does the foll ow ng: */

/* Perforns Power Averaging of Miltiple ESA Measurenents */

/* and Wites the Result back to a Trace for display */ m
| * x| >
/* The required SCPI instrument commands are given as */ 5-9
/* reference. */ %
| * * | 3
/* - Qpens a GPIB device at address 18 */ 2
/* - Oears and Resets the Analyzer to a known state */ ‘fn
/* SYST: PRES: TYPE FACT */ &
/* *RST % 2
/* - ldentify the Instrunent nodel */ 3
/* *| DN? */

/* - Sets the anal yzer center frequency and span */

/* SENS: FREQ CENT freq */

/* SENS: FREQ SPAN freq */

/* - Sets the anal yzer resol ution bandwi dth */

/* SENS: BAND r bw */

/* - Selects sanpled as the detector node */

/* SENS: DET SAWP */

/* - Disable optional Input/Qutput functions */

/* :SYST: PORT: | FVS: ENAB OFF */

[* - Turn off auto-alignment */

/* CAL: AUTO CFF */

/* - Select the desired nunber of sweep points */

/* SVE: PO NTS poi nt's */

/* - Select the appropriate display reference | evel and */

/* anpl i tude reference routing */

/* E4402B/ 03B/ 04B/ 05B/ 07B/ 08B or E7402A/ 03A/ 04A/ 05A */

/* Dl SP: WND: TRAC: Y: RLEV - 20 DBM */

/* CAL: SOUR STAT ON */

/* E4401B, E4411B, or E7401A */

/* DI SP: WND: TRAC. Y: RLEV -25 DBM */

/* CAL: SOUR STAT O\ */

/* - Select single sweep node */

/* I N T: OCONT OFF */

/* - Disable |ocal display */

Chapter 17 269

ESA Programming Examples
Using C to Make Faster Power Averaging Measurements

/* DI SP: ENAB OFF */
/* - Select internal machine binary data format (mlli-dBn) */
/* FCRM DAT | NT, 32 */
/* - Select appropriate byte order (Intel) */
/* FCRM BORD SWAP */
/* - Repeat the follow ng the requested nunber of tines: */
/* - Trigger a neasurenent and wait for conpletion */
/* INT: *CPC? */
/* - Read the resulting nmeasurenent trace */
/* TRAC. DATA? TRACEL */
a /* - Conpute running averaged power at all trace points */
E’- /* - Display neasurenent statistics */
) /* - Wite averaged data to second trace display */
chn /* TRAC. DATA TRACE2 <definite length bl ock of data> */
£ /* - Enabl e viewi ng of second trace */
E /* TRACE2: MODE VI EW */
g /* - Enable local display for view ng */
09_ /* DI SP: ENAB ON */
< /* - Select continuous sweep node */
@ | * I N T: CONT ON */

/* - dose session and Return instrunent to | ocal control */
/**/

#i ncl ude <stdio. h>

#i ncl ude <stdlib. h>

#i ncl ude <string. h>

#i ncl ude <nat h. h>

#i ncl ude <sys\ti neb. h>
#i ncl ude <visa. h>

#define hpESA | DN E4401B "Hewl ett-Packard, E4401B'
#define hpESA | DN E4411B "Hewl ett-Packard, E4411B'
#define hpEMC | DN E7401A "Hew ett-Packard, E7401A"

f;jefi ne NUM TRACES 100 /* nunber of traces to average

f?efi ne NUM PQ NTS 401 /* request ed nunber of points/trace

f?efi ne CENTER 50 /* center frequency in Mz, an integer

#defi ne SPAN 20 /* span frequency in Mz, an integer */
#defi ne RBW300 /* resolution BWin kHz, an integer */
f?efi ne DI SPLAY O /* ESA di spl ay enabl e, disable for speed

270 Chapter 17

ESA Programming Examples
Using C to Make Faster Power Averaging Measurements

#defi ne DATA LENGTH 4 |/* nunber of data bytes in one trace point
*/

#defi ne MAX_PA NTS 8192 /* maxi num nunber of points/trace in ESA
*/

int i Numlraces = NUM TRACES, /* nunber of traces to average

doubl e dDel ta, dTi nePer, dPower;

*/
i Row = RBW /* resol ution bandw dth */
i NunPoi nts = NUM PQA NTS, /* actual nunber of trace points per sweep
*/
i Span = SPAN, /* Anal yzer Frequency Span in Mtz */
i Center = CENTER /* Anal yzer Center frequency in Mt m
* | >
T
o
int i Result =0; <
Q
3
unsi gned | ong | Ret Count ; /* the nunber of bytes transferred in one trace record 2
*/ o)
m
X
Q
3
j=1
D
()]

struct timeb start_time, stop_tinme, elapsed_ tire;

char cCommand[100] ;

char cBuffer[100];

char cEnter;

doubl e dPw AvgArray[MAX PQ NTS] ;

1/|/UI nt 32 i Header Lengt h, /* header is "#nyyy..." nis nunber of chars in yyy,

/* yyy is the total data |l ength in bytes */
. i ArrayLengt h, /[* i ArrayLength i s nunber of bytes of data
y i TernLength = 1, /* the response nessage includes a LF character
y i Bl ockSi ze, /* nunber of bytes expected in one trace definite bl ock
y i Tot al Ret Count ; /* total number of bytes actually transferred

Vi Sessi on defaul tRM vi ESA

/* reserve space for the header, data and term nator */
Vi Char cl nBuf fer[sizeof ("#nyyyyl") + (MM PO NTS * DATA LENGTH)];
Vi Char cQut Buf fer[si zeof (" TRAC. DATA TRACE2, #nyyyyl ") + (MAX_PQ NTS * DATA LENGTH

) 1

[rHFFEFE KKKk KK KKKk kK Calculate I ength byte in bl ock header

Chapter 17 271

(%]
Q
Qo
S
S
x
n
(@]
£
S
S
o
(@]
°
a
<
0
L

ESA Programming Examples
Using C to Make Faster Power Averaging Measurements

***********************/

i nt HeaderLength(int iArraylLength) {
i nt i Header Lengt h;

i Header Length = 3; /* i ArraylLength >0 plus increment for "#" and "n

*/
while ((iArrayLength = (i ArrayLength / 10)) > 0) {
i Header Lengt h++;
}
ret urn(i Header Lengt h) ;
}
[k ke ke k sk ok ok ok ok ok ok ok prepare ESA for measurenent

************************/

voi d setup() {

vi Printf(vi ESA ":SENS: FREQ CENT %i MHz\n", iCenter);
vi Printf(vi ESA ": SENS: FREQ SPAN%i MHZ\ n", i Span);
vi Printf(vi ESA, ":SENS: BAND%I KHZ\n", iRow);

/* use the sanpling detector for power-average cal cul ati ons */
vi Printf(vi ESA, ":DET SAV\n");

/* Turn of f anal og out put of option board to naxi ni ze neasurenment rate */
vi Printf(vi ESA, ":SYST: PORT: | FVS: ENAB OFR\ n") ;

/* Turn auto align off to maxi mze neasuremnent rate */
vi Printf(vi ESA, ":CAL: AUTO GFR\ n");

/* set requested nunber of points */
vi Printf(vi ESA ":SWE PA NTS%i\n", NUM PQ NTS);

printf("This programwi Il neasure and cal cul ate\n");

printf ("the power average of %i %i - poi nt
traces.\n",i Nuntraces, i NunPoi nt s) ;

/* Turn on 50 M# anplitude reference signal */
vi Printf(vi ESA, ":CAL: SOUR STAT O\\n");

/* ldentify the instrunent and get the nodel nunber */
vi Queryf (vi ESA, "*IDN\n", "%", &cBuffer);

i Result = (strncnp(cBuffer, hpESA | DN E4401B, strlen(hpESA | DN E4401B)) &&
strncnp(cBuffer, hpESA | DN E4411B, strlen(hpESA | DN E4411B)) && strncnp(cBuffer,
hpEMC | DN_E7401A, strlen(hpEMC | DN E7401A)));

if(iResult == 0)

272 Chapter 17

ESA Programming Examples
Using C to Make Faster Power Averaging Measurements

{
/*Set the input port to the 50ME anplitude reference for the nodel s*/

| *E4401B, E4411B and E7401Af/

vi Printf(vi ESA ": D SP. WND: TRAC. Y: RLEV -25 DBM n");

vi Printf(vi ESA "CAL: SOUR STAT ON \n");

}

el se

{

/* For the anal yzers having frequency linits >= 3G+4z, pronpt the user*/
/* to connect the anplitude reference output to the input*/
printf ("Connect AMPTD REF QUT to the I NPUT \n");

printf ("...... Press Return to continue \n");

scanf("%", &Enter);

/*Externally route the 50Miz Signal */
viPrintf(vi ESA ":D SP:WND TRAC Y: RLEV -20 DBM n");
vi Printf(vi ESA "CAL: SOUR STAT ON \n");

}

/* Single sweep node */
viPrintf(vi ESA ":INT: CONT GFR\n");
[* Turn off the local display to naxi m ze neasurenent rate */
i f(!D SPLAY) {

viPrintf(vi ESA ":D SP: ENAB GFR\n");
}
/* transfer data in definite length,32 bit integer bl ocks. Select */
/* machine units (mlli-dBn) to naxi mze nmeasurenent rate */
vi Printf(vi ESA ":FORM DATA | NT, 32\n");
/* select the byte order; lowbyte first for Intel platforns */
/* To further increase neasurenent rate,: FORM BORD NCRM coul d */
/* be used instead. The byte ordering would then need to be */
/* done within this program */
viPrintf(vi ESA ":FORM BORD SWAP\n") ;
/* pre-cal cul ate anount of data to be transferred per nmeasurenent */
i TernLength = 1;
i ArrayLength = i NunmPoi nts * DATA LENGTH
i Header Lengt h = Header Lengt h(i ArrayLengt h);
i Bl ockSi ze = i HeaderLength + i ArrayLength + i Ter nLengt h;

}
Chapter 17 273

m
n
>
3
o

Q
o
3
3.
>

)
m
x
)
3

§=3
@
7]

(%]
Q
Qo
S
S
x
n
(@]
£
S
S
o
(@]
°
a
<
0
L

ESA Programming Examples
Using C to Make Faster Power Averaging Measurements

/**************** Wlte bl nary trace data to ESA *******************/
void wite binary trace(char *cScpi Command, int *ipTraceDat a) {

/* trace data nust point to an integer array of size NUM PQ NTS */
mencpy(& Qut Buf fer[strl en(cScpi Command)], ipTraceData, iArraylLength);
nentpy(& Qut Buf fer, cScpi Conmand, strlen(cScpi Conmand));

/* Add a <newline>to the end of the data, This isn't necessary */
/* if the GPIB card has been configured to assert EQ when the | ast */
/* character is sent, but it ensures a valid i TernLength is provided. */

cQutBuffer[i ArrayLength + strlen(cScpi Comrand)] = OxO0A;
i Bl ockSi ze = (strlen(cScpi Conmand) + i ArrayLength + 1);
vi Wite(vi ESA (Vi Buf) cQutBuffer, iBlockSize, & RetCount);

[R KKk Measure and cal cul at e power-average of multiple neasuremnents

*********/

voi d average() {
int i=0, iLoop=0;
int i Array[NUM_PQ NTS];

long | Qoc =0L;

doubl e dLogTen = | 0g(10.0);

setup();

i Tot al Ret Count = | Ret Count = O;

/* start the tiner */

ftime(&start _tine);

/* Now run through the event | oop i Nunfraces ti nmes */
for(i=0; i<iNunlraces; i++) {
/* trigger a new neasurenent and wait for conplete */

viPrintf(viESA ":INT:IMM*WAI\N");

/* Read the trace data into a buffer */
vi Printf(vi ESA, ": TRAC DATA? TRACE1\n");

vi Read(vi ESA, (Vi Buf) clnBuffer, (M Unt32) iBl ockS ze, & RetCount);

i Tot al Ret Count += | Ret Count ;

/* copy trace data to an array, */
/* byte order swapping could be done here rather than in ESA */
mencpy(i Array, &clnBuffer[iHeaderlLength], iArraylLength);

274 Chapter 17

ESA Programming Examples
Using C to Make Faster Power Averaging Measurements

/* calculate a runni ng dPower - aver age */
for(iLoop = 0; iLoop < NUMPQNTS; iLoop++) {
/* running average of dPower, in nilliwatts */
dPower = exp(dLogTen * (i Array[iLoop]/10000.0));
if(i >0) {
dPw AvgArray[i Loop] += ((dPower - dPw AvgArray[i Loop])/(i+1));
}
el se {
dPw AvgArray[i Loop] = dPower;
}
}
} /* end of event |oop */
/* stop the tinmer */

ftime(&stop tine);

/* Calcul ate el apsed tine */
if (start_time.mllitm> stop_ time.mllitn {

stop_time.mllitm+= 1000;

stop_tine.tine--;

m
n
>
3
o

Q
o
3
3.
>

)
m
x
)
3

§=3
@
7]

}
elapsed_tine.nllitm= stop_ tine.mllitm- start time.mllitm
elapsed_tine.tine = stop_tinme.tine - start_time.tine;

[* This is measurenent tine in mlliseconds */
dDelta = (1000.0 * elapsed_tine.tine) + (elapsed_ tine.nmllitm;

/* show neasurenent statistics */
dTi mePer =dDel ta/ ((fl oat)i Numlr aces);

printf("\tPower average of %i %i-point traces perforned in%3. 1f
seconds\ n", i NunTraces, i NunPoi nt s, dDel t a/ 1000) ;

printf("\t%.1f mlliseconds per averaged measurenent\n", dTi mePer);

printf("\t%. 1f averaged neasurenments per second\n", 1000. 0/ dTi mePer);

printf("\t% bytes transferred per trace, %i bytes total\n\n", | Ret Count,
i Tot al Ret Count);

return;

/******************************** 'VH' n ******************************/
void main(void) {

int iLoop;

int i AvgArray[NUM PQ NTS] ;

Vi Status vi Status;

/* Open a GPIB session at address 18 */
vi Status = vi penDef aul t RV &def aul t RV ;

Chapter 17 275

ESA Programming Examples
Using C to Make Faster Power Averaging Measurements

vi Status = vi Qpen(defaul tRM "GPl BO: : 18", VI _NULL, VI _NULL, &vi ESA) ;

i f(viStatus)
{
printf("Could not open a session to GPI B device at address 18!'\n");
exit(0);
}
/*d ear the |nstrunent */

vi A ear (vi ESA) ;

for (iLoop = 0; iLoop < iNunPoints; iLoop++) {
dPower = 10.0 * |0g10(dPw AvgArray[i Loop]);
i AvgArray[iLoop] = (int) (1000.0 * dPower);

a /* go to known instrument state with cleared status byte */
g— vi Printf(vi ESA ":SYST: PRES. TYPE FACT; *RST\n");

2

chn /* measure, transfer and cal cul ate power average of multiple traces */
£ average();

S

5

= /* convert average power array back to integer array */
(@]

a

<

0

T

/* build ’TRAC DATA TRACE2, #nyyy’ header and wite the result to Trace 2 */

sprintf(cComand, ": TRAC. DATA TRACE2, #% % ", Header Lengt h(i ArrayLength)- 2,
i ArraylLength);
wite binary trace(cCommand, iAvgArray);

/* enable the trace, |ocal display and return to conti nuous sweep */
vi Printf(vi ESA ": TRACE2: MCDE VIEW: DI SP: ENAB O\ : | NI T: CONT O\\n") ;

/* O ose session */

vi A ose(vi ESA) ;
vi d ose(defaul t RV ;

} /***************************** End Of Miln *******************************/

276 Chapter 17

)]
n
>
i)
=
o
!
=
o
=
3
=
Q
m
X
o
3
=2
®
(2]

18 PSA Programming Examples

277

PSA Programming Examples
Examples Included in this Chapter:

Examples Included in this Chapter:

= “Using C with Marker Peak Search and Peak Excursion
Measurement Routines” on page 280

= “Using C for Saving and Recalling Instrument State Data” on page
283

= “Using C to Save Binary Trace Data” on page 287

= “Using C to Make a Power Calibration Measurement for a GSM
Mobile Handset” on page 291

e “Using C with the CALCulate:DATA:COMPress? RMS Command”
on page 297

= “Using C Over Socket LAN (UNIX)” on page 303

= “Using C Over Socket LAN (Windows NT)” on page 323

= “Using Java Programming Over Socket LAN” on page 326

= “Using the VXI Plug-N-Play Driver in LabVIEW®” on page 335

= “Using LabVIEW® 6 to Make an EDGE GSM Measurement” on
page 336

= “Using Visual Basic® .NET with the IVI-Com Driver” on page 338

= “Using Agilent VEE to Capture the Equivalent SCPI Learn String”
on page 342

LabVIEW is a registered trademark of National Instruments
Corporation.

Visual Basic is a registered trademark of Microsoft Corporation.

(%]
<
Q.
£
@©
x
1]
(@]
<
£
£
©
1
(o))
o
S
o
<
n
o

278 Chapter 18

PSA Programming Examples
Programming Examples Information and Requirements

Programming Examples Information and

Requirements

< The programming examples were written for use on an IBM
compatible PC.

 The programming examples use C, Visual Basic and LabVIEW
programming languages.

= There are examples using GPIB and LAN interfaces.

< Many of the examples use the SCPI programming commands,
though there are some that use the plug&play or 1VI.com drivers.

= Most of the examples are written in C using the Agilent VISA
transition library.

The VISA transition library must be installed and the GPIB card
configured. The Agilent I/O libraries contain the latest VISA

transition library and is available at: ww. agi | ent. confiolib

0
n
>
i)
=
o
(o]
=
Q
3
3
=
(]
m
X
ja3]
E
=5
@
(2]

Chapter 18 279

PSA Programming Examples

Using C with Marker Peak Search and Peak Excursion Measurement
Routines

Using C with Marker Peak Search and Peak
Excursion Measurement Routines

This C programming example (peaksrch.c) can be found on the
Documentation CD.

/**/

/* peaksrch.c */
/* Agilent Technol ogi es 2001 */
/* */
/* Using Marker Peak Search and Peak Excursion */
/I * */
/* This exanple is for the E444xA PSA Spectrum Anal yzers */
/I * */
/* This C programmi ng exanpl e does the follow ng. */
/I * */
/* - Open a GPIB session at address 18 */
/* - Select Spectrum Anal ysi s Mde */
/* - Reset & dear the Anal yzer */
® /* - Set the anal yzer center frequency and span */
% /* - Set the input port to the 50 Mz anplitude reference */
i /* - Set the anal yzer to single sweep node */
g /* - Pronpt the user for peak excursion |evel in dBm */
% /* - Set the peak threshold to user defined |evel */
? [* - Trigger a sweep and wait for sweep to conplete */
% /* - Set the narker to the maxi mnum peak */
= /* - Query and read the marker frequency and anplitude */
/* - dose the session */

/**/

#i ncl ude <wi ndows. h>
#i ncl ude <stdio. h>

#i ncl ude "vi sa. h"

Vi Session defaul tRM vi PSA;

Vi Status errStatus;

280 Chapter 18

PSA Programming Examples

Using C with Marker Peak Search and Peak Excursion Measurement
Routines

voi d mai n()

{
/ *Program Vari abl es*/
Vi Status vi Status = 0;
char cEnter = 0;
int iResult = 0;
doubl e dMarkerFreq = 0;
doubl e dMarker Anpl = 0;
fl oat fPeakExcursion =0;
long | Qoc = OL;

char *psaSetup = // PSA setup initialization
"I NST SA " /1 Change to Spectrum Anal ysi s node
"*RST; *CLS; " /1l Reset the device and clear status
": SENS: FREQ CENT 50 MHz;"// Set center freq to 50 Mz
" SENS: FREQ SPAN 50 MHz;"// Set freq span to 50 Mtz
": SENS: FEED AREF; "// Set input port to internal 50 Mtz ref
":INIT: GONT 0;"// Set analyzer to single sweep node

n,
"1 CALC MARK: PEAK: THR -90";// Set the peak thresold to -90 dBm ¢
i)
o
(o]
o
3
/*Qpen a Gl B session at address 18.*/ g
(]
vi St at us=vi penDef aul t RV &def aul t RV) ; m
vi St at us=vi pen(def aul t RV " @I BO: : 18", VI _NULL, VI _NULL, &vi PSA) ; §
i f (vi Status) 3
{
printf("Could not open a session to GPIB device at address 18!\ n");
exit(0);
}

/*D splay the program headi ng */
printf("\n\t\t Marker Program\n\n");

/* Send setup commands to instrument */

vi Printf(vi PSA "9%\n", psaSet up);

Chapter 18 281

PSA Programming Examples

Using C with Marker Peak Search and Peak Excursion Measurement
Routines

/*User enters the peak excursion value */
printf("\t Enter PEAK EXCURSION |l evel in dBm ");

scanf("9%", & PeakExcursi on);

/*Set the peak excursion*/
vi Printf(vi PSA "CALC MARK PEAK: EXC 9%4f DB \ n", f PeakExcur si on) ;

/*Trigger a sweep and wait for conpletion*/
viPrintf(viPSA"INT: I M *WAI\Nn");

/*Set the marker to the naxi mum peak*/

vi Printf(vi PSA "CALC MARK MAX \n");

/*Query and read the narker frequency*/
vi Queryf (vi PSA "CALC MARK: X? \n","% f", &dNar ker Freq) ;
printf("\n\t RESULT: Marker Frequency is: %f Miz \n\n", dvarker Freq/ 10e5);

/*Query and read the narker anplitude*/
vi Queryf (vi PSA, "CALC MARK: Y2An", "% f", &Mar ker Anpl) ;
printf("\t RESULT: Marker Anplitude is: %f dBm\n\n", dvarker Anpl);

/*d ose the session*/
vi d ose(vi PSA);
vi d ose(defaul t RV ;

(%]
<
Q.
£
@©
x
1]
(@]
<
£
£
©
1
(o))
o
S
o
<
n
o

282 Chapter 18

PSA Programming Examples
Using C for Saving and Recalling Instrument State Data

Using C for Saving and Recalling Instrument
State Data

This C programming example (State.c) can be found on the
Documentation CD.

/***

* State.c

* Agilent Technol ogi es 2001

*

* PSA Series Transmitter Tester using VISA for I/0O

* This programshows how to save and recall a state of the instrunent

*

***/

#i ncl ude <stdio. h>
#i ncl ude <stdlib. h>
#i ncl ude <coni o. h>

#i ncl ude "vi sa. h"

void main ()

{
/ *program vari abl es*/
Vi Sessi on defaul tRM vi VSA
Vi Status vi Status= 0;

/*open session to GPIB device at address 18 */
vi St at us=vi penDef aul t RV (&def aul t RV ;
vi Status=vi pen (defaultRM "GPl BO::18::INSTR', M NULL, VI _NUL, &viVSA);

0
n
>
i)
=
o
(o]
=
Q
3
3
=
(]
m
X
ja3]
E
=5
@
(2]

/ *check openi ng sessi on sucess*/

i f(viStatus)

{
printf("Could not open a session to GPIB device at address 18!\n");
exit(0);

Chapter 18 283

(%]
<
Q.
£
@©
x
1]
(@]
<
£
£
©
1
(o))
o
S
o
<
n
o

PSA Programming Examples
Using C for Saving and Recalling Instrument State Data

/*set the instrunent to SA node*/
vi Printf(viVSA "INST SAn");

/*reset the instrunent */
viPrintf(viVSA "*RST\n");

/*set the input port to the internal 50Mz reference source*/
vi Printf(viVSA "SENS: FEED ARER\n");

[*tune the anal yzer to 50MHZ*/
vi Printf(viVSA "SENS: FREQ CENT 50E6\n");

/ *change t he span*/
vi Printf(viVSA "SENS: FREQ SPAN 10 MHZ\ n");

[*turn the display line on*/
vi Printf(viVSA "D SP: WND: TRACE Y: DLI NE: STATE O\ n");

/*change the resol uti on bandw dt h*/
vi Printf(viVSA "SENS: SPEC. BAND: RES 100E3\ n");

/*change the Y Axis Scal e/ D v*/
viPrintf(viVSA "D SP: WND: TRAC Y: SCAL: PDIV 5\ n");

[*Change the display refernece |evel */
viPrintf(viVSA "D SP: WND: TRAC Y: SCAL: RLEV -15\n");

[*trigger the instrunent*/

viPrintf(viVSA "INT: 1M *WAI\Nn");

/*save this state in register 10.

NI Carefull this will overwite register 10%/

vi Printf(viVSA "*SAV 10\n");

[*di spl ay message*/

284

Chapter 18

PSA Programming Examples
Using C for Saving and Recalling Instrument State Data

printf("PSA Progranm ng exanpl e showi ng *SAV, *RCL SCPI comrands\ n");
printf("used to save instrunent state\nm\t\t------------------------ "y;
printf("\n\nThe instrument state has been saved to an internal register\n");
printf("P ease observe the display and notice the signal shape\n");

printf("Then press any key to reset the

instrument\m\t\t------------------------ ")

/*wait for any key to be pressed*/

getch();

/[*reset the instrunent */
viPrintf(viVSA "*RST\n");

/*set again the input port to the internal 50Miz reference source*/

vi Printf(vi VSA "SENS: FEED ARER\n");

[*di spl ay message*/
printf("\n\nThe instrument was reset to the factory default setting\n");
printf("Notice the abscence of the signal on the display\n");

printf("Press any key to recall the saved
state\m\t\t-----------mmiee o ")

/*wait for any key to be pressed*/

getch();

/*recall the state saved in register 10%/
viPrintf(viVSA "*RCL 10\n");

0
n
>
i)
=
o
(o]
=
Q
3
3
=
(]
m
X
ja3]
E
=5
@
(2]

[*di spl ay message*/
printf("\n\nNotice the previous saved instrunment settings were restored\n");

printf("Press any key to termnate the
programn\t\t-----------------o--- \n\n");

/*wait for any key to be pressed*/

getch();

[*reset the instrunent */

Chapter 18 285

(%]
<
Q.
£
@©
x
1]
(@]
<
£
£
©
1
(o))
o
S
o
<
n
o

PSA Programming Examples
Using C for Saving and Recalling Instrument State Data

vi Printf(viVSA "*RST; *wai\n");

/*Set the instrunent to continuous sweep */
viPrintf(viVSA "INT: QONT 1\n");

/* cl ose session */
vi d ose (viVSA);
vi d ose (defaul tRV);

286

Chapter 18

PSA Programming Examples
Using C to Save Binary Trace Data

Using C to Save Binary Trace Data

This C programming example (Trace.c) can be found on the
Documentation CD.

This example uses Option B7J.

/***

* Trace.c

* Agi | ent Technol ogi es 2001

*

* I nstrument Requirenents:

* E444xA with option B7J and firmare version >= A 02.00 or

* E4406A with firmare version >= A 05. 00

*

* Thi s Program shows how to get and save binary trace data in Basic node
* The results are saved to C\trace.txt

***/

#i ncl ude <stdi o. h>
#i ncl ude <stdlib. h>
#i ncl ude <w ndows. h>

#i ncl ude "vi sa. h"

void main ()
{
/ *program vari abl e*/
Vi Sessi on defaul tRM vi PSA;
Vi Status vi Status= O;
char sBuffer[80]= {0};

0
n
>
i)
=
o
(o]
=
Q
3
3
=
(]
m
X
ja3]
E
=5
@
(2]

char dummyvar;

FILE *f TraceFil e;

I ong | Nunber Poi nt s= 0;

I ong | Nunber Byt es= 0;

I ong I Lengt h= 0;

long i = O;

long | Qoc = OL;

unsi gned | ong | Byt esRetri eved;

Chapter 18 287

PSA Programming Examples
Using C to Save Binary Trace Data

Vi Real 64 adTr aceArray[10240] ;

char *psaSetup =/* setup commands for VSA/ PSA */
":INST BASIC "/* Set the instrunent node to Basic */
"*RST; *CLS; "/ * Reset the device and clear status */
":INIT: OONT 0O;"/* Set analyzer to single neasurenent node */
":FEED AREF;"/* set the input port to the internal
50MHz reference source */
"Dl SP: FORM ZOOML; "/ * zoom t he spectrum di spl ay */
": FREQ CENT 50ES6; "/* tune the anal yzer to 50MHz */
"I FORM REAL, 64;"/* Set the ouput format to a binary format */
": FORM BORD SWAP; "/ * set the binary byte order to SWAP (for PC) */

"INNT:1MM";/* trigger a spectrum nmeasurenent */
/*open session to GPIB device at address 18 */
vi St at us=vi penDef aul t RM (&def aul t RV ;

vi Status=vi pen (defaultRM "GPl BO::18::INSTR', VI _NULL, VI _NULL, &viPSA);

/ *check openi ng sessi on sucess*/

(%]
= i f(vi Status)
5

2 {

= printf("Could not open a session to GPIB device at address 18!'\n");
E exit(0);
o

> }

a

<

o

o

/* Set I/Otineout to ten seconds */

vi Set At t ri but e(vi PSA VI _ATTR TMD VALUE, 10000) ;

/* Send setup commands to instrument */

vi Printf(vi PSA "9%\n", vsaSet up);

/* Query the instrunent for Cperation conplete */
vi Queryf (vi PSA "*COPCAAn", "%l", & pc);

/* fetch the spectrumtrace data*/

vi Printf(vi PSA "FETC SPEC7?\n");

288 Chapter 18

PSA Programming Examples
Using C to Save Binary Trace Data

/[*print message to the standard out put*/

printf("CGetting the spectrumtrace in binary fornat...\nPlease wait...\n\n");

/* get nunber of bytes in |length of postceeding trace data
and put this in sBuffer*/
vi Read (vi PSA, (Vi Buf)sBuffer, 2, & BytesRetri eved);

/* Put the trace data into sBuffer */
vi Read (vi PSA, (Vi Buf)sBuffer,sBuffer[1] - ' 0, & BytesRetrieved);

/* append a null to sBuffer */

sBuffer[I BytesRetri eved] = 0;

/* convert sBuffer fromASC| to integer */

| Nunber Bytes = atoi (sBuffer);

/* calculate the nunber of points given the nunber of byte in the trace
REAL 64 binary format neans each nunber is represented by 8 bytes*/
| Nunber Poi nts = | Nunber Byt es/ si zeof (Vi Real 64) ;

/*get and save trace in data array */
vi Read (vi PSA, (Vi Buf) adTraceArray, | Nunber Byt es, & Byt esRetri eved);

/* read the termnator character and di scard */

vi Read (vi PSA, (Vi Buf)sBuffer,1, & Length);

0
n
>
i)
=
o
(o]
=
Q
3
3
=
(]
m
X
ja3]
E
=5
@
(2]

/*print message to the standard out put*/

printf("Querying instrument to see if any errors in Queue.\n");

/* loop until all errors read */
do
{
viPrintf (viPSA "SYST:ERR?\n");/* check for errors */
vi Read (vi PSA (Vi Buf)sBuffer, 80, & Length);/* read back | ast error nmessage

Chapter 18 289

PSA Programming Examples
Using C to Save Binary Trace Data

sBuffer[l Length] = 0; /* append a null to byte count */
printf("%\n",sBuffer); /[* print error buffer to display */
} while (sBuffer[1] !'="0");

/* set the anal yzer to continuous node for nanual use */
viPrintf(viPSA "INT: QONT 1\n");

/*save trace data to an ASC| file*/
fTraceFi | e=fopen("C \\Trace. txt","w");
fprintf(fTraceFile,"Trace. exe Qutput\nAgilent Technol ogi es 2001\ n\ n");

fprintf(fTraceFile,"List of %l points of the averaged spectrum
trace:\n\n", | Nunber Poi nts);

for (i=0;i<INunberPoints;i++)

fprintf(fTraceFile,"\tAnplitude of point[%l] = %2If
dBmn",i+1, adTraceArray[i]);

fclose(fTraceFile);

/[*print message to the standard out put*/

printf("The %l trace points were saved to C\\Trace.txt
file\n\n", I Nunber Poi nts);

/* Send message to standard out put */
printf("\nPress Enter to set analyzer's input port back to R-.\n");

scanf ("9%", &ummyvar) ;

/* set the input port to RF */
viPrintf(viPSA "feed rf\n");

(%]
<
Q.
£
@©
x
1]
(@]
<
£
£
©
1
(o))
o
S
o
<
n
o

/* O ose session */
vi d ose (viPSA);
vi d ose (defaul tRV);

290 Chapter 18

PSA Programming Examples

Using C to Make a Power Calibration Measurement for a GSM Mobile
Handset

Using C to Make a Power Calibration
Measurement for a GSM Mobile Handset

This C programming example (powercal.c) can be found on the
Documentation CD.

This program uses Basic mode which is optional -B7J- in the PSA
Series spectrum analyzers and is standard in the E4406A Vector Signal
Analyzer. It uses the Waveform measurement with the

CALC. DATA2: cavwP? DME command to return the power of 75
consecutive GSM/EDGE bursts. The DME (dB Mean) parameter
returns the average of the dB trace values. The DME parameter is only
available in later version of instrument firmware > A.05.00 for PSA and
= A.07.00 for VSA. Earlier instruments see the “Using C with the
CALCulate:DATA:COMPress? RMS Command” example.

This program also demonstrates how to serial poll the "Waiting for
Trigger" status bit to determine when to initiate the GSM phone. The
data results are placed in an ASCII file (powercal.txt).

The program can also be adapted to perform W-CDMA Downlink Power
Control measurements in the code domain power Synbol Power view.
In essence, you can average any stepped power measurement trace
using this method.

/**

*

*

*

power cal . ¢
Agi | ent Technol ogi es 2003

Thi s program denonstrates the process of using the Wavef orm
neasur emrent and the CALC DATA2: COWP? DMVE conmand to return the power
of 75 consecutive GSM EDGE bur st s.

The DVE (db Mean) parameter returns the average of the dB trace val ues.

This program al so denmonstrates how to serial poll the "Witing
for Trigger" Status bit to determne when to initiate the GSM phone

The data results are placed in an ASAI| file, powercal.txt

This programcan al so be adapted to perform W CDVA Downl i nk Power Cont r ol
neasurenents in the Code Donai n Power Synbol Power View. In essence,

you can average any stepped power neasurenent trace using this nethod.

Chapter 18 291

0
n
>
o
=
o
(o]
=
Q
3
3
=
(]
m
X
Q
E
=2
@
(2]

(%]
<
Q.
£
@©
x
1]
(@]
<
£
£
©
1
(o))
o
S
o
<
n
o

PSA Programming Examples

Using C to Make a Power Calibration Measurement for a GSM Mobile
Handset

* I nstrument Requirenents:

E444xA with option B7J and firmware version >= A 05.00 or
E4406A with firmware version >= A 07.00 or

* Signal Source Setup:

Set up GSM EDCGE frame for either 1, 2, 4, or eight slots per frane.
Wien configuring two slots per frane, turn on slots 1 and 5

Wien configuring four slots per frane, turn on slots 1,3,5, and 7.
Set frane repeat to Single.

Set the signal anplitude to -5 dBm

Set the signal source frequency to 935.2 M

* CALC DATA2: COWP? DME par anet ers:

*

soffset = 25us (This avoi ds averagi ng data poi nts when the burst

is transitioning on.)
length = 526us (Period over which the power of the burst is averaged)
roffset = 4.6153846 ns / slots per frame (Repitition interval of burst)

khkkkhhkhkhhhhhhhhhhhkhhhhhhhhhdhhdhhhhhhhhhhhdhhdhhdhhdhddhddhddhddhhddhdddhdddhdddhrddhrdxx*x

****/

#i ncl ude
#i ncl ude
#i ncl ude
#i ncl ude

#i ncl ude

<stdi 0. h>
<stdlib. h>
<wi ndows. h>
<mat h. h>

"c:\programfil es\visa\w nnt\incl ude\vi sa. h"

void main ()

{

[*program vari abl e*/

Vi Sessi on defaul tRM vi VSA
Vi Status vi Status= 0;
Viunt16 stb;

FILE *f Dat aFi | e;

| ong |t hrowaway, | bur st s;
| ong | Nunber Poi nt s= 0;
| ong | Nunber Byt es= 0;

l ong | Length = 0;

292 Chapter 18

| ong
| ong
doubl
doubl

PSA Programming Examples
Using C to Make a Power Calibration Measurement for a GSM Mobile

i = 0;
| Qpc = OL;
e sweeptine 0;

0;

e burstinterval

unsi gned | ong | Byt esRetri eved;
Vi Real 64 adDat aArray[100];

char

char

sBuffer[80]= {0};

*basi cSetup = // measurenent setup commands for VSA PSA
I NST: SEL BASIC "// Put the instrument in Basic Mde
"*RST; "// Preset the instrunent
*CLS; "//dear the status byte
: STAT: CPER ENAB 32; " // Enabl e Status Qperation
:DISP:ENAB 0;"// Turn the Display off (inproves Speed)
:FORM REAL, 64;"// Set the ouput format to binary
:FORM BORD SWAP; "// set the binary byte order to SWAP (for PQ
: CONF: WAV, "/ [/ Changes mneasurenent to Waveform
:INIT: GONT 0;"// Puts instrunent in single measurenent node
: CAL: AUTO OGFF;"// Turn auto align of f
: FREQ CENTER 935. 2MHz;"// Set Center Freq to 935. 2M+¥
:VWAV: ACQ PACK MED; "/ / Set Dat aPacki ng to Medi um
:VWAV: BAND: TYPE FLAT;"//Select F attop RBWFilter
: WAV: DEC. FACT 4;"// Set Decination Factor to 4
: WAV: DEC. STAT ON;"//Turn Deci mati on On
;DI SP: WAV: WNDL: TRAC Y: RLEV 5;" //Set referance level to 5 dBm
" VAV: BWD: RES 300kHz;"// Set Res bandwith filter to 300kHz
:PONRF: ATT 5;"//Set 5dB of internal attenuation
:VWAV: ADC. RANG PO;"// Set ADC Range to PO, This is

/I necessary to prevent autoranging
"WAV: TRG SOUR | F;"//Set Trigger source to | F burst
:TRIG SEQ I F. LEV -20;";//Set IF Trig |l evel to -20dB

/*open session to GPIB device at address 18 */
vi St at us=vi penDef aul t RM (&def aul t RV ;
vi Status=vi pen (defaultRM "GPl BO:: 18", VI _NULL, VI _NULL, &vi VSA);

Handset

Chapter 18

293

0
n
>
o
=
o
(o]
=
Q
3
3
=
(]
m
X
Q
E
=2
@
(2]

PSA Programming Examples
Using C to Make a Power Calibration Measurement for a GSM Mobile
Handset

/ *check openi ng sessi on sucess*/

i f(viStatus)

{
printf("Could not open a session to GPIB device at address 18!'\n");
exit(0);

}

/* Set I/Otineout to ten seconds */
vi Set Attribute(vi VSA VI _ATTR TMD VALUE, 10000) ;

vi d ear (vi VSA);//send device clear to instrument
[*print message to the standard out put*/
printf("Enter nunber of bursts per frame (1,2,4 or 8): ");

scanf("%d", & bursts);

/* Send setup commands to instrument */

vi Printf(viVSA "%\n", basi cSet up);
/* Calculate sweep tine and set it*/
burstinterval = 4.6153846 / 1000.00 / |bursts;

sweepti me= burstinterval * 75.0;

vi Printf(viVSA ":WAV: SWE TI ME % s\ n", sweepti ne);

(%]
<
Q.
£
@©
x
1]
(@]
<
£
£
©
1
(o))
o
S
o
<
n
o

/* dear status event register */
vi Queryf (vi VSA, " STAT: CPER EVENT?\ n", "% d", & t hr onavay) ;

/[* Initiate the wavef orm measurenment and get the instrument ready
to calculate the nmean RVB I/ Q vol tage in each burst

(W will convert these discreate values into Mean dBm Power val ues) */

ViPrintf(viVSA"INT:IMAN");

/* Serial poll the instrument to determne when it is waiting for

trigger and the GSM phone can be told to send its 75 bursts. */

294 Chapter 18

PSA Programming Examples

Using C to Make a Power Calibration Measurement for a GSM Mobile
Handset

whi | e(1)
{
vi ReadSTB(vi VSA &sthb); //read status byte
if (stb & 128) break; /11ook for "waiting for trigger" bit
printf("Witing on Analyzer...\n");
Sleep (50); // wait 50 ns between each serial poll
}
/*print message to the standard out put*/

printf("Analyzer is Ready!\n\nWiting for phone to trigger...\n\n");

/*Querry for Qperation Conplete */
vi Queryf (vi VSA "*CPC\ n", "%l", & pc);

/*Use the CALC DATAQ: COWP command to return the average power in each burst*/
vi Printf(vi VSA ": CALC DATA2: COW? DME, 25E- 6, 526E- 6, %\ n", bursti nterval);

/* get nunber of bytes in length of postceeding data and put this in sBuffer*/
vi Read (vi VSA (Vi Buf)sBuffer, 2, & Byt esRetri eved);
printf("Getting the burst data in binary format...\n\n");

/* Put the returned data into sBuffer */

vi Read (vi VSA, (Vi Buf)sBuffer,sBuffer[1] - '0', & BytesRetrieved);

/* append a null to sBuffer */
sBuffer[I BytesRetri eved] = 0;

/* convert sBuffer fromASC| to integer */

| Nunber Byt es = atoi (sBuffer);

/*cal cul ate the nunber of returned val ues given the nunber of bytes.
REAL 64 binary data neans each nunber is represented by 8 bytes */
| Nunber Poi nts = | Nunber Byt es/ si zeof (Vi Real 64) ;

/*get and save returned data into an array */
vi Read (vi VSA (Vi Buf) adDat aArray, | Nunber Byt es, & Byt esRetri eved) ;

Chapter 18 295

0
n
>
i)
=
o
(o]
=
Q
3
3
=
(]
m
X
ja3]
E
=5
@
(2]

PSA Programming Examples

Using C to Make a Power Calibration Measurement for a GSM Mobile
Handset

/* read the term nator character and discard */
vi Read (vi VSA, (Vi Buf)sBuffer, 1, & throwaway);

/*print message to the standard out put*/

printf("Querying instrunent to see if any errors in Qeue.\n");

/* loop until all errors read */

do
{
vi Printf (viVSA "SYST: ERR\n"); /* check for errors */
vi Read (vi VSA (Vi Buf)sBuffer, 80, & Length);/* read back | ast error nessage */
sBuffer[lLength] = O; /* append a null to byte count */
printf("%\n", sBuffer); /* print error buffer to display */
} while (sBuffer[1] !'="0");

[* Turn the Display of the instrument back on */

vi Printf(viVSA "D SP: ENAB 1\ n");

(%]
= /*save result data to an ASAI file*/
|.>u“2 f Dat aFi | e=f open(" powercal . txt","w");
g fprintf(fDataFil e, "powercal .exe Qut put\nAgilent Technol ogi es 2003\ n\ n");
E fprintf(fDataFile,"Power of %l GSM EDGE bursts:\n", | Nunber Poi nts);
©
? fprintf(fDataFile," (%l burst(s) per frane):\n\n",|bursts);
a for (i=0;i<lNunberPoints;i++)
&
o {
fprintf(fDataFile,"\tPower of burst[%l] = %2If dBMn",i+1, adDataArray[i]);
}

fclose(fDataFile);
[*print message to the standard out put*/

printf("The %l burst powers were saved to powercal .t xt
file.\n\n", | Nunber Poi nts);

vi d ose (viVSA);
vi d ose (defaul tRV);

296 Chapter 18

PSA Programming Examples
Using C with the CALCulate:DATA:COMPress? RMS Command

Using C with the CALCulate:DATA:COMPress?

RMS Command

This C programming example (calcomp.c) can be found on the
Documentation CD.

This program uses the CALCul at e: DATA: COWPr ess? RM5 command to
average the voltage trace data to calculate power of consecutive GSM

bursts. Older instrument firmware does not support the newer DME

parameter described in the previous example. You will have to use the
technique in this example to calculate the dB mean. This example uses
the Waveform measurement in the Basic mode. Basic mode is optional

-B7J- in the PSA Series spectrum analyzers and is standard in the
E4406A Vector Signal Analyzer.

The CALC. DATA2: COWP? RMVB command is used to return the power of 1
to 150 consecutive GSM/EDGE bursts. The RMS parameter returns the

average of the voltage trace values. These measured values are then
converted to dBm values.

This program also demonstrates how to serial poll Serial poll the

instrument to determine when the Message Available status bit is set.

/**

cal conp. ¢

*

*

*

Agi | ent Technol ogi es 2001

Thi s program denonstrates the process of using the Wavef orm
nmeasur erent and the CALC DATAO: COWP? RV5 conmand to return the power
of 1 to 450 consecutive GSM EDCGE bursts (one burst per frame).

The data results are placed in an ASIl file, C\cal cconp.txt

I nstrument Requirenents:
E444xA with option B7J and firmare version >= A 02.00 or
E4406A with firmare version >= A 05.00 or

Signal Source Setup:
Turn on 1 slot per GSM EDCE frane.
Set frane repeat to Continous.
Set the signal anplitude to -5 dBm
Set the signal source frequency to 935.2 Mt

Chapter 18

297

0
n
>
o
=
o
(o]
=
Q
3
3
=
(]
m
X
Q
E
=2
@
(2]

PSA Programming Examples
Using C with the CALCulate:DATA:COMPress? RMS Command

* CALC DATAQ: COWP? RMVB par anet ers:

* sof fset = 25us (This avoi ds averagi ng data poi nts when the burst

* is transitioning on.)

* length = 526us (Period over which the power of the burst is averaged)
* roffset = 4.165 ns (Repition interval of burst. For this exanple

* it is equal to one GSMfrane: 4.165 ns.)

***/

#i ncl ude <stdio. h>
#i nclude <stdlib. h>
#i ncl ude <wi ndows. h>
#i ncl ude <nat h. h>

#i ncl ude "visa. h"

void main ()

{
[*program vari abl e*/
Vi Sessi on defaul tRM vi PSA
Vi Status vi Status= O;
Viunt1l6 stb;

(%]

= FI LE *f Dat aFi | e;

S

|.>u“2 [ong |t hr onaway, | bur st s;
o [ong | Nunber Poi nt s= 0;

=

E [ong | Nunber Byt es= 0;

©

? [ong | Length = 0;

a long i = 0;
< gi 0;
o

o

long | Qoc = OL;

doubl e sweepti ne = 0;

unsi gned | ong | Byt esRetri eved;
Vi Real 64 adDat aArray[500] ;

Vi Real 64 adPower Array[500] ;
char sBuffer[80]= {0};

char *basicSetup =// neasurement setup conmmands for VSA/ PSA
":INST: SEL BASIC "// Put the instrunent in Basic Mde
"*RST;"// Preset the instrumnent
"*CLS; " //dear the status byte

298 Chapter 18

PSA Programming Examples
Using C with the CALCulate:DATA:COMPress? RMS Command

":DISP. ENAB 0;"// Turn the D splay off (inproves Speed)

" FORM REAL, 64;"// Set the ouput fornmat to binary

": FORM BORD SWAP; "// set the binary byte order to SWAP (for PC
": CONF: WAV "// Changes neasurenent to Waveform

":INIT: GONT 0;"// Puts instrunent in single measurenent node

" CAL: AUTO CFF;"//Turn auto align off

": FREQ CENTER 935. 2MHz; "// Set Center Freq to 935. 2MHz

" WAV: ACQ PACK MED; "// Set Dat aPacki ng to Medi um

" WAV: BAND: TYPE FLAT;"//Sel ect Flattop RBWFilter

"I WAV: DEC. FACT 4;"// Set Deci mation Factor to 4

" WAV: DEC. STAT O\ "// Turn Deci mati on On

"D SP: WAV: WNDL: TRAC Y: RLEV 5;" // Set referance level to 5 dBm
"I WAV: BWD: RES 300kHz; "//Set Res bandwith filter to 300kHz

" PONRF: ATT 5;"//Set 5dB of internal attenuation

":VWAV: TRRG SOR | F;"//Set Trigger source to |IF burst
":TRGSEQIF LEV -20;";//Set IF Trig level to -20dB

/ *open session to GPIB device at address 18 */
vi St at us=vi penDef aul t RM (&def aul t RV ;

vi Status=vi pen (defaultRM "GPl BO:: 18", VI _NULL, VI _NULL, &vi PSA);

/ *check openi ng sessi on sucess*/

i f(viStatus)

{
printf("Could not open a session to GPIB device at address 18!\ n");
exit(0);

}

/* Set |/Otinmeout to ten seconds */

vi Set Attribut e(vi PSA VI _ATTR TMD VALUE, 10000) ;
vi A ear (vi PSA);//send device clear to instrument
/[*print message to the standard out put*/

printf("Enter nunber of bursts (1 to 450) to cal cul ate nmean power for:

scanf("%d", & bursts);

");

Chapter 18

299

0
n
>
i)
=
o
(o]
=
Q
3
3
=
(]
m
X
ja3]
E
=5
@
(2]

PSA Programming Examples
Using C with the CALCulate:DATA:COMPress? RMS Command

/* Send setup commands to instrunment */
vi Printf(viPSA "%\n", basi cSet up);

/* Calculate sweep tine and set it*/
sweept i me=4. 6153846*| bur st s;
Vi Printf(viPSA ":WAV: SWE TI ME % ns\ n", sweepti ne);

/* Aear status event register */
vi Quer yf (vi PSA, " STAT: CPER EVENT?\ n", "% d", & t hr onavay) ;

/* Initiate the wavef orm neasurenent */

viPrintf(viPSA"INT:IMAN");

/* Query the instrunent for Cperation conplete */

vi Queryf (vi PSA "*COPCAAn", "%l", & pc);

/* Have the instrunent cal culate the nean RVB |/ Q voltage in each burst

(W& will convert these discreate values into Mean dBm Power val ues) */

é_ vi Printf (viPSA ":CALC DATAO: COMP? rms, 25E- 6, 526E- 6, 4. 61538461538E- 3\ n") ;
= /* Serial poll the instrument to determ ne when Message Avail abl e
é Status Bit is set. The instrunent’s output buffer will then
% contain the measurenent results*/
i i =0;
g2 whi | e(1)
{
| ++;
vi ReadSTB(vi PSA, &stb); //read status byte
if (stb & 16) break; /11 ook for message available bit
Sleep (20); // wait 100nms before polling again
}

[*print message to the standard out put*/
printf("\nMessage Available statuts bit set after %d serial poles.\n\n",i);

printf("CGetting the burst data in binary format...\nPl ease wait...\n\n");

300 Chapter 18

PSA Programming Examples
Using C with the CALCulate:DATA:COMPress? RMS Command

/* get nunber of bytes in length of postceeding data
and put this in sBuffer*/
vi Read (vi PSA, (Vi Buf)sBuffer, 2, & BytesRetri eved);

/* Put the returned data into sBuffer */
vi Read (vi PSA, (Vi Buf)sBuffer,sBuffer[1] - '0', & BytesRetrieved);

/* append a null to sBuffer */
sBuffer[I BytesRetri eved] = 0;

/* convert sBuffer fromASC| to integer */

| Nunber Bytes = atoi (sBuffer);
/*cal cul ate the nunber of returned val ues given the nunmber of bytes.
REAL 64 binary data neans each nunber is represented by 8 bytes */

| Nunber Poi nts = | Nunber Byt es/ si zeof (Vi Real 64) ;

/*get and save returned data into an array */

vi Read (vi PSA, (Vi Buf) adDat aArray, | Nunber Byt es, & Byt esRetri eved) ;

/* read the termnator character and di scard */

vi Read (vi PSA, (Vi Buf)sBuffer, 1, & throwawnay);

/*print message to the standard out put*/

0
n
>
i)
=
o
(o]
=
Q
3
3
=
(]
m
X
ja3]
E
=5
@
(2]

printf("Querying instrument to see if any errors in Queue.\n");

/* loop until all errors read */

do
{
vi Printf (viPSA "SYST: ERR\n"); /* check for errors */
vi Read (vi PSA, (Vi Buf)sBuffer, 80, & Length);/* read back | ast error nessage */
sBuffer[l Length] = 0O; /* append a null to byte count */
printf("%\n",sBuffer); [* print error buffer to display */
} while (sBuffer[1] I="0");

Chapter 18 301

PSA Programming Examples
Using C with the CALCulate:DATA:COMPress? RMS Command

/* Turn the D splay of the instrument back on */
vi Printf(viPSA "D SP. ENAB 1\ n");

/*save result data to an ASA | file*/

f Dat aFi | e=fopen("C: \\cal cconp.txt","w");

fprintf(fDataFil e, "Cal cconp. exe Qut put\nAgil ent Technol ogi es 2001\ n\ n");

fprintf(fDataFile, "Power of %l GSM EDGE bursts:\n\n", | Nunber Poi nts);

for (i=0;i<lNunberPoints;i++)

{
/* Convert RM5 voltage for each burst to Mean Power in dBm */
adPowver Array[i]=10*1 og10(10*adDat aArray[i] *adDat aArray[i]);

fprintf(fDataFile,"\tPower of burst[%l] = %2If
dBmn",i+1, adPower Array[i]);

}
fclose(fDataFile);
/[*print message to the standard out put*/

printf("The %l burst powers were saved to C \\cal cconp.txt
file.\n\n", | Nunber Poi nts);

vi d ose (vi PSA);
vi d ose (defaul tRV);

(%]
<
Q.
£
@©
x
1]
(@]
<
£
£
©
1
(o))
o
S
o
<
n
o

302 Chapter 18

PSA Programming Examples
Using C Over Socket LAN (UNIX)

Using C Over Socket LAN (UNIX)

This C programming example (socketio.c) compiles in the HP-UX UNIX

environment. It is portable to other UNIX environments with only
minor changes.

In UNIX, LAN communication via sockets is very similar to reading or
writing a file. The only difference is the openSocket() routine, which

uses a few network library routines to create the TCP/IP network

connection. Once this connection is created, the standard fread() and

fwrite() routines are used for network communication.

In Windows, the routines send() and recv() must be used, since
fread() and fwrite() may not work on sockets.

The program reads the analyzer’s host name from the command line,
followed by the SCPI command. It then opens a socket to the analyzer,
using port 5025, and sends the command. If the command appears to be
a query, the program queries the analyzer for a response, and prints the

response.

This example program can also be used as a utility to talk to your
analyzer from the command prompt on your UNIX workstation or
Windows 95 PC, or from within a script.

This program is also available on your documentation CD ROM.

/***

*

*

*

$Header: socketio.c,v 1.5 96/10/04 20:29: 32 roger Exp $
$Revision: 1.5 $
$Date: 96/10/04 20:29:32 $

$Contri but or: LSID, MD $

$Descri pti on: Functions to talk to an Agilent E4440A spectrum

anal yzer via TCP/IP. Uses command-1ine argunents.
A TCP/ I P connection to port 5025 is established and

the resultant file descriptor is used to "talk" to the

i nstrunent using regul ar socket |1/0 nechanisns. $

E4440A Exanpl es:

Chapter 18

303

0
n
>
o
=
o
(o]
=
Q
3
3
=
(]
m
X
Q
E
=2
@
(2]

(%]
<
Q.
£
@©
x
1]
(@]
<
£
£
©
1
(o))
o
S
o
<
n
o

PSA Programming Examples
Using C Over Socket LAN (UNIX)

* Query the center frequency:

* lanio 15.4.43.5 'sens: freq: cent?

* Query X and Y val ues of marker 1 and narker 2 (assunes they are on):

* | ani o nyinst ’cal c:spec: markl: x?;y?; :calc:spec: nark2: x?; y?’

* Check for errors (gets one error):

* | ani o nyinst 'syst:err?

* Send a list of coomands froma file, and nunber them
* cat scpi_cnds | lanio -n nyinst
*

khkkhkhkkhhkkhhkhhhkhhhkhhhkhhhkhhhkhhhkhhhdhhhdhhhdhhkhdhhhdhhkhdhhkhhhdhddhddhddhhdhdhdhdxhhxrdkx*

*

* This program conpil es and runs under

* - HP-UX 10.20 (UNLX), using HP cc or gcc:

* + cc -Aa -O-o0lanio lanio.c

* + gcc -Vall -O-o0 lanio lanio.c

*

* - Wndows 95, using Mcrosoft Visual C++ 4.0 Standard Edition

* - Wndows NI 3.51, using Mcrosoft Visual G++ 4.0

* + Be sure to add WBOCK32.LIB to your list of libraries!
* + Conpile both lanio.c and getopt.c

* + Consider re-naming the files to | anio.cpp and getopt.cpp

* Consi derations:

* - O UNX systens, file I/O can be used on network sockets.

* Thi s makes programming very convenient, since routines like

* getc(), fgets(), fscanf() and fprintf() can be used. These

* routines typically use the | ower level read() and wite() calls.

*

* - In the Wndows environment, file operations such as read(), wite(),
* and cl ose() cannot be assunmed to work correctly when applied to

* sockets. Instead, the functions send() and recv() MJST be used.

*/

304 Chapter 18

PSA Programming Examples
Using C Over Socket LAN (UNIX)

/* Support both Wn32 and HP-UX UN X environnent */

#i fdef _WN32 /[* Visual C++ 4.0 will define this */
define WNSOXK

#endi f

#i fndef W NSOCK
ifndef HPUX SOURCE
define HPUX SOURCE

endif

#endi f

#i ncl ude <stdio. h> [* for fprintf and NULL */
#i ncl ude <string. h> /* for menmcpy and nenset */
#i ncl ude <stdlib. h> /* for malloc(), atol () */
#i ncl ude <errno. h> /* for strerror */

#i f def W NSOCK

#i ncl ude <w ndows. h>

ifndef _WNSOCKAPI _

include <wi nsock.h> // BSD-style socket functions
endif

0
n
>
i)
=
o
(o]
=
Q
3
3
=
(]
m
X
ja3]
E
=5
@
(2]

#else /* UN X with BSD sockets */

i ncl ude <sys/ socket . h> /* for connect and socket*/
i ncl ude <netinet/in.h> /* for sockaddr_in */
i ncl ude <netdb. h> /* for gethostbynane */

defi ne SOOKET_ERRCR (- 1)
define | NVALI D_SOCKET (- 1)

typedef int SOCKET,;

Chapter 18 305

(%]
<
Q.
£
@©
x
1]
(@]
<
£
£
©
1
(o))
o
S
o
<
n
o

PSA Programming Examples
Using C Over Socket LAN (UNIX)

#endi f /* WNSOCK */

#i f def W NSOCK
/* Declared in getopt.c. See exanple prograns disk. */
extern char *optarg;
extern int optind;
extern int getopt(int argc, char * const argv[], const char* optstring);
#el se
include <unistd. h> /* for getopt(3C */
#endi f

#defi ne COMMAND ERROR (1)
#defi ne NO OVMD_ERRCR (0)

#define SCPI_PCRT 5025
#defi ne | NPUT_BUF_SI ZE (64*1024)

/**

* D splay usage

**/

static void usage(char *basenane)

{
fprintf(stderr,"Usage: % [-nqu] <hostnane> [<command>]\n", basenane);
fprintf(stderr," % [-nqu] <hostnanme> < stdin\n", basenane);
fprintf(stderr,"” -n, nunber output lines\n");
fprintf(stderr,"” -q, quiet; do NOT echo lines\n");
fprintf(stderr,"” -e, show messages in error queue when done\n");

}

#i f def W NSOCK
int init_w nsock(void)
{
WORD wer si onRequest ed;

306 Chapter 18

PSA Programming Examples
Using C Over Socket LAN (UNIX)

WBADATA wsablat a;

int err;
w\Ver si onRequest ed = MAKEWORD(1, 1);
wWer si onRequest ed = MAKEWORD(2, 0);

err = WBASt art up(wWer si onRequest ed, &wsaDat a);

if (err '=0) {
/* Tell the user that we couldn’t find a useable */
/* winsock.dll. */
fprintf(stderr, "Cannot initialize Wnsock 1.1.\n");

return -1;

}

return O;

int cl ose_w nsock(voi d)

WEAA eanup() ;

return O;

}
#endi f /* WNSOCK */

0
n
>
i)
=
o
(o]
=
Q
3
3
=
(]
m
X
ja3]
E
=5
@
(2]

/***

*

> $Function: openSocket $

*

* $Description: open a TCP/IP socket connection to the instrunent $

*

* $Paraneters: $

* (const char *) hostname Network name of instrument.
* This can be in dotted deci mal notation.
* (int) portNumber The TCP/IP port to talk to.
* Use 5025 for the SCPlI port.

Chapter 18 307

PSA Programming Examples
Using C Over Socket LAN (UNIX)

* $Return: (int) Afile descriptor simlar to open(l).%

* $Errors: returns -1 if anything goes wong $

*

***/

SOCKET openSocket (const char *host nane, int port Nunber)
{

struct hostent *hostPtr;
struct sockaddr _in peeraddr _in;

SOCKET s;

nmenset (&eeraddr _in, 0, sizeof(struct sockaddr_in));

/***/

/* map the desired host name to internal form */

/***/

host Ptr = get host byname(host nane) ;

(%]

= if (hostPtr == NULL)

5

2 {

= fprintf(stderr,"unable to resol ve hostnane ' %’ \n", hostnane);
£ return | NVALI D_SOCKET;
©

> }

a

<

o

o

/*******************/

/* create a socket */

/*******************/
s = socket (AF_I NET, SOCK STREAM 0);
if (s == | NVALI D_SOCKET)

{
fprintf(stderr,"unable to create socket to '%’: %\n",
host nane, strerror(errno));
return | NVALI D_SOCKET;
}

308 Chapter 18

PSA Programming Examples
Using C Over Socket LAN (UNIX)

nenctpy(&eeraddr _in.sin_addr.s_addr, hostPtr->h_addr, hostPtr->h_|ength);
peeraddr_in.sin famly = AF | NET;
peeraddr _in.sin_port = htons((unsigned short)portNunber);

i f (connect(s, (const struct sockaddr*)&peeraddr _in,
si zeof (struct sockaddr _in)) == SOCKET_ERRCR

{
fprintf(stderr,"unable to create socket to "%’ : %\n",
host nane, strerror(errno));
return | NVALI D_SOCKET;
}
return s;

/***

*

n,
> $Function: conmandl nst rument $ ¢
* Y

8
* $Description: send a SCPI command to the instrunent.$ 2
* 3

2.

(]
* $Parameters: $ m

. . . .)
* (FILE*) file pointer associated with TCP/IP socket. g
* (const char *command) . . SCPI command string. 3
* $Return: (char *) apointer to the result string.
*
* $Errors: returns O if send fails $

*

***/

i nt comrandl nst rurment (SOCKET sock,

const char *comrand)

i nt count;

Chapter 18 309

PSA Programming Examples
Using C Over Socket LAN (UNIX)

[* fprintf(stderr, "Sending \"%\".\n", comand); */
if (strchr(comrand, '\n’) == NUL) {

fprintf(stderr, "Warning: mssing newine on command %.\n", command);

count = send(sock, command, strlen(command), 0);
if (count == SOCKET ERROR) {
return COWAND ERRCR

return NO OVD ERRCR

/**

* recv_line(): simlar to fgets(), but uses recv()

**/
char * recv_|line(SOCKET sock, char * result, int nmaxLength)
{
#i f def W NSQOCK
int cur_length = 0;
int count;
char * ptr = result;

int err = 1;

(%]
<
Q.
£
@©
x
1]
(@]
<
£
£
©
1
(o))
o
S
o
<
n
o

while (cur_length < maxLength) {
/[* CGet a byte into ptr */

count = recv(sock, ptr, 1, 0);

/[* If no chars to read, stop. */
if (count < 1) {
br eak;

}

cur_length += count;

[* If we hit a newine, stop. */

310 Chapter 18

PSA Programming Examples
Using C Over Socket LAN (UNIX)

if (*ptr =="\n") {

ptr++;
err = 0;
br eak;
}
ptr++;
}
*ptr = '\0";
if (err) {
return NULL;
} else {
return result;
}
#el se

/***

* Sinpler UNIX version, using file I/Q recv() version works too.

e
* This denonstrates howto use file |/O on sockets, in UN X ‘)Q
*********************~k**~k**~k**~k**~k**~k**~k**~k**~k*************************/ g
Q
FILE * instFile; %
instFile = fdopen(sock, "r+"); 3
a
if (instFile == NULL) m
QD
{ 3
=3
[0}
w

fprintf(stderr, "Unable to create FILE * structure : %\n",

strerror(errno));

exit(2);
}

return fgets(result, maxLength, instFile);

#endi f
}

/***

Chapter 18 311

(%]
<
Q.
£
@©
x
1]
(@]
<
£
£
©
1
(o))
o
S
o
<
n
o

PSA Programming Examples
Using C Over Socket LAN (UNIX)

> $Function: queryl nstrument $

*

* $Description: send a SCPI command to the instrunment, return a response. $

* $Paraneters: $

* (FILE*) file pointer associated with TCP/| P socket.
* (const char *command) . . SCPI command string.

* (char *result) where to put the result.

* (size_t) maxLength maxinumsize of result array in bytes.

*

* $Return: (long) The nunber of bytes in result buffer.

*

* $Errors: returns O if anything goes wong. $

*

***/

| ong queryl nst rument (SOCKET sock,

const char *command, char *result, size_t maxLength)

I ong ch;

char tnp_buf[8];

long resul tBytes = 0;
int command_err;

int count;

/***

* Send command to anal yzer

***/

command_err = conmmandl nst rument (sock, conmand);

if (command_err) return COMWAND ERRCR

/***

* Read response from anal yzer

**/

count = recv(sock, tnmp_buf, 1, 0); /* read 1 char */

312 Chapter 18

PSA Programming Examples
Using C Over Socket LAN (UNIX)

ch = tnp_buf[0Q];

if ((count < 1) || (ch = EX®F) || (ch="\n"))

{
result =°'\0; / null termnate result for ascii */
return O;

}

/* use a do-while so we can break out */
do
{
if (ch=="#)
{
/* binary data encountered - figure out what it is */
long nunDigits;
| ong nunBytes = 0;
/* char length[10]; */

count = recv(sock, tnmp_buf, 1, 0); /* read 1 char */
ch = tnp_buf[0];
if ((count < 1) || (ch == ECF)) break; /* End of file */

if (ch<’0 || ch>"9) break; /* unexpected char */

nunbigits = ch - "0;

if (nunDigits)

{
/* read nunDigits bytes into result string. */
count = recv(sock, result, (int)nunDigits, 0);
result[count] =0; /* null termnate */

nunBytes = atol (result);

i f (nunBytes)
{
resul tBytes = 0;

Chapter 18

313

0
n
>
i)
=
o
(o]
=
Q
3
3
=
(]
m
X
ja3]
E
=5
@
(2]

(%]
<
Q.
£
@©
x
1]
(@]
<
£
£
©
1
(o))
o
S
o
<
n
o

PSA Programming Examples
Using C Over Socket LAN (UNIX)

/* Loop until we get all the bytes we requested. */
/* Each call seens to return up to 1457 bytes, on HP-UX 9.05 */
do {

int rcount;

rcount = recv(sock, result, (int)nunBytes, 0);

resul t Bytes += rcount;

resul t += rcount; /* Advance pointer */

} while (resultBytes < nunmBytes);

/**

* For LAN dunps, there is always an extra trailing newine
* Since there is no EQ line. For ASCIl dunps this is
* great but for binary dunps, it is not needed.

***/

if (resultBytes == nunBytes)

{
char junk;
count = recv(sock, & unk, 1, 0);
}
}
el se
{
/* indefinite block ... dump til we read only a line feed */
do
{
if (recv_line(sock, result, nmaxLength) == NULL) break;
if (strlen(result)==1 & *result == '\n") break;
resul tBytes += strlen(result);
result += strlen(result);
} while (1);
}
}
el se
{

/* ASA | response (not a binary block) */

*result = (char)ch;

314 Chapter 18

PSA Programming Examples
Using C Over Socket LAN (UNIX)

if (recv_line(sock, result+l, naxLength-1) == NUL) return O;

/* REMOVE trailing newine, if present. And termnate string. */
resul tBytes = strlen(result);

if (result[resultBytes-1] == '\n’) resultBytes -= 1;
result[resultBytes] = '\0';

}
} while (0);

return result Byt es;

/***
*

> $Function: showErrors$

*

* $Description: Query the SCPl error queue, until enpty. Print results. $

*

* $Return: (void)
*

***/

voi d showEr ror s(SOCKET sock)
{

0
n
>
i)
=
o
(o]
=
Q
3
3
=
(]
m
X
ja3]
E
=5
@
(2]

const char * command = "SYST: ERR?\ n";

char result_str[256];

do {

queryl nst runent (sock, command, result_str, sizeof(result_str)-1);

/***********************~k**~k**~k********~k**~k************************
* Typical result_str:

* -221,"Settings conflict; Frequency span reduced."

* +0,"No error"”

Chapter 18 315

PSA Programming Examples
Using C Over Socket LAN (UNIX)

* Don't bot her decodi ng.

**/

if (strncnp(result_str, "+0,", 3) == 0) {
/* Natched +0,"No error" */

br eak;

}

puts(result_str);
} while (1);

/***

*

> $Function: isQery$

* $Description: Test current SCPI command to see if it a query. $

* $Return: (unsigned char) . . . non-zero if command is a query. O if not.

***/

unsi gned char isQery(char* cnd)
{

unsi gned char q = 0 ;

char *query ;

(%]
<
Q.
£
@©
x
1]
(@]
<
£
£
©
1
(o))
o
S
o
<
n
o

/***/

/* if the command has a '?" in it, use querylnstrument. */

/* otherw se, sinply send the command. */
/* Actually, we nust a little nmore specific so that */
/* marker value queries are treated as conmands. */
/* Exanpl e: SENS: FREQ CENT (CALCL: MARK1: X?) */

/******************~k**************************************/
if ((query = strchr(cmd,”?")) !'= NUL)

/* Make sure we don't have a marker val ue query, or

316 Chapter 18

PSA Programming Examples
Using C Over Socket LAN (UNIX)

* any coomand with a *?" followed by a ')’ character.
* This kind of command is not a query fromour point of view

* The anal yzer does the query internally, and uses the result.

*/
query++ | /* bunp past '?" */
whi | e (*query)
{
if (*query =="' ") /* attenpt to ignore white spc */
query++ |
el se break ;
}

if (*query !'=")")

{
q=1;
}
}
return q ;

/***

*

> $Function: mai n$

0
n
>
i)
=
o
(o]
=
Q
3
3
=
(]
m
X
ja3]
E
=5
@
(2]

*

* $Description: Read command |ine argunents, and talk to anal yzer.

Send query results to stdout. $

* $Return: (int) . . . non-zero if an error occurs

*

***/

nt nain(int argc, char *argv[])

SOCKET i nst Sock;

Chapter 18 317

PSA Programming Examples
Using C Over Socket LAN (UNIX)

char *charBuf = (char *) malloc(l NPUT_BUF Sl ZE);
char *basenane;

int chr;

char command[1024] ;

char *destinati on;

unsi gned char quiet = 0;

unsi gned char show errs = 0;

i nt nunber = 0;

basenane = strrchr(argv[0], '/');
i f (basenane != NULL)

basenane++ ;
el se

basenane = argv[0];

while ((chr = getopt(argc, argv, "qune")) !'= ECF)
switch (chr)

{
case 'q': quiet = 1; break;

(%]
= case 'n’: nunber = 1; break ;
S
o case 'e’: showerrs = 1; break ,;
i
o case 'U
£
E case '?': usage(basenane); exit(l) ;
©
S }
[a
&
a /* now | ook for hostnane and optional <comrand> */

if (optind < argc)
{

destination = argv[optind++] ;
strcpy(command, "");
if (optind < argc)
{
while (optind < argc) {
/ * <host name> <command> provi ded; only one command string */
strcat (command, argv[optind++]);

if (optind < argc) {

318 Chapter 18

PSA Programming Examples
Using C Over Socket LAN (UNIX)

strcat(command, " ");
} else {

strcat (command, "\n");

}
}
}
el se
{
/* Only <host nane> provi ded; input on <stdin> */
strcpy(command, "");
if (optind > argc)
{
usage(basenarre) ;
exit(1l);
}
}
}
el se
n,
{ 4
/* no hostname! */ g
«Q
usage(basenane) ; g
. _ 3
exit(1l); 5
«
} Y
Q
3
°
/**/ 8

/* open a socket connection to the instrunent */

/**/

#i f def W NSOCK
if (init_wnsock() !'=0) {
exit(1l);
}
#endi f /* WNSOCK */

i nst Sock = openSocket (desti nati on, SCPl _PCRT);
if (instSock == | NVALI D_SOCKET) {

Chapter 18 319

PSA Programming Examples
Using C Over Socket LAN (UNIX)

fprintf(stderr, "Unable to open socket.\n");
return 1;

}
[* fprintf(stderr, "Socket opened.\n"); */

if (strlen(comrand) > 0)

{

/**/

/[* if the command has a '?" in it, use querylnstrunment. */
/* otherw se, sinply send the comrand. */
[* kAR ok ko k ok ko k ok ko k ko kK ok ko ok ko k ko kK k
if (isQuery(command))
{
| ong buf Byt es;
buf Byt es = queryl nstrunent (i nst Sock, command,
char Buf , | NPUT_BUF_SI ZE);
if (!quiet)
{
fwite(charBuf, bufBytes, 1, stdout);
fwite("\n", 1, 1, stdout) ;
fflush(stdout);

el se

(%]
<
Q.
£
@©
x
1]
(@]
<
£
£
©
1
(o))
o
S
o
<
n
o

commandl nst runent (i nst Sock, command) ;

/* read a line from<stdi n> */
while (gets(charBuf) !'= NULL)
{

if (!strlen(charBuf))

continue ;

320 Chapter 18

PSA Programming Examples
Using C Over Socket LAN (UNIX)

if (*charBuf =="'# || *charBuf =="1")

conti nue ;

strcat (charBuf, "\n");

if (!quiet)
{
i f (nunber)
{
char nunf 10];
sprintf(num"%: ", nunber);
fwite(num strlen(num), 1, stdout);
}
fwite(charBuf, strlen(charBuf), 1, stdout) ;
fflush(stdout);

if (isQuery(charBuf))

{
| ong buf Byt es; §
3
/* Put the query response into the sane buffer as the %
* command string appended after the null termnator. g
"y E”
buf Byt es = queryl nstrunent (i nst Sock, charBuf, %
charBuf + strlen(charBuf) + 1, &
| NPUT_BUF_SI ZE -strlen(charBuf));
if (!quiet)
{
fwite(" ", 2, 1, stdout) ;
fwite(charBuf + strlen(charBuf)+1, bufBytes, 1, stdout);
fwite("\n", 1, 1, stdout) ;
fflush(stdout);
}
}
el se

Chapter 18 321

(%]
<
Q.
£
@©
x
1]
(@]
<
£
£
©
1
(o))
o
S
o
<
n
o

PSA Programming Examples
Using C Over Socket LAN (UNIX)

commandl nst runent (i nst Sock, charBuf);

}

i f (nunber) nunber ++;

if (showerrs) {
showkr r or s(i nst Sock) ;

#i f def W NSOCK
cl osesocket (i nst Sock) ;
cl ose_wi nsock();
#el se
cl ose(i nst Sock) ;
#endi f /* WNSOCK */

return O;

/* BEnd of lanio.c */

322

Chapter 18

PSA Programming Examples
Using C Over Socket LAN (Windows NT)

Using C Over Socket LAN (Windows NT)

This C programming example (getopt.c) compiles in the Windows NT
environment. In Windows, the routines send() and recv() must be
used, since fread() and fwrite() may not work on sockets.

The program reads the analyzer’s host name from the command line,
followed by the SCPI command. It then opens a socket to the analyzer,
using port 5025, and sends the command. If the command appears to be
a query, the program queries the analyzer for a response, and prints the
response.

This example program can also be used as a utility to talk to your
analyzer from the command prompt on your Windows NT PC, or from
within a script.

/***

get opt (30 get opt (30
NAME

getopt - get option letter fromargument vector
SYNOPS! S

int getopt(int argc, char * const argv[], const char *optstring);

extern char *optarg;

extern int optind, opterr, optopt;

0
n
>
i)
=
o
(o]
=
Q
3
3
=
(]
m
X
ja3]
E
=5
@
(2]

DESCR PTI ON

getopt returns the next option letter in argv (starting fromargv[1])

that matches a letter in optstring. optstring is a string of

recogni zed option letters; if aletter is followed by a colon, the
option is expected to have an argument that may or nay not be
separated fromit by white space. optarg is set to point to the start

of the option argunment on return from getopt.

getopt places in optind the argv i ndex of the next argunent to be

processed. The external variable optind is initialized to 1 before

Chapter 18 323

PSA Programming Examples
Using C Over Socket LAN (Windows NT)

the first call to the function getopt.

Wien al | options have been processed (i.e., up to the first non-option
argunent), getopt returns EGF. The special option -- can be used to

delimt the end of the options; ECF is returned, and -- is skipped.

***/

#i ncl ude <stdio. h> /* For NULL, ECF */

#i ncl ude <string. h> [* For strchr() */

char *opt ar g; /* d obal argunent pointer. */

i nt optind = O; /* dobal argv index. */

static char *scan = NULL; /* Private scan pointer. */

int getopt(int argc, char * const argv[], const char* optstring)

{

4
E_ char c;
o char *posn;,
|
(@]
=
E optarg = NULL;
©
>
e
i if (scan == NULL || *scan == '\0") {
g2 if (optind == 0)
opt i nd++;
if (optind >= argc || argv[optind][O] !'="-" || argv[optind][1] == "\0")
return(ECF);
if (strcnp(argv[optind], "--")==0) {
opt i nd++;

return(ECF);

scan = argv[optind] +1;

324 Chapter 18

PSA Programming Examples
Using C Over Socket LAN (Windows NT)

opti nd++;

C = *scan++,

posn = strchr(optstring, c); [* DDP */

if (posn == NLL || ¢ ==":") {
fprintf(stderr, "%: unknown option -%\n", argv[0], c);

return(’?');

}
posn++;
if (*posn ==":") {
if (*scan '="\0") {
optarg = scan;
scan = NULL;
} else {
optarg = argv[optind];
opti nd++;
}
}
return(c);

0
n
>
i)
=
o
(o]
=
Q
3
3
=
(]
m
X
ja3]
E
=5
@
(2]

Chapter 18 325

PSA Programming Examples
Using Java Programming Over Socket LAN

Using Java Programming Over Socket LAN

This Java programming example (ScpiDemo.java) demonstrates simple
socket programming with Java and can be found on the Documentation
CD. It is written in Java programming language, and will compile with
Java compilers versions 1.0 and above.

i nport java.aw.*;
i nport java.io.*;
i nport java.net.*;

i nport java.appl et. *;

/1l This is a SCPI Deno to denonstrate how one can conmunicate with the
/1 E4440A PSA with a JAVA capable browser. This is the

/1 NMain class for the SCPl Denpb. This applet will need Socks.class to
/1 support the I/O comrands and a Scpi Deno. htm for a browser to | oad
/1 the applet.

/1 To use this applet, either conpile this applet with a Java conpiler
/1 or use the existing conpiled classes. copy Scpi Deno. cl ass,

/1 Socks.class and Scpi Denmo. htm to a floppy. Insert the floppy into

é_ /1l your instrument. Load up a browser on your conputer and do the

5 /1 followi ng:

w

> /1 1. Load this URL in your browser:

é /1 ftp://<Your instrunent’s |P address or nane>/int/ Scpi Deno. ht m

g I 2. There should be two text wi ndows show up in the browser:

ne_ /1 The top one is the SCPl response text area for any response

é /1 com ng back fromthe instrument. The bottomone is for you
/1 to enter a SCPI command. Type in a SCPI comrand and hit enter.
/1 If the command expects a response, it will showup in the top
/1 w ndow.

public class Scpi Deno extends java. appl et. Appl et inpl ements Runnabl e {

Thr ead responseThr ead,;

Socks sck;

URL appl et Base;

TextField scpi Command = new Text Fi el d();

Text Area scpi Response = new Text Area(10, 60);
Panel sout hPanel = new Panel ();

326 Chapter 18

PSA Programming Examples
Using Java Programming Over Socket LAN

Panel p;

/Il Initialize the applets

public void init() {

Set upSocket s();
Set upPanel s();

/1 Set up font type for both panels

Font font = new Font (" Ti mesRorman", Font.BCOLD, 14);

scpi Response. set Font (font);

scpi Command. set Font (font);

scpi Response. appendText ("SCPI Deno Program Response nessages\n");

scpi Response. appendText (M------------- - \n");

/1 This routine is called whenever the applet is actived
public void start() {

/1 Cpen the sockets if not already opened

sck. penSocket s() ;

/l Start a response thread

St art ResponseThread(true);

/1 This routine is called whenever the applet is out of scope

0
n
>
i)
=
o
(o]
=
Q
3
3
=
(]
m
X
ja3]
E
=5
@
(2]

[/l i.e. mnize browser

public void stop() {

/1 dose all local sockets

sck. d oseSocket s();

/1 Kill the response thread
St art ResponseThr ead(f al se);

/1 Action for sending out scpi comrands
// This routine is called whenever a comrand i s recei ved fromthe

/] SCPI command panel .

Chapter 18 327

PSA Programming Examples
Using Java Programming Over Socket LAN

publ i c bool ean action(Event evt, (hject what) {
[/l If this is the correct target
if (evt.target == scpi Command) {
[/l Get the scpi command
String str = scpi Command. get Text () ;
// Send it out to the Scpi socket
sck. Scpi Wi teLi ne(str);
String tenpStr = str.tolLowerCase();
/[l |f comrand str is "syst:err?", don't need to send anot her one.
if ((tenpStr.indexCf("syst") == -1) ||
(tenpStr.indexCt("err") == -1)) {
/1 Query for any error
sck. Scpi Wi teLi ne("syst:err?");

}
return true;
}
return fal se;
}
é_ /1 Start/Stop a Response thread to display the response strings
L>|J% private void StartResponseThr ead(bool ean start) {
g if (start) {
E /] Start a response thread
% responseThread = new Thread(this);
i responseThread. start();
& }
el se {
/1 Kill the response thread
responseThread = nul | ;
}

/'l Response thread runni ng
public void run() {

String str =""; [/ Initialize str to null

328 Chapter 18

PSA Programming Examples
Using Java Programming Over Socket LAN

/1 Qear the error queue before starting the thread
/[l in case if there's any error nessages fromthe previous actions
while (str.indexC("No error") == -1) {

sck. Scpi Wi teLine("syst:err?");

str = sck. Scpi ReadLi ne();

[/l Start receiving response or error nessages
while(true) {
str = sck. Scpi ReadLi ne();
if (str I'=null) {
/1 If response nmessages is "No error", do no display it,
[/l replace it with "CK' instead.
if (str.equals("+0,\"No error\"")) {
str = "CK";
}
/1 Display any response nessages in the Response panel

scpi Response. appendText (str+"\n");

/1 Set up and open the SCPl sockets
private void SetupSockets() {
/'l Get server url
appl et Base = (URL) get CodeBase();
/1 Cpen the sockets

0
n
>
i)
=
o
(o]
=
Q
3
3
=
(]
m
X
ja3]
E
=5
@
(2]

sck = new Socks(appl et Base) ;

/1 Set up the SCPI command and response panel s
private void SetupPanel s() {
/1 Set up SCPI command panel
sout hPanel . set Layout (new Gi dLayout (1, 1));
p = new Panel ();

p. set Layout (new Bor der Layout ()) ;

Chapter 18 329

PSA Programming Examples
Using Java Programming Over Socket LAN

p. add("West", new Label ("SCPI command:"));
p.add(" Center", scpi Conmand);
sout hPanel . add(p) ;

/'l Set up the Response panel

set Layout (new Bor der Layout (2, 2));
add("Center", scpi Response);
add(" Sout h*, sout hPanel);

/1 Socks class is responsible for open/cl ose/read/wite operations
/1 fromthe predefined socket ports. For this exanple program
/1 the only port used is 5025 for the SCPl port.
cl ass Socks extends java. appl et. Appl et {
/'l Socket Info
/! To add a new socket, add a constant here, change MAX NUM COF SCOCKETS
/1l then, edit the constructor for the new socket.
public final int SCPI=0;
private final int MAX NUM CF SOCKETS=1;

/1 Port nunber
/1 5025 is the dedicated port number for E4440A Scpi Port
private final int SCPI_PCRT = 5025;

(%]
<
Q.
£
@©
x
1]
(@]
<
£
£
©
1
(o))
o
S
o
<
n
o

/'l Socket info

private URL appl et Base;

private Socket[] sock = new Socket[MAX NUM OF SOCKETS];

private Datal nputStreanf] sockln = new Dat al nput St reanf MAX_NUM CF_SOCKETS] ;
private PrintStreanf] sockQut = new Print Streanf MAX_NUM OF SOCKETS] ;
private int[] port = new int[MAX_NUM OF SOCKETS] ;

private bool ean[] sockOpen = new bool ean[MAX NUM COF SOCKETS] ;

/1 Constructor

330 Chapter 18

PSA Programming Examples
Using Java Programming Over Socket LAN

Socks(URL appl et B)

{
appl et Base = appl et B;
/1l Set up for port array.
port[SCPI] = SCPl _PORT;
/!l Initialize the sock array
for (int i =0; i < NMXNMOGC _SOXKETS;, i++) {
sock[i] = null;
sockln[i] = null;
sockQut[i] = null;
socken[i] = fal se;
}
}

[[***** Sockects open/cl ose routines
/1 Qpen the socket(s) if not already opened
public voi d QpenSocket s()

n,
{ ¢
try { §
/1 Qpen each socket if possible g
for (int i =0; i < MM NUMCF SOCKETS; i++) { g.
it (IsockQpen[i]) { m
sock[i] = new Socket (appl et Base. get Host (), port[i]); %
sockln[i] = new Datal nput Strean{sock[i].getlnputStrean()); &
sockQut[i] = new PrintStrean(sock[i].getQutputStrean());
if ((sock[i] '=null) &% (socklin[i] !'=null) &&
(sockQut[i] !'=null)) {
sockQpen[i] = true;
}
}
}
}

catch (1 Cexception e) {
Systemout . println("Sock, Open Error "+e.get Message());

Chapter 18 331

(%]
<
Q.
£
@©
x
1]
(@]
<
£
£
©
1
(o))
o
S
o
<
n
o

PSA Programming Examples
Using Java Programming Over Socket LAN

/! Odose the socket(s) if opened

public void O oseSocket (int s)

{
try {
if (sockQpen[s] == true) {
I/l wite blank line to exit servers elegantly
sockQut[s].println();
sockQut[s].flush();
sockl n[s].close();
sockQut[s].close();
sock[s] . cl ose();

socken[s] = fal se;

}
catch (I Cexception e) {

Systemout. println("Sock, dose Error "+e.get Message());

/1 dose all sockets
public void O oseSocket s()
{
for (int i=0; i < MAX_NUM CF_SCCKETS; i++) {
d oseSocket (i);

/1 Return the status of the socket, open or close.

publ i ¢ bool ean SockQen(int s)
{

return sockQpen[s];

332

Chapter 18

PSA Programming Examples
Using Java Programming Over Socket LAN

[[*xxxxxxxgkxxx Gocket |/ O routines.

/1*** 1 /Oroutines for SCPl socket

// Wite an ASCI| string with carriage return to SCPl socket
public void Scpi WiteLine(String comrand)

{
if (SockQpen(SCPl)) {
sockQut [SCPI] . pri ntl n(command) ;
sockQut [SCPI] . fl ush();
}
}

/! Read an ASCI| string, terminated with carriage return from SCPl socket

public String Scpi ReadLi ne()

{
try {
if (SockQpen(sCPl)) {
0
return sockl n[SCPI]. readLi ne(); ¢
i)
} S
(o]
} 5
catch (1 CException e) { g
Systemout. println("Scpi Read Line Error "+e.getMessage()); En
ja3]
} =l
return null;]
}

/! Read a byte from SCPI socket
public byte Scpi ReadByt e()
{
try {
if (SockOpen(SCPl)) {
return sockln[SCPI].readByte();

Chapter 18 333

PSA Programming Examples
Using Java Programming Over Socket LAN

catch (I Cexception e) {
Systemout.println("Scpi Read Byte Error "+e.get Message());

}

return O;

0
Q
o
S
@©
x
1]
=)
£
S
S
©
S
o
o
S
[a
<
n
o

334 Chapter 18

PSA Programming Examples
Using the VXI Plug-N-Play Driver in LabVIEW®

|
Using the VXI Plug-N-Play Driver in
LabVIEW®
This example shows how to use the VXI plug and play driver over LAN
in LabVIEW 6. The vi file (lan_pnp.vi) can be found on the
Documentation CD.
You must have Version K of the Agilent 10 libraries installed on your
PC, either alone or installed side-by-side with the National Instruments
10 libraries. Also, you must first import the VXI plug and play driver
into LabVIEW before running this example. The instrument drivers are
available at:
http://ww agi | ent. com find/iolib (Click on instrument drivers.)
This example:
1. Opens a VXI 11.3 Lan connection to the instrument
2. Sets the Center Frequency to 1 GHz
3. Queries the instrument’s center frequency
4. Closes the Lan connection to the instrument
NOTE Substitute your instruments I.P. address for the one used in the
example.
n,
(2
>
lt»! psa.vi Diagram -0l x] g
File Edit Operate Toolz Browse ‘Window Help %
D (@] @[n][2]ea]@ oo [130t spplcation Font |~][fo+ [T ~|[#5~] g
=]
TCPIPD:141.121.883.193:IN5TR] (rQn
X
Q
[aged44sa Initialize. vi _g
AGEYYYH 5
'-I i [aged44=a Set Center Frequency.vil @
HEE = agedd4ya Get Center Frequency. vil agedddra Cloge vi
| ConFig RGENHY IHEE'I'I'IH
_I E+9 Heasure Close Il
1] | v [

Chapter 18 335

PSA Programming Examples
Using LabVIEW® 6 to Make an EDGE GSM Measurement

Using LabVIEW® 6 to Make an EDGE GSM
Measurement

This is a LabVIEW 6 example that uses SCPI commands instead of the
instrument driver. It demonstrates reading ASCII trace points of entire
EDGE waveform data in the Power Vs. Time measurement over LAN.
This program uses the optional GSM/EDGE personality in the PSA
Series Spectrum Analyzers and in the E4406A Vector Signal Analyzer.
The vi file (epvt.vi) can be found on the Documentation CD.

This example:

1. Opens a VXI 11.3 Lan connection to the instrument

2. Changes the data format to ASCI|I.

3. Initiates a power vs. time measurement and reads the results.
4

. The comma separated ASCII results string is converted to an array
of values.

IE epvL.¥i Diagram _ |D|£|
File Edit Cperate Tools Browse ‘indow Help
o> |1§}| @IE |Lullﬁ’|uj} | 13pt Application Font | .I| :mv'|7u:v'|{'§'jv' z &
=
3 o = TCRYIP Instr
g— r Tirmeaouk
S S000
pt 4201
£
€ Feturn count 2
&
>
09_ Ugfn '.;'Li’i :-'b.f-l':-ﬂ\ Feturn counk
[- [usz]

% wiE R Flumeric
a

W form:datatsasci; read:epvtz7in| 52000 @_

Error ouk
Error ouk 2
==z
—
Kl [

336 Chapter 18

PSA Programming Examples
Using LabVIEW® 6 to Make an EDGE GSM Measurement

B! epyL.vi 10| x|
File Edit OQperate Tools Browse Windomw Help s
o> I@l i@ IE‘ | 13pt Application Font | = ” :m'{ e || f§"lv| =
B
waveform Graph Foto IR
Enter Instrument TCPIP Address e
ko wsa If0 Field. Faor Example: i"
TCPIP: 114112188, 193: tinsty g I]‘u ']lﬂm““"“wn'w
wsa ‘ ‘
-40.0 -
T 3
£ .a0.0-
£
T
-80.0-
-100.0 -
-120.0- 1 1 1 1 1
a 1000 2000 3000 4000 5000
Time
CHiET @t errar ouk 2
skatus code

dbi skatus code return counk 2 return count
L — 4p 29 71417

SOUFCE

SOUrCe
_|‘

Mumeric -
71417

—

0
n
>
i)
=
o
(o]
=
Q
3
3
=
(]
m
X
ja3]
E
=5
@
(2]

Chapter 18 337

PSA Programming Examples
Using Visual Basic® .NET with the IVI-Com Driver

Using Visual Basic® .NET with the IVI-Com
Driver

This example uses Visual Basic .NET with the IVI-Com driver. It makes
a time domain (Waveform) measurement using the Basic mode. Basic
mode is standard in the E4406A Vector Signal Analyzer and is optional
(B7J) in the PSA Series Spectrum Analyzers. The vb file

(vbivicomsa_basicwaveform.vb) and the compiled executable file
(vbivicomsa.exe) can be found on the Documentation CD.

T L LT
" VBI vi ConBA Basi c\Wavef orm vb, August 5, 2003

" This exanpl e denonstrates the use of the IVI-COMdriver in VB NET

" through an interop assenbly. The Raw |/ Qtrace data fromthe VWaveform

" measurenent in Basic Mdde is queried and printed to the screen.

Requi r enent s:

" 1) E4406A or PSA Series Spectrum Analyzer with Qotion B7J

" 2) Latest AgilentSa IVI-COMdriver

' You may downl oad it here: http://ww agilent.com find/inst_drivers
' This exanple was tested with version 2.1.0.0 of the driver

' 3) Geate a new project and add the References to this nodul e

’ and to the the IM-COMdriver dlls:

For .NET, right click on Reference, choose Add Reference

' and then click on Browse and directly link the DLLs in the directory:
' C\ProgramFiles\IM\Bin\Primary Interop Assenblies

' Agilent. AgilentSa.Interop.dll

' Agi | ent . Agi | ent SaAppBasi c. | nterop. dl |

' Agilent.Itl.Interop

’ IviDriverlLib.dll

' I vi SpecAnLi b. dI |

(%]
<
Q.
£
@©
x
1]
(@]
<
£
£
©
1
(o))
o
S
o
<
n
o

" TH S CODE AND | NFORVATI ON ARE PROVI DED "AS | S" WTHOUT WARRANTY COF ANY
" KIND, El THER EXPRESSED CR | MPLI ED, | NCLUDI NG BUT NOT LIM TED TO THE

" | MPLI ED WARRANTI ES COF MERCHANTABI LI TY ANDY CR FI TNESS FCR A

" PARTI CULAR PURPCSE.

338 Chapter 18

PSA Programming Examples
Using Visual Basic® .NET with the IVI-Com Driver

" Copyright (c) 2003. Agilent Technol ogies, Inc.

HEEEEEEEEEEEEEEEEEEE SRS E R RS R EES

otion Strict

I mports Agil ent. TMr anewor k
Imports Agilent.AgilentSa.lnterop
Imports lvi.Driver.Interop

I mports System Runtine. | nteropServices

Modul e Consol eApp

Sub Mai n()

" Pronpt the user for the address of the instrunent

D maddress As String

Consol e. Wi teLi ne("Enter address of the instrument " & vbOrLf & _
"(ex: GPIB0::18::1NSTR or TCPIPO::192.168.100.2::inst0::INSTR:")
addr ess = Consol e. ReadLi ne()

Try
" Oreate an instance of the driver, connection to the instrunent
" is not established here, it is done by calling Initialize

Dminstr As New Agil ent Sad ass()

' Establish the connection to the instrunent
' Last parameter (DriverSetup) is optional, VB could omt it (but not GC#)
" Inportant: Cose nust be called to rel ease resources used by the driver

instr.Initialize(address, False, False, "")

Try
" | NHERENT CAPABI LI TI ES
" Note that it is not necessary to program agai nst the IlviDriver
" interface, the same can be achi eved by using the class directly
" Wsing the IlviDriver interface gives us interchangeabl e code

Dminherent As IlviDriver = instr

Chapter 18

339

0
n
>
i)
=
o
(o]
=
Q
3
3
=
(]
m
X
ja3]
E
=5
@
(2]

(%]
<
Q.
£
@©
x
1]
(@]
<
£
£
©
1
(o))
o
S
o
<
n
o

PSA Programming Examples
Using Visual Basic® .NET with the IVI-Com Driver

D m nanuf acturer As String
D mnodel As String

Dmfirmare As String

nmanuf acturer = inherent.|dentity. | nstrunent Manuf act urer
nodel = inherent.ldentity.|nstrument Mdel

firmmvare = inherent.ldentity.|nstrumentFirnwareRevi si on
" Qutput instrument infornmation to the console

Consol e. Wi t eLi ne(" Manuf acturer: + manuf act urer)

Consol e. Wi teLi ne("Mdel : " + nodel)

Consol e. Wi t eLi ne("Fi r mnar e: + firnware)
" Reset the instrunent

inherent. Wility. Reset ()

" | NSTRUMENT SPECIFI C

" Wsing the IAgilentSa interface is not necessary or beneficial

" at the moment, but in the future if other instrunents inplement
" the IAgilentSa interface, the code that is witten to work with
" that interface can be reused w thout changes, as opposed to code
" that is witten against the class object directly

Dmsa As |AgilentSa = instr

" (htain trace data fromthe instrunent
Dmtracebata As Array

sa. Appl i cation. Sel ect ("Basi c")

" sa. Appl i cati on. Basi c. \avef or m Confi gure()

sa. Appl i cation. Basi c. Spectrum Traces. I nitiate()

traceData = sa. Application. Basi c. Wavef orm Traces. | ten(" Rawl Q') . Read(10000)

" Qutput the trace data to the consol e

Consol e. WiteLine("Press ENTER to display trace data.")
Consol e. ReadLi ne()

D mtraceVal ue As Doubl e

For Each traceVal ue In traceData

Consol e. Wi t eLi ne(traceVal ue)

340 Chapter 18

PSA Programming Examples
Using Visual Basic® .NET with the IVI-Com Driver

Next

Catch ex As Exception
Consol e. Wi t eLi ne(ex. Message)

Finally
" dose the connection
instr.d ose()

End Try

Catch ex As COvException
Consol e. Wi t eLi ne(ex. Message)

Catch ex As Exception
Consol e. Wi t eLi ne(ex. Message)

End Try
. . n,
' Wit for user input ¢
Consol e. Wi teLine("Press ENTER to end program") é’
(o]
Consol e. ReadLi ne() g
El
=}
(]
End Sub m
X
Q
3
°
End Modul e 1]

Chapter 18 341

PSA Programming Examples
Using Agilent VEE to Capture the Equivalent SCPI Learn String

Using Agilent VEE to Capture the Equivalent
SCPI Learn String

This example shows how to use VEE to emulate the *LRN SCPI
command. The VEE file (Irnstring.vee) can be found on the
Documentation CD.

This VEE programming example transfers the saved state register (17 in
this example) to the program. The program then copies this register back
into the instrument and recalls the state. This, in many cases, is equivalent
to the *LRN SCPI command.

-l
File Edit Yiew Debug Flow Device IJO Data Display Window Help
NEES r1 e3P L|ABAAG AW ERA L BE T x[HS
B LRNSTRING vee i i
LB Main
Start |
=] newlnstrument2 (ag e4440a @ 1418) =]
| |
: : REAL 4" EOL
WRITE TEXT "*SAY 17" EOL
WRITE TEXT " MMEM DATA? VC:REGT T.5TA EOL
MNOP! READ BINBLOCK x BYTE ARRAY:T]
@ WRITE TEXT " FREQ:CENT 1GHZ' EOL | —
= WRITE TEXT " MMEM.DEL VC:REG1 7.5TA" EOL
= = Double-Click to Add Transaction =
S
i
o pE - =
= 1
€ | Ok
S : |
o — e ——
= = newinstrument2 (ag e4440a @1418) =
o WRITE BINBLOCK "MMEM DATA C-REG17 STA" % BYTE EOL
= WRITE TEXT ""RCL 17 EOL
o | X | = Diouble-Click to Add Transaction =
Ready [MEEB | PROF|[MOD [WWEB |

342 Chapter 18

Index

A

ACPR
C programming example 176
active function position, moving
14
adding limit lines programming
example using C 233
adjacent channel power
measurement 74
Agilent VEE program example
197, 342
alignments
programming example 179
AM demodulation
time-domain demodulation,
manually calculating 157
AM signal demodulation 92
analyzer distortion products 40
attenuation
input, reducing 26
setting automatically 27
setting manually 27
averaging
description 30
types 30
averaging faster programming
example using C 269

B

Bluetooth power measurement 68
burst power measurement 68

C

C language
addressing sessions 174
closing sessions 175
compiling and linking 169
creating 167
example 171
opening session 172
sessions 172
using VISA library 167
using VISA transition library
169, 171
C programming, socket LAN,
UNIX 303
C programming, socket LAN,
WIN NT 323
calculate average power of GSM
bursts
programming example 297
calibration
programming example 179
CCDF statistical power
measurement 71
channel power measurement

noise-like signals 54
comparing signals
two signals 12, 14
two signals not on the same
screen 15
compressing measurement data,
programming example 297
Concepts
AM demodulation 157
FM demodulation 157
concepts
gated FFT (PSA) 137
gated LO (PSA) 136
gated video (ESA) 136
harmonic distortion, calculation
132
IF filter, defined 130
resolving signals of equal
amplitude 130
resolving small signals hidden
by large signals 131
stimulus response 158
time gating 133
TV trigger 154
counter resolution, readout 32

D

delta marker 12, 14
Demod key 96
demodulating
AM 92
AM overview 92
FM 98
FM overview 98
TV signals 121
depth of modulation
measurement 126
detectors, average 29
device bandwidth measurement
114, 160
display
active function position, moving
14
distortion measurements
harmonic 45
identifying TOI distortion 42
indentifying distortion products
40
overview 40
distortion products 40
drifting signals 38

E

entering amplitude correction
data programming example
using C 243

equipment 10

error status programming
example using C 247
examples
AM demodulation
ESA built-in AM
demodulation 96
manual demodulation 92
average detector, using 29
averaging, trace 30
distortion
harmonics 45
identify distortion products 40
TOI 42
external mixing
frequency tracking calibration
6

preselected mixers, using 86
unpreselected mixers, using
82
FM demodulation
ESA built-in FM demodulation
98
frequency drift 36
input attenuation, reducing 26
marker counter 32
measuring
low-level signals 29
noise
band power marker 52
channel power, using 54
noise marker 50
overview 48
signal to noise 48
power suite
ACP 74
burst power 68
CCDF 71
multi-carrier power 77
resolution bandwidth, reducing
28
segmented sweep
monitor CDMA band 108
using with limit lines 106
view harmonics 104
signals
low-level, overview 26
off-screen, comparing 15
on-screen, comparing 12, 14
resolving, equal amplitude 17
resolving, small signals hidden
by large signals 20
stimulus response
device bandwidth 114, 160
filter response 116
reflection calibration 118
transmission 112
time gating

343

Index

Index

ESA-E time gate 64
PSA gated FFT 66
PSA gated sweep 62
trace averaging 30
tracking a signal 38
TV signals
demodulate and view 122
depth of modulation 126
external mixing
entering conversion loss data 85
preselected mixers, using 86
setting mixer bias 84
unpreselected mixers, using 82

F

finding hidden signals 131
FM demodulation
time-domain demodulation,
manually calculating 157
FM signal demodulation 98
frequency readout resolution
increased 32

G

gate delay
setting the gate delay, time
gating 144
gate length
setting the gate length, time
gating 144
gated FFT (PSA), concepts 137
gated LO (PSA), concepts 136
gated video (ESA), concepts 136
GSM mobile power calibation PSA
programming example using
C 291
GSM/EDGE program example,
using LabVIEW 336

H

harmonic distortion
measuring harmonics 132
measuring low-level signals 15
hold, maximum 36

identifying distortion products 40

initial setting for time gating 148

input attenuation, reducing 26

intermodulation distortion, third
order 42, 132

internal self alignment
programming example using
C 210

IVI-Com driver program example
using Visual Basic .NET 338

J

Java programming, socket LAN
326

L

LabVIEW program example 335,
336
limit lines
entering data 107
low-level signals
harmonics, measuring 15
input attenuation, reducing 26
resolution bandwidth, reducing
28
sweep time, reducing 29
trace averaging 30

M

marker counter example
marker frequency resolution 32
marker delta mode programming
example using C 206
marker peak search programming
example using C 202, 280
markers
band power 52
delta 12, 14
noise marker 49, 50
span pair 52
Max Hold key 36
maximum hold 36
MCP 77
measure harmonic distortion over
GPIB programming example
using C 253
measure harmonic distortion over
RS-232 programming
example using C 261
measure noise programming
example using C 239
measurements
device bandwidth 114, 160
distortion 40
harmonics 45
TOI 42
frequency drift 36, 38
noise
band power marker 52
channel power 54
noise marker 50
overview 48
signal to noise 48
stimulus response 112
filter response 116
time gating 57
ESA-E time gate 64

PSA gated FFT 66
PSA gated sweep 62
TV
depth of modulation 126
fast time-domain sweeps 156
measuring return loss 120
measurments
distortion
identifying 40
moving signals 38
multi-carrier power measurement
77

N

N dB Points key 114, 160
noise measurements
band power marker, using 52
channel power, using 54
noise marker, using 50
overview 48
signal to noise 48
sweep time, reducing 29
normalizating reference position
113, 159
Normalize On Off key 113, 159

o

openSocket 303, 323, 326
overview

stimulus response 112
overviews

distortion 40

low-level signal 26

noise 48

resolving signals 130

time gating 133

P

Plug-N-Play driver program
example 335
positioning the gate, time gating
143
power suite
channel power 54
measurements
ACP or adjacent channel
power 74
burst power 68
CCDF 71
MCP or multi-carrier power 77
power suite measurements 67
program example
Agilent VEE 197, 342
C 176, 179, 182, 303, 323

344

Index

C, using ESA 202, 206, 210,
214, 218, 223, 228, 233,
239, 243, 247, 253, 261, 269

C, using PSA 280, 283, 287,
291, 297

IVI-Com driver 338

Java 326

LabVIEW 335, 336

socket LAN, UNIX using C 303

socket LAN, using Java 326

socket LAN, WIN NT using C
323

Visual Basic 188, 192

Visual Basic .NET 338

VXI Plug-N-Play driver 335

programming

example using C language 171

using C language 167

programming example

ACPR measurement 176

adding limit lines, using C 233

alignments 179

calculate average power of GSM
bursts 297

determine if an error occurred,
using C 247

EDGE/GSM using LabVIEW
336

entering amplitude correction
data, using C 243

GSM mobile power calibration
with a PSA, using C 291

internal self-alignment, using C
210

IVI-Com driver, using Visual
Basic .NET 338

list of ESA examples 200

making faster power averaging
measurements, using C 269

marker delta mode, using C 206

marker peak search, using C
202, 280

measure harmonic distortion
over GPIB, using C 253

measure harmonic distortion
over RS-232, using C 261

measure noise, using C 239

read ESA 32-bit trace data over
GPIB, using C 218

read ESA 32-bit trace data over
RS- 232, using C 228

read ESA ASCI|I trace data over
GPIB, using C 214

read ESA ASCII trace data over
RS- 232, using C 223

saving and recalling PSA states,
using C 283

saving PSA binary trace data,
using C 287

SCPI learn string, using VEE
342

screen image capture 188

SRQ, using 182

system requirements, ESA
examples 201

system requirements, PSA
examples 279

transfer binary trace data 192

transfer trace data, using VEE
197

using C over socket LAN via
UNIX 303

using C over socket LAN via
WIN NT 323

using Java over socket LAN 326

VXI Plug-N-Play driver, using
LabVIEW 335

R

RBW selections 28
read ESA 32-bit trace data over
GPIB programming example
using C 218
read ESA 32-bit trace data over
RS-232 programming
example using C 228
read ESA ASCI|I trace data over
GPIB programming example
using C 214
read ESA ASCI| trace data over
RS-232 programming
example using C 223
reflection calibration and
measurement 118
resloving, equal amplitude 130
resolution bandwidth
adjusting 28
resolving signals 131
resolving signals
small signals hidden by large
signals 131
resolving two signals
equal amplitude 17, 130
return loss
converting to VSWR 160
return loss measurement 120
rules for time gating 147

S
saving and recalling PSA states

programming example using
C 283

saving PSA binary trace data
programming example using
C 287
SCPI learn string using VEE
program example 342
screen image capture
programming example 188
segmented sweep
CDMA example 108
measuring harmonics 104
using with limit lines 106
signal parameters for a
time-gated measurement 141
signal tracking
example 38
marker tracking 22
using to resolve signals 22
signals
low-level, overview 26
off-screen, comparing 15
on-screen, comparing 12, 14
resolving, overview 130
separating, overview 130
socket LAN
Java program example 326
socket LAN, UNIX
C program example 303
socket LAN, WIN NT
C program example 323
Span Zoom key 36
SRQ
programming example 182
stimulus response
measure response of a LP filter
116
stimulus response measurements
112
stimulus response, concepts 158
sweep coupling
stimulus response
measurements 113, 115,
117, 159
sweep time and sensitivity trade
off 28
sweep time for a time-gated
measurement 64, 142
sweep time, changing 29

T

test equipment 10
third order intermodulation
distortion example 42, 45
time gating
description 133
ESA-E time gate, using 64
example 57
gated FFT (PSA), concepts 137

345

Index

Index

gated LO (PSA), concepts 136
gated video (ESA), concepts 136
how time gating works 135
initial settings 148
keys 143
positioning the gate 63, 143
PSA gated FFT, using 66
PSA gated sweep, using 62
rules 147
setting sweep time 148
setting the gate length 144
setting the resolution
bandwidth 144, 145
setting the span 143, 146
setting the video bandwidth
144, 146
signal parameters 141
steps for measuring unknown
signals 141
sweep time 64, 142
triggering
edge mode 151
level mode 151
negative edge 151
positive edge 151
troubleshooting 149

time gating measurement 57
tracking generator

normalization 113, 160
reflection calibration
measurement 118
source power control 112
stimulus response 158
stimulus response measurement
112
sweep coupling 113, 115, 117,
159
unleveled condition 158
tracking unstable signals 38
transfer binary trace data
programming example 192
transfer trace data using VEE
program example 197
troubleshooting
time-gated measurements 149
TV picture viewing 121
TV standard setup 154
TV trigger setup 154

U
unstable signals 38

\Y

VISA library 169, 171

Visual Basic .NET program
example 338

Visual Basic program example

screen image capture 188
transfer binary trace data 192
VSWR and return loss 160
VTL, compiling and linking C
language 169
VXI Plug-N-Play driver program
example 335

W

W-CDMA ACP measurement 74

W-CDMA CCDF power
measurement 71

W-CDMA multi-carrier power
measurement 77

346

	Meas Guide/Prog Examples
	Table of Contents
	1 Recommended Test Equipment
	2 Measuring Multiple Signals
	Comparing Signals on the Same Screen Using Marker Delta
	Comparing Signals on the Same Screen Using Marker Delta Pair
	Comparing Signals not on the Same Screen
	Resolving Signals of Equal Amplitude
	Resolving Small Signals Hidden by Large Signals
	Decreasing the Frequency Span Around the Signal

	3� Measuring a Low-Level Signal
	Reducing Input Attenuation
	Decreasing the Resolution Bandwidth
	Using the Average Detector and Increased�Sweep Time
	Trace Averaging

	4 Improving Frequency Resolution and Accuracy
	Using a Frequency Counter to Improve Frequency Resolution and Accuracy

	5 Tracking Drifting Signals
	Measuring a Source’s Frequency Drift
	tracking unstable signals;unstable signals;moving signals;drifting signals; measurements: frequency

	6 Making Distortion Measurements
	Identifying Analyzer Generated Distortion
	Third-Order Intermodulation Distortion
	Measuring TOI Distortion with a One-Button Measurement
	Measuring Harmonics and Harmonic Distortion with a One-Button Measurement

	7 Measuring Noise
	Measuring Signal-to-Noise
	Measuring Noise Using the Noise Marker
	Measuring Noise-Like Signals Using Marker Pairs
	Measuring Noise-Like Signals Using the Channel Power Measurement

	8� Making Time-Gated Measurements
	Generating a Pulsed-RF FM Signal
	Connecting the Instruments to Make Time-Gated Measurements
	Gated LO Measurement (PSA)
	Gated Video Measurement (ESA)
	Gated FFT Measurement (PSA)

	9 Measuring Digital Communications Signals
	Making Burst Power Measurements
	Making Statistical Power Measurements (CCDF)
	Making Adjacent Channel Power (ACP) Measurements
	Making Multi-Carrier Power (MCP) Measurements

	10 Using External Millimeter Mixers (Option AYZ)
	Making Measurements With Agilent 11970 Series Harmonic Mixers
	Setting Harmonic Mixer Bias Current
	Entering Conversion-Loss Correction Data for Harmonic Mixers
	Making Measurements with Agilent 11974 Series Preselected Harmonic Mixers
	Frequency Tracking Calibration with Agilent 11974 Series Preselected Harmonic Mixers

	11 Demodulating AM and FM Signals
	Measuring the Modulation Rate of an AM Signal
	Measuring the Modulation Index of an AM Signal
	Demodulating an AM Signal Using the ESA Series
	Demodulating an FM Signal Using the ESA-E Series (Requires Option BAA)

	12 Using Segmented Sweep (ESA-E Series Spectrum Analyzers)
	Measuring Harmonics Using Standard Sweep
	Measuring Harmonics Using Segmented Sweep
	Using Segmented Sweep With Limit Lines
	Using Segmented Sweep to Monitor the Cellular Activity of a cdmaOne Band

	13 Stimulus Response Measurements (ESA Options 1DN and 1DQ)
	Making a Stimulus Response Transmission Measurement
	Calculating the N dB Bandwidth Using Stimulus Response
	Measuring Stop Band Attenuation Using Log Sweep (ESA-E Series)
	Making a Reflection Calibration Measurement
	Measuring Return Loss using the Reflection Calibration Routine

	14 Demodulating and Viewing Television Signals (ESA-E Series Option B7B)
	Demodulating and Viewing Television Signals
	Measuring Depth of Modulation

	15� Concepts
	Resolving Closely Spaced Signals
	Resolving Signals of Equal Amplitude
	Resolving Small Signals Hidden by Large Signals

	Harmonic Distortion Calculations
	Time Gating Concepts
	Introduction: Using Time Gating on a Simplified Digital Radio Signal
	How Time Gating Works
	Measuring a Complex/Unknown Signal
	"Quick Rules" for Making Time-Gated Measurements
	Using the Edge Mode or Level Mode for Triggering
	Noise Measurements Using Time Gating

	Trigger Concepts
	Selecting a Trigger
	TV Trigger

	AM and FM Demodulation Concepts
	Demodulating an AM Signal Using the Analyzer as a Fixed Tuned Receiver (Time-Domain)
	Demodulating an FM Signal Using the Analyzer as a Fixed Tuned Receiver (Time-Domain)

	Stimulus Response Measurement Concepts
	Stimulus Response Overview
	Tracking Generator Unleveled Condition
	Sweeping in Stimulus Response Auto Coupled Mode
	Normalization Concepts
	Measuring Device Bandwidth
	Converting Return Loss to VSWR

	16� ESA/PSA Programming Examples
	Examples Included in this Chapter:
	Finding Additional Examples and More Information
	Programming Examples Information and Requirements
	Programming in C Using the VTL
	Typical Example Program Contents
	Linking to VTL Libraries
	Compiling and Linking a VTL Program
	Example Program
	Including the VISA Declarations File
	Opening a Session
	Device Sessions
	Addressing a Session
	Closing a Session

	Using C to Make a Power Suite ACPR Measurement on a cdmaOne Signal
	Example:

	Using C to Serial Poll the Analyzer to Determine when an Auto-alignment is Complete
	Example:

	Using C and Service Request (SRQ) to Determine When a Measurement is Complete
	Using Visual Basic® 6 to Capture a Screen Image
	Using Visual Basic® 6 to Transfer Binary Trace Data
	Using Agilent VEE to Transfer Trace Data
	VEE Window Capture of “tracetransfer.vee”:

	17 ESA Programming Examples
	Examples Included in this Chapter:
	Programming Examples System Requirements
	Using C with Marker Peak Search and Peak Excursion Measurement Routines
	Using C for Marker Delta Mode and Marker Minimum Search Functions
	Using C to Perform Internal Self-Alignment
	Using C to Read Trace Data in an ASCII Format (over GPIB)
	Using C to Read Trace Data in a 32-Bit Real Format (over GPIB)
	Using C to Read Trace Data in an ASCII Format (over RS-232)
	Using C to Read Trace Data in a 32-bit Real Format (over RS-232)
	Using C to Add Limit Lines
	Using C to Measure Noise
	Using C to Enter Amplitude Correction Data
	Using C to Determine if an Error has Occurred
	Using C to Measure Harmonic Distortion (over GPIB)
	Using C to Measure Harmonic Distortion (over RS-232)
	Using C to Make Faster Power Averaging Measurements

	18� PSA Programming Examples
	Examples Included in this Chapter:
	Programming Examples Information and Requirements
	Using C with Marker Peak Search and Peak Excursion Measurement Routines
	Using C for Saving and Recalling Instrument State Data
	Using C to Save Binary Trace Data
	Using C to Make a Power Calibration Measurement for a GSM Mobile Handset
	Using C with the CALCulate:DATA:COMPress? RMS Command
	Using C Over Socket LAN (UNIX)
	Using C Over Socket LAN (Windows NT)
	Using Java Programming Over Socket LAN
	Using the VXI Plug-N-Play Driver in LabVIEW®
	Using LabVIEW® 6 to Make an EDGE GSM Measurement
	Using Visual Basic® .NET with the IVI-Com Driver
	Using Agilent VEE to Capture the Equivalent SCPI Learn String

	Index

