This guide applies to the following signal generator models:

E8257D PSG Analog Signal Generator
E8267D PSG Vector Signal Generator

Because of our continuing efforts to improve our products through firmware and hardware revisions, signal generator design and operation may vary from descriptions in this guide. We recommend that you use the latest revision of this guide to ensure that you have up-to-date product information. Compare the print date of this guide (see bottom of page) with the latest revision, which can be downloaded from the following website:

http://www.agilent.com/find/psg
Notice

The material contained in this document is provided “as is”, and is subject to being changed, without notice, in future editions.

Further, to the maximum extent permitted by applicable law, Agilent disclaims all warranties, either express or implied with regard to this manual and to any of the Agilent products to which it pertains, including but not limited to the implied warranties of merchantability and fitness for a particular purpose. Agilent shall not be liable for errors or for incidental or consequential damages in connection with the furnishing, use, or performance of this document or any of the Agilent products to which it pertains. Should Agilent have a written contract with the User and should any of the contract terms conflict with these terms, the contract terms shall control.
Contents

1 Using this Guide

How the SCPI Information is Organized ..1
 SCPI Listings ...1
 Subsystem Groupings by Chapter ...1
 Front Panel Operation Cross Reference ...1
 Supported Models and Options per Command2

SCPI Basics ..2
 Common Terms ...2
 Command Syntax ..2
 Command Types ...4
 Command Tree ...4
 Command Parameters and Responses ..5
 Program Messages ..9
 File Name Variables ..10
 ARB Waveform File Directories ...11
 MSUS (Mass Storage Unit Specifier) Variable11
 Quote Usage with SCPI Commands ..12
 Binary, Decimal, Hexadecimal, and Octal Formats13

2 System Commands

Calibration Subsystem (:CALibration) ..16
 :DCFM ...16
 :IQ ...16
 :IQ:DC ...16
 :IQ:DEFault ..17
 :IQ:FULL ...17
 :IQ:STARt ..18
 :IQ:STOP ...18
 :WBIQ ...18
 :WBIQ:DC ..19
 :WBIQ:DEFault ..19
 :WBIQ:FULL ..20
 :WBIQ:STARt ..20
 :WBIQ:STOP ..20

Communication Subsystem (:SYSTEM:COMMunicate)21
 :GPIB:ADDRess ..21
 :GTLocal ...21
 :LAN:CONFig ..22
 :LAN:GATEway ..22
 :LAN:HOSTname ...22
 :LAN:IP ...23
<table>
<thead>
<tr>
<th>Command</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>*RST</td>
<td>35</td>
</tr>
<tr>
<td>*SAV</td>
<td>36</td>
</tr>
<tr>
<td>*SRE</td>
<td>36</td>
</tr>
<tr>
<td>*SRE?</td>
<td>36</td>
</tr>
<tr>
<td>*STB?</td>
<td>37</td>
</tr>
<tr>
<td>*TRG</td>
<td>37</td>
</tr>
<tr>
<td>*TST?</td>
<td>37</td>
</tr>
<tr>
<td>*WAI</td>
<td>37</td>
</tr>
<tr>
<td>Low-Band Filter Subsystem</td>
<td>38</td>
</tr>
<tr>
<td>[SOURce]:LBFilter</td>
<td>38</td>
</tr>
<tr>
<td>Memory Subsystem (:MEMory)</td>
<td>38</td>
</tr>
<tr>
<td>:CATalog:BINary</td>
<td>38</td>
</tr>
<tr>
<td>:CATalog:BIT</td>
<td>38</td>
</tr>
<tr>
<td>:CATalog:DMOD</td>
<td>39</td>
</tr>
<tr>
<td>:CATalog:FIR</td>
<td>39</td>
</tr>
<tr>
<td>:CATalog:FSK</td>
<td>39</td>
</tr>
<tr>
<td>:CATalog:IQ</td>
<td>40</td>
</tr>
<tr>
<td>:CATalog:LIST</td>
<td>40</td>
</tr>
<tr>
<td>:CATalog:MDMod</td>
<td>40</td>
</tr>
<tr>
<td>:CATalog:MTOne</td>
<td>41</td>
</tr>
<tr>
<td>:CATalog:SEQ</td>
<td>41</td>
</tr>
<tr>
<td>:CATalog:SHAPe</td>
<td>41</td>
</tr>
<tr>
<td>:CATalog:STATE</td>
<td>42</td>
</tr>
<tr>
<td>:CATalog:UFLT</td>
<td>42</td>
</tr>
<tr>
<td>:CATalog[:ALL]</td>
<td>42</td>
</tr>
<tr>
<td>:COPY[:NAME]</td>
<td>43</td>
</tr>
<tr>
<td>:DATA</td>
<td>43</td>
</tr>
<tr>
<td>:DATA:APPend</td>
<td>44</td>
</tr>
<tr>
<td>:DATA:BIT</td>
<td>45</td>
</tr>
<tr>
<td>:DATA:FIR</td>
<td>45</td>
</tr>
<tr>
<td>:DATA:FSK</td>
<td>46</td>
</tr>
<tr>
<td>:DATA:IQ</td>
<td>47</td>
</tr>
<tr>
<td>:DATA:PRAM:FILE:BLOCk</td>
<td>48</td>
</tr>
<tr>
<td>:DATA:PRAM:FILE:LIST</td>
<td>49</td>
</tr>
<tr>
<td>:DATA:PRAM?</td>
<td>50</td>
</tr>
<tr>
<td>:DATA:PRAM:BLOCk</td>
<td>50</td>
</tr>
<tr>
<td>:DATA:PRAM:LIST</td>
<td>50</td>
</tr>
<tr>
<td>:DATA:SHApe</td>
<td>50</td>
</tr>
<tr>
<td>:DATA:UNPRotected</td>
<td>51</td>
</tr>
<tr>
<td>:DELeTe:ALL</td>
<td>52</td>
</tr>
<tr>
<td>:DELeTe:BINary</td>
<td>52</td>
</tr>
</tbody>
</table>
Contents

<table>
<thead>
<tr>
<th>Command</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>:DELeTe:BIT</td>
<td>53</td>
</tr>
<tr>
<td>:DELeTe:DMOD</td>
<td>53</td>
</tr>
<tr>
<td>:DELeTe:FIR</td>
<td>53</td>
</tr>
<tr>
<td>:DELeTe:FSK</td>
<td>53</td>
</tr>
<tr>
<td>:DELeTe:IQ</td>
<td>53</td>
</tr>
<tr>
<td>:DELeTe:LIST</td>
<td>54</td>
</tr>
<tr>
<td>:DELeTe:MDMod</td>
<td>54</td>
</tr>
<tr>
<td>:DELeTe:MTONe</td>
<td>54</td>
</tr>
<tr>
<td>:DELeTe:SEQ</td>
<td>54</td>
</tr>
<tr>
<td>:DELeTe:SHAPe</td>
<td>54</td>
</tr>
<tr>
<td>:DELeTe:STATE</td>
<td>te</td>
</tr>
<tr>
<td>:DELeTe:UFLT</td>
<td>55</td>
</tr>
<tr>
<td>:DELeTe[:NAME:]</td>
<td>55</td>
</tr>
<tr>
<td>:LOAD:LIST</td>
<td>56</td>
</tr>
<tr>
<td>:MOVE</td>
<td>56</td>
</tr>
<tr>
<td>:STATE:COMMent</td>
<td>56</td>
</tr>
<tr>
<td>:STORe:LIST</td>
<td>57</td>
</tr>
<tr>
<td>Mass Memory Subsystem (:MMEMory)</td>
<td>57</td>
</tr>
<tr>
<td>:CATalog</td>
<td>57</td>
</tr>
<tr>
<td>:COPY</td>
<td>58</td>
</tr>
<tr>
<td>:DATA</td>
<td>58</td>
</tr>
<tr>
<td>:DELeTe:NVWFm</td>
<td>59</td>
</tr>
<tr>
<td>:DELeTe:WFM</td>
<td>60</td>
</tr>
<tr>
<td>:DELeTe[:NAME:]</td>
<td>60</td>
</tr>
<tr>
<td>:HEADer:CLEar</td>
<td>60</td>
</tr>
<tr>
<td>:HEADer:DESCription</td>
<td>61</td>
</tr>
<tr>
<td>:LOAD:LIST</td>
<td>61</td>
</tr>
<tr>
<td>:MOVE</td>
<td>61</td>
</tr>
<tr>
<td>:STORe:LIST</td>
<td>61</td>
</tr>
<tr>
<td>Output Subsystem (:OUTPut)</td>
<td>62</td>
</tr>
<tr>
<td>:BLANking:AUTO</td>
<td>62</td>
</tr>
<tr>
<td>:BLANking[:STATE]</td>
<td>63</td>
</tr>
<tr>
<td>:MODulation[:STATE]</td>
<td>63</td>
</tr>
<tr>
<td>[:STATE]</td>
<td>63</td>
</tr>
<tr>
<td>Route Subsystem (:ROUTE:HWARdware:DEGenerator)</td>
<td>64</td>
</tr>
<tr>
<td>:INPut:BPOLarity</td>
<td>64</td>
</tr>
<tr>
<td>:INPut:CPOLarity</td>
<td>64</td>
</tr>
<tr>
<td>:INPut:DPOLarity</td>
<td>65</td>
</tr>
<tr>
<td>:INPut:SPOLarity</td>
<td>65</td>
</tr>
<tr>
<td>:IPO</td>
<td>Larity:BGATe</td>
</tr>
<tr>
<td>Command</td>
<td>Page</td>
</tr>
<tr>
<td>--------------------------</td>
<td>------</td>
</tr>
<tr>
<td>:POLarity:CLOCK</td>
<td>66</td>
</tr>
<tr>
<td>:POLarity:DATA</td>
<td>66</td>
</tr>
<tr>
<td>:POLarity:SSYNce</td>
<td>67</td>
</tr>
<tr>
<td>:OPOLarity:CLOCK</td>
<td>67</td>
</tr>
<tr>
<td>:OPOLarity:DATA</td>
<td>67</td>
</tr>
<tr>
<td>:OPOLarity:EVEN[1]</td>
<td>2</td>
</tr>
<tr>
<td>:OPOLarity:SSYNc</td>
<td>68</td>
</tr>
<tr>
<td>:OUTPut:CPOLarity</td>
<td>69</td>
</tr>
<tr>
<td>:OUTPut:DCS[:STATE]</td>
<td>69</td>
</tr>
<tr>
<td>:OUTPut:DPOLarity</td>
<td>69</td>
</tr>
<tr>
<td>:OUTPut:EPOL[1]</td>
<td>2</td>
</tr>
<tr>
<td>:OUTPut:SPOLarity</td>
<td>70</td>
</tr>
<tr>
<td>Status Subsystem (:STATus)</td>
<td>71</td>
</tr>
<tr>
<td>:OPERation:BASEband:CONDition</td>
<td>71</td>
</tr>
<tr>
<td>:OPERation:BASEband:ENABLE</td>
<td>71</td>
</tr>
<tr>
<td>:OPERation:BASEband:NTRansition</td>
<td>71</td>
</tr>
<tr>
<td>:OPERation:BASEband:PTRansition</td>
<td>72</td>
</tr>
<tr>
<td>:OPERation:BASEband[:EVENt]</td>
<td>72</td>
</tr>
<tr>
<td>:OPERation:CONDition</td>
<td>72</td>
</tr>
<tr>
<td>:OPERation:ENABLE</td>
<td>73</td>
</tr>
<tr>
<td>:OPERation:NTRansition</td>
<td>73</td>
</tr>
<tr>
<td>:OPERation:PTRansition</td>
<td>74</td>
</tr>
<tr>
<td>:OPERation[:EVENt]</td>
<td>74</td>
</tr>
<tr>
<td>:PRESet</td>
<td>74</td>
</tr>
<tr>
<td>:QUESTionable:CALibration:CONDition</td>
<td>74</td>
</tr>
<tr>
<td>:QUESTionable:CALibration:ENABLE</td>
<td>75</td>
</tr>
<tr>
<td>:QUESTionable:CALibration:NTRansition</td>
<td>75</td>
</tr>
<tr>
<td>:QUESTionable:CALibration:PTRansition</td>
<td>76</td>
</tr>
<tr>
<td>:QUESTionable:CALibration[:EVENt]</td>
<td>76</td>
</tr>
<tr>
<td>:QUESTionable:CONDition</td>
<td>76</td>
</tr>
<tr>
<td>:QUESTionable:ENABLE</td>
<td>77</td>
</tr>
<tr>
<td>:QUESTionable:FREQuency:CONDition</td>
<td>77</td>
</tr>
<tr>
<td>:QUESTionable:FREQuency:ENABLE</td>
<td>77</td>
</tr>
<tr>
<td>:QUESTionable:FREQuency:NTRansition</td>
<td>78</td>
</tr>
<tr>
<td>:QUESTionable:FREQuency:PTRansition</td>
<td>78</td>
</tr>
<tr>
<td>:QUESTionable:FREQuency[:EVENt]</td>
<td>79</td>
</tr>
<tr>
<td>:QUESTionable:MODulation:CONDition</td>
<td>79</td>
</tr>
<tr>
<td>:QUESTionable:MODulation:ENABLE</td>
<td>79</td>
</tr>
<tr>
<td>:QUESTionable:MODulation:NTRansition</td>
<td>80</td>
</tr>
<tr>
<td>:QUESTionable:MODulation:PTRansition</td>
<td>80</td>
</tr>
<tr>
<td>:QUESTionable:MODulation[:EVENt]</td>
<td>80</td>
</tr>
<tr>
<td>Contents</td>
<td>Page</td>
</tr>
<tr>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>:QUESTionable:NTRansition</td>
<td>81</td>
</tr>
<tr>
<td>:QUESTionable:POWer:CONDition</td>
<td>81</td>
</tr>
<tr>
<td>:QUESTionable:POWer:ENAble</td>
<td>81</td>
</tr>
<tr>
<td>:QUESTionable:POWer:NTRansition</td>
<td>82</td>
</tr>
<tr>
<td>:QUESTionable:POWer:PTRansition</td>
<td>82</td>
</tr>
<tr>
<td>:QUESTionable:[EVENt]</td>
<td>83</td>
</tr>
<tr>
<td>:QUESTIONable:POWer:ENABle</td>
<td>83</td>
</tr>
<tr>
<td>:QUESTIONable:POWer:PTransition</td>
<td>83</td>
</tr>
<tr>
<td>:QUESTIONable:POWer:[EVENt]</td>
<td>83</td>
</tr>
<tr>
<td>System Subsystem (:SYSTem)</td>
<td>84</td>
</tr>
<tr>
<td>:ALTernate</td>
<td>84</td>
</tr>
<tr>
<td>:ALTernate:STAte</td>
<td>84</td>
</tr>
<tr>
<td>:CAPability</td>
<td>84</td>
</tr>
<tr>
<td>:DATE</td>
<td>85</td>
</tr>
<tr>
<td>:ERRor[:NEXT]</td>
<td>85</td>
</tr>
<tr>
<td>:ERRor:SCPI[:SYNTax]</td>
<td>85</td>
</tr>
<tr>
<td>:FILEsystem:SAFEmode</td>
<td>86</td>
</tr>
<tr>
<td>:HELP:MODE</td>
<td>86</td>
</tr>
<tr>
<td>:IDN</td>
<td>86</td>
</tr>
<tr>
<td>:LANGuage</td>
<td>87</td>
</tr>
<tr>
<td>:OEMHead:FREQuency:STARt</td>
<td>88</td>
</tr>
<tr>
<td>:OEMHead:FREQuency:STOP</td>
<td>88</td>
</tr>
<tr>
<td>:OEMHead:SELect</td>
<td>88</td>
</tr>
<tr>
<td>:OEMHead:FREQuency:BAND WR15</td>
<td>WR12</td>
</tr>
<tr>
<td>:OEMHead:FREQuency:MULTiplier</td>
<td>90</td>
</tr>
<tr>
<td>:PON:TYPE</td>
<td>90</td>
</tr>
<tr>
<td>:PRESet</td>
<td>91</td>
</tr>
<tr>
<td>:PRESet:ALL</td>
<td>91</td>
</tr>
<tr>
<td>:PRESet:LANGuage</td>
<td>91</td>
</tr>
<tr>
<td>:PRESet:PERSistent</td>
<td>92</td>
</tr>
<tr>
<td>:PRESet:PN9</td>
<td>92</td>
</tr>
<tr>
<td>:PRESet:TYPE</td>
<td>93</td>
</tr>
<tr>
<td>:PRESet:[USER]:SAVE</td>
<td>93</td>
</tr>
<tr>
<td>:SECurity:DISPLAY</td>
<td>93</td>
</tr>
<tr>
<td>:SECurity:ERASeal</td>
<td>94</td>
</tr>
<tr>
<td>:SECurity:LEVel</td>
<td>94</td>
</tr>
<tr>
<td>:SECurity:LEVel:STATe</td>
<td>95</td>
</tr>
<tr>
<td>:SECurity:OVERwrite</td>
<td>96</td>
</tr>
<tr>
<td>:SECurity:SANitize</td>
<td>96</td>
</tr>
<tr>
<td>:SSAVer:DELay</td>
<td>96</td>
</tr>
<tr>
<td>:SSAVer:MODE</td>
<td>97</td>
</tr>
<tr>
<td>:SSAVer:STATe</td>
<td>97</td>
</tr>
</tbody>
</table>
3 Basic Function Commands

Correction Subsystem (:SOURce:CORRection) .. 103
:FLATness:LOAD .. 103
:FLATness:PAIR .. 104
:FLATness:POINTS 104
:FLATness:PRESet 104
:FLATness:STORe 105
[:STATe] ... 105

Frequency Subsystem (:SOURce) .. 105
:FREQuency:CENTer 105
:FREQuency:CHANnels:BAND .. 106
:FREQuency:CHANnels:NUMBer 108
:FREQuency:CHANnels[:STATe] 109
:FREQuency:FIXed 109
:FREQuency:MANual 110
:FREQuency:MODE 111
:FREQuency:MULTiplier 111
:FREQuency:OFFSet 112
:FREQuency:OFFSet[:STATe] 112
:FREQuency:REFerence 113
:FREQuency:REFerence:SET 113
:FREQuency:REFerence[:STATe] 113
:FREQuency:SPAN 114
:FREQuency:STARt 114
:FREQuency:STOP 115
:FREQuency[:CW] ... 116
:FREQuency[:CW]:STEP[:INCRement] 116
:PHASe:REFerence 117
Contents

<table>
<thead>
<tr>
<th>Function</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>:PHASe[:ADJust]</td>
<td>117</td>
</tr>
<tr>
<td>:ROSCillator:BANDwidth:DEFAULTs</td>
<td>117</td>
</tr>
<tr>
<td>:ROSCillator:BANDwidth:EXTERNAL</td>
<td>117</td>
</tr>
<tr>
<td>:ROSCillator:BANDwidth:INTERNAL</td>
<td>118</td>
</tr>
<tr>
<td>:ROSCillator:SOURce</td>
<td>118</td>
</tr>
<tr>
<td>:ROSCillator:SOURce:AUTO</td>
<td>118</td>
</tr>
<tr>
<td>List/Sweep Subsystem ([:SOURce])</td>
<td>119</td>
</tr>
<tr>
<td>:LIST:DIRection</td>
<td>119</td>
</tr>
<tr>
<td>:LIST:DWELL</td>
<td>120</td>
</tr>
<tr>
<td>:LIST:DWELL:POINts</td>
<td>120</td>
</tr>
<tr>
<td>:LIST:DWELL:TYPE</td>
<td>121</td>
</tr>
<tr>
<td>:LIST:FREQuency</td>
<td>121</td>
</tr>
<tr>
<td>:LIST:FREQuency:POINts</td>
<td>122</td>
</tr>
<tr>
<td>:LIST:MANual</td>
<td>122</td>
</tr>
<tr>
<td>:LIST:MODE</td>
<td>123</td>
</tr>
<tr>
<td>:LIST:POWER</td>
<td>123</td>
</tr>
<tr>
<td>:LIST:POWER:POINts</td>
<td>123</td>
</tr>
<tr>
<td>:LIST:RETRace</td>
<td>124</td>
</tr>
<tr>
<td>:LIST:TRIgger:SOURce</td>
<td>124</td>
</tr>
<tr>
<td>:LIST:TYPE</td>
<td>125</td>
</tr>
<tr>
<td>:LIST:TYPE:LIST:INITialize:FSStep</td>
<td>125</td>
</tr>
<tr>
<td>:LIST:TYPE:LIST:INITialize:PRESet</td>
<td>125</td>
</tr>
<tr>
<td>:SWEep:CONTrol:STATe</td>
<td>126</td>
</tr>
<tr>
<td>:SWEep:CONTrol:TYPE</td>
<td>126</td>
</tr>
<tr>
<td>:SWEep:DWELL</td>
<td>127</td>
</tr>
<tr>
<td>:SWEep:GENERation</td>
<td>127</td>
</tr>
<tr>
<td>:SWEep:MODE</td>
<td>128</td>
</tr>
<tr>
<td>:SWEep:POINts</td>
<td>128</td>
</tr>
<tr>
<td>:SWEep:TIME</td>
<td>129</td>
</tr>
<tr>
<td>:SWEep:TIME:AUTO</td>
<td>129</td>
</tr>
<tr>
<td>Marker Subsystem–Option 007 ([:SOURce]).</td>
<td>130</td>
</tr>
<tr>
<td>:MARKer:AMPLitude[:STATe]</td>
<td>130</td>
</tr>
<tr>
<td>:MARKer:AMPLitude:VALue</td>
<td>130</td>
</tr>
<tr>
<td>:MARKer:OFF</td>
<td>130</td>
</tr>
<tr>
<td>:MARKer:DELTA?</td>
<td>131</td>
</tr>
<tr>
<td>:MARKer[0,1,2,3,4,5,6,7,8,9]:FREQuency</td>
<td>131</td>
</tr>
<tr>
<td>:MARKer:MODE</td>
<td>131</td>
</tr>
<tr>
<td>:MARKer:REFERence</td>
<td>132</td>
</tr>
<tr>
<td>:MARKer[0,1,2,3,4,5,6,7,8,9][:STATe]</td>
<td>132</td>
</tr>
<tr>
<td>Power Subsystem ([:SOURce]:POWER)</td>
<td>133</td>
</tr>
<tr>
<td>:ALC:BANDwidth:POWer</td>
<td>133</td>
</tr>
</tbody>
</table>
Contents

- :ALC: BANDwidth | BWIDTH: AUTO .. 133
- :ALC: LEVEL ... 134
- :ALC: SEARCH .. 134
- :ALC: SEARCH: REFERENCE .. 135
- :ALC: SEARCH: SPAN: START .. 135
- :ALC: SEARCH: SPAN: STOP ... 135
- :ALC: SEARCH: SPAN: TYPE FULL | USER 136
- :ALC: SEARCH: SPAN: (STATE) ON | OFF | 1 | 0 136
- :ALC: SOURCE .. 136
- :ALC: SOURCE: EXTERNAL: COUPLING 137
- :ALC: (STATE) ... 137
- ATTenuation ... 137
- ATTenuation: AUTO ... 138
- MODE ... 138
- PROTection: STATe ... 139
- REFerence ... 140
- REFerence: STATe .. 140
- STARt ... 140
- STOP ... 141
- [:LEVEL]:[IMMediate]:OFFSet .. 141
- [:LEVEL]:[IMMediate]:[AMPLitude] 142

4 Analog Commands

Amplitude Subsystem ([:SOURce]) ... 143
- :AM[1]|2:.. 143
- :AM: INTernal: FREquency: STEP[: INCREMENT] 144
- :AM: MODE .. 144
- :AM: WIDEband: SENSitivity .. 145
- :AM: WIDEband: STATe ... 145

iv
Contents

<table>
<thead>
<tr>
<th>Command</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>:PM[1]</td>
<td>2:SOURce</td>
</tr>
<tr>
<td>:PM[1]</td>
<td>2:STATE</td>
</tr>
<tr>
<td>:PM[1]</td>
<td>2:[DEViation]:TRACk</td>
</tr>
<tr>
<td>:PM:[DEViation]:STEP:[INCRement]</td>
<td>174</td>
</tr>
<tr>
<td>Pulse Modulation Subsystem ([SOURce])</td>
<td>175</td>
</tr>
<tr>
<td>:PULM:EXTernal:POLarity NORMal:INVerted</td>
<td>175</td>
</tr>
<tr>
<td>:PULM:INTernal</td>
<td>179</td>
</tr>
<tr>
<td>:PULM:SOURce</td>
<td>180</td>
</tr>
<tr>
<td>:PULM:STATE</td>
<td>180</td>
</tr>
</tbody>
</table>

5 Digital Modulation Commands

<table>
<thead>
<tr>
<th>Subsystem–Option 601 and 602 ([SOURce])</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>:RADio:ALL:OFF</td>
<td>181</td>
</tr>
<tr>
<td>AWGN ARB Subsystem–Option 403 ([SOURce]:RADio:AWGN:ARB)</td>
<td>182</td>
</tr>
<tr>
<td>:BWIDth</td>
<td>182</td>
</tr>
<tr>
<td>:IQ:EXTernal:FILTer</td>
<td>182</td>
</tr>
<tr>
<td>:IQ:EXTernal:FILTer:AUTO</td>
<td>182</td>
</tr>
<tr>
<td>:HEADer:CLEar</td>
<td>183</td>
</tr>
<tr>
<td>:HEADer:SAVE</td>
<td>183</td>
</tr>
<tr>
<td>:IQ:MODulation:ATTen</td>
<td>183</td>
</tr>
<tr>
<td>:IQ:MODulation:ATTen:AUTO</td>
<td>183</td>
</tr>
<tr>
<td>:IQ:MODulation:FILTer</td>
<td>184</td>
</tr>
<tr>
<td>Command</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>------</td>
</tr>
<tr>
<td>MODulation:MSK:PHASE</td>
<td>203</td>
</tr>
<tr>
<td>MODulation:UFSK</td>
<td>203</td>
</tr>
<tr>
<td>MODulation:UIQ</td>
<td>203</td>
</tr>
<tr>
<td>MODulation[:TYPE]</td>
<td>204</td>
</tr>
<tr>
<td>POLarity[:ALL]</td>
<td>204</td>
</tr>
<tr>
<td>SRATe</td>
<td>205</td>
</tr>
<tr>
<td>STANdard:SELECT</td>
<td>206</td>
</tr>
<tr>
<td>TRIGger:TYPE</td>
<td>207</td>
</tr>
<tr>
<td>TRIGger:TYPE:CONTinuous[:TYPE]</td>
<td>208</td>
</tr>
<tr>
<td>TRIGger:TYPE:GATE:ACTive</td>
<td>209</td>
</tr>
<tr>
<td>TRIGger[:SOURCE]</td>
<td>210</td>
</tr>
<tr>
<td>TRIGger[:SOURCE]:EXTERNAL:DELAY</td>
<td>211</td>
</tr>
<tr>
<td>TRIGger[:SOURCE]:EXTERNAL:DELAY:STATE</td>
<td>211</td>
</tr>
<tr>
<td>TRIGger[:SOURCE]:EXTERNAL:SLOPe</td>
<td>212</td>
</tr>
<tr>
<td>TRIGger[:SOURCE]:EXTERNAL[:SOURCE]</td>
<td>212</td>
</tr>
<tr>
<td>[:STATE]</td>
<td>213</td>
</tr>
<tr>
<td>VCO:LOCK</td>
<td>213</td>
</tr>
<tr>
<td>EXternal:Filter</td>
<td>214</td>
</tr>
<tr>
<td>EXternal:FILTER:AUTO</td>
<td>214</td>
</tr>
<tr>
<td>EXternal:HCRest</td>
<td>215</td>
</tr>
<tr>
<td>EXternal:POLarity</td>
<td>215</td>
</tr>
<tr>
<td>EXternal:SOURCE</td>
<td>216</td>
</tr>
<tr>
<td>IQADjustment:DELAY</td>
<td>216</td>
</tr>
<tr>
<td>IQADjustment:EXTERNAL:COFFset</td>
<td>217</td>
</tr>
<tr>
<td>IQADjustment:EXTERNAL:DIFFset</td>
<td>217</td>
</tr>
<tr>
<td>IQADjustment:EXTERNAL:DQOFFset</td>
<td>218</td>
</tr>
<tr>
<td>IQADjustment:EXTERNAL:GAIN</td>
<td>218</td>
</tr>
<tr>
<td>IQADjustment:EXTERNAL:IOFFset</td>
<td>219</td>
</tr>
<tr>
<td>IQADjustment:EXTERNAL:IQATTen</td>
<td>219</td>
</tr>
<tr>
<td>IQADjustment:EXTERNAL:QOFFset</td>
<td>220</td>
</tr>
<tr>
<td>IQADjustment:GAIN</td>
<td>220</td>
</tr>
<tr>
<td>IQADjustment:IOFFset</td>
<td>221</td>
</tr>
<tr>
<td>IQADjustment:QOFFset</td>
<td>221</td>
</tr>
<tr>
<td>IQADjustment:QSKew</td>
<td>222</td>
</tr>
<tr>
<td>IQADjustment:SKew:Path</td>
<td>223</td>
</tr>
<tr>
<td>IQADjustment[:STATE]</td>
<td>224</td>
</tr>
<tr>
<td>MODulation:ATTen</td>
<td>224</td>
</tr>
<tr>
<td>MODulation:ATTen:AUTO</td>
<td>224</td>
</tr>
<tr>
<td>MODulation:ATTen:EXTERNAL</td>
<td>225</td>
</tr>
</tbody>
</table>
Contents

:MODulation:ATTenn:EXTernal:LEVel .. 225
:MODulation:ATTenn:EXTernal:LEVel:MEASurement 226
:MODulation:ATTen:OPTimize:BANDwidth 226
:MODulation:FILTer ... 226
:MODulation:FILTer:AUTO ... 227
:POLarity[:ALL] .. 227
:SKEW:PATH ... 227
:SKEW[:STATe] .. 228
:SOURce .. 229
:SRATio ... 229
:STATe .. 230

Dual ARB Subsystem–Option 601 or 602 ([:SOURce]:RADio:ARB) 230
:CLIPping ... 230
:DACS:ALIGn ... 231
:GENerate:SINE ... 231
:HEADer:CLEar .. 232
:HEADer:RMS ... 232
:HEADer:SAVE ... 233
:IQ:EXTernal:FILTer .. 234
:IQ:EXTernal:FILTer:AUTO .. 234
:IQ:MODulation:ATTen .. 235
:IQ:MODulation:ATTen:AUTO .. 235
:IQ:MODulation:FILTer ... 236
:IQ:MODulation:FILTer:AUTO .. 236
:MARKer:CLEar .. 237
:MARKer:CLEar:ALL .. 238
:MARKer:ROTate .. 238
:MARKer:[SET] .. 239
:MDEStination:AAMPlitude .. 241
:MDEStination:ALCHold .. 241
:MDEStination:PULSe .. 242
:MPOLarity:MARKer1|2|3|4 .. 243
:NOISe ... 244
:NOISe:BFACtor ... 244
:NOISe:CBWidth ... 245
:NOISe:CN .. 245
:REFerence:EXTernal:FREQuency .. 245
:REFerence[:SOURce] ... 246
:RETRigger ... 246
:RSCAling ... 247
:SCALing .. 247
Contents

:SETup:MCARrier:TABLe .. 272
:SETup:MCARrier:TABLe:NCARriers 273
:SETup:STORe ... 273
:SRATe .. 273
:TRIGger:TYPE .. 274
:TRIGger:TYPE:CONTinuous[:TYPE] 275
:TRIGger:TYPE:GATE:ACTive ... 276
:TRIGger[:SOURce] .. 277
:TRIGger[:SOURce]:EXTernal[:SOURce] 278
:TRIGger[:SOURce]:EXTernal:DELay 278
:TRIGger[:SOURce]:EXTernal:SLOPe 279
[:STATe] .. 280

Multitone Subsystem–Option 601 or 602 ([:SOURce]:RADio:MTONe:ARB) 280
Creating a Multitone Waveform 280
:HEADer:CLEar ... 280
:HEADer:SAVE .. 281
:IQ:EXTernal:FILTer .. 281
:IQ:EXTernal:FILTer:AUTO .. 282
:IQ:MODulation:ATTen .. 282
:IQ:MODulation:ATTen:AUTO 283
:IQ:MODulation:FILTer ... 283
:IQ:MODulation:FILTer:AUTO 284
:MDEStination:ALCHold ... 284
:MDEStination:PULSe .. 285
:MPOLarity:MARKer1|2|3|4 ... 286
:REFerence:EXTernal:FREQuency 287
:REFerence[:SOURce] .. 287
:SCLock:RATE ... 288
:SETup ... 288
:SETup:STORe ... 289
:SETup:TABLe ... 289
:SETup:TABLe:FSPacing .. 290
:SETup:TABLe:NTONes .. 290
:SETup:TABLe:PH ASE:INITialize 291
[:STATE] ... 292

Two Tone Subsystem ([:SOURce]:RADio:TTONe:ARB) .. 293
:ALIGnment .. 293
:APPlY ... 293
Contents

<table>
<thead>
<tr>
<th>Command</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>:FSSpacing</td>
<td>293</td>
</tr>
<tr>
<td>:HEADer:CLEAR</td>
<td>294</td>
</tr>
<tr>
<td>:HEADer:SAVE</td>
<td>294</td>
</tr>
<tr>
<td>:IQ:EXTERNAL:FILTER</td>
<td>294</td>
</tr>
<tr>
<td>:IQ:EXTERNAL:FILTER:AUTO</td>
<td>295</td>
</tr>
<tr>
<td>:IQ:MODulation:ATTEn</td>
<td>295</td>
</tr>
<tr>
<td>:IQ:MODulation:ATTEn:AUTO</td>
<td>296</td>
</tr>
<tr>
<td>:IQ:MODulation:FILTER</td>
<td>296</td>
</tr>
<tr>
<td>:IQ:MODulation:FILTER:AUTO</td>
<td>297</td>
</tr>
<tr>
<td>:MDESTination:ALCHold</td>
<td>297</td>
</tr>
<tr>
<td>:MDESTination:PULSE</td>
<td>298</td>
</tr>
<tr>
<td>:MPOLarity:MARKer1</td>
<td>2</td>
</tr>
<tr>
<td>:REFerence:EXTERNAL:FREQuency</td>
<td>300</td>
</tr>
<tr>
<td>:REFerence[:SOURce]</td>
<td>301</td>
</tr>
<tr>
<td>[:STATe]</td>
<td>302</td>
</tr>
</tbody>
</table>

6 **Digital Signal Interface Module Commands**

Digital Subsystem ([:SOURce]:WDM)

<table>
<thead>
<tr>
<th>Command</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>:DIGital:CLOCk:CPS</td>
<td>305</td>
</tr>
<tr>
<td>:DIGital:CLOCk:PHASe</td>
<td>306</td>
</tr>
<tr>
<td>:DIGital:CLOCk:POLarity</td>
<td>306</td>
</tr>
<tr>
<td>:DIGital:CLOCk:RATE</td>
<td>307</td>
</tr>
<tr>
<td>:DIGital:CLOCk:REFERENCE:FREQuency</td>
<td>307</td>
</tr>
<tr>
<td>:DIGital:CLOCk:SOURCe</td>
<td>308</td>
</tr>
<tr>
<td>:DIGital:CLOCk:SKEW</td>
<td>308</td>
</tr>
<tr>
<td>:DIGital:DATA:ALIGNment</td>
<td>308</td>
</tr>
<tr>
<td>:DIGital:DATA:BORDER</td>
<td>309</td>
</tr>
<tr>
<td>:DIGital:DATA:DIREction</td>
<td>309</td>
</tr>
<tr>
<td>:DIGital:DATA:IGain</td>
<td>310</td>
</tr>
<tr>
<td>:DIGital:DATA:INEGate</td>
<td>310</td>
</tr>
<tr>
<td>:DIGital:DATA:OFFset</td>
<td>311</td>
</tr>
<tr>
<td>:DIGital:DATA:ISWAp</td>
<td>311</td>
</tr>
<tr>
<td>:DIGital:DATA:FORMAT</td>
<td>311</td>
</tr>
<tr>
<td>:DIGital:DATA:POLarity:FRAME</td>
<td>312</td>
</tr>
</tbody>
</table>
Contents

<table>
<thead>
<tr>
<th>Command</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>:DIGital:DATA:POLarity:IQ</td>
<td>312</td>
</tr>
<tr>
<td>:DIGital:DATA:QGain</td>
<td>313</td>
</tr>
<tr>
<td>:DIGital:DATA:QNEGate</td>
<td>313</td>
</tr>
<tr>
<td>:DIGital:DATA:QOFFset</td>
<td>314</td>
</tr>
<tr>
<td>:DIGital:DATA:ROTation</td>
<td>314</td>
</tr>
<tr>
<td>:DIGital:DATA:SCALing</td>
<td>314</td>
</tr>
<tr>
<td>:DIGital:DATA:SIZE</td>
<td>315</td>
</tr>
<tr>
<td>:DIGital:DATA:SType</td>
<td>315</td>
</tr>
<tr>
<td>:DIGital:DATA:TYPE</td>
<td>316</td>
</tr>
<tr>
<td>:DIGital:DIAGnostic:LOOPback</td>
<td>316</td>
</tr>
<tr>
<td>:DIGital:LOGic[:TYPE]</td>
<td>317</td>
</tr>
<tr>
<td>:DIGital:PCONfig</td>
<td>317</td>
</tr>
<tr>
<td>:DIGital:PRESet:PTHRough</td>
<td>318</td>
</tr>
<tr>
<td>:DIGital[:STATE]</td>
<td>318</td>
</tr>
<tr>
<td>:SYSTem:IDN</td>
<td>319</td>
</tr>
</tbody>
</table>

7 SCPI Command Compatibility

<table>
<thead>
<tr>
<th>Command</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>E8257D/67D Compatible Commands</td>
<td>320</td>
</tr>
<tr>
<td>:DATA:PRAM?</td>
<td>320</td>
</tr>
<tr>
<td>:DATA:PRAM:BLOCk</td>
<td>320</td>
</tr>
<tr>
<td>:DATA:PRAM:LIST</td>
<td>320</td>
</tr>
<tr>
<td>E8241A/44A/51A/54A and the E8247C/57C/67C PSG Compatible SCPI Commands</td>
<td>320</td>
</tr>
<tr>
<td>8340B/41B and 8757D Compatible Commands</td>
<td>321</td>
</tr>
<tr>
<td>836xxB/L Compatible SCPI Commands</td>
<td>334</td>
</tr>
<tr>
<td>8373xB and 8371xB Compatible SCPI Commands</td>
<td>350</td>
</tr>
<tr>
<td>8375xB Compatible SCPI Commands</td>
<td>358</td>
</tr>
<tr>
<td>8662A/63A Compatible Commands</td>
<td>370</td>
</tr>
</tbody>
</table>
Documentation Overview

Installation Guide

- Safety Information
- Getting Started
- Operation Verification
- Regulatory Information

User's Guide

- Signal Generator Overview
- Basic Operation
- Basic Digital Operation
- Optimizing Performance
- Analog Modulation
- Custom Arb Waveform Generator
- Custom Real Time I/Q Baseband
- Multitone Waveform Generator
- Two-Tone Waveform Generator
- AWGN Waveform Generator
- Peripheral Devices
- Troubleshooting

Programming Guide

- Getting Started with Remote Operation
- Using IO Interfaces
- Programming Examples
- Programming the Status Register System
- Creating and Downloading Waveform Files
- Creating and Downloading User-Data Files

SCPI Reference

- Using this Guide
- System Commands
- Basic Function Commands
- Analog Commands
- Digital Modulation Commands
- Digital Signal Interface Module Commands
- SCPI Command Compatibility
Service Guide

- Troubleshooting
- Replaceable Parts
- Assembly Replacement
- Post-Repair Procedures
- Safety and Regulatory Information

Key Reference

- Key function description
1 Using this Guide

In the following sections, this chapter describes how SCPI information is organized and presented in this guide. An overview of the SCPI language is also provided:

- “How the SCPI Information is Organized” on page 1
- “SCPI Basics” on page 2

How the SCPI Information is Organized

SCPI Listings

The table of contents lists the Standard Commands for Programmable Instruments (SCPI) without the parameters. The SCPI subsystem name will generally have the first part of the command in parenthesis that is repeated in all commands within the subsystem. The title(s) beneath the subsystem name is the remaining command syntax. The following example demonstrates this listing:

Communication Subsystem (:SYSTem:COMMunicate)

:PMETer:CHANnel
:SERial:ECHO

The following examples show the complete commands from the above Table of Contents listing:

:SYSTem:COMMunicate:PMETer:CHANnel
:SYSTem:COMMunicate:SERial:ECHO

Subsystem Groupings by Chapter

A subsystem is a group of commands used to configure and operate a certain function or feature. Like individual commands, subsystems that share a similar scope or role can also be categorized and grouped together. This guide uses chapters to divide subsystems into the following groups:

- System Commands
- Basic Function Commands
- Analog Modulation Commands
- Digital Modulation Commands

Front Panel Operation Cross Reference

The last section in this book provides an index of hardkeys, softkeys, and data fields used in front panel operation, cross-referenced to their corresponding SCPI command. Key and data field names are sorted in two ways:

- individual softkey, hardkey, or data field name
- SCPI subsystem name with associated key and data field names nested underneath
Supported Models and Options per Command

Within each command section, the Supported heading describes the signal generator configurations supported by the SCPI command. “All” means that all models and options are supported. When “All with Option xxx” is shown next to this heading, only the stated option(s) is supported.

SCPI Basics

This section describes the general use of the SCPI language for the PSG. It is not intended to teach you everything about the SCPI language; the SCPI Consortium or IEEE can provide that level of detailed information. For a list of the specific commands available for the signal generator, refer to the table of contents.

For additional information, refer to the following publications:

Common Terms

The following terms are used throughout the remainder of this section:

Command A command is an instruction in SCPI consisting of mnemonics (keywords), parameters (arguments), and punctuation. You combine commands to form messages that control instruments.

Controller A controller is any device used to control the signal generator, for example a computer or another instrument.

Event Command Some commands are events and cannot be queried. An event has no corresponding setting; it initiates an action at a particular time.

Program Message A program message is a combination of one or more properly formatted commands. Program messages are sent by the controller to the signal generator.

Query A query is a special type of command used to instruct the signal generator to make response data available to the controller. A query ends with a question mark. Generally you can query any command value that you set.

Response Message A response message is a collection of data in specific SCPI formats sent from the signal generator to the controller. Response messages tell the controller about the internal state of the signal generator.

Command Syntax

A typical command is made up of keywords prefixed with colons (:). The keywords are followed by parameters. The following is an example syntax statement:

[:SOURce]:POWer[:LEVel] MAXimum|MINimum

In the example above, the [:LEVel] portion of the command immediately follows the :POWer portion with no separating space. The portion following the [:LEVel], MINimum|MAXimum, are the parameters (argument for the command statement). There is a separating space (white space) between the command and its parameter.
Additional conventions in syntax statements are shown in Table 1-1 and Table 1-2.

Table 1-1 Special Characters in Command Syntax

<table>
<thead>
<tr>
<th>Characters</th>
<th>Meaning</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>[]</td>
<td>A vertical stroke between keywords or parameters indicates alternative choices. For parameters, the effect of the command varies depending on the choice.</td>
<td>[:SOURce]:AM:MOD DEEP</td>
</tr>
<tr>
<td></td>
<td>DEEP or NORMAL are the choices.</td>
<td></td>
</tr>
<tr>
<td>[]</td>
<td>Square brackets indicate that the enclosed keywords or parameters are optional when composing the command. These implied keywords or parameters will be executed even if they are omitted.</td>
<td>[:SOURce]:FREQuency[:CW]?</td>
</tr>
<tr>
<td></td>
<td>SOURce and CW are optional items.</td>
<td></td>
</tr>
<tr>
<td>< ></td>
<td>Angle brackets around a word (or words) indicate they are not to be used literally in the command. They represent the needed item.</td>
<td>[:SOURce]:FREQuency:STARt <val><unit></td>
</tr>
<tr>
<td></td>
<td>In this command, the words <val> and <unit> should be replaced by the actual frequency and unit.</td>
<td></td>
</tr>
<tr>
<td>{ }</td>
<td>Braces indicate that parameters can optionally be used in the command once, several times, or not at all.</td>
<td>[:SOURce]:LIST:POW er <val>{,<val>}</td>
</tr>
<tr>
<td></td>
<td>In this command, the words <val> should be replaced by the actual frequency and unit.</td>
<td></td>
</tr>
</tbody>
</table>

Table 1-2 Command Syntax

<table>
<thead>
<tr>
<th>Characters, Keywords, and Syntax</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upper-case lettering indicates the minimum set of characters required to execute the command.</td>
<td>[:SOURce]:FREQuency[:CW]?, FREQ is the minimum requirement.</td>
</tr>
<tr>
<td>Lower-case lettering indicates the portion of the command that is optional; it can either be included with the upper-case portion of the command or omitted. This is the flexible format principle called forgiving listening. Refer to “Command Parameters and Responses” on page 5 for more information.</td>
<td>:FREQuency</td>
</tr>
<tr>
<td>When a colon is placed between two command mnemonics, it moves the current path down one level in the command tree. Refer to “Command Tree” on page 4 for more information on command paths.</td>
<td>:TRIGger:OUTPut:POLarity?</td>
</tr>
<tr>
<td>TRIGger is the root level keyword for this command.</td>
<td></td>
</tr>
<tr>
<td>If a command requires more than one parameter, you must separate adjacent parameters using a comma. Parameters are not part of the command path, so commas do not affect the path level.</td>
<td>[:SOURce]:LIST:DWELL <val>{,<val>}</td>
</tr>
<tr>
<td>A semicolon separates two commands in the same program message without changing the current path.</td>
<td>:FREQ 2.5GHZ;:POW er 10DBM</td>
</tr>
<tr>
<td>White space characters, such as <tab> and <space>, are generally ignored as long as they do not occur within or between keywords. However, you must use white space to separate the command from the parameter, but this does not affect the current path.</td>
<td>:FREQ <uncy> or :POW er :LEVel are not allowed.</td>
</tr>
<tr>
<td>A <space> between :LEVel and 6.2 is mandatory.</td>
<td>:POW er :LEVel 6.2</td>
</tr>
</tbody>
</table>
Command Types

Commands can be separated into two groups: common commands and subsystem commands. Figure 1-1, shows the separation of the two command groups. Common commands are used to manage macros, status registers, synchronization, and data storage and are defined by IEEE 488.2. They are easy to recognize because they all begin with an asterisk. For example *IDN?, *OPC, and *RST are common commands. Common commands are not part of any subsystem and the signal generator interprets them in the same way, regardless of the current path setting.

Subsystem commands are distinguished by the colon (:). The colon is used at the beginning of a command statement and between keywords, as in :FREQuency[:CW?]. Each command subsystem is a set of commands that roughly correspond to a functional block inside the signal generator. For example, the power subsystem (:POWer) contains commands for power generation, while the status subsystem (:STATus) contains commands for controlling status registers.

![Command Tree](image)

Command Tree

Most programming tasks involve subsystem commands. SCPI uses a structure for subsystem commands similar to the file systems on most computers. In SCPI, this command structure is called a command tree and is shown in Figure 1-2.
The command closest to the top is the root command, or simply “the root.” Notice that you must follow a particular path to reach lower level commands. In the following example, :POWer represents AA, :ALC represents BB, :SOURce represents GG. The complete command path is :POWer:ALC:SOURce? (:AA:BB:GG).

Paths Through the Command Tree

To access commands from different paths in the command tree, you must understand how the signal generator interprets commands. The parser, a part of the signal generator firmware, decodes each message sent to the signal generator. The parser breaks up the message into component commands using a set of rules to determine the command tree path used. The parser keeps track of the current path (the level in the command tree) and where it expects to find the next command statement. This is important because the same keyword may appear in different paths. The particular path is determined by the keyword(s) in the command statement.

A message terminator, such as a `<new line>` character, sets the current path to the root. Many programming languages have output statements that automatically send message terminators.

NOTE The current path is set to the root after the line-power is cycled or when *RST is sent.

Command Parameters and Responses

SCPI defines different data formats for use in program and response messages. It does this to accommodate the principle of forgiving listening and precise talking. For more information on program data types refer to IEEE 488.2. Forgiving listening means the command and parameter formats are flexible.

For example, with the :FREQuency:REFerence:STATe ON|OFF|1|0 command, the signal generator accepts :FREQuency:REFerence:STATe ON, :FREQuency:REFerence:STATe 1, :FREQ:REF:STAT ON, :FREQ:REF:STAT 1 to turn on the frequency reference mode.

Each parameter type has one or more corresponding response data types. A setting that you program using a numeric parameter returns either real or integer response data when queried. Response data (data returned to the controller) is more concise and restricted and is called precise talking.

Precise talking means that the response format for a particular query is always the same.

For example, if you query the power state (:POWer:ALC:STATe?) when it is on, the response is always 1, regardless of whether you previously sent :POWer:ALC:STATe 1 or :POWer:ALC:STATe ON.
Numeric Parameters

Numeric parameters are used in both common and subsystem commands. They accept all commonly used decimal representations of numbers including optional signs, decimal points, and scientific notation.

If a signal generator setting is programmed with a numeric parameter which can only assume a finite value, it automatically rounds any entered parameter which is greater or less than the finite value. For example, if a signal generator has a programmable output impedance of 50 or 75 ohms, and you specified 76.1 for the output impedance, the value is rounded to 75. The following are examples of numeric parameters:

- 100
 - no decimal point required
- 100.
 - fractional digits optional
- −1.23
 - leading signs allowed
- 4.56E<space>3
 - space allowed after the E in exponential
- −7.89E−001
 - use either E or e in exponential
- +256
 - leading + allowed
- .5
 - digits left of decimal point optional

Extended Numeric Parameters

Most subsystems use extended numeric parameters to specify physical quantities. Extended numeric parameters accept all numeric parameter values and other special values as well.

The following are examples of extended numeric parameters:

<table>
<thead>
<tr>
<th>Extended Numeric Parameters</th>
<th>Special Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>any simple numeric value</td>
</tr>
<tr>
<td>1.2GHZ</td>
<td>GHZ can be used for exponential (E009)</td>
</tr>
<tr>
<td>200MHZ</td>
<td>MHZ can be used for exponential (E006)</td>
</tr>
<tr>
<td>DEFault</td>
<td>resets parameter to its default value</td>
</tr>
<tr>
<td>UP</td>
<td>increments the parameter</td>
</tr>
<tr>
<td>DOWN</td>
<td>decrements the parameter</td>
</tr>
</tbody>
</table>
Discrete Parameters

Discrete parameters use mnemonics to represent each valid setting. They have a long and a short form, just like command mnemonics. You can mix upper and lower case letters for discrete parameters.

The following examples of discrete parameters are used with the command

:TRIGger[:SEQUence]:SOURce BUS|IMMediate|EXTernal.

- BUS: GPIB, LAN, or RS-232 triggering
- IMMEDIATE: immediate trigger (free run)
- EXTernal: external triggering

Although discrete parameters look like command keywords, do not confuse the two. In particular, be sure to use colons and spaces correctly. Use a colon to separate command mnemonics from each other and a space to separate parameters from command mnemonics.

The following are examples of discrete parameters in commands:

- TRIGger:SOURce BUS
- TRIGger:SOURce IMMEDIATE
- TRIGger:SOURce EXTernal

Boolean Parameters

Boolean parameters represent a single binary condition that is either true or false. The two-state boolean parameter has four arguments. The following list shows the arguments for the two-state boolean parameter:

- ON: boolean true, upper/lower case allowed
- OFF: boolean false, upper/lower case allowed
- 1: boolean true
- 0: boolean false
String Parameters
String parameters allow ASCII strings to be sent as parameters. Single or double quotes are used as delimiters.

The following are examples of string parameters:

'This is valid' "This is also valid" 'SO IS THIS'

Real Response Data
Real response data represent decimal numbers in either fixed decimal or scientific notation. Most high-level programming languages that support signal generator input/output (I/O) handle either decimal or scientific notation transparently.

The following are examples of real response data:

+4.000000E+010, −9.990000E+002
−9.990000E+002
+4.0000000000000E+010
+1
0

Integer Response Data
Integer response data are decimal representations of integer values including optional signs. Most status register related queries return integer response data. The following are examples of integer response data:

0 signs are optional
+100 leading + allowed
+100 leading + allowed
256 never any decimal point

Discrete Response Data
Discrete response data are similar to discrete parameters. The main difference is that discrete response data only returns the short form of a particular mnemonic, in all upper case letters. The following are examples of discrete response data:

IMM EXT INT NEG

Numeric Boolean Response Data
Boolean response data returns a binary numeric value of one or zero.
String Response Data

String response data are similar to string parameters. The main difference is that string response data returns double quotes, rather than single quotes. Embedded double quotes may be present in string response data. Embedded quotes appear as two adjacent double quotes with no characters between them. The following are examples of string response data:

"This is a string"

"one double quote inside brackets: ["]"

"Hello!"

Program Messages

The following commands will be used to demonstrate the creation of program messages:

[:SOURce]:FREQuency:STARt [:SOURce]:FREQuency:STOP
[:SOURce]:FREQuency[:CW] [:SOURce]:POWer[:LEVel]:OFFSet

Example 1

:FREQuency:STARt 500MHZ;STOP 1000MHZ
This program message is correct and will not cause errors; STARt and STOP are at the same path level. It is equivalent to sending the following message:
FREQuency:STARt 500MHZ;FREQuency:STOP 1000MHZ

Example 2

:POWer 10DBM;:OFFSet 5DB
This program message will result in an error. The message makes use of the default POWer[:LEVel] node (root command). When using a default node, there is no change to the current path position. Since there is no command OFFSet at the root level, an error results.
The following example shows the correct syntax for this program message:
:POWer 10DBM;:POWer:OFFSet 5DB

Example 3

:POWer:OFFSet 5DB;POWer 10DBM
This program message results in a command error. The path is dropped one level at each colon. The first half of the message drops the command path to the lower level command OFFSet; POWer does not exist at this level.
The POWer 10DBM command is missing the leading colon and when sent, it causes confusion because the signal generator cannot find POWer at the POWer:OFFSet level. By adding the leading colon, the current path is reset to the root. The following shows the correct program message:
:POWer:OFFSet 5DB;:POWer 10DBM
Example 4
FREQ 500MHZ;POW 4DBM

In this example, the keyword short form is used. The program message is correct because it utilizes the default nodes of :FREQ[:CW] and :POW[:LEVel]. Since default nodes do not affect the current path, it is not necessary to use a leading colon before FREQ or POW.

File Name Variables

File name variables, such as "<file name>", represent three formats, "<file name>", "<file name@file type>", and "</user/file type/file name>". The following shows the file name syntax for the three formats, but uses "FLATCAL" as the file name in place of the variable "<file name>":

Format 1 "FLATCAL"
Format 2 "FLATCAL@USERFLAT"
Format 3 "/USER/USERFLAT/FLATCAL"

Format 2 uses the file type extension (@USERFLAT) as part of the file name syntax. Format 3 uses the directory path which includes the file name and file type. Use Formats 2 and 3 when the command does not specify the file type. This generally occurs in the Memory (:MEMORY) or Mass Memory (:MMEMory) subsystems. The following examples demonstrate a command where Format 1 applies:

Command Syntax with the file name variable :MEMORY:STORe:LIST "<file name>"
Command Syntax with the file name :MEMORY:STORe:LIST "SWEEP_1"

This command has :LIST in the command syntax. This denotes that "SWEEP_1" will be saved in the :List file type location as a list type file.

The following examples demonstrate a command where Format 2 applies:

Command Syntax with the file name variable :MMEMory:COPY "<filenames">,<"filenames">
Command Syntax with the file name :MMEMory:COPY "FLATCAL@USERFLAT","FLAT_2CAL@USERFLAT"

This command cannot distinguish which file type "FLATCAL" belongs to without the file type extension (@USERFLAT). If this command were executed without the extension, the command would assume the file type was Binary.
The following examples demonstrate a command where format 3 applies:

Command Syntax with the file name variable

:MMEMory:DATA "/USER/BBG1/WAVEFORM/<file name>",#ABC

Command Syntax with the file name

:MMEMory:DATA "/USER/BBG1/WAVEFORM/FLATCAL",#ABC

This command gives the directory path name where the file "FLATCAL" is stored.

A
the number of decimal digits to follow in B.

B
a decimal number specifying the number of data bytes in C.

C
the binary waveform data.

Refer to Table 2-1 on page 57 for a listing of the file systems and types. The entries under file type are used in the directory path.

ARB Waveform File Directories

ARB waveform files can be saved to the following directories:

- **WFM1**: volatile ARB waveform storage. Files located here can be played by the signal generator’s arb player, but are volatile and will be lost on a power cycle. The directory can also be specified as /USER/BBG1/WAVEFORM.
- **NVWFM**: non-volatile ARB waveform storage. Files must be moved to the WFM1: directory before they can be played by the signal generator’s Dual ARB player. The directory can also be specified as /USER/WAVEFORM.
- **SEQ**: sequence files are stored here and are non-volatile. The directory can also be specified as /USER/SEQ.

MSUS (Mass Storage Unit Specifier) Variable

The variable "<msus>" enables a command to be file type specific when working with user files. Some commands use it as the only command parameter, while others can use it in conjunction with a file name when a command is not file type specific. When used with a file name, it is similar to Format 2 in the **File Name Variables** section on page 10. The difference is the file type specifier (msus) occupies its own variable and is not part of the file name syntax.
The following examples illustrate the usage of the variable "<msus>" when it is the only command parameter:

Command Syntax with the msus variable

:MMEMory:CATalog? "<msus>"

Command Syntax with the file system

:MMEMory:CATalog? "LIST:"

The variable "<msus>" is replaced with "LIST:". When the command is executed, the output displays only the files from the List file system.

The following examples illustrate the usage of the variable "<file name>" with the variable "<msus>":

Command Syntax with the file name and msus variables

:MMEMory:DELete[:NAME] "<file name>",["<msus>"

Command Syntax with the file name and file system

:MMEMory:DELete:NAME "LIST_1","LIST:"

The command from the above example cannot discern which file system LIST_1 belongs to without a file system specifier and will not work without it. When the command is properly executed, LIST_1 is deleted from the List file system.

The following example shows the same command, but using Format 2 from the File Name Variables section on page 10:

:MMEMory:DELete:NAME "LIST_1@LIST"

When a file name is a parameter for a command that is not file system specific, either format (<file name>"<msus>" or "<file name@file system">) will work.

Refer to Table 1-1 on page 3 for a listing of special syntax characters.

Quote Usage with SCPI Commands

As a general rule, programming languages require that SCPI commands be enclosed in double quotes as shown in the following example:

":FM:EXTernal:IMPedance 600"

However, when a string is the parameter for a SCPI command, additional quotes or other delimiters may be required to identify the string. Your programming language may use two sets of double quotes, one set of single quotes, or backslashes with quotes to signify the string parameter. The following examples illustrate these different formats:

"MEMory:LOAD:LIST "myfile"" used in BASIC programming languages

"MEMory:LOAD:LIST \"myfile\"" used in C, C++, Java, and PERL

"MEMory:LOAD:LIST 'myfile'" accepted by most programming languages

Consult your programming language reference manual to determine the correct format.
Binary, Decimal, Hexadecimal, and Octal Formats

Command values may be entered using a binary, decimal, hexadecimal, or octal format. When the binary, hexadecimal, or octal format is used, their values must be preceded with the proper identifier. The decimal format (default format) requires no identifier and the signal generator assumes this format when a numeric value is entered without one. The following list shows the identifiers for the formats that require them:

- #B identifies the number as a binary numeric value (base-2).
- #H identifies the number as a hexadecimal alphanumeric value (base-16).
- #Q identifies the number as a octal alphanumeric value (base-8).

The following are examples of SCPI command values and identifiers for the decimal value 45:

#B101101 binary equivalent
#H2D hexadecimal equivalent
#Q55 octal equivalent

The following example sets the RF output power to 10 dBm (or the equivalent value for the currently selected power unit, such as DBUV or DBUVEMF) using the hexadecimal value 000A:

:POW #H000A

A unit of measure, such as DBM or mV, will not work with the values when using a format other than decimal.

The following example sets the bluetooth board address to FFBF7 (hexadecimal):

:RAdio:BLUetooth:ARB:BDADdr #HFFBF7
2 System Commands

In the following sections, this chapter provides SCPI descriptions for subsystems dedicated to peripheral signal generator operations common to all PSG models:

- "Calibration Subsystem (:CALibration)" on page 16
- "Communication Subsystem (:SYSTem:COMMunicate)" on page 21
- "Diagnostic Subsystem (:DIAGnostic[:CPU]:INFOrmation)" on page 27
- "Display Subsystem (:DISPlay)" on page 29
- "IEEE 488.2 Common Commands" on page 33
- "Low-Band Filter Subsystem" on page 38
- "Memory Subsystem (:MEMory)" on page 38
- "Mass Memory Subsystem (:MMEMory)" on page 57
- "Output Subsystem (:OUTPut)" on page 62
- "Route Subsystem (:ROUTE:HARDware:DGENerator)" on page 64
- "Status Subsystem (:STATus)" on page 71
- "System Subsystem (:SYSTem)" on page 84
- "Trigger Subsystem" on page 98
- "Unit Subsystem (:UNIT)" on page 101
Calibration Subsystem (:CALibration)

:DCFM

Supported All with Option UNT

:CALibration:DCFM

This command initiates a DCFM or DCΦM calibration depending on the currently active modulation. This calibration eliminates any dc or modulation offset of the carrier signal.

Use this calibration for externally applied signals. While the calibration can also be performed for internally generated signals, dc offset is not a normal characteristic for them.

NOTE If the calibration is performed with a dc signal applied, any deviation provided by the dc signal will be removed and the new zero reference point will be at the applied dc level. The calibration will have to be performed again when the dc signal is removed in order to reset the carrier signal to the correct zero reference.

Key Entry DCFM/DCΦM Cal

:IQ

Supported E8267D

:CALibration:IQ

This command initiates an I/Q calibration for a range of frequencies and is equivalent to selecting User from the front panel Calibration Type DC User Full softkey in the I/Q Calibration menu. For setting range frequencies, refer to ":IQ:STARt" on page 18, and ":IQ:STOP" on page 18.

Key Entry Execute Cal Calibration Type DC User Full

:IQ:DC

Supported E8267D

:CALibration:IQ:DC

This command starts and performs a one- to two-second adjustment that is not traceable to a standard. However, it will minimize errors associated with signal generator internal voltage offsets. This adjustment minimizes errors for the current signal generator setting and at a single frequency. The DC adjustment is volatile and must be repeated with each signal generator setting change. This command can be sent while the RF On/Off is set to Off and the adjustment will still be valid when the RF is enabled.

The I/Q DC adjustment is dependent upon a number of instrument settings. If any of the instrument settings change, the adjustment will become invalid. The dependent instrument settings are:

- RF frequency
- I/Q attenuation level
- Baseband generator settings
• I/Q polarity settings
• Baseband filter settings
• Path settings (Internal I/Q Mux Path 1 or Path 2)
• I/Q calibration (the I/Q DC calibration will be invalidated if any other I/Q calibration is execute)
• Temperature (±5 degrees)
The following instrument states will not invalidate the I/Q DC calibration:
• Power level changes
• I/Q Impairments
 *RST
 N/A
Key Entry
Execute Cal Calibration Type DC User Full

:IQ:DEFault

Supported
E8267D

:CALibration:IQ:DEFault

This command will restore the original factory calibration data for the internal I/Q modulator.

Key Entry
Revert to Default Cal Settings

:IQ:FULL

Supported
E8267D

:CALibration:IQ:FULL

This command sets and performs a full-frequency range (regardless of the start and stop frequency settings) I/Q calibration and stores the results in the signal generator’s memory.

Start and stop frequencies default to the full frequency range of the signal generator.
Range
Depends on the signal generator’s frequency option
Refer to “:FREQuency:CENTer” on page 105

Key Entry
Execute Cal (Calibration Type DC User Full set to Full)
System Commands
Calibration Subsystem (:CALibration)

:IQ:STARt

Supported E8267D

:CALibration:IQ:STARt <val><units>
:CALibration:IQ:STARt?

This command sets the start frequency and automatically sets the calibration type to User for an I/Q calibration.

The setting enabled by this command is not affected by a signal generator power-on, preset, or *RST command.

Example

:CAL:IQ:STAR 1GHZ

The preceding example sets the signal generator’s start frequency for an IQ calibration to 1 GHz.

Range Depends on the signal generator’s frequency option
 Refer to “:FREQuency:CENTer” on page 105

Key Entry Start Frequency

:IQ:STOP

Supported E8267D

:CALibration:IQ:STOP <val><units>
:CALibration:IQ:STOP?

This command sets the stop frequency and automatically sets the calibration type to User for an I/Q calibration. The setting enabled by this command is not affected by a signal generator power-on, preset, or *RST command.

Example

:CAL:IQ:STOP 2GHZ

The preceding example sets the signal generator’s stop frequency for an IQ calibration to 2 GHz.

Range Depends on the signal generator’s frequency option
 Refer to “:FREQuency:CENTer” on page 105

Key Entry Stop Frequency

:WBIQ

Supported E8267D with Option 015

:CALibration:WBIQ

This command initiates a wideband I/Q calibration for a range of frequencies and is equivalent to selecting User from the front panel Calibration Type DC User Full softkey. For setting range frequencies, refer to “:WBIQ:STARt” on page 20, and “:WBIQ:STOP” on page 20 command descriptions.

Key Entry Execute Cal
System Commands
Calibration Subsystem (:CALibration)

**:WBIQ:DC

Supported E8267D with Option 015

This command performs a one to two second adjustment that is not traceable to a standard. However, it will minimize errors associated with offset voltages. This adjustment minimizes errors for the current signal generator setting and at a single frequency. The DC adjustment is volatile and must be repeated with each signal generator setting change. This command can be sent while the RF On/Off is set to Off and the adjustment will be valid when RF is enabled.

The wideband I/Q DC adjustment is dependent upon a number of instrument settings. If any of the PSG settings change, the adjustment will become invalid. The dependent instrument settings are:

- RF frequency
- I/Q attenuation level
- Baseband generator settings
- I/Q polarity settings
- Baseband filter settings
- Path settings (Internal I/Q Mux Path 1 or Path 2)
- I/Q calibration (the I/Q DC calibration will be invalidated if any other I/Q calibration is executed)
- Temperature (±5 degrees)

The following instrument states will not invalidate the I/Q DC calibration:

- Power level changes
- I/Q Impairments

*RST N/A

Key Entry Execute Cal Calibration Type DC User Full

**:WBIQ:DEFAULT

Supported E8267D with Option 015

This command will restore the original factory calibration data for the internal I/Q modulator.

Key Entry Revert to Default Cal Settings
System Commands
Calibration Subsystem (:CALibration)

:WBIQ:FULL

Supported E8267D with Option 015

This command sets and performs a full-frequency range (regardless of the start and stop frequency settings) wideband I/Q calibration and stores the results in the signal generator's firmware.

Start and stop frequencies will default to the full frequency range of the signal generator.

Range Depends on the signal generator's frequency option

Refer to “:FREQuency:CENTer” on page 105

Key Entry
Execute Cal Calibration Type DC User Full

:WBIQ:START

Supported E8267D with Option 015

This command sets the start frequency and automatically sets the calibration type to User for a wideband I/Q calibration. The setting enabled by this command is not affected by a signal generator power-on, preset, or *RST command.

Example

:CAL:WBIQ:STAR 1GHZ

The preceding example sets the signal generator's start frequency to 1 GHz for a wideband IQ calibration.

Range Depends on the signal generator's frequency option

Refer to “:FREQuency:CENTer” on page 105

Key Entry Start Frequency

:WBIQ:STOP

Supported E8267D with Option 015

This command sets the stop frequency and automatically sets the calibration type to User for a wideband I/Q calibration.

The setting enabled by this command is not affected by a signal generator power-on, preset, or *RST command.
Example
:CAL:WBIQ:STOP 2GHZ

The preceding example sets the signal generator’s stop frequency to 2 GHz for a wideband IQ calibration.

Key Entry
Stop Frequency

Communication Subsystem (:SYSTem:COMMunicate)

:GPIB:ADDRess

Supported All Models

:SYSTem:COMMunicate:GPIB:ADDRess <number>
:SYSTem:COMMunicate:GPIB:ADDRess?

This command sets the signal generator’s general purpose instrument bus (GPIB) address.

The variable <number> is a numeric value between 0 and 30. The signal generator typically uses 19 as the instrument address. The address must be different from other GPIB devices in your system.

The setting enabled by this command is not affected by a signal generator power-on, preset, or *RST command.

Example
:SYST:COMM:GPIB:ADDR 19

The preceding example sets the signal generator’s GPIB address to 19.

Range 0–30

Key Entry GPIB Address

:GTLocal

Supported All

:SYSTem:COMMunicate:GTLocal

This command sets the signal generator to local mode, enabling front panel operation.

Range N/A

Key Entry Local
System Commands
Communication Subsystem (:SYSTem:COMMunicate)

:LAN:CONFig

Supported All Models

`:SYSTem:COMMunicate:LAN:CONFig DHCP|MANual`

`:SYSTem:COMMunicate:LAN:CONFig?`

This command selects the signal generator’s internet protocol (IP) address. The dynamic host communication protocol (DHCP) selection allows the network to assign an IP address. The manual selection allows the user to enter an IP address.

Example

`:SYST:COMM:LAN:CONF DHCP`

The preceding example sets up the signal generator LAN configuration to use a DHCP IP address.

Key Entry LAN Config

:LAN:GATEway

Supported All Models

`:SYSTem:COMMunicate:LAN:GATEway "<ipstring>"`

`:SYSTem:COMMunicate:LAN:GATEway?`

This command sets the gateway for local area network (LAN) access to the signal generator from outside the current sub-network.

The "<ipstring>" string variable is the LAN gateway address, formatted as xxx.xxx.xxx.xxx. Refer to “Quote Usage with SCPI Commands” on page 12 for information on using quotes for different programming languages.

Using an empty string restricts access to the signal generator to local hosts on the LAN.

Example

`:SYST:COMM:LAN:GATE "203.149.781.101"

The preceding example sets the signal generator’s LAN gateway address.

Key Entry Default Gateway

:LAN:HOSTname

Supported All Models

`:SYSTem:COMMunicate:LAN:HOSTname "<string>"`

`:SYSTem:COMMunicate:LAN:HOSTname?`

This command sets the signal generator’s local area network (LAN) connection hostname.

The "<string>" variable is the hostname for the signal generator. Refer to “Quote Usage with SCPI Commands” on page 12 for information on using quotes for different programming languages.

The setting enabled by this command is not affected by a signal generator power-on, preset, or *RST command.
Example

:SYST:COMM:LAN:HOSTname "siginst3"

The preceding example sets “siginst3” as the signal generator's LAN hostname.

Key Entry Hostname

:LAN:IP

Supported All Models

:SYSTem:COMMunicate:LAN:IP "<ipstring>"

:SYSTem:COMMunicate:LAN:IP?

This command sets the signal generator's local area network (LAN) internet protocol (IP) address for your IP network connection.

The "<ipstring>" variable is the signal generator's IP address, formatted as xxx.xxx.xxx.xxx. Refer to “Quote Usage with SCPI Commands” on page 12 for information on using quotes for different programming languages.

The setting enabled by this command is not affected by a signal generator power-on, preset, or *RST command.

Example

The preceding example sets the signal generator's LAN IP address.

Key Entry IP Address

:LAN:SUBNet

Supported All Models

:SYSTem:COMMunicate:LAN:SUBNet "<ipstring>"

:SYSTem:COMMunicate:LAN:SUBNet?

This command sets the signal generator's local area network (LAN) subnet mask address for your internet protocol (IP) network connection.

The "<ipstring>" variable is the subnet mask for the IP address, formatted as xxx.xxx.xxx.xxx. Refer to “Quote Usage with SCPI Commands” on page 12 for information on using quotes for different programming languages.

The setting enabled by this command is not affected by a signal generator power-on, preset, or *RST command.

Example

:SYST:COMM:LAN:SUBN "203.194.101.111"

The preceding example sets the signal generator's LAN subnet mask.

Key Entry Subnet Mask
System Commands
Communication Subsystem (SYSTem:COMMunicate)

:**PMETer:ADDRess**

Supported All Models

:SYSTem:COMMunicate:PMETer:ADDRess <val>
:SYSTem:COMMunicate:PMETer:ADDRess?

This command sets the instrument address for a power meter that is controlled by the signal generator. The power meter is controlled only through a general purpose instrument bus (GPIB) cable.

The variable <number> is an integer numeric value between 0 and 30. The power meter address must be different from the GPIB address of the signal generator and any other GPIB instrument addresses in your system.

The setting enabled by this command is not affected by a signal generator power-on, preset, or *RST command.

Example

:SYST:COMM:PMET:ADDR 14

The preceding example sets the address to 14 for the power meter that is connected to and controlled by the signal generator.

Range 0–30

Key Entry Meter Address

:**PMETer:CHANnel**

Supported All Models

:SYSTem:COMMunicate:PMETer:CHANnel A|B
:SYSTem:COMMunicate:PMETer:CHANnel?

This command sets the measurement channel on a dual channel power meter that is controlled by the signal generator. A single-channel power meter uses channel A and selecting channel B will have no effect.

The setting enabled by this command is not affected by a signal generator power-on, preset, or *RST command. The power meter is controlled only through a general purpose instrument bus (GPIB) cable.

Example

:SYST:COMM:PMET:CHAN B

The preceding example sets the B measurement channel for the power meter that is connected to and controlled by the signal generator.

Key Entry Meter Channel A B
System Commands
Communication Subsystem (:SYSTem:COMMunicate)

:PMETer:IDN

Supported All Models

:SYSTem:COMMunicate:PMETer:IDN E4418B|E4419B|E4416A|E4417A

This command sets the model number of the power meter that is controlled by the signal generator. The setting enabled by this command is not affected by a signal generator power-on, preset, or *RST command. The power meter is controlled only through a general purpose instrument bus (GPIB) cable.

Example

:SYST:COMM:PMET:IDN E4417A

The preceding example sets the model number for the power meter that is connected to and controlled by the signal generator.

Key Entry Power Meter

:PMETer:TIMEout

Supported All Models

:SYSTem:COMMunicate:PMETer:TIMEout <num>[<time_suffix>]

This command sets the period of time that the signal generator will wait for a valid reading from the power meter. The variable <num> has a resolution of 0.001.

The variable <num> is the time expressed as a number. The variable <time_suffix> are the units of time, for example mS (milliseconds) or S (seconds).

The setting enabled by this command is not affected by a signal generator power-on, preset, or *RST command. The power meter is controlled only through a general purpose instrument bus (GPIB) cable. If a timeout occurs, the signal generator reports an error message.

Example

:SYST:COMM:PMET:TIME .1SEC

The preceding example sets the timeout to 100 milliseconds for the power meter that is connected to and controlled by the signal generator.

Range 1mS–100S

Key Entry Meter Timeout
:SERial:BAUD

Supported All Models

`:SYSTem:COMMunicate:SERial:BAUD <number>`

`:SYSTem:COMMunicate:SERial:BAUD?`

This command sets the baud rate for the rear panel RS-232 interface labeled RS-232. The setting enabled by this command is not affected by a signal generator power-on, preset, or *RST command.

The variable `<number>` is an integer value corresponding to baud rates: 300, 2400, 4800, 9600, 19200, 38400, and 57600.

Example

`:SYST:COMM:SER:BAUD 9600`

The preceding example sets the baud rate for serial communication to 9600.

Key Entry RS-232 Baud Rate

:SERial:ECHO

Supported All Models

`:SYSTem:COMMunicate:SERial:ECHO ON|OFF`

`:SYSTem:COMMunicate:SERial:ECHO?`

This command enables or disables the RS-232 echo, and is not affected by a power-on, preset, or *RST command. Characters sent to the signal generator are displayed or echoed to the controller display.

Example

`:SYST:COMM:SER:ECHO ON`

The preceding example enables RS-232 echoing.

Key Entry RS-232 ECHO Off On

:SERial:RESet

Supported All Models

`:SYSTem:COMMunicate:SERial:RESet`

This event command resets the RS-232 buffer and discards unprocessed SCPI input received at the RS-232 port.

Key Entry Reset RS-232
System Commands
Diagnostic Subsystem (:DIAGnostic[:CPU]:INFORMATION)

:SERial:TOUT

Supported All Models

:SYSTem:COMMunicate:SERial:TOUT <val>
:SYSTem:COMMunicate:SERial:TOUT?

This command sets the RS-232 serial port timeout value. If further input is not received within the timeout period specified while a SCPI command is processed, the command aborts and clears the input buffer. The variable <val> is entered in seconds. The setting is not affected by a signal generator power-on, preset, or *RST command.

Example

:SYST:COMM:SER:TOUT 2SEC

The preceding example sets the RS-232 timeout for 2 seconds.

Range 1–25

Key Entry RS-232 Timeout

Diagnostic Subsystem (:DIAGnostic[:CPU]:INFORMATION)

:BOARds

Supported All Models

:DIAGnostic[:CPU]:INFORMATION:BOARds?

This query returns a list of the boards installed in the signal generator. The information is returned in the following format:

"<board_name,part_number,serial_number,version_number,status>"

This information format will repeat for each of the signal generator's detected boards.

Key Entry Installed Board Info

:CCOunt:ATTenuator

Supported E8267D and E8257D with Option 1E1

:DIAGnostic[:CPU]:INFORMATION:CCOunt:ATTenuator?

This query returns the cumulative number of times that the attenuator has switched levels.

Key Entry Diagnostic Info

:CCOunt:PON

Supported All Models

:DIAGnostic[:CPU]:INFORMATION:CCOunt:PON?

This query returns the cumulative number of times the signal generator has been powered-on.

Key Entry Diagnostic Info
System Commands
Diagnostic Subsystem (:DIAGnostic[:CPU]:INFormation)

:DISPlay:O TIMe

Supported All Models

:DIAgnostic[:CPU]:INFormation:DISPlay:OTIMe?

This query returns the cumulative number of hours the display has been on.

Key Entry Diagnostic Info

:LICENse:AUXiliary

Supported All Models

:DIAgnostic[:CPU]:INFormation:LIcense:AUXiliary?

This query returns a listing of current external software application license numbers for an auxiliary instrument.

Key Entry Auxiliary Software Options

:OPTions

Supported All Models

:DIAgnostic[:CPU]:INFormation:OPTions?

This query returns a list of options installed in the signal generator.

Key Entry Options Info

:OPTions:DETail

Supported All Models

:DIAgnostic[:CPU]:INFormation:OPTions:DETail?

This query returns the options installed, option revision, and digital signal processing (DSP) version if applicable.

Key Entry Options Info

:OTIMe

Supported All Models

:DIAgnostic[:CPU]:INFormation:OTIMe?

This query returns the cumulative number of hours that the signal generator has been on.

Key Entry Diagnostic Info
System Commands
Display Subsystem (:DISPlay)

:REVision

Supported All Models

:DIAGnostic[:CPU]:INFormation:REVision?

This query returns the CPU bootstrap read only memory (boot ROM) revision date. In addition, the
query returns the revision, creation date, and creation time for the firmware.

Key Entry Diagnostic Info

:SDATE

Supported All Models

:DIAGnostic[:CPU]:INFormation:SDATE?

This query returns the date and time stamp for the signal generator's firmware.

Key Entry Diagnostic Info

Display Subsystem (:DISPlay)

:ANNotation:AMPLitude:UNIT

Supported All Models

:DISPlay:ANNotation:AMPLitude:UNIT DBM|DBUV|DBUVEMF|V|VEMF|DB

:DISPlay:ANNotation:AMPLitude:UNIT?

This command sets the displayed front panel amplitude units.
If the amplitude reference state is set to on, the query returns units expressed in dB. Setting any
other unit will cause a setting conflict error stating that the amplitude reference state must be set to
off. Refer to “:REFerence:STATe” on page 140 for more information.

Example

:DISP:ANN:AMPL:UNIT DB

The preceding example sets DB as the amplitude units shown on the signal generator's front panel
display.

*RST dBm

:ANNotation:CLOCk:DATE:FORMat

Supported All Models

:DISPlay:ANNotation:CLOCk:DATE:FORMat MDY|DMY

:DISPlay:ANNotation:CLOCk:DATE:FORMat?

This command selects the date format. The choices are month-day-year (MDY) or day-month-year
(DMY) format. The date is shown on the signal generator's front panel display.
The setting enabled by this command is not affected by a signal generator power-on, preset, or *RST command.

Example

`:DISP:ANN:CLOC:DATA:FORM DMY

The preceding example sets the date format shown on the signal generator’s front panel display to DMY.

ANNotation:CLOCk[:STAte]

Supported All Models

`:DISP:ANN:CLOC[:STAte] ON|OFF|1|0
`:DISP:ANN:CLOC[:STAte]?

This command enables or disables the digital clock shown at the lower right side of the front panel display.

The setting enabled by this command is not affected by a signal generator power-on, preset, or *RST command.

Example

`:DISP:ANN:CLOC OFF

The preceding example disables the digital clock on the signal generator’s front panel display.

BRIGHtness

Supported All Models

`:DISP:BRIGH <val>
`:DISP:BRIGH?

This command sets the display brightness (intensity). The brightness can be set to the minimum level (0.02), maximum level (1), or in between by using fractional numeric values (0.03–0.99).

The setting enabled by this command is not affected by a signal generator power-on, preset, or *RST command.

Example

`:DISP:BRIG .45

The preceding example sets display intensity to .45.

Range 0.02–1

Key Entry Brightness
:CAPTure

Supported All Models

:DISPLAY:CAPTURE

This command allows the user to capture the current display and store it in the signal generator's memory.

The display capture is stored as DISPLAY.BMP in the Binary file system. This file is overwritten with each subsequent display capture. The file can be downloaded in the following manner:

1. Log on to the signal generator using file transfer protocol (FTP).
2. Change to the BIN directory using the FTP `cd` command.
3. Retrieve the file by using the FTP `get` command.

:CONTrast

Supported All Models

:DISPLAY:CONTRast <val>
:DISPLAY:CONTRast?

This command sets the contrast for the signal generator's display. The variable `<val>` is expressed as a fractional number between 0 and 1. The contrast can be set to the maximum level (1), minimum level (0), or in between by using fractional numeric values (0.001–0.999).

The setting enabled by this command is not affected by a signal generator power-on, preset, or *RST command.

Example

:DISP:CONTR .45

The preceding example sets the display contrast to .45.

Range 0–1

Key Entry Display contrast hardkeys are located below the display.

:INVerse

Supported All Models

:DISPLAY:INVerse ON|OFF|1|0
:DISPLAY:INVerse?

This command sets the display of the source to inverse video mode. The setting enabled by this command is not affected by a signal generator power-on, preset, or *RST command.
System Commands
Display Subsystem (:DISPlay)

Example
:DISP:INV OFF
The preceding example sets the display video to normal (not inverse).

Key Entry
Inverse Video Off On

:REMeote
Supported
All Models

:DISPlay:REMeote ON|OFF|1|0
:DISPlay:REMeote?
This command enables or disables display updating when the signal generator is remotely controlled.

ON (1) This choice updates the signal generator display so that you can see the settings change as the commands are executed, however, this will decrease the signal generator’s response time.

OFF (0) This choice turns off display updating which will optimizing the signal generator’s response time.

The setting enabled by this command is not affected by signal generator preset or *RST command. However, cycling the signal generator power will reset it to zero.

Example
:DISP:REM 0
The preceding example turns off display updating.

Key Entry
Update in Remote Off On

Display Off On
Supported
All Models

:DISPlay[:WINDow][:STATe] ON|OFF|1|0
:DISPlay[:WINDow][:STATe]?
This command is used to either blank out (OFF or 0) the display screen or turn it on (ON or 1). A signal generator preset, *RST command, or cycling the power will turn the display on.

Example
:DISP OFF
The preceding example blanks out the signal generator's display.
IEEE 488.2 Common Commands

*CLS
Supported All Models

*CLS
The Clear Status (CLS) command clears the Status Byte register, the Data Questionable Event register, the Standard Event Status register, and the Standard Operation Status register. Refer to the Programming Guide for more information on programming the status registers.

*ESE
Supported All Models

*ESE <val>
This command enables bits in the Standard Event Enable register. Bits enabled and set in this register will set the Standard Event Status Summary bit (bit 5) in the Status Byte register. When bit 5 (decimal 32) in the Status Byte register is set, you can read the Standard Event register using the *ESR command and determine the cause.

The Standard Event Enable register state (bits enabled with this command) is not affected by signal generator preset or *RST. The register will be cleared when the signal generator is turned off unless the command *PSC is used before turning it off.

Refer to the Programming Guide for more information on programming the status registers.

Example

*ESE 129
This command enables bit 0 (decimal 1, Operation Complete) and bit 7 (decimal 128, Power On) in the Standard Event Status Enable register.

Range 0–255

*ESE?
Supported All Models

*ESE?
This query returns the decimal sum of the enabled bits in the Standard Event Enable register. Refer to the Programming Guide for more information on programming the status registers.
System Commands
IEEE 488.2 Common Commands

*ESR?

Supported All Models

NOTE This is a destructive read. The data in the register is latched until it is queried. Once queried, the data is cleared. Refer to the *Programming Guide* for more information.

This query returns the decimal sum of the bits set in the Standard Event register.

*IDN?

Supported All Models

*IDN?

This query requests an identification string from the signal generator. The IDN string consists of the following information:

<company_name>, <model_number>, <serial_number>, <firmware_revision>

The identification information can be modified. Refer to “:IDN” on page 86 for more information.

Key Entry Diagnostic Info

*OPC?

Supported All Models

*OPC?

The Operation Complete (OPC) command sets bit 0 in the Standard Event register.

Refer to the *Programming Guide* for more information on programming the status registers.

*OPC?

Supported All Models

*OPC?

The Operation Complete (OPC) query returns the ASCII character 1 in the Standard Event register indicating completion of all pending operations.

Refer to the *Programming Guide* for more information on programming the status registers.
PSC

Supported All Models

*PSC ON|OFF|1|0

The power-on Status Clear (PSC) command controls the automatic power-on clearing of the Service Request Enable register, the Standard Event Status Enable register, and the device-specific event enable registers.

Refer to the *Programming Guide* for more information on programming the status registers.

The setting enabled by this command is not affected by a signal generator power-on, preset, or *RST command.

ON (1) This choice enables the power-on clearing of the listed registers.

OFF (0) This choice disables the clearing of the listed registers and they retain their status when a power-on condition occurs.

Example

*PSC ON

This command clears all listed registers at power-on.

PSC?

Supported All Models

*PSC?

The power-on Status Clear (PSC) query returns the flag (1 or 0) setting as enabled by the *PSC command.

RCL

Supported All Models

*RCL <reg>,<seq>

The Recall (RCL) command recalls the state from the specified memory register <reg> in the specified sequence <seq>.

Range

* registers: 0–99 Sequences: 0–9

Key Entry

RECALL Reg Select Seq:

RST

Supported All Models

*RST

The Reset (RST) command resets most signal generator functions to a factory-defined state.

Each command description in this reference shows the *RST value if the signal generator’s setting is affected.
IEEE 488.2 Common Commands

*SAV

Supported All Models

*SAV <reg>,<seq>

The Save (SAV) command saves the state of the signal generator to the specified memory register <reg> of the specified sequence <seq>. Settings such as frequency, attenuation, power, and settings that do not survive a power cycle or an instrument reset can be saved. Data formats, arb setups, list sweep values, table entries, and so forth are not stored. Only a reference to the data file name is saved. Refer to the E8257D/67D PSG Signal Generators User’s Guide and Programming Guide for more information on saving and recalling instrument states.

Range registers: 0–99 Sequences: 0–9

Key Entry Save Reg Save Seq[n] Reg[nn]

*SRE

Supported All Models

*SRE <val>

The Service Request Enable (SRE) command enables bits in the Service Request Enable register. Bits enabled and set in this register will set bits in the Status Byte register.

The variable <val> is the decimal sum of the bits that are enabled. Bit 6 (value 64) is not available in this register and therefore cannot be enabled by this command. Because bit 6 is not available, entering values from 64 to 127 is equivalent to entering values from 0 to 63.

Refer to the Programming Guide for more information on programming the status registers.

The setting enabled by this command is not affected by signal generator preset or *RST. However, cycling the signal generator power will reset this register to zero.

Range 0–63, 128–191

*SRE?

Supported All Models

*SRE?

The Service Request Enable (SRE) query returns the decimal sum of bits enabled in the Service Request Enable register. Bit 6 (decimal 64) is not available in this register.

Refer to the Programming Guide for more information on programming the status registers.

Range 0–63, 128–191
STB?

Supported All Models

*STB?

This command reads the decimal sum of the bits set in the Status Byte register.

Refer to the *Programming Guide* for more information on programming the status registers.

Range 0–255

TRG

Supported All Models

*TRG

The Trigger (TRG) command triggers the device if BUS is the selected trigger source, otherwise, "TRG is ignored. Refer to ":TRIGger[:SEQUence]:SOURce" on page 100 for more information on triggers.

TST?

Supported All Models

*TST?

The Self-Test (TST) query initiates the internal self-test and returns one of the following results:

0 This shows that all tests passed.
1 This shows that one or more tests failed.

Key Entry Run Complete Self Test

WAI

Supported All Models

*WAI

The Wait-to-Continue (WAI) command causes the signal generator to wait until all pending commands are completed, before executing any other commands.
Low-Band Filter Subsystem

[:SOURce]:LBFilter

Supported All Models with Option 1EH

[:SOURce]:LBFilter ON|OFF|1|0
[:SOURce]:LBFilter?

This command enables or disables the low-band filter located in the RF path. Use this filter to reduce harmonics below 2 GHz.

*RST 0

Key Entry Low Pass Filter below 2 GHz Off On

Memory Subsystem (:MEMory)

:CATalog:BINary

Supported All Models

:CATalog:BINary?

This command outputs a list of binary files. The return data will be in the following form:

<mem_used>,<mem_free>{,"<file_listing>"

The signal generator will return the two memory usage parameters and as many file listings as there are files in the directory. Each file listing parameter will be in the following form:

"<file_name,file_type,file_size>"

Refer to “File Name Variables” on page 10 for information on the file name syntax.

Key Entry Binary

:CATalog:BIT

Supported E8267D with Option 601or 602

:CATalog:BIT?

This command outputs a list of bit files. The return data will be in the following form:

<mem_used>,<mem_free>{,"<file_listing>"

The signal generator will return the two memory usage parameters and as many file listings as there are files in the directory. Each file listing parameter will be in the following form:

"<file_name,file_type,file_size>"

Refer to “File Name Variables” on page 10 for information on the file name syntax.

Key Entry Bit
:CATalog:DMOD

Supported E8267D with Option 601 or 602

:MEMory:CATalog:DMOD?

This command outputs a list of arbitrary waveform digital modulation files. The return data will be in the following form: `<mem_used>,<mem_free>{,"<file_listing>"}

The signal generator will return the two memory usage parameters and as many file listings as there are files in the directory. Each file listing parameter will be in the following form:
"<file_name,file_type,file_size>"

Refer to "File Name Variables" on page 10 for information on the file name syntax.

Key Entry DMOD

:CATalog:FIR

Supported E8267D with Option 601 or 602

:MEMory:CATalog:FIR?

This command outputs a list of finite impulse response (FIR) filter files. The return data will be in the following form: `<mem_used>,<mem_free>{,"<file_listing>"}

The signal generator will return the two memory usage parameters and as many file listings as there are files in the directory. Each file listing parameter will be in the following form:
"<file_name,file_type,file_size>"

Refer to "File Name Variables" on page 10 for information on the file name syntax.

Key Entry FIR

:CATalog:FSK

Supported E8267D with Option 601 or 602

:MEMory:CATalog:FSK?

This command outputs a list of frequency shift keying (FSK) files. The return data will be in the following form:
`<mem_used>,<mem_free>{,"<file_listing>"}`

The signal generator will return the two memory usage parameters and as many file listings as there are files in the directory. Each file listing parameter will be in the following form:
"<file_name,file_type,file_size>"

Refer to "File Name Variables" on page 10 for information on the file name syntax.

Key Entry FSK
System Commands
Memory Subsystem (:MEMory)

:CATalog:IQ

Supported
E8267D with Option 601 or 602

:MEMory:CATalog:IQ?

This command outputs a list of IQ files. The return data will be in the following form:

\(<\text{mem_used}>,\text{mem_free}>\{,\"\text{<file_listing>}\}\}\)

The signal generator will return the two memory usage parameters and as many file listings as there are files in the directory. Each file listing parameter will be in the following form:

\("\text{<file_name},\text{file_type},\text{file_size}>\"

Refer to “File Name Variables” on page 10 for information on the file name syntax.

Key Entry
I/Q

:CATalog:LIST

Supported
All Models

:MEMory:CATalog:LIST?

This command outputs a list of List Sweep files. The return data will be in the following form:

\(<\text{mem_used}>,\text{mem_free}>\{,\"\text{<file_listing>}\}\}\)

The signal generator will return the two memory usage parameters and as many file listings as there are files in the directory. Each file listing parameter will be in the following form:

\("\text{<file_name},\text{file_type},\text{file_size}>\"

Refer to “File Name Variables” on page 10 for information on the file name syntax.

Key Entry
List

:CATalog:MDMod

Supported
E8267D with Option 601 or 602

:MEMory:CATalog:MDMod?

This command outputs a list of arbitrary waveform multicarrier digital modulation (MDMod) files. The return data will be in the following form: \(<\text{mem_used}>,\text{mem_free}>\{,\"\text{<file_listing>}\}\}\)

The signal generator will return the two memory usage parameters and as many file listings as there are files in the directory. Each file listing parameter will be in the following form:

\("\text{<file_name},\text{file_type},\text{file_size}>\"

Refer to “File Name Variables” on page 10 for information on the file name syntax.

Key Entry
MDMOD
:CATalog:MT0Ne

Supported E8267D with Option 601 or 602

This command outputs a list of arbitrary waveform multitone files. The return data will be in the following form:

<mem_used>,<mem_free>{,"<file_listing>"}

The signal generator will return the two memory usage parameters and as many file listings as there are files in the directory. Each file listing parameter will be in the following form:

"<file_name,file_type,file_size>"

Refer to “File Name Variables” on page 10 for information on the file name syntax.

Key Entry MT0NE

:CATalog:SEQ

Supported E8267D with Option 601 or 602

This command outputs a list of arbitrary waveform sequence files. The return data will be in the following form:

<mem_used>,<mem_free>{,"<file_listing>"}

The signal generator will return the two memory usage parameters and as many file listings as there are files in the directory. Each file listing parameter will be in the following form:

"<file_name,file_type,file_size>"

Refer to “File Name Variables” on page 10 for information on the file name syntax.

Key Entry Seq

:CATalog:SHAPE

Supported E8267D with Option 601 or 602

This command outputs a list of burst shape files. The return data will be in the following form:

<mem_used>,<mem_free>{,"<file_listing>"}

The signal generator will return the two memory usage parameters and as many file listings as there are files in the directory. Each file listing parameter will be in the following form:

"<file_name,file_type,file_size>"

Refer to “File Name Variables” on page 10 for information on the file name syntax.

Key Entry SHAPE
System Commands

Memory Subsystem (:MEMory)

:CATalog:STATE

Supported All Models

:MEMory:CATalog:STATE?

This command outputs a list of state files. The return data will be in the following form:

\[
\text{<mem_used>,<mem_free>,"<file_listing>"}
\]

The signal generator will return the two memory usage parameters and as many file listings as there are files in the directory. Each file listing parameter will be in the following form:

"<file_name,\ file_type,\ file_size>"

Refer to “File Name Variables” on page 10 for information on the file name syntax.

Key Entry State

:CATalog:UFLT

Supported All Models

:MEMory:CATalog:UFLT?

This command outputs a list of user-flatness correction files. The return data will be in the following form:

\[
\text{<mem_used>,<mem_free>,"<file_listing>"}
\]

The signal generator will return the two memory usage parameters and as many file listings as there are files in the directory. Each file listing parameter will be in the following form:

"<file_name,\ file_type,\ file_size>"

Refer to “File Name Variables” on page 10 for information on the file name syntax.

Key Entry User Flatness

:CATalog[:ALL]

Supported All Models

:MEMory:CATalog[:ALL]?

This command outputs a list of all files in the memory subsystem, but does not include files stored in the Option 601 or 602 baseband generator memory. The return data is in the following form:

\[
\text{<mem_used>,<mem_free>,"<file_listing>"}
\]

The signal generator returns the two memory usage parameters and as many file listings as there are files in the memory subsystem. Each file listing parameter is in the following form:

"<file_name,\ file_type,\ file_size>"

See Table 2-1 on page 57 for file types, and “File Name Variables” on page 10 for syntax.

Key Entry All
:COPY[:NAME]

Supported All Models

:MEMory:COPY[:NAME] "<src_name>"","<dest_name>">

This command copies the data from one file into another file. The file can use the same name if the specified directory is different. For example, if the file resides in non-volatile waveform memory (NVWFM) it can be copied, using the same name, to the signal generator's volatile memory (WFM1).

"<src_name>" This variable names a file residing in memory that will be copied. For information on the file name syntax, see “File Name Variables” on page 10.

"<dest_name>" This variable names the file that is a copy of the "<src_name>" file.

Example

:MEM:COPY "/USER/IQ/4QAM","/USER/IQ/test_QAM"

The preceding example copies the 4QAM file in the signal generator’s /USER/IQ directory to a file named test_QAM and saves it in the same directory.

Key Entry Copy File

:DATA

Supported All Models

:MEMory:DATA "<file_name>,<data_block>

:MEMory:DATA? "<file_name>"

This command loads waveform data into signal generator memory using the <data_block> parameter and saves the data to a file designated by the "<file_name>" variable. The query returns the file contents of the file as a datablock.

The waveform file must be located in volatile waveform memory (WFM1) before it can be played by the signal generator’s Dual ARB player. For downloads directly into volatile waveform memory use the path "WFM1:<file_name>". For downloads to non-volatile waveform memory, use the path "NVWFM:<file_name>".

Refer to “File Name Variables” on page 10 for information on the file name syntax.

"<file_name>" This variable names the destination file, including the directory path. Refer to “ARB Waveform File Directories” on page 11 for information on directory paths and the file name syntax.

<data_block> This parameter represents the data and file length parameters. The data in the file is represented by the <data_block> variable.

Refer to the Programming Guide for more information on programming the status registers.

NOTE ARB waveform files created using the :DATA command cannot be retrieved or uploaded. Attempting to do so will cause the signal generator to display the message: ERROR:221, Access denied. To download ARB data to files for later retrieval, use the :DATA:UNPROtected command on page 51.
Example

:MEM:DATA "NVWFM:IQ_Data",#210Qaz37pY9oL

The preceding example downloads 10 bytes of data to a file, IQ_Data, in the signal generator’s non-volatile memory. The table shown below describes the command parameters.

- "NVWFM:IQ_Data"
 IQ_Data is the data filename. The directory path is specified along with the filename.

- #210Qaz37pY9oL
 Data block

 #
 This character indicates the beginning of the data block

 10
 10 bytes of data

:DATA:APPend

Supported All

:MEMory:DATA:APPend "<file_name>";<data_block>

This command appends data to an existing file stored in signal generator memory.

"<file_name>"
This variable names the destination file and directory path. Refer to “File Name Variables” on page 10 for information on the file name syntax.

<data_block>
This parameter represents the data and file length parameters. The data in the file is represented by the <data_block> variable. The file length parameters are used by the signal generator for allocating memory.

Refer to the Programming Guide for more information on downloading and using files.

Example

:MEM:DATA:APPend "NVWFM:IQ_Data",#14Y9oL

The preceding example downloads and appends the data, Y9oL, to an existing file named IQ_Data stored in the signal generator’s non-volatile memory (NVWFM).

- "NVWFM:IQ_Data"
 IQ_Data is the filename to append data to. The directory path is specified along with the filename.

- #14Y9oL
 Data block

 #
 This character indicates the beginning of the data block

 4
 4 bytes of data
:DATA:BIT

Supported E8267D with Option 601 or 602

:MEMORY:DATA:BIT "<file_name>",<bit_count>,<data_block>

:MEMORY:DATA:BIT? "<file_name>"

This command loads bit data into signal generator memory using the <bit_count> and <data_block> parameters and saves the data to a file designated by the "<file_name>" variable. The query returns the bit count, file length information, and the data.

"<file_name>" This variable names the destination file and the directory path. Refer to “File Name Variables” on page 10 for information on the file name syntax.

<bit_count> This number represents the number of bits in the data block.

<data_block> This parameter represents the data and file length parameters. The data in the file is represented by the <data_block> variable. The file length parameters are used by the signal generator for allocating memory.

Refer to the Programming Guide for more information on downloading and using files.

Example

:MEM:DATA:BIT "/USER/BIT/Test_Data",16,#12Qz

The preceding example downloads bit data to the file, Test_Data. The table below describes the command parameters.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>/"USER/BIT/Test_Data"</td>
<td>Test_Data is the bit data filename. The directory path is specified along with the filename</td>
</tr>
<tr>
<td>16</td>
<td>Number of bits in the data block</td>
</tr>
<tr>
<td>#12Qz</td>
<td>Data block</td>
</tr>
<tr>
<td>#</td>
<td>This character indicates the beginning of the data block</td>
</tr>
<tr>
<td>1</td>
<td>Number of digits in the byte count</td>
</tr>
<tr>
<td>2</td>
<td>Byte count</td>
</tr>
<tr>
<td>Qz</td>
<td>16 bits of data (ASCII representation of bit data)</td>
</tr>
</tbody>
</table>

:DATA:FIR

Supported E8267D with Option 601 or 602

:MEMORY:DATA:FIR "<file_name>",osr,coefficient{,coefficient}

:MEMORY:DATA:FIR? "<file_name>"

This command loads oversample ratio (OSR) and user-defined finite impulse response (FIR) coefficient data into a file in the signal generator's non–volatile memory (NVWFM). The query returns the oversample ratio and coefficient data.

"<file_name>" This variable is the directory path and file name of the destination file. Refer to “File Name Variables” on page 10 for information on the file name syntax.
System Commands
Memory Subsystem (:MEMory)

osr The OSR is the number of filter taps per symbol.
coefficient This variable is the FIR coefficient. The maximum number of coefficients is 1024.
{,coefficient} This optional variable is used when you enter additional coefficients.
Refer to the Programming Guide for more information on downloading and using files.

Example

:MEM:DATA:FIR "USER/FIR/FIR_1",4,0,0,0,0,0.000001,0.000012,0.000132,0.001101,0.006743,0.030588,0.103676,0.265790,0.523849,0.809508,1,1,0.809508,0.523849,0.265790,0.103676,0.030588,0.006743,0.001101,0.000132,0.000012,0.000001,0,0,0,0,0

The preceding example downloads FIR coefficient and oversampling ratio data to the signal generator's non-volatile memory in a file named FIR_1.

Range
osr: 1–32
coefficient: -1000 to 1000

Key Entry
Oversample Ratio

:DATA:FSK

Supported E8267D with Option 601 or 602

:MEM:DATA:FSK "<file_name>,<num_states>,<f0>,<f1>,...<f(n)>
[,<diff_state>,<num_diff_states>,<diff1>,...<diff(n)>]
:MEM:DATA:FSK? "<file_name>

This command loads custom frequency shift keying (FSK) data into a file in the signal generator's non-volatile memory (NVWFM).
The query returns data in the following form:

"<file_name>" This variable string identifies the name of the FSK file. The filename must be enclosed with quotation marks. Refer to “File Name Variables” on page 10 for information on the file name syntax.
<num_states> This variable identifies the number of frequency states.
<f0> This variable identifies the value of the first frequency state.
<f1>,...<f(n)> This variable identifies the value of the second and subsequent frequency states with a frequency resolution of 0.1Hz.
<diff_state> This variable enables or disables differential encoding.
<num_diff_states> This variable identifies the number of differential states.
<diff0> This variable identifies the value of the first differential state.
<diff1>,...<diff(n)> This variable identifies the value of the second and subsequent differential states.

Refer to the Programming Guide for more information on downloading and using files.
Example

:MEM:DATA:FSK "*/USER/FSK/4FSK",4,-2kHz,-1kHz,2kHz,1kHz,ON,2,1,0

The preceding example downloads a four–level FSK data to a file named 4FSK that has four states (frequencies): -2kHz, -1kHz, 2kHz, 1kHz; differential encoding is toggled ON, and there are two differential states 1 and 0. The table shown below describes the command parameters.

- "*/USER/FSK/4FSK" 4FSK is the FSK data filename. The directory path is specified along with the filename
- 4 Number of states
- -2kHz First frequency state
- -1kHz Second frequency state
- 2kHz Third frequency state
- 1kHz Fourth frequency state
- ON Differential encoding is on
- 2 Number of differential states
- 1 Value of the first differential state
- 0 Value of the second differential state

Range

\begin{align*}
\text{num_diff_states:} & \quad 0–256 \\
\text{num_states:} & \quad 2–16 \\
\text{f0–f(n):} & \quad -20\text{MHz to 20MHz} \\
\text{diff0–diff(n):} & \quad -128 to 127
\end{align*}

:DATA:IQ

Supported

E8267D with Option 601 or 602

:MEM:DATA:IQ "<file_name>",<offsetQ>,<num_states>,<i0>,<q0>,<i1>,<q1>,...<i(n)>,<q(n)>,[,<diff_state>,<num_diff_states>,<diff0>,<diff1>,...<diff(n)>]

This command loads custom I/Q data into a file in the signal generator’s non–volatile waveform memory (NVWFIM).

The query returns data in the following form:

\begin{align*}
\text{<offsetQ>,<num_states>,<i0>,<q0>,<i1>,<q1>,...<i(n)>,<q(n)>,<diff_state>,<num_diff_states>,<diff0>,<diff1>,...<diff(n)>}
\end{align*}

"<file_name>" This variable string identifies the name of the I/Q file. The filename must be enclosed with quotation marks. Refer to “File Name Variables" on page 10 for information on the file name syntax.

<offsetQ> This variable enables (1) or disables (0) the Q output delay by 1/2 symbol from the I output.
<num_states> This is the number of symbols.
<i0>...<i(n)> This is the I value of the first and subsequent I symbols.
<q0>...<q(n)> This is the Q value of the first and subsequent Q symbols.
<diff_state> This variable enables and disables differential encoding.
<num_diff_states> This variable identifies the number of differential states.
<diff0> This variable identifies the value of the first differential state.
<diff1,...diff(n)> This variable identifies the value of the second and subsequent differential states.

Refer to the Programming Guide for more information on downloading and using files.

Example

:MEM:DATA:IQ "USER/IQ/Test_BPSK", 1, 2, 1, 0, 0, 0

The preceding example loads and stores a two-symbol I/Q file named Test_BPSK that has a Q offset. The table shown below describes the command parameters.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test_BPSK</td>
<td>Test_Data is the bit data filename. The directory path is specified along with the filename</td>
</tr>
<tr>
<td>Q Offset</td>
<td>Q Offset. The Q output delay is enabled.</td>
</tr>
<tr>
<td>Number of symbols</td>
<td>Number of symbols</td>
</tr>
<tr>
<td>Value of the first I symbol</td>
<td>Value of the first I symbol</td>
</tr>
<tr>
<td>Value of the second I symbol</td>
<td>Value of the second I symbol</td>
</tr>
<tr>
<td>Value of the second Q symbol</td>
<td>Value of the second Q symbol</td>
</tr>
</tbody>
</table>

Range

- num_states: 2–256
- i0–i(n): −1 to 1
- q0–q(n): −1 to 1
- num_diff_states: 0–256
- diff0–diff(n): -128 to 127

:DATA:PRAM:FILE:BLOCk

Supported E8267D with Option 601 or 602

This command loads block-formatted data directly into pattern RAM volatile memory (WFM1). Pattern RAM memory describes how memory (WFM1) is used and is not a distinct piece of memory. A PRAM file is specified as an array of bytes. No directory path name is needed.

"<file_name>" This variable names the destination file. Refer to “File Name Variables” on page 10 for information on the file name syntax.
<data_block> This parameter represents the data and file length parameters. The data in the file is represented by the <data_block> variable. The file length parameters are used by the signal generator for allocating memory.

Pattern Ram files are binary files downloaded directly into waveform memory as an array of bytes. Each byte specifies a data bit (LSB 0), a burst bit (BIT 2), and an Event 1 output bit (BIT 6). Refer to the Programming Guide for more information on downloading and using files.

Example

:MEM:DATA:PRAM:FILE:BLOC "PRAM_Data",#14Yq8L

The preceding example downloads PRAM data to a file named PRAM_Data into the signal generator's volatile memory.

- 'PRAM_Data' PRAM_Data is the data filename. PRAM files are saved to the signal generator's non-volatile memory (WFM1).
- #14Yq8L Data block
 # This character indicates the beginning of the data block
 1 Number of digits in the byte count
 4 Byte count
 Yq8L 4 bytes of data

:DATA:PRAM:FILE:LIST

Supported E8267D with Option 601 or 602

:MEMORY:DATA:PRAM:FILE:LIST "<file_name>" [,<uint8>,<...>]

This command loads list-formatted data directly into pattern RAM volatile memory (WFM1). Pattern RAM memory describes how memory (WFM1) is used and is not a distinct piece of memory. A PRAM file is specified as an array of bytes.

NOTE This command should be preceded by a *WAI (Wait-to-Continue) command to ensure that all pending operations are completed, before loading the list.

"<file_name>" This variable names the destination file. Refer to "File Name Variables" on page 10 for information on the file name syntax.

<uint8> This variable is any of the valid 8-bit, unsigned integer values between 0 and 255.

[,<uint8>,<...>] This variable identifies the value of the second and subsequent 8-bit unsigned integer variables.

Pattern Ram files are binary files downloaded directly into waveform memory as an array of bytes. Each byte specifies a data bit (LSB 0), a burst bit (BIT 2), and an Event 1 output bit (BIT 6). Refer to the Programming Guide for more information on downloading and using files.
Example

:MEM:DATA:PRAM:LIST "Pram_Data", 85,21,21,20,20,100

The preceding example downloads PRAM data, in list format, to a file named Pram_Data in the signal generator's volatile memory (WFM1).

- 'Pram_Data'
 Pram_Data is the data filename. PRAM files are saved to the signal generator's non-volatile memory (WFM1).
- 85
 The first 8-bit integer value
- 21,21,20,20,100
 Subsequent 8-bit integer values.

Range
0–255

:DATA:PRAM?

NOTE
This query is no longer supported; however, it is still valid for backward compatibility. Refer to “:DATA:PRAM?” on page 320 for information on this command.

:DATA:PRAM:BLOCk

NOTE
This command has been replaced by “:DATA:PRAM:FILE:BLOCk” on page 48. This command is no longer supported; however, it is still valid for backward compatibility. Refer to “:DATA:PRAM:BLOCk” on page 320 for information.

:DATA:PRAM:LIST

NOTE
This command has been replaced by “:DATA:PRAM:FILE:LIST” on page 49. This command is no longer supported; however, it is still valid for backward compatibility. Refer to “:DATA:PRAM:LIST” on page 320 for information.

:DATA:SHAPE

Supported
E8267D with Option 601 or 602

:MEMORY:DATA:SHAPE "<file_name>";<rise_pnts>;<rp0>,<rp1>,...;<fall_points>;<fp0>,<fp1>,...;<fp(n)}

This command loads a burst shape file into the signal generator's non-volatile memory (NVWFM).

"<file_name>"
This variable names the destination file and directory path. Refer to “File Name Variables” on page 10 for information on the file name syntax.

rise_pnts
This variable indicates the number of rise points used to describe the burst shape rising slope.
rp0,...rp(n) This variable defines each successive rise point, where 0 is no power and 1 is full power.

fall_points This variable indicates the number of fall points used to describe the burst shape falling slope.

fp0,...fp(n) This variable defines each successive fall point, where 1 is full power and 0 is no power.

Refer the *Programming Guide* for more information on downloading and using files.

Example

```
:MEM:DATA:SHAP "\USER/SHAPE/Shape_File",6,0,0.2,0.4,0.6,0.8,1.0,2,0.5,0
```

The preceding example loads shape data to a file named Shape_File in the signal generator’s non-volatile memory.

- `/USER/SHAPE/Shape_File` Shape_File is the data filename. The directory path is specified along with the file name.
- 6 Number of rise points describing the burst shape.
- 0.0,0.2,0.4,0.6,0.8,1.0 Rise point values.
- 2 Number of fall points describing the burst shape.
- 0.5,0 Fall point values.

Range

- `num_rise_points`: 2–256
- `num_fall_points`: 2–256
- `rp0–rp(n)`: 0.0–1.0
- `fp0–fp(n)`: 0.0–1.0

:DATA:UNPRotected

Supported E8267D with Option 601 or 602

`:MEMory:DATA:UNPRotected "<file_name>",<data_block>`

This command allows you to download data and store it in a file on the signal generator with the ability to retrieve it. This command is intended for downloading waveform data; however, you can use it to download all types of data.

NOTE If you do not use the UNPRotected command when downloading a waveform file, you will not be able to retrieve or upload the file. Attempting to do so will cause the signal generator to display the message: ERROR:221, Access denied.

The UNPRotected command does not require the directory path in the `<file_name>` parameter if the destination directory is BINARY.

Waveform files created with Agilent’s Signal Studio are encrypted. These files can be used in other signal generators (provided the other signal generator has the same options and licenses required by
the file) only if the SECUREWAVE directory path is specified in both the download and upload command parameters. The securewave directory path is SNVWFM: for non-volatile waveform memory and SWFM1: for volatile waveform memory.

"<file_name>" This variable names the destination file and directory path. Refer to “File Name Variables” on page 10 for information on the file name syntax.

<data_block> This parameter represents the data and file length parameters. The data in the file is represented by the <data_block> variable.

Refer to the Programming Guide for more information on downloading and using files.

Example

:MEM:DATA:UNPR "NVWFM:Data_File",#18Qz37pY9o

The preceding example downloads waveform data to a file named Data_File in the signal generator's non-volatile memory. The table shown below describes the command parameters.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>"NVWFM:Data_File"</td>
<td>Data_File is the data filename. The directory path is implied along with the filename.</td>
</tr>
<tr>
<td>#18Qz37pY9o</td>
<td>Data block</td>
</tr>
<tr>
<td>#</td>
<td>This character indicates the beginning of the data block</td>
</tr>
<tr>
<td>1</td>
<td>Number of digits in the byte count</td>
</tr>
<tr>
<td>8</td>
<td>Byte count</td>
</tr>
<tr>
<td>Qz37pY9o</td>
<td>8 bytes of data</td>
</tr>
</tbody>
</table>

:DELETE:ALL

Supported All Models

CAUTION Using this command deletes all user files including binary, list, state, and flatness correction files, and any saved setups that use the front panel table editor. However, this does not include files stored in the Option 601 or 602 baseband generator memory. You cannot recover the files after executing this command.

:MEMORY:DELETE:ALL

This command clears the file system of all user files.

Key Entry Delete All Files

:DELETE:BINary

Supported All Models

:MEMORY:DELETE:BINary

This command deletes all binary files.

Key Entry Delete All Binary Files
System Commands
Memory Subsystem (:MEMory)

:DELe:BIT

Supported E8267D with Option 601 or 602

This command deletes all bit files.

Key Entry Delete All Bit Files

:DELe:DMOD

Supported E8267D with Option 601 or 602

This command deletes all arbitrary waveform digital modulation (DMOD) files.

Key Entry Delete All ARB DMOD Files

:DELe:FIR

Supported E8267D with Option 601 or 602

This command deletes all finite impulse response (FIR) filter files.

Key Entry Delete All FIR Files

:DELe:FSK

Supported E8267D with Option 601 or 602

This command deletes all frequency shift keying (FSK) files.

Key Entry Delete All FSK Files

:DELe:IQ

Supported E8267D with Option 601 or 602

This command deletes all I/Q files.

Key Entry Delete All I/Q Files
System Commands
Memory Subsystem (:MEMory)

:DELeTe:LIST

Supported: All Models

This command deletes all List files.

Key Entry: Delete All List Files

:DELeTe:MDMod

Supported: E8267D with Option 601 or 602

This command deletes all arbitrary waveform multicarrier digital modulation (MDMod) files.

Key Entry: Delete All ARB MDMOD Files

:DELeTe:MTONE

Supported: E8267D with Option 601 or 602

This command deletes all arbitrary waveform multitone files.

Key Entry: Delete All ARB MTONE Files

:DELeTe:SEQ

Supported: E8267D with Option 601 or 602

This command deletes all sequence files.

Key Entry: Delete All Sequence Files

:DELeTe:SHAPe

Supported: E8267D with Option 601 or 602

This command deletes all burst shape files.

Key Entry: Delete All Shape Files
:DELete:STATe

Supported All Models

:MEMory:DELete:STATe

This command deletes all state files.

Key Entry Delete All State Files

:DELete:UFLT

Supported All Models

:MEMory:DELete:UFLT

This command deletes all user-flatness correction files.

Key Entry Delete All UFLT Files

:DELete[:NAME]

Supported All Models

:MEMory:DELete[:NAME] "<file_name>"

This clears the user file system of "<file_name>". When deleting an ARB waveform file, the associated marker and header files are also deleted.

Refer to "File Name Variables" on page 10 for information on the file name syntax.

Example

:MEM:DEL "/USER/WAVEFORM/Test_Data"

The preceding example deletes the file named Test_Data from the signal generator's non-volatile memory.

Key Entry Delete File

:FREE[:ALL]

Supported All Models

:MEMory:FREE[:ALL] ?

This command returns the number of bytes left in the user file system.

Key Entry All
System Commands
Memory Subsystem (:MEMory)

:LOAD:LIST

Supported All Models

:MEMory:LOAD:LIST "<file_name>"

This command loads a List Sweep file.

Example

:MEM:LOAD:LIST "List_Data"

The preceding example loads the file "List_Data" into volatile waveform memory.

Key Entry Load From Selected File

:MOVE

Supported All Models

:MEMory:MOVE "<src_file>"","<dest_file>"

This command renames the src_file to dest_file in the signal generator's memory catalog.

Refer to “File Name Variables” on page 10 for information on the file name syntax.

Example

:MEM:MOV "NVWFM:Test_Data","NVWFM:New_Data"

The preceding example renames the file Test_Data to New_Data in the signal generator's non-volatile memory directory.

Key Entry Rename File

:STATE:COMMent

Supported All Models

:MEMory:STATE:COMMent <reg_num>,<seq_num>,"<comment>"

:MEMory:STATE:COMMent? <reg_num>,<seq_num>

This command lets you to add a descriptive comment to the saved instrument in the state register, <reg_num>,<seq_num>. Comments can be up to 55 characters long.

Example

:MEM:STAT:COMM 00,1, "ARB file using external reference"

The preceding example writes a descriptive comment to the state file saved in register 00, sequence 1.

Key Entry Add Comment To Seq[n] Reg[nn]
:STOR:e:LIST

Supported All Models

```
:MEM:ORY:STOR:LIST "<file_name>"
```

This command stores the current list sweep data to a file.

Refer to "File Name Variables" on page 10 for information on the file name syntax.

Example

```
:MEM:ORY:STOR:LIST "Test_Data"
```

The preceding example writes list sweep data to a file named Test_Data and stores the file in the signal generator’s non–volatile memory, List directory.

Key Entry Store To File

Mass Memory Subsystem (:MMEMory)

:CATalog

Supported All Models

```
:MMEM:ORY:CATalog? "<msus>"
```

This command outputs a list of the files from the specified file system. The variable "<msus>" (mass storage unit specifier) represents a file system. The file systems and types are shown in Table 2-1.

Table 2-1

<table>
<thead>
<tr>
<th>File System</th>
<th>File Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIN - Binary file</td>
<td>BIN</td>
</tr>
<tr>
<td>BIT</td>
<td>BIT</td>
</tr>
<tr>
<td>DMOD - ARB digital modulation file</td>
<td>DMOD</td>
</tr>
<tr>
<td>FIR - finite impulse response filter file</td>
<td>FIR</td>
</tr>
<tr>
<td>FSK - frequency shift keying modulation file</td>
<td>FSK</td>
</tr>
<tr>
<td>I/Q - modulation file</td>
<td>IQ</td>
</tr>
<tr>
<td>LIST - sweep list file</td>
<td>LIST</td>
</tr>
<tr>
<td>MDMOD - ARB multicarrier digital modulation file</td>
<td>MDM</td>
</tr>
<tr>
<td>MTON - ARB multitone file</td>
<td>MTON</td>
</tr>
<tr>
<td>NVMKR - non–volatile arbitrary waveform marker file</td>
<td>NVMKR</td>
</tr>
<tr>
<td>NVWFM - non–volatile arbitrary waveform file</td>
<td>NVWFM</td>
</tr>
<tr>
<td>SEQ - ARB sequence file</td>
<td>SEQ</td>
</tr>
<tr>
<td>SHAPE - burst shape file</td>
<td>SHAP</td>
</tr>
<tr>
<td>STATE</td>
<td>STAT</td>
</tr>
</tbody>
</table>

System Commands
Mass Memory Subsystem (:MMEMory)

Table 2-1

<table>
<thead>
<tr>
<th>File System</th>
<th>File Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>USERFLAT - user-flatness file</td>
<td>UFLT</td>
</tr>
<tr>
<td>WFM1 - waveform file</td>
<td>WFM1</td>
</tr>
</tbody>
</table>

The return data will be in the following form: \(<\text{mem_used}>,<\text{mem_free}>\{,"<\text{file_listings}>\}

The signal generator will return the two memory usage parameters and as many file listings as there are files in the specified file system. Each file listing will be in the following format: "<file_name,file_type,\text{file_size}>"

Refer to “MSUS (Mass Storage Unit Specifier) Variable” on page 11 for information on the use of the "<msus>" variable.

Key Entry

<table>
<thead>
<tr>
<th>Binary</th>
<th>List</th>
<th>State</th>
<th>User Flatness</th>
<th>Fir</th>
<th>Shape</th>
<th>Bit</th>
<th>FSK</th>
</tr>
</thead>
<tbody>
<tr>
<td>I/Q</td>
<td>Seq</td>
<td>DMOD</td>
<td>MTONE</td>
<td>MDMOD</td>
<td>WFM1</td>
<td>NVMKR</td>
<td>NVMFM</td>
</tr>
</tbody>
</table>

:COPY

Supported
All Models

:MMEMory:COPY[:NAME] "<\text{src_name}>","<\text{dest_name}>"

This command copies the data from one file into another file. The file can use the same name if the specified directory is different. For example, if the file resides in non-volatile waveform memory (NVWFM) it can be copied, using the same name, to the signal generator's volatile memory (WFM1)

"<\text{src_name}>" This variable names a file residing in memory that will be copied. For information on the file name syntax, see “File Name Variables” on page 10

"<\text{dest_name}>" This variable names the file that is a copy of the "<\text{src_name}>" file.

Example

:MMEM:COPY "/USER/IQ/4QAM","/USER/IQ/test_QAM"

The preceding example copies the 4QAM file in the signal generator's /USER/IQ directory to a file named test_QAM and saves it in the same directory.

Key Entry
Copy File

:DATA

Supported
All Models

:MMEMory:DATA "<file_name>",<data_block>

:MMEMory:DATA? "<file_name>"

This command loads waveform data into signal generator memory using the <data_block> parameter and saves the data to a file designated by the "<file_name>" variable. The query returns the file contents of the file as a datablock.

The waveform file must be located in volatile waveform memory (WFM1) before it can be played by
the signal generator’s Dual ARB player. For downloads directly into volatile waveform memory use the path "WFM1:<file_name>". For downloads to non-volatile waveform memory, use the path "NVWFM:<file_name>".

Refer to "File Name Variables" on page 10 for information on the file name syntax.

"<file_name>" This variable names the destination file, including the directory path. Refer to “ARB Waveform File Directories” on page 11 for information on directory paths and the file name syntax.

<data_block> This parameter represents the data and file length parameters. The data in the file is represented by the <data_block> variable. The file length parameters are used by the signal generator for allocating memory.

Refer to the Programming Guide for more information on downloading and using files.

NOTE Files created using the :DATA command cannot be retrieved or uploaded. Attempting to do so will cause the signal generator to display the message: ERROR:221, Access denied. To download data to files for later retrieval, use the :DATA:UNPRotected command on page 51.

Example

:MMEM:DATA "NVWFM:IQ_Data",#210Qaz37pY9oL

The preceding example downloads 10 bytes of data to a file, IQ_Data, in the signal generator’s non-volatile memory. The table shown below describes the command parameters.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>"NVWFM:IQ_Data"</td>
<td>IQ_Data is the data filename. The directory path is specified along with the filename</td>
</tr>
<tr>
<td>#210Qaz37pY9oL</td>
<td>Data block</td>
</tr>
<tr>
<td>#</td>
<td>This character indicates the beginning of the data block</td>
</tr>
<tr>
<td>2</td>
<td>Number of digits in the byte count</td>
</tr>
<tr>
<td>10</td>
<td>Byte count</td>
</tr>
<tr>
<td>Qaz37pY9oL</td>
<td>10 bytes of data</td>
</tr>
</tbody>
</table>

:DELete:NVWFm

Supported E8267D with Option 601 or 602

:MMEMory:DELete:NVWFm

This command clears the memory file system of all non-volatile arbitrary waveform (NVWFm) files.

Key Entry Delete All NVWFm Files
System Commands
Mass Memory Subsystem (:MMEMory)

:DELeTe:WFM
Supported E8267D with Option 601 or 602

This command clears the memory file system of all volatile arbitrary waveform (WFM1) files. It
performs the same function as DELeTe:WFM1 command.

Key Entry Delete All WFM1 Files

:DELeTe[:NAME]

Supported All Models

:MMEMory:DELeTe[:NAME] "<file_name>" [, "<msus>"]

This command clears the memory file system of "<file_name>" with the option of specifying the file
system ["<msus>"] separately.

The variable "<msus>" (mass storage unit specifier) represents the file system. For a list of the file
systems refer to Table 2-1 on page 57. Refer to “MSUS (Mass Storage Unit Specifier) Variable” on
page 11 for information on the mass storage unit specifier.

If the optional variable "<msus>" is omitted, the file name needs to include the file system extension.
Refer to “File Name Variables” on page 10 for information on the file name syntax.

Example

:MMEM:DEL "USER/BIN/Test_Data"
:MMEM:DEL "Test_Data ",":BIN"

The preceding examples delete the file named Test_Data from the signal generator’s USER/BIN
directory. The first example uses the full file name path while the second example uses the "<msus>"
specifier.

Key Entry Delete File

:HEADer:CLEar

Supported E8267D

:MMEMory:HEADer:CLEar "<file_name>"

This command deletes header file information for the waveform file "<file_name>". This command
does not require a personality modulation to be on. The header file contains signal generator settings
and marker routings associated with the waveform file. Refer to “File Name Variables” on page 10 for
information on the file name syntax.

Example

:MMEM:HEAD "USER/WAVEFORM/Test_Data"

The preceding example deletes header file information for the Test_Data waveform file.

*RST N/A

Key Entry Clear Header
:HEADer:DESCription

Supported

E8267D

`:MMEMory:HEADer:DESCription "<file_name>"","<description>"`

`:MMEMory:HEADer:DESCription? "<file_name>"`

This command inserts a description for the header file named. The header description is limited to 32 characters.

Refer to “File Name Variables” on page 10 for information on the file name syntax.

Example

`:MMEM:HEAD:DESC */USER/WAVEFORM/Test_Data","This is new header data"

The preceding example inserts a description into the Test_Data header file. In this example, the file is located in the signal generator's non-volatile waveform memory.

RST

N/A

Key Entry

Edit Description

:LOAD:LIST

Supported

All Models

`:MMEMory:LOAD:LIST "<file_name>"`

This command loads list data from the List file "<file_name>".

Refer to “File Name Variables” on page 10 for information on the file name syntax.

Example

`:MMEM:LOAD:LIST "Sweep_Data"

The preceding example loads sweep configuration data from the Sweep_Data List file.

Key Entry

Load From Selected File

:MOVE

Supported

All Models

`:MMEMory:MOVE "<src_file>"","<src_file_1>"

This command renames the src_file to src_file_1 in the signal generator's memory catalog.

Refer to “File Name Variables” on page 10 for information on the file name syntax and using quotes for different programming languages.

Example

`:MMEM:MOV "NVWFM:Test_Data","NVWFM:New_Data"

The preceding example renames the file Test_Data to New_Data located in non-volatile memory (NVWFM).
System Commands
Output Subsystem (:OUTPut)

Key Entry Rename File

:STOR:e:LIST

Supported All Models

:MMEMory:STOR:e:LIST "<file name>"

This command copies the current list sweep data to the "<file name>" and saves it in the catalog of List files.

Refer to “File Name Variables” on page 10 for information on the file name syntax.

Example

:MMEM:STOR:LIST "Sweep_Data"

The preceding example stores the current list sweep data to the file Sweep_Data in the signal generator’s catalog of List files.

Key Entry Store To File

Output Subsystem (:OUTPut)

:BLAN:king:AUTO

Supported All Models

[:SOURce]:OUTPut:BLAN:king:AUTO ON|OFF|1|0

[:SOURce]:OUTPut:BLAN:king:AUTO?

This command sets the state for automatic RF Output blanking. Blanking occurs when the RF output is momentarily turned off as the sweep transitions from one frequency segment (band) to another, allowing the signal to settle. Blanking also occurs during the retrace, so the signal can settle before the next sweep. In CW mode, blanking occurs whenever you change the frequency.

ON (1) This choice activates the automatic blanking function. The signal generator determines the blanking occurrences for optimum performance.

OFF (0) This choice turns off the automatic blanking function, which also sets the blanking state to off.

Example

:OUTP:BLAN:AUTO 0

The preceding example disables RF output blanking.

*RST 1

Key Entry Output Blanking Off On Auto
:BLANking[:STATe]

Supported All Models

[:SOURce]:OUTPut:BLANking[:STATe] ON|OFF|1|0
[:SOURce]:OUTPut:BLANking[:STATe]?

This command sets the state for RF Output blanking. Blanking occurs when the RF output is momentarily turned off as the sweep transitions from one frequency segment (band) to another, allowing the signal to settle. Blanking also occurs during the retrace, so the signal can settle before the next sweep. In CW mode, blanking occurs whenever you change the frequency.

ON (1) This choice activates the blanking function. Blanking occurs on all frequency changes, including segment transitions and retrace

OFF (0) This choice turns off the blanking function.

Example

:OUTP:BLAN:ON

The preceding example enables RF output blanking.

Key Entry Output Blanking Off On Auto

:MODulation[:STATe]

Supported E8267D and E8257D with Option UNT

:OUTPut:MODulation[:STATe] ON|OFF|1|0
:OUTPut:MODulation[:STATe]?

This command enables or disables the modulation of the RF output with the currently active modulation type(s). Most modulation types can be simultaneously enabled except FM with ΦM.

An annunciator on the signal generator always displays to indicate whether modulation is on or off.

Example

:OUTP:MOD 0

The preceding example disables RF modulation.

*RST 1

Key Entry Mod On/Off

[:STATe]

Supported All Models

:OUTPut[:STATe] ON|OFF|1|0
:OUTPut[:STATe]?

This command enables or disables the RF output. Although you can configure and engage various modulations, no signal is available at the RF OUTPUT connector until this command is executed.

An annunciator always displays on the signal generator to indicate whether the RF output is on or off.
System Commands
Route Subsystem (:ROUTe:HARDware:DGENerator)

Example
:OUTP ON
The preceding example turns on the signal generator’s RF output.

*RST 0
Key Entry RF On/Off

Route Subsystem (:ROUTe:HARDware:DGENerator)

:INPut:BPOLarity

Supported E8267D with Option 601 or 602
:ROUTe:HARDware:DGENerator:INPut:BPOLarity POSitive|NEGative
:ROUTe:HARDware:DGENerator:INPut:BPOLarity?

This command sets the signal generator up to respond to either a high (+5 vdc) or low (0 vdc) level TTL input signal at the BURST GATE IN connector. This command performs the same function as ":IPOLarity:BGATe" on page 65.

Example
:ROUT:HARD:DGEN:INP:BPOL NEG
The preceding example sets up the signal generator to respond to a LOW level TTL signal at the BURST GATE IN connector.

*RST POS
Key Entry Burst Gate In Polarity Neg Pos

:INPut:CPOLarity

Supported E8267D with Option 601 or 602
:ROUTe:HARDware:DGENerator:INPut:CPOLarity POSitive|NEGative
:ROUTe:HARDware:DGENerator:INPut:CPOLarity?

This command sets the signal generator up to respond to either a high (+5 vdc) or low (0 vdc) level TTL input signal at the DATA CLOCK input connector. This command performs the same function as ":IPOLarity:CLOCk" on page 66.

Example
:ROUT:HARD:DGEN:INP:CPOL POS
The preceding example sets up the signal generator to respond to a high level TTL signal at the DATA CLOCK input connector.

*RST POS
Key Entry Data Clock Polarity Neg Pos
:INPut:DPOLarity

Supported E8267D with Option 601 or 602

:ROUTe:HARDware:DGENerator:INPut:DPOLarity POSitive|NEGative
:ROUTe:HARDware:DGENerator:INPut:DPOLarity?

This command sets the signal generator up to respond to either a high (+5 vdc) or low (0 vdc) level TTL input signal at the DATA connector. This command performs the same function as “:IPOLarity:DATA” on page 66.

Example

:ROUT:HARD:DGEN:INP:DPOL POS

The preceding example sets up the signal generator to respond to a high level TTL signal at the DATA input connector.

*RST POS

Key Entry Data Polarity Neg Pos

:INPut:SPOLarity

Supported E8267D with Option 601 or 602

:ROUTe:HARDware:DGENerator:INPut:SPOLarity POSitive|NEGative
:ROUTe:HARDware:DGENerator:INPut:SPOLarity?

This command sets the signal generator up to respond to either a high (+5 vdc) or low (0 vdc) level TTL input signal at the SYMBOL SYNC input connector.

This command performs the same function as “:IPOLarity:SSYNc” on page 67.

Example

:ROUT:HARD:DGEN:INP:SPOL POS

The preceding example sets up the signal generator to respond to a high level TTL signal at the SYMBOL SYNC input connector.

*RST POS

Key Entry Symbol Sync Polarity Neg Pos

:INPut:BPOLaTe

Supported E8267D with Option 601 or 602

:ROUTe:HARDware:DGENerator:IPOLarity:BGATe POSitive|NEGative
:ROUTe:HARDware:DGENerator:IPOLarity:BGATe?

This command sets the signal generator up to respond to either a high (+5 vdc) or low (0 vdc) level TTL signal at the BURST GATE IN connector. This command performs the same function as “:INPut:BPOLarity” on page 64.
System Commands
Route Subsystem (:ROUte:HArdware:DGEnerator)

Example
:ROUT:HARD:DGEN:IPOL:BGAT POS
The preceding example sets up the signal generator to respond to a high level TTL signal at the rear-panel BURST GATE IN connector.

*RST POS

Key Entry Burst Gate In Polarity Neg Pos

:IPOLarity:CLOCK

Supported E8267D with Option 601 or 602

:ROUTe:HArdware:DGENerator:IPOLarity:CLOCK POSitive|NEGative

This command sets the signal generator up to respond to either a high (+5 vdc) or low (0 vdc) level TTL input signal at the DATA CLOCK connector.

This command performs the same function as ":INPut:CPOLarity" on page 64.

Example
:ROUT:HARD:DGEN:IPOL:CLOC POS
The preceding example sets up the signal generator to respond to a high level TTL signal at the DATA CLOCK input connector.

*RST POS

Key Entry Data Clock Polarity Neg Pos

:IPOLarity:DATA

Supported E8267D with Option 601 or 602

:ROUTe:HArdware:DGENerator:IPOLarity:DATA POSitive|NEGative

This command sets the signal generator up to respond to either a high (+5 vdc) or low (0 vdc) level TTL input signal at the DATA connector. This command performs the same function as ":INPut:DPOLarity" on page 65.

Example
:ROUT:HARD:DGEN:IPOL:DATA POS
The preceding example sets up the signal generator to respond to a high level TTL signal at the DATA input connector.

*RST POS

Key Entry Data Polarity Neg Pos
System Commands
Route Subsystem (:ROUTE:HW:DGEn)

:IPOLarity:SSYNc

Supported
E8267D with Option 601 or 602

:ROUTE:HW:DGEn:IPOL:SSYNc POSitive|NEGative
:ROUTE:HW:DGEn:IPOL:SSYNc?

This command sets the signal generator up to respond to either a high (+5 vdc) or low (0 vdc) level TTL input signal at the SYMBOL SYNC connector.

This command performs the same function as "INPut:SPOLarity" on page 65.

Example

:ROUTE:HW:DGEn:IPOL:SSYN POS

The preceding example sets up the signal generator to respond to a high level TTL signal at the SYMBOL SYNC input connector.

*RST

Key Entry
Symbol Sync Polarity Neg Pos

:OPOLarity:CLOCk

Supported
E8267D with Option 601 or 602

:ROUTE:HW:DGEn:OPOL:CLOCk POSitive|NEGative
:ROUTE:HW:DGEn:OPOL:CLOCk?

This command sets the signal generator up to output either a high (+5 vdc) or low (0 vdc) level TTL signal at the DATA CLK OUT pin on the rear panel AUXILIARY I/O connector.

This command performs the same function as "OUTPut:CPOLarity" on page 69.

Example

:ROUTE:HW:DGEn:OPOL:CLOC POS

The preceding example sets up the signal generator to output a high level TTL signal at the DATA CLK OUT pin on the rear panel AUXILIARY I/O connector.

*RST

Key Entry
Data Clock Out Neg Pos

:OPOLarity:DATA

Supported
E8267D with Option 601 or 602

:ROUTE:HW:DGEn:OPOL:DATA POSitive|NEGative
:ROUTE:HW:DGEn:OPOL:DATA?

This command sets the signal generator up to output either a high (+5 vdc) or low (0 vdc) level TTL signal at the DATA OUT pin on the rear panel AUXILIARY I/O connector.

This command performs the same function as "OUTPut:DPOLarity" on page 69.
Example

:ROUTe:HARD:DENeR:DATA NEG

The preceding example sets up the signal generator to output a low level TTL signal at the DATA OUT pin on the rear panel AUXILIARY I/O connector.

*RST POS

Key Entry Data Out Polarity Neg Pos

:OPOLarity:EVENT[1]|2|3|4

Supported E8267D with Option 601 or 602

This command sets the signal generator up to output either a high (+5 vdc) or low (0 vdc) level TTL signal at the EVENT 1 or EVENT 2 connector.

This command performs the same function as “OUTPut:EPOL[1]|2|3|4” on page 70.

Example

:ROUTe:HARD:DENeR:DATA NEG

The preceding example sets up the signal generator to output a low level TTL signal at the DATA OUT pin on the rear panel AUXILIARY I/O connector.

:OPOLarity:SSYNc

Supported E8267D with Option 601 or 602

:ROUTe:HARD:DENeR:OPOLarity:SSYNc POSitive|NEGative

This command sets the signal generator up to output either a high (+5 vdc) or low (0 vdc) level signal at the SYM SYNC OUT pin on the rear panel AUXILIARY I/O connector.

This command performs the same function as “OUTPut:SPOLarity” on page 70.

Example

:ROUTe:HARD:DENeR:SSYN POS

The preceding example sets up the signal generator to output a high level TTL signal at the SYM SYNC OUT pin on the rear panel AUXILIARY I/O connector.

*RST POS

Key Entry Symbol Sync Out Polarity Neg Pos
System Commands
Route Subsystem (:ROUTe:HARDware:DGENerator)

:OUTPut:CPOLarity

Supported E8267D with Option 601 or 602

:ROUTe:HARDware:DGENerator:OUTPut:CPOLarity POSitive|NEGative

:ROUTe:HARDware:DGENerator:OUTPut:CPOLarity?

This command sets the signal generator up to output either a high (+5 vdc) or low (0 vdc) level TTL signal at the DATA CLK OUT pin on the rear panel AUXILIARY I/O connector.

This command performs the same function as “:OPOLarity:CLOCk” on page 67.

Example

:ROUTe:HARD:DGEN:OUTP:CPOL POS

The preceding example sets up the signal generator to output a high level TTL signal at the DATA CLOCK OUT pin on the rear panel AUXILIARY I/O connector.

RST POS

Key Entry Data Clock Polarity Neg Pos

:OUTPut:DCS[:STATE]

Supported E8267D with Option 601 or 602

:ROUTe:HARDware:DGENerator:OUTPut:DCS[:STATe] ON|OFF|1|0

:ROUTe:HARDware:DGENerator:OUTPut:DCS[:STATe]?

This command is used to enable or disable the DATA OUT, DATA CLK OUT, and SYM SYNC OUT signals from the rear panel AUXILIARY I/O connector. Normally, these output signals should be enabled (On). However, disabling these outputs will decrease the spurs that are sometimes present when operating at high symbol rates.

Example

:ROUTe:HARD:DGEN:OUTP:DCS 1

The preceding example sets up or enables the DATA OUT, DATA CLK OUT, and SYM SYNC OUT output signals from the rear panel AUXILIARY I/O connector.

RST 1

Key Entry DATA/CLK/SYNC Rear Outputs Off On

:OUTPut:DPOLarity

Supported E8267D with Option 601 or 602

:ROUTe:HARDware:DGENerator:OUTPut:DPOLarity POSitive|NEGative

:ROUTe:HARDware:DGENerator:OUTPut:DPOLarity?

This command sets the signal generator up to output either a high (+5 vdc) or low (0 vdc) level TTL signal at the DATA OUT connector.

This command performs the same function as “:OPOLarity:DATA” on page 67.
Example

:ROUT:HARD:DGEn:OUTP:DPOL POS

The preceding example sets up the signal generator to output a high level TTL signal at the DATA OUT connector.

*RST POS

Key Entry Data Out Polarity Neg Pos

:OUTPut:EPOL[1]|2|3|4

Supported E8267D with Option 601 or 602

This command sets the signal generator up to output either a high (+5 vdc) or low (0 vdc) level TTL signal at the EVENT1 or EVENT 2 connector.

This command performs the same function as “OPOLarity:EVENT[1]|2|3|4” on page 68.

Example

:ROUT:HARD:DGEn:OUTP:EPOL1 POS

This command sets the signal generator up to output either a high (+5 vdc) or low (0 vdc) level TTL signal at the EVENT1 or EVENT 2 connector.

:OUTPut:SPOLarity

Supported E8267D with Option 601 or 602

:ROUTe:HARDware:DGENeratOr:OUTPut:SPOLarity POSitive|NEGative

:ROUTe:HARDware:DGENeratOr:OUTPut:SPOLarity?

This command sets the signal generator up to output either a high (+5 vdc) or low (0 vdc) level TTL signal at the SYMBOL SYNC connector.

Example

:ROUT:HARD:DGEn:OUTP:SPOL POS

This command sets the signal generator up to output either a high (+5 vdc) or low (0 vdc) level TTL signal at the EVENT1 or EVENT 2 connector.

*RST POS

Key Entry Symbol Sync Out Polarity Neg Pos
Status Subsystem (:STATus)

:OPERation:BASeband:CONDition

Supported

E8267D with Option 601 or 602

{:STATus:OPERation:BASEband:CONDition?

This query returns the decimal sum of the bits in the Baseband Operation Condition register. For example, if the baseband is busy (bit 0), the value 1 is returned. The data in this register is continuously updated and reflects current signal generator conditions. Refer to the *Programming Guide* for more information on programming the status registers.

Range

0–32767

:OPERation:BASeband:ENABle

Supported

E8267D with Option 601 or 602

{:STATus:OPERation:BASEband <val>

{:STATus:OPERation:BASEband:ENABle?

This command enables bits in the Baseband Operation Event Enable register. Bits enabled and set in this register will set bit 10 in the Standard Operation Condition register.

The variable `<val>` is the sum of the decimal values of the bits you want to enable. Refer to the *Programming Guide* for more information on programming the status registers.

Example

{:STAT:OPER:BAS:ENAB 3

This command enables bit 0 (decimal 1, Baseband is Busy) and bit 1 (decimal 2, Baseband 1 Communicating) in the Baseband Operation Event Enable register.

Range

0–32767

:OPERation:BASeband:NTRansition

Supported

E8267D with Option 601 or 602

{:STATus:OPERation:BASEband:NTRansition <val>

{:STATus:OPERation:BASEband:NTRansition?

This command enables bits in the Baseband Operation Negative Transition Filter register. A negative transition (1 to 0) of corresponding bits in the Baseband Operation Condition register will pass through and be read by the Baseband Operation Event register.

Refer to the *Programming Guide* for more information on programming the status registers.

Example

{:STAT:OPER:BAS:NTR 3
This command enables bit 0 (decimal 1, Baseband 1 Busy) and bit 1 (decimal 2, Baseband 1 Communicating) in the Baseband Operation Negative Transition Filter register.

Range

0–32767

ubeRation:BSasband:PTRansition

Supported

E8267D with Option 601 or 602

:STATus:OPERation:BASeband:PTRansition <val>

:STATus:OPERation:BASeband:PTRansition?

This command enables bits in the Baseband Operation Positive Transition Filter register. A positive transition (0 to 1) of corresponding bits in the Baseband Operation Condition register will pass through and be read by the Baseband Operation Event register.

The variable <val> is the sum of the decimal values of the bits that you want to enable.

Refer to the *Programming Guide* for more information on programming the status registers.

Example

:STAT:OPER:BAS:PTR 3

This command enables bit 0 (decimal 1, Baseband 1 Busy) and bit 1 (decimal 2, Baseband 1 Communicating) in the Baseband Operation Positive Transition Filter register.

Range

0–32767

ubeRation:BSasband:[EVENt]

Supported

E8267D with Option 601 or 602

:STATus:OPERation:BASeband:[EVENt]?

NOTE

This is a destructive read. The data in the Baseband Operation Event register is latched until it is queried. Once queried, the data is cleared.

This query returns the decimal sum of the bits in the Baseband Operation Event register.

Refer to the *Programming Guide* for more information on programming the status registers.

Range

0–32767

ubeRation:CONDition

Supported

All Models

:STATus:OPERation:CONDition?

This query returns the decimal sum of the bits in the Standard Operation Condition register. This register monitors signal generator functions such as I/Q calibrating, sweeping, and measuring. For example, if a sweep is in progress (bit 3), a decimal 8 is returned with this query.

The data in this register is continuously updated and reflects current conditions.
Refer to the *Programming Guide* for more information on programming the status registers.

Range 0–32767

:OPERation:ENABle

Supported All Models

```plaintext
:STATus:OPERation:ENABle <val>
:STATus:OPERation:ENABle?
```

This command enables bits in the Standard Operation Event Enable register. Bits enabled and set in this register will set the Operation Status Summary bit (bit 7) in the Status Byte register. When bit 7 in the Status Byte register is set, you can read the Standard Operation Event register to determine the cause.

The variable `<val>` is the sum of the decimal values of the bits that you want to enable.

Refer to the *Programming Guide* for more information on programming the status registers.

Example

```plaintext
:STAT:OPER:ENAB 43
```

This command enables bit 0 (decimal 1, I/Q calibrating), bit 1 (decimal 2, Settling), bit 3 (decimal 8, Sweeping), and bit 5 (decimal 32, Waiting for Trigger) of the Standard Operation Event Enable register.

Range 0–32767

:OPERation:NTRansition

Supported All Models

```plaintext
:STATus:OPERation:NTRansition <val>
:STATus:OPERation:NTRansition?
```

This command enables bits in the Standard Operation Negative Transition Filter register. A negative transition (1 to 0) of corresponding bits in the Standard Operation Condition register will pass through and be read by the Standard Operation Event register.

The variable `<val>` is the sum of the decimal values of the bits that you want to enable.

Refer to the *Programming Guide* for more information on programming the status registers.

Example

```plaintext
:STAT:OPER:NTR 3
```

This command enables bit 0 (decimal 1, I/Q Calibrating) and bit 1 (decimal 2, Settling) in the Standard Operation Negative Transition Filter register.

Range 0–32767
:OPERation:PTRansition

Supported All Models

`:STATus:OPERation:PTRansition <val>`

`:STATus:OPERation:PTRansition?`

This command enables bits in the Standard Operation Positive Transition Filter register. A positive transition (0 to 1) of corresponding bits in the Standard Operation Condition register will pass through and be read by the Standard Operation Event register.

The variable `<val>` is the sum of the decimal values of the bits that you want to enable.

Refer to the *Programming Guide* for more information on programming the status registers.

Example

`:STAT:OPER:PTR 3`

This command enables bit 0 (decimal 1, I/Q Calibrating) and bit 1 (decimal 2, Settling) in the Standard Operation Positive Transition Filter register.

Range 0–32767

:OPERation[:EVENt]

Supported All Models

NOTE This is a destructive read. The data in the register is latched until it is queried. Once queried, the data is cleared.

`:STATus:OPERation[:EVENt]?`

This query returns the decimal sum of the bits in the Standard Operation Event register.

Refer to the *Programming Guide* for more information on programming the status registers.

Range 0–32767

:PRESet

Supported All Models

`:STATus:PRESet`

This command presets all positive and negative transition filters, enable registers, and error/event queue enable registers.

Refer to the *Programming Guide* for more information on programming the status registers.

:QUEStionable:CALibration:CONDition

Supported All Models

`:STATus:QUEStionable:CALibration:CONDition?`

This query returns the decimal sum of the bits in the Data Questionable Calibration Condition register. For example, if the DCFM or DCΦM zero calibration fails (bit 0), a value of 1 is returned.
The data in this register is continuously updated and reflects the current conditions. Refer to the Programming Guide for more information on programming the status registers.

Range

0–32767

:QUESTionable:CALibration:ENABle

Supported All Models

:STATus:QUESTionable:CALibration:ENABle <val>
:STATus:QUESTionable:CALibration:ENABle?

This command enables bits in the Data Questionable Calibration Event Enable register. Bits enabled and set in this register will set the Calibration Summary bit (bit 8) in the Data Questionable Condition register.

The variable <val> is the sum of the decimal values of the bits that you want to enable. Refer to the Programming Guide for more information on programming the status registers.

Example

:STAT:QUES:CAL:ENAB 1

This command enables bit 0 (decimal 1, DCFM/DCΦM Zero Failure) in the Data Questionable Calibration Event Enable register.

Range

0–32767

:QUESTionable:CALibration:NTRansition

Supported All Models

:STATus:QUESTionable:CALibration:NTRansition <val>
:STATus:QUESTionable:CALibration:NTRansition?

This command enables bits in the Data Questionable Calibration Negative Transition Filter register. A negative transition (1 to 0) of corresponding bits in the Data Questionable Calibration Condition register will pass through and be read by the Data Questionable Calibration Event register.

The variable <val> is the sum of the decimal values of the bits that you want to enable. Refer to the Programming Guide for more information on programming the status registers.

Example

:STAT:OPER:NTR 3

This command enables bit 0 (decimal 1, DCFM/DCΦM Zero Failure) and bit 1 (decimal 2, I/Q Calibration Failure) in the Data Questionable Calibration Negative Transition Filter register.

Range

0–32767
System Commands
Status Subsystem (:STATus)

:QUEStionable:CALibration:PTRansition

Supported All Models

:STATus:QUEStionable:CALibration:PTRansition <val>
:STATus:QUEStionable:CALibration:PTRansition?

This command enables bits in the Data Questionable Calibration Positive Transition Filter register. A positive transition (0 to 1) of corresponding bits in the Data Questionable Calibration Condition register will pass through and be read by the Data Questionable Calibration Event register.

The variable <val> is the sum of the decimal values of the bits that you want to enable.

Refer to the Programming Guide for more information on programming the status registers.

Example

:STAT:OPER:PTR 3

This command enables bit 0 (decimal 1, DCFM/DCΦM Zero Failure) and bit 1 (decimal 2, I/Q Calibration Failure) in the Data Questionable Calibration Positive Transition Filter register.

Range 0–32767

:QUEStionable:CALibration[:EVENt]

Supported All Models

NOTE This is a destructive read. The data in the register is latched until it is queried. Once queried, the data is cleared.

:STATus:QUEStionable:CALibration[:EVENt]?

This command returns the decimal sum of the bits in the Data Questionable Calibration Event register.

Refer to the Programming Guide for more information on programming the status registers.

Range 0–32767

:QUEStionable:CONDition

Supported All Models

:STATus:QUEStionable:CONDition?

This query returns the decimal sum of the bits in the Data Questionable Condition register. For example, if the internal reference oscillator oven is cold (bit 4), a value of 16 is returned.

The data in this register is continuously updated and reflects current conditions.

Refer to the Programming Guide for more information on programming the status registers.

Range 0–32767
System Commands
Status Subsystem (:STAT)

[:QUESTionable:ENABLE]

Supported All Models
:STATus:QUESTionable:ENABLE <val>
:STATus:QUESTionable:ENABLE?

This command enables bits in the Data Questionable Event Enable register. Bits enabled and set in this register will set the Data Questionable Summary bit (bit 3) in the Status Byte register. When bit 3 in the Status Byte register is set, you can read the Data Questionable Event register to determine the cause.

The variable <val> is the sum of the decimal values of the bits that you want to enable.

Refer to the Programming Guide for more information on programming the status registers.

Example
:STAT:QUES:ENAB 8

This command enables bit 3 (decimal 8, the Power Summary bit), in the Data Questionable Event Enable register.

Range 0–32767

[:QUESTionable:FREQuency:CONDition]

Supported All Models
:STATus:QUESTionable:FREQuency:CONDition?

This query returns the decimal sum of the bits in the Data Questionable Frequency Condition register. For example, if the 1 GHz internal reference clock is unlocked (bit 2), a value of 4 is returned.

The data in this register is continuously updated and reflects current conditions.

Refer to the Programming Guide for more information on programming the status registers.

Range 0–32767

[:QUESTionable:FREQuency:ENABle]

Supported All Models
:STATus:QUESTionable:FREQuency:ENABle <val>
:STATus:QUESTionable:FREQuency:ENABle?

This command enables bits in the Data Questionable Frequency Event Enable register. Bits enabled and set in this register will set the Data Questionable Condition register bit 5.

The variable <val> is the sum of the decimal values of the bits that you want to enable.

Refer to the Programming Guide for more information on programming the status registers.

Example
:STAT:QUES:FREQ:ENAB 7

This command enables bit 0 (decimal 1, Synthesizer Unlocked), bit 1 (decimal 2, 10 MHz Reference
Unlocked), and bit 2 (decimal 4, 1 GHz reference Unlocked) in the Data Questionable Frequency Event Enable register.

Range 0–32767

:**QUESTIONable:****FREQuency:**NTRansition

Supported All Models

:STATus:**QUESTIONable:**FREQuency:**NTRansition <val>
:STATus:**QUESTIONable:**FREQuency:**NTRansition?

This command enables bits in the Data Questionable Frequency Negative Transition Filter register. A negative transition (1 to 0) of corresponding bits in the Data Questionable Frequency Condition register will pass through and be read by the Data Questionable Frequency Event register.

The variable <val> is the sum of the decimal values of the bits that you want to enable.

Refer to the *Programming Guide* for more information on programming the status registers.

Example

:STAT:QUES:FREQ:NTR 96

This command enables bit 5 (decimal 32, Sampler Loop Unlocked) and bit 6 (decimal 64, YO Loop Unlocked) in the Data Questionable Frequency Negative Transition Filter register.

Range 0–32767

:**QUESTIONable:****FREQuency:**PTRansition

Supported All Models

:STATus:**QUESTIONable:**FREQuency:**PTRansition <val>
:STATus:**QUESTIONable:**FREQuency:**PTRansition?

This command enables bits in the Data Questionable Frequency Positive Transition Filter register. A positive transition (0 to 1) of corresponding bits in the Data Questionable Frequency Condition register will pass through and be read by the Data Questionable Frequency Event register.

The variable <val> is the sum of the decimal values of the bits that you want to enable.

Refer to the *Programming Guide* for more information on programming the status registers.

Example

:STAT:QUES:FREQ:PTR 8

This command enables bit 3 (decimal 8, Baseband 1 Unlocked) in the Data Questionable Frequency Positive Transition Filter register.

Range 0–32767
:QUESTIONable:FREQuency[:EVENt]

Supported All Models

CAUTION This is a destructive read. The data in the register is latched until it is queried. Once queried, the data is cleared.

:STATus:QUESTIONable:FREQuency[:EVENt]?

This query returns the decimal sum of the bits in the Data Questionable Frequency Event register. Refer to the *Programming Guide* for more information on programming the status registers.

Range 0–32767

:QUESTIONable:MODulation:CONDition

Supported All Models

:STATus:QUESTIONable:MODulation:CONDition?

This command returns the decimal sum of the bits in the Data Questionable Modulation Condition register. For example, if the modulation is uncalibrated (bit 4), a value of 16 is returned. The data in this register is continuously updated and reflects current conditions. Refer to the *Programming Guide* for more information on programming the status registers.

Range 0–32767

:QUESTIONable:MODulation:ENABle

Supported All Models

:STATus:QUESTIONable:MODulation:ENABle <val>

:STATus:QUESTIONable:MODulation:ENABle?

This command enables bits in the Data Questionable Modulation Event Enable register. Bits enabled and set in this register will set bit 7 in the Data Questionable Condition register. The variable `<val>` is the sum of the decimal values of the bits that you want to enable. Refer to the *Programming Guide* for more information on programming the status registers.

Example

:STAT:QUES:MOD:ENAB 20

This command enables bit 2 (decimal 4, Modulation 1 Overmod) and bit 4 (decimal 16, Modulation Uncalibrated) in the Data Questionable Modulation Event Enable register.

Range 0–32767
System Commands
Status Subsystem (:STATus)

:QUESTIONable:MODulation:NTRansition

Supported All Models

:STATus:QUESTIONable:MODulation:NTRansition <val>
:STATus:QUESTIONable:MODulation:NTRansition?

This command enables bits in the Modulation Questionable Negative Transition Filter register. A negative transition (1 to 0) of corresponding bits in the Modulation Questionable Condition register will pass through and be read by the Modulation Questionable Event register.

The variable <val> is the sum of the decimal values of the bits that you want to enable.

Refer to the Programming Guide for more information on programming the status registers.

Example

:STAT:QUES:MOD:NTR 3

This command enables bit 0 (decimal 1, Modulation 1 Undermod) and bit 1 (decimal 2, Modulation 1 Overmod) in the Data Questionable Modulation Negative Transition Filter register.

Range 0–32767

:QUESTIONable:MODulation:PTRansition

Supported All Models

:STATus:QUESTIONable:MODulation:PTRansition <val>
:STATus:QUESTIONable:MODulation:PTRansition?

This command enables bits in the Data Questionable Modulation Positive Transition Filter register. A positive transition (0 to 1) of corresponding bits in the Data Questionable Modulation Condition register will pass through and be read by the Data Questionable Modulation Event register.

The variable <val> is the sum of the decimal values of the bits that you want to enable.

Refer to the Programming Guide for more information on programming the status registers.

Example

:STAT:QUES:MOD:PTR 3

This command enables bit 0 (decimal 1, Modulation 1 Undermod) and bit 1 (decimal 2, Modulation 1 Overmod) in the Data Questionable Modulation Positive Transition Filter register.

Range 0–32767

:QUESTIONable:MODulation[:EVENt]

Supported All Models

CAUTION This is a destructive read. The data in the register is latched until it is queried. Once queried, the data is cleared.

:STATus:QUESTIONable:MODulation[:EVENt]?

This query returns the decimal sum of the bits in the Data Questionable Modulation Event register.
Refer to the *Programming Guide* for more information on programming the status registers.

Range

0–32767

`:QUESTionable:NTRansition`

Supported

All Models

`:STATus:QUESTionable:NTRansition <val>
`:STATus:QUESTionable:NTRansition?`

This command enables bits in the Data Questionable Negative Transition Filter register. A negative transition (1 to 0) of corresponding bits in the Data Questionable Condition register will pass through and be read by the Data Questionable Event register.

The variable `<val>` is the sum of the decimal values of the bits that you want to enable.

Refer to the *Programming Guide* for more information on programming the status registers.

Example

`:STAT:QUEST:MOD:NTR 3072`

This command enables bit 10 (decimal 1024, Baseband is busy) and bit 11 (decimal 2048, Sweep Calculating) in the Data Questionable Negative Transition Filter register.

Range

0–32767

`:QUESTionable:POWer:CONDition`

Supported

All Models

`:STATus:QUESTionable:POWer:CONDition?`

This query returns the decimal sum of the bits in the Data Questionable Power Condition register. For example, if the RF output signal is unveled (bit 1), a value of 2 is returned.

The data in this register is continuously updated and reflects current conditions.

Refer to the *Programming Guide* for more information on programming the status registers.

Range

0–32767

`:QUESTionable:POWer:ENABle`

Supported

All Models

`:STATus:QUESTionable:POWer:ENABle <val>
`:STATus:QUESTionable:POWer:ENABle?`

This command enables bits in the Data Questionable Power Event Enable register. Bits enabled and set in this register will set bit 3 in the Data Questionable Condition register.

The variable `<val>` is the sum of the decimal values of the bits that you want to enable.

Refer to the *Programming Guide* for more information on programming the status registers.
System Commands
Status Subsystem (:STATus)

Example
:STAT:QUES:POW:ENAB 1
This command enables bit 0 (Decimal 1, Reverse Power Protection Tripped) in the Data Questionable Power Event Enable register.

Range 0–32767

:QUESTionable:POWER:NTRansition

Supported All Models
:STATus:QUESTionable:POWER:NTRansition <val>
:STATus:QUESTionable:POWER:NTRansition?
This command enables bits in the Data Questionable Power Negative Transition Filter register. A negative transition (1 to 0) of corresponding bits in the Data Questionable Power Condition register will pass through and be read by the Data Questionable Power Event register.
The variable <val> is the sum of the decimal values of the bits that you want to enable.
See the Programming Guide for more information on programming the status register system.

Example
:STAT:QUES:POW:NTR 1
This command enables bit 0 (Reverse Power Protection Tripped) in the Data Questionable Power Negative Transition Filter register.

Range 0–32767

:QUESTionable:POWER:PTRansition

Supported All Models
:STATus:QUESTionable:POWER:PTRansition <val>
:STATus:QUESTionable:POWER:PTRansition?
This command enables bits in the Data Questionable Power Positive Transition Filter register. A positive transition (0 to 1) of corresponding bits in the Data Questionable Power Condition register will pass through and be read by the Data Questionable Power Event register.
The variable <val> is the sum of the decimal values of the bits that you want to enable.
See the Programming Guide for more information on programming the status register system.

Example
:STAT:QUES:POW:PTR 1
This command enables bit 0 (Decimal 1, Reverse Power Protection Tripped) in the Data Questionable Power Positive Transition Filter register.

Range 0–32767
:QUEStionable:POWer[:EVENt]

Supported
All Models

CAUTION
This is a destructive read. The data in the register is latched until it is queried. Once queried, the data is cleared.

```plaintext
:STATus:QUEStionable:POWer[:EVENt]?
```

This query returns the decimal sum of the bits in the Data Questionable Power Event register.
See the *Programming Guide* for more information on programming the status register system.
Range
0–32767

:QUEStionable:PTRansition

Supported
All Models

:STATus:QUEStionable:PTRansition <val>
:STATus:QUEStionable:PTRansition?

This command enables bits in the Data Questionable Positive Transition Filter register. A positive transition (0 to 1) of corresponding bits in the Data Questionable Condition register will pass through and be read by the Data Questionable Event register.
See the *Programming Guide* for more information on programming the status register system.

Example

:STAT:QUES:PTR 8

This command enables bit 3 (decimal 8, Power Summary) in the Data Questionable Positive Transition Filter register.

Range
0–32767

:QUEStionable[:EVENt]

Supported
All Models

CAUTION
This is a destructive read. The data in the register is latched until it is queried. Once queried, the data is cleared.

```plaintext
:STATus:QUEStionable[:EVENt]?
```

This query returns the decimal sum of the bits in the Standard Operation Event register.
See the *Programming Guide* for more information on programming the status register system.
Range
0–32767
System Subsystem (:SYSTem)

:ALTernate

Supported All Models with Option 007

:SYSTem:ALTernate <reg_num>

:SYSTem:ALTernate? [MAXimum|MINimum]

This command sets up the signal generator to use a sweep state stored in a state register to alternate with the current sweep. The alternate sweep state must be stored in state registers 1 through 9 in sequence 0. Alternate sweep must be selected and both sweeps must be ramp sweeps.

Example

:SYST:ALT 3

The preceding example alternates the current sweep with the sweep settings saved in state register number three.

Key Entry Alternate Sweep Seq 0, Register 1–9

:ALTernate:STAte

Supported All Models with Option 007

:SYSTem:ALTernate:STAte ON|OFF|1|0

:SYSTem:STAte?

This command enables or disables the alternate sweep state for the signal generator. With alternate state on, the signal generator uses the current sweep setup and alternates with a sweep saved in on of the state registers. Both sweeps must be ramp sweeps.

Example

:SYST:ALT:STAT OFF

The preceding example disables the alternate sweep mode.

Key Entry Alternate Sweep Off On

:CAPability

Supported All Models

:SYSTem:CAPability?

This query returns the signal generator’s capabilities and outputs the appropriate specifiers:

(RFSOURCE WITH((AM|FM|PULM|PM|LFO)&(FSSWEEP|FLIST)&(PSSWEEP|PLIST)&TRIGGER&REFERENCE))

This is a list of the SCPI-defined basic functionality of the signal generator and the additional capabilities it has in parallel (a&b) and singularly (a|b).
:DATE

Supported All Models
:SYSTem:DATE <year>,<month>,<day>
:SYSTem:DATE?

This command sets the date as shown in the lower right area of the signal generator display.

<year> This variable requires a four digit integer.
The query returns the date in the following format: <+year>, <+month>, <+day>

Example
:SYST:DATE 2004,12,15

The preceding example sets the date.

Range <month>: 1–12 <day>: 1–31

Key Entry Time/Date

:ERRor[:NEXT]

Supported All Models
:SYSTem:ERRor[:NEXT]?

This query returns the most recent error message from the signal generator error queue. If there are
no error messages, the query returns the following output:
+0,"No error"

When there is more than one error message, the query will need to be sent for each message.
The error messages are erased after being queried.

Key Entry Error Info View Next Error Message

:ERRor:SCPI[:SYNTax]

Supported All
:SYSTem:ERRor:SCPI[:SYNTax] ON|OFF|1|0
:SYSTem:ERRor:SCPI[:SYNTax]?

This command allows you to turn on verbose error messages that point out where the SCPI parser
generated an error. Use the ERReq[:NEXT] command to read any reported errors.

Example
:SYST:ERR:SCPI ON

The preceding example enables the SCPI command error report function.

*RST 0
:FILEsystem:SAFEmode

Supported All

:SYSTem:FILEsystem:SAFEmode ON|OFF|1|0

:SYSTem:FILEsystem:SAFEmode?

This command selects the safe mode for file handling. When safe mode is set to OFF, volatile waveform files can be edited and saved while the signal generator plays the file without signal interruption. However, it is possible with complex waveforms, for corruption of memory to occur which will be reported as an error on the front-panel display and require a reboot of the signal generator to resolve.

Example

:SYST:FILE:SAVE ON

The preceding example enables the safe mode setting and waveform files cannot be edited without signal disruption while the signal generator plays them.

*RST On

:HELP:MODE

Supported All Models

:SYSTem:HELP:MODE SINGle|CONTinuous

:SYSTem:HELP:MODE?

This command sets the help function mode of the signal generator.

SINGle Help is provided only for the next key that you press.

CONTinuous Help is provided for each key you press. In addition, the function of the key is executed.

The setting enabled by this command is not affected by a signal generator power-on, preset, or *RST command.

Example

:SYST:HELP:MODE CONT

The preceding example enables the Help system continuos mode.

Key Entry Help Mode Single Cont

:IDN

Supported All Models

:SYSTem:IDN "string"

This command modifies the identification string that the *IDN? query returns. Sending an empty string returns the query output of *IDN? to its factory-shipped setting. The maximum string length is 72 characters.

Modification of the *IDN? query output enables the signal generator to identify itself as another
The display diagnostic information, shown by pressing the **Diagnostic Info** softkey, is not affected by this command.

:LANGuage

Supported

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>:SYSTem:LANGuage</td>
<td>This command sets the remote language for the signal generator.</td>
</tr>
<tr>
<td></td>
<td>This choice provides compatibility for SCPI commands.</td>
</tr>
<tr>
<td></td>
<td>This choice provides compatibility for a system, comprising a PSG signal generator and a 8757D scalar network analyzer. It is supported only through a GPIB interface.</td>
</tr>
<tr>
<td></td>
<td>This choice provides compatibility for 8340B and 8341B microwave sources, which are supported by using the GPIB interface.</td>
</tr>
<tr>
<td></td>
<td>This choice provides compatibility for 8360 series swept signal generators, which are supported only through a GPIB interface.</td>
</tr>
<tr>
<td></td>
<td>This choice provides compatibility for 83711B and 83712B synthesized CW generators, which are supported only through a GPIB interface.</td>
</tr>
<tr>
<td></td>
<td>This choice provides compatibility for 83731B and 83732B synthesized signal generators, which are supported only through a GPIB interface.</td>
</tr>
<tr>
<td></td>
<td>This choice provides compatibility for 83751B and 83752B synthesized sweepers, which are supported only through a GPIB interface.</td>
</tr>
<tr>
<td></td>
<td>This choice provides compatibility for a system, comprising a PSG signal generator and a 8757D scalar network analyzer. It is supported only through a GPIB interface.</td>
</tr>
<tr>
<td></td>
<td>This choice provides compatibility for the Agilent 8662A Synthesized Signal Generator. The 8662A is controlled only through a GPIB interface.</td>
</tr>
<tr>
<td></td>
<td>This choice provides compatibility for the Agilent 8663A Synthesized Signal Generator. The 8663A is controlled only through a GPIB interface.</td>
</tr>
</tbody>
</table>

The setting enabled by this command is not affected by a power-on, preset, or **RST** command.

For more information on supported SCPI commands and programming codes, refer to Chapter 7, "SCPI Command Compatibility," on page 319.

Example

```plaintext
:SYST:LANG "8757"
```

The preceding example enables the 8757 Network Analyzer language as the language used to control the signal generator.
System Commands
System Subsystem (:SYSTem)

Key Entry SCPI 8360 Series 8371B/83712B 8757 System 83731B,83732B 8340B,8341B 83751B,83752B 8662A,8663A

:OEMHead:FREQuency:STARt

Supported All

:SYSTem:OEMHead:FREQuency:STARt <val>
:SYSTem:OEMHead:FREQuency:STARt?

This command sets the start frequency or minimum band frequency for an external source module. The pre-defined start or minimum band frequency for the selected WR (waveguide rectangular) is overwritten with this command. For more information on pre-defined frequency bands, refer to “:OEMHead:FREQuency:BAND WR15|WR12|WR10|WR8|WR6|WR5|WR3” on page 89.

Example
:SYST:OEMH:FREQ:STAR 90GHZ

The preceding example sets the start frequency for the OEM module to 90 GHz.

*RST 5.0000000000000E+10

Key Entry Min Band Freq

:OEMHead:FREQuency:STOP

Supported All

:SYSTem:OEMHead:FREQuency:STOP <val>
:SYSTem:OEMHead:FREQuency:STOP?

This command sets the stop frequency or maximum band frequency for an external source module. The pre-defined stop or maximum band frequency for the selected WR (waveguide rectangular) is overwritten with this command. For more information on pre-defined frequency bands, refer to “:OEMHead:FREQuency:BAND WR15|WR12|WR10|WR8|WR6|WR5|WR3” on page 89.

Example
:SYST:OEMH:FREQ:STOP 70GHZ

The preceding example sets the stop frequency for the OEM module to 70 GHz.

*RST 7.0000000000000E+10

Key Entry Max Band Freq

:OEMHead:SELect

Supported All

:SYSTem:OEMHead:SELect ON|OFF|NONE|REAR|FRONT
:SYSTem:OEMHead:SELect?

This command selects an external millimeter-wave source module. The ON, REAR, and FRONT parameters select the OEM source module while the OFF and NONE parameters deselect the OEM source module. The MMOD and MULT annunciators, in the signal generator’s frequency display will
appear when a OEM millimeter-wave source module is selected.

Example

:SYST:OEMH:SEL ON

The preceding example turns on the OEM source module.

*RST

Key Entry

OEM Source Module Off On

:OEMHead:FREQuency:BAND WR15 | WR12 | WR10 | WR8 | WR6 | WR5 | WR3

Supported

All

:SYSTem:OEMHead:FREQuency:BAND WR3
:SYSTem:OEMHead:FREQuency:BAND?

This command allows you to select a pre-defined waveguide rectangular (WR) frequency band. The WR selection is determined by the external millimeter-wave source module frequency range. Selection of a WR frequency band sets the minimum and maximum frequency bands, for the external mm-wave source module, to pre-defined values shown in the table below. These pre-defined frequency bands are common to commercially available mixers and multipliers. Different start, stop, and multiplier values can be selected from the menu displayed under the OEM Source Module Config softkey.

<table>
<thead>
<tr>
<th>Waveguide Band</th>
<th>PSG Start Frequency</th>
<th>PSG Stop Frequency</th>
<th>Multiplier</th>
</tr>
</thead>
<tbody>
<tr>
<td>WR15 50–75GHz</td>
<td>12.5000000000 GHz</td>
<td>18.7500000000 GHz</td>
<td>4.000 x</td>
</tr>
<tr>
<td>WR12 60–90GHz</td>
<td>10.0000000000 GHz</td>
<td>15.0000000000 GHz</td>
<td>6.000 x</td>
</tr>
<tr>
<td>WR10 75–110GHz</td>
<td>12.5000000000 GHz</td>
<td>18.4000000000 GHz</td>
<td>6.000 x</td>
</tr>
<tr>
<td>WR8 90–140GHz</td>
<td>11.2200000000 GHz</td>
<td>17.5000000000 GHz</td>
<td>8.000 x</td>
</tr>
<tr>
<td>WR6 110–170GHz</td>
<td>9.1000000000 GHz</td>
<td>14.2000000000 GHz</td>
<td>12.000 x</td>
</tr>
<tr>
<td>WR5 140–220GHz</td>
<td>11.6000000000 GHz</td>
<td>18.4000000000 GHz</td>
<td>12.000 x</td>
</tr>
<tr>
<td>WR3 220–325GHz</td>
<td>12.2000000000 GHz</td>
<td>18.1000000000 GHz</td>
<td>18.000 x</td>
</tr>
</tbody>
</table>

Example

:SYST:OEMH:FREQ:BAND WR12

The preceding example selects the 60-90 GHz WR frequency band.

*RST WR15

Key Entry

WR15 50-75GHz
System Commands
System Subsystem (:SYSTem)

:OEMHead:FREQuency:MULTiplier

Supported All Models

**:SYSTem:OEMHead:FREQuency:MULTiplier **<val>
:SYSTem:OEMHead:FREQuency:MULTiplier?

This command selects a multiplier for an external millimeter-wave source module.

The multiplier factor allows the signal generator’s frequency display to show the source module’s frequency. The selection is valid only when the OEM source module is selected. The signal generator’s actual RF frequency is not changed by the multiplier. For example, if the signal generator’s RF frequency is 20 GHz and a 4.000 x multiplier is selected, the signal generator will display 80 GHz.

The displayed frequency on the signal generator is affected if the frequency reference and frequency offset settings. The relationship is described as follows: Displayed Frequency = (Actual Freq – Freq Reference) x Frequency Multiplier + Freq Offset. Refer to the “:FREQuency:OFFSet” on page 112 and “:FREQuency:REFerence” on page 113 command descriptions for more information.

Example

:SYST:OEMH:FREQ:MULT 4

The preceding example selects a 4x multiplier so that the signal generator display shows the frequency at the output of the mm-wave source module.

RST 4.00000000E+000

Key Entry Freq Multiplier

:PON:TYPE

Supported All Models

:SYSTem:PON:TYPE PRESet|LAST
:SYSTem:PON:TYPE?

This command sets the defined conditions for the signal generator at power on.

PRESet This choice sets the conditions to factory- or user-defined as determined by the choice for the preset type. Refer to “:PRESet:TYPE” on page 93 for selecting the type of preset.

LAST This choice retains the settings at the time the signal generator was last powered down.

The selection is not affected by a signal generator power-on, preset, or the *RST command.

NOTE When LAST is selected, no signal generator interaction can occur for at least 3 seconds prior to cycling the power for the current settings to be saved.

Example

:SYST:PON:TYPE PRES

The preceding example sets the preset state for the signal generator to factory settings.

Key Entry Power On Last Preset
:PRESet

Supported All Models

SYSTem:PRESet

This command returns the signal generator to a set of defined conditions. It is equivalent to pressing the front panel Preset hardkey.

The defined conditions are either factory- or user-defined. Refer to “:PRESet:TYPE” on page 93 for selecting the type of defined conditions.

Key Entry Preset

:PRESet:ALL

Supported All Models

:SYSTem:PRESet:ALL

This command sets all states of the signal generator back to their factory default settings, including states that are not normally affected by a signal generator power-on, preset, or *RST command.

:PRESet:LANguage

Supported All Models

:SYSTem:PRESet:LANguage "SCPI"|"8340"|"8360"|"83712"|"83732"|"83752"|
"8757"

:SYSTem:PRESet:LANguage?

This command sets the remote language that is available when the signal generator is preset.

SCPI This choice provides compatibility for SCPI commands.

8340 This choice provides compatibility for 8340B and 8341B microwave sources, which are supported by using the GPIB interface.

8360 This choice provides compatibility for 8360 series swept signal generators, which are supported only through a GPIB interface.

83712 This choice provides compatibility for 83711B and 83712B synthesized CW generators, which are supported only through a GPIB interface.

83732 This choice provides compatibility for 83731B and 83732B synthesized signal generators, which are supported only through a GPIB interface.

83752 This choice provides compatibility for 83751B and 83752B synthesized sweepers, which are supported only through a GPIB interface.

8757 This choice provides compatibility for a system, comprising a PSG signal generator and a 8757D scalar network analyzer. It is supported only through a GPIB interface.

8662 This choice provides compatibility for 8662A series synthesized waveform generators, which are supported only through a GPIB interface.
This choice provides compatibility for 8663A series synthesized waveform generators, which are supported only through a GPIB interface.

Example

:SYST:PRES:LANG "8340"

The preceding example selects 8340 signal generator language as the language used by the signal generator following an instrument preset.

*RST "SCPI"

Key Entry SCPI 8360 Series 83711B,83712B 8757D System 83731B,83732B 8340B,8341B 83751B,83752B

:PRESet:PERSistent

Supported All Models

:SYSTem:PRESet:PERSistent

This command sets the states that are not affected by a signal generator power-on, preset, or *RST command to their factory default settings.

Key Entry Restore Sys Defaults

:PRESet:PN9

Supported All Models

:SYSTem:PRESet:PN9 NORMAL|QUICK

This command sets the preset length of the PN9 sequence for personalities that require software PRBS generation.

NORMAL This choice produces a maximal length PN9 sequence.

QUICK This choice produces a truncated (216 bits) PN9 sequence.

Example

:SYST:PRES:PN9 NORMAL

The preceding example selects a maximum length PN9 sequence.

*RST NORM

Key Entry PN9 Mode Preset Normal Quick
:PRESet:TYPE

Supported All Models

`:SYSTem:PRESet:TYPE NORMal|USER
`:SYSTem:PRESet:TYPE?`

This command toggles the preset state between factory- and user-defined conditions. Refer to :PRESet[:USER]:SAVE for saving the USER choice preset settings. The setting enabled by this command is not affected by a signal generator power-on, preset, or *RST command.

Example

`:SYST:PRES:TYPE USER`

The preceding example selects a user defined conditions for the signal generator preset state.

Key Entry

Preset Normal User

:PRESet[:USER]:SAVE

Supported All Models

`:SYSTem:PRESet[:USER]:SAVE`

This command saves your user-defined preset conditions to a state file.

Only one user-defined preset file can be saved. Subsequent saved user–defined preset files will overwrite the previously saved file.

Key Entry

Save User Preset

:SECurity:DISPLAY

Supported All Models

`:SYSTem:SECurity:DISPLAY ON|OFF|1|0
`:SYSTem:SECurity:DISPLAY?`

This command enables or disables the secure display mode.

On(1)

This selection turns the signal generator display back on, showing the current settings. Cycling the signal generator power also restores the display, however the current settings may change depending on the power-on configuration choice. See “:PON:TYPE” on page 90 for information on the power-on choices available.

OFF(0)

This selection blanks the signal generator’s display, hiding the settings and disabling the front panel keys. While in this mode, the display shows *** SECURE DISPLAY ACTIVATED ***.

For more information about security functions, refer to the *E8257D/67D PSG Signal Generators User’s Guide*.
System Commands
System Subsystem (:SYSTem)

Example

:SYST:SEC:DISP OFF

The preceding example enables the secure display mode.

*RST

Range

N/A

Key Entry

Activate Security Display

:SECurity:ERASall

Supported

All Models

:SYSTem:SECurity:ERASall

This command removes all user files, flatness correction files, and baseband generator files. In addition, all table editor files are returned to their original factory values.

This command differs from the :DELe:ALL command, which does not reset table editors to factory values. For more information about security functions, refer to the E8257D/67D PSG Signal Generators User's Guide.

Key Entry

Erase All

:SECurity:LEVeI

Supported

All Models

:SYSTem:SECurity:LEVeI NONE|ERASe|OVERwrite|SANitize

:SYSTem:SECurity:LEVeI?

This command selects the security level operation for the signal generator.

NONE

This selection causes the signal generator to reset to factory default settings.

ERASe

This selection removes all user files, table editor files, flatness correction files, and baseband generator files.

OVERwrite

This selection removes all user files, table editor files, flatness correction files, and baseband generator files. The memory is then overwritten with random data.

SRAM

All addressable locations will be overwritten with random characters.

Hard Disk

All addressable locations will be overwritten with random characters.

Flash Memory

The flash blocks will be erased.

SANitize

This selection removes all user files, table editor files, flatness correction files, and baseband generator files using the same techniques as the OVERwrite selection for SRAM and flash memory. For the hard disk, the signal generator overwrites all addressable locations with a single character, its complement, and then with a random character.
Once you select the security level, you must execute the command from \texttt{:SECurity:LEVel:STATe} to arm the security level.

\textbf{NOTE} \hspace{1cm} Once you select a security level and arm it, you cannot change the level.

For other cleaning and security operation descriptions, see \texttt{":SECurity:ERASeall" on page 94}, \texttt{":SECurity:OVERwrite" on page 96}, and \texttt{":SECurity:SANitize" on page 96}. For more information about security functions, refer to the \textit{E8257D/67D PSG Signal Generators User's Guide}.

\textbf{Example}

\texttt{:SYST:SEC:LEV NONE}

The preceding example sets the secure mode so it resets the signal generator to factory settings after completing the security operation.

\textbf{Key Entry} \hspace{1cm} None \hspace{0.5cm} Erase \hspace{0.5cm} Overwrite \hspace{0.5cm} Sanitize

\textbf{:SECurity:LEVel:STATe}

\textbf{Supported} \hspace{1cm} All Models

\textbf{CAUTION} \hspace{1cm} Ensure that you select the security level prior to executing this command with the \texttt{ON (1)} selection. Once you enable the state, you cannot reduce the security level.

\texttt{:SYSTem:SECurity:LEVel:STATe ON|OFF|1|0}

This command arms and executes the current security level parameter.

\texttt{:SYSTem:SECurity:LEVel:STATe?}

\texttt{On (1)} \hspace{0.5cm} This selection arms and prevents any changes to the current security level. Refer to \texttt{":SECurity:LEVel" on page 94} for setting the security level.

\texttt{OFF (0)} \hspace{0.5cm} This selection performs the actions required for the current security level setting. Cycling the signal generator power also performs the same function.

For more information about security functions, refer to the \textit{E8257D/67D PSG Signal Generators User's Guide}.

\textbf{Example}

\texttt{:SYST:SEC:LEV:STAT ON}

The preceding example arms the secure mode selected with the \texttt{SYSTem:SECurity:LEVel} command.

\textbf{Key Entry} \hspace{1cm} Enter Secure Mode
System Commands
System Subsystem (:SYSTem)

:SECurity:OVERwrite

Supported All Models

:SYSTem:SECurity:OVERwrite

This command removes all user files, table editor files values, flatness correction files, and baseband generator files. The memory is then overwritten with random data as described below. For more information about security functions, refer to the *E8257D/67D PSG Signal Generators User's Guide*.

SRAM All addressable locations will be overwritten with random characters.

HARD DISK All addressable locations will be overwritten with random characters.

FLASH MEMORY The flash blocks will be erased.

Key Entry **Erase and Overwrite All**

:SECurity:SANitize

Supported All Models

:SYSTem:SECurity:SANitize

This command removes all user files, table editor files values, flatness correction files, and baseband generator files. The memory is then overwritten with a sequence of data as described below. For more information about security functions, refer to the *E8257D/67D PSG Signal Generators User's Guide*.

SRAM All addressable locations will be overwritten with random characters.

HARD DISK All addressable locations will be overwritten with a single character and then a random character.

FLASH MEMORY The flash blocks will be erased.

Key Entry **Erase and Sanitize All**

:SSAVer:DELay

Supported All Models

:SYSTem:SSAVer:DELay <val>

:SYSTem:SSAVer:DELay?

This command sets the amount of time before the display light or display light and text is switched off. The time delay represents the time during which there is no signal generator front panel input. The variable <val> is a positive integer number, in hours. The setting enabled by this command is not affected by power-on, preset, or *RST. See **":SSAVer:MODE" on page 97** for selecting the screen saver mode.
Example

:SYST:SSAV:DEL 2

The preceding example sets two hours delay time for the screen saver mode.

Range

1–12

Key Entry

Screen Saver Delay:

:SSAVer:MODE

Supported

All Models

:SYST:SSAVer:MODE LIGHT|TEXT

This command toggles the screen saver mode between light only or light and text.

LIGHT

Enables only the light to turn off during the screen saver operation while leaving the text visible on the darkened screen.

TEXT

Enables both the display light and text to turn off during screen saver operation.

The setting is not affected by a signal generator power-on, preset, or *RST command.

Example

:SYST:SSAV:MODE TEXT

The preceding example sets the screen saver mode.

Key Entry

Screen Saver Mode

:SSAVer:STATe

Supported

All Models

:SYST:SSAVer:STATe ON|OFF|1|0

This command enables or disables the display screen saver. The setting enabled by this command is not affected by a signal generator power-on, preset, or *RST command.

Example

:SYST:SSAV:STAT 1

The preceding example enables the screen saver mode.

Key Entry

Screen Saver Off On
System Commands
Trigger Subsystem

:TIME

Supported All Models

:SYSTem:TIME <hour>,<minute>,<second>

This command sets the time displayed in the lower right area of the signal generator's display.

Range

- **<hour>**: 0–23
- **<minute>**: 0–59
- **<second>**: 0–59

Example

:SYST:TIME 9,30,45

The preceding example sets the signal generator time to 09:30:45.

Key Entry Time/Date

:VERSion

Supported All Models

:SYSTem:VERSion?

This command returns the SCPI version number with which the signal generator complies.

Trigger Subsystem

:ABORt

Supported All Models

:ABORt

This command causes the List or Step sweep in progress to abort. If INIT:CONT[:ALL] is set to ON, the sweep will immediately re-initiate. The pending operation flag affecting *OPC, *OPC?, and *WAI will undergo a transition once the sweep has been reset.

:INITiate:CONTinuous[:ALL]

Supported All Models

:INITiate:CONTinuous[:ALL] ON|OFF|1|0

:INITiate:CONTinuous[:ALL]?

This command selects either a continuous or single List or Step sweep. Execution of this command does not affect a sweep in progress.

ON (1) Selects continuous sweep where, after the completion of the previous sweep, the sweep restarts automatically, or waits for a trigger.

OFF (0) This choice selects a single sweep. Refer to “:INITiate[:IMMediate][:ALL]” on page 99 for single sweep triggering information.
Example

:INIT:CONT ON

The preceding example enables the continual mode for the sweep type.

*RST

Key Entry Sweep Repeat Single Cont

:INITiate[:IMMediate][:ALL]

Supported All Models

This command either sets or sets and starts a single List or Step sweep, depending on the trigger type. The command performs the following:

- arms a single sweep when BUS, EXTERNAL, or KEY is the trigger source selection
- arms and starts a single sweep when IMMEDIATE is the trigger source selection

This command is ignored if a sweep is in progress. See ":INITiate:CONTinuous[:ALL]" on page 98 for setting continuous or single sweep. See ":TRIGger[:SEQuence]:SOURce" on page 100 to select the trigger source.

In some atypical cases, the :INIT command could be ignored if it immediately follows an *OPC? command. If the :INIT command is ignored, then use a 10ms sleep function before sending the command.

Key Entry Single Sweep

:TRIGger:OUTPut:POLarity

Supported All Models

:TRIGger:OUTPut:POLarity POSitive|NEGative

Sets the TTL signal level present at the TRIGGER OUT connector to either high (5 vdc) or low (0 vdc). The trigger out is asserted after the frequency and/or power is set while the sweep is waiting for its step trigger. In addition, the swept-sine sends a pulse to the TRIGGER OUT at the beginning of each sweep.

Example

:TRIG:OUTP:POL NEG

The preceding example enables the continual mode as the sweep type.

*RST

Key Entry Trigger Out Polarity Neg Pos
System Commands
Trigger Subsystem

:TRIGger[:SEQUence]:SLOPe
Supported All Models
:TRIGger[:SEQUence]:SLOPe POSitive|NEGative
:TRIGger[:SEQUence]:SLOPe?
This command sets the polarity of the ramp or sawtooth waveform slope present at the TRIGGER IN connector that will trigger a List or Step sweep.
Example
:TRIG:SLOP POS
The preceding example sets a positive ramp slope.
*RST POS
Key Entry Trigger In Polarity Neg Pos

:TRIGger[:SEQUence]:SOURce
Supported All Models
:TRIGger[:SEQUence]:SOURce BUS|IMMediate|EXTernal|KEY
:TRIGger[:SEQUence]:SOURce?
This command sets the sweep trigger source for a List or Step sweep.
BUS This choice enables GPIB triggering using the *TRG or GET command or LAN and RS-232 triggering using the *TRG command.
IMMediate This choice enables immediate triggering of the sweep event.
EXTernal This choice enables the triggering of a sweep event by an externally applied signal at the TRIGGER IN connector.
KEY This choice enables front-panel triggering by pressing the Trigger hardkey.
The wait for the BUS, EXTernal, or KEY trigger can be bypassed by sending the :TRIGger[:SEQUence][[:IMMediate] command.
Example
:TRIG:SOUR BUS
The preceding example sets the sweep trigger source to BUS.
*RST IMM
Key Entry Bus Free Run Ext Trigger Key
:TRIGger[:SEQUence][:IMMediate]

Supported All Models

:TRIGger[:SEQUence][:IMMediate]

This event command causes an armed List or Step sweep to immediately start without the selected trigger occurring.

In some atypical cases, the :TRIG command could be ignored if it immediately follows an *OPC? command. If the :TRIG command is ignored, then use a 10ms sleep function before sending the command.

Unit Subsystem (:UNIT)

:POWer

Supported All Models

:UNIT:POWer DBM|DBUV|DBUVEMF|V|VEMF|DB

:UNIT:POWer?

This command terminates an amplitude value in the selected unit of measure.

If the amplitude reference state is set to on, the query returns units expressed in dB. Setting any other unit will cause a setting conflict error stating that the amplitude reference state must be set to off. Refer to, "*REFerence:STATe" on page 140 for more information.

All power values in this chapter are shown with DBM as the unit of measure. If a different unit of measure is selected, replace DBM with the newly selected unit whenever it is indicated for the value.

Example

:UNIT:POW DBM

The preceding example selects dBm as the unit of amplitude measurement.

*RST DBM

Key Entry dBm dBuV dBuVemf mV uV mVemf uVemf
System Commands
Unit Subsystem (UNIT)
3 Basic Function Commands

In the following sections, this chapter provides SCPI descriptions for subsystems dedicated to signal generator operations common to all PSG models:

- “Correction Subsystem ([SOURce]:CORRection)” on page 103
- “Frequency Subsystem ([SOURce])” on page 105
- “List/Sweep Subsystem ([SOURce])” on page 119
- “Marker Subsystem–Option 007 ([SOURce])” on page 130
- “Power Subsystem ([SOURce]:POWer)” on page 133
- “Trigger Sweep Subsystem ([SOURce])” on page 142

Correction Subsystem ([SOURce]:CORRection)

`:FLATness:LOAD

Supported All Models

`:SOURce]:CORRection:FLATness:LOAD "<file_name>"

This command loads a user-flatness correction file designated by the file name "<file_name>" variable. The file will be loaded from the signal generator’s USERFLAT directory. The directory path does not need to be specified in the command. Refer to the E8257D/67D PSG Programming Guide for more information on flatness corrections.

For information on file name syntax, refer to “File Name Variables” on page 10.

Example

`:CORR:FLAT:LOAD "Flatness_Data"

The preceding example loads a user flatness file named Flatness_Data from the signal generator’s user flatness directory.

Key Entry Load From Selected File
Basic Function Commands
Correction Subsystem [:SOURce]:CORRection

:FLATness:PAIR
Supported All Models
[:SOURce]:CORRection:FLATness:PAIR <freq>,<corr>
This command adds or edits a frequency and amplitude correction pair. The maximum number of pairs or points that can be entered is 1601. Refer to the E8257D/67D PSG Programming Guide for more information on flatness corrections.

The <corr> variable is the power correction in dB.

Power and frequency ranges for different signal generator models and options are listed on page 142.

Example
:CORR:FLAT:PAIR 10MHZ,.1
The preceding example enters a frequency of 10 megahertz and a power of 0.1dB into the user flatness table.

*RST
 Option 520: +2.0000000000000E+10
 Option 532: +3.2000000000000E+10
 Option 540: +4.0000000000000E+10
 Option 544: +4.4000000000000E+10
 Option 550: +5.0000000000000E+10
 Option 567: +6.7000000000000E+10

Range
 Option 520: 250kHz–20GHz
 Option 532: 250kHz–32GHz
 Option 540: 250kHz–40GHz
 Option 544: 250kHz–44GHz
 Option 550: 250kHz–50GHz
 Option 567: 250kHz–70GHz

a.67-70 GHz performance not specified

Key Entry Configure Cal Array

:FLATness:POINts
Supported All Models
[:SOURce]:CORRection:FLATness:POINts?
This query returns the number of points in the user-flatness correction file.

:FLATness:PRESet
Supported All Models

CAUTION Once this command is executed, correction data is overwritten; If needed, save the current correction data (see “:FLATness:STORe” on page 105).

[:SOURce]:CORRection:FLATness:PRESet
This command presets the user-flatness correction to a factory-defined setting that consists of one frequency point and one amplitude point with no corrections.

Key Entry Preset List
:FLATness:STORE

Supported All Models

`:SOURce`:CORRection:FLATness:STORe "<file_name>"

This command stores the current user-flatness correction data to a file named by the "<file_name>" variable. All user-flatness files are stored in the signal generator's USERFLAT directory. The directory path does not need to be specified in the command.

For information on file name syntax, refer to “File Name Variables” on page 10.

Example

`:CORR:FLAT:STOR "New_Flat_data"

The preceding example stores the current user-flatness table entries in a file named "New_Flat_data".

Key Entry Store To File

[:STATe]

Supported All Models

`:SOURce`:CORRection[:STATe] ON|OFF|1|0

`:SOURce`:CORRection[:STATe]?

This command toggles the application of user-flatness corrections to the current signal generator power output.

Example

`:CORR OFF

The preceding example turns off correction data.

:*RST

0

Key Entry Flatness Off On

Frequency Subsystem ([SOURce])

:FREQuency:CENTer

Supported All Models with Option 007

`:SOURce`:FREQuency:CENTer <val>[<unit>] |UP|DOWN

`:SOURce`:FREQuency:CENTer? [MAXimum|MINimum]

This command sets the center frequency for a ramp sweep. The center frequency symmetrically divides the selected frequency span and is coupled to the start and stop frequency settings. The frequency range and reset values are dependent on the signal generator model and option number.
Basic Function Commands
Frequency Subsystem ([SDURe])

The query returns the start and stop ramp frequencies if the optional MAXimum or MINimum are used.

*RST

Option 520: +2.0000000000000E+10
Option 532: +3.2000000000000E+10
Option 540: +4.0000000000000E+10
Option 544: +4.4000000000000E+10
Option 550: +5.0000000000000E+10
Option 567: +7.0000000000000E+10

Range

Option 520: 250kHZ–20GHZ
Option 532: 250kHZ–32GHZ
Option 540: 250kHZ–40GHZ
Option 544: 250kHZ–44GHZ
Option 550: 250kHZ–50GHZ
Option 567: 250kHZ–70GHZ

a.67-70 GHz performance not specified

Example
:FREQ:CENT 15GHZ

The preceding example sets the center frequency for a ramp sweep to 15 GHz.

Key Entry
Freq Center

:FREQuency:CHANnels:BAND

Supported
All Models

[:SOURce]:FREQuency:CHANnels:BAND

NBASe|NMOBile|BPGSm|MPGSm|BEGSm|MEGSm|BRGSm|MRGSm|BDCS|MDCS|BPCS|MPCS|B450|GM450|
B480|M480|B850|M850|B8|M8|B15|M15|B390|B420|B460|B915|M380|M410|M450|M870|PHS|DECT

[:SOURce]:FREQuency:CHANnels:BAND?

This command sets the frequency of the signal generator by specifying a frequency channel band. The frequency channel state must be enabled for this command to work. See "[:FREQuency:CHANnels:STATe]" on page 109.

NBASe This choice selects Standard Base as the frequency band for NADC.
NMOBile This choice selects Standard Mobile as the frequency band for NADC.
BPGSm This choice selects P-Gsm 900 Base as the frequency band for GSM.
MPGSm This choice selects P-Gsm 900 Mobile as the frequency band for GSM.
BEGSm This choice selects E-Gsm 900 Base as the frequency band for GSM.
MEGSm This choice selects E-Gsm 900 Mobile as the frequency band for GSM.
BRGSm This choice selects R-Gsm 900 Base as the frequency band for GSM.
MRGSm This choice selects R-Gsm 900 Mobile as the frequency band for GSM.
BDCS This choice selects DCS 1800 Base as the frequency band for GSM.
MDCS This choice selects DCS 1800 Mobile as the frequency band for GSM.
BPCS This choice selects PCS 1900 Base as the frequency band for GSM.
MPCS This choice selects PCS 1900 Mobile as the frequency band for GSM.
B450 This choice selects Gsm 450 Base as the frequency band for GSM.
GM450 This choice selects Gsm 450 Mobile as the frequency band for GSM.
Basic Function Commands
Frequency Subsystem [:SOURce]

Chapter 3

Example

:FREQ:CHAN:BAND DECT

The preceding example sets the frequency band to standard DECT.

*RST

BPGS

<table>
<thead>
<tr>
<th>Key Entry</th>
<th>P-GSM Base</th>
<th>E-GSM Base</th>
<th>R-GSM Base</th>
<th>DCS Base</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCS Base</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NADC Base</td>
<td>800MHZ Base</td>
<td>1500MHZ Base</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tetra Base390/400</td>
<td>Tetra Base 420/430</td>
<td>Tetra Base 460/470</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tetra Base 915/921</td>
<td>PHS Standard</td>
<td>DECT Standard</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P-GSM Mobile</td>
<td>E-GSM Mobile</td>
<td>R-GSM Mobile</td>
<td>DCS Mobile</td>
<td></td>
</tr>
<tr>
<td>PCS Mobile</td>
<td>GSM 450 Mobile</td>
<td>GSM 480 Mobile</td>
<td>GSM 850 Mobile</td>
<td></td>
</tr>
<tr>
<td>NADC Mobile</td>
<td>800MHZ Mobile</td>
<td>1500MHZ Mobile</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tetra Mobile 380/390</td>
<td>Tetra Mobile 410/420</td>
<td>Tetra Mobile 450/460</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tetra Mobile 870/876</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

B480 This choice selects Gsm 480 Base as the frequency band for GSM.
M480 This choice selects Gsm 480 Mobile as the frequency band for GSM.
B850 This choice selects Gsm 850 Base as the frequency band for GSM.
M850 This choice selects Gsm 850 Mobile as the frequency band for GSM.
B8 This choice selects 800MHz Base as the frequency band for PDC.
M8 This choice selects 800MHz Mobile as the frequency band for PDC.
B15 This choice selects 1500MHz Base as the frequency band for PDC.
M15 This choice selects 1500MHz Mobile as the frequency band for PDC.
B390 This choice selects Base 390-400 as the frequency band for TETRA.
B420 This choice selects Base 420-430 as the frequency band for TETRA.
B460 This choice selects Base 460-470 as the frequency band for TETRA.
B915 This choice selects Base 915-921 as the frequency band for TETRA.
M380 This choice selects Mobile 380-390 as the frequency band for TETRA.
M410 This choice selects Mobile 410-420 as the frequency band for TETRA.
M450 This choice selects Mobile 450-460 as the frequency band for TETRA.
M870 This choice selects Mobile 870-876 as the frequency band for TETRA.
PHS This choice selects Standard PHS as the frequency band.
DECT This choice selects Standard DECT as the frequency band.
Basic Function Commands

Frequency Subsystem ([:SOURce])

:FREQuency:CHANnels:NUMBer

Supported All Models

 universally

[[:SOURce]:FREQuency:CHANnels:NUMBer <number>]

[[:SOURce]:FREQuency:CHANnels:NUMBer?]

This command sets the frequency of the signal generator by specifying a channel number of a given frequency band.

The channel band and channel state must be enabled for this command to work. Refer to “:FREQuency:CHANnels[:STATe]” on page 109.

Example

:FREQ:CHAN:NUMB 24

The preceding example sets the channel number to 24 for the current band.

RST

+1

Range

- **P-GSM Base/Mobile:** 1–24
- **E-GSM and R-GSM Base/Mobile:** 1–1023
- **DCS Base/Mobile:** 512–885
- **PCS Base/Mobile:** 512–900
- **GSM-450 Base/Mobile:** 259–293
- **GSM-480 Base/Mobile:** 306–340
- **GSM-850 Base/Mobile:** 128–251
- **NADC Base/Mobile:** 1–1023
- **800MHZ Base/Mobile:** 0–640
- **1500MHZ Base/Mobile:** 0–960
- **TETRA 380/390 Mobile:** 3600–4000
- **TETRA 390/4000 Base:** 3600–4000
- **TETRA 410/420 Mobile:** 800–1200
- **TETRA 420/430 Base:** 800–1200
- **TETRA 460/470: 2400 through 2800** 2400–2800
- **TETRA 870/876 Mobile:** 600–640
- **TETRA 915/921 Base:** 600–940
- **PHS Standard:** 1–255
- **DECT Standard:** 0–9

Key Entry

Channel Number
Basic Function Commands
Frequency Subsystem ([SOURce])

:FREQuency:CHANnels[:STATe]

Supported All Models

[:SOURce]:FREQuency:CHANnels[:STATe] ON|OFF|1|0
[:SOURce]:FREQuency:CHANnels[:STATe]?

This command enables or disables the frequency channel and band selection. The signal generator frequency will be set to the channel frequency when the state is on. To set frequency channel bands refer to “:FREQuency:CHANnels:BAND” on page 106.

Example
:FREQ:CHAN ON

The preceding example turns on the frequency channel.

*RST

Key Entry Freq Channels Off On

:FREQuency:FIXed

Supported All Models

[:SOURce]:FREQuency:FIXed <val><unit>|UP|DOWN
[:SOURce]:FREQuency:FIXed?

This command sets the signal generator output frequency, or increments or decrements the current RF frequency setting.

<val> A frequency value.

UP Increases the current frequency setting by the value set with the :FREQuency[:CW]:STEP[:INCRement] command found on page 116. The front-panel up arrow key performs the same function.

DOWN Decreases the current frequency setting by the value set with the :FREQuency[:CW]:STEP[:INCRement] command found on page 116. The front-panel down arrow key performs the same function.

To set the frequency mode, see “:FREQuency:MODE” on page 111. For a listing of signal generator frequency and power specifications, refer to “[:LEVe{l}][:IMMediate][:AMPLitude]” on page 142.

Example
:FREQ:FIX 10GHZ

The preceding example sets the signal generator frequency to 10 GHz.

*RST

Option 520: +2.0000000000000E+10
Option 532: +3.20000000000000E+10
Option 540: +4.00000000000000E+10
Option 544: +4.4000000000000E+10
Option 550: +5.0000000000000E+10
Option 567: +6.70000000000000E+10

Range Option 520: 250kHZ–20GHz
Basic Function Commands
Frequency Subsystem (:SOURce)

:FREQency:MANual

Supported All Models with Option 007
[:SOURce]:FREQency:MANual <val><unit>
[:SOURce]:FREQency:MANual?

This command sets the RF output frequency when performing a ramp sweep in manual mode. The frequency value selected must fall within the range of the current start and stop frequency settings. Entering a value with this command has no effect unless manual sweep mode is on. Refer to ":SWEep:MODE" on page 128 for setting the mode.

The variable <val> is a numeric value. The <units> variable can be expressed in HZ, KHZ, MHZ, or GHZ.

Example :

:FREQ:MAN 10GHz

The preceding example sets the signal generator manual ramp sweep frequency to 10 GHz.

Key Entry Freq CW

Manual Freq

Option 532: 250kHz–32GHz
Option 540: 250kHz–40GHz
Option 544: 250kHz–44GHz
Option 550: 250kHz–50GHz
Option 567: 250kHz–70GHz

a. 67-70 GHz performance not specified

Option 532: 250kHz–32GHz
Option 540: 250kHz–40GHz
Option 544: 250kHz–44GHz
Option 550: 250kHz–50GHz
Option 567: 250kHz–70GHz

Option 520: +2.0000000000000E+10
Option 532: +3.20000000000000E+10
Option 540: +4.00000000000000E+10
Option 544: +4.40000000000000E+10
Option 550: +5.00000000000000E+10
Option 567: +6.70000000000000E+10

Range Option 520: 250kHz–20GHz
Option 532: 250kHz–32GHz
Option 540: 250kHz–40GHz
Option 544: 250kHz–44GHz
Option 550: 250kHz–50GHz
Option 567: 250kHz–70GHz

a. 67-70 GHz performance not specified

Key Entry Manual Freq
Basic Function Commands

Frequency Subsystem ([:SOURce])

:FREQ:MODE

Supported
All Models

[:SOURce]:FREQ:MODE FIXed|CW|SWEep|LIST

This command sets the frequency mode of the signal generator.

FIXed and CW
These choices are synonymous. Any currently running frequency sweeps are turned off, and the current CW frequency settings are used to control the output frequency.

- To set the frequency in the CW frequency mode, see ":FREQ[:CW]" on page 116.
- To set the frequency in the fixed frequency mode, see ":FREQ:FIXed" on page 109.

SWEep
The effects of this choice are determined by the sweep generation type selected (refer to ":SWEep:GENeration" on page 127). In analog sweep generation, the ramp sweep frequency settings (start, stop, center, and span) control the output frequency. In step sweep generation, the current step sweep frequency settings control the output frequency. In both cases, this selection also activates the sweep. This choice is available with Option 007 only.

LIST
This choice selects the swept frequency mode. If sweep triggering is set to immediate along with continuous sweep mode, executing the command starts the LIST or STEP frequency sweep.

NOTE
To perform a frequency and amplitude sweep, you must also select LIST or SWEep as the power mode (see ":MODE" on page 138).

Example

:FREQ:MODE LIST

The preceding example selects a list frequency sweep.

RST

:FREQ:MULTiplier

Supported
All Models

[:SOURce]:FREQ:MULTiplier <val>

[:SOURce]:FREQ:MULTiplier?

This command sets the multiplier for the signal generator carrier frequency. For any multiplier other than one, the MULT indicator is shown in the frequency area of the display. The multiplier value is used to multiply the signal generator’s displayed frequency. The true frequency remains constant. For example, if the signal generator frequency is 20 GHz and a multiplier of 3 is selected, the displayed frequency will be 60 GHz. This feature is useful when working with mixers and multipliers.
Example

`:FREQ:MULT 2`

The preceding example sets the carrier multiplier to 2.

RST
+1.00000000E+000

Key Entry
Freq Multiplier

:FREQuency:OFFSet

Supported
All Models

[:SOURce]:FREQuency:OFFSet <val><units>
[:SOURce]:FREQuency:OFFSet?

This command sets the frequency offset. When an offset has been entered, the OFFS indicator appears in the frequency area of the signal generator’s front-panel display and the frequency reading will include the offset value.

When any non-zero value is entered, the frequency offset state turns on; entering zero turns it off. To set the offset state independent of entering offset values see :FREQuency:OFFSet:STATe.

Example

`:FREQ:OFFS 10GHZ`

The preceding example sets the frequency offset to 10 GHz.

RST
+0.00000000000000E+00

Range
-200GHZ to 200GHZ

Key Entry
Freq Offset

:FREQuency:OFFSet:STATe

Supported
All Models

[:SOURce]:FREQuency:OFFSet:STATe ON|OFF|1|0
[:SOURce]:FREQuency:OFFSet:STATe?

This command enables or disables the offset frequency. Entering OFF (0) will set the frequency offset to 0 Hz.

Example

`:FREQ:OFFS:STAT 0`

The preceding example disables the frequency offset and sets the offset to 0 hertz.

RST
0

Key Entry
Freq Offset
Basic Function Commands
Frequency Subsystem ([SOURce])

[:FREQuency:REFerence]

Supported All Models

[:SOURce] :FREQuency:REFerence <val><units>

This command sets the output reference frequency for the signal generator. Once the reference frequency is set, any change to the signal generator’s CW frequency will be displayed referenced to 0 hertz. For example, if the signal generator’s CW frequency is set to 100 megahertz and the frequency reference is set (the frequency reference state will automatically turn on). The frequency display will read 0 Hz. If you change the signal generator’s CW frequency to 1 megahertz, the frequency display will read 1 megahertz. However, the true frequency is 101 megahertz. This can be verified by turning the frequency reference state off. The signal generator frequency display will read 101 megahertz. Refer to :FREquency:REFerence:STATe for more information.

Example

:`FREQ:REF 100MHZ`

The preceding example sets the output reference frequency to 100 megahertz.

RST

+0.0000000000000E00

Key Entry Freq Ref Set

[:FREQuency:REFerence:SET]

Supported All Models

[:SOURce] :FREQuency:REFerence:Set

This command sets the current CW output frequency, along with any offset, as a 0 hertz reference value.

RST

+0.0000000000000E00

Key Entry Freq Ref Set

[:FREQuency:REFerence:STATe]

Supported All Models

[:SOURce] :FREQuency:REFerence:STATe ON|OFF|1|0

[:SOURce] :FREQuency:REFerence:STATe?

This command enables or disables the frequency reference mode. When the frequency reference mode is on, changes in the signal generator’s CW frequency are displayed relative to the 0 hertz frequency reference. When the state is off, the front-panel display indicates the true signal generator frequency.

Example

:`FREQ:REF:STAT OFF`

The preceding example turns off the reference frequency mode.

RST

0

Key Entry Freq Ref Off On
Basic Function Commands
Frequency Subsystem ([:SOURce])

:FREQuency:SPAN

Supported All Models with Option 007

[:SOURce]:FREQuency:SPAN <num>[<freq_suffix>] | UP | DOWN
[:SOURce]:FREQuency:SPAN? [MAXimum|MINimum]

This command sets the length of the frequency range for a ramp sweep. Span setting is symmetrically divided by the selected center frequency and is coupled to the start and stop frequency settings. The span range is dependent on the signal generator model and option number.

Example

:FREQ:SPAN 100MHZ

The preceding example sets the frequency span to 100 megahertz.

*RST

+0.0000000000000E+00

Key Entry

Freq Span

:FREQuency:STARt

Supported All Models

[:SOURce]:FREQuency:STARt <val><units>
[:SOURce]:FREQuency:STARt?

This command sets the frequency start point for a step sweep or ramp sweep (Option 007). In a ramp sweep setup, the selected value must be less than or equal to the value selected for the frequency stop point. In ramp sweep, this setting is coupled with the span and center frequency settings.

Refer to "[:LEVel][:IMMediate][:AMPLitude]" on page 142 for frequency and power specifications for different signal generator options and model numbers.

Example

:FREQ:STAR 1GHZ

The preceding example sets the start frequency for a sweep to 1 GHz.

*RST

Option 520: +2.0000000000000E+10
Option 532: +3.2000000000000E+10
Option 540: +4.0000000000000E+10
Option 544: +4.4000000000000E+10
Option 550: +5.0000000000000E+10
Option 567: +6.7000000000000E+10
Basic Function Commands
Frequency Subsystem ([SOURce])

Range

*Option 520: 250kHz–20GHz
Option 532: 250kHz–32GHz
Option 540: 250kHz–40GHz
Option 544: 250kHz–44GHz
Option 550: 250kHz–50GHz
Option 567: 250kHz–70GHz

a.67–70 GHz performance not specified

Key Entry
Freq Stop

:FREQuency:STOP

Supported
All Models

[:SOURce]:FREQuency:STOP <val><units>
[:SOURce]:FREQuency:STOP?

This command sets the stop frequency for a step sweep or ramp sweep (Option 007). In a ramp sweep setup, the selected value must be greater than or equal to the value selected for the frequency start point. In ramp sweep, this setting is coupled with the span and center frequency settings.

Refer to "[:LEVel][:IMMediate][:AMPLitude]" on page 142 for frequency and power specifications for different signal generator options and model numbers.

Example

:FREQ:STOP 10GHz

The preceding example sets the stop frequency for a sweep to 10 GHz.

*RST

*Option 520: +2.0000000000000E+10
Option 532: +3.20000000000000E+10
Option 540: +4.00000000000000E+10
Option 544: +4.40000000000000E+10
Option 550: +5.00000000000000E+10
Option 567: +6.70000000000000E+10

Range

*Option 520: 250kHz–20GHz
Option 532: 250kHz–32GHz
Option 540: 250kHz–40GHz
Option 544: 250kHz–44GHz
Option 550: 250kHz–50GHz
Option 567: 250kHz–70GHz

a.67–70 GHz performance not specified

Key Entry
Freq Stop
Basic Function Commands
Frequency Subsystem ([:SOURce])

:FREQuency[:CW]

Supported All Models
[:SOURce]:FREQuency[:CW] <val>|<unit>|UP|DOWN
[:SOURce]:FREQuency[:CW]?
This command sets the signal generator output frequency for the CW frequency mode, or increments or decrements the current RF frequency setting.

<val> A frequency value.

UP Increases the current frequency setting by the value set with the
:FREQuency[:CW]:STEP[:INCRement] command found on page 116. The front-panel up arrow key performs the same function.

DOWN Decreases the current frequency setting by the value set with the
:FREQuency[:CW]:STEP[:INCRement] command found on page 116. The front-panel down arrow key performs the same function.

To set the frequency mode to CW, refer to “:FREQuency:MODE” on page 111.

Example
:FREQ 12GHZ
The preceding example sets signal generator's output frequency to 12 GHz.

*RST
Option 520: +2.0000000000000E+10
Option 532: +3.20000000000000E+10
Option 540: +4.00000000000000E+10
Option 544: +4.40000000000000E+10
Option 550: +5.00000000000000E+10
Option 567: +6.70000000000000E+10

Range
Option 520: 250kHZ–20GHz
Option 532: 250kHZ–32GHz
Option 540: 250kHZ–40GHz
Option 544: 250kHZ–44GHz
Option 550: 250kHZ–50GHz
Option 567: 250kHZ–70GHz

a.67-70 GHz performance not specified

Key Entry Frequency

:FREQuency[:CW]:STEP[:INCRement]

Supported All Models
[:SOURce]:FREQuency[:CW]:STEP[:INCRement] <val>|<unit>
[:SOURce]:FREQuency[:CW]:STEP[:INCRement]?
This command sets the incremental step value for the frequency parameter. The value set with this
command is not affected by *RST or a power cycle.

Range

0.01 Hz–99 GHz

Key Entry

Incr Set

:PHASe:REFerence

Supported

All Models

[:SOURce]:PHASe:REFerence

This command sets the output phase reference to zero. Subsequent phase adjustments are set relative to the new reference.

Key Entry

Phase Ref Set

:PHASe[:ADJJust]

Supported

All Models

[:SOURce]:PHASe[:ADJJust] <val><unit>

[:SOURce]:PHASe[:ADJJust]?

This command adjusts the phase of the modulating signal. The query returns values in radians.

Example

:PHAS 30DEG

The preceding example sets the phase of the modulating signal to 30 degrees relative to the previous phase setting.

:ROSCillator:BANDwidth:DEFaults

Supported

All Models with Option UNR/UNX

[:SOURce]:ROSCillator:BANDwidth:DEFaults

This command resets the bandwidth of the reference oscillator to the factory-defined default state. The default value for the internal reference bandwidth is 125 Hz. The default value for the external reference bandwidth is 25 Hz.

Key Entry

Restore Factory Defaults

:ROSCillator:BANDwidth:EXTernal

Supported

All Models with Option UNR/UNX

[:SOURce]:ROSCillator:BANDwidth:EXTernal 25HZ|55HZ|125HZ|300HZ|650HZ

[:SOURce]:ROSCillator:BANDwidth:EXTernal?

This command sets the bandwidth of the internal reference oscillator, when an external reference is applied.
Basic Function Commands
Frequency Subsystem ([SOURce])

Example

```plaintext
:ROSC:BAND:EXT 300HZ
```

The preceding example sets the bandwidth of the internal oscillator to 300 hertz.

Key Entry
External Ref Bandwidth

:ROSCillator:BANDwidth:INTernal

Supported
All Models with Option UNR/UNX

```
[:SOURce]:ROSCillator:BANDwidth:INTernal 25HZ|55HZ|125HZ|300HZ|650HZ
[:SOURce]:ROSCillator:BANDwidth:INTernal?
```

This command sets the bandwidth of the internal reference oscillator.

Example

```plaintext
:ROSC:BAND:INT 125HZ
```

The preceding example sets the bandwidth of the internal oscillator to 125 hertz.

Key Entry
Internal Ref Bandwidth

:ROSCillator:SOURce

Supported
All Models

```
[:SOURce]:ROSCillator:SOURce?
```

This command queries the reference oscillator source: INT (internal) or EXT (external).

:ROSCillator:SOURce:AUTO

Supported
All Models without Option UNR/UNX

```
[:SOURce]:ROSCillator:SOURce:AUTO ON|OFF|1|0
[:SOURce]:ROSCillator:SOURce:AUTO?
```

This command enables or disables the ability of the signal generator to automatically select between the internal and an external reference oscillator.

ON (1)
This choice enables the signal generator to detect when a valid reference signal is present at the 10 MHz IN connector and automatically switches from internal to external frequency reference.

OFF (0)
This choice selects the internal reference oscillator and disables the switching capability between the internal and an external frequency reference.
Example
:ROSC:SOUR:_AUTO 0
The preceding example turns off the automatic selection of internal or external reference oscillators.

*RST 1

Key Entry Ref Oscillator Source Auto Off On

List/Sweep Subsystem ([SOURce])
A complete sweep setup requires commands from other subsystems. Table 3-1 shows the function and location of these commands.

Table 3-1 Location of Commands from the other Subsystems

<table>
<thead>
<tr>
<th>Sweep Type</th>
<th>Function</th>
<th>Command Location</th>
<th>Key Entry under Sweep/List key</th>
</tr>
</thead>
<tbody>
<tr>
<td>List and Step</td>
<td>Start/stop frequency sweep</td>
<td>:FREQuency:MODE (page 111)</td>
<td>Freq Off</td>
</tr>
<tr>
<td></td>
<td>Start/stop amplitude sweep</td>
<td>:MODE (page 138)</td>
<td>Ampl Off</td>
</tr>
<tr>
<td></td>
<td>Start/stop frequency and amplitude sweep</td>
<td>:MODE (page 138)</td>
<td>Freq & Ampl Off</td>
</tr>
<tr>
<td></td>
<td></td>
<td>:FREQuency:MODE (page 111)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Set up & control sweep triggeringb</td>
<td>"Trigger Sweep Subsystem ([SOURce])" (page 142)</td>
<td>See the Trigger Sweep Subsystem ([SOURce])</td>
</tr>
<tr>
<td>Step</td>
<td>Start frequency sweep</td>
<td>:FREQuency:STARt (page 114)</td>
<td>Freq Start</td>
</tr>
<tr>
<td></td>
<td>Stop frequency sweep</td>
<td>:FREQuency:STOP (page 115)</td>
<td>Freq Stop</td>
</tr>
<tr>
<td></td>
<td>Start amplitude sweep</td>
<td>:STARt (page 140)</td>
<td>Ampl Start</td>
</tr>
<tr>
<td></td>
<td>Stop amplitude sweep</td>
<td>:STOP (page 141)</td>
<td>Ampl Stop</td>
</tr>
</tbody>
</table>

a. Execute both commands to start or stop a frequency and amplitude sweep.
b. For point to point triggering, see "LIST:TRIGger:SOURce" on page 124.

:LIST:DIRection
Supported All Models

[:SOURce]:LIST:DIRection UP|DOWN
[:SOURce]:LIST:DIRection?

This command sets the direction of a list or step sweep.

UP This choice enables a sweep in an ascending order:
• first to last point for a list sweep
• start to stop for a step sweep

DOWN This choice reverses the direction of the sweep.
Basic Function Commands
List/Sweep Subsystem [:SOURce]

Example

:LIST:DIR UP
The preceding example selects an ascending sweep direction.

*RST UP
Key Entry Sweep Direction Down Up

:LIST:DWEL

Supported All Models

[:SOURce]:LIST:DWEL1 <val>{,<val>}
[:SOURce]:LIST:DWEL1?

This command sets the dwell time for points in the current list sweep. The variable <val> is expressed in units of seconds with a 0.001 resolution. If only one point is specified, that value is used for all points in the list. Otherwise, there must be a dwell point for each frequency and amplitude point in the list.

NOTE The dwell time <val> does not begin until the signal generator frequency and/or amplitude change has settled.

Dwell time is used when IMMEDIATE is the trigger source. Refer to "LIST:TRIGGER:SOURce" on page 124 for the trigger setting.

The dwell time is the amount of time the sweep pauses after setting the frequency and/or power for the current point.

The setting enabled by this command is not affected by a signal generator power cycle, preset, or *RST command.

Example

:LIST:DWEL 1,2,1,2,3

The preceding example sets the dwell time for a list of five points.

Range 0.001–60

:LIST:DWEL:POINts

Supported All Models

[:SOURce]:LIST:DWEL:POINts?

This command queries the signal generator for the number of dwell points in the list sweep file.
:LIST:DWELL:TYPE

Supported All Models

[:SOURce]:LIST:DWELL:TYPE LIST|STEP
[:SOURce]:LIST:DWELL:TYPE?

This command toggles the dwell time for the list sweep points between the values defined in the list sweep and the value for the step sweep.

LIST This choice selects the dwell times from the list sweep. Refer to “:LIST:DWELL” on page 120 for setting the list dwell points.

STEP This choice selects the dwell time from the step sweep. Refer to “:SWEep:DWELL” on page 127 for setting the step dwell.

Example

[:LIST:DWELL:TYPE STEP]

The preceding example selects the dwell time from step sweep values.

*RST LIST

Key Entry

Dwell Type List Step

:LIST:FREQuency

Supported All Models

[:SOURce]:LIST:FREQuency <val>{,<val>}
[:SOURce]:LIST:FREQuency?

This command sets the frequency values for the current list sweep points. The maximum number of points is 1601. The setting enabled by this command is not affected by a signal generator power-on, preset, or *RST command.

The variable <val> is expressed in hertz.

For signal generator frequency and power specifications, refer to “[:LEVEL][:IMMediate][:AMPLitude]” on page 142.

Example

[:LIST:FREQ 10GHz,12GHz,14GHz,16GHz]

The preceding example sets the frequency value for a four point sweep.

*RST

Option 520: +2.0000000000000E+10
Option 532: +3.2000000000000E+10
Option 540: +4.0000000000000E+10
Option 544: +4.4000000000000E+10
Option 550: +5.0000000000000E+10
Option 567: +6.7000000000000E+10
Basic Function Commands
List/Sweep Subsystem ([:SOURce])

Range

- **Option 520**: 250kHZ–200GHZ
- **Option 532**: 250kHZ–320GHZ
- **Option 540**: 250kHZ–400GHZ
- **Option 544**: 250kHZ–440GHZ
- **Option 550**: 250kHZ–500GHZ
- **Option 567**: 250kHZ–700GHZ\(^a\)

\(^a\)67–70 GHz performance not specified

:LIST:FREQuency:POINts

Supported All Models

[[:SOURce]:LIST:FREQuency:POINts?]

This command queries the current list sweep file for the number of frequency points.

:LIST:MANual

Supported All Models

[[:SOURce]:LIST:MANual <val> |UP|DOWN]

[[:SOURce]:LIST:MANual?]

This command selects a list point or step sweep point as the current sweep point controlling the frequency and power output. If list or step mode is controlling frequency or power, or both, the indexed point in the respective list(s) is used.

The MANual mode must be selected and sweep enabled for this command to have an effect.

For information on setting the proper mode, see :LIST:MODE.

If the point selected is beyond the length of the longest enabled list, the point sets to the maximum possible point, and an error is generated.

Example

:LIST:MAN UP

The preceding example selects the next positive-direction, sequential point in the list.

Range

- List Sweep: 1– 1601
- Step Sweep: 1– 65535

Key Entry Manual Point
Basic Function Commands
List/Sweep Subsystem ([:SOURce])

:LIST:MODE

Supported All Models

[:SOURce]:LIST:MODE AUTO|MANual

This command sets the operating mode for the current list or step sweep.

AUTO This choice enables the selected sweep type to perform a sweep of all points.

MANual This choice enables you to select an individual sweep point to control the RF output parameters. For more about selecting a sweep point, see “:LIST:MANual” on page 122.

Example

:LIST:MODE AUTO

The preceding example sets the mode to automatic.

*RST AUTO

Key Entry Manual Mode Off On

:LIST:POWer

Supported All Models

[:SOURce]:LIST:POWer <val>{,<val>}

[:SOURce]:LIST:POWer?

This command sets the amplitude for the current list sweep points.

The setting enabled by this command is not affected by signal generator power-on, preset, or *RST.

During an amplitude sweep operation, signal generators with Option 1E1 protect the step attenuator by automatically switching to attenuator hold mode (OFF). The attenuator locks at its current setting and the amplitude sweep range is limited to 40 dB. The maximum number of points is 1601.

Example

:LIST:POW .1,.2,.1,.3,.1,-.1

The preceding example sets the power level for a six point sweep list.

Range See “[[:LEVel][:IMMediate][:AMPLitude]]” on page 142.

:LIST:POWer:POINts

Supported All Models

[:SOURce]:LIST:POWer:POINts?

This command queries the number of power points in the current list sweep file.
Basic Function Commands
List/Sweep Subsystem [:SOURce]

:LIST:RETRace

Supported All Models

[:SOURce]:LIST:RETRace ON|OFF|1|0

[:SOURce]:LIST:RETRace?

Upon completion of a single sweep operation, this command either resets the sweep to the first sweep point, or leaves it at the last sweep point. The command is valid for the list, step, or ramp (Option 007) single-sweep modes.

ON (1) The sweep resets to the first sweep point.
OFF (0) The sweep stays at the last sweep point.

Example

:LIST:RETR 1

The preceding example sets the retrace on. The sweep will reset to the first point after completing a sweep.

*RST 1

Key Entry Sweep Retrace Off On

:LIST:TRIGger:SOURce

Supported All Models

[:SOURce]:LIST:TRIGger:SOURce BUS|IMMediate|EXTernal|KEY

[:SOURce]:LIST:TRIGger:SOURce?

This command sets the trigger source for a list or step sweep event.

To set the sweep trigger, see “:TRIGger[:SEQUence]:SOURce” on page 100.

BUS This choice enables GPIB triggering using the *TRG or GET command, or LAN and RS-232 triggering using the *TRG command.
IMMediate This choice enables immediate triggering of the sweep event.
EXTernal This choice enables the triggering of a sweep event by an externally applied signal at the TRIGGER IN connector.
KEY This choice enables triggering by pressing the front-panel Trigger hardkey.

Example

:LIST:TRIG:SOUR BUS

The preceding example sets the trigger source to the instrument BUS.

*RST IMM

Key Entry Bus Free Run Ext Trigger Key
Basic Function Commands
List/Sweep Subsystem [:SOURce]

:LIST:TYPE

Supported
All Models

[:SOURce]:LIST:TYPE LIST|STEP
[:SOURce]:LIST:TYPE?

This command selects the sweep type.

LIST This type of sweep has arbitrary frequencies and amplitudes.
STEP This type of sweep has equally spaced frequencies and amplitudes.

Example
:LIST:TYPE LIST
The preceding example selects list as the sweep type.

*RST
STEP

Key Entry
Sweep Type List Step

:LIST:TYPE:LIST:INITialize:FSTep

Supported
All Models

CAUTION
When you execute this command, the current list sweep data is overwritten. If needed, save the current data. For information on storing list sweep files, see “:STORe:LIST” on page 57.

[:SOURce]:LIST:TYPE:LIST:INITialize:FSTep

This command replaces the loaded list sweep data with the settings from the current step sweep data points. You can have only one sweep list at a time.

The maximum number of list sweep points is 1,601. When copying the step sweep settings over to a list sweep, ensure that the number of points in the step sweep do not exceed the maximum list sweep points.

Key Entry
Load List From Step Sweep

:LIST:TYPE:LIST:INITialize:PRESet

Supported
All Models

CAUTION
When you execute this command, the current list sweep data is overwritten. If needed, save the current data. For information on storing list sweep files, see “:STORe:LIST” on page 57.

[:SOURce]:LIST:TYPE:LIST:INITialize:PRESet

This command replaces the current list sweep data with a factory-defined file consisting of one point at a frequency, amplitude, and dwell time.

Key Entry
Preset List
Basic Function Commands
List/Sweep Subsystem ([SOURce])

[:SOURce]:SWEep:CONTrol:STATe

Supported
All Models with Option 007

[:SOURce]:SWEep:CONTrol:STATe ON|OFF|1|0
[:SOURce]:SWEep:CONTrol:STATe?

This command sets the sweep control state for a PSG in a dual-PSG ramp sweep setup. When the sweep control is on, you can designate whether the PSG is operating as the master or the slave. For information on setting master and slave designations, see “:SWEep:CONTrol:TYPE” on page 126.

The dual-PSG ramp sweep setup uses a serial cable to connect the two signal generators. This connection enables one PSG to function as the master so that sweep, bandcross, and retrace times are synchronized between the two. Each PSG can have a different sweep range, but they must have identical sweep time settings.

Example
:SWE:CONT:STAT 1

The preceding example sets the sweep control state to on.

*RST 0

Key Entry Sweep Control

[:SOURce]:SWEep:CONTrol:TYPE

Supported
All Models with Option 007

[:SOURce]:SWEep:CONTrol:TYPE MASTer|SLAVe
[:SOURce]:SWEep:CONTrol:TYPE?

In a dual-PSG ramp sweep setup, this command designates whether the PSG is performing as the master or the slave. The master/slave setup requires two signal generators from the same instrument family. Refer to the E8257D/67D PSG Signal Generators User’s Guide for more information.

MASTer
This choice enables the PSG to provide the triggering.

SLAVe
This choice causes the PSG to submit to the triggering parameters provided by the master PSG. You must set the slave PSG triggering to continuous “:INITiate:CONTinuous[:ALL]” on page 98.

Example
:SWE:CONT:TYPE MAST

The preceding example sets the PSG as the master sweep control instrument.

*RST 0

Key Entry Master or Slave
Basic Function Commands
List/Sweep Subsystem [:SOURce]

[:SOURce]:SWEep:DWELl

Supported All Models
[:SOURce]:SWEep:DWELl <val>
[:SOURce]:SWEep:DWELl?

This command enables you to set the dwell time for a step sweep.
The variable <val> is expressed in seconds with a 0.001 resolution.

NOTE The dwell time <val> does not begin until the signal generator has settled for the current
frequency and/or amplitude change.

Dwell time is used when the trigger source is set to IMMEDIATE. For the trigger setting, refer to "[:LIST:TRIGger:SOURce]" on page 124.
The dwell time is the amount of time the sweep pauses after setting the frequency or power, or both, for the current point.

Example
:SWE:DWEL .1
The preceding example sets the dwell time for a step sweep to 100 milliseconds.

*RST +2.00000000E−003
Range 0.001–60S
Key Entry Step Dwell

[:SOURce]:SWEep:GENeration

Supported All Models with Option 007
[:SOURce]:SWEep:GENeration ANALog|STEPped
[:SOURce]:SWEep:GENeration?

This command sets the sweep type to analog or stepped.
ANALog This choice selects a ramp sweep.
STEPped This choice selects a step sweep.

Example
:SWE:GEN STEP
The preceding example selects a step sweep.

*RST STEP
Key Entry Sweep Type
Basic Function Commands
List/Sweep Subsystem [:SOURce]

:SWEep:MODE

Supported All Models with Option 007

[:SOURce]:SWEep:MODE AUTO|MANual
[:SOURce]:SWEep:MODE?

This command sets the current ramp sweep operating mode.
AUTO This choice enables the signal generator to automatically sweep through the selected frequency range.
MANual This choice enables you to select a single frequency value within the current sweep range to control the RF output. For information on selecting the frequency value, see ":FREQuency:MANual" on page 110.

Example
:SWE:MODE AUTO
The preceding example sets the signal generator to automatically complete a sweep.

*RST AUTO

Key Entry Manual Mode Off On

:SWEep:POINts

Supported All Models

[:SOURce]:SWEep:POINts <val>
[:SOURce]:SWEep:POINts?

This command enables you to define the number of points in a step sweep.

Example
:SWE:POIN 2001
The preceding example sets the number of step sweep points to 2001.

*RST 2
Range 2–65535
Key Entry # Points
Basic Function Commands
List/Sweep Subsystem [:SOURce]

:SWEep:TIME

Supported All Models with Option 007

[:SOURce]:SWEep:TIME <val><units>
[:SOURce]:SWEep:TIME?

This command enables you to set the sweep time for a ramp sweep in seconds. If this command is executed while the signal generator is in automatic sweep time mode, the manual sweep time mode is activated and the new sweep time value is applied. The sweep time cannot be set to a value faster than what the automatic mode provides.

The sweep time is the duration of the sweep from the start frequency to the stop frequency. It does not include the bandcross time that occurs during a sweep or the retrace time that occurs between sweep repetitions.

Example
:SWEep:TIME .250

The preceding example sets the ramp sweep time to 250 milliseconds.

*RST 1.00000000E-002

Range 10mS–99S

Key Entry Sweep Time

:SWEep:TIME:AUTO

Supported All Models with Option 007

[:SOURce]:SWEep:TIME:AUTO ON|OFF|0|1
[:SOURce]:SWEep:TIME:AUTO?

This command enables you to set the sweep time mode for a ramp sweep.

The sweep time is the duration of the sweep from the start frequency to the stop frequency. It does not include the bandcross time that occurs during a sweep or the retrace time that occurs between sweep repetitions.

ON (1) This choice enables the signal generator to automatically calculate and set the fastest allowable sweep time.

OFF (0) This choice enables you to select the sweep time. The sweep time cannot be set to a value faster than what the automatic mode provides. To set the sweep time refer to ":SWEep:TIME" on page 129.

Example
:SWEep:TIME:AUTO 0

The preceding example sets the ramp sweep time to manual allowing you to select a sweep time.

*RST 1

Key Entry Sweep Time Manual Auto
Basic Function Commands
Marker Subsystem–Option 007 ([SOURce])

Marker Subsystem–Option 007 ([SOURce])

[:MARKer:AMPLitude[:STATE]]

Supported All Models with Option 007

[:SOURce]:MARKer:AMPLitude[:STATE] ON|OFF|1|0
[:SOURce]:MARKer:AMPLitude[:STATE]?

This command sets the amplitude marker state for the currently activated markers. When the state is switched on, the RF output signal exhibits a spike with a magnitude relative to the power level at each marker’s set frequency. (To set the magnitude of the spike, refer to “:MARKer:AMPLitude:VALue” on page 130.) The width of the amplitude spike is a nominal eight buckets, based on 1601 buckets per sweep.

Example

:MARK:AMPL ON

The preceding example enables amplitude markers.

*RST 0

Key Entry Amplitude Markers Off On

[:MARKer:AMPLitude:VALue]

Supported All Models with Option 007

[:SOURce]:MARKer:AMPLitude:VALue <num>[DB]
[:SOURce]:MARKer:AMPLitude:VALue?

This command sets the relative power for the amplitude spikes at each marker’s set frequency when the amplitude marker mode is activated. (To activate the amplitude markers, refer to “:MARKer:AMPLitude[:STATE]” on page 130.)

Example

:MARK:AMPL:VAL 4DB

The preceding example sets the relative marker power to 4 dB for all markers.

*RST 2DB

Range −10DB to +10DB

Key Entry Marker Value

[:MARKer:AOFF]

Supported All Models with Option 007

[:SOURce]:MARKer:AOFF

This command turns off all active markers.

Key Entry Turn Off Markers
Chapter 3

Basic Function Commands

Marker Subsystem–Option 007 ([SOURce])

:MARKer:DELTa?

Supported All Models with Option 007

[:SOURce]:MARKer:DELTa? <num>,<num>

This query returns the frequency difference between two amplitude markers. The variables <num> are used to designate the marker numbers.

Example

:MARK:DEL? 1,2

The preceding example returns the frequency difference between amplitude markers 1 and 2.

Range 0–9

:MARKer[0,1,2,3,4,5,6,7,8,9]:FREQuency

Supported All Models with Option 007

[:SOURce]:MARKer[0,1,2,3,4,5,6,7,8,9]:FREQuency <val><unit>

[:SOURce]:MARKer[0,1,2,3,4,5,6,7,8,9]:FREQuency? MAXimum|MINimum

This command sets the frequency for a specific marker. If the marker designator [n] is not specified, marker 0 is the default. The frequency value must be within the current start, stop, frequency sweep range. Using the MAXimum or MINimum parameters in the query will return the frequency boundary values for the markers.

If the marker frequency mode is set to delta when the query is sent, the returned value is not absolute, but is relative to the reference marker. (See “:MARKer:MODe” on page 131 for more information.)

Example

:MARK2:FREQ 10GHZ

The preceding example places amplitude marker 2 at 10 GHz.

RST +5.25000000E+008

Range Equivalent to current sweep range

Key Entry Marker Freq

:MARKer:MODe

Supported All Models with Option 007

[:SOURce]:MARKer:MODe FREQuency|DELTa

[:SOURce]:MARKer:MODe?

This command sets the frequency mode for all markers.

FREQuency The frequency values for the markers are absolute.

DELTa The frequency values for the markers are relative to the designated reference marker. The reference marker must be designated before this mode is selected. (See :MARKer:REFerence to select a reference marker.)
Basic Function Commands
Marker Subsystem–Option 007 ([SOURce])

Example

:MARKer:MODE DELT
The preceding example sets the marker mode to delta.

*RST FREQuency
Key Entry Marker Delta Off On

:MARKer:REFeRe

Supported
All Models with Option 007

[:SOURce]:MARKer:REFeRe <marker>
[:SOURce]:MARKer:REFeRe?
This command designates the reference marker when using markers in delta mode. The variable <marker> designates the marker number.

Example

:MARKer:REF 6
The preceding example sets marker 6 as the reference marker.

*RST 0
Range 0–9
Key Entry Delta Ref Set

:MARKer[0,1,2,3,4,5,6,7,8,9]:STATe

Supported
All Models with Option 007

[:SOURce]:MARKer[0,1,2,3,4,5,6,7,8,9]:STATe ON|OFF|1|0
[:SOURce]:MARKer[0,1,2,3,4,5,6,7,8,9]?[:STATe]
This command turns a marker on or off. Marker 0 is the default if the marker designator [n] is not specified.

Example

:MARKer6 ON
The preceding example turns marker 6 on.

*RST 0
Key Entry Marker On Off
Basic Function Commands

Power Subsystem ([SOURce]:POWer)

:ALC:BANDwidth|BWIDth

Supported All Models

[:SOURce]:POWer:ALC:BANDwidth|BWIDth <num>[<freq_suffix>]
[:SOURce]:POWer:ALC:BANDwidth|BWIDth?

This command sets the bandwidth of the automatic leveling control (ALC) loop. You can select bandwidths of 100 Hz, 1 kHz, 10 kHz, or 100kHz. If you do not specify one of these exact bandwidths, your entry rounds to the nearest acceptable value. The bandwidth choices for this command are not effective if an internal I/Q source is being used. Refer to the E8257D/67D PSG Signal Generators User’s Guide for information on ALC and bandwidth considerations.

Example

:POW:ALC:BWID 1KHZ

The preceding example sets the ALC bandwidth to 1 kHz.

*RST 100.0

Key Entry ALC BW

:ALC:BANDwidth|BWIDth:AUTO

Supported All Models

[:SOURce]:POWer:ALC:BANDwidth|BWIDth:AUTO ON|OFF|1|0
[:SOURce]:POWer:ALC:BANDwidth|BWIDth:AUTO?

This command sets the state of the automatic leveling control (ALC) automatic bandwidth function. When this state is turned on, the signal generator automatically selects the optimum bandwidth for the ALC.

Example

:POW:ALC:BWID:AUTO 0

The preceding example disables the automatic bandwidth optimizing function.

*RST 1

Key Entry ALC BW
Basic Function Commands
Power Subsystem [:SOURce]:POWer

:ALC:LEV

Supported E8257D with Option 1E1 and E8267D

[:SOURce]:POWer:ALC:LEV <value>DB
[:SOURce]:POWer:ALC:LEV?

This command sets the automatic leveling control (ALC) level when the attenuator hold is active.

Use this command when the automatic attenuation mode is set to OFF (0). Refer to "ATTenuation:AUTO" on page 138 for choosing the attenuator mode.

Example
:POW:ALC:LEV 10DB

The preceding example sets the ALC to 10 dB.

*RST +1.00000000E+000

Range -20 to 25

Key Entry Set ALC Level

:ALC:SEAR

Supported All Models

[:SOURce]:POWer:ALC:SEARch ON|OFF|1|0|ONCE
[:SOURce]:POWer:ALC:SEARch?

This command enables or disables the internal power search calibration. A power search is recommended for pulse-modulated signals with pulse widths less than one microsecond. Refer to the E8257D/67D PSG Signal Generators User’s Guide for more information on ALC and the power search function.

ON (1) This choice executes the power search automatically with each change in RF frequency or power.

OFF (0) This choice disables the automatic power search routine.

ONCE This choice executes a single power search of the current RF output signal.

Use this command when the automatic leveling control (ALC) state is set to OFF (0). Refer to ":ALC[:STATe]" on page 137 for setting the ALC state.

If ON was previously selected, executing ONCE will cause OFF to be the current selection after the power search is completed.

Example
:POW:ALC:SEAR ONCE

The preceding example starts a single power search of the RF output signal.

*RST 0

Key Entry Power Search Manual Auto Do Power Search
Basic Function Commands
Power Subsystem [:SOURce]:POWer

:ALC:SEARch:REFerence

Supported All Models
[:SOURce]:POWer:ALC:SEARch:REFerence FIXed|MODulated
[:SOURce]:POWer:ALC:SEARch:REFerence?

This command sets either fixed or modulated modes for power search.

FIXed This choice uses a 0.5 volt reference.

MODulated This choice uses the RMS value of the current I/Q modulation as measured during the power search.

Example
:POW:ALC:SEAR:REF FIX

The preceding example selects a fixed voltage as the reference for a power search.

*RST

Key Entry Power Search Reference Fixed Mod

:ALC:SEARch:SPAN:START

Supported All Models
[:SOURce]:POWer:ALC:SEARch:SPAN:START <val><units>
[:SOURce]:POWer:ALC:SEARch:SPAN:START?

This command sets the start frequency for a power search over a user-defined range. The start frequency has no default value. The start frequency value will be set before powering off the instrument.

Example
:POW:ALC:SEAR:SPAN:START 12GHZ

The preceding example selects 12 GHz as the start frequency for a power search.

Key Entry Start Frequency

:ALC:SEARch:SPAN:STOP

Supported All Models
[:SOURce]:POWer:ALC:SEARch:SPAN:STOP <val><units>
[:SOURce]:POWer:ALC:SEARch:SPAN:STOP?

This command sets the stop frequency for a power search over a user-defined range. The stop frequency has no default value. The stop frequency value will be set before powering off the instrument.

Example
:POW:ALC:SEAR:SPAN:STOP 20GHZ

The preceding example selects 20 GHz as the stop frequency for a power search.

Key Entry Stop Frequency
Basic Function Commands
Power Subsystem ([SOURce]:POWer)

[:SOURce]:POWer:ALC:SEARch:SPAN:TYPE FULL|USER

Supported All Models

[:SOURce]:POWer:ALC:SEARch:SPAN:TYPE FULL|USER

This command enables you to select the frequency range for a power search. You can specify the range (USER) or you can select the full range (FULL) of the signal generator.

Example
:POW:ALC:SEAR:SPAN:TYPE USER

The preceding example selects a user-defined frequency range for the power search.

Key Entry Span Type User Full

[:SOURce]:POWer:ALC:SEARch:SPAN[:STATe] ON|OFF|1|0

Supported All Models

[:SOURce]:POWer:ALC:SEARch:SPAN[:STATe] ON|OFF|1|0

This command enables (1) or disables (0) the span mode, allowing you to perform power searches over a selected range of frequencies. The power search corrections are then stored and used whenever the signal generator is tuned within the selected range.

Example
:POW:ALC:SEAR:SPAN ON

The preceding example enables the span mode.

[:SOURce]:POWer:ALC:SOURce INTernal|DIODe|MMHead

Supported All Models

[:SOURce]:POWer:ALC:SOURce INTernal|DIODe|MMHead

This command enables you to select an automatic level control (ALC) source. You can select the internal ALC source, an external detector source, or a millimeter-wave source module. Refer to the E8257D/67D PSG Signal Generators User’s Guide for more information on ALC leveling, bandwidth, and the power search function.

Example
:POW:ALC:SOUR MMH

The preceding example selects an Agilent 8355x series external millimeter head as the source (the unit must be connected to the signal generator).

*RST INT

Key Entry Leveling Mode
Basic Function Commands
Power Subsystem [:SOURce]:POWER

:ALC:SOURce:EXTernal:COUPling

Supported All Models

[:SOURce]:POWer:ALC:SOURce:EXTernal:COUPling <value>DB
[:SOURce]:POWer:ALC:SOURce:EXTernal:COUPling?

This command sets the external detector coupling factor. Use this command when DIODe is the selected ALC source (“:ALC:SOURce” on page 136). (0 to 32 coupling value).

Example
:POW:ALC:SOUR:EXT:COUP 20DB

The preceding example sets the external coupling factor to 20 dB.

*RST +1.60000000E+001

Range −200DB to 200DB.

Key Entry Ext Detector Coupling Factor

:ALC[:STATe]

Supported All Models

[:SOURce]:POWer:ALC[:STATe] ON|OFF|1|0
[:SOURce]:POWer:ALC[:STATe]?

This command enables or disables the automatic leveling control (ALC) circuit. The purpose of the ALC circuit is to hold output power at a desired level by adjusting the signal generator power circuits for power drift. Power will drift over time and with changes in temperature. Refer to the E8257D/67D PSG Signal Generators User’s Guide for more information on the ALC.

Example
:POW:ALC ON

The preceding example sets the ALC on.

*RST 1

Key Entry ALC Off On

:ATTenuation

Supported E8257D with Option 1E1 and E8267D

[:SOURce]:POWer:ATTenuation <val><unit>
[:SOURce]:POWer:ATTenuation?

This command sets the attenuation level when the attenuator hold is active. For the E8267D, the attenuation is set in increments of 5 dB. For the E8257D with Option 1E1, the progression is 0, 5, 15, 25 and continues in 5 dB increments.

The output power is the ALC level minus the attenuator setting.

Use this command when the automatic attenuation mode is set to OFF (0). Refer to “:ATTenuation:AUTO” on page 138 for choosing the attenuator mode.
Example

:POW:ATT 10DB
The preceding example sets the attenuator to 10 dB.

*RST +115
Range 0 to 115 dB
Key Entry Set Atten

:ATTenuation:AUTO

Supported E8257D with Option 1E1 and E8267D
[:SOURce]:POWer:ATTenuation:AUTO ON|OFF|1|0
[:SOURce]:POWer:ATTenuation:AUTO?
This command sets the state of the attenuator hold function.

ON (1) This choice enables the attenuator to operate normally.

OFF (0) This choice holds the attenuator at its current setting or at a selected value that will not change during power adjustments.

OFF (0) eliminates the power discontinuity normally associated with the attenuator switching during power adjustments. During an amplitude sweep operation, signal generators with Option 1E1 protect the step attenuator by automatically switching to attenuator hold mode (ON). The attenuator is locked at its current setting and the amplitude sweep range is limited to 40 dB.

Example

:POW:ATT:AUTO OFF
The preceding example turns off the attenuator hold function.

*RST 1
Key Entry Atten Hold Off On

:MODE

Supported All Models
[:SOURce]:POWer:MODE FIXed|SWEep|LIST
[:SOURce]:POWer:MODE?
This command starts or stops an amplitude sweep and sets the power mode of the signal generator.

FIXed This choice stops a power sweep and allows the signal generator to operate at a fixed power level. Refer to "[:LEVel][:IMMediate][:AMPLitude]" on page 142 for more information on running power sweeps and setting CW amplitude settings that control the output power.
Basic Function Commands
Power Subsystem [:SOURce]:POWer

SWEep
The effects of this choice are determined by the sweep generation type selected (refer to "SWEep:GENeration" on page 127). If you are using analog sweep generation, the current ramp sweep amplitude settings (start and stop) control the output power. If you are using step sweep generation, the current step sweep amplitude settings control the output power. In both cases, this selection also activates the sweep. This choice is available with Option 007 only.

LIST
This choice selects the swept power mode. If sweep triggering is set to immediate along with continuous sweep mode, executing the command starts the LIST or STEP frequency sweep.

NOTE To perform a frequency and amplitude sweep, you must also select LIST or SWEep as the frequency mode (see "FREQuency:MODE" on page 111).

Example
:POW:MODE LIST
The preceding example sets list as the amplitude sweep mode.

*RST

Key Entry
Sweep Type Ampl Off Freq & Ampl

:PROTection:STATe

Supported E8257D with Option 1E1 and E8267D

[:SOURce]:POWer:PROTection[:STATe] ON|OFF|1|0
[:SOURce]:POWer:PROTection[:STATe]?

This command enables or disables the power search protection function. The power search protection function sets the attenuator to its maximum level whenever a power search is initiated. This can be used to protect devices that are sensitive to high average power or high power changes. The trade off on using the power protection function is decreased attenuator life, as the attenuator will switch to its maximum setting during a power search.

NOTE Continual or excessive use of the power search protection function can decrease attenuator life.

ON (1) Causes the attenuator to switch to and hold its maximum level setting during a power search.
OFF (0) Sets the attenuator normal mode. The attenuator is not used during power search.

Example
:POW:PROT ON
The preceding example enables the power inhibit function.

*RST

Key Entry RF During Power Search Normal Minimum
Basic Function Commands
Power Subsystem ([:SOURce]:POWer)

:REference

Supported All Models
[:SOURce]:POWer:REference <val><unit>
[:SOURce]:POWer:REference?

This command sets the power level for the signal generator RF output reference. The RF output power is referenced to the value entered in this command.

Example
:POW:REF 50DBM
The preceding example sets the RF output power reference to 50 dBm.

*RST +0.00000000E+000
Range -400 to 300 dBm
Key Entry Ampl Ref Set

:REference:STATe

Supported All Models
[:SOURce]:POWer:REference:STATe ON|OFF|1|0
[:SOURce]:POWer:REference:STATe?

This command enables or disables the RF output reference.

ON (1) Sets the power reference state ON. dB is the unit displayed for commands ("ANNotation:AMPLitude:UNIT" on page 29 and "POWer" on page 101).

OFF (0) Sets the power reference state OFF.

Once the reference state is ON, all subsequent output power settings are set relative to the reference value. Amplitude offsets can be used with the amplitude reference mode.

Example
:POW:REF:STAT 1
The preceding example sets the reference state on.

*RST 0
Key Entry Ampl Ref Off On

:STARt

Supported All Models
[:SOURce]:POWer:STARt <val><unit>
[:SOURce]:POWer:STARt?

This command sets the amplitude of the first point in a step or ramp sweep (Option 007).

During an amplitude sweep operation, signal generators with Option 1E1 protect the step attenuator by automatically switching to attenuator hold (ON) mode. The attenuator is locked at its current setting and the amplitude sweep range is limited to 40 dB.

Range -400 to 300 dBm
Key Entry Ampl Ref Set
Basic Function Commands

Power Subsystem [:SOURce]:POWer

Example

:POW:STAR -30DBM

The preceding example sets the amplitude of the first point in the sweep to –30 dBm.

*RST Depends on model and option number

Range

Refer to "[:LEVel][:IMMediate][:AMPLitude]" on page 142 for the output power ranges.

Key Entry

Ampl Start

:STOP

Supported

All Models

[:SOURce]:POWer:STOP <val><unit>
[:SOURce]:POWer:STOP?

This command sets the amplitude of the last point in a step or ramp sweep (Option 007).

During an amplitude sweep, signal generators with Option 1E1 protect the step attenuator by switching to attenuator hold (ON) mode. The attenuator is locked at its current setting and the amplitude sweep range is limited to 40 dB.

Example

:POW:STOP -10DBM

The preceding example sets the amplitude of the last point in the sweep to –10 dBm.

*RST Depends on model and option number.

Range

See "[:LEVel][:IMMediate][:AMPLitude]" on page 142 for the available power ranges.

Key Entry

Ampl Stop

[:LEVel][:IMMediate]:OFFSet

Supported

All Models

[:SOURce]:POW[:LEVel][:IMMediate]:OFFSet <val><unit>
[:SOURce]:POW[:LEVel][:IMMediate]:OFFSet?

This command sets the power offset value as a dB power offset to the actual RF output. This simulates a power level at a test point beyond the RF OUTPUT connector without changing the actual RF output power. The offset value only affects the displayed amplitude setting.

You can enter an amplitude offset anytime in either normal operation or amplitude reference mode.

Example

:POW:OFFS 10DB

The preceding example sets the amplitude offset to 10 dB.

*RST +0.00000000E+000

Range

–200dB to 200dB

Key Entry

Ampl Offset
Basic Function Commands
Trigger Sweep Subsystem [:SOURce]

[:LEVel][:IMMediate][:AMPLitude]

Supported All Models

[:SOURce]:POWer[:LEVel][:IMMediate][:AMPLitude] <val><unit>
[:SOURce]:POWer[:LEVel][:IMMediate][:AMPLitude]?

This command sets the RF output power.
The ranges for this command are specified values from the data sheet.

Example

:POW 0DBM
The preceding example sets the signal generator output power level to 0 dBm.

*RST Depends on model and option number

Range See data sheet

Key Entry Amplitude

Trigger Sweep Subsystem [:SOURce])

:TSWeep

Supported All Models

[:SOURce]:TSWeep

This command aborts the current sweep, then either arms or arms and starts a single list, step, or ramp sweep (Option 007), depending on the trigger type.
The command performs the following:

• arms a single sweep when BUS, EXTERNAL, or KEY is the trigger source selection
• arms and starts a single sweep when IMMEDIATE is the trigger source selection

Key Entry Single Sweep
Chapter 4

4 Analog Commands

This chapter provides SCPI descriptions for subsystems dedicated to E8257D PSG Analog and E8267D PSG Vector signal generators. The following is a list of the subsystems:

- “Amplitude Subsystem ([SOURce])” on page 143
- “Frequency Modulation Subsystem ([SOURce])” on page 153
- “Low Frequency Output Subsystem ([SOURce]:LFOutput)” on page 161
- “Phase Modulation Subsystem ([SOURce])” on page 166
- “Pulse Modulation Subsystem ([SOURce])” on page 175

Amplitude Subsystem ([SOURce])

:AM[1]|2...

Supported E8257D and E8267D

[:SOURce]:AM[1]|2...

This prefix enables the selection of the AM path and is part of most SCPI commands associated with this subsystem. The two paths are equivalent to the AM Path 1 2 softkey.

AM1 AM Path 1 2 with 1 selected
AM2 AM Path 1 2 with 2 selected

When just AM is shown in a command, the command defaults to path 1.

Each path is set up separately. When a SCPI command uses AM1, only path one is affected. Consequently, when AM2 is selected, only path two is set up. However, the depth of the signals for the two paths can be coupled.

The two AM paths can be on at the same time provided the following conditions have been met:

- dual–sine or swept–sine is not one of the selections for the waveform type
- Each path uses a different source (Internal 1, Internal 2, Ext1, or Ext2)
Analog Commands
Amplitude Subsystem [:SOURce]

:AM:INTernal:FREQuency:STEP[:INCRement]

Supported
E8257D and E8267D

[:SOURce]:AM:INTernal:FREQuency:STEP[:INCRement]<num>|MAXimum|MINimum|DEFault

[:SOURce]:AM:INTernal:FREQuency:STEP[:INCRement]?

This command sets the step value for the AM internal frequency.

The step value set by this command is used with the UP and DOWN choices for the

The step value set with this command is not affected by a signal generator power-on, preset, or *RST
cmdand.

Example

:AM:INT:FREQ:STEP 1E3

The preceding example sets the step size to 1000 hertz.

Range
0.5–1E6

Key Entry
Incr Set

:AM:MODE

Supported
All with Option UNT

[:SOURce]:AM:MODE DEEP|NORMal

[:SOURce]:AM:MODE?

This command sets the mode for amplitude modulation.

DEEP
This choice enables amplitude modulation depth with a greater dynamic range
than normal mode which utilizes the ALC. DEEP has no specified parameters and
emulates the amplitude modulation NORMal mode with the ALC disabled.

NORMal
This choice maintains the amplitude modulation standard behavior and has
specified parameters as outlined in the data sheet.

The ALC is disabled when the carrier amplitude is less than –10 dBm and DEEP is the AM mode.
DEEP is limited to repetitive AM and will not work with a dc modulation signal.

Example

:AM:MODE NORM

The preceding example selects the normal mode for amplitude modulation.

*RST

Key Entry
AM Mode Normal Deep
Analog Commands
Amplitude Subsystem [:SOURce]

:AM:WIDeband:SENSitivity

Supported E8267D and Option UNT

[:SOURce]:AM:WIDeband:SENSitivity <val>

This command sets the sensitivity level of the wideband AM signal in units of dB/volt. Sensitivity is .5V = 100% and is linear with .25V = 50%. Wideband AM uses input from the front panel I INPUT.

Example

:AM:WID:SENS 20

The preceding example sets the sensitivity level to 20%.

*RST +2.00000000E+001

Range 0 – 40DB

Key Entry AM Depth

:AM:WIDeband:STATe

Supported E8267D with Option UNT

[:SOURce]:AM:WIDeband:STATe ON|OFF|1|0

This command enables or disables wideband amplitude modulation. The RF carrier is modulated when the signal generator's modulation state is ON, see ":MODulation[:STATe]" on page 63 for more information. The signal generator's I input is used to drive wideband AM modulation.

Whenever wideband amplitude modulation is enabled, the AM annunciator appears on the signal generator's front panel display. Wideband amplitude modulation can be simultaneously enabled with AM paths 1 and 2. Refer to ":AM[1]|2..." on page 143 for more information.

Example

:AM:WID:STAT 0

The preceding example turns off wideband amplitude modulation.

*RST 0

Key Entry AM Off On
Analog Commands
Amplitude Subsystem ([SOURce])

Supported All

This command sets the coupling type for the selected external input. The command does not change the active source or switch the modulation on or off. The modulating signal may be the sum of several signals, with either internal or external sources.

AC This choice will pass only ac signal components.

DC This choice will pass both ac and dc signal components.

Example
:AM1:EXT1:COUP AC

The preceding example sets the AM path 1, external 1 source coupling to AC.

*RST DC

Key Entry Ext Coupling DC AC

Supported All

This command sets the impedance for the external input.

Example
:AM1:EXT1:IMP 600

The preceding example sets the AM path 1, external 1 source impedance to 600 ohms.

*RST +5.00000000E+001

Key Entry Ext Impedance 50 Ohm 600 Ohm

Supported All with Option UNT

This command sets the internal AM rate using the variable <val><units>. The command, used with the UP|DOWN parameters, will change the frequency rate by a user-defined step value. Refer to the :PULM:INTernal[1]:FREQuency:STEP command on page 146 for setting the value associated with the UP and DOWN choices.
Analog Commands
Amplitude Subsystem ([SOURce])

The command changes:
- the frequency rate of the first tone of a dual–sine waveform
- the start frequency for a swept–sine waveform
- the AM frequency rate for all other waveforms

Example
:AM1:INT2:FREQ UP

The preceding example increases the modulation rate for AM path 1, AM internal source 2 by the step value set with the :AM:INTernal:FREQuency:STEP[:INCRement] command described on page 144.

*RST +4.00000000E+002

Range
Dual–Sine & Sine: 0.5HZ–1MHZ
Swept–Sine: 1HZ–1MHZ

Key Entry
<table>
<thead>
<tr>
<th>AM Tone 1 Rate</th>
<th>AM Start Rate</th>
<th>AM Rate</th>
</tr>
</thead>
</table>

Supported All with Option UNT

[:SOURce]:AM[1]|2:INTernal[1]:FREQuency:ALTernate <val><units>
[:SOURce]:AM[1]|2:INTernal[1]:FREQuency:ALTernate?

This command sets the frequency for the alternate signal. The alternate signal frequency is the second tone of a dual–sine or the stop frequency of a swept–sine waveform.

Example
:AM2:INT1:FREQ:ALT 500KHZ

The preceding example sets the alternate frequency (AM path 2, AM internal source 1) for AM tone 2 to 500 kHz.

*RST +4.00000000E+002

Range
Dual–Sine: 0.5HZ–1MHZ
Swept–Sine: 1HZ–1MHZ

Key Entry
<table>
<thead>
<tr>
<th>AM Tone 2 Rate</th>
<th>AM Stop Rate</th>
</tr>
</thead>
</table>

Supported All with Option UNT

[:SOURce]:AM[1]|2:INTernal[1]:FREQuency:ALTernate:AMPLitude:PERCent <val>
[:SOURce]:AM[1]|2:INTernal[1]:FREQuency:ALTernate:AMPLitude:PERCent?

This command sets the amplitude of the second tone for a dual–sine waveform as a percentage of the total amplitude. For example, if the second tone makes up 30% of the total amplitude, then the first tone is 70% of the total amplitude.

Analog Commands

Amplitude Subsystem [:SOURce]

Example

The preceding example sets the amplitude (AM path 2, AM internal source 1) for AM tone 2 to 50% of the total amplitude.

RST
+5.00000000E+001

Range
0–100PCT

Key Entry
AM Tone 2 Ampl Percent Of Peak

Supported
All with Option UNT

This command selects a gaussian or uniform noise modulation for the selected waveform. Refer to "[:AM[1]|2:INTernal[1]|2:FUNCTION:SHAPE" on page 149 for the waveform selection.

Example

`:AM2:INT1:FUNC:NOIS GAUS`

The preceding example selects the gaussian noise waveform for AM modulation on AM path 2, internal source 1.

RST
UNIF

Key Entry
Gaussian Uniform

Supported
All with Option UNT and Option 007

Example

`:AM2:INT1:FUNC:RAMP NEG`

The preceding example sets the slope of the ramp modulation for AM path 2, internal source 1, to negative.

RST
POS

Key Entry
Positive Negative
Analog Commands

Amplitude Subsystem ([:SOURce])

Supported
All with Option UNT

RAMP|NOISE|DUALsine|SWEPtsine

This command sets the AM waveform type. The INTernal2 source selection does not support the dual–sine or Sweep–Sine waveform choices.

Example

:AM1:INT1:FUNC:SHAPE DUAL

The preceding example sets the AM waveform type for AM path 1, internal source 1, to dual sine.

*RST

Key Entry
SINE

Supported
All with Option UNT

This command sets the sweep rate for the AM swept–sine waveform.

Example

:AM2:INT1:SWE:RATE 1KHZ

The preceding example sets the sweep rate for AM path 1, internal source lto 1 kHz.

*RST

Key Entry
AM Sweep Rate

Supported
All with Option UNT

This command sets the trigger source for the AM swept–sine waveform.

Bus
This choice enables GPIB triggering using the *TRG or GET command or LAN triggering using the *TRG command.

IMMediate
This choice enables immediate triggering of the sweep event.
Analog Commands
Amplitude Subsystem (:SOURce)

EXTernal This choice enables the triggering of a sweep event by an externally applied signal at the TRIGGER IN connector.

KEY This choice enables triggering through front panel interaction by pressing the Trigger hardkey.

Example
:AM1:INT1:SWE:TRIG EXT
The preceding example sets an external trigger source for the swept–sine waveform on AM path 1.

Example
:AM2:SOUR INT1
The preceding example selects internal source 1 as the source for AM path 2.

:AM[1]|2:SOURce
Supported All with Option UNT
This command selects the source for amplitude modulation.

INT This choice selects internal source 1 or 2 to provide an ac–coupled signal.

EXT This choice selects the EXT 1 INPUT or the EXT 2 INPUT connector to provide an externally applied signal that can be ac- or dc-coupled. The externally applied, ac-coupled input signal is tested for a voltage level and an annunciator, on the signal generator's front-panel display, will indicate a high or low condition if that voltage is > ±3% of 1 Vp.

Example
:AM2:SOUR INT1
The preceding example selects internal source 1 as the source for AM path 2.

:AM[1]|2:STATe
Supported All with Option UNT
[:SOURce] :AM[1]|2:STATe ON|OFF|1|0
This command enables or disables amplitude modulation for the selected path.

The RF carrier is modulated when you have set the signal generator's modulation state to ON, see "MODulation[STATe]" on page 63 for more information.

Whenever amplitude modulation is enabled, the AM annunciator appears on the signal generator's front-panel display.
Analog Commands
Amplitude Subsystem ([SOURce])

The two paths for amplitude modulation can be simultaneously enabled. Refer to “:AM[1]|2...” on page 143 for more information.

Example
:AM1:STAT ON
The preceding example turns on AM modulation for AM path 1.
*RST
0
Key Entry AM Off On

:AM[1]|2:TYPE
Supported All with Option UNT
[:SOURce]:AM[1]|2:TYPE LINear|EXPonential
[:SOURce]:AM[1]|2:TYPE?
This command sets the AM type to linear or exponential AM.
LINear This choice selects linear AM type with depth values in units of percent/volt.
EXPonential This choice selects exponential AM type with depth values in units of dB/volt.

Example
:AM2:TYPE EXP
The preceding example selects exponential type depth values for AM path 2.
*RST LIN
Key Entry AM Type LIN EXP

:AM[1]|2[:DEPTH]:EXPonential
Supported All with Option UNT
[:SOURce]:AM[1]|2[:DEPTH]:EXponential <val>
[:SOURce]:AM[1]|2[:DEPTH]:EXponential?
This commands sets the AM depth in dB/volt units. EXponential must be the current AM type for this command to have any affect. Refer to :AM[1]|2:TYPE for setting the AM type.

Example
:AM2:EXP 20
The preceding example sets the exponential depth to 20 dB for AM path 2.
*RST +4.00000000E+001
Range 0.00–40.00DB
Key Entry AM Depth
Analog Commands
Amplitude Subsystem ([SOURce])

:AM[1]|2:[DEPTh]:[LINear]

Supported All with Option UNT

[:SOURce]:AM[1]|2:[DEPTh]:[LINear] <val>|UP|DOWN
[:SOURce]:AM[1]|2:[DEPTh]:[LINear]?

This command sets the AM depth in percent/volt units. The command, used with the UP|DOWN parameters, will change the depth by a user-defined step value. Refer to the :AM[:DEPTh]:STEP[:INCRement] command on page 153 for setting the value associated with the UP and DOWN choices.

LINear must be the current AM type for this command to have any affect. Refer to “:AM[1]|2:TYPE” on page 151 for setting the AM measurement type. When the depth values are coupled, a change made to one path is applied to both. For AM depth value coupling, refer to the command “:AM[1]|2:[DEPTh]:[LINear]:TRACk” on page 152.

Example

:AM2 20

The preceding example sets the AM path 2 linear depth to 20%.

*RST +1.00000000E-001

Range 0.0–100PCT

Key Entry AM Depth

:AM[1]|2:[DEPTh]:[LINear]:TRACk

Supported All with Option UNT

[:SOURce]:AM[1]|2:[DEPTh]:[LINear]:TRACk ON|OFF|1|0
[:SOURce]:AM[1]|2:[DEPTh]:[LINear]:TRACk?

This command enables or disables AM depth value coupling between AM paths 1 and 2. When the depth values are coupled, a change made to one path is applied to both. LINear must be the AM type for this command to have any affect. Refer to “:AM[1]|2:TYPE” on page 151 for setting the AM type.

ON (1) This choice will link the depth value of AM[1] with AM2; AM2 will assume the AM[1] depth value. For example, if AM[1] depth is set to 15% and AM2 is set to 11%, enabling the depth tracking will cause the AM2 depth value to change to 15%. This applies regardless of the path (AM[1] or AM2) selected in this command.

OFF (0) This choice disables coupling and both paths will have independent depth values.

Example

:AM1:TRAC ON

The preceding example enables AM depth coupling between AM path 1 and AM path 2.

*RST 0

Key Entry AM Depth Couple Off On
Analog Commands

Frequency Modulation Subsystem ([SOURce])

:AM[:DEPTh]:STEP[:INCRement]

Supported: All with Option UNT
[:SOURce]:AM[:DEPTh]:STEP[:INCRement] <val>|MAXimum|MINimum|DEFault
[:SOURce]:AM[:DEPTh]:STEP[:INCRement]?

This command sets the linear depth step value in percent/volt units.
The step value set by this command is used with the UP and DOWN choices for the
The setting enabled by this command is not affected by a signal generator power-on, preset, or *RST command.

Example
:AM:STEP 10
The preceding example sets the step value for AM depth to 10%.

Range: 0.1–100

Key Entry: Incr Set

Frequency Modulation Subsystem ([SOURce])

:FM[1]|2...

Supported: E8257D and E8267D
[:SOURce]:FM[1]|2...

This prefix enables the selection of the FM path and is associated with all SCPI commands in this subsystem. The two paths are equivalent to the FM Path 1 2 softkey.

FM1: FM Path 1 2 with 1 selected
FM2: FM Path 1 2 with 2 selected

When just FM is shown in a command, this means the command applies to path one only.

Each path is set up separately. When a SCPI command uses FM1, only path one is affected. Consequently, when FM2 is selected, only path two is set up. However, the deviation of the signals for the two paths can be coupled.

Deviation coupling links the deviation value of FM1 to FM2. Changing the deviation value for one path changes it for the other. These two paths can be on at the same time provided the following conditions have been met:

• dual–sine or swept–sine is not the selection for the waveform type
• each path uses a different source (Internal 1, Internal 2, Ext1, or Ext2)
• FM2 must be set to a deviation less than FM1
Analog Commands
Frequency Modulation Subsystem [:SOURce]

:FM[:INTernal][:FREQuency]:STEP[:INCRement]

Supported All with Option UNT

[:SOURce]:FM[:INTernal][:FREQuency]:STEP[:INCRement]<num>|MAXimum|MINimum|DEFault

[:SOURce]:FM[:INTernal][:FREQuency]:STEP[:INCRement]?

This command sets the step value for the internal frequency modulation.
The step value set by this command is used with the UP and DOWN choices for the command
The setting enabled by this command is not affected by a signal generator power-on, preset, or *RST command.

Example

:FM:INT:FREQ:STEP 1E5
The preceding example sets the step value to .1 MHz.

Range 0.5–1E6

Supported All with Option UNT

This command sets the coupling type for the selected external input. The command does not change the active source or switch modulation on or off. The modulating signal may be the sum of several signals, from either internal or external sources.

AC This choice will pass only ac signal components.

DC This choice will pass both ac and dc signal components.

Example

:FM1:EXT1:COUP AC
The preceding example sets the coupling for FM path 1, external source 1 to AC.

*RST DC

Key Entry Ext Coupling DC AC

Supported All with Option UNT

This command sets the impedance for the external input.
Example

:FM1:EXT2:IMP 600

The preceding example sets the FM path 1, external 1 source impedance to 600 ohms.

*RST +5.00000000E+001

Key Entry Ext Impedance 50 Ohm 600 Ohm

:FM1|2:INTernal[1]:FREQuency:ALTernate

Supported All with Option UNT

[:SOURce]:FM[1]|2:INTernal[1]:FREQuency:ALTernate <val><units>

[:SOURce]:FM[1]|2:INTernal[1]:FREQuency:ALTernate?

This command sets the internal FM rate of the alternate signal. The alternate signal frequency is the second tone of a dual–sine or the stop frequency of a swept–sine waveform.

Example

:FM1:INT:FREQ:ALT 20KHZ

The preceding example sets the FM tone 2 rate for FM path 1, FM source 1, to 20 kHz.

*RST +4.00000000E+002

Range dual–sine: 0.5HZ–100kHZ swept–sine: 0.5HZ–100kHZ

Key Entry FM Tone 2 Rate FM Stop Rate

Supported All with Option UNT

[:SOURce]:FM[1]|2:INTernal[1]:FREQuency:ALTernate:AMPLitude:PERCent <val><units>

[:SOURce]:FM[1]|2:INTernal[1]:FREQuency:ALTernate:AMPLitude:PERCent?

This command sets the amplitude of the second tone for a dual–sine waveform as a percentage of the total amplitude. For example, if the second tone makes up 30% of the total amplitude, then the first tone is 70% of the total amplitude. Refer to "*:FM[1]|2:INTernal[1]|2:FUNCtion:SHAPe" on page 158 for the waveform selection.

Example

The preceding example sets the amplitude for FM tone 2, FM path 1, FM internal source 1 to 20% of the total amplitude.

*RST +5.00000000E+001

Range 0–100PCT

Key Entry FM Tone 2 Amp1 Percent Of Peak
Analog Commands
Frequency Modulation Subsystem [:SOURce]

Supported All with Option UNT

[:SOURce]:FM[1]|2:INTernal[1]:SWEep:RATE <val><units>

This command sets the sweep rate for the swept-sine waveform. The minimum resolution is 0.5 hertz. Refer to "*FM[1]|2:INTernal[1]|2:FUNCtion:SHAPe" on page 158 for the waveform selection.

Example

:FM1:INT:SWE:RATE 20KHZ

The preceding example sets the sweep rate for the swept-sine waveform to 20 kilohertz.

*RST

Range 0.5HZ–100kHZ

Key Entry FM Sweep Rate

Supported All with Option UNT

[:SOURce]:FM[1]|2:INTernal[1]:SWEep:TRIGger BUS|IMMEDIATE|EXTERNAL|KEY

[:SOURce]:FM[1]|2:INTernal[1]:SWEep:TRIGger?

BUS This choice enables GPIB triggering using the *TRG or GET command or LAN triggering using the *TRG command.

IMMEDIATE This choice enables immediate triggering of the sweep event. This choice is equivalent to pressing the **Free Run** softkey.

EXTERNAL This choice enables the triggering of a sweep event by an externally applied signal at the TRIGGER IN connector.

KEY Enables triggering through front panel interaction (the **Trigger** hardkey).

*RST IMM

Example

:FM1:INT:SWE:TRIG BUS

The preceding example selects the bus as the trigger source for FM path 1.

Key Entry **Bus** **Free Run** **Ext** **Trigger Key**
Analog Commands

Frequency Modulation Subsystem ([SOURce])

Supported All with Option UNT

This command sets the internal FM rate using the <val><units> variable, or changes the FM rate by a user-defined up/down step value. Refer to the :FM:INTernal:FREQuency:STEP[:INCRement] command on page 154 for setting the value associated with the UP and DOWN choices.

The command changes:
- the FM rate of the first tone of a dual-sine waveform
- the starting FM rate for a swept-sine waveform
- the FM rate for all other waveforms

Example

:FM2:INT:FREQ 40KHZ

The preceding example sets the modulation rate for FM path 2 to 40 kHz.

*RST +4.00000000E+002

Range Dual-Sine & Sine: 0.5HZ–1MHZ
Swept-Sine: 1HZ–1MHZ
All Other Waveforms: 0.5HZ–100kHZ

Key Entry

<table>
<thead>
<tr>
<th>FM Tone 1 Rate</th>
<th>FM Start Rate</th>
<th>FM Rate</th>
</tr>
</thead>
</table>

Supported All with Option UNT

This command selects a gaussian or uniform noise type as the modulation. Refer to "*FM[1]|2:INTernal[1]|2:FUNCTION:SHAPe" on page 158 for the waveform selection.

Example

:FM2:INT2:FUNC:NOIS UNIF

The preceding example selects a uniform noise waveform as the modulation for FM path 2 and FM source 2.

*RST UNIF

Key Entry Gaussian Uniform
Analog Commands
Frequency Modulation Subsystem [:SOURce]

Supported All with Option UNT

This command selects a positive or negative ramp as the internal modulating waveform. Refer to **:FM[1]|2:INTernal[1]|2:FUNCtion:SHAPe** for the waveform selection.

Example

:FM2:INT2:FUNC:RAMP POS

The preceding example selects a positive sloped ramp as the internal modulating waveform.

RST POS

Key Entry Positive Negative

Supported All with Option UNT

This command selects the FM waveform type. The INTernal2 source selection does not support the dual–sine or Sweep–Sine waveform types.

Example

:FM2:INT1:FUNC:SHAP SQU

The preceding example selects a square wave as the internal modulating waveform.

RST SINE

Key Entry Sine Triangle Square Ramp Noise Dual-Sine Swept-Sine

:**FM[1] | 2:SOURce**

Supported All with Option UNT

[:SOURce]:FM[1] | 2:SOURce?

This command selects the FM source.

INT This choice selects internal source 1 or 2 to provide an ac-coupled signal.

EXT This choice selects the EXT 1 INPUT or the EXT 2 INPUT connector to provide an externally applied signal that can be ac- or dc-coupled. The externally applied, ac-coupled input signal is tested for a voltage level and an annunciator, on the signal generator’s front-panel display, will indicate a high or low condition if that voltage is > ±3% of 1 Vp.
Analog Commands

Frequency Modulation Subsystem (:SOURce)

Example

:FM2:SOUR INT2

The preceding example selects internal source 2 as the FM source for FM path 2.

*RST

Key Entry Internal 1 Internal 2 Ext1 Ext2

Supported All with Option UNT

[:SOURce]:FM[1]|2:STATe ON|OFF|1|0

[:SOURce]:FM[1]|2:STATe?

This command enables or disables the selected FM path.

The RF carrier is modulated when you set the signal generator’s modulation state to ON, see “:MODulation[:STATe]” on page 63 for more information.

Whenever frequency modulation is enabled, the FM annunciator appears on the signal generator’s front-panel display.

The two paths for frequency modulation can be simultaneously enabled. Refer to “:FM[1]|2...” on page 153 for more information.

Example

:FM2:STAT ON

The preceding example enables FM path 2.

*RST

0

Key Entry FM Off On

:FM[1]|2[:DEViation]

Supported All with Option UNT

[:SOURce]:FM[1]|2[:DEViation] <val><units>

[:SOURce]:FM[1]|2[:DEViation]?

This command sets the FM deviation for the selected FM path.

If deviation tracking is ON, a change to the deviation value on one path will apply to both. Refer to “:FM[1]|2[:DEViation]:TRACk” on page 160 for more information on setting the deviation tracking.

Example

:FM2 1MHZ

The preceding example sets the frequency deviation to 1 megahertz.
Frequency Modulation Subsystem ([SOURce])

Analog Commands

Key Entry

FM DEV

<table>
<thead>
<tr>
<th>Command</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>:FM[1]</td>
<td>2[:DEViation]:TRACk</td>
</tr>
</tbody>
</table>

Supported

All with Option UNT

[:SOURce]:FM[1]|2[:DEViation]:TRACk

ON (1) This choice will link the deviation value of FM1 with FM2; FM2 will assume the FM1 deviation value.

OFF (0) This choice disables the coupling and both paths will have independent deviation values.

This command uses exact match tracking, not offset tracking.

Example

:FM2:TRAC 0

The preceding example disables deviation coupling.

Range

E8267D Only

<table>
<thead>
<tr>
<th>Frequency</th>
<th>Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>250KHZ–250MHZ</td>
<td>0–2MHZ</td>
</tr>
<tr>
<td>> 250–500MHZ</td>
<td>0–1MHZ</td>
</tr>
<tr>
<td>> 0.5–1GHz</td>
<td>0–2MHZ</td>
</tr>
<tr>
<td>> 1–2GHz</td>
<td>0–4MHZ</td>
</tr>
<tr>
<td>> 2–3.2GHz</td>
<td>0–8MHZ</td>
</tr>
<tr>
<td>> 3.2–10GHz</td>
<td>0–16MHZ</td>
</tr>
<tr>
<td>> 10–20GHz</td>
<td>0–32MHZ</td>
</tr>
<tr>
<td>> 20–28.5GHz</td>
<td>0–48MHZ</td>
</tr>
<tr>
<td>> 20–40GHz</td>
<td>0–64MHZ</td>
</tr>
<tr>
<td>> 28.5–44GHz</td>
<td>0–80MHZ</td>
</tr>
<tr>
<td>> 40–67GHz</td>
<td>0–128MHZ</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Frequency</th>
<th>Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>> 67–100GHz</td>
<td>0–250MHZ</td>
</tr>
<tr>
<td>> 100–200GHz</td>
<td>0–500MHZ</td>
</tr>
<tr>
<td>> 200–400GHz</td>
<td>0–1GHz</td>
</tr>
<tr>
<td>> 400–800GHz</td>
<td>0–2GHz</td>
</tr>
<tr>
<td>> 800–1600GHz</td>
<td>0–4GHz</td>
</tr>
<tr>
<td>> 1600–3200GHz</td>
<td>0–8GHz</td>
</tr>
<tr>
<td>> 3200–6400GHz</td>
<td>0–16GHz</td>
</tr>
<tr>
<td>> 6400–12800GHz</td>
<td>0–32GHz</td>
</tr>
<tr>
<td>> 12800–25600GHz</td>
<td>0–64GHz</td>
</tr>
<tr>
<td>> 25600–51200GHz</td>
<td>0–128GHz</td>
</tr>
<tr>
<td>> 51200–102400GHz</td>
<td>0–256GHz</td>
</tr>
<tr>
<td>> 102400–204800GHz</td>
<td>0–512GHz</td>
</tr>
<tr>
<td>> 204800–409600GHz</td>
<td>0–1024GHz</td>
</tr>
<tr>
<td>> 409600–819200GHz</td>
<td>0–2048GHz</td>
</tr>
<tr>
<td>> 819200–1638400GHz</td>
<td>0–4096GHz</td>
</tr>
<tr>
<td>> 1638400–3276800GHz</td>
<td>0–8192GHz</td>
</tr>
<tr>
<td>> 3276800–6553600GHz</td>
<td>0–16384GHz</td>
</tr>
<tr>
<td>> 6553600–13107200GHz</td>
<td>0–32768GHz</td>
</tr>
<tr>
<td>> 13107200–26214400GHz</td>
<td>0–65536GHz</td>
</tr>
<tr>
<td>> 26214400–52428800GHz</td>
<td>0–131072GHz</td>
</tr>
<tr>
<td>> 52428800–104857600GHz</td>
<td>0–262144GHz</td>
</tr>
<tr>
<td>> 104857600–209715200GHz</td>
<td>0–524288GHz</td>
</tr>
<tr>
<td>> 209715200–419430400GHz</td>
<td>0–1048576GHz</td>
</tr>
<tr>
<td>> 419430400–838860800GHz</td>
<td>0–2097152GHz</td>
</tr>
<tr>
<td>> 838860800–1677721600GHz</td>
<td>0–4194304GHz</td>
</tr>
<tr>
<td>> 1677721600–3355443200GHz</td>
<td>0–8388608GHz</td>
</tr>
<tr>
<td>> 3355443200–6710886400GHz</td>
<td>0–16777216GHz</td>
</tr>
<tr>
<td>> 6710886400–13421772800GHz</td>
<td>0–33554432GHz</td>
</tr>
<tr>
<td>> 13421772800–26843545600GHz</td>
<td>0–67108864GHz</td>
</tr>
<tr>
<td>> 26843545600–53687091200GHz</td>
<td>0–134217728GHz</td>
</tr>
<tr>
<td>> 53687091200–107374182400GHz</td>
<td>0–268435456GHz</td>
</tr>
<tr>
<td>> 107374182400–214748364800GHz</td>
<td>0–536870912GHz</td>
</tr>
<tr>
<td>> 214748364800–429496729600GHz</td>
<td>0–1073741824GHz</td>
</tr>
</tbody>
</table>

This command uses exact match tracking, not offset tracking.

Example

:FM2:TRAC 0

The preceding example disables deviation coupling.

RST

0

Key Entry

FM Dev Couple Off On

0
Low Frequency Output Subsystem ([:SOURce]:LFOutput)

`:LOutput:AMPLitude`

Supported All with Option UNT

[:SOURce]:LFOutput:AMPLitude <val><units>

[:SOURce]:LFOutput:AMPLitude?

This command sets the amplitude of the signal at the LF OUTPUT connector.

Example

`:LFO:AMPL 2.1VP`

The preceding example sets the peak amplitude to 2.1 volts.

*RST 0.00

Range 0.000VP–3.5VP

Key Entry LF Out Amplitude

Supported All with Option UNT

[:SOURce]:LFOutput:FUNCTION[1]|2:FREQuency <val><units>

[:SOURce]:LFOutput:FUNCTION[1]|2:FREQuency?

This command sets the frequency of function generator 1 or 2. The command sets:

- the frequency of the first tone of a dual–sine waveform
- the start frequency for a swept–sine waveform
- the frequency for all other waveform types

Refer to “:LFOutput:FUNCTION[1]|2:SHApe” on page 162 for selecting the waveform type.

Example

`:LFO:FUNC1:FREQ .1MHZ`

The preceding example sets the frequency for function generator 1 to 100 kHz.

*RST +4.00000000E+002

Range *Sine and Dual–Sine: 0.5Hz–1MHZ

Range *Swept–Sine: 1Hz–1MHZ

Range *All Other Waveforms: 0.5Hz–100KHZ

Key Entry LF Out Tone 1 Freq LF Out Start Freq LF Out Freq
Analog Commands
Low Frequency Output Subsystem [:SOURce]:LFOutput

[:SOURce]:LFOutput:FUNCTION[1]:FREQuency:ALTernate

Supported All with Option UNT

[:SOURce]:LFOutput:FUNCTION[1]:FREQuency:ALTernate <val><units>
[:SOURce]:LFOutput:FUNCTION[1]:FREQuency:ALTernate?

This command sets the frequency for the alternate LF output signal. The alternate frequency is the second tone of a dual-sine or the stop frequency of a swept-sine waveform.

Refer to "[:SOURce]:LFOutput:FUNCTION[1]|2:SHAPe" on page 162 for more information on selecting the waveform type.

Example
:LFO:FUNC1:FREQ:ALT 20KHZ

The preceding example sets the alternate frequency to 20 kHz.

*RST +4.00000000E+002

Range Dual-Sine: 0.1Hz–100kHz Swept-Sine: 0.1Hz–100kHz

Key Entry LF Out Tone 2 Freq LF Out Stop Freq

[:SOURce]:LFOutput:FUNCTION[1]:FREQuency:ALTernate:AMPLitude:PERCent

Supported All with Option UNT

[:SOURce]:LFOutput:FUNCTION[1]:FREQuency:ALTernate:AMPLitude:PERCent <val><units>
[:SOURce]:LFOutput:FUNCTION[1]:FREQuency:ALTernate:AMPLitude:PERCent?

This command sets the amplitude of the second tone for a dual-sine waveform as a percentage of the total LF output amplitude. For example, if the second tone makes up 30% of the total amplitude, then the first tone is 70% of the total amplitude. Refer to "[:SOURce]:LFOutput:FUNCTION[1]|2:SHAPe" on page 162 for selecting the waveform type.

Example
:LFO:FUNC1:FREQ:ALT:AMPL:PERC 50

The preceding example sets the alternate frequency to 50% of the total output amplitude.

*RST +5.00000000E+001

Range 0–100PCT

Key Entry LF Out Tone 2 Ampl % of Peak

[:SOURce]:LFOutput:FUNCTION[1]|2:SHAPe

Supported All with Option UNT

[:SOURce]:LFOutput:FUNCTION[1]|2:SHAPe SINE|DUALsine|SWEPtsine|TRIangle|SQUare|RAMP|PULSe|NOISe|DC
[:SOURce]:LFOutput:FUNCTION[1]|2:SHAPe?
Analog Commands

Low Frequency Output Subsystem (:SOURce:LFOutput)

This command selects the waveform type. Function Generator 1 must be the source for the dual–sine or the swept–sine waveform. Refer to “:LFOutput:SOURce” on page 165.

Example

:LFO:FUNC2:SHAP TRI

The preceding example selects a triangle wave for the Function Generator 2 LF output.

*SRT SINE

<table>
<thead>
<tr>
<th>Key Entry</th>
<th>Sine</th>
<th>Dual-Sine</th>
<th>Swept-Sine</th>
<th>Triangle</th>
<th>Square</th>
<th>Ramp</th>
<th>Pulse</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Noise</td>
<td></td>
<td>DC</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

:LFOutput:FUNCTION[:1]|2:SHAPE:NOISE

Supported All with Option UNT

[:SOURce]:LFOutput:FUNCTION[:1]|2:SHAPE:NOISE UNIFORM|GAUSSIAN

[:SOURce]:LFOutput:FUNCTION[:1]|2:SHAPE:NOISE?

This command selects a gaussian or uniform noise modulation for the LF output. Refer to “:LFOutput:FUNCTION[:1]|2:SHAPE” on page 162 for selecting the waveform type.

Example

:LFO:FUNC1:SHAP:NOIS GAUS

The preceding example selects a gaussian noise modulation for the Function Generator 1 LF output.

*RST UNIF

<table>
<thead>
<tr>
<th>Key Entry</th>
<th>Uniform</th>
<th>Gaussian</th>
</tr>
</thead>
</table>

:LFOutput:FUNCTION[:1]|2:SHAPE:RAMP

Supported All with Option UNT

[:SOURce]:LFOutput:FUNCTION[:1]|2SHAPE:RAMP POSITIVE|NEGATIVE

[:SOURce]:LFOutput:FUNCTION[:1]|2:SHAPE:RAMP?

This command selects a positive or negative slope for the ramp modulation on the LF output. Refer to “:LFOutput:FUNCTION[:1]|2:SHAPE” on page 162 for selecting the waveform type.

Example

:LFO:FUNC1:SHAP:RAMP POS

The preceding example selects a positive ramp slope modulation for the Function Generator 1 LF output.

*RST POS

<table>
<thead>
<tr>
<th>Key Entry</th>
<th>Positive</th>
<th>Negative</th>
</tr>
</thead>
</table>
Analog Commands
Low Frequency Output Subsystem [:SOURce]:LFOutput

[:SOURce]:LFOutput:FUNCtion[1]:SWEep:RATE

Supported All with Option UNT

[:SOURce]:LFOutput:FUNCtion[1]:SWEep:RATE <val><units>
[:SOURce]:LFOutput:FUNCtion[1]:SWEep:RATE?

This command sets the sweep rate for an internally generated swept–sine signal.

Example

:LFO:FUNC1:SWE:RATE 1E5

The preceding example sets the sweep rate for the swept–sine waveform to 100 kHz.

*RST +4.00000000E+002
Range 0.5HZ–100kHZ
Key Entry LF Out Sweep Rate

[:SOURce]:LFOutput:FUNCtion[1]:SWEep:TRIGger

Supported All with Option UNT

[:SOURce]:LFOutput:FUNCtion[1]:SWEep:TRIGger BUS|IMMediate|EXTernal|KEY
[:SOURce]:LFOutput:FUNCtion[1]:SWEep:TRIGger?

This command sets the trigger source for the internally generated swept–sine signal at the LF output.

BUS This choice enables GPIB triggering using the *TRG or GET command or LAN and RS-232 triggering using the *TRG command.
IMMediate This choice enables immediate triggering of the sweep event.
EXTernal This choice enables the triggering of a sweep event by an externally applied signal at the TRIGGER IN connector.
KEY This choice enables triggering through front panel interaction by pressing the Trigger hardkey.

Refer to "[:SOURce]:LFOutput:FUNCtion[1]|2:SHAPe" on page 162 for selecting the waveform type.

Example

:LFO:FUNC1:SWE:TRIG EXT

The preceding example sets an external trigger as the trigger for the swept–sine signal.

*RST Free Run
Key Entry Bus Free Run Ext Trigger Key
:LFOutput:SOURce

Supported
All with Option UNT

[:SOURce]:LFOutput:SOURce?

This command selects the source for the LF output.

INT
This choice enables you to output a signal where the frequency and shape of the signal is set by internal source 1 or 2. For example, if the internal source is currently assigned to an AM path configuration and AM is turned on, the signal output at the LF OUTPUT connector will have the frequency and shape of the amplitude modulating signal.

FUNCTION
This choice enables the selection of an internal function generator.

Example
:LFO:SOUR FUNC1
The preceding example selects Function Generator 1 as the active LF source.

*RST INT

Key Entry
LF Out Off On

Internal 1 Monitor Function Generator 1
Internal 2 Monitor Function Generator 2

:LFOutput:STATe

Supported
All with Option UNT

[:SOURce]:LFOutput:STATe ON|OFF|1|0

[:SOURce]:LFOutput:STATe?

This command enables or disables the low frequency output.

Example
:LFO:STAT ON
The preceding example enables the source.

*RST 0

Key Entry
LF Out Off On
Phase Modulation Subsystem ([SOURce])

:PM[1]|2...

Supported

E8257D and E8267D

This prefix enables the selection of the ΦM path and associated with all SCPI commands in this subsystem. The two paths are equivalent to the ΦM Path 1 2 softkey.

PM1 ΦM Path 12 with 1 selected

PM2 ΦM Path 12 with 2 selected

When just PM is shown in a command, this means the command applies to path 1 only.

Each path is set up separately. When a SCPI command uses PM1, only path one is affected. Consequently, when PM2 is selected, only path two is set up. However, the deviation of the signals for the two paths can be coupled.

Deviation coupling links the deviation value of PM1 to PM2. Changing the deviation value for one path will change it for the other path. These two paths can be on at the same time provided the following conditions have been met:

- dual–sine or Sweep–Sine is not the selection for the waveform type
- each path uses a different source (Internal 1, Internal 2, Ext1, or Ext2)
- PM2 must be set to a deviation less than or equal to PM1

:PM:INTernal:FREQuency:STEP[:INCRement]

Supported

All with Option UNT

This command sets the step value of the phase modulation internal frequency.

The step value set by this command is used with the UP and DOWN choices for the :PM[1]|2:INTernal[1]:FREQuency command on page 168.

The setting enabled by this command is not affected by a signal generator power-on, preset, or *RST command.

Example

:PM:INT:FREQ:STEP 1E5

The preceding example sets the step value to 100 kHz.

Range

0.5–1E6

Key Entry

Incr Set
Analog Commands

Phase Modulation Subsystem ([SOURce])

:PM[1]|2:BANDwidth|BWIDth

Supported All with Option UNT

[[:SOURce]:PM[1]|2:BANDwidth|BWIDth NORMal|HIGH
[[:SOURce]:PM[1]|2:BANDwidth|BWIDth?

This command selects normal phase modulation or high bandwidth phase modulation. The command can use either the BANDwidth or BWIDth paths.

Example

:PM1:BAND NORM

The preceding example selects normal phase modulation for ΦM path 1.

*RST NORM

Key Entry FM ΦM Normal High BW

Supported All with Option UNT

This command sets the coupling for the phase modulation source at the selected external input connector.

AC This choice will only pass ac signal components.

DC This choice will pass both ac and dc signal components.

This command does not change the active source or switch modulation on or off. The modulating signal may be the sum of several signals, from either internal or external sources.

Example

:PM1:EXT:COUP AC

The preceding example selects AC coupling at the external input for ΦM path 1.

*RST DC

Key Entry Ext Coupling DC AC
Analog Commands
Phase Modulation Subsystem ([SOURce])

Supported All with Option UNT

[:SOURce]:PM[1]|2:EXTernal[1]|2:IMPedance <50|600>

This command selects 50 ohms or 600 ohms as the input impedance for the external input signal.

Example
:PM1:EXT2:IMP 600
The preceding example sets the \(\Phi M \) path 1, external 2 source impedance to 600 ohms.

*RST +5.00000000E+001

Key Entry Ext Impedance 50 Ohm 600 Ohm

:PM[1]|2:INTernal[1]:FREQuency

Supported All with Option UNT

This command sets the internal modulation frequency rate. The command sets:

- the frequency of the first tone of a dual–sine waveform
- the start frequency for a swept–sine waveform
- the frequency rate for all other waveforms

Refer to ":*LFOutput:FUNCtion[1]|2:SHAPe" on page 162 for selecting the waveform type.

Example
:PM1:INT1:FREQ 20KHZ
The preceding example sets the \(\Phi M \) path 1, internal source 1 frequency to 20 kHz.

*RST +4.00000000E+002

Range Dual–Sine: 0.1HZ–100KHZ Swept–Sine: 0.1HZ–100KHZ
All Other Waveforms: 0.1HZ–20KHZ

Key Entry \(\Phi M \)Tone 1 Rate \(\Phi M \) Start Rate \(\Phi M \) Rate

Supported All with Option UNT

This command sets the frequency rate for the alternate signal. The alternate frequency is the second tone of a dual–sine or the stop frequency of a swept–sine waveform.

Refer to ":*PM[1]|2:INTernal[1]:FUNCtion:SHAPe" on page 170 for the waveform selection.
Example
:PM1:INT1:FREQ:ALT 50KHZ

The preceding example sets the alternate frequency rate for the ΦM tone 2, ΦM path 1, source 1 to 50 kHz.

*RST +4.00000000E+002

Range Dual-Sine: 0.1HZ–100KHZ Swept-Sine: 0.1HZ–100KHZ
Key Entry ΦM Stop Rate ΦM Tone 2 Rate

Supported All with Option UNT

This command selects a gaussian or uniform noise modulation for the selected path(s).

Example
:PM1:INT1:FUNC:NOIS GAUS

The preceding example selects a gaussian noise modulation for ΦM path 1, source 1.

*RST UNIF
Key Entry Gaussian Uniform

Supported All with Option UNT

This command selects a positive or negative slope for the ramp modulating waveform.

Example
:PM1:INT2:FUNC:RAMP POS

The preceding example selects a positive ramp slope for modulating the signal on ΦM path 1, internal source 2.

*RST POS
Key Entry Positive Negative
Analog Commands
Phase Modulation Subsystem [:SOURce]

[:SOURce]:PM[1]|2:INTernal[1]:FREQuency:ALTernate:AMPLitude:PERCent

Supported All with Option UNT

[:SOURce]:PM[1]|2:INTernal[1]:FREQuency:ALTernate:AMPLitude:PERCent <val>

This command sets the amplitude of the second tone for the dual-sine waveform as a percentage of the total amplitude. For example, if the second tone makes up 30% of the total amplitude, then the first tone is 70% of the total amplitude. Refer to “:PM[1]|2:INTernal[1]:FUNCTION:SHAPe” on page 170 for the waveform selection.

Example

The preceding example sets the alternate tone amplitude to 40% of the total amplitude.

*RST +5.00000000E+001

Range 0–100PCT

Key Entry ΦM Tone 2 Ampl Percent of Peak

[:SOURce]:PM[1]|2:INTernal[1]:FUNCTION:SHAPe

Supported All with Option UNT

[:SOURce]:PM[1]|2:INTernal[1]:FUNCTION:SHAPe SINE|TRIangle|SQUare|RAMP|NOISE|DUALsine|SWEPtsine

This command sets the phase modulation waveform type for internal source 1.

Example

:PM1:INT:FUNC:SHAPE RAMP

The preceding example selects a ramp modulation for ΦM path 1, source 1.

*RST SINE

Key Entry Sine Triangle Square Ramp Noise Dual-Sine Swept-Sine
Phase Modulation Subsystem ([SOURce])

Supported All with Option UNT

[:SOURce]:PM[1]|2:INTernal2:FUNCTION:SHAPe SINE|TRIangle|SQUare|RAMP|NOISe

This command sets the phase modulation waveform type for internal source 2.

Example

:PM1:INT2:FUNC:SHAPE RAMP

The preceding example selects a ramp modulation for \(\Phi \)M path 1, source 2.

*RST

Key Entry Sine Triangle Square Ramp Noise

:PM[1]|2:INTernal[1]:SWEep:RATE

Supported All with Option UNT

[:SOURce]:PM[1]|2:INTernal[1]:SWEep:RATE <val><units>

This command sets the sweep rate for a phase-modulated, swept-sine waveform. Refer to “PM[1]|2:INTernal[1]:FUNCTION:SHAPe” on page 170 for the waveform selection.

Example

:PM1:INT:SWE:RATE 30KHZ

The preceding example sets the sweep rate to 30 kHz.

*RST

Range 0.5HZ–100kHz

Key Entry \(\Phi \)M Sweep Rate

:PM[1]|2:INTernal[1]:SWEep:TRIGger

Supported All with Option UNT

[:SOURce]:PM[1]|2:INTernal[1]:SWEep:TRIGger BUS|IMMediate|EXTernal|KEY

This command sets the trigger source for the phase-modulated, swept-sine waveform.

BUS This choice enables GPIB triggering using the *TRG or GET command or LAN and RS-232 triggering using the *TRG command.

IMMediate This choice enables immediate triggering of the sweep event. This choice is equivalent to pressing the **Free Run** softkey.

EXTernal This choice enables the triggering of a sweep event by an externally applied signal at the TRIGGER IN connector.

KEY This choice enables triggering through front panel interaction by pressing the
Analog Commands
Phase Modulation Subsystem [:SOURce]

Trigger hardkey.

Refer to "PM[1]|2:INTernal[1]:FUNCtion:SHApe" on page 170 for the waveform selection.

Example
:PM2:INT:SWE:TRIG BUS

The preceding example selects a BUS trigger as the triggering for the internal source 1 swept-sine waveform on ΦM path 2.

*RST IMM

Key Entry Bus Free Run Ext Trigger Key

:PM[1]|2:SOURce

Supported All with Option UNT

[:SOURce]:PM[1] 2:SOURce?

This command selects the source used to generate the phase modulation.

INT This choice selects internal source 1 or internal source 2 to provide an ac-coupled signal.

EXT This choice selects the EXT 1 INPUT or the EXT 2 INPUT connector to provide an externally applied signal that can be ac- or dc- coupled.

The externally applied, ac-coupled input signal is tested for a voltage level and an annunciator, on the signal generator’s front-panel display, will indicate a high or low condition if that voltage is > ±3% of 1 Vp.

Example
:PM2:SOUR EXT1

The preceding example selects an external signal on the EXT 1 INPUT connector as the source for ΦM path 2 modulation.

*RST INT

Key Entry Internal 1 Internal 2 Ext1 Ext2

:PM[1]|2:STATe

Supported All with Option UNT

[:SOURce]:PM[1] 2:STATe ON|OFF|1|0
[:SOURce]:PM[1] 2:STATe?

This command enables or disables the phase modulation for the selected path. The RF carrier is modulated when you set the signal generator’s modulation state to ON, see "MODulation[:STATE]" on page 63 for more information.

The ΦM annunciator appears on the signal generator’s front-panel display whenever phase modulation is enabled. The two paths for phase modulation can be simultaneously enabled. Refer to "PM[1]|2..." on page 166 for more information.
Analog Commands

Phase Modulation Subsystem [:SOURce]

Example

:PM2:STAT 1

The preceding example turns on ΦM path 2 phase modulation.

*RST

Key Entry ΦM Off On

:PM[1]|2[:DEViation]

Supported All with Option UNT

[:SOURce]:PM[1]|2[:DEViation] <val><units>|UP|DOWN

[:SOURce]:PM[1]|2[:DEViation]?

This command sets the deviation of the phase modulation. The variable <units> will accept RAD (radians), PIRAD (pi-radians), and DEG (degrees); however, the query will only return values in radians. If deviation tracking is active, a change to the deviation value on one path will apply to both.

The command, used with the UP|DOWN parameters, will change the deviation by a user-defined step value. Refer to the :PM[:DEViation]:STEP[:INCRement] command on page 174 for setting the value associated with the UP and DOWN choices.

Example

:PM1 135DEG

The preceding example sets the phase modulation to 135 degrees.

*RST +0.00000000E+000

Range

<table>
<thead>
<tr>
<th>Frequency</th>
<th>Normal Bandwidth</th>
<th>High Bandwidth</th>
</tr>
</thead>
<tbody>
<tr>
<td>250KHZ–250MHZ</td>
<td>0–20rad</td>
<td>0–2rad</td>
</tr>
<tr>
<td>> 250–500MHZ</td>
<td>0–10rad</td>
<td>0–1rad</td>
</tr>
<tr>
<td>> 0.5–1GHZ</td>
<td>0–20rad</td>
<td>0–2rad</td>
</tr>
<tr>
<td>> 1–2GHZ</td>
<td>0–40rad</td>
<td>0–4rad</td>
</tr>
<tr>
<td>> 2–3.2GHZ</td>
<td>0–80rad</td>
<td>0–8rad</td>
</tr>
<tr>
<td>> 3.2–10GHZ</td>
<td>0–160rad</td>
<td>0–16rad</td>
</tr>
<tr>
<td>> 10.0–20GHZ</td>
<td>0–320rad</td>
<td>0–32rad</td>
</tr>
<tr>
<td>> 20.0–28.5GHZ</td>
<td>0–480rad</td>
<td>0–48rad</td>
</tr>
<tr>
<td>> 20.0–40.0GHZ</td>
<td>0–640rad</td>
<td>0–64rad</td>
</tr>
<tr>
<td>> 28.5–44.0GHZ</td>
<td>0–800rad</td>
<td>0–80rad</td>
</tr>
<tr>
<td>>40–67.0GHZb</td>
<td>0–1280rad</td>
<td>0–128rad</td>
</tr>
</tbody>
</table>

Key Entry ΦM Dev

a.E8267D Only

b.Performance is not specified above 50 GHz
Analog Commands
Phase Modulation Subsystem ([SOURce])

:PM[1]|2[:DEViation]:TRACk

Supported All with Option UNT

[:SOURce]:PM[1]|2[:DEViation]:TRACk ON|OFF|1|0

This command enables or disables the deviation coupling between the PM paths 1 and 2.

ON (1) This choice will link the deviation value of PM1 with PM2; PM2 will assume the
PM[1] deviation value. For example, if PM1 deviation is set to 500 Hz and PM2 is
set to 2 kHZ, enabling the deviation tracking will cause the PM2 deviation value to
change to 500 Hz. This applies regardless of the path (PM1 or PM2) selected in
this command.

OFF (0) This choice disables the coupling and both paths will have independent deviation
values.

This command uses exact match tracking, not offset tracking.

Example
:PM1:TRAC OFF
The preceding example disables deviation coupling.

*RST 0

Key Entry ΦM Dev Couple Off On

:PM[:DEViation]:STEP[:INCRement]

Supported All with Option UNT

[:SOURce]:PM[:DEViation]:STEP[:INCRement]<val><units>|MAXimum|MINimum|DEFault
[:SOURce]:PM[:DEViation]:STEP[:INCRement]?

This command sets the phase modulation deviation step value.

The value set by this command is used with the UP and DOWN choices for the FM deviation
command. Refer to “:PM[1]|2[:DEViation]” on page 173 for more information.

The setting is not affected by a signal generator power-on, preset, or *RST command.

Example
:PM:STEP 20RAD
The preceding example sets the step value to 20 radians.

Range 0.001–1E3RAD
Pulse Modulation Subsystem ([SOURce])

[:PULM:EXTernal:POLarity NORMal:INVerted]

Supported All with Option UNU or UNW

[:SOURce]:PULM:EXTernal:POLarity NORMal|INVerted

This command selects the polarity of the TTL input signal at the GATE/PULSE/TRIGGER INPUT front panel connector. The signal generator can respond to either a normal (a TTL high) or an inverted (TTL low) signal.

Example

:PULM:EXT:POL NORM

The preceding example selects normal (TTL high) polarity.

*RST Normal

Key Entry Ext Polarity Normal Inverted

[:PULM:INTternal[1]:DELay]

Supported All with Option UNU or UNW

[:SOURce]:PULM:INTernal[1]:DELay <num><time_suffix>|UP|DOWN

[:SOURce]:PULM:INTernal[1]:DELay?

This command sets the pulse delay for the internally-generated pulse modulation using the variable <num>[<time_suffix>]. The command, used with the UP|DOWN parameters, will change the delay by a user-defined step value. Refer to the :PULM:INTernal[1]:DELay:STEP command on page 176 for setting the value associated with the UP and DOWN choices.

The optional variable <time_suffix> accepts nS (nanoseconds) to S (seconds).

The range value is dependent on the pulse period. Refer to “:PULM:INTernal[1]:PERiod” on page 177 for pulse period settings.

Example

:PULM:INT:DEL 200E-9

The preceding example sets the internal pulse delay to 200 nanoseconds.

*RST +0.00000000E+000

Range Internal Free Run: depends on pulse period and pulse width settings

Internal Triggered & Doublet: 70nS to (42 S - 20 nS - pulse width)

Key Entry Pulse Delay
Analog Commands
Pulse Modulation Subsystem [:SOURce]

:PULM:INTernal[1]:DELay:STEP

Supported
All with Option UNU or UNW

[:SOURce]:PULM:INTernal[1]:DELay:STEP <num><time_suffix>
[:SOURce]:PULM:INTernal[1]:DELay:STEP?

This command sets the step increment for the pulse delay.

The step value, set by this command, is used with the UP and DOWN choices in the
".:PULM:INTernal[1]:DELay" on page 175 command.

The step value set with this command is not affected by a signal generator power-on, preset, or *RST command.

Example
:PULM:INT:DEL:STEP 10NS
The preceding example sets the pulse delay step value to 10 nanoseconds.

Range
10nS to (pulse period – 20 nS)

:PULM:INTernal[1]:FREQuency

Supported
All with Option UNU or UNW

[:SOURce]:PULM:INTernal[1]:FREQuency <val><units>|UP|DOWN
[:SOURce]:PULM:INTernal[1]:FREQuency?

This command sets the pulse rate for the internally-generated square wave using the variable
<val><units>. The command, used with the UP|DOWN parameters, will change the frequency by a
user-defined step value. Refer to the :PULM:INTernal[1]:FREQuency:STEP command for setting the
value associated with the UP and DOWN choices.

This command is used when SQUare is the pulse modulation type. Refer to ".:PULM:SOURce" on
page 180 for the pulse modulation type selection.

Example
:PULM:INT:FREQ 1MHZ
The preceding example sets the square wave pulse rate to 1 megahertz.

RST
+4.00000000E+002

Range
0.1HZ–10MHZ

Key Entry
Pulse Rate
Analog Commands
Pulse Modulation Subsystem ([SOURce])

[:SOURce]:PULM:INTernal[1]:FREQuency:STEP

Supported
All with Option UNU or UNW

[:SOURce]:PULM:INTernal[1]:FREQuency:STEP[:INCRement] <frequency>
[:SOURce]:PULM:INTernal[1]:FREQuency:STEP[INCRement]?

This command sets the step value for the internally-generated square wave pulse rate.

This command is used when SQUare is the pulse modulation type. Refer to "[:SOURce]:PULM:SOURce" on page 180 for the pulse modulation type selection. The step value, set with this command, is used with the UP and DOWN choices in the :PULM:INTernal[1]:FREQuency command.

The step value set with this command is not affected by a power-on, preset, or *RST command.

Example

[:PULM:INT:FREQ:STEP MIN

The preceding example sets the step value for the square wave pulse rate to 0.1 Hz, the minimum rate.

Range
0.1HZ–10MHZ

[:SOURce]:PULM:INTernal[1]:PERiod

Supported
All with Option UNU or UNW

[:SOURce]:PULM:INTernal[1]:PERiod <val><units>|UP|DOWN
[:SOURce]:PULM:INTernal[1]:PERiod?

This command sets the pulse period for the internally-generated pulse modulation using the variables <val><units>. The command, used with the UP|DOWN parameters, will change the pulse period by a user-defined step value. Refer to the :PULM:INTernal[1]:PERiod:STEP[:INCRement] command for setting the value associated with the UP and DOWN choices.

If the entered value for the pulse period is equal to or less than the value for the pulse width, the pulse width changes to a value that is less than the pulse period. Refer to "[:PULM:INTernal[1]:PWIDth]" on page 178 for setting the pulse width.

Example

[:PULM:INT:PER .5S

The preceding example sets the period of the internally-generated pulse to 500 milliseconds.

*RST
+2.00000000E−006

Range
70nS–42S

Key Entry
Pulse Period
Analog Commands
Pulse Modulation Subsystem [:SOURce]

:PULM:INTernal[1]:PERiod:STEP[:INCRement]

Supported All with Option UNU or UNW

[:SOURce]:PULM:INTernal[1]:PERiod:STEP[:INCRement]<val><units>|MAXimum|MINimum|DEFault

[:SOURce]:PULM:INTernal[1]:PERiod:STEP[:INCRement]?

This command sets the step value for the internal pulse period using the variable <val><units>. The step value, set with this command, is used with the UP and DOWN choices available in the :PULM:INTernal[1]:PERiod command.

The step value set with this command is not affected by a power-on, preset, or *RST command.

Example

:PULM:INT:PER:STEP .1S

The preceding example sets the square wave pulse rate to 100 milliseconds.

*RST 1.00000000E-006

Range 10nS–42S

:PULM:INTernal[1]:PWIDth

Supported All with Option UNU or UNW

[:SOURce]:PULM:INTernal[1]:PWIDth <num><time_suffix>|UP|DOWN

[:SOURce]:PULM:INTernal[1]:PWIDth?

This command sets the pulse width for the internally generated pulse signal.

This command sets the pulse width for the internally- generated pulse modulation using the variables <num><time_suffix>. The command, used with the UP|DOWN parameters, will change the pulse width by a user-defined step value. Refer to the :PULM:INTernal[1]:PWIDth:STEP command for setting the value associated with the UP and DOWN choices.

If the entered value for the pulse width is equal to or greater than the value for the pulse period, the pulse width changes to a value that is less than the pulse period. For more information, refer to the command ":PULM:INTernal[1]:PWIDth" on page 178.

NOTE A power search is recommended for signals with pulse widths less than one microsecond. Refer to ":ALC:SEARch" on page 134.

Example

:PULM:INT:PWIDth 100MS

The preceding example sets the pulse width to 100 milliseconds.

*RST +1.00000000E-006

Range 10nS to (pulse period - 20 nS)

Key Entry Pulse Width
Analog Commands

Pulse Modulation Subsystem ([SOURce])

[:SOURce]:PULM:INTernal[1]:PWIDth:STEP

Supported
All with Option UNU or UNW

[[:SOURce]:PULM:INTernal[1]:PWIDth:STEP<num><time_suffix>|MAXimum|MINimum|DEFault
[:SOURce]:PULM:INTernal[1]:PWIDth:STEP?

This command sets the step increment for the pulse width using the variable <num><time_suffix>.
The step value, set by this command, is used with the UP and DOWN choices available in the
[:PULM:INTernal[1]:PWIDth]command.

The step value, set with this command, is not affected by a power-on, preset, or *RST command.

Example

:PULM:INT:PWID:STEP 100NS
The preceding example sets the pulse width step to 100 nanoseconds.

*RST
+1.00000000E−006

Range
10nS to (pulse period - 20 nS)

[:PULM:INTernal]

Supported
All with Option UNU or UNW

[[:SOURce]:PULM:SOURce:INTernal SQUARE|FRUN|TRIGGERed|DOUBLEt|GATED
[:SOURce]:PULM:SOURce:INTernal?

This command selects one of the five internally generated modulation inputs. There are two external
sources: Scalar and Ext Pulse which are selected using the :PULM:SOURce command.

Example

:PULM:SOUR:INT SQU
The preceding example selects the internally–generated square wave pulse modulation format.

*RST
FRUN (Int Free–Run)

Key Entry
Internal Square
Int Free-Run
Int Triggered
Int Doublet
Int Gated
Analog Commands
Pulse Modulation Subsystem ([SOURce])

[:SOURce]:PULM:SOURce

Supported All with Option UNU or UNW
[:SOURce]:PULM:SOURce INTernal|EXTernal|SCALar
[:SOURce]:PULM:SOURce?

This command sets the source for pulse modulation. The INTernal selection accesses one of the five internally generated modulation inputs while EXTernal selects an external pulse (Ext Pulse) and SCALar selects input from a scalar network analyzer.

Example
:PULM:SOUR INT
The preceding example selects the internal free-run, pulse modulation source.

*RST FRUN (Int Free-Run)

Key Entry Internal Square Int Free-Run Int Triggered Int Doublet Int Gated
Ext Pulse Scalar

[:SOURce]:PULM:STATe

Supported All with Option UNU or UNW
[:SOURce]:PULM:STATe ON|OFF|1|0
[:SOURce]:PULM:STATe?

This command enables or disables pulse modulation for the selected path.

When pulse modulation is enabled, the PULSE annunciator appears on the signal generator's front-panel display.

Example
:PULM:STAT ON
The preceding example enables the pulse modulation.

*RST 0

Key Entry Pulse Off On
5 Digital Modulation Commands

In the following sections, this chapter provides SCPI descriptions for subsystems dedicated to the E8267D PSG Vector signal generator:

- “All Subsystem–Option 601 and 602 ([SOURce])” on page 181
- “AWGN ARB Subsystem–Option 403 ([SOURce]:RADio:AWGN:ARB)” on page 182
- “AWGN Real-Time Subsystem–Option 403 ([SOURce]:RADio:AWGN:RT)” on page 189
- “Custom Subsystem–Option 601 and 602 ([SOURce]:RADio:CUSTom)” on page 190
- “Digital Modulation Subsystem ([SOURce]:DM)” on page 214
- “Dual ARB Subsystem–Option 601 or 602 ([SOURce]:RADio:ARB)” on page 230
- “Dmodulation Subsystem–Option 601 or 602 ([SOURce]:RADio:DMODulation:ARB)” on page 258
- “Multitone Subsystem–Option 601 or 602 ([SOURce]:RADio:MTONe:ARB)” on page 280
- “Two Tone Subsystem ([SOURce]:RADio:TTONe:ARB)” on page 293
- “Wideband Digital Modulation Subsystem ([SOURce]:WDM)” on page 302

All Subsystem–Option 601 and 602 ([SOURce])

:RADio:ALL:OFF

Supported E8267D with Option 601 or 602

[:SOURce]:RADio:ALL:OFF

This command disables all digital modulation personalities on a particular baseband. This command does not affect analog modulation.
Digital Modulation Commands
AWGN ARB Subsystem–Option 403 ([:SOURce]:RADio:AWGN:ARB)

AWGN ARB Subsystem–Option 403 ([:SOURce]:RADio:AWGN:ARB)

:`BWIDth`

Supported All with Option 403

[:SOURce]:RADio:AWGN:ARB:BWIDth <val>
[:SOURce]:RADio:AWGN:ARB:BWIDth?

This command adjusts the bandwidth of the AWGN waveform. The variable `<val>` is expressed in units of hertz (Hz–MHz).

*RST +1.00000000E+006

Range 5E4–1.5E7

Key Entry Bandwidth

:`IQ:EXTernal:FILTER`

Supported All with Option 403

[:SOURce]:RADio:AWGN:ARB:IQ:EXTernal:FILTER 40e6|THRough
[:SOURce]:RADio:AWGN:ARB:IQ:EXTernal:FILTER?

This command selects the filter or through path for I/Q signals routed to the rear panel I and Q outputs. Selecting a filter setting with this command will automatically set the "`:IQ:EXTernal:FILTER:AUTO` on page 182" command to Off mode.

40e6 This choice applies a 40 MHz baseband filter.

THRough This choice bypasses filtering.

*RST THR

Key Entry 40.000 MHz Through

:`IQ:EXTernal:FILTER:AUTO`

Supported All with Option 403

[:SOURce]:RADio:AWGN:ARB:IQ:EXTernal:FILTER:AUTO ON|OFF|1|0
[:SOURce]:RADio:AWGN:ARB:IQ:EXTernal:FILTER:AUTO?

This command enables or disables the automatic selection of the filters for I/Q signals routed to the rear panel I/Q outputs.

ON(1) This choice will automatically select a digital modulation filter optimized for the current signal generator settings.

OFF(0) This choice disables the auto feature which lets you select a digital modulation filter or through path. Refer to ":`IQ:EXTernal:FILTER` on page 182" for selecting a filter or through path.

*RST ON

Key Entry I/Q Output Filter Manual Auto
:HEADer:CLear

Supported
All with Option 403

[:SOURce]:RADio:AWGN:ARB:HEADer:CLear

This command clears the header information from the header file used by this modulation format. The **AWGN Off On** softkey must be set to On for this command to function.

RST
N/A

Key Entry
Clear Header

:HEADer:SAVE

Supported
All with Option 403

[:SOURce]:RADio:AWGN:ARB:HEADer:SAVE

This command saves the header information to the header file used by this modulation format. The **AWGN Off On** softkey must be set to On for this command to function.

RST
N/A

Key Entry
Save Setup To Header

:IQ:MODulation:ATTen

Supported
All with Option 403

[:SOURce]:RADio:AWGN:ARB:IQ:MODulation:ATTen <val>
[:SOURce]:RADio:AWGN:ARB:IQ:MODulation:ATTen?

This command attenuates the I/Q signals being modulated through the signal generator's RF path. The variable <val> is expressed in units of decibels (dB).

RST
+2.00000000E+000

Range
0–40

Key Entry
Modulator Attten Manual Auto

:IQ:MODulation:ATTen:AUTO

Supported
All with Option 403

[:SOURce]:RADio:AWGN:ARB:IQ:MODulation:ATTen:AUTO ON|OFF|1|0
[:SOURce]:RADio:AWGN:ARB:IQ:MODulation:ATTen:AUTO?

This command enables or disables the I/Q attenuation auto mode.

ON (1)
This choice enables the attenuation auto mode which optimizes the modulator attenuation for the current conditions.

OFF (0)
This choice holds the attenuator at its current setting or at a selected value. Refer to "**:IQ:MODulation:ATTen**" on page 183 for setting the attenuation value.

RST
1
Digital Modulation Commands

AWGN ARB Subsystem–Option 403 [:SOURce]:RADio:AWGN:ARB)

Key Entry

Modulator Atten Manual Auto

:IQ:MODulation:FILTer

Supported

All with Option 403

[:SOURce]:RADio:AWGN:ARB:IQ:MODulation:FILTer 40e6|THRough

[:SOURce]:RADio:AWGN:ARB:IQ:MODulation:FILTer?

This command enables you to select a filter or through path for I/Q signals modulated onto the RF carrier. Selecting a filter with this command will automatically set “:IQ:MODulation:ATTen:AUTO” on page 183 to Off(0) mode.

40E6 This choice applies a 40 MHz baseband filter to the I/Q signals.

THRough This choice bypasses filtering.

*RST THR

Key Entry

40.000 MHz Through

:IQ:MODulation:FILTer:AUTO

Supported

All with Option 403

[:SOURce]:RADio:AWGN:ARB:IQ:MODulation:FILTer:AUTO ON|OFF|1|0

[:SOURce]:RADio:AWGN:ARB:IQ:MODulation:FILTer:AUTO?

This command enables or disables the automatic selection of the filters for I/Q signals modulated onto the RF carrier.

ON(1) This choice will automatically select a digital modulation filter.

OFF(0) This choice disables the auto feature which lets you select a digital modulation filter or through path. Refer to “:IQ:MODulation:FILTer” on page 236 for selecting a filter or through path.

*RST 1

Key Entry

I/Q Mod Filter Manual Auto

:MDEStination:AAMPlitude

Supported

All with Option 403

[:SOURce]:RADio:AWGN:ARB:MDEStination:AAMPlitude NONE|M1|M2|M3|M4

[:SOURce]:RADio:AWGN:ARB:MDEStination:AAMPlitude?

This command routes the selected marker to the Alternate Amplitude function. The NONE parameter clears the marker for the Alternate Amplitude function.

*RST NONE

Key Entry

None Marker 1 Marker 2 Marker 3 Marker 4
Digital Modulation Commands
AWGN ARB Subsystem–Option 403 ([:SOURce]:RADio:AWGN:ARB)

:MDEstination:ALCHold

Supported All with Option 403

CAUTION Incorrect automatic level control (ALC) sampling can create a sudden unleveled condition that may create a spike in the RF output potentially damaging a DUT or connected instrument. Ensure that you set markers to let the ALC sample over an amplitude that accounts for the high power levels within the signal.

[:SOURce]:RADio:AWGN:ARB:MDEStination:ALCHold NONE|M1|M2|M3|M4

[:SOURce]:RADio:AWGN:ARB:MDEStination:ALCHold?

This command enables or disables the marker ALC hold function for the selected marker. For setting markers, see “:MARKer[:SET]” on page 239.

Use the ALC hold function when you have a waveform signal that uses idle periods, or when the increased dynamic range encountered with RF blanking is not desired. The ALC leveling circuitry responds to the marker signal during the marker pulse (marker signal high), averaging the modulated signal level during this period.

The ALC hold function operates during the low periods of the marker signal. The marker polarity determines when the marker signal is high. For a positive polarity, this is during the marker points. For a negative polarity, this is when there are no marker points. For setting a marker’s polarity, see “:MPOLarity:MARKer1|2|3|4” on page 243.

NOTE Do not use the ALC hold for more than 100 ms, because it can affect the waveform’s output amplitude.

The marker signal has a minimum of a two-sample delay in its response relative to the waveform signal response. To compensate for the marker signal delay, offset marker points from the waveform sample point at which you want the ALC sampling to begin.

The ALC hold setting is part of the file header information, so saving the setting to the file header saves the current marker routing for the waveform file.

NOTE A waveform file that has unspecified settings in the file header uses the previous waveform’s routing settings.

For more information on the marker ALC hold function, see the E8257D/67D PSG Signal Generators User’s Guide. For setting the marker points, see “:MARKer[:SET]” on page 239.

NONE This terminates the marker ALC hold function.

M1–M4 These are the marker choices. The ALC hold feature uses only one marker at a time.

*RST NONE
Digital Modulation Commands
AWGN ARB Subsystem–Option 403 [:SOURce]:RADio:AWGN:ARB

Example
:RAD:ARB:MDES:ALCH M1

The preceding example routes marker 1 to the ALC Hold function.

Key Entry

| None | Marker 1 | Marker 2 | Marker 3 | Marker 4 |

Remarks
N/A

:MDES:ATION:PULSe

Supported
All with Option 403

CAUTION
The pulse function incorporates the ALC hold. Incorrect automatic level control (ALC) sampling can create a sudden unleveled condition that may create a spike in the RF output potentially damaging a DUT or connected instrument. Ensure that you set markers to let the ALC sample over an amplitude that accounts for the high power levels within the signal.

[:SOURce]:RADio:AWGN:ARB:MDES:ATION:PULSe NONE|M1|M2|M3|M4

This command enables or disables the marker pulse/RF blanking function for the selected marker.

The function automatically uses the ALC hold function, so there is no need to select both ALC hold and marker pulse/RF blanking functions for the same marker

NOTE
Do not use ALC hold for more than 100 ms, because it can affect the waveform’s output amplitude.

The signal generator blanks the RF output when the marker signal goes low. The marker polarity determines when the marker signal is low. For a positive polarity, this is during the marker points. For a negative polarity, this is when there are no marker points. For setting a marker’s polarity, see “:MPOL:ARY:MARKer1|2|3|4” on page 243.

NOTE
Set marker points prior to using this function. Enabling this function without setting marker points may create a continuous low or high marker signal, depending on the marker polarity. This causes either no RF output or a continuous RF output. See “:MARKer[:SET]” on page 239 for setting the marker points.

The marker signal has a minimum of a two-sample delay in its response relative to the waveform signal response. To compensate for the marker signal delay, offset marker points from the waveform sample point at which you want the RF blanking to begin. The RF blanking setting is part of the file header information, so saving the setting to the file header saves the current marker routing for the waveform file.

NOTE
A waveform file that has unspecified settings in the file header uses the previous waveform’s routing settings. This could create the situation where there is no RF output signal, because the previous waveform used RF blanking.

For more information on the marker RF blanking function, see the E8257D/67D PSG Signal Generators User’s Guide.
NONE This terminates the marker RF blanking/pulse function.
M1–M4 These are the marker choices. The RF blanking/pulse feature uses only one marker at a time.

Example
:RAD:ARB:MDES:PULS M2
The preceding example routes marker 2 to Pulse/RF Blanking.

*RST NONE

:MPOLarity:MARKer1|2|3|4

Supported All with Option 403
[:SOURCE]:RAD:AWGN:ARB:MPOLarity:MARKer1|2|3|4 NEGative|POSitive[:SOURCE]:RAD:AWGN:ARB:MPOLarity:MARKer1|2|3|4?

This command sets the polarity for the selected marker. For a positive marker polarity, the marker signal is high during the marker points. For a negative marker polarity, the marker signal is high during the period of no marker points.

Example
:RAD:ARB:MPOL:MARK3 NEG
The preceding example sets the polarity for marker 3 to negative.

*RST POS

Key Entry Marker 1 Polarity Neg Pos Marker 2 Polarity Neg Pos Marker 3 Polarity Neg Pos
 Marker 4 Polarity Neg Pos

:LENgth

Supported All with Option 403

This command specifies the length (number of points) of the AWGN waveform. A longer waveform yields a statistically more correct waveform.

*RST 524288

Key Entry 1048576 524288 262144 131072 65536 32768 16384
Digital Modulation Commands
AWGN ARB Subsystem–Option 403 [:SOURce]:RADio:AWGN:ARB

:REference:EXTernal:FREQuency

Supported All with Option 403

[:SOURce]:RADio:AWGN:ARB:REference:EXTernal:FREQuency <val>
[:SOURce]:RADio:AWGN:ARB:REference:EXTernal:FREQuency?

This command allows you to enter the frequency of the applied external reference. The value specified by this command is effective only when you are using an external ARB reference applied to the BASEBAND GEN REF IN rear panel connector. To specify external as the ARB reference source type, refer to “:REference[:SOURce]” on page 268.

The variable <val> is expressed in units of hertz (Hz–MHz).

*RST +1.00000000E+007
Range 2.5E5–1E8
Key Entry Reference Freq

:REference[:SOURce]

Supported All with Option 403

[:SOURce]:RADio:AWGN:ARB:REference[:SOURce] INTernal|EXTernal
[:SOURce]:RADio:AWGN:ARB:REference[:SOURce]?

This command selects either an internal or external reference for the waveform clock. If the EXTernal choice is selected, the external frequency value must be entered and the signal must be applied to the BASEBAND GEN REF IN rear panel connector. Refer to “:REference:EXTernal:FREQuency” on page 268 to enter the external reference frequency.

*RST INT
Key Entry ARB Reference Ext Int

:SCLock:RATE

Supported All with Option 403

[:SOURce]:RADio:AWGN:ARB:SCLock:RATE <val>
[:SOURce]:RADio:AWGN:ARB:SCLock:RATE?

This command sets the sample clock rate for the AWGN modulation format. The modulation format should be active before executing this command. If this command is executed before the modulation format is active, the entered value will be overridden by a calculated factory default value. Refer to “:BURSt:SHAPe:FALL:DElay” on page 192 to activate the modulation format.

The variable <val> is expressed in units of hertz.

*RST +1.00000000E+008
Range 1–1E8
Key Entry ARB Sample Clock
:SEED

Supported All with Option 403

[:SOURce]:RADio:AWGN:ARB:SEED FIXed|RANDom

This command toggles the AWGN waveform noise seed value type.

FIXed This choice selects a fixed noise seed value.

RANDom This choice selects a randomly generated noise seed value.

*RST FIX

Key Entry Noise Seed Fixed Random

[:STATe]

Supported All with Option 403

[:SOURce]:RADio:AWGN:ARB[:STATe] ON|OFF|1|0

[:SOURce]:RADio:AWGN:ARB[:STATe]?

This command enables or disables the AWGN generator function.

*RST 0

Key Entry Arb AWGN Off On

AWGN Real-Time Subsystem–Option 403 ([SOURce]:RADio:AWGN:RT)

:BWIDTH

Supported E8267D with Option 403

[:SOURce]:RADio:AWGN:RT:BWIDTH <val>

[:SOURce]:RADio:AWGN:RT:BWIDTH?

This command adjusts the real-time AWGN bandwidth value.

The variable <val> is expressed in units of hertz (Hz–MHz).

*RST +1.00000000E+006

Range 5E4–8E7

Key Entry Bandwidth

[:STATe]

Supported E8267D with Option 403

[:SOURce]:RADio:AWGN:RT[:STATe] ON|OFF|1|0

[:SOURce]:RADio:AWGN:RT[:STATe]?

This command enables or disables the operating state of real-time AWGN.

*RST 0

Key Entry Real-time AWGN Off On
Custom Subsystem—Option 601 and 602 ([:SOURce]:RADio:CUSTom)

:ALPha

Supported E8267D with Option 601 or 602

[:SOURce]:RADio:CUSTom:ALPHa <val>
[:SOURce]:RADio:CUSTom:ALPHa?

This command changes the Nyquist or root Nyquist filter's alpha value. The filter alpha value can be set to a minimum level (0), a maximum level (1), or in between by using fractional numeric values (0.001–0.999). To change the current filter type, refer to “:FILTER” on page 201.

Example

:RAD:CUST:ALPH .65

The preceding example sets the filter alpha to .65.

*RST +3.50000000E-001

Range 0.000–1.000

Key Entry Filter Alpha

:BBCLock

Supported E8267D with Option 601 or 602

[:SOURce]:RADio:CUSTom:BBCLock?

This command toggles the data (bit) clock input to the baseband generator board to either internal or external. This command is independent in each mode and works for both non-burst (continuous) and burst modes. This allows for a matrix of selections between burst/non-burst, internal/external data generation, internal/external data clock, and external bit/symbol data clock.

Example

:RAD:CUST:BBCL 1

The preceding example selects the signal generator’s internal data clock.

*RST INT

Key Entry BBG Data Clock Ext Int
:BBT

Supported E8267D with Option 601 or 602

[:SOURce]:RADio:CUSTom:BBT <val>
[:SOURce]:RADio:CUSTom:BBT?

This command changes the bandwidth-multiplied-by-bit-time (BbT) filter parameter. The filter BbT value can be set to the maximum level (1) or in between the minimum level (0.100) and maximum level by using fractional numeric values (0.101–0.999). This command is effective only after choosing a Gaussian filter. It does not effect other types of filters (see “:FILTER” on page 201).

Example

:RAD:CUST:BBT .300

The preceding example selects a 0.300 BbT gaussian filter.

*RST +5.00000000E−001

Range 0.100–1.000

Key Entry Filter BbT

:BRAte

Supported E8267D with Option 601 or 602

[:SOURce]:RADio:CUSTom:BRAte <val>
[:SOURce]:RADio:CUSTom:BRAte?

This command sets the bit rate. The variable <val> is expressed in bits per second (bps–Mbps) and the maximum range value depends on the data source (internal or external), the modulation type, and filter. When user-defined filters are selected (see “:FILTER” on page 201), the upper bit rate is restricted using the following criteria:

- FIR filter length > 32 symbols: upper limit is 12.5 Msp
- FIR filter length > 16 symbols: upper limit is 25 Msp

When internal FIR filters are used, these limit restrictions always apply. For higher symbol rates, the FIR filter length will be truncated and will impact the relative timing of the modulated data, as well as the actual filter response (see “:SRATe” on page 205).

A change in the bit rate value effects the symbol rate value; refer to “:SRATe” on page 205 for a list of the minimum and maximum symbol rate values.

To change the modulation type, refer to “:MODulation[:TYPE]” on page 204.
Example

```plaintext
:RAD:CUST:BRAT 10MBPS
```

The preceding example sets the bit rate to 10 megabits per second.

```
*RST +4.86000000E+004
```

Supported

<table>
<thead>
<tr>
<th>Range</th>
<th>Modulation Type</th>
<th>Bits per Symbol</th>
<th>Internal Data</th>
<th>External Serial Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-bit</td>
<td>BPSK</td>
<td>1</td>
<td>45 bps–50 Mbps</td>
<td>45 bps–50 Mbps</td>
</tr>
<tr>
<td>2-bit</td>
<td>FSK2</td>
<td>2</td>
<td>90 bps–100 Mbps</td>
<td>45 bps–50 Mbps</td>
</tr>
<tr>
<td>3-bit</td>
<td>C4FM</td>
<td>3</td>
<td>135 bps–150 Mbps</td>
<td>45 bps–50 Mbps</td>
</tr>
<tr>
<td>4-bit</td>
<td>PSK4</td>
<td>4</td>
<td>180 bps–200 Mbps</td>
<td>45 bps–50 Mbps</td>
</tr>
<tr>
<td>5-bit</td>
<td>MSK</td>
<td>5</td>
<td>225 bps–250 Mbps</td>
<td>45 bps–50 Mbps</td>
</tr>
<tr>
<td>6-bit</td>
<td>FSK8</td>
<td>6</td>
<td>270 bps–300 Mbps</td>
<td>45 bps–50 Mbps</td>
</tr>
<tr>
<td>7-bit</td>
<td>OQPSK</td>
<td>7</td>
<td>315 bps–350 Mbps</td>
<td>45 bps–50 Mbps</td>
</tr>
<tr>
<td>8-bit</td>
<td>SQPSK</td>
<td>8</td>
<td>360 bps–400 Mbps</td>
<td>45 bps–50 Mbps</td>
</tr>
</tbody>
</table>

:BURSt:SHAPe:FALL:DElay

Supported E8267D with Option 601 or 602

```
[:SOURce]:RADio:CUSTom:BURSt:SHAPe:FALL:DElay <val>
[:SOURce]:RADio:CUSTom:BURSt:SHAPe:FALL:DElay?
```

This command sets the burst shape fall delay. The variable <val> is expressed in bits with 1 bit = 1/(symbol_rate*bits_per_symbol).

To change the modulation type, refer to “MODulation[:TYPE]” on page 204. Refer to “SRATe” on page 205 for a list of the minimum and maximum symbol rate values.

“BURSt:SHAPe:FDElay” on page 193 performs the same function; in compliance with the SCPI standard, both commands are listed.

For concept information on burst shaping, refer to the E8257D/67D PSG Signal Generators User’s Guide.
Digital Modulation Commands
Custom Subsystem–Option 601 and 602 [:SOURce]:RADio:CUSTom

Example

```plaintext
```

The preceding example sets a 50 bit fall delay.

* RST
 +0.00000000E+000

Range

−22.3750 to 99

Key Entry

Fall Delay

:BURSt:SHAPe:FALL:TIME

Supported

E8267D with Option 601 or 602601 or 602

```
[:SOURce]:RADio:CUSTom:BURSt:SHAPe:FALL:TIME <val>
[:SOURce]:RADio:CUSTom:BURSt:SHAPe:FALL:TIME?
```

This command sets the burst shape fall time. The variable `<val>` is expressed in bits with
1 bit = 1/(symbol_rate*bits_per_symbol).

To change the modulation type, refer to “*:MODulation[:TYPE]” on page 204. Refer to “*:SRATe” on page 205 for a list of the minimum and maximum symbol rate values.

“*:BURSt:SHAPe:FTIMe” on page 194 performs the same function; in compliance with the SCPI standard, both commands are listed.

For concept information on burst shaping, refer to the E8257D/67D PSG Signal Generators User’s Guide.

Example

```plaintext
```

The preceding example sets a 100 bit fall delay.

* RST
 +1.00000000E+01

Range

0.1250–255.8750

Key Entry

Fall Time

:BURSt:SHAPe:FDELay

Supported

E8267D with Option 601 or 602

```
[:SOURce]:RADio:CUSTom:BURSt:SHAPe:FDELay <val>
[:SOURce]:RADio:CUSTom:BURSt:SHAPe:FDELay?
```

This command sets the burst shape fall delay. The variable `<val>` is expressed in bits with
1 bit = 1/(symbol_rate*bits_per_symbol).

To change the modulation type, refer to “*:MODulation[:TYPE]” on page 204. Refer to “*:SRATe” on page 205 for a list of the minimum and maximum symbol rate values.

“*:BURSt:SHAPe:FALL:DELay” on page 192 performs the same function; in compliance with the SCPI standard, both commands are listed.
Digital Modulation Commands
Custom Subsystem–Option 601 and 602 [:SOURce]:RADIO:CUSTOM

For concept information on burst shaping, refer to the *E8257D/67D PSG Signal Generators User's Guide*.

Example

:RAD:CUSt:BURS:SHAP:FDEL 45

The preceding example sets a 45 bit fall delay.

RST
+0.00000000E+000

Range
−22.3750 to 99

Key Entry
Fall Delay

:BURSt:SHApe:FTIMe

Supported
E8267D with Option 601 or 602

[:SOURce]:RADIO:CUStom:BURSt:SHApe:FTIMe <val>
[:SOURce]:RADIO:CUStom:BURSt:SHApe:FTIMe?

This command sets the burst shape fall time. The variable <val> is expressed in bits with 1 bit = 1/(symbol_rate*bits_per_symbol).

To change the modulation type, refer to “MODulation[:TYPE]” on page 204. Refer to “SRATe” on page 205 for a list of the minimum and maximum symbol rate values.

“BURSt:SHApe: FALL:TIME” on page 193 performs the same function; in compliance with the SCPI standard, both commands are listed.

For concept information on burst shaping, refer to the *E8257D/67D PSG Signal Generators User's Guide*.

Example

:RAD:CUSt:BURS:SHAP:FTIM 20

The preceding example sets a 20 bit fall delay.

RST
+0.00000000E+000

Range
0.1250−255.8750

Key Entry
Fall Time

:BURSt:SHApe:RDELay

Supported
E8267D with Option 601 or 602

[:SOURce]:RADIO:CUStom:BURSt:SHApe:RDELay <val>
[:SOURce]:RADIO:CUStom:BURSt:SHApe:RDELay?

This command sets the burst shape rise delay. The variable <val> is expressed in bits with 1 bit = 1/(symbol_rate*bits_per_symbol).

To change the modulation type, refer to “MODulation[:TYPE]” on page 204. Refer to “SRATe” on page 205 for a list of the minimum and maximum symbol rate values.
".BURSt:SHApe:RISE:DELay" on page 195 performs the same function; in compliance with the SCPI standard, both commands are listed.

For concept information on burst shaping, refer to the E8257D/67D PSG Signal Generators User’s Guide.

Example

`:RAD:CUST:BURS:SHAP:RDEL -10`

The preceding example sets a –10 bit rise delay.

*RST +0.00000000E+000

Range –17.3750 to 99

Key Entry Rise Delay

`:BURSt:SHApe:RISE:DELay`

Supported E8267D with Option 601 or 602

[:SOURce]:RADio:CUSTom:BURSt:SHApe:RISE:DELay <val>

[:SOURce]:RADio:CUSTom:BURSt:SHApe:RISE:DELay?

This command sets the burst shape rise delay. The variable <val> is expressed in bits with 1 bit = 1/(symbol_rate*bits_per_symbol).

To change the modulation type, refer to ":MODulation[:TYPE]" on page 204. Refer to ":SRATe" on page 205 for a list of the minimum and maximum symbol rate values.

".BURSt:SHApe:RDELay" on page 194 performs the same function; in compliance with the SCPI standard, both commands are listed.

For concept information on burst shaping, refer to the PSG User’s Guide.

Example

The preceding example sets a 10 bit rise delay.

*RST +0.00000000E+000

Range –17.3750 to 99

Key Entry Rise Delay
Digital Modulation Commands
Custom Subsystem–Option 601 and 602 [:SOURce]:RADio:CUStom

:BURSt:SHApe:RISE:TIME

Supported E8267D with Option 601 or 602

[:SOURce]:RADio:CUStom:BURSt:SHApe:RISE:TIME <val>
[:SOURce]:RADio:CUStom:BURSt:SHApe:RISE:TIME?

This command sets the burst shape rise time. The variable <val> is expressed in bits with
1 bit = 1/(symbol_rate*bits_per_symbol).

To change the modulation type, refer to “:MODulation[:TYPE]” on page 204. Refer to “:SRATe” on
page 205 for a list of the minimum and maximum symbol rate values.

“:BURSt:SHApe:RTIMe” on page 196 performs the same function; in compliance with the SCPI
standard, both commands are listed.

For concept information on burst shaping, refer to the E8257D/67D PSG Signal Generators User’s
Guide.

Example

The preceding example sets a .5 bit rise delay.

*RST +1.00000000E+001

Range 0.1250–121.5000

Key Entry Rise Time

:BURSt:SHApe:RTIMe

Supported E8267D with Option 601 or 602

[:SOURce]:RADio:CUStom:BURSt:SHApe:RTIMe <val>
[:SOURce]:RADio:CUStom:BURSt:SHApe:RTIMe?

This command sets the burst shape rise time. The variable <val> is expressed in bits with
1 bit = 1/(symbol_rate*bits_per_symbol).

To change the modulation type, refer to “:MODulation[:TYPE]” on page 204. Refer to “:SRATe” on
page 205 for a list of the minimum and maximum symbol rate values.

“:BURSt:SHApe:RISE:TIME” on page 196 performs the same function; in compliance with the SCPI
standard, both commands are listed.

For concept information on burst shaping, refer to the E8257D/67D PSG Signal Generators User’s
Guide.

Example

:RAD:CUST:BURS:SHAP:RTIM 100

The preceding example sets a 100 bit rise time.

*RST +1.00000000E+001

Range 0.1250–121.5000

Key Entry Rise Time
:BURSt:SHAPE[:TYPE]

Supported E8267D with Option 601 or 602

[:SOURce]:RADio:CUSTom:BURSt:SHAPE[:TYPE] SINE|"<file_name>"

This command selects a user-defined or a pre-defined burst shape file.

SINE This choice selects the pre-defined Sine burst shape as the burst shape type.

"<file_name>" This variable names the user burst shape file to use. Refer to "File Name Variables" on page 10 for information on the file name syntax.

Example

:RAD:CUST:BURS:SHAPE "Test_File"

The preceding example selects a file named Test_File from the signal generator's SHAPE directory. The directory path is implied in the command and does not need to be specified.

*RST SINE

Key Entry Sine User File

:CHANnel

Supported E8267D with Option 601 or 602

[:SOURce]:RADio:CUSTom:CHANnel EVM|ACP

[:SOURce]:RADio:CUSTom:CHANnel?

This command optimizes the Nyquist and root Nyquist filters to minimize error vector magnitude (EVM) or to minimize adjacent channel power (ACP).

EVM This choice provides the most ideal passband.

ACP This choice improves stopband rejection.

To change the current filter type, refer to ":FILTER" on page 201.

Example

:RAD:CUST:CHAN EVM

The preceding example uses EVM optimizing.

*RST EVM

Key Entry Optimize FIR for EVM ACP
:DACS:ALIGn

Supported
E8267D with Option 601 or 602

This command resets the signal generator’s I/Q DAC circuitry. This operation is required any time the external VCO clock signal is lost and re-acquired or when an external VCO clock signal is first applied to the BASEBAND GEN CLK IN connector.

Example

`:RAD:CUST:DACS ALIG`

The preceding example resets the I/Q DAC circuitry.

RST
N/A

Range
N/A

Key Entry
Align DACs

:DATA

Supported
E8267D with Option 601 or 602

This command sets the data pattern for unframed transmission. For information on the file name syntax, see "File Name Variables" on page 10.

Example

`:RAD:CUST:DATA PN9`

The preceding example selects a PN9 data pattern for unframed transmission.

RST
PN23

Key Entry

<table>
<thead>
<tr>
<th>PN9</th>
<th>PN11</th>
<th>PN15</th>
<th>PN20</th>
<th>PN23</th>
<th>FIX4</th>
<th>User File</th>
<th>Ext</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 1’s & 4 0’s</td>
<td>8 1’s & 8 0’s</td>
<td>16 1’s & 16 0’s</td>
<td>32 1’s & 32 0’s</td>
<td>PRAM FILE</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

:DATA:FIX4

Supported
E8267D with Option 601 or 602

This command sets the binary, 4-bit repeating sequence data pattern for unframed transmission according to the modulation type, symbol rate, filter, and burst shape selected for the custom modulation format. FIX4 must be selected as the data type.

<val>
This variable is an integer value from one to 15 and represents the a four bit pattern.
Digital Modulation Commands
Custom Subsystem—Option 601 and 602 [:SOURce]:RADio:CUSTom

Example
:RAD:CUS T:DATA:FIX4 15

The preceding example selects a FIX4 data pattern consisting of four 1’s.

*RST #B0000

Range #B0000–#B1111 or 0–15

Key Entry FIX4

:DATA:PRAM

Supported E8267D with Option 601 or 602

[:SOURce]:RADio:CUSTom:DATA:PRAM "<file_name>"

[:SOURce]:RADio:CUSTom:DATA:PRAM?

This command selects PRAM data as the data pattern for unframed transmission. Refer to “:DATA:PRAM:FILE:BLOCk” on page 48 for information on PRAM data. For information on the file name syntax, refer “File Name Variables” on page 10.

Example
:RAD:CUS T:DATA:PRAM "Test_Data"

The preceding example selects the PRAM file, Test_Data, as the data pattern for unframed transmission.

Key Entry PRAM File

:DENCCode

Supported E8267D with Option 601 or 602

[:SOURce]:RADio:CUSTom:DENCCode ON|OFF|1|0

[:SOURce]:RADio:CUSTom:DENCCode?

This command enables or disables the differential data encoding function. Executing this command encodes the data bits prior to modulation; each modulated bit is 1 if the data bit is different from the previous one or 0 if the data bit is the same as the previous one.

Example
:RAD:CUS T:DENC 1

The preceding example enables differential data encoding for the selected modulation.

*RST 0

Key Entry Diff Data Encode Off On
Digital Modulation Commands

Custom Subsystem–Option 601 and 602 [:SOURce]:RADio:CUSTom

:EDATa:DELAy

Supported E8267D with Option 601 or 602

[:SOURce]:RADio:CUSTom:EDATa:DELAy?

This query returns the time delay (in symbols) from the external data input to the beginning of the symbol on the I OUT and Q OUT rear-panel connectors and the front panel RF OUTPUT connector. When the format is turned off, the delay value is unchanged; the query will return the same delay value if the format is on or off.

:EDCLock

Supported E8267D with Option 601 or 602

[:SOURce]:RADio:CUSTom:EDCLock SYMBOL|NORMal

[:SOURce]:RADio:CUSTom:EDCLock?

This command sets the external data clock use. In internal clock mode, neither choice has an effect. Refer to "BBCLock" on page 190 to select EXT as the data clock type.

SYMBOL This choice specifies that a continuous symbol clock signal must be provided to the SYMBOL SYNC input connector.

NORMal This choice specifies that the DATA CLOCK input connector requires a bit clock. The SYMBOL SYNC input connector requires a (one-shot or continuous) symbol sync signal.

Example

:RAD:CUST:EDCL NORM

The preceding example selects normal mode for the external data clock type.

*RST NORM

Key Entry Ext Data Clock Normal Symbol

:EREFerence

Supported E8267D with Option 601 or 602

[:SOURce]:RADio:CUSTom:EREFerence INTernal|EXTernal

[:SOURce]:RADio:CUSTom:EREFerence?

This command selects either an internal or external bit-clock reference for the data generator. If the EXTrnal choice is selected, the external frequency value must be applied to the BASEBAND GEN REF IN rear-panel connector. See ":EREFerence:VALUE" on page 201 to enter the external reference frequency.

Example

:RAD:CUST:EREF EXT

The preceding example selects an external bit-clock reference for the data generator.

*RST INT

Key Entry BBG Ref Ext Int
::EREFerence::VALUE

Supported
E8267D with Option 601 or 602

```plaintext
[:SOURce]:RADio:CUSTom::EREFerence::VALUE <val>
[:SOURce]:RADio:CUSTom::EREFerence::VALUE?
```

This command specifies the reference frequency of the externally applied reference. The variable `<val>` is expressed in hertz (Hz–MHz).

The value specified by this command is valid only when an external reference is applied to the BASEBAND GEN REF IN rear-panel connector. Refer to “::EREFerence” on page 200 to select EXternal as the reference for the bit clock reference of the data generator.

Example

```plaintext
:RAD:CUST::EREF::VALUE 10E6
```

The preceding example uses a 10 MHz external reference for the signal generator’s baseband generator.

RST
+1.3000000E+007

Range
2.5E5–1E8

Key Entry
Ext BBG Ref Freq

::FILTER

Supported
E8267D with Option 601 or 602

```plaintext
[:SOURce]:RADio:CUSTom::FILTER RNYQuist|NYQuist|GAUSSian|RECTangle|AC4Fm|UGGaussian|"<User_FIR>"
[:SOURce]:RADio:CUSTom::FILTER?
```

This command selects the pre-modulation filter type.

RNYQuist
This choice selects a root nyquist filter (root raised cosine).

NYQuist
This choice selects a Nyquist filter (raised cosine).

GAUSSian
This choice selects a gaussian filter.

RECTangle
This choice selects a one-symbol–wide rectangular filter.

AC4Fm
This is a pre-defined Association of Public Safety Communications Officials (APCO) specified compatible 4-level frequency modulation (C4FM) filter.

UGGaussian
This choice selects a GSM Gaussian filter with a fixed Bbt value of 0.300.

"<User_FIR>"
This variable is any filter file stored in the signal generator’s catalog of FIR files. The directory path is implied in the command and does not need to be specified. For information on the file name syntax, see “File Name Variables” on page 10.

RST
RNYQ
Digital Modulation Commands
Custom Subsystem–Option 601 and 602 (:SOURce:RADio:CUSTom)

Example
:RAD:CUST:FILT GAUS
The preceding example selects a gaussian filter as the pre-modulation filter type.

Key Entry | Root Nyquist | Nyquist | Gaussian | Rectangle | APCO 25 C4FM | UN3/4 GSM Gaussian | User FIR

:IQ:SCALe

Supported | E8267D with Option 601 or 602
[:SOURce]:RADio:CUSTom:IQ:SCALe <val>
[:SOURce]:RADio:CUSTom:IQ:SCALe?
This command sets the amplitude of the I/Q outputs for better adjacent channel power (ACP); lower scaling values equate to better ACP.
The variable <val> is expressed as a percentage.
Example
:RAD:CUST:IQ:SCAL 50
The preceding example sets I/Q scaling to 50%.

*RST
+70
Range | 1–200
Key Entry | I/Q Scaling

:MODulation:FSK[:DEViation]

Supported | E8267D with Option 601 or 602
[:SOURce]:RADio:CUSTom:MODulation:FSK[:DEViation] <val>
[:SOURce]:RADio:CUSTom:MODulation:FSK[:DEViation]?
This command sets the maximum symmetric FSK frequency deviation value.
The variable <val> is a numeric expression in hertz which specifies the spacing of the two outermost FSK tones. Additional tones are evenly spaced between the two outermost tones. The maximum range value equals the current symbol rate value multiplied by four and is limited to 20 MHz.

To change the modulation type, refer to “:MODulation[:TYPE]” on page 204. Refer to “:SRATe” on page 205 for a list of the minimum and maximum symbol rate values. Refer to the E8257D/67D PSG Signal Generators User’s Guide for information on setting an asymmetric FSK deviation value.

Example
:RAD:CUST:MOD:FSK 50KHZ
The preceding example sets the maximum frequency deviation to 50 kHz.

*RST
+4.00000000E+002
Range | 0–2E7
Key Entry | Freq Dev
::MODulation:MSK[:PHASe]

Supported E8267D with Option 601 or 602

[:SOURce]:RADio:CUSTom:MODulation:MSK[:PHASe] <val>
[:SOURce]:RADio:CUSTom:MODulation:MSK[:PHASe]?

This command sets the MSK phase deviation value.
The variable <val> is expressed in degrees.

Example
::RAD:CUST:MOD:MSK 40

The preceding example sets the phase deviation to 40 degrees.

*RST +9.00000000E+001

Range 0–100

Key Entry Phase Dev

::MODulation:UFSK

Supported E8267D with Option 601 or 602

[:SOURce]:RADio:CUSTom:MODulation:UFSK "<file_name>"
[:SOURce]:RADio:CUSTom:MODulation:UFSK?

This command selects a user-defined FSK file from the signal generator's catalog of FSK files. The directory path is implied in the command and does not need to be specified. For information on the file name syntax, see “File Name Variables” on page 10.

The user-defined FSK file is held in signal generator memory until the command that selects user FSK as the modulation type is sent. Refer to “::MODulation[:TYPE]” on page 204 to change the current modulation type.

Example
::RAD:CUST:MOD:UFSK "Test_FSK"

The preceding example selects the file, Test_FSK, from the catalog of FSK files.

Key Entry User FSK

::MODulation:UIQ

Supported E8267D with Option 601 or 602

[:SOURce]:RADio:CUSTom:MODulation:UIQ "<file_name>"
[:SOURce]:RADio:CUSTom:MODulation:UIQ?

This command selects a user-defined I/Q file from the signal generator's catalog of IQ files. The directory path is implied in the command and does not need to be specified. For information on the file name syntax, see “File Name Variables” on page 10.
Digital Modulation Commands
Custom Subsystem—Option 601 and 602 [:SOURce]:RADio:CUSTom

The user-defined I/Q file is held in signal generator memory until the command that selects user I/Q as the modulation type is sent. Refer to “:MODulation[:TYPE]” on page 204 to change the current modulation type.

Refer to “:MODulation[:TYPE]” on page 204 to change the current modulation type.

Example

:RAD:CUST:MOD:UIQ "Test_IQ"

The preceding example selects the file, Test_IQ, from the catalog of IQ files.

Key Entry

:MODulation[:TYPE]

Supported

E8267D with Option 601 or 602

[:SOURce]:RADio:CUSTom:MODulation[:TYPE] BPSK|QPSK|IS95QPSK|GRAYQPSK|OQPSK|IS95QOQPSK|P4DQPSK|PSK8|PSK16|D8PSK|MSK|FSK2|FSK4|FSK8|FSK16|C4FM|QAM4|QAM16|QAM32|QAM64|QAM128|QAM256

[:SOURce]:RADio:CUSTom:MODulation[:TYPE]?

This command sets the modulation type for the Custom personality. For user-defined modulation, UIQ or UFSK, the file must first be specified using the “:MODulation:UFSK” or “:MODulation:UIQ” commands.

Example

:RAD:CUST:MOD BPSK

The preceding example selects binary phase shift keying (BPSK).

*RST

P4DQPSK

Key Entry

BPSK QPSK IS-95 QPSK Gray Coded QPSK OQPSK

IS-95 QOQPSK \(\pi/4\) DQPSK 8PSK 16PSK D8PSK MSK 2-Lvl FSK

4-Lvl FSK 8-Lvl FSK 16-Lvl FSK C4FM 4QAM 16QAM 32QAM

64QAM 128QAM 256QAM User I/Q User FSK

:POLarity[:ALL]

Supported

E8267D with Option 601 or 602

[:SOURce]:RADio:CUSTom:POLarity[:ALL] NORMAL|INVerted

[:SOURce]:RADio:CUSTom:POLarity[:ALL]?

This command sets the signal phase rotation direction.

NORMAL

This choice selects normal clockwise phase rotation for the signal.

INVerted

This choice reverses the phase rotation of the signal by inverting the Q signal.
Example

`:RAD:CUR:POL INV`

The preceding example selects reverse phase rotation for the internal Q signal.

RST
NORM

Key Entry
Phase Polarity Normal Invert

:SRATe

Supported
ES267D with Option 601 or 602

`[:SOURce]:RADio:CUSTom:SRATe <val>`
`[:SOURce]:RADio:CUSTom:SRATe?`

This command sets the transmission symbol rate.

The variable `<val>` is expressed in symbols per second (sps–Msps) and the maximum range value is dependent upon the source of data (internal or external), the modulation type, and filter.

When user-defined filters are selected using the command in section ":`FILTer` on page 201, the upper symbol rate will be restricted using the following criteria:

- FIR filter length > 32 symbols: upper limit is 12.5 Msps
- FIR filter length > 16 symbols: upper limit is 25 Msps

When internal FIR filters are used, these limit restrictions always apply. For higher symbol rates, the FIR filter length will be truncated as follows:

- Above 12.5 Msps, the FIR length will be truncated to 32 symbols
- Above 25 Msps, the FIR length will be truncated to 16 symbols

This will impact the relative timing of the modulated data, as well as the actual filter response.

A change in the symbol rate value effects the bit rate value.

To change the modulation type, refer to ":`MODulation[:TYPE]` on page 204.

Example

`:RAD:CUR:SRAT 10KSPS`

The preceding example sets the symbol rate to 10K symbols per second.

RST
+2.43000000E+004

Table 1:

<table>
<thead>
<tr>
<th>Modulation Type</th>
<th>Bits per Symbol</th>
<th>Internal Data</th>
<th>External Serial Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>BPSK</td>
<td>1</td>
<td>1 sps–50 Msps</td>
<td>1 sps–50 Msps</td>
</tr>
<tr>
<td>QPSK2</td>
<td>1</td>
<td>1 sps–50 Msps</td>
<td>1 sps–50 Msps</td>
</tr>
<tr>
<td>MSK</td>
<td>2</td>
<td>1 sps–25 Msps</td>
<td>1 sps–25 Msps</td>
</tr>
<tr>
<td>C4FM</td>
<td>2</td>
<td>1 sps–25 Msps</td>
<td>1 sps–25 Msps</td>
</tr>
</tbody>
</table>
Digital Modulation Commands
Custom Subsystem–Option 601 and 602 [:SOURce]:RADio:CUSTom

Key Entry

Symbol Rate

- **NONE**
- **AC4Fm**
- **ACQPsk**
- **BLUEtooth**
- **CDPD**

Supported

E8267D with Option 601 or 602

[:SOURce]:RADio:CUSTom:STANdard:SELect NONE|AC4Fm|ACQPsk|BLUEtooth|CDPD

This command selects a pre-defined setup for Custom (with the appropriate defaults) and/or clears the selection.

- **NONE**
 - This choice clears the current pre-defined Custom format.
- **AC4Fm**
 - This choice sets up an Association of Public Safety Communications Officials (APCO) compliant, compatible 4-level frequency modulation (C4FM) format.
- **ACQPsk**
 - This choice sets up an Association of Public Safety Communications Officials (APCO) compliant, compatible quadrature phase shift keying (CQPSK) format.
- **BLUEtooth**
 - This choice sets up a Bluetooth (2-level frequency shift keying) format.
- **CDPD**
 - This choice sets up a minimum shift keying Cellular Digital Packet Data (CDPD) format.

Example

:RAD:CUST:STAN:SEL AC4FM

The preceding example selects the AC4FM pre-defined operating mode.

*RST

Key Entry

- **NONE**
- **APCO 25w/C4FM**
- **APCO 25w/CQPSK**
- **Bluetooth**
- **CDPD**

206 Chapter 5
Digital Modulation Commands
Custom Subsystem–Option 601 and 602 [:SOURce]:RADio:CUSTom

:TRIGger:TYPE

Supported E8267D with Option 601 or 602

[:SOURce]:RADio:CUSTom:TRIGger:TYPE CONTinuous|SINGle|GATE

[:SOURce]:RADio:CUSTom:TRIGger:TYPE?

This command sets the trigger mode (type) that controls the data transmission.

Triggers control the data transmission by telling the PSG when to transmit the modulating signal. Depending on the trigger settings for the PSG, the data transmission can occur once, continuously, or the PSG may start and stop the transmission repeatedly (GATE mode).

A trigger signal comprises both positive and negative signal transitions (states), which are also called high and low periods. You can configure the PSG to trigger on either state of the trigger signal. It is common to have multiple triggers, also referred to as trigger occurrences or events, occur when the signal generator requires only a single trigger. In this situation, the PSG recognizes the first trigger and ignores the rest.

When you select a trigger mode, you may lose the signal (carrier plus modulating) from the RF output until you trigger the modulating signal. This is because the PSG sets the I and Q signals to zero volts prior to the first trigger event, which suppresses the carrier. After the first trigger event, the signal's final I and Q levels determine whether you see the carrier signal or not (zero = no carrier, other values = visible carrier). At the end of most data patterns, the final I and Q points are set to a value other than zero. If you create your own data file, you can set the initial I and Q voltages to values other than zero, and set the last I and Q values to zero. Create your own file using the front-panel UI (see the E8257D/67D PSG Signal Generators User’s Guide), or download a file you create external to the PSG (see the E8257D/67D PSG Programming Guide).

There are four parts to configuring the trigger:

- Choosing the trigger type, which controls the data transmission.
- Setting the data pattern’s response to triggers:
 - CONTinuous, see “:TRIGger:TYPE:CONTinuous[:TYPE]” on page 208
 - SINGle, selecting the mode also sets the response (This differs from using the single mode for the ARB formats.)
 - GATE, selecting the mode also sets the response
- Selecting the trigger source (see “:TRIGger:[SOURce]” on page 210), which determines how the PSG receives its trigger signal, internally or externally. The GATE choice requires an external trigger.
- Setting the trigger polarity when using an external source:
 - CONTinuous and SINGle, see “:TRIGger:[SOURce]:EXTERNAL:SLOPe” on page 212
 - GATE, see “:TRIGger:TYPE:GATE:ACTive” on page 209

For more information on triggering, see the E8257D/67D PSG Signal Generators User’s Guide.

The following list describes the trigger type command choices:

CONTinuous Upon triggering, the data pattern repeats continuously.
SINGle Upon triggering, the data pattern plays once.
Digital Modulation Commands
Custom Subsystem–Option 601 and 602 [:SOURce]:RADio:CUSTom

GATE

An external trigger signal controls the data transmission. The modulating signal waits for the first active trigger signal state to begin. After the initial trigger, the behavior is dependent on whether the signal incorporates framed or unframed data. Because the PSG provides only unframed data for real-time custom, to transmit a framed data signal you must create an external file that incorporates the framing and download it to the PSG. The following list describes the behavior differences between the two types of data transmissions:

- For unframed data, an external trigger signal repeatedly starts and stops the data transmission. The length of each transmission depends on the duty period of the trigger signal and the gate polarity selection (see "::TRIGger::TYPE::GATE::ACTive" on page 209). Data transmits during the active polarity selection state and stops during the inactive state. The active state can be set high or low.

NOTE The real-time custom gating behavior described above is opposite to the ARB gating behavior.

- For framed data, an external trigger signals the PSG to start transmitting at the beginning of a frame during active states, but only stops at the end of a frame when the end occurs during the inactive states. If the end of the frame extends into the next active trigger state, the signal transmits continuously. For information on downloading files, see the E8257D/67D PSG Programming Guide.

Example

::RAD:CUST::TRIG::TYPE SING

The preceding example selects the single trigger mode for data transmission.

*RST

Key Entry	Continuous	Single	Gated

::TRIGger::TYPE::CONTinuous::[TYPE]

Supported
E8267D with Option 601 or 602

[::SOURce]:RADio:CUSTom::TRIGger::TYPE::CONTinuous::[TYPE] FREE|TRIGger

[::SOURce]:RADio:CUSTom::TRIGger::TYPE::CONTinuous::[TYPE]?

This command selects the data pattern’s response to a trigger signal while using the continuous trigger mode.

For more information on triggering and to select the continuous trigger mode, see "::TRIGger::TYPE" on page 207.

The following list describes the data pattern’s response to each of the command choices:

FREE
Turning custom on immediately triggers the modulating signal. The signal repeats the data pattern until you turn the signal off, select another trigger, or choose another data pattern.

TRIGger
The modulating signal waits for a trigger before transmission begins. When the signal receives the trigger, it transmits the data continuously until you turn the signal off, select another trigger, or choose another data pattern.
Example

:RAD:CURV:TRIG:TYPE:CONT FREE

The preceding example selects the free-run mode for continuous data transmission.

*RST FREE

Key Entry Free Run Trigger & Run

:TRIGger:TYPE:GATE:ACTive

Supported E8267D with Option 601 or 602

[:SOURce]:RADio:CUSTom:TRIGger:TYPE:GATE:ACTive LOW|HIGH

[:SOURce]:RADio:CUSTom:TRIGger:TYPE:GATE:ACTive?

This command selects the active state (gate polarity) of the gate while using the gating trigger mode. The LOW and HIGH selections correspond to the low and high states of an external trigger signal. For example, when you select HIGH, the active state occurs during the high of the trigger signal. The PSG uses the active state to transmit the data pattern. When the inactive state occurs, the transmission stops at the last transmitted symbol, then restarts at the next symbol when the active state occurs. For more information on triggering and to select gating as the trigger mode, see “:TRIGger:TYPE” on page 207.

The following list describes the PSG’s gating behavior for the polarity selections:

LOW The PSG transmits the data pattern while the trigger signal is low (active state) and stops when the trigger signal goes high (inactive state).

HIGH The PSG transmits the data pattern while the trigger signal is high (active state) and stops when the trigger signal goes low (inactive state).

Example

:RAD:CURV:TRIG:TYPE:GATE:ACT HIGH

The preceding example selects a high external signal level as the active state for the gate trigger.

*RST HIGH

Key Entry Gate Active Low High
Digital Modulation Commands
Custom Subsystem–Option 601 and 602 [:SOURce]:RADio:CUSTom

:TRIGger[:SOURce]

Supported E8267D with Option 601 or 602

[:SOURce]:RADio:CUSTom:TRIGger[:SOURce] KEY|EXT|BUS

[:SOURce]:RADio:CUSTom:TRIGger[:SOURce]? This command sets the trigger source.

For more information on triggering, see "*:TRIGger:TYPE" on page 207. The following list describes the command choices:

KEY This choice enables manual triggering by pressing the front-panel Trigger hardkey.

EXT An externally applied signal triggers the modulating signal. This is the only choice that works with gating. The following settings affect an external trigger:

- The input connector for the trigger signal. You have a choice between the rear-panel PATTERN TRIG IN connector or the PATT TRIG IN 2 pin on the rear-panel AUXILIARY I/O connector. To make the connector selection, see "*:TRIGger[:SOURce]:EXTernal[:SOURce]" on page 212.

For more information on the connectors and on connecting the cables, see the E8257D/67D PSG Signal Generators User’s Guide.

- The trigger signal polarity:
 - gating mode, see "*:TRIGger:TYPE:GATE:ACTive" on page 209
 - continuous and single modes, see "*:TRIGger[:SOURce]:EXTernal:SLOPe" on page 212

- Any desired delay between when the PSG receives a trigger and when the data pattern responds to the trigger. There are two parts to setting the delay:
 - setting the amount of delay, see "*:TRIGger[:SOURce]:EXTernal:DELay" on page 211
 - turning the delay on, see "*:TRIGger[:SOURce]:EXTernal:DELay:STATe" on page 211

BUS This choice enables triggering over the GPIB using the *TRG or GET command, or the LAN and the AUXILIARY INTERFACE (RS-232) using the *TRG command.

Example

:RAD:CUST:TRIG BUS

The preceding example selects BUS triggering.

*RST EXT

Key Entry Trigger Key Ext Bus
Digital Modulation Commands

Custom Subsystem–Option 601 and 602 [:SOURce]:RADio:CUSTom

:TRIGger[:SOURce]:EXTernal:DELay

Supported E8267D with Option 601 or 602
[:SOURce]:RADio:CUSTom:TRIGger[:SOURce]:EXTernal:DELay <val>
[:SOURce]:RADio:CUSTom:TRIGger[:SOURce]:EXTernal:DELay?

This command sets the number of bits to delay the PSG’s response to an external trigger. The bit delay is a delay between when the PSG receives the trigger and when it responds to the trigger. The delay uses the clocks of the bit-clock to time the delay. After the PSG receives the trigger and the set number of delay bits (clocks) occurs, the PSG transmits the data pattern. The delay occurs after you enable the state. See :TRIGger[:SOURce]:EXTernal:DELay:STATe. You can set the number of bits either before or after enabling the state.

For more information on configuring an external trigger source and to select external as the trigger source, see "*:TRIGger[:SOURce]" on page 210.

Example
:RAD:CUST:TRIG:EXT:DELay 200000
The preceding example sets the delay for an external trigger for 200K bits.

*RST +0
Range 0–1048575
Key Entry Ext Delay Bits

:TRIGger[:SOURce]:EXTernal:DELay:STATe

Supported E8267D with Option 601 or 602
[:SOURce]:RADio:CUSTom:TRIGger[:SOURce]:EXTernal:DELay:STATe ON|OFF|1|0
[:SOURce]:RADio:CUSTom:TRIGger[:SOURce]:EXTernal:DELay:STATe?

This command turns the trigger delay on or off when using an external trigger source. For setting the delay time, see :TRIGger[:SOURce]:EXTernal:DELay, and for more information on configuring an external source, see "*:TRIGger[:SOURce]" on page 210.

Example
:RAD:CUST:TRIG:EXT:DEL:STAT 0
The preceding example disables the delay state for an external trigger source.

*RST 0
Key Entry Ext Delay Off On
\textbf{.TRIGGER[:SOURce]:EXTERNAL:SLope}

\textbf{Supported} \quad E8267D with Option 601 or 602

\begin{verbatim}
[:SOURce]:RADio:CUSTom:TRIGGER[:SOURce]:EXTERNAL:SLope POSitive|NEGative
[:SOURce]:RADio:CUSTom:TRIGGER[:SOURce]:EXTERNAL:SLope?
\end{verbatim}

This command sets the polarity for an external trigger signal while using the continuous or single triggering modes. To set the polarity for gating, see \textit{".TRIGGER:TYPE:ACTive"} on page 209.

The POSitive and NEGative selections correspond to the high (positive) and low (negative) states of the external trigger signal. For example, when you select POSitive, the waveform responds (transmits) during the high state of the trigger signal. When the PSG receives multiple trigger occurrences when only one is required, the signal generator uses the first trigger and ignores the rest.

For more information on configuring an external trigger source and to select external as the trigger source, see \textit{".TRIGGER[:SOURce]"} on page 210.

\textbf{Example}

\begin{verbatim}
:RAD:CUST:TRIG:EXT:SLOP NEG
\end{verbatim}

The preceding example selects the negative trigger as the active state for data transmission.

\textbf{*RST}

\begin{verbatim}
NEG
\end{verbatim}

\textbf{Key Entry} \quad Ext Polarity Neg Pos

\textbf{.TRIGger[:SOURce]:EXTERNAL[:SOURce]}

\textbf{Supported} \quad E8267D with Option 601 or 602

\begin{verbatim}
[:SOURce]:RADio:CUSTom:TRIGGER[:SOURce]:EXTERNAL[:SOURce] EPT1|EPT2|EPTRIGGER1|EPTRIGGER2
[:SOURce]:RADio:CUSTom:TRIGGER[:SOURce]:EXTERNAL[:SOURce]?
\end{verbatim}

This command selects which rear-panel connector the PSG uses to accept an externally applied trigger signal when external is the trigger source selection.

For more information on configuring an external trigger source and to select external as the trigger source, see \textit{".TRIGGER[:SOURce]"} on page 210. For more information on the rear-panel connectors, see the \textit{E8257D/67D PSG Signal Generators User’s Guide}.

The following list describes the command choices:

\begin{itemize}
\item \textbf{EPT1} \quad This choice is synonymous with EPTRIGGER1 and selects the PATTERN TRIG IN rear-panel connector.
\item \textbf{EPT2} \quad This choice is synonymous with EPTRIGGER2 and selects the PATT TRIG IN 2 pin on the rear-panel AUXILIARY I/O connector.
\item \textbf{EPTRIGGER1} \quad This choice is synonymous with EPT1 and selects the PATTERN TRIG IN rear-panel connector.
\item \textbf{EPTRIGGER2} \quad This choice is synonymous with EPT2 and selects the PATT TRIG IN 2 pin on the rear-panel AUXILIARY I/O connector.
\end{itemize}
Example
:RAD:CUST:TRIG:EXT EPT2
The preceding example selects an external trigger from the PATTERN TRIG IN 2 rear-panel connector.

*RST EPT1

Key Entry Patt Trig In 1 Patt Trig In 2

[:STATE]
Supported E8267D with Option 601 or 602
[:SOURce]:RADio:CUSTom[:STATE] ON|OFF|1|0
[:SOURce]:RADio:CUSTom[:STATE]?

This command enables or disables the Custom modulation format.

Although the Custom modulation is enabled with this command, the RF carrier is not modulated unless you activate the front panel Mod On/Off hardkey.

Example
:RAD:CUST OFF
The preceding example turns off the custom modulation format.

*RST 0

Key Entry Custom Off On

:VCO:CLOCK
Supported E8267D with Option 601 or 602
[:SOURce]:RADio:CUSTom:VCO:CLOCK INTERNAL|EXTERNAL
[:SOURce]:RADio:CUSTom:VCO:CLOCK?

This command enables an internal or external VCO clock. The external VCO clock is connected to the rear-panel BASEBAND GEN CLK IN connector. Use the :DACS:ALIGn command after an external VCO clock is first applied to the BASEBAND GEN CLK IN connector or when the VCO signal is lost and then re-acquired.

Example
:RAD:CUST:VCO:CLOC EXT
The preceding example selects an external VCO clock.

*RST Int

Key Entry VCO Clock Ext Int
Digital Modulation Subsystem ([;SOURce]:DM)

:EXTernal:Filter

Supported E8267D

[:SOURce]:DM:EXTernal:FILTer 40e6|THRough
[:SOURce]:DM:EXTernal:FILTer?

This command selects the filter or through path for I/Q signals routed to the rear-panel I and Q outputs.

40e6 This choice applies a 40 MHz baseband filter.
THRough This choice bypasses filtering.

Example

:DM:EXT:FILT 40E6

The preceding example selects the 40 MHz baseband filter.

*RST THR

Key Entry 40.000 MHz Through

:EXTernal:Filter:AUTO

Supported E8267D

[:SOURce]:DM:EXTernal:FILTer:AUTO ON|OFF|1|0
[:SOURce]:DM:EXTernal:FILTer:AUTO?

This command enables or disables the automatic filter selection for I/Q signals routed to the rear-panel I/Q outputs.

ON(1) This choice automatically selects the 40 MHz filter optimized for the current signal generator settings.

OFF(0) This choice disables the auto feature and allows you to select the 40 MHz filter or a through path. Refer to ":IQ:EXTernal:FILTer" on page 258 for selecting a filter or through path.

Example

:DM:EXT:FILT:AUTO 1

The preceding example allows automatic selection of the 40 MHz I/Q filter.

*RST 1 (ON)

Key Entry I/Q Output Filter Manual Auto
:EXTernal:HCRest

Supported E8267D

[:SOURce]:DM:EXTernal:HCRest [STATe] ON|OFF|1|0
[:SOURce]:DM:EXTernal:HCRest [STATe]?

This command changes the operating condition to accommodate I/Q inputs with a high crest factor.

ON (1) This choice turns high crest mode on for externally applied signals with high crest factors. High crest mode allows the signal generator to process these signals with less distortion. For crest factors higher than 4 dB, I/Q drive levels should be reduced by 1 dB for each dB above that level. In high crest mode, the maximum output level is reduced and power level accuracy is degraded.

OFF (0) This choice disables the high crest mode.

Example
:DM:EXT:HCR 0

The preceding example disables the high crest mode.

*RST NORM

Key Entry High Crest Mode Off On

:EXTernal:POLarity

Supported E8267D

[:SOURce]:DM:EXTernal:POLarity NORMal|INVert|INVerted
[:SOURce]:DM:EXTernal:POLarity?

This command, for backward compatibility with older ESG E44xxB models, selects normal or inverted I/Q signal routing. In inverted mode, the Q input is routed to the I modulator and the I input is routed to the Q modulator.

Example
:DM:EXT:POL INV

The preceding example inverts I and Q signal routing.

*RST NORM

Key Entry Int Phase Polarity Normal Invert
Digital Modulation Commands
Digital Modulation Subsystem [:SOURce]:DM

[:EXTer nal]:SOURce

Supported E8267D

[:SOURce]:DM:EXTernal:SOURce EXTernal|INTernal|BBG1|EXT600|OFF|SUM
[:SOURce]:DM:EXTernal:SOURce?

This command selects the I/Q signal source that is routed to the rear-panel I and Q output connectors.

EXTernal This choice routes a portion of the externally applied signals at the 50 ohm I and Q input connectors to the rear-panel I and Q output connectors.

INTernal This choice is for backward compatibility and performs the same function as the BBG1 selection.

BBG1 This choice routes a portion of the baseband generator I/Q signals to the rear-panel I and Q connectors and requires Option 602.

EXT600 This choice routes a portion of the externally applied signals at the 600 ohm I and Q input connectors to the rear-panel I and Q output connectors.

OFF This choice disables the output to the rear-panel I and Q output connectors.

The output is the analog component of the I and Q signals.

For selecting the I/Q source, refer to "::SOURce" on page 229.

Example
:DM:EXT:SOUR EXT

The preceding example routes the I/Q signals to the external 50 ohm rear-panel output.

*RST

Key Entry Ext 50 Ohm BBG1 Ext 600 Ohm Off

:IQADjustment:DELay

Supported E8267D

[:SOURce]:DM:IQADjustment:DELay <delay_val>
[:SOURce]:DM:IQADjustment:DELay?

This command sets a delay for both I and Q from the baseband to the I/Q outputs and to the RF output. This will allow you to time shift the I/Q with respect to triggering and markers. The absolute phase of both I and Q will change with respect to triggers and markers. A positive value advances the I and Q phase. The range limits are dependent on the current modulation format.

This feature is not compatible with constant envelope modulations and signals connected to the external I/Q inputs.

The <delay_val> variable is expressed in seconds.
Chapter 5

Digital Modulation Commands
Digital Modulation Subsystem [:SOURce]:DM

Example

:DM:IQAD:DEL .05SEC
The preceding example sets a 50 millisecond delay for the I and Q signals.

*RST +0.00000000E+000

Key Entry I/Q Delay

:IQADjustment:EXTernal:COFFset

Supported E8267D

[:SOURce]:DM:IQADjustment:EXTernal:COFFset <units>
[:SOURce]:DM:IQADjustment:EXTernal:COFFset?

This command sets the common mode offset voltage for both the in-phase (I) and quadrature-phase (Q) signals going to the rear-panel I and Q output connectors.

The <units> variable is expressed in volts (mV–V). This command is effective only if the state of the I/Q adjustment function is set to ON. Refer to ":IQADjustment[:STATe]" on page 224.

Example

:DM:IQAD:EXT:COFF -.1
The preceding example sets a negative .1 volt common mode offset voltage for the I and Q signals.

*RST +0.00000000E+000

Range −3 to 3

Key Entry Common Mode I/Q Offset

:IQADjustment:EXTernal:DIOFfset

Supported E8267D

[:SOURce]:DM:IQADjustment:EXTernal:DIOFfset <val><units>
[:SOURce]:DM:IQADjustment:EXTernal:DIOFfset?

This command sets the differential offset voltage for an in-phase (I) signal routed to the I output connectors.

The variable <val> is a numeric expression. The <units> variable is expressed in volts (mV–V).

This command is effective only if the state of the I/Q adjustment function is set to ON. Refer to ":IQADjustment[:STATe]" on page 224.

Example

:DM:IQAD:EXT:DIOF 1
The preceding example sets a 1 volt differential offset voltage for the I signal at the rear-panel I output connector.

*RST +0.00000000E+000

Range −3 to 3

Key Entry Diff. Mode I Offset
Digital Modulation Commands
Digital Modulation Subsystem [:SOURce]:DM

[:IQADjustment:EXTernal:DQOFfset]

Supported E8267D

[:SOURce]:DM:IQADjustment:EXTernal:DQOFfset <val><units>
[:SOURce]:DM:IQADjustment:EXTernal:DQOFfset?

This command sets the differential offset voltage for a quadrature-phase (Q) signal routed to the Q output connectors.

The variable <val> is a numeric expression. The <units> variable is expressed in volts (mV–V).

This command is effective only if the state of the I/Q adjustment function is set to ON. Refer to “:IQADjustment[:STATe]” on page 224.

Example

:DM:IQAD:EXT:DQOF 1

The preceding example sets a 1 volt differential offset voltage for the Q signal at the rear-panel Q connector.

*RST +0.00000000E+000

Range –3 to 3

Key Entry Diff. Mode Q Offset

[:IQADjustment:EXTernal:GAIN]

Supported E8267D

[:SOURce]:DM:IQADjustment:EXTernal:GAIN[1|2] <val><units>
[:SOURce]:DM:IQADjustment:EXTernal:GAIN?

This command sets the I/Q gain ratio (I/Q balance) for signals routed to the rear-panel I and Q output connectors. The I signal (GAIN 1) is increased for positive values and the Q signal (GAIN 2) level increases with negative values.

This command is effective only if the state of the I/Q adjustment function is set to ON. Refer to “:IQADjustment[:STATe]” on page 224.

Example

:DM:IQAD:EXT:GAIN2 1

The preceding example sets a Q gain ratio of 1 volt.

*RST +0.00000000E+000

Range –4 to 4

Key Entry I/Q Out Gain Balance
Digital Modulation Commands
Digital Modulation Subsystem [:SOURce]:DM

[:IQADjustment:EXTernal:IOFFset]

Supported E8267D

[:SOURce]:DM::IQADjustment::EXTernal:IOFFset <val><units>
[:SOURce]:DM::IQADjustment::EXTernal:IOFFset?

This command sets the offset voltage for a signal applied to the 600 ohm I input connector.

The variable <val> is a numeric expression. The <units> variable is expressed in volts (mV–V).

This command is effective only if the state of the I/Q adjustment function is set to ON. Refer to “::IQADjustment[:STATe]” on page 224.

Example
:DM::IQAD:EXT:IOFF 200MV

The preceding example sets a 200 millivolt offset for the signal applied to the I 600 ohm input connector.

*RST +0.00000000E+000
Range −5 to 5
Key Entry Ext In 600 Ohm I Offset

[:IQADjustment:EXTernal:IQATten]

Supported E8267D

[:SOURce]:DM::IQADjustment::EXTernal:IQATten <val><units>
[:SOURce]:DM::IQADjustment::EXTernal:IQATten?

This command sets the I/Q output attenuation level.

The variable <val> is a numeric expression. The <units> variable is expressed in decibels (dB).

The value set by this command is active even if the I/Q adjustment function is off.

Example
:DM::IQAD:EXT:IQAT 10.1

The preceding example sets the IQ attenuator level to 10.1 dB.

*RST +6.00000000E+000
Range 0–40
Key Entry I/Q Output Atten
:IQADjustment:EXTernal:QOFFset

Supported E8267D

[:SOURce]:DM:IQADjustment:EXTernal:QOFFset <val><units>
[:SOURce]:DM:IQADjustment:EXTernal:QOFFset?

This command sets the offset voltage for a signal applied to the 600 ohm Q input connector. The variable <val> is a numeric expression. The <units> variable is expressed in volts (mV–V).

This command is effective only if the state of the I/Q adjustment function is set to ON. Refer to ":IQADjustment[:STATe]" on page 224.

Example
:DM:IQAD:EXT:QOFF 200MV

The preceding example sets a 200 millivolt offset for the signal applied to the Q 600 ohm input connector.

*RST +0.00000000E+000
Range −5 to 5
Key Entry Ext In 600 Ohm Q Offset

:IQADjustment:GAIN

Supported E8267D

[:SOURce]:DM:IQADjustment:GAIN[1|2] <val>
[:SOURce]:DM:IQADjustment:GAIN?

This command sets the gain for the I signal (GAIN 1) relative to the Q signal, (GAIN 2). The gain ratio is expressed in decibels (dB).

This command is effective only if the state of the I/Q adjustment function is set to ON. Refer to ":IQADjustment[:STATe]" on page 224.

Example
:DM:IQAD:GAIN2 -3

The preceding example sets a gain of −3 dB for the Q signal relative to the I signal.

*RST +0.00000000E+000
Range −4 to 4 dB
Key Entry I/Q Gain Balance Source 1
Digital Modulation Commands
Digital Modulation Subsystem [:SOURce]:DM

:IQADjustment:IOFFset

Supported E8267D

[:SOURce]:DM:IQADjustment:IOFFset <val>
[:SOURce]:DM:IQADjustment:IOFFset?

This command adjusts the I channel offset value.

The <val> variable is expressed as a percent with 100% equivalent to 500 mV DC at the input connector. The minimum resolution is 0.025 percent.

When using this command to minimize the LO feedthrough signal, optimum performance is achieved when the command is sent after all other I/Q path commands are executed, such as those that change the internal phase polarity or adjust the modulator attenuator. If other adjustments are made after minimizing is performed, the LO feedthrough signal may increase.

This command is effective only if the state of the I/Q adjustment function is set to ON. Refer to “:IQADjustment[:STATe]” on page 224.

Example
:DM:IQAD:IOFF -30

The preceding example sets the I channel offset to –30%.

*RST +0.00000000E+000

Range -5E1 to +5E1

Key Entry I Offset

:IQADjustment:QOFFset

Supported E8267D

[:SOURce]:DM:IQADjustment:QOFFset <val>
[:SOURce]:DM:IQADjustment:QOFFset?

This command adjusts the Q channel offset value.

The <val> variable is expressed as a percent with 100% equivalent to 500 mV DC at the input connector. The minimum resolution is 0.025 percent.

When using this command to minimize the LO feedthrough signal, optimum performance is achieved when the command is sent after all other I/Q path commands are executed, such as those that change the internal phase polarity or adjust the modulator attenuator. If other adjustments are made after minimizing is performed, the LO feedthrough signal may increase.

This command is effective only if the state of the I/Q adjustment function is set to ON. Refer to “:IQADjustment[:STATe]” on page 224.
Digital Modulation Commands
Digital Modulation Subsystem [:SOURce]:DM

Example
:DM:IQAD:QOFF -30
The preceding example sets the Q channel offset to −30%.

*RST
+0.00000000E+000
Range
−5E1 to +5E1
Key Entry
Q Offset

[:IQADjustment:QSKew
Supported
E8267D
[:SOURce]:DM:IQADjustment:QSKew <val>
[:SOURce]:DM:IQADjustment:QSKew?
This command adjusts the phase angle (quadrature skew) between the I and Q vectors by increasing or decreasing the Q phase angle.
The <val> variable is expressed in degrees with a minimum resolution of 0.1.
If the signal generator is operating at frequencies greater than 3.3 GHz, quadrature skew settings greater than ±5 degrees will not be within specifications.
Positive skew increases the angle from 90 degrees while negative skew decreases the angle from 90 degrees. When the quadrature skew is zero, the phase angle between the I and Q vectors is 90 degrees.
This command is effective only if the state of the I/Q adjustment function is set to ON. Refer to “:IQADjustment[:STATe]” on page 224.
Example
:DM:IQAD:QSKew 4.5
The preceding example increases the phase angle by 4.5 degrees.

*RST
+0.00000000E+000
Range
−1E1 to +1E1
Key Entry
Quadrature Angle Adjustment

[:IQADjustment:SKEW
Supported
E8267D
[:SOURce]:DM:IQADjustment:SKEW[:DELay] <val>
[:SOURce]:DM:IQADjustment:SKEW?
This command changes the input skew which is a time delay difference between the I and Q signals. Equal and opposite skew is applied to both I and Q and affects the RF Output and I/Q output paths simultaneously. A positive value delays the I signal relative to the Q signal, and a negative value delays the Q signal relative to the I signal.
If the internal I/Q correction path is set to RF or BB the I/Q signals are already optimized and adjusting I/Q skew would add an impairment to the signals. If the internal I/Q correction path is set to Off, then adjusting the I/Q skew could improve the I/Q signals. The I/Q skew adjustment cannot be performed on the MSK, FSK, and C4FM constant envelope modulations.

I/Q skew adjustments are preserved when the instrument state is saved. I/Q skew adjustments are also preserved when instrument settings are changed. If the signal generator is calibrated, the skew adjustments are added to the calibration value used for the given signal generator state. If the signal generator is uncalibrated, the skew adjustments are re-applied directly.

Using I/Q skew while playing a user FIR file greater than 32 symbols will generate an error. The variable <val> is expressed in seconds. Range limits are determined by the modulation configuration but is limited to a maximum of ± 2 seconds.

Example

:DM:IQAD:SKEW .5

The preceding example sets the time delay difference between the I and Q signals to 500 milliseconds.

*RST +0.00000000E+000

Key Entry I/Q Timing Skew

:IQADjustment:SKEW:Path

Supported E8267D

[:SOURce]:DM:IQADjustment:SKEW:PATH RF BB

This command selects either the RF or BB (baseband) path as the path to which skew timing corrections will be applied. If there are no factory I/Q timing skew corrections data, then adjusting the I/Q timing skew for the selected path may improve the error vector magnitude (EVM) of the signal. Refer to the “:IQADjustment:SKEW” on page 222 for more information.

If internal I/Q corrections are available for the RF or external I/Q output (BB) path then the I/Q signals are already optimized and adjusting I/Q skew for either path would add an impairment to the signal.

Example

:DM:IQAD:SKEW:PATH RF

The preceding example selects the RF path as the path to which skew timing adjustments will be made.

*RST +0.00000000E+000

Key Entry I/Q Timing Skew Path
Digital Modulation Commands
Digital Modulation Subsystem [:SOURce:DM]

://IQADjustment[:STATe]
Supported E8267D
[:SOURce]:DM:IQADjustment[:STATe] ON|OFF|1|0
[:SOURce]:DM:IQADjustment[:STATe]?
This command enables or disables the I/Q adjustments.

Example
:DM:IQAD 1
The preceding example enables I/Q adjustments.

*RST 0 (OFF)

Key Entry I/Q Adjustments Off On

://MODulation:ATTen
Supported E8267D
[:SOURce]:DM:MODulation:ATTen <val>
[:SOURce]:DM:MODulation:ATTen?
This command sets the attenuation level for the I/Q signals being modulated through the signal generator RF path. The variable <val> is expressed in decibels (dB).

Example
:DM:MOD:ATT 10
The preceding example sets the modulator attenuator to 10 dB.

*RST +2.00000000E+000

Range 0–40 dB

Key Entry Modulator Atten Manual Auto

://MODulation:ATTen:AUTO
Supported E8267D
[:SOURce]:DM:MODulation:ATTen:AUTO ON|OFF|1|0
[:SOURce]:DM:MODulation:ATTen:AUTO?
This command enables or disables the modulator attenuator auto mode. The auto mode will be switched to manual if the signal generator receives a AUTO OFF or AUTO 0 command.

ON (1) This choice sets the modulator attenuator to auto mode which optimizes the attenuation setting for the current signal generator settings.

OFF (0) This choice sets the attenuator to manual mode and holds the attenuator at its current setting. Refer to “://MODulation:ATTen” on page 224 for setting the attenuation value.
Digital Modulation Commands
Digital Modulation Subsystem [:SOURce]:DM

Example
:DM:MOD:ATT:AUTO OFF

The preceding example sets the modulator attenuator to manual mode.

*RST 1

Key Entry Modulator Atten Manual Auto

:MODulation:ATTen:EXTernal

Supported E8267D

[:SOURce]:DM:MODulation:ATTen:EXTernal DEFault|MANual|MEASure

This command selects the external measurement used to set the attenuator level. Modulation attenuation “:MODulation:ATTen:AUTO” on page 224 must be in auto mode.

DEFault Use this choice to set the external I/Q input level to the default value of 500.0 mV.
MANual Use this choice to manually set the external input level. Refer to “:MODulation:ATTen:LEVel” on page 225 to set the input level.
MEASurement This choice uses a real-time measurement of the external input level to set the attenuator level. The measurement will be used to set the attenuator level setting. To perform this measurement, refer to “:MODulation:ATTen:LEVel:MEASurement” on page 226.

Example
:DM:MOD:ATT:EXT MAN

The preceding example sets manual as the method for setting the external I/Q input level.

*RST DEFault

Key Entry Ext Input Level (nnn mV) Default Man Meas

:MODulation:ATTen:EXTernal:LEVel

Supported E8267D

[:SOURce]:DM:MODulation:ATTen:EXTernal:LEVel <val><volt_units>

This command sets the I/Q signal voltage level at the external I/Q inputs. The voltage level set with this command is used as the input level setting for automatic attenuation.

Example
:DM:MOD:ATT:EXT:LEV 100MV

The preceding example sets the voltage level for the I and Q inputs to 100 millivolts.

*RST +4.0000000E-001

Range .05–1 Volt

Key Entry I/Q Output Atten
Digital Modulation Commands
Digital Modulation Subsystem [:SOURce]:DM

[:MODulation:ATTen:EXTernal:LEVel:MEASurement]

Supported E8267D

[:SOURce]:DM:MODulation:ATTen:EXTernal:LEVel:MEASurement

This command measures the RMS value of the external I/Q signal. The external input level must be set to Meas.

Key Entry Do External Input Level Measurement

[:MODulation:ATTen:OPTimize:BANDwidth]

Supported E8267D

[:SOURce]:DM:MODulation:ATTen:OPTimize:BANDwidth <val><rate>

[:SOURce]:DM:MODulation:ATTen:OPTimize:BANDwidth?

This command sets the expected bandwidth of the external I/Q signal. The bandwidth set with this command be used by the modulator attenuator for level setting.

The variable <val> is a number within the range limits and the variable <rate> is expressed as samples per second (sps, kbps, or mps).

Example

The preceding example measures the voltage level at the external I/Q inputs.

*RST +1.00000000E+006

Range 1E3–100E6

Key Entry Optimize for (nnn sps) Bandwidth

[:MODulation:FILTer]

Supported E8267

[:SOURce]:DM:MODulation:FILTer 40e6|THrough

[:SOURce]:DM:MODulation:FILTer?

This command enables you to select a filter or through path for I/Q signals modulated onto the RF carrier. Selecting a filter with this command automatically sets :MODulation:FILTer:AUTO to OFF (0).

40E6 This choice applies a 40 MHz baseband filter to the I/Q signals.

THThrough This choice uses through path filtering.

Example

:DM:MOD:FILT 40E6

The preceding example selects the 40 MHz filter for I/Q signals.

*RST THR

Key Entry 40.000 MHz Through
Digital Modulation Commands
Digital Modulation Subsystem [:SOURce]:DM

[:MODulation:FILT:Auto]

Supported E8267D

[:SOURce]:DM::MODulation::FILT:AutO ON|OFF|1|0

[:SOURce]:DM:MODulation:FILTer:AUTO?

This command enables or disables the automatic filter selection for I/Q signals modulated onto the RF carrier.

ON (1) This choice will automatically select the optimal filter.

OFF (0) This choice disables the automatic filter selection and allows you to select a filter or through path. Refer to "::IQ::MODulation::FILT:er" on page 236 for selecting a filter or through path.

Example

:DM:MOD:FILT:AUTO 0

The preceding example disables the automatic filter selection for I/Q signals.

*RST 1

Key Entry I/Q Mod Filter Manual Auto

[:POLarity::ALL]

Supported E8267D

[:SOURce]:DM::POLarity::ALL|NORMal|INVert|INVerted

[:SOURce]:DM::POLarity?

This command selects normal or inverted I/Q signal routing. In inverted mode, the Q input is routed to the I modulator and the I input is routed to the Q modulator, inverting the phase polarity.

NORMal This choice selects normal routing for the I and Q signals.

INVert (ed) This choice inverts the phase polarity by routing the I signal to the Q input of the I/Q modulator and the Q signal to the I input.

Example

:DM:POL INV

The preceding example swaps the I and Q routing paths.

*RST NORM

Key Entry Int Phase Polarity Normal Invert
Digital Modulation Commands
Digital Modulation Subsystem ([:SOURce]:DM)

:SKEW:PATH

Supported E8267D

[:SOURce]:DM:SKEW:PATH RF|BB
[:SOURce]:DM:SKEW:PATH?

This command selects the signal path that will be optimized using I/Q skew corrections. The other path maybe degraded.

- **RF** When RF is selected, the skew is optimized for the I/Q signal applied to the RF Output. The baseband (BB) output will be functional, but the I/Q skew applied will be optimized for the RF path. When using this choice, seven symbols of latency are added to the Arb based waveform. While in real-time mode, the maximum number of user symbols for the FIR is limited to 32.

- **BB** When BB is selected, the skew is optimized for the I/Q signal outputs on the rear-panel. The RF Output will be functional, but the I/Q skew applied will be optimized for the BB path. When using this choice, seven symbols of latency are added to the ARB based waveform. While in real-time mode, the maximum number of user symbols for the FIR is limited to 32.

NOTE You must have a skew calibration to use this command. I/Q skew corrections and calibration must be performed at an Agilent factory or service center.

Example

:DM:SKEW:PATH BB

The preceding example selects the baseband path for I/Q skew and calibration.

*RST RF

Key Entry Int I/Q Skew Corrections RF BB Off

:SKEW[:STATe]

Supported E8267D

[:SOURce]:DM:SKEW[:STATe] ON|OFF|1|0
[:SOURce]:DM:SKEW[:STATe]?

This command enables or disables the I/Q skew correction function.

Example

:DM:SKEW:STAT 0

The preceding example disables I/Q skew corrections.

*RST 1

Key Entry Int I/Q Skew Corrections RF BB Off
:SOURCE

Supported E8267D

[
[:SOURCE]:DM:SOURce[1] | 2 | EXTernal | INTernal | BBG1 | EXT600 | OFF
[:SOURCE]:DM:SOURce?

This command selects the I/Q modulator source for one of the two possible paths.

EXTernal This choice selects an external 50 ohm source as the I/Q input to I/Q modulator.

INTernal This choice is for backward compatibility with ESG E44xxB models and performs the same function as the BBG1 selection.

BBG1 This choice selects the baseband generator as the source for the I/Q modulator.

EXT600 This choice selects a 600 ohm impedance for the I and Q input connectors and routes the applied signals to the I/Q modulator.

OFF This choice disables the I/Q input.

Example

[:DM:SOURCE1 BBG1

The preceding example selects BBG1, the baseband generator, as the modulation source for path 1.

*RST EXT

Key Entry Ext 50 Ohm BBG1 Ext 600 Ohm Off

:SRATio

Supported All

[:SOURCE]:DM:SRATio <val><units>
[:SOURCE]:DM:SRATio?

This command enables you to set the power level difference (ratio) between the source one and the source two signals when the two signals are summed together. A positive ratio value reduces the amplitude for source two while a negative ratio value reduces the amplitude for source one.

The range for the summing ratio is dependent on the modulator attenuator setting for the signal generator that is summing the signals together. The minimum range is achieved when the modulator attenuator setting is zero and the maximum range is reached when the maximum attenuator value is used. The range can be calculated using the following formula:

± Range = 50 dB + Mod Atten

The variable <val> is expressed as a number. The variable <units> is expressed in decibels (dB).

For setting the modulator attenuator for real-time modulation formats, see “:IQ:MODulation:ATTen” on page 262 and “:IQ:MODulation:ATTen:AUTO” on page 262. For setting the modulator attenuator for Arb modulation formats, refer to the SCPI command subsystem for the Arb format being used and find the commands that contain the command mnemonics IQ:MODulation:ATTen.
Digital Modulation Commands
Dual ARB Subsystem–Option 601 or 602 ([:SOURce]:RADio:ARB)

Example

:DM:STAT 3DB
The preceding example sets the summing ratio for source 1 and source 2 to 3 dB.

*RST +0.00000000E+000

Range
Min: ± 50 dB Max: ± 90 dB

Key Entry Summing Ratio (SRC1/SRC2) x.xx dB

:STATe

Supported E8267D

[:SOURce]:DM:STATe ON|OFF|1|0
[:SOURce]:DM:STATe?
This command enables or disables the internal I/Q modulator. The signal generator I/Q annunciator is displayed when the I/Q modulator is on.
The I/Q modulator is enabled whenever a digital format is turned on.

Example

:DM:STAT OFF
The preceding example turns off the I/Q modulator.

*RST 0

Key Entry I/Q Off On

Dual ARB Subsystem–Option 601 or 602 ([:SOURce]:RADio:ARB)

:CLIPping

Supported E8267D with Option 601 or 602

[:SOURce]:RADio:ARB:CLIPping "<file_name>",IJQ|IORQ,<val>[,<val>]

This command sets the clipping level of the selected waveform segment to a percentage of its highest peak. The waveform must be selected before the clipping command is executed. For more information about clipping, refer to the E8257D/67D PSG Signal Generators User’s Guide.
The variable <val> is expressed as a percentage within a 10–100% range.

IJQ This choice clips the composite I/Q waveform.

IORQ This choice clips I and Q separately. When this choice is enabled, percentage values for both I and Q must be specified.

A value of 100 percent equates to no clipping.
For information on the file name syntax, see “File Name Variables” on page 10.
Example

```
:RAD:ARB:CLIP "ramp_test_wfm",IJQ,50
:RAD:ARB:CLIP "ramp_test_wfm",IORQ,50,60
```

The preceding examples clip the ramp_test_wfm waveform data file. The second example clips I and Q separately to 50% and 60% respectively.

*RST

<table>
<thead>
<tr>
<th>:DACS:ALIGN</th>
</tr>
</thead>
</table>

Supported

E8267D with Option 601 or 602

[:SOURce]:RADio:ARB:DACS:ALIGN

This command resets the signal generator’s I/Q DAC circuitry. This operation is required any time the external VCO clock signal is lost and re-acquired or when an external VCO clock signal is first applied to the BASEBAND GEN CLK IN connector.

<table>
<thead>
<tr>
<th>:DACS:ALIGN</th>
</tr>
</thead>
</table>

Range

<val>: 10–100 (0.1% resolution)

<table>
<thead>
<tr>
<th>:DACS:ALIGN</th>
</tr>
</thead>
</table>

Key Entry

Clipping Clipping Type |I+jQ| |I|,|Q| Clip |I+jQ| To Clip |I| To Clip |Q| To

:**GENERate:SINE**

Supported

E8267D with Option 601 or 602

[:SOURce]:RADio:ARB:GENERate:SINE ["<file_name>"] [,<osr>], [<scale>], [I|Q|IQ]

This command creates a sine wave waveform file and saves it in the signal generator’s volatile waveform memory (WFM1).

<table>
<thead>
<tr>
<th>:GENERate:SINE</th>
</tr>
</thead>
</table>

"<file_name>"

This variable names the file used to save the generated sine wave data.

<table>
<thead>
<tr>
<th>:GENERate:SINE</th>
</tr>
</thead>
</table>

<osr>

This variable sets the oversample ratio, which must be a value that is ≥ 4. If the specified oversample ratio is < 60 (the minimum number of samples or I/Q points), multiple periods are generated to create a waveform with at least 60 samples. The number of periods that will be created is 60 ÷ <osr> (quotient will round off to a whole number). A waveform with an oversample ratio ≥ 60 has one period.

<table>
<thead>
<tr>
<th>:GENERate:SINE</th>
</tr>
</thead>
</table>

<scale>

This variable sets the scale factor for the waveform. The scale factor must be between 0–1.

<table>
<thead>
<tr>
<th>:GENERate:SINE</th>
</tr>
</thead>
</table>

I|Q|IQ

The sine wave data can be applied to the I, Q, or IQ paths.

Executing this command without the "<file_name>" variable will generate a factory default SINE_TEST_WFM file. When using the variable "<file_name>" for this command, the “@” or “:” characters are not allowed.
Example

The preceding example generates an IQ sine wave and saves the data to a file named Sine_Wave. The oversampling ratio is 20, the scaling is set for 50%, and the data is applied to both the I and Q paths.

Range 4–32 Msamples (limited to available baseband memory)

:HEADER:CLEar

Supported E8267D with Option 601 or 602

`:SOURce:RADio:ARB:HEADER:CLEar`

This command clears the header information from the header file used by this modulation format. Header information consists of signal generator settings and marker routings associated with the waveform file. Refer to the E8257D/67D PSG Signal Generators User’s Guide for information on header files.

The dual ARB must be on for this command to function. To turn on the dual ARB, see “[:STATE]” on page 258

*RST N/A

Key Entry Clear Header

:HEADER:RMS

Supported E8267D with Option 601 or 602

This command sets the RMS value in the header file for the waveform designated by the "<file_name>" variable. The RMS value is expressed in volts. The filename variable includes the directory path and can designate a file in either the WFM1, NVWFM, or SEQ directories. For information on the file name syntax, refer to “File Name Variables” on page 10 and “ARB Waveform File Directories” on page 11. When a file is created with no header information then a header is automatically generated with all fields set to unspecified.

The <val> variable is the user-measured RMS value for the specified waveform. The UNSPecified parameter means that the signal generator will calculate the RMS value when it is needed. The signal generator calculation includes rise times and does not include consecutive zero level samples. DC offsets and noise are also included in the RMS measurement. Because the RMS calculation, done by the signal generator, is slow and may not be appropriate for your application it is recommended that the user calculate and enter their measured RMS value for the waveform file.

The RMS value is calculated as:
Digital Modulation Commands
Dual ARB Subsystem—Option 601 or 602 [:SOURce]:RADio:ARB

Example

[:SOURce]:RADio:ARB:HEADER:RMS "WFM1:Sine_Wave",.835
:RAD:ARB:HEADER:RMS "WFM1:Sine_Wave",UNSP

The first example sets a user-measured RMS value for the Sine_Wave waveform file in the waveform’s header file. The second example, the signal generator will calculate the RMS value when needed.

*RST N/A

Range 0 – 1.414213562373095

Key Entry N/A

:HEADer:SAVE

Supported E8267D with Option 601 or 602

[:SOURce]:RADio:ARB:HEADer:SAVE

This command saves the header information to the header file used by this modulation format. Header information consists of signal generator settings and marker routings associated with the waveform file. Refer to the E8257D/67D PSG Signal Generators User’s Guide for information on header files.

The dual ARB must be on for this command to function. To turn on the dual ARB, see “[:STATe]” on page 258

*RST N/A

Key Entry Save Setup To Header
:IQ:EXTernal:FILTER

Supported

E8267D with Option 601 or 602

```
[:SOURce]:RADio:ARB:IQ:EXTernal:FILTer 40e6|THrough
[:SOURce]:RADio:ARB:IQ:EXTernal:FILTer?
```

This command selects the filter or through path for I/Q signals routed to the rear-panel I and Q outputs. The filter has no effect on the modulated RF signal. Selecting a filter using this command will automatically set “:IQ:EXTernal:FILTER:AUTO” on page 234 to OFF(0) mode.

- **40e6**
 - This choice applies a 40 MHz baseband filter.

- **THThrough**
 - This choice selects the through path.

Example

```
:RAD:ARB:IQ:EXT:FILT 40E6
```

The preceding example selects a 40 MHz filter for the I/Q signals routed to the rear panel.

*RST

Key Entry

- `40.000 MHz`
- `Through`

:IQ:EXTernal:FILTER:AUTO

Supported

E8267D with Option 601 or 602

```
[:SOURce]:RADio:ARB:IQ:EXTernal:FILTer:AUto ON|OFF|1|0
[:SOURce]:RADio:ARB:IQ:EXTernal:FILTer:AUto?
```

This command enables or disables the automatic filter selection for I/Q signals routed to the rear-panel I/Q outputs.

- **ON(1)**
 - This choice automatically selects the 40 MHz filter optimized for the current signal generator settings.

- **OFF(0)**
 - This choice disables the auto feature and allows you to select the 40 MHz filter or a through path. Refer to “:IQ:EXTernal:FILTER” on page 258 for selecting a filter or through path.

Example

```
:RAD:ARB:IQ:EXT:FILT:AUto OFF
```

The preceding example disables the automatic filter selection.

*RST

Key Entry

- `I/Q Output Filter Manual Auto`
:IQ:MODulation:ATTen

Supported

ES267D with Option 601 or 602

[:SOURce]:RADio:ARB:IQ:MODulation:ATTen <val><units>

This command sets the attenuation level of the I/Q signals being modulated through the signal generator RF path. The variable <val> is expressed in decibels (dB)

Example

:RAD:ARB:IQ:MOD:ATT 20

The preceding example sets the attenuator level to 20 dB.

RST +2.00000000E+000

Range

0–40

Key Entry

Modulator Attenuator Manual Auto

:IQ:MODulation:ATTen:AUTO

Supported

ES267D with Option 601 or 602

[:SOURce]:RADio:ARB:IQ:MODulation:ATTen:AUTO ON|OFF|1|0

[:SOURce]:RADio:ARB:IQ:MODulation:ATTen:AUTO?

This command enables or disables the modulator attenuator auto mode. The auto mode will be switched to manual if the signal generator receives an AUTO OFF or AUTO 0 command.

Example

:RAD:ARB:IQ:MOD:ATT:AUTO 0

The preceding example selects the modulator attenuator manual mode.

RST 1

Key Entry

Modulator Attenuator Manual Auto
Digital Modulation Commands
Dual ARB Subsystem—Option 601 or 602 ([:SOURce]:RADio:ARB)

:IQ:MODulation:FILTer

Supported
E8267D with Option 601 or 602

[[:SOURce]:RADio:ARB:**IQ:**MODulation:FILTer:40e6|THrough
[[:SOURce]:RADio:ARB:**IQ:**MODulation:FILTer?]

This command enables you to select a filter or through path for I/Q signals modulated onto the RF carrier. This filter has no effect on the I/Q signal out the rear-panel. Selecting a filter using this command will automatically set “**:IQ:**MODulation:FILTer:AUTO” on page 236 to OFF(0) mode.

40E6 This choice applies a 40 MHz baseband filter to the I/Q signals.

THThrough This choice selects the through path.

Example

:RAD:ARB:**IQ:**MOD:FILT 40E6

The preceding example selects a 40 MHz filter.

*RST THR

Key Entry

40.000 MHz Through

:IQ:MODulation:FILTer:AUTO

Supported
E8267D with Option 601 or 602

[[:SOURce]:RADio:ARB:**IQ:**MODulation:FILTer:AUTO ON|OFF|1|0
[[:SOURce]:RADio:ARB:**IQ:**MODulation:FILTer:AUTO?]

This command enables or disables the automatic filter selection for I/Q signals modulated onto the RF carrier.

ON (1) This choice will automatically select optimized filters for the current signal generator setting.

OFF (0) This choice disables the automatic filter selection and allows you to select a digital modulation filter or through path. Refer to “**:IQ:**MODulation:FILTer” on page 236 for selecting a filter or through path.

Example

:RAD:ARB:**IQ:**MOD:FILT:AUTO 1

The preceding example allows for automatic filter selection.

*RST 1

Key Entry

I/Q Mod Filter Manual Auto
:MARKer:CLEar

Supported

ES8267D with Option 601 or 602

[:SOURce:]RADio:MARKer:CLEar "<file_name>",<marker>,<first_point>,<last_point>

This command clears a single marker point or a range of marker points on a waveform segment for the selected marker (1–4). The Dual ARB mode and all of the ARB modes use this command.

"<file_name>" This variable specifies the name of the waveform file in volatile waveform memory (WFM1). Use the AUTOGEN_WAVEFORM file when clearing marker points for the currently active ARB format and then save the file using a different file name. The PSG automatically creates a file, using current settings, and names it AUTOGEN_WAVEFORM whenever an ARB format is turned on (except Dual ARB); the same file name is used for all ARB formats. When all ARB formats are off, this file will still be in waveform memory (WFM1) and is available for use by the Dual ARB. For information on the file name syntax, see “File Name Variables” on page 10.

<marker> This variable selects the marker number; an integer value from one to four.

<first_point> This variable defines the first point in a range of points. The number must be greater than or equal to one, and less than or equal to the total number of waveform points.

If you enter a value for either the first marker point or the last marker point that would make the first marker point occur after the last, the last marker point automatically adjusts to match the first marker point.

<last_point> This variable defines the last point in a range of points. The number must be greater than or equal to the first point, and less than or equal to the total number of waveform points.

To clear a single marker point, use the same marker point for the first and last point variables. For more information on markers and ARB files, refer to the *E8257D/67D PSG Signal Generators User’s Guide*.

Example

:RAD:ARB:MARK:CLE "Test_Data",1,1,300

The preceding example clears marker 1 from the first point through the 300th point in the Test_Data file.

Range

<marker>: 1–4

<first_point>: 1–number of waveform points

<last_point>: <first_point>–number of waveform points

Key Entry

<table>
<thead>
<tr>
<th>Set Marker Off</th>
<th>Range Of Points</th>
<th>Marker 1 2 3 4</th>
<th>First Mkr Point</th>
<th>Last Mkr Point</th>
</tr>
</thead>
</table>

Chapter 5 237
Digital Modulation Commands

Dual ARB Subsystem—Option 601 or 602 ([:SOURce]:RADio:ARB)

:MARKer:CLEar:ALL

Supported E8267D with Option 601 or 602

[:SOURce]:RADio:ARB:MARKer:CLEar:ALL "<file_name>",<marker>

This command clears all marker points on a waveform segment for the selected marker (1–4). The Dual ARB player and all of the ARB formats use this command. With all marker points cleared, the event output signal level is set low.

"<file_name>" This variable specifies the name of the waveform file in volatile waveform memory (WFM1). Use the AUTOGEN_WAVEFORM file when clearing all marker points for the currently active ARB format and then save the file using a different file name. The PSG automatically creates a file, using current settings, and names it AUTOGEN_WAVEFORM whenever an ARB format is turned on (except Dual ARB); the same file name is used for all ARB formats. When all ARB formats are off, this file will still be in waveform memory (WFM1) and is available for use by the Dual ARB. For information on the file name syntax, see “File Name Variables” on page 10

<marker> This variable selects the marker number; an integer value from one to four.

Example

:RAD:ARB:MARK:CLE:ALL "Test_Data",1

The preceding example clears marker 1 from the all waveform points in the Test_Data file.

Range 1–4

Key Entry Marker 1 2 3 4 Set Marker Off All Points

:MARKer:ROTate

Supported E8267D with Option 601 or 602

[:SOURce]:RADio:ARB:MARKer:ROTate "<file_name>",<rotate_count>

This command shifts the marker points for all markers in a waveform earlier or later by the value of the <rotate_count> variable. The Dual ARB player and all of the ARB formats use this command.

You can use a positive or negative value. When a marker point is close to the end of the waveform and the <rotate_count> value is greater than the number of remaining marker points, but less than the total number of marker points, the marker points that would move beyond the end of the waveform wrap to the beginning of the waveform. For example, if a marker point resides at sample point 195 out of 200, and the <rotate_count> value is twenty-five, the marker point wraps to the beginning of the waveform and continues out to the twentieth waveform point.

To set the marker points in a waveform, refer to “:MARKer:[SET]” on page 239.

"<file_name>" This variable specifies the name of the waveform file in volatile waveform memory (WFM1). Use the AUTOGEN_WAVEFORM file when rotating marker points for the currently active ARB format and then save the file using a different file name. The PSG automatically creates a file, using current settings, and names it AUTOGEN_WAVEFORM whenever an ARB format is turned on (except Dual ARB); the same file name is used for all ARB formats. When all ARB formats are off, this file will still be in waveform memory (WFM1) and is available for use by the Dual ARB. For information on the file name syntax, see “File Name Variables” on page 10.
Example

:RAD:ARB:MARK:ROT "Test_Data",100

The preceding example shifts all markers set in the Test_Data file 100 points later. If the first set point in the file is at 50, then after sending this command, the first set point will be 150 (assuming the Test_Data file has at least 150 points) and no later set points wrapped around to the beginning of the file.

Range

- (n – 1) to (n – 1)

n = number of points in the waveform

:MARKer:[SET]

Supported

E8267D with Option 601 or 602

[:SOURce]:RADio:ARB:MARKer:[SET] "<file_name>"",<marker>,<first_point>,<last_point>,<skip_count>

This command sets a single marker point or a range of marker points on a waveform segment for the selected marker (1–4). The Dual ARB player and all of the ARB formats use this command.

The PSG provides four independent markers. Each marker routes an output signal to the rear-panel event connector number (BNC—EVENT 1 and EVENT 2 or AUXILIARY I/O—EVENT 3 and EVENT 4) that corresponds to the marker number. A marker consists of marker points placed at defined sample points in a waveform segment. This means that a marker point cannot be less than one or greater than the last sample point in the waveform. Marker points are cumulative, so multiple command executions with different range values, without first clearing the existing points, places additional marker points on the waveform. Because of this cumulative behavior, it is a good practice to clear existing marker points prior to setting new points. This will eliminate unexpected marker pulses. Refer to “:MARKer:CLEAR” on page 237 and “:MARKer:CLEAR:ALL” on page 238 for information on clearing marker points.

For waveforms generated on the signal generator (baseband generator), the PSG automatically places a marker point at the first waveform sample for markers one and two.

NOTE You can set markers for either positive or negative polarity. The following discussions for this command assume positive marker polarity. When using negative marker polarity, the marker pulses occur during the periods of no marker points.

There are three ways to place marker points using this command:

• consecutive marker points over a range that collectively create a single marker pulse that spans the range

• equally spaced marker points over a range, so that a marker pulse occurs at each sample point that coincides with a marker point (Using this method, you can configure a clock signal by setting the <skip_count> variable to one.)

• a single marker point placed at a specific sample point in the waveform, which outputs a single pulse relative to the marker point location (To configure a single marker point, set the first and last points to the same number.)

For more information on markers, refer to the E8257D/67D PSG Signal Generators User’s Guide.
Digital Modulation Commands
Dual ARB Subsystem–Option 601 or 602 ([:SDURe]:RADio:ARB)

The following list describes the command variables:

"<file_name>" This variable specifies the name of the waveform file in volatile waveform memory (WFM1). Use the AUTOGEN_WAVEFORM file when setting marker points for the currently active ARB format and then save the file using a different file name. The PSG automatically creates a file, using current settings, and names it AUTOGEN_WAVEFORM whenever an ARB format is turned on (except Dual ARB); the same file name is used for all ARB formats. When all ARB formats are off, this file will still be in waveform memory (WFM1) and is available for use by the Dual ARB. For information on the file name syntax, see “File Name Variables” on page 10

<marker> This variable selects the marker number; an integer value from one to four.

<first_point> This variable defines the first point in the range over which the marker is placed. This number must be greater than or equal to one, and less than or equal to the total number of waveform points.

If you enter a value for either the first marker point or the last marker point that would make the first marker point occur after the last, the last marker point is automatically adjusted to match the first marker point.

<last_point> This variable defines the last point in the range over which the marker will be placed. This value must be greater than or equal to the first point, and less than or equal to the total number of waveform points.

<skip_count> This variable defines the marker point pattern across the range. A zero value means the marker points occur consecutively across the range. A value greater than zero creates a repeating marker point pattern across the range, where the gap between the marker points is equal to the <skip_count> value. The gaps begin after the first marker point. Each marker point in the pattern, which is only one point wide, produces a marker pulse.

Example
:RAD:ARB:MARK "Test_Data",1,40,100,2

The preceding example sets marker 1 on the first point, 40, the last point, 100, and every third point (skip 2) between 40 and 100 (assuming the Test_Data file has at least 100 points).

Range
<marker>: 1–4
<first_point>: 1–number of waveform points
<last_point>: <first_point>–number of waveform points
<skip_count>: 0–number of points in the range

Key Entry
Set Marker on Range Of Points Marker 1 2 3 4 First Mkr Point Last Mkr Point
Skipped Points Apply to Waveform
Digital Modulation Commands
Dual ARB Subsystem–Option 601 or 602
[:SOURce]:RADio:ARB

:MDEStination:AAMPlitude

Supported
E4438C with Option 601 or 602

[:SOURce]:RADio:ARB:MDEStination:AAMPlitude NONE|M1|M2|M3|M4

[:SOURce]:RADio:ARB:MDEStination:AAMPlitude?

This command routes the selected marker to the Alternate Amplitude function. The `NONE` parameter clears the marker for the Alternate Amplitude function.

*RST

<table>
<thead>
<tr>
<th>Key Entry</th>
<th>Marker 1</th>
<th>Marker 2</th>
<th>Marker 3</th>
<th>Marker 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>Marker 1</td>
<td>Marker 2</td>
<td>Marker 3</td>
<td>Marker 4</td>
</tr>
</tbody>
</table>

:MDEStination:ALCHold

Supported
E8267D with Option 601 or 602

CAUTION
Incorrect ALC sampling can create a sudden unleveled condition that may create a spike in the RF output potentially damaging a DUT or connected instrument. Ensure that you set markers to let the ALC sample over an amplitude that accounts for the high power levels within the signal.

[:SOURce]:RADio:ARB:MDEStination:ALCHold NONE|M1|M2|M3|M4

[:SOURce]:RADio:ARB:MDEStination:ALCHold?

This command disables the marker ALC hold function, or it enables the marker hold function for the selected marker. For setting markers, see “:MARKer:[SET]” on page 239.

Use the ALC hold function when you have a waveform signal that incorporates idle periods, or when the increased dynamic range encountered with RF blanking is not desired. The ALC leveling circuitry responds to the marker signal during the marker pulse (marker signal high), averaging the modulated signal level during this period.

The ALC hold function operates during the low periods of the marker signal. The marker polarity determines when the marker signal is high. For a positive polarity, this is during the marker points. For a negative polarity, this is when there are no marker points. For setting a marker’s polarity, see “:MPOLarity:MARKer1|2|3|4” on page 243.

NOTE
Do not use the ALC hold for more than 100 ms, because it can affect the waveform’s output amplitude.

The marker signal has a minimum of a two-sample delay in its response relative to the waveform signal response. To compensate for the marker signal delay, offset marker points from the waveform sample point at which you want the ALC sampling to begin.

The ALC hold setting is part of the file header information, so saving the setting to the file header saves the current marker routing for the waveform file.

NOTE
A waveform file that has unspecified settings in the file header uses the previous waveform’s routing settings.

For more information on the marker ALC hold function, see the E8257D/67D PSG Signal Generators User’s Guide. For setting the marker points, see “:MARKer:[SET]” on page 239.
Digital Modulation Commands

Dual ARB Subsystem—Option 601 or 602 ([SOURce]:RADio:ARB)

<table>
<thead>
<tr>
<th>NONE</th>
<th>This terminates the marker ALC hold function.</th>
</tr>
</thead>
<tbody>
<tr>
<td>M1–M4</td>
<td>These are the marker choices. The ALC hold feature uses only one marker at a time.</td>
</tr>
<tr>
<td>RST</td>
<td>NONE</td>
</tr>
</tbody>
</table>

Example

`:RAD:ARB:MDEST:ALCH M1`

The preceding example routes marker 1 to the ALC Hold function.

Remarks

N/A

:MDESTination:PULSe

Supported

ES8267D with Option 601 or 602

CAUTION

The pulse function incorporates ALC hold. Incorrect ALC sampling can create a sudden unlevelled condition that may create a spike in the RF output potentially damaging a DUT or connected instrument. Ensure that you set markers to let the ALC sample over an amplitude that accounts for the high power levels within the signal.

```
[:SOURce]:RADio:ARB:MDESTination:PULSe NONE|M1|M2|M3|M4
```

This command enables or disables the marker pulse/RF blanking function for the selected marker. The function automatically uses the ALC hold function, so there is no need to select both ALC hold and marker pulse/RF blanking functions for the same marker.

NOTE

Do not use ALC hold for more than 100 ms, because it can affect the waveform’s output amplitude.

The signal generator blanks the RF output when the marker signal goes low. The marker polarity determines when the marker signal is low. For a positive polarity, this is during the marker points. For a negative polarity, this is when there are no marker points. For setting a marker’s polarity, see “:MPOLarity:MARKer1|2|3|4” on page 243.

NOTE

Set marker points prior to using this function. Enabling this function without setting marker points may create a continuous low or high marker signal, depending on the marker polarity. This causes either no RF output or a continuous RF output. See “:MARKer:[SET]” on page 239 for setting the marker points.

The marker signal has a minimum of a two-sample delay in its response relative to the waveform signal response. To compensate for the marker signal delay, offset marker points from the waveform sample point at which you want the RF blanking to begin. The RF blanking setting is part of the file header information, so saving the setting to the file header saves the current marker routing for the waveform file.
NOTE A waveform file that has unspecified settings in the file header uses the previous waveform's routing settings. This could create the situation where there is no RF output signal, because the previous waveform used RF blanking.

For more information on the marker RF blanking function, see the E8257D/67D PSG Signal Generators User’s Guide.

NONE This terminates the marker RF blanking/pulse function.

M1–M4 These are the marker choices. The RF blanking/pulse feature uses only one marker at a time.

Example

:RAD:ARB:MDES:PULS M2

The preceding example routes marker 2 to Pulse/RF Blanking.

*RST NONE

Key Entry None Marker 1 Marker 2 Marker 3 Marker 4

:MPOLarity:MARKer1|2|3|4

Supported E8267D with Option 601 or 602

[:SOURce]:RADio:ARPOLarity:MARKer1|2|3|4 NEGative|POSitive

[:SOURce]:RADio:ARPOLarity:MARKer1|2|3|4?

This command sets the polarity for the selected marker. For a positive marker polarity, the marker signal is high during the marker points. For a negative marker polarity, the marker signal is high during the period of no marker points.

Example

:RAD:ARB:MPOL:MARK3 NEG

The preceding example sets the polarity for marker 3 to negative.

*RST POS

Key Entry Marker 1 Polarity Neg Pos Marker 2 Polarity Neg Pos Marker 3 Polarity Neg Pos Marker 4 Polarity Neg Pos
Digital Modulation Commands
Dual ARB Subsystem–Option 601 or 602 ([SOURce]:RADio:ARB)

[:NOISe]

Supported E8267D with Option 601 or 602 and Option 403

[:SOURce]:RADio:ARB:NOISe[:STATe] ON|OFF|1|0
[:SOURce]:RADio:ARB:NOISe[:STATe]?

This command enables or disables adding real-time, non-repeating additive white gaussian noise (AWGN) to the carrier modulated by the waveform being played by the Dual ARB waveform player. The noise bandwidth will be at least 0.8 times the sample rate, or 1.6 times the sample rate depending on the bandwidth factor. For information on the bandwidth factor, refer to “:NOISe:BFACtor”.

When the bandwidth factor is 2, and the sample rate is greater than 50 Msamples/sec, noise cannot be enabled. Maximum bandwidth cannot exceed 80 MHz. Any oversampling in the waveform increases the noise bandwidth by a factor equal to the oversampling.

Example

[:RAD:ARB:NOIS ON

The preceding example applies real-time AWGN to the carrier.

*RST 0

Key Entry Real-time Noise Off On

[:NOISe:BFACtor]

Supported E8267D with Option 601 or 602 and Option 403

[:SOURce]:RADio:ARB:NOISe:BFACtor <1 - 2>
[:SOURce]:RADio:ARB:NOISe:BFACtor?

This command sets the flat noise bandwidth for applied real time noise. The bandwidth factor will set the noise bandwidth to at least 0.8 times the sample rate when the bandwidth factor is 1 or to 1.6 times the sample rate if the bandwidth factor is 2. Maximum bandwidth cannot exceed 80 MHz.

When the bandwidth factor is 2, and the sample rate is greater than 50 megasamples/sec, noise cannot be enabled. Any oversampling in the waveform increases the noise bandwidth by a factor equal to the oversampling.

Example

[:RAD:ARB:NOIS:BFAC 2

The preceding example sets the bandwidth factor to 2 and increases the flat noise bandwidth by at least 1.6 times the ARB sample clock rate.

*RST +1

Key Entry Noise Bandwidth Factor
Digital Modulation Commands
Dual ARB Subsystem—Option 601 or 602 ([SORce]:RAdio:ARB)

:NOISe:CBWidth

Supported E8267D with Option 601 or 602 and Option 403

[:SORce]:RAdio:ARB:NOISe:CBWidth <1Hz-80MHz>
[:SORce]:RAdio:ARB:NOISe:CBWidth?

This command selects the carrier bandwidth over which the AWGN (additive white gaussian noise) is applied. The noise power will be integrated over the selected bandwidth for the purposes of calculating C/N (carrier to noise ratio). The carrier bandwidth is limited to the ARB sample rate but cannot exceed 80 MHz. For more information refer to “:NOISe” and “:NOISe:BFACtor” on page 244.

*RST +1.00000000E+000

Range 1.0 Hz

Key Entry Carrier Bandwidth

:NOISe:CN

Supported E8267D with Option 601 or 602 and Option 403

[:SORce]:RAdio:ARB:NOISe:CN <-100dB - 100dB>
[:SORce]:RAdio:ARB:NOISe:CN?

This command sets the carrier to noise ratio in dB. The carrier power is defined as the total modulated signal power without noise power added. The noise power is applied over the specified bandwidth of the carrier signal. For more information, refer to “:NOISe:CBWidth”.

Example

:RAD:ARB:NOIS:CN 50DB

The preceding example sets the carrier to noise ratio to 50 dB.

*RST +0.00000000E+000

Key Entry Carrier to Noise Ratio

:REFe rence:EXTer nal:FREQuency

Supported E8267D with Option 601 or 602

[:SORce]:RAdio:ARB:REFe rence:EXTer nal:FREQuency <val>
[:SORce]:RAdio:ARB:REFe rence:EXTer nal:FREQuency?

This command allows you to enter the frequency of the external reference.

The variable <val> is expressed in hertz (Hz–MHz).

The value specified by this command is effective only when you are using an external ARB reference applied to the BASEBAND GEN REF IN rear-panel connector.

To specify external as the ARB reference frequency you must set the ARB reference to external. Refer to “:REFe rence:[SORce]” on page 246 for more information.
Digital Modulation Commands
Dual ARB Subsystem—Option 601 or 602 ([:SOURce]:RADio:ARB)

Example

:RAD:ARB:REF:EXT:FREQ 500KHZ

The preceding example sets the external clock frequency reference to 500 kHz.

*RST

+1.00000000E+007

Range

2.5E5–1E8

Key Entry

Reference Freq

:REFerence[:SOURce]

Supported

E8267D with Option 601 or 602

[[:SOURce]:RADio:ARB:REFerence[:SOURce] INTernal|EXTernal
[[:SOURce]:RADio:ARB:REFerence[:SOURce]?]

This command selects either an internal or external reference for the waveform clock.

If the EXTernal choice is selected, the external frequency value must be entered and the signal must be applied to the BASEBAND GEN REF IN rear-panel connector.

Refer to “:REFerence:EXTernal:FREQuency” on page 245 to enter the external reference frequency.

Example

:RAD:ARB:REF EXT

The preceding example sets the ARB reference to external.

*RST

INT

Key Entry

ARB Reference Ext Int

:RETrigger

Supported

E8267D with Option 601 or 602

[[:SOURce]:RADio:ARB:RETrigger ON|OFF|IMMediate
[[:SOURce]:RADio:ARB:RETrigger?]

This command selects the signal generator’s response to a trigger signal while using the single trigger mode.

When the PSG receives multiple trigger occurrences, when only one is required, it uses the first trigger and ignores the rest. For more information on triggering and to select the single trigger mode, see “:TRIGger:TYPE” on page 250.

The following list describes the waveform’s response to each of the command choices:

 ON The waveform waits for a trigger before play begins and accepts a subsequent trigger during playback. If there is a subsequent trigger during playback, the waveform completes its current playback and then plays one more time. If there is no subsequent trigger, the waveform plays once and stops until it receives another trigger.
OFF The waveform waits for a trigger before play begins and ignores triggers during playback. To restart the waveform, you must send a trigger after the playback completes.

IMMediate The waveform waits for a trigger before play begins and accepts a subsequent trigger during playback. Upon receipt of the subsequent trigger, the waveform immediately resets and begins playing from the beginning of the file. For a waveform sequence, this means to the beginning of the first segment in the sequence.

Example
:RAD:ARB:RETR IMM
The preceding example selects the immediate mode for the single mode trigger.

*RST ON
Key Entry On Off Immediate

`:RSCAling`

Supported E8267D with Option 601 or 602
[:SOURce]:RADio:ARB:RSCaling <val>
[:SOURce]:RADio:ARB:RSCaling?

This command adjusts the scaling value that is applied to a waveform while it is playing. The variable <val> is expressed as a percentage. Runtime scaling does not alter the waveform data file. For more information about runtime scaling, refer to the E8257D/67D PSG Signal Generators User’s Guide.

Example
:RAD:ARB:RSC 50
The preceding example applies a 50% scaling factor to the selected waveform.

*RST +7.00000000E+001
Range 1–100
Key Entry Waveform Runtime Scaling

`:SCALing`

Supported E8267D with Option 601 or 602
[:SOURce]:RADio:ARB:SCALing "<file_name>",<val>

This command scales the designated "<file_name>" waveform file while it is being played by the Dual ARB player. The variable <val> is expressed as a percentage, 1–100%. For information on file name syntax, see “File Name Variables” on page 10.

Scaling is additive and permanent. You cannot scale up. If you scale a waveform file by 60% and then scale it again to 80% you will scale down the 60% waveform file. For more information about waveform file scaling, refer to the E8257D/67D PSG Signal Generators User’s Guide.
Digital Modulation Commands
Dual ARB Subsystem–Option 601 or 602 [:SOURce]:RADio:ARB

Example

:SOURce:RADio:ARB:SCAL "Test_Data", 50

The preceding example applies a 50% scaling factor to the Test_Data waveform file.

Range 1–100

Key Entry Scaling Scale Waveform Data

:SOURce:RADio:ARB:SCLock:RATE

Supported E8267D with Option 601 or 602

[:SOURce]:RADio:ARB:SCLock:RATE <sample_clock_rate>

This command sets the ARB sample clock rate. The sample_clock_rate variable can be set from 1 hertz to 100 megahertz.

Example

:SOURce:RADio:ARB:SCLock:RATE 1E6

The preceding example sets the ARB sample clock for 1 MHz.

*RST +1.00000000E+008

Range 1–1.0E8 Hz

Key Entry ARB Sample Clock

:SOURce:RADio:ARB:SEQuence

Supported E8267D with Option 601 or 602

[:SOURce]:RADio:ARB:SEQuence
"<file_name>"", "<waveform1>"", <reps>, NONE|M1|M2|M3|M4|M1M2|M1M3|M1M4|M1M2M3|M1M2M4|M1M3M4|M1M2M3M4|M2M3|M2M4|M3M4|M1M2M3M4|M1M2M3M5|M1M2M4M5|M2M3M4M5|ALLgebung{"<waveform2>"", <reps>, NONE|M1|M2|M3|M4|M1M2|M1M3|M1M4|M2M3|M2M4|M3M4|M1M2M3|M1M2M4|M1M3M4|M2M3M4|ALL}

[:SOURce]:RADio:ARB:SEQuence? "<file_names>"

This command creates a waveform sequence. A waveform sequence is made up of segments and other sequences. Any number of segments, up to a segment count limit of 32768, can be used to create a sequence. The count limit is determined by the number of segments in the waveform sequence. Repeated segments are included in the count limit.

For example, using the figure below, suppose a waveform is created using two sequences: Sequence_A and Sequence_B. Sequence_A consists of Sequence_B and Segment_Q with Sequence_B repeated four times. The total segment count for this waveform sequence would be eleven.
The query returns the contents and segment settings of the waveform sequence file.

The segments and sequences play in the same order as placed into the waveform sequence by the command. Once you create the file, you cannot edit the segment settings or add further waveform segments unless you use the signal generator’s front panel. Using the same waveform sequence name overwrites the existing file with that name. To use a segment’s marker settings, you must enable the segment’s markers within the segment or within the waveform sequence. A sequence is stored in the catalog of SEQ files USER/SEQ or SEQ: directory.

When you create a waveform sequence, the PSG also creates a file header for the sequence. This file header takes priority over segment or nested sequence file headers. Refer to the *E8257D/67D PSG Signal Generators User’s Guide* for more information on file headers. To save the file header, see ":HEADer:SAVE" on page 233.

"<file_name>" This variable names the waveform sequence file. For information on the file name syntax, see “File Name Variables” on page 10.

"<waveform1>" This variable specifies the name of an existing waveform segment or sequence file. A waveform segment or the waveform segments in a specified sequence must reside in volatile memory, WFM1, before it can be played by the Dual ARB player. For information on the file name syntax, see “File Name Variables” on page 10, and for more information on waveform segments, see the *E8257D/67D PSG Signal Generators User’s Guide*.

"<waveform2>" This variable specifies the name of a second existing waveform segment or sequence file. The same conditions required for waveform1 apply for this segment or sequence. Additional segments and other sequences can be inserted into the file.

<reps> This variable sets the number of times a segment or sequence plays (repeats) before the next segment or sequence plays.

NONE This choice disables all four markers for the waveform. Disabling markers means that the waveform sequence ignores the segment’s or sequence’s marker settings.

M1, M2, M3, M4 These choices, either individually or a combination of them, enable the markers for the waveform segment or sequence. Markers not specified are ignored for that segment or sequence.
ALL This choice enables all four markers in the waveform segment or sequence.

Example

NOTE A carriage return or line feed is never included in a SCPI command. The example above contains a carriage return so that the text will fit on the page.

The preceding example creates a waveform sequence file named Test_Data. This file consists of the factory-supplied waveform segments, ramp_test_wfm and sine_test_wfm. The waveform is stored in the signal generator's SEQ: directory.

- The first segment, ramp_test_wfm, has 25 repetitions with markers 1 and 4 enabled.
- The second segment, sine_test_wfm, has 100 repetitions with all four markers enabled.

Range

- `<reps>`: 1–65535

:TRIGger:TYPE

Supported E8267D with Option 601 or 602

Supports E8267D with Option 601 or 602

- `[:SOURce]:RADio:ARB:TRIGger:TYPE CONTinuous|SINGle|GATE|SADVance`
- `[:SOURce]:RADio:ARB:TRIGger:TYPE?`

This command sets the trigger mode (type) that controls how the waveform plays.

Triggers control the playback by telling the PSG when to transmit the modulating signal (waveform). Depending on the trigger settings for the PSG, the waveform transmission can occur once, continuously, or the PSG may start and stop the transmission repeatedly (GATE mode). For waveform sequences, you can even control when each segment plays (SADVance—segment advance mode).

A trigger signal comprises both positive and negative signal transitions (states), which are also called high and low periods. You can configure the PSG to trigger on either state. It is common to have multiple triggers occur when the signal generator requires only a single trigger. In this situation, the PSG recognizes the first trigger and ignores the rest.

When you select a trigger mode, you may lose the signal (carrier plus modulating) from the RF output until you trigger the waveform. This is because the PSG sets the I and Q signals to zero volts prior to the first trigger event, which suppresses the carrier. After the first trigger event, the waveform's final I and Q levels determine whether you will see the carrier signal or not (zero = no carrier, other values = carrier visible). At the end of most files, the final I and Q points are set to a value other than zero. If desired, you can create and download an external file (see the E8257D/67D PSG Programming Guide) with the initial I and Q voltages set to values other than zero. Conversely, you can set the last I and Q points to zero.
Digital Modulation Commands
Dual ARB Subsystem—Option 601 or 602 ([SOURce]:RADio:ARB)

There are four parts to configuring the trigger:

- Choosing the trigger type, which controls the waveform’s transmission.
- Setting the waveform’s response to triggers:
 - CONTinuous, see “:TRIGger:TYPE:CONTinuous[:TYPE]” on page 252
 - SINGle, see “:TRIGger:TYPE:CONTinuous[:TYPE]” on page 208
 - SADVance, see “:TRIGger:TYPE:SADVance[:TYPE]” on page 253
 - GATE, selecting the mode also sets the response.
- Selecting the trigger source (see “:TRIGger:[SOURce]” on page 254), which determines how the PSG receives its trigger signal, internally or externally. The GATE choice requires an external trigger.
- Setting the trigger polarity when using an external source:
 - CONTinuous, SINGle, and SADVance, see “:TRIGger:[SOURce]:EXTernal:SLOPe” on page 256
 - GATE, see “:TRIGger:TYPE:GATE:ACTive” on page 252

For more information on triggering, see the E8257D/67D PSG Signal Generators User’s Guide.

The following list describes the trigger type command choices:

CONTinuous
- Upon triggering, the waveform repeats continuously.

SINGle
- Upon triggering, the waveform segment or sequence plays once.

GATE
- An external trigger signal repeatedly starts and stops the waveform’s playback (transmission). The length of each transmission depends on the duty period of the trigger signal and the gate polarity selection (see “:TRIGger:TYPE:GATE:ACTive” on page 252). The waveform plays during the inactive state and stops during the active polarity selection state. The active state can be set high or low. The gate mode works only with an external trigger source.

SADVance
- The trigger controls the segment advance within a waveform sequence. To use this choice, a waveform sequence must be the active waveform. Ensure that all segments in the sequence reside in volatile memory.

NOTE The ARB gating behavior described above is opposite to the gating behavior for real-time custom.

Example
:RAD:ARB:TRIG:TYPE GATE

The preceding example selects the gated trigger mode.

<table>
<thead>
<tr>
<th>Key Entry</th>
<th>Continuous</th>
<th>Single</th>
<th>Gated</th>
<th>Segment Advance</th>
</tr>
</thead>
</table>

Chapter 5 251
Digital Modulation Commands
Dual ARB Subsystem—Option 601 or 602 [:SOURce:RADio:ARB]

:TRIgger:TYPE:CONTinuous[:TYPE]

Supported
E8267D with Option 601 or 602

[[:SOURce]:RADio:ARB:TRIgger:TYPE:CONTinuous[:TYPE] FREE|TRIgger|RESet
[[:SOURce]:RADio:ARB:TRIgger:TYPE:CONTinuous[:TYPE]?

This command selects the waveform's response to a trigger signal while using the continuous trigger mode.

For more information on triggering and to select the continuous trigger mode, see "*:TRIgger:TYPE" on page 250.

The following list describes the waveform's response to each of the command choices:

- **FREE**
 Turning the ARB format on immediately triggers the waveform. The waveform repeats until you turn the format off, select another trigger, or choose another waveform file.

- **TRIGGER**
 The waveform waits for a trigger before play begins. When the waveform receives the trigger, it plays continuously until you turn the format off, select another trigger, or choose another waveform file.

- **RESET**
 The waveform waits for a trigger before play begins. When the waveform receives the trigger, it plays continuously. Subsequent triggers reset the waveform to the beginning. For a waveform sequence, this means to the beginning of the first segment in the sequence.

Example

RST:RAD:ARB:TRI:TYPE:CONT TRIG

The preceding example selects the trigger continuous mode.

Key Entry

Free Run Trigger & Run Reset & Run

:TRIgger:TYPE:GATE:ACTive

Supported
E8267D with Option 601 or 602

[[:SOURce]:RADio:ARB:TRIgger:TYPE:GATE:ACTive LOW|HIGH
[[:SOURce]:RADio:ARB:TRIgger:TYPE:GATE:ACTive?

This command selects the active state (gate polarity) of the gate while using the gating trigger mode.

The LOW and HIGH selections correspond to the low and high states of an external trigger signal. For example, when you select HIGH, the active state occurs during the high of the trigger signal. When the active state occurs, the PSG stops the waveform playback at the last played sample point, then restarts the playback at the next sample point when the inactive state occurs. For more information on triggering and to select gating as the trigger mode, see "*:TRIgger:TYPE" on page 250.

The following list describes the PSG's gating behavior for the polarity selections:

- **LOW**
 The waveform playback stops when the trigger signal goes low (active state) and restarts when the trigger signal goes high (inactive state).

- **HIGH**
 The waveform playback stops when the trigger signal goes high (active state) and restarts when the trigger signal goes low (inactive state).
Example

The preceding example sets the active gate state to high.

*RST

Key Entry

Gate Active Low High

:TRIGger:TYPE:SADVance[:TYPE]

Supported

E8267D with Option 601 or 602

[:SOURce]:RADio:ARB:TRIGger:TYPE:SADVance[:TYPE] SINGle|CONTinuous

[:SOURce]:RADio:ARB:TRIGger:TYPE:SADVance[:TYPE]?

This commands selects the waveform's response to a trigger signal while using the segment advance (SADVance) trigger mode.

When the PSG receives multiple trigger occurrences when only one is required, the signal generator uses the first trigger and ignores the rest. For more information on triggering and to select segment advance as the trigger mode, see “:TRIGger:TYPE” on page 250.

The following list describes the waveform's response to each of the command choices:

SINGle

Each segment in the sequence requires a trigger to play, and a segment plays only once, ignoring a segment’s repetition value (see “SEQuence” on page 248 for repetition information). The following list describes a sequence’s playback behavior with this choice:

- After receiving the first trigger, the first segment plays to completion.
- When the waveform receives a trigger after a segment completes, the sequence advances to the next segment and plays that segment to completion.
- When the waveform receives a trigger during play, the current segment plays to completion. Then the sequence advances to the next segment, and it plays to completion.
- When the waveform receives a trigger either during or after the last segment in a sequence plays, the sequence resets and the first segment plays to completion.

CONTinuous

Each segment in the sequence requires a trigger to play. After receiving a trigger, a segment plays continuously until the waveform receives another trigger. The following list describes a sequence’s playback behavior with this choice:

- After receiving the first trigger, the first segment plays continuously.
- A trigger during the current segment play causes the segment to play to the end of the segment file, then the sequence advances to the next segment, which plays continuously.
- When last segment in the sequence receives a trigger, the sequence resets and the first segment plays continuously.
Digital Modulation Commands
Dual ARB Subsystem–Option 601 or 602 [:SOURce]:RADio:ARB

Example
:RAD:ARB:TRIG:TYPE:SADV CONT
The preceding example selects the continuous segment advance mode.

*RST CONT

Key Entry Single Continuous

:.TRIGger[:SOURce]

Supported E8267D with Option 601 or 602
[:SOURce]:RADio:ARB:.TRIGger[:SOURce] KEY|EXT|BUS
[:SOURce]:RADio:ARB:.TRIGger[:SOURce]?

This command sets the trigger source.

For more information on triggering, see ":.TRIGger:TYPE" on page 250. The following list describes the command choices:

KEY This choice enables manual triggering by pressing the front-panel Trigger hardkey.

EXT An externally applied signal triggers the waveform. This is the only choice that works with gating. The following settings affect an external trigger:

- The input connector for the trigger signal. You have a choice between the rear-panel PATTERN TRIG IN connector or the PATT TRIG IN 2 pin on the rear-panel AUXILIARY I/O connector. To make the connector selection, see ":.TRIGger[:SOURce]:EXTernal[:SOURce]" on page 255.

For more information on the connectors and on connecting the cables, see the E8257D/67D PSG Signal Generators User’s Guide.

- The trigger signal polarity:
 - gating mode, see ":.TRIGger:TYPE:GATE:ACTive" on page 252
 - continuous, single, and segment advance modes, see ":.TRIGger[:SOURce]:EXTernal:SLOPe" on page 256

- The time delay between when the PSG receives a trigger and when the waveform responds to the trigger. There are two parts to setting the delay:
 - setting the amount of delay, see ":.TRIGger[:SOURce]:EXTernal:DELay" on page 255
 - turning the delay on, see ":.TRIGger[:SOURce]:EXTernal:DELay:STATe" on page 256

BUS This choice enables triggering over the GPIB using the *TRG or GET commands, or the LAN and the AUXILIARY INTERFACE (RS-232) using the *TRG command.

Example
:RAD:ARB:TRIG KEY
The preceding example sets the trigger source to manual, front-panel key operation.

*RST EXT

Key Entry Trigger Key Ext Bus
Digital Modulation Commands

Dual ARB Subsystem–Option 601 or 602 (:SOURce:RADio:ARB)

:TRIGger[:SOURce]:EXTernal[:SOURce]

Supported E8267D with Option 601 or 602

[:SOURce]:RADio:ARB::TRIGger[:SOURce]:EXTernal[:SOURce] EPT1|EPT2|
EPTRIGGER1|EPTRIGGER2
[:SOURce]:RADio:ARB:TRIGger[:SOURce]:EXTernal[:SOURce]? T

This command selects which PATTERN TRIG IN connection the PSG uses to accept an externally applied trigger signal when external is the trigger source selection.

For more information on configuring an external trigger source and to select external as the trigger source, see “:TRIGger[:SOURce]” on page 254. For more information on the rear-panel connectors, see the E8257D/67D PSG Signal Generators User’s Guide.

The following list describes the command choices:

EPT1 This choice is synonymous with EPTRIGGER1 and selects the PATTERN TRIG IN rear-panel connector.
EPT2 This choice is synonymous with EPTRIGGER2 and selects the PATT TRIG IN 2 pin on the rear-panel AUXILIARY I/O connector.
EPTRIGGER1 This choice is synonymous with EPT1 and selects the PATTERN TRIG IN rear-panel connector.
EPTRIGGER2 This choice is synonymous with EPT2 and selects the PATT TRIG IN 2 pin on the rear-panel AUXILIARY I/O connector.

Example

:RAD:ARB::TRIG:EXT EPT2

The preceding example sets the trigger source to the PATT TRIG IN 2 pin on the rear-panel AUXILIARY I/O connector.

*RST EPT1

Key Entry Patt Trig In 1 Patt Trig In 2

:TRIGger[:SOURce]:EXTernal:DELay

Supported E8267D with Option 601 or 602

[:SOURce]:RADio:ARB::TRIGger[:SOURce]:EXTernal::DELay <val>
[:SOURce]:RADio:ARB::TRIGger[:SOURce]:EXTernal::DELay?

This command sets the amount of time to delay the PSG’s response to an external trigger.

The delay is a path (time) delay between when the PSG receives the trigger and when it responds to the trigger. For example, configuring a trigger delay of two seconds, causes the PSG to wait two seconds after receipt of the trigger before the PSG responds and transmits the waveform.

The delay does not occur until you enable it (see :TRIGger[:SOURce]:EXTernal::DELay::STATE). You can set the delay value either before or after turning it on.

For more information on configuring an external trigger source and to select external as the trigger source, see “:TRIGger[:SOURce]” on page 254.

The unit of measurement for the variable <val> is in seconds (nsec–sec).
Digital Modulation Commands
Dual ARB Subsystem–Option 601 or 602 ([SOURce]:RADio:ARB)

Example

:RAD:ARB:TRIG:EXT:DEL .2
The preceding example sets the external delay to 200 milliseconds.

*RST
+1.00000000E−003
Range
1E−8 to 4E1
Key Entry
Ext Delay Time

:TRIGger[:SOURce]:EXTernal:DELAY:STATE

Supported
E8267D with Option 601 or 602
[:SOURce]:RADio:ARB:TRIGger[:SOURce]:EXTernal:DELAY:STATE ON|OFF|1|0
[:SOURce]:RADio:ARB:TRIGger[:SOURce]:EXTernal:DELAY:STATE?

This command turns the trigger delay on or off when using an external trigger source. For setting the delay time, see :TRIGger[SOURce]:EXTernal:DELAY, and for more information on configuring an external source, see “:TRIGger[:SOURce]” on page 254.

Example

The preceding example disables the external delay function.

*RST
0
Key Entry
Ext Delay Off On

:TRIGger[:SOURce]:EXTernal:SLOPe

Supported
E8267D with Option 601 or 602
[:SOURce]:RADio:ARB:TRIGger[:SOURce]:EXTernal:SLOPe POSitive|NEGative
[:SOURce]:RADio:ARB:TRIGger[:SOURce]:EXTernal:SLOPe?

This command sets the polarity for an external trigger signal while using the continuous, single, or segment advance triggering modes. To set the polarity for gating, see “.TRIGger:TYPE:GATE:ACTIVE” on page 252. The POSitive and NEGative selections correspond to the high (positive) and low (negative) states of the external trigger signal. For example, when you select POSitive, the waveform responds (plays) during the high state of the trigger signal. When the PSG receives multiple trigger occurrences when only one is required, the signal generator uses the first trigger and ignores the rest. For more information on configuring an external trigger source and to select external as the trigger source, see “.TRIGger[:SOURce]” on page 254.

Example

:RAD:ARB:TRIG:EXT:SLOP NEG
The preceding example sets the external trigger slope to negative.

*RST
NEG
Key Entry
Ext Polarity Neg Pos
:VCO:CLOCK

Supported
E8267D with Option 601 or 602

[:SOURce]:RADio:ARB:VCO:CLOCK INTernal|EXTernal

[:SOURce]:RADio:ARB:VCO:CLOCk?

This command selects an internal or external VCO clock. The external VCO clock is connected to the rear-panel BASEBAND GEN CLK IN connector. Use the :DACS:ALIGN command after an external VCO clock is first applied to the BASEBAND GEN CLK IN connector or when the VCO signal is lost and then re-acquired.

Example

:RAD:ARB:VCO:CLOC EXT

The preceding example selects an external VCO clock.

*RST

Key Entry

VCO Clock Ext Int

:WAVEform

Supported
E8267D with Option 601 or 602

[:SOURce]:RADio:ARB:WAVEform "WFM1:file_name"|"SEQ:filename"

[:SOURce]:RADio:ARB:WAVEform?

This command, for the Dual ARB mode, selects a waveform file or sequence, for the Dual ARB player to play. The file must be present in volatile memory, WFM1: or in the SEQ directory. If a file is in non-volatile memory (NVWFM), use the command "COPY" on page 58 to copy the file to WFM1.

"WFM1:file_name" This variable names a waveform file residing in volatile memory:WFM1. For information on the file name syntax, see "File Name Variables" on page 10.

"SEQ:filename" This variable names a sequence file residing in the catalog of sequence files. For more information on the file name syntax, see “File Name Variables” on page 10.

Example

:RAD:ARB:WAV "WFM1:Test_Data"

The preceding example selects the file Test_Data from the list of files in volatile waveform memory, WFM1 and applies its header settings.

Key Entry

Select Waveform
:Waveform:NHEADers

Supported E8267D with Option 601 or 602

[:SOURce]:RADio:ARB:WAVEform:NHEADers "WFM1:file_name"|"SEQ:filename"

This command, for the Dual ARB mode, allows for a fast selection of a waveform file or sequence. No header information or settings are applied to the waveform or sequence when this command is used. This will improve the access or loading speed of the waveform file or sequence to approximately 100 ms for a single segment. The file must be in volatile waveform memory, WFM1; or in the SEQ directory. If a file is in non-volatile memory (NVWFM), use the command “:COPT” on page 58 to copy files to WFM1.

"WFM1:file_name" This variable names a waveform file residing in volatile memory:WFM1. For information on the file name syntax, see “File Name Variables” on page 10.

"SEQ:filename" This variable names a sequence file residing in the catalog of sequence files. For more information on the file name syntax, see “File Name Variables” on page 10.

Example

:RAD:ARB:WAV:NHEA "Test_Data"

The preceding example selects the file Test_Data, without applying header settings.

[:STATe]

Supported E8267D with Option 601 or 602

[:SOURce]:RADio:ARB[:STATe] ON|OFF|1|0

This command enables or disables the operating state of the signal generator's dual arbitrary waveform (ARB) generator.

Example

:RAD:ARB 1

The preceding example turns on the signal generator's ARB generator personality.

*RST 0

Key Entry ARB Off On

Dmodulation Subsystem—Option 601 or 602 ([:SOURce]:RADio:DMODulation:ARB)

:IQ:EXTernal:FILTer

Supported E8267D with Option 601 or 602

[:SOURce]:RADio:DMODulation:ARB:IQ:EXTernal:FILTer 40e6|THRough

This command selects a 40 MHz filter or a through path for I/Q signals routed to the rear-panel I and Q outputs. Selecting a filter using this command will automatically set “:IQ:EXTernal:FILTer:AUTO” on page 259 to OFF(0) mode.
Digital Modulation Commands
Dmmodation Subsystem–Option 601 or 602 ([:SOURce]:RADio:DMODulation:ARB)

40e6 This choice selects the 40 MHz baseband filter.
THRough This choice selects a through path and bypasses filtering.

Example
The preceding example selects a 40 MHz filter.

*RST THR

Key Entry 40.000 MHz Through

:IQ:EXTernal:FILTer:AUTO

Supported E8267D with Option 601 or 602

[:SOURce]:RADio:DMODulation:ARB:IQ:EXTernal:FILTer:AUTO ON|OFF|1|0
[:SOURce]:RADio:DMODulation:ARB:IQ:EXTernal:FILTer:AUTO?

This command enables or disables the automatic filter selection for I/Q signals routed to the rear-panel I/Q outputs.

ON(1) This choice automatically selects a filter that is optimized for the current signal generator settings.
OFF(0) This choice disables the auto feature and allows you to select the 40 MHz filter or a through path. Refer to “:IQ:EXTernal:FILTer” on page 258 for selecting a filter or through path.

Example
The preceding example disables the auto mode filter selection.

*RST 1

Key Entry I/Q Output Filter Manual Auto

:FILTer

Supported E8267D with Option 601 or 602

[:SOURce]:RADio:DMODulation:ARB:FILTer RNYQuist|NYQuist|GAUSsian|RECTangle|AC4Fm|UGGaussian|"<user_FIR>"
[:SOURce]:RADio:DMODulation:ARB:FILTer?

This command specifies the pre-modulation filter type.

RNYQuist This choice selects a Root Nyquist (root raised cosine) filter. This filter is adjusted using Alpha.
NYQuist This choice selects a Nyquist (raised cosine) filter. This filter is adjusted using Alpha.
GAUSsian This choice selects a Gaussian Filter which is adjusted using Bbt values.
RECTangle This choice selects a one symbol wide rectangular filter.
Digital Modulation Commands

Digital **M**odulation **S**ubsystem–**O**ption 601 or 602 ([:SOURce]:RADio:DMODulation:ARB)

- **AC4Fm**: This choice selects a pre-defined Association of Public Safety Communications officials (APCO) specified compatible 4-level frequency modulation (C4FM) filter.
- **UGGAUSSian**: This choice selects a UN3/4 delay-compatible, GSM, 0.300 Bbt Gaussian filter. The Bbt value is not adjustable.
- **"<User_FIR>"**: This variable is any filter file that you have stored in memory. For information on the file name syntax, see “File Name Variables” on page 10.

Example

The preceding example selects a file named FIR_Data, from the catalog of FIR files, as the filter type.

:*RST

Key Entry

- Root Nyquist
- Nyquist
- Gaussian
- Rectangle
- APCO 25
- C4FM
- UN3/4
- GSM
- Gaussian
- User FIR

`:FILT:ER:ALPH a

Supported

E8267D with Option 601 or 602

`:FILT:ER:ALPH <val>
`:FILT:ER:ALPH?

This command changes the Nyquist or root Nyquist filter alpha value.

The filter alpha value can be set to the minimum level (0), the maximum level (1), or in between by using numeric values (0.001–0.999).

To change the current filter type, refer to “:FILT:ER” on page 259.

Example

`:RAD:DMOD:ARB:FILT:ALPH .33

The preceding example sets .33 as the filter alpha.

:*RST

Range

0.000–1.000

Key Entry

Filter Alpha

`:FILT:ER:BBT

Supported

E8267D with Option 601 or 602

`:FILT:ER:BBT <val>
`:FILT:ER:BBT?

This command changes the bandwidth-multiplied-by-bit-time (Bbt) filter parameter for a Gaussian filter. It has no effect on other types of filters.

The filter Bbt value can be set to the minimum level (0), the maximum level (1), or in between by using fractional numeric values (0.001–0.999).

To change the current filter type, refer to “:FILT:ER” on page 259.
Digital Modulation Commands

Dmodulation Subsystem—Option 601 or 602 [:SOURce:RADIO:DMODulation:ARB]

Example

:`RAD:DMOD:ARB:FILT:BBT .52`

The preceding example sets .52 as the filter BbT.

RST +5.00000000E−001

Range 0.000–1.000

Key Entry Filter BbT

:FILTer:CHANnel

Supported E8267D with Option 601 or 602

[:SOURce]:RADIO:DMODulation:ARB:FILTer:CHANnel EVM|ACP

This command optimizes the Nyquist and root Nyquist filters to minimize error vector magnitude (EVM) or to minimize adjacent channel power (ACP). To change the current filter type, refer to “:FILTer” on page 259.

Example

:`RAD:DMOD:ARB:FILT:CHAN ACP`

The preceding example selects ACP optimization.

EVM This choice provides the most ideal passband.

ACP This choice improves stopband rejection.

RST EVM

Key Entry Optimize FIR For EVM ACP

:HEADer:CLEar

Supported E8267D with Option 601 or 602

[:SOURce]:RADIO:DMODulation:ARB:HEADer:CLEar

This command clears the header information from the header file used by this modulation format. Header information consists of signal generator settings and marker routings associated with the waveform file. Refer to the E8257D/67D PSG Signal Generators User’s Guide for information on header files.

For this command to function, the Arb Waveform Generator’s Digital Modulation must be on. To turn Digital Modulation on, see “[STATe]” on page 280.

RST N/A

Key Entry Clear Header
Digital Modulation Commands
Digital Modulation Subsystem–Option 601 or 602 ([:SOURce]:RADio:DMODulation:ARB)

:HEADER:SAVE

Supported E8267D with Option 601 or 602

[:SOURce]:RADio:DMODulation:ARB:HEADER:SAVE

This command saves the header information to the header file for the active modulation file. Header information consists of signal generator settings and marker routings associated with the waveform file. Refer to the E8257D/67D PSG Signal Generators User's Guide for information on header files.

For this command to function, the Arb Waveform Generator's Digital Modulation must be on. To turn Digital Modulation on, see “[:STATE]” on page 280.

*RST N/A

Key Entry Save Setup To Header

:IQ:MODulation:ATTen

Supported E8267D with Option 601 or 602

[:SOURce]:RADio:DMODulation:ARB:IQ:MODulation:ATTen <val><unit>

[:SOURce]:RADio:DMODulation:ARB:IQ:MODulation:ATTen?

This command sets the attenuation level of the I/Q signals being modulated through the signal generator RF path. The variable <val> is expressed in decibels (dB).

Example

The preceding example sets the modulator attenuator level to 20 dB.

*RST +2.00000000E+000

Range 0–40 dB

Key Entry Modulator Attenu Manual Auto

:IQ:MODulation:ATTen:AUTO

Supported E8267D with Option 601 or 602

[:SOURce]:RADio:DMODulation:ARB:IQ:MODulation:ATTen:AUTO ON|OFF|1|0

[:SOURce]:RADio:DMODulation:ARB:IQ:MODulation:ATTen:AUTO?

This command enables or disables the modulator attenuator auto mode. The auto mode will be switched to manual if the signal generator receives a AUTO OFF or AUTO 0 command.

ON (1) This choice enables the attenuation auto mode which optimizes the modulator attenuation for the current conditions.

OFF (0) This choice holds the attenuator at its current setting or at a selected value. Refer to “:IQ:MODulation:ATTen” on page 262 for setting the attenuation value.
Example

The preceding example selects the modulator attenuator auto mode.

*RST 1

Key Entry Modulator Atten Manual Auto

:IQ:MODulation:FILTer

Supported E8267D with Option 601 or 602

[:SOURce]:RADio:DMODulation:ARB:IQ:MODulation:FILT|40e6|THRough

[:SOURce]:RADio:DMODulation:ARB:IQ:MODulation:FILT?

This command enables you to select a filter or through path for I/Q signals modulated onto the RF carrier. Selecting a filter using this command will automatically set "**:IQ:MODulation:FILT:AUTO" to OFF (0) mode.

40E6 This choice applies a 40 MHz baseband filter to the I/Q signals.

THRough This choice bypasses filtering.

Example

The preceding example selects the through path and bypasses filtering.

*RST THR

Key Entry 40.000 MHz Through

:IQ:MODulation:FILT:AUTO

Supported E8267D with Option 601 or 602

[:SOURce]:RADio:DMODulation:ARB:IQ:MODulation:FILT:AUTO|OFF|1|0

[:SOURce]:RADio:DMODulation:ARB:IQ:MODulation:FILT:AUTO?

This command enables or disables the automatic filter selection for I/Q signals modulated onto the RF carrier.

ON (1) This choice will automatically select a filter that is optimized for the current signal generator setting.

OFF (0) This choice disables the automatic filter selection and allows you to select a digital modulation filter or through path. Refer to "**:IQ:MODulation:FILT" on page 236 for selecting a filter or through path.

Example

The preceding example sets the automatic filter selection function.

*RST 1

Key Entry I/Q Mod Filter Manual Auto
:MDestination:ALCHold

Supported E8267D with Option 601 or 602

CAUTION Incorrect ALC sampling can create a sudden un leveled condition that may create a spike in the RF output potentially damaging a DUT or connected instrument. Ensure that you set markers to let the ALC sample over an amplitude that accounts for the high power levels within the signal.

[:SOURce]:RADio:DMODulation:ARB:MDEStination:ALCHold NONE|M1|M2|M3|M4

This command disables the marker ALC hold function, or it enables the marker hold function for the selected marker.

Use the ALC hold function when you have a waveform signal that uses idle periods, or when the increased dynamic range encountered with RF blanking is not desired. The ALC circuitry responds to the marker signal during the marker pulse (marker signal high), averaging the modulated signal level during this period.

The ALC hold function operates during the low periods of the marker signal. The marker polarity determines when the marker signal is high. For a positive polarity, this is during the marker points. For a negative polarity, this is when there are no marker points. To set a marker’s polarity, see “:MPOLarity:MARKer1|2|3|4” on page 267. For more information on markers, see “:MARKer:[SET]” on page 239.

NOTE Do not use the ALC hold for more than 100 ms, because it can affect the waveform’s output amplitude.

The marker signal has a minimum of a two-sample delay in its response relative to the waveform signal response. To compensate for the marker signal delay, offset marker points from the waveform sample point at which you want the ALC sampling to begin.

The ALC hold setting is part of the file header information, so saving the setting to the file header saves the current marker routing for the waveform file.

NOTE A waveform file that has unspecified settings in the file header uses the previous waveform’s routing settings.

For more information on the marker ALC hold function, see the E8257D/67D PSG Signal Generators User’s Guide. To configure marker points, refer to the following sections located in the Dual ARB subsystem:

- For clearing a single marker point or a range of marker points, see “:MARKer:CLEar” on page 237.
- For clearing all marker points, see “:MARKer:CLEar:ALL” on page 238.
- For shifting marker points, see “:MARKer:ROTate” on page 238.
- For setting marker points, see “:MARKer:[SET]” on page 239.

NONE This terminates the marker ALC hold function.

M1–M4 These are the marker choices. The ALC hold feature uses only one marker at a time.
Digital Modulation Commands
Dmodulation Subsystem–Option 601 or 602 ([:SOURce]:RADio:DMODulation:ARB)

Example
:RAD:DMOD:ARB:MDES:ALCH M1

The preceding example routes marker 1 to the ALC Hold function.

*RST
NONE

Key Entry
None Marker 1 Marker 2 Marker 3 Marker 4

Remarks
N/A

:MDEStination:PULSe

Supported
E8267D with Option 601 or 602

CAUTION
The pulse function incorporates ALC hold. Incorrect ALC sampling can create a sudden unlevelled condition that may create a spike in the RF output potentially damaging a DUT or connected instrument. Ensure that you set markers to let the ALC sample over an amplitude that accounts for the high power levels within the signal.

[:SOURce]:RADio:DMODulation:ARB:MDEStination:PULSe NONE|M1|M2|M3|M4

[:SOURce]:RADio:DMODulation:ARB:MDEStination:PULSe?

This command disables the marker RF blanking/pulse function, or it enables the marker RF blanking/pulse function for the selected marker.

This function automatically incorporates the ALC hold function, so there is no need to select both functions for the same marker.

NOTE
Do not use ALC hold for more than 100 ms, because it can affect the waveform’s output amplitude.

The signal generator blanks the RF output when the marker signal goes low. The marker polarity determines when the marker signal is low. For a positive polarity, this is during the marker points. For a negative polarity, this is when there are no marker points. To set a marker’s polarity, see “:MPOLarity:MARKer1|2|3|4” on page 267. For more information on markers, see “:MARKer:[SET]” on page 239.

NOTE
Set marker points prior to using this function. Enabling this function without setting marker points may create a continuous low or high marker signal, depending on the marker polarity. This creates the condition where there is either no RF output or a continuous RF output.

To configure marker points, refer to the following sections located in the Dual ARB subsystem:
- For clearing a single marker point or a range of marker points, see “:MARKer:CLEar” on page 237.
- For clearing all marker points, see “:MARKer:CLEar:ALL” on page 238.
- For shifting marker points, see “:MARKer:ROTate” on page 238.
- For setting marker points, see “:MARKer:[SET]” on page 239.

The marker signal has a minimum of a two-sample delay in its response relative to the waveform signal response. To compensate for the marker signal delay, offset marker points from the waveform sample point at which you want the RF blanking to begin.
The RF blanking setting is part of the file header information, so saving the setting to the file header saves the current marker routing for the waveform file.

NOTE A waveform file that has unspecified settings in the file header uses the previous waveform’s routing settings. This could create the situation where there is no RF output signal, because the previous waveform used RF blanking.

For more information on the marker RF blanking function, see the *E8257D/67D PSG Signal Generators User’s Guide*.

NONE This terminates the marker RF blanking/pulse function.

M1–M4 These are the marker choices. The RF blanking/pulse feature uses only one marker at a time.

Example

The preceding example routes marker 2 to the Pulse/RF Blanking function.

Range
0–2E7

Key Entry
Freq Dev

:MODulation:FSK[:DEViation]

Supported
E8267D with Option 601 or 602

`[:SOURce]:RADio:DMODulation:ARB:MODulation:FSK[:DEViation] <val><units>`

`[:SOURce]:RADio:DMODulation:ARB:MODulation:FSK[:DEViation]?`

This command sets the symmetric FSK frequency deviation value.

The variable `<val>` is a numeric expression with a maximum range equal to the current symbol rate value multiplied by ten, limited to 20 MHz. The variable `<units>` is expressed in hertz.

To change the modulation type, refer to the command `“:MODulation[:TYPE]”` on page 267. Refer to the command `“:SRATe”` on page 273 for a list of the minimum and maximum symbol rate values.

For more information on setting an asymmetric FSK deviation value, refer to the *E8257D/67D PSG Signal Generators User’s Guide*.

Example

`:RAD:DMOD:ARB:MOD:FSK 50KHZ`

The preceding example sets the maximum frequency deviation to 50 kHz.

Range
0–2E7

Key Entry
Freq Dev
Digital Modulation Commands

Dmodulation Subsystem—Option 601 or 602 ([:SOURce]:RADIO:DMODulation:ARB)

:MODulation[:TYPE]

Supported

E8267D with Option 601 or 602

[:SOURce]:RADIO:DMODulation:ARB:MODulation[:TYPE] BPSK QPSK IS95QPSK

GRAYQPSK | QPSK | IS95QPSK | P4DQPSK | PSK8 | PSK16 | D8PSK | EDGE | MSK | FSK2 | FSK4

FSK8 | FSK16 | C4FM | QAM4 | QAM16 | QAM32 | QAM64 | QAM128 | QAM256

[:SOURce]:RADIO:DMODulation:ARB:MODulation[:TYPE]?

This command sets the modulation type for the digital modulation personality.

Example

:RAD:DMOD:ARB:MOD BPSK

The preceding example selects binary phase shift keying (BPSK) as the modulation type.

:*RST

P4DQPSK

Key Entry

<table>
<thead>
<tr>
<th>BPSK</th>
<th>QPSK</th>
<th>IS-95 QPSK</th>
<th>Gray Coded QPSK</th>
<th>QPSK</th>
</tr>
</thead>
<tbody>
<tr>
<td>IS-95 QPSK</td>
<td>π/4 DQPSK</td>
<td>8PSK</td>
<td>16PSK</td>
<td>D8PSK</td>
</tr>
<tr>
<td>2-Lvl FSK</td>
<td>4-Lvl FSK</td>
<td>8-Lvl FSK</td>
<td>16-Lvl FSK</td>
<td>C4FM</td>
</tr>
<tr>
<td>320AM</td>
<td>640AM</td>
<td>1280AM</td>
<td>2560AM</td>
<td>User I/Q</td>
</tr>
</tbody>
</table>

:MPOLarity:MARKer1 | 2 | 3 | 4

Supported

E8267D with Option 601 or 602

[:SOURce]:RADIO:DMODulation:ARB:MPOLarity:MARKer1 | 2 | 3 | 4 NEGative |

POSitive

[:SOURce]:RADIO:DMODulation:ARB:MPOLarity:MARKer1 | 2 | 3 | 4?

This command sets the polarity for the selected marker.

For a positive marker polarity, the marker signal is high during the marker points. For a negative marker polarity, the marker signal is high during the period of no marker points. To configure marker points, refer to the following sections located in the Dual ARB subsystem:

- For clearing a single marker point or a range of marker points, see “:MARKer:CLEar” on page 237.
- For clearing all marker points, see “:MARKer:CLEar:ALL” on page 238.
- For shifting marker points, see “:MARKer:ROTate” on page 238.
- For information on markers and setting marker points, see “:MARKer:[SET]” on page 239.

Example

:RAD:DMOD:ARB:MPOL:MARK2 NEG

The preceding example sets the polarity for marker 2 to negative.

:*RST

POS

Key Entry

<table>
<thead>
<tr>
<th>Marker 1 Polarity Neg Pos</th>
<th>Marker 2 Polarity Neg Pos</th>
<th>Marker 3 Polarity Neg Pos</th>
</tr>
</thead>
<tbody>
<tr>
<td>Marker 4 Polarity Neg Pos</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Chapter 5 287
Digital Modulation Commands

Dmodulation Subsystem–Option 601 or 602 ([SOURce]:RADio:DMODulation:ARB)

:REFerence:EXTernal:FREQuency

Supported E8267D with Option 601 or 602

[:SOURce]:RADio:DMODulation:ARB:REFerence:EXTernal:FREQuency <val>

This command sets or retrieves the reference frequency value of an externally applied reference to the signal generator. The variable <val> is expressed in hertz (Hz–MHz).

The value specified by this command is effective only when you are using an external ARB reference applied to the BASEBAND GEN REF IN rear-panel connector.

To specify external as the ARB reference source type, refer to “:REFerence:[SOURce]” on page 268.

Example

The preceding example sets the external reference to 10 MHz.

*RST +1.00000000E+007

Range 2.5E5–1E8

Key Entry Reference Freq

:REFerence:[SOURce]

Supported E8267D with Option 601 or 602

[:SOURce]:RADio:DMODulation:ARB:REFerence:[SOURce] INTernal|EXTernal

[:SOURce]:RADio:DMODulation:ARB:REFerence:[SOURce]?

This command selects either an internal or external reference for the waveform clock.

If the EXTERNAL choice is selected, the external frequency value must be entered and the signal must be applied to the BASEBAND GEN REF IN rear-panel connector.

Refer to “:REFerence:EXTernal:FREQuency” on page 268 to enter the external reference frequency.

Example

:RAD:DMOD:ARB:REF INT

The preceding example sets an internal clock reference.

*RST INT

Key Entry ARB Reference Ext Int
Digital Modulation Commands
Dmodulation Subsystem–Option 601 or 602 ([:SOURce]:RADio:DMODulation:ARB)

:RETRigger

Supported E8267D with Option 601 or 602

[:SOURce]:RADio:DMODulation:ARB:RETRigger ON|OFF|IMMEDIATE

[:SOURce]:RADio:DMODulation:ARB:RETRigger?

This command selects the waveform’s response to a trigger signal while using the single trigger mode.

When the PSG receives multiple trigger occurrences when only one is required, the signal generator uses the first trigger and ignores the rest. For more information on triggering and to select the single trigger mode, see “:TRIGger:TYPE” on page 274.

The following list describes the waveform’s response to each of the command choices:

- **ON**
 - The waveform waits for a trigger before play begins and accepts a subsequent trigger during playback. If there is a subsequent trigger during playback, the waveform completes its current playback and then plays one more time. If there is no subsequent trigger, the waveform plays once and stops until it receives another trigger.

- **OFF**
 - The waveform waits for a trigger before play begins and ignores triggers during playback. To restart the waveform, you must send a trigger after the playback completes.

- **IMMEDIATE**
 - The waveform waits for a trigger before play begins and accepts a subsequent trigger during playback. Upon receipt of the subsequent trigger, the waveform immediately resets and begins playing from the beginning of the file. For a waveform sequence, this means to the beginning of the first segment in the sequence.

Example

:RAD:DMOD:ARB:RETR ON

The preceding example selects the ON mode for the single mode trigger.

RST

ON

Key Entry

On Off Immediate

:SCLock:RATE

Supported E8267D with Option 601 or 602

[:SOURce]:RADio:DMODulation:ARB:SCLock:RATE <sample_clock_rate>

[:SOURce]:RADio:DMODulation:ARB:SCLock:RATE?

This command sets the sample clock rate in hertz. The modulation format should be active before executing this command. If this command is executed before the modulation format is active, the entered value will be overridden by a calculated factory default value. Refer to “[:STATe]” on page 280 to activate the modulation format.
Digital Modulation Commands

Dmodulation Subsystem—Option 601 or 602 ([:SOURCE]:RADio:DMODulation:ARB)

Example

The preceding example sets the sample clock rate to 50 MHz.

*RST
+1.00000000E+008

Range 1–1E8

Key Entry ARB Sample Clock

:SETup

Supported E8267D with Option 601 or 602

[:SOURCE] :RADio:DMODulation:ARB:SETup GSM|NADC|PDC|PHS|DECT|AC4Fm|ACQPsk|CDPD|PWT|EDGE|TETRA|MCARrier|"<file_name>"

This command selects the digital modulation format type. For information on the file name syntax, see “File Name Variables” on page 10.

Example

:RAD:DMOD:ARB:SET CDPD

The preceding example selects cellular digital packet data (CDPD) as the modulation format.

*RST
NADC

Key Entry

GSM NADC PDC PHS DECT APCO 25 w/C4FM APCO w/CQPSK
CDPD PWT EDGE TETRA Multicarrier Off On Select File

:SETup:MCARrier

Supported

E8267D with Option 601 or 602

"<file_name>"

This command builds a table with the specified number of carriers and frequency spacing or retrieves the setup stored in the specified user file. The query returns the carrier type, number of carriers, and frequency spacing. The output format is as follows:

<carrier_type>,<num_carriers>,<freq_spacing>

If a specific file is loaded and then queried, only the file name is returned. For information on the file name syntax, see “File Name Variables” on page 10. To store a multicarrier setup refer to “:SETup:MCARRier:STORe” on page 271.

The variable <freq_spacing> is expressed in hertz (kHz–MHz).
Example

[:SOURce:] RADIO:DMODulation:ARB:SET:MCAR NADC, 2, 10MHZ

[:SOURce:] RADIO:DMODulation:ARB:SET:MCAR "<file_name>"

The preceding examples show the syntax used to select a North American Digital Cellular (NADC) modulation format with two carriers and 10 MHz frequency spacing and the syntax for selecting an existing multicarrier file.

*RST Carrier: NADC
<num carriers>: 2
<freq spacing>: +1.0000000000000E+06

Range
<num carriers>: 2–100
<freq spacing>: 2 + (<num carriers> − 1) × 80 MHz

Key Entry

<table>
<thead>
<tr>
<th>GSM</th>
<th>NADC</th>
<th>PDC</th>
<th>PHS</th>
<th>DECT</th>
<th>APCO 25 w/C4FM</th>
<th>APCO w/CQPSK</th>
</tr>
</thead>
<tbody>
<tr>
<td>CDPD</td>
<td>PWT</td>
<td>EDGE</td>
<td>TETRA</td>
<td># of Carriers</td>
<td>Freq Spacing</td>
<td></td>
</tr>
</tbody>
</table>

:SETup:MCARrier:PHASe

Supported E8267D with Option 601 or 602

[:SOURce:] RADIO:DMODulation:ARB:SETup:MCARrier:PHASe FIXed|RANDom

[:SOURce:] RADIO:DMODulation:ARB:SETup:MCARrier:PHASe?

This command sets the phase difference between carriers for multicarrier digital modulation.

FIXed This choice sets the phase of all carriers to 0.
RANDom This choice sets random phase values for all of the carriers.

Example

[:SOURce:] RADIO:DMODulation:ARB:SET:MCAR:PHAS RAND

The preceding example sets the phase difference between carriers to a random value.

*RST FIX

Key Entry Carrier Phases Fixed Random

:SETup:MCARrier:STORe

Supported E8267D with Option 601 or 602

[:SOURce:] RADIO:DMODulation:ARB:SETup:MCARrier:STORe "<file_name>"

This command stores the current multicarrier setup information.

The stored file contains information that includes the digital modulation format, number of carriers, frequency spacing, and power settings for the multicarrier setup.

The setting enabled by this command is not affected by signal generator power-on, preset, or *RST. For information on the file name syntax, see “File Name Variables” on page 10.
Digital Modulation Commands

Dmodulation Subsystem—Option 601 or 602 [:SOURce]:RADio:DMODulation:ARB

Example

[:SOURce]:RADio:DMODulation:ARB:SET:MCAR:STOR "NADC_Data"

The preceding example saves the multicarrier setup information to a file called NADC_Data and stores the file in the catalog of MDMOD files.

*RST

N/A

Key Entry

Load/Store

[:SOURce]:RADio:DMODulation:ARB:SETup:MCARrier:TABLe

Supported E8267D with Option 601 or 602

:SETup:MCARrier:TABLe INIT|APPend

INIT This choice clears the current information and creates a new one-row table, allowing for further definition using additional parameters.

APPend This choice adds rows to an existing table.

<carrier_num> This variable specifies the number of the carriers in the multicarrier table that will be modified. The value of the variable <carrier_num> must be specified prior to selecting the digital modulation format.

For information on the file name syntax, see “File Name Variables” on page 10. To store a multicarrier setup refer to “SETup:MCARrier:STORE” on page 271.

When a query is initiated, carrier type, frequency offset, and power level are returned in the following format: <carrier_type>,<freq_offset>,<power>

*RST

carrier type: NADC

<freq_offset>: 5.00000000E+004

<power>: +0.00000000E+000

Range

<freq_offset>: –1E5 to 1E6

<power>: –40 to 0

Key Entry

Initialize Table Insert Row GSM NADC PDC PHS DECT

APCO 25 w/C4FM APCO w/CQPSK CDPD PWT EDGE TETRA

Custom Digital Mod State
Digital Modulation Commands
Dmodulation Subsystem–Option 601 or 602 [:SOURce]:RADio:DMODulation:ARB

:SETup:MCARrier:TABLE:NCARriers

Supported E8267D with Option 601 or 602

[:SOURce]:RADio:DMODulation:ARB:SETup:MCARrier:TABLE:NCARriers?
This query returns the number of carriers in the current multicarrier setup.

*RST 2
Range 1–100
Key Entry # of Carriers

:SETup:STORe

Supported E8267D with Option 601 or 602

[:SOURce]:RADio:DMODulation:ARB:SETup:STORe "<file_name>"
This command stores the current custom digital modulation state using the "<file_name>" file name. The saved file contains information that includes the modulation type, filter and symbol rate for the custom modulation setup.
For information on the file name syntax, see "File Name Variables" on page 10.

Example

:RAD:DMOD:ARB:SET:STOR "Setup_Data"
The preceding example saves the modulation format setup to a file named Setup_Data and stores the file in the catalog of DMOD files.

*RST N/A
Range N/A
Key Entry Store Custom Dig Mod State

:SRAte

Supported E8267D with Option 601 or 602

[:SOURce]:RADio:DMODulation:ARB:SRAte <val>
[:SOURce]:RADio:DMODulation:ARB:SRAte?
This command sets the transmission symbol rate. The variable <val> is expressed in symbols per second (sps–Msp) and the maximum range value is dependent upon the source of data (internal or external), the modulation type, and filter.

When user-defined filters are selected using the command in section ":FILTer" on page 259, the upper bit rate will be restricted using the following criteria:

- FIR filter length > 32 symbols: upper limit is 12.5 Msp
- FIR filter length > 16 symbols: upper limit is 25 Msp
When internal FIR filters are used, these limit restrictions always apply. For higher symbol rates, the FIR filter length will be truncated as follows:

- Above 12.5 Msps, the FIR length is truncated to 32 symbols
- Above 25 Msps, the FIR length is truncated to 16 symbols

This impacts the relative timing of the modulated data, as well as the actual filter response.

To change the modulation type, refer to “:MODulation[:TYPE]” on page 267.

Example

`:RAD:DMOD:ARB:SRAT 10KSPS`

The preceding example sets the symbol rate to 10K symbols per second.

*RST

+2.43000000E+004

Range 1 ksp–50 Msps

Key Entry Symbol Rate

`:TRIGger:TYPE`

Supported E8267D with Option 601 or 602

`[:SOURce]:RADio:DMODulation:ARB:TRIGger:TYPE CONTinuous|SINGle|GATE`

This command sets the trigger mode (type) that controls the waveform’s playback.

Triggers control the playback by telling the PSG when to play the modulating signal (waveform). Depending on the trigger settings for the PSG, the waveform playback can occur once, continuously, or the PSG may start and stop playing the waveform repeatedly (GATE mode).

A trigger signal comprises both positive and negative signal transitions (states), which are also called high and low periods. You can configure the PSG to trigger on either state of the trigger signal. It is common to have multiple triggers, also referred to as trigger occurrences or events, occur when the signal generator requires only a single trigger. In this situation, the PSG recognizes the first trigger and ignores the rest.

When you select a trigger mode, you may lose the signal (carrier plus modulating) from the RF output until you trigger the waveform. This is because the PSG sets the I and Q signals to zero volts prior to the first trigger event, which suppresses the carrier. After the first trigger event, the waveform’s final I and Q levels determine whether you will see the carrier signal or not (zero = no carrier, other values = carrier visible). At the end of most files, the final I and Q points are set to a value other than zero.

There are four parts to configuring the trigger:

- Choosing the trigger type, which controls the waveform’s transmission.
- Setting the waveform’s response to triggers:
 - CONTinuous, see “:TRIGger:TYPE:CONTinuous[:TYPE]” on page 275
 - SINGle, see “:RETRigger” on page 269
 - GATE, selecting the mode also sets the response
• Selecting the trigger source (see “:TRIGger[:SOURce]” on page 277), which determines how the PSG receives its trigger signal, internally or externally. The GATE choice requires an external trigger.

• Setting the trigger polarity when using an external source:
 — CONTinuous and SINGle see “:TRIGger[:SOURce]:EXTernal:SLOPe” on page 279
 — GATE, see “:TRIGger:TYPE:GATE:ACTive” on page 276

For more information on triggering, see the E8257D/67D PSG Signal Generators User’s Guide.

The following list describes the trigger type command choices:

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONTinuous</td>
<td>Upon triggering, the waveform repeats continuously.</td>
</tr>
<tr>
<td>SINGle</td>
<td>Upon triggering, the waveform segment or sequence plays once.</td>
</tr>
<tr>
<td>GATE</td>
<td>An external trigger signal repeatedly starts and stops the waveform's playback (transmission). The time duration for playback depends on the duty period of the trigger signal and the gate polarity selection (see “:TRIGger:TYPE:GATE:ACTive” on page 276). The waveform plays during the inactive state and stops during the active polarity selection state. The active state can be set high or low. The gate mode works only with an external trigger source.</td>
</tr>
</tbody>
</table>

NOTE The ARB gating behavior described above is opposite to the gating behavior for real-time custom mode.

Example

:RAD:DMOD:ARB:TRIG:TYPE GATE

The preceding example selects the gate trigger mode.

Supported

| [:SOURce]:RADio:DMODulation:ARB:TRIGger:TYPE:CONTinuous[:TYPE]? |

This command selects the waveform's response to a trigger signal while using the continuous trigger mode.

For more information on triggering and to select the continuous trigger mode, see “:TRIGger:TYPE” on page 274.

The following list describes the waveform's response to each of the command choices:

FREE

Turning the ARB format on immediately triggers the waveform. The waveform repeats until you turn the format off, select another trigger, or choose another waveform file.
TRIGger

The waveform waits for a trigger before play begins. When the waveform receives the trigger, it plays continuously until you turn the format off, select another trigger, or choose another waveform file.

RESet

The waveform waits for a trigger before play begins. When the waveform receives the trigger, it plays continuously. Subsequent triggers reset the waveform to the beginning. For a waveform sequence, this means to the beginning of the first segment in the sequence.

Example

The preceding example selects the continuous trigger free mode.

*RST

FREE

Key Entry Free Run Trigger & Run Reset & Run

:TRIGger:TYPE:GATE:ACTive

Supported

E8267D with Option 601 or 602

[:SOURce]:RADio:DMODulation:ARB:TRIGger:TYPE:GATE:ACTive LOW|HIGH

[:SOURce]:RADio:DMODulation:ARB:TRIGger:TYPE:GATE:ACTive?

This command selects the active state (gate polarity) of the gate while using the gating trigger mode.

The LOW and HIGH selections correspond to the low and high states of an external trigger signal. For example, when you select HIGH, the active state occurs during the high of the trigger signal. When the active state occurs, the PSG stops the waveform playback at the last played sample point, then restarts the playback at the next sample point when the inactive state occurs. For more information on triggering and to select gating as the trigger mode, see “:TRIGger:TYPE” on page 274.

The following list describes the PSG’s gating behavior for the polarity selections:

LOW The waveform playback stops when the trigger signal goes low (active state) and restarts when the trigger signal goes high (inactive state).

HIGH The waveform playback stops when the trigger signal goes high (active state) and restarts when the trigger signal goes low (inactive state).

Example

The preceding example sets the active gate state to high.

*RST

HIGH

Key Entry Gate Active Low High
Digital Modulation Commands
Dmodulation Subsystem–Option 601 or 602 ([:SOURce]:RADio:DMODulation:ARB)

:TRIGger[:SOURce]

Supported
E8267D with Option 601 or 602

[:SOURce]:RAD:DMOD:ARB::TRIGger[:SOURce] KEY|EXT|BUS

This command sets the trigger source.

For more information on triggering, see “**:TRIGger:TYPE**” on page 274. The following list describes the command choices:

KEY
This choice enables manual triggering by pressing the front-panel Trigger hardkey.

EXT
An externally applied signal triggers the waveform. This is the only choice that works with gating. The following conditions affect an external trigger:

- The input connector selected for the trigger signal. You have a choice between the rear-panel PATTERN TRIG IN connector or the PATT TRIG IN 2 pin on the rear-panel AUXILIARY I/O connector. To make the connector selection, see “**:TRIGger[:SOURce]:EXTernal[:SOURce]**” on page 278.

 For more information on the connectors and on connecting the cables, see the E8257D/67D PSG Signal Generators User’s Guide.

- The trigger signal polarity:
 - gating mode, see “**:TRIGger:TYPE:GATE:ACTive**” on page 276
 - continuous and single modes, see “**:TRIGger[:SOURce]:EXTERNAL:SLOPe**” on page 279

- The time delay between when the PSG receives a trigger and when the waveform responds to the trigger. There are two parts to setting the delay:
 - setting the amount of delay, see “**:TRIGger[:SOURce]:EXTERNAL:DELay**” on page 278
 - turning the delay on, see “**:TRIGger[:SOURce]:EXTERNAL:DELay:STATe**” on page 279

BUS
This choice enables triggering over the GPIB or LAN using the *TRG or GET commands or the AUXILIARY INTERFACE (RS-232) using the *TRG command.

Example

:RAD:DMOD:ARB::TRIG EXT

The preceding example sets the trigger source to external triggering mode.

RST

Key Entry

<table>
<thead>
<tr>
<th>Trigger Key</th>
<th>Ext</th>
<th>Bus</th>
</tr>
</thead>
</table>

Chapter 5 277
Digital Modulation Commands
Demodulation Subsystem—Option 601 or 602 ([:SOURCE]:RADIO:DMODulation:ARB)

:TRIGger[:SOURCE]:EXTernal[:SOURCE]

Supported
E8267D with Option 601 or 602

[:SOURCE]:RADIO:DMODulation:ARB:TRIGger[:SOURCE]:EXTernal[:SOURCE] EPT1
EPT2|EPTRIGGER1|EPTRIGGER2

This command selects which PATTERN TRIG IN connection the PSG uses to accept an externally applied trigger signal when external is the trigger source selection.

For more information on configuring an external trigger source and to select external as the trigger source, see “:TRIGger[:SOURCE]” on page 277. For more information on the rear-panel connectors, see the **E8257D/67D PSG Signal Generators User’s Guide**.

The following list describes the command choices:

- **EPT1**: This choice is synonymous with EPTRIGGER1 and selects the PATTERN TRIG IN rear-panel connector.
- **EPT2**: This choice is synonymous with EPTRIGGER2 and selects the PATT TRIG IN 2 pin on the rear-panel AUXILIARY I/O connector.
- **EPTRIGGER1**: This choice is synonymous with EPT1 and selects the PATTERN TRIG IN rear-panel connector.
- **EPTRIGGER2**: This choice is synonymous with EPT2 and selects the PATT TRIG IN 2 pin on the rear-panel AUXILIARY I/O connector.

Example

:RAD:DMOD:ARB:TRIG:EXT EPT1

The preceding example sets the trigger source to the PATTERN TRIG IN rear-panel connector.

:*RST

Key Entry
Patt Trig In 1 Patt Trig In 2

:TRIGger[:SOURCE]:EXTernal:DELay

Supported
E8267D with Option 601 or 602

[:SOURCE]:RADIO:DMODulation:ARB:TRIGger[:SOURCE]:EXTernal:DELay <val>
[:SOURCE]:RADIO:DMODulation:ARB:TRIGger[:SOURCE]:EXTernal:DELay?

This command sets the amount of time to delay the PSG’s response to an external trigger.

The delay is a path (time) delay between when the PSG receives the trigger and when it responds to the trigger. For example, configuring a trigger delay of two seconds, causes the PSG to wait two seconds after receipt of the trigger before the PSG plays the waveform.

The delay does not occur until you turn it on (see :TRIGger[:SOURCE]:EXTernal:DELay:STATe). You can set the delay value either before or after turning it on.

For more information on configuring an external trigger source and to select external as the trigger source, see “:TRIGger[:SOURCE]” on page 277.

The unit of measurement for the variable <val> is in seconds (nsec–sec).
Digital Modulation Commands
Dmodulation Subsystem–Option 601 or 602 [:SOURce]:RADio:DMODulation:ARB

Example
:RAD:DMOD:ARB:TRIG:EXT:DEL 200MS

The preceding example sets the delay for an external trigger to .2 seconds.

*RST +1.00000000E−003

Range 1E−8 to 4E1

Key Entry Ext Delay Time

[:TRIGger[:SOURce]:EXTernal:DELay:STATe

Supported E8267D with Option 601 or 602

[:SOURce]:RADio:DMODulation:ARB:TRIGger[:SOURce]:EXTernal:DELay:STATe ON|OFF|1|0

This command turns the trigger delay on or off when using an external trigger source.

For setting the delay time, see :TRIGger[SOURce]:EXTernal:DELay, and for more information on configuring an external source, see “:TRIGger[SOURce]” on page 277.

Example
:RAD:DMOD:ARB:TRIG:EXT:DEL 1

The preceding example sets the delay active for an external trigger.

*RST 0

Key Entry Ext Delay Off On

[:TRIGger[:SOURce]:EXTernal:SLOPe

Supported E8267D with Option 601 or 602

[:SOURce]:RADio:DMODulation:ARB:TRIGger[:SOURce]:EXTernal:SLOPe POSitive|NEGative

[:SOURce]:RADio:DMODulation:ARB:TRIGger[:SOURce]:EXTernal:SLOPe?

This command sets the polarity for an external trigger signal while using the continuous, single triggering mode. To set the polarity for gating, see “:TRIGger:TYPE:GATE:ACTive” on page 276.

The POSitive and NEGative selections correspond to the high (positive) and low (negative) states of the external trigger signal. For example, when you select POSitive, the waveform responds (plays) during the high state of the trigger signal. When the PSG receives multiple trigger occurrences when only one is required, the signal generator uses the first trigger and ignores the rest.

For more information on configuring an external trigger source and to select external as the trigger source, see “:TRIGger[SOURce]” on page 277.
Digital Modulation Commands
Multitone Subsystem–Option 601 or 602 [:SOURce]:RADio:MTONe:ARB

Example
.:RAD:DMOD:ARB:TRIG:EXT:SLOPE POS
The preceding example sets the polarity of the active triggering state to positive.

*RST NEG
Key Entry Ext Polarity Neg Pos

[:STATe]
Supported E8267D with Option 601 or 602
[:SOURce]:RADio:DMODulation:ARB[:STATe] ON|OFF|1|0
[:SOURce]:RADio:DMODulation:ARB[:STATe]?
This command enables or disables the digital modulation.
ON (1) This choice sets up the internal hardware to generate the currently selected digital modulation format. When ON is selected, the I/Q state is activated and the I/Q source is set to internal.
OFF (0) This choice disables the digital modulation capability.

Example
.:RAD:DMOD:ARB ON
The preceding example turns on the arbitrary waveform generator.

*RST 0
Key Entry Digital Modulation Off On

Multitone Subsystem–Option 601 or 602 ([:SOURce]:RADio:MTOnE:ARB)

Creating a Multitone Waveform
Use the following steps to create a multitone waveform:
1. Initialize the phase for the multitone waveform (:SETup:TABLE:PHAs:INITialize on page 291).
2. Assign the frequency spacing between the tones (:SETup:TABLE:FSPacing on page 290).
3. Define the number of tones within the waveform (:SETup:TABLE:NTOnes on page 290).
4. Modify the power level, phase, and state of any individual tones (:ROW on page 292).

:HEADer:CLEar
Supported E8267D with Option 601 or 602
[:SOURce]:RADio:MTOnes:ARB:HEADer:CLEar
This command clears the header information from the header file used by this modulation format. Header information consists of signal generator settings and marker routings associated with the waveform file. Refer to the E8257D/67D PSG Signal Generators User’s Guide for information on header files.
For this command to function, the multitone mode must be on. To turn multitone on, see “[:STATe]” on page 292.

*RST N/A
Key Entry Clear Header

:HEADer:SAVE

Supported E8267D with Option 601 or 602
[:SOURce]:RADio:MTONe:ARB:HEADer:SAVE

This command saves the header information to the header file used by this modulation format. Header information consists of signal generator settings and marker routings associated with the waveform file. Refer to the E8257D/67D PSG Signal Generators User's Guide for information on header files.

For this command to function, multitone must be on. To turn multitone on, see “[:STATe]” on page 292.

*RST N/A
Key Entry Save Setup To Header

:IQ:EXTernal:FILTER

Supported E8267D with Option 601 or 602
[:SOURce]:RADio:MTONe:ARB:IQ:EXTERNAL:FILTER 40e6|THRough
[:SOURce]:RADio:MTONe:ARB:IQ:EXTERNAL:FILTER?

This command selects the filter or through path for I/Q signals routed to the rear-panel I and Q outputs. Selecting a filter using this command will automatically set “:IQ:EXTERNAL:FILTER:AUTO” on page 282 to OFF(0) mode.

40e6 This choice applies a 40 MHz baseband filter.
THRough This choice bypasses filtering.

Example

The preceding example selects a 40 MHz filter for the I/Q rear-panel signal path.

*RST THR
Key Entry 40.000 MHz Through
Digital Modulation Commands
Multitone Subsystem–Option 601 or 602 [:SOURce]:RADio:MTONe:ARB

:iQ:EXTernal:FILTer:AUTO

Supported E8267D with Option 601 or 602

[:SOURce]:RADio:MTONe:ARB:IQ:EXTernal:FILTer:AUTO ON|OFF|1|0

This command enables or disables the automatic filter selection for I/Q signals routed to the rear-panel I/Q outputs. The AUTO feature allows the signal generator to select the filter or through path for the signal.

ON(1) This choice automatically selects the 40 MHz filter optimized for current signal generator settings.

OFF(0) This choice disables the auto feature and allows you to select the 40 MHz filter or a through path. Refer to “:IQ:EXTernal:FILTer” on page 258 for selecting a filter or through path.

Example

The preceding example sets output I/Q filtering to automatic.

*RST 1

Key Entry I/Q Output Filter Manual Auto

:iQ:MODulation:ATTen

Supported E8267D with Option 601 or 602

[:SOURce]:RADio:MTONe:ARB:IQ:MODulation:ATTen <val>

This command sets the attenuation level of the I/Q signals being modulated through the signal generator RF path. The variable <val> is expressed in decibels (dB).

Example

The preceding example sets the modulator attenuator level to 20dB.

*RST +2.00000000E+000

Range 0–40 (.01dB resolution)

Key Entry Modulator Atten Manual Auto
:IQ:MODulation:ATTen:AUTO

Supported

E8267D with Option 601 or 602

[[:SOURce]:RADio:MTONe:ARB:IQ:MODulation:ATTen:AUTO ON|OFF|1|0]

This command enables or disables the modulator attenuator auto mode. The AUTO mode allows the signal generator to select the best attenuator level for the current settings. The auto mode will be switched to manual if the signal generator receives an AUTO OFF or AUTO 0 command.

Example

The preceding example sets the attenuator in manual mode.

:*RST

1

Key Entry

Modulator Attenuator Manual Auto

:IQ:MODulation:FILTer

Supported

E8267D with Option 601 or 602

[[:SOURce]:RADio:MTONe:ARB:IQ:MODulation:FILTer 40e6|THRough

[[:SOURce]:RADio:MTONe:ARB:IQ:MODulation:FILTer?

This command enables you to select a filter or through path for I/Q signals modulated onto the RF carrier. Selecting a filter using this command will automatically set “:IQ:MODulation:FILTer:AUTO” on page 284 to OFF(0) mode.

Example

The preceding example selects a through path for I/Q signals routed to the rear-panel outputs.

:*RST

THR

Key Entry

40.000 MHz Through
Digital Modulation Commands

Multitone Subsystem—Option 601 or 602 ([SOURce]:RADio:MTONe:ARB)

:IQ:MODulation:FILTer:AUTO

Supported
E8267D with Option 601 or 602

```plaintext
[SOURce]:RADio:MTONe:ARB:IQ:MODulation:FILTer:AUTO ON|OFF|1|0
[SOURce]:RADio:MTONe:ARB:IQ:MODulation:FILTer:AUTO?
```

This command enables or disables the automatic filter selection for I/Q signals modulated onto the RF carrier.

ON (1)
This choice will automatically select the 40 MHz filter optimized for the current signal generator setting.

OFF (0)
This choice disables the automatic filter selection and allows you to select the 40 MHz filter or the through path. Refer to “:IQ:MODulation:FILTer” on page 296 for selecting a filter or through path.

Example

```
```

The preceding example sets the automatic filter selection off.

:MDEStination:ALCHold

Supported
E8267D with Option 601 or 602

CAUTION
Incorrect ALC sampling can create a sudden unleveled condition that may create a spike in the RF output potentially damaging a DUT or connected instrument. Ensure that you set markers to let the ALC sample over an amplitude that accounts for the high power levels within the signal.

```plaintext
[SOURce]:RADio:MTONe:ARB:MDEStination:ALCHold NONE|M1|M2|M3|M4
[SOURce]:RADio:MTONe:ARB:MDEStination:ALCHold?
```

This command enables or disables the marker ALC hold function for the selected marker.

Use the ALC hold function when you have a waveform signal that incorporates idle periods, or when the increased dynamic range encountered with RF blanking is not desired. The ALC circuitry responds to the marker signal during the marker pulse (marker signal high), averaging the modulated signal level during this period.

The ALC hold function operates during the low periods of the marker signal. The marker polarity determines when the marker signal is high. For a positive polarity, this is during the marker points. For a negative polarity, this is when there are no marker points. To set a marker’s polarity, see “:MPOLarity:MARKer1|2|3|4” on page 286. For more information on markers, see “:MARKer:[SET]” on page 239.

NOTE
Do not use the ALC hold for more than 100 ms, because it can affect the waveform’s output amplitude.

The marker signal has a minimum of a two-sample delay in its response relative to the waveform signal response. To compensate for the marker signal delay, offset marker points from the waveform sample point at which you want the ALC sampling to begin.
The ALC hold setting is part of the file header information, so saving the setting to the file header saves the current marker routing for the waveform file.

NOTE A waveform file that has unspecified settings in the file header uses the previous waveform’s routing settings.

For more information on the marker ALC hold function, see the *E8257D/67D PSG Signal Generators User’s Guide*. To configure marker points, refer to the following sections located in the Dual ARB subsystem:

- For clearing a single marker point or a range of marker points, see “:MARKer:CLEar” on page 237.
- For clearing all marker points, see “:MARKer:CLEar:ALL” on page 238.
- For shifting marker points, see “:MARKer:ROTate” on page 238.
- For setting marker points, see “:MARKer:[SET]” on page 239.

NONE This terminates the marker ALC hold function.

M1–M4 These are the marker choices. The ALC hold feature uses only one marker at a time.

Example

```
:RAD:MTON:ARB:MDES:ALCH M1
```

The preceding example routes marker one to the ALC hold function.

RST

```
NONE
```

Key Entry

<table>
<thead>
<tr>
<th>None</th>
<th>Marker 1</th>
<th>Marker 2</th>
<th>Marker 3</th>
<th>Marker 4</th>
</tr>
</thead>
</table>

:MDEStination:PULSe

Supported E8267D with Option 601 or 602

CAUTION The pulse function incorporates ALC hold. Incorrect ALC sampling can create a sudden unleveled condition that may create a spike in the RF output potentially damaging a DUT or connected instrument. Ensure that you set markers to let the ALC sample over an amplitude that accounts for the high power levels within the signal.

```
[:SOURce]:RADio:MTONe:ARB:MDEStination:PULSe NONE|M1|M2|M3|M4
```

This command disables the marker RF blanking/pulse function, or it enables the marker RF blanking/pulse function for the selected marker.

This function automatically incorporates the ALC hold function, so there is no need to select both functions for the same marker.

NOTE Do not use ALC hold for more than 100 ms, because it can affect the waveform’s output amplitude.

The signal generator blanks the RF output when the marker signal goes low. The marker polarity determines when the marker signal is low. For a positive polarity, this is during the marker points.
Digital Modulation Commands
Multitone Subsystem–Option 601 or 602 ([:SOURce]:RADio:MTONe:ARB)

For a negative polarity, this is when there are no marker points. To set a marker's polarity, see
“:MPOLarity:MARKer1|2|3|4” on page 286. For more information on setting markers, see
“:MARKer:[SET]” on page 239.

NOTE Set marker points prior to using this function. Enabling this function without setting marker
points may create a continuous low or high marker signal, depending on the marker polarity.
This creates the condition where there is either no RF output or a continuous RF output.

To configure marker points, refer to the following sections located in the Dual ARB subsystem:
• For clearing a single marker point or a range of marker points, see “:MARKer:CLea” on page 237.
• For clearing all marker points, see “:MARKer:CLea:ALL” on page 238.
• For shifting marker points, see “:MARKer:ROTate” on page 238.
• For setting marker points, see “:MARKer:[SET]” on page 239.

The marker signal has a minimum of a two-sample delay in its response relative to the waveform
signal response. To compensate for the marker signal delay, offset marker points from the waveform
sample point at which you want the RF blanking to begin.

The RF blanking setting is part of the file header information, so saving the setting to the file header
saves the current marker routing for the waveform file.

NOTE A waveform file that has unspecified settings in the file header uses the previous waveform’s
routing settings. This could create the situation where there is no RF output signal, because
the previous waveform used RF blanking

For more information on the marker RF blanking function, see the E8257D/67D PSG Signal Generators User’s Guide.

NONE This terminates the marker RF blanking/pulse function.
M1–M4 These are the marker choices. The RF blanking/pulse feature uses only one marker
at a time.

Example
:RAD:MTON:ARB:MDES:PULSE M1
The preceding example routes marker one to the Pulse/RF Blanking function.

*RST

Key Entry

None Marker 1 Marker 2 Marker 3 Marker 4

:MPOLarity:MARKer1|2|3|4

Supported E8267D with Option 601 or 602

[:SOURce]:RADio:MTONe:ARB:MPOLarity:MARKer1|2|3|4 NEGative|POSitive

This command sets the polarity for the selected marker.

For a positive marker polarity, the marker signal is high during the marker points. For a negative
marker polarity, the marker signal is high during the period of no marker points. To configure marker

points, refer to the following sections located in the Dual ARB subsystem:

- For clearing a single marker point or a range of marker points, see “:MARKer:CLEar” on page 237.
- For clearing all marker points, see “:MARKer:CLEar:ALL” on page 238.
- For shifting marker points, see “:MARKer:ROTate” on page 238.
- For information on markers and setting marker points, see “:MARKer:[SET]” on page 239.

Example

```
:RAD:MTON:ARB:MPOL:MARK1 NEG
```

The preceding example sets the polarity for marker one to negative.

```
*RST POS
```

Key Entry

<table>
<thead>
<tr>
<th>Marker 1 Polarity</th>
<th>Marker 2 Polarity</th>
<th>Marker 3 Polarity</th>
<th>Marker 4 Polarity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neg</td>
<td>Neg</td>
<td>Neg</td>
<td>Neg</td>
</tr>
<tr>
<td>Pos</td>
<td>Pos</td>
<td>Pos</td>
<td>Pos</td>
</tr>
</tbody>
</table>

:REFerence:EXTernal:FREQuency

Supported

E8267D with Option 601 or 602

```
[:SOURce]:RADio:MTONe:ARB:REFerence:EXTernal:FREQuency <val>
[:SOURce]:RADio:MTONe:ARB:REFerence:EXTernal:FREQuency?
```

This command allows you to enter the frequency of an external reference. The variable `<val>` is expressed in hertz (Hz–MHz). The value specified by this command is effective only when you are using an external ARB reference applied to the BASEBAND GEN REF IN rear-panel connector. To specify external as the ARB reference source type, refer to “:REFerence[:SOURce]” on page 287.

Example

```
```

The preceding example sets the external reference to .5 megahertz.

```
*RST +1.00000000E+007
```

Range

2.5E5–1E8

Key Entry

<table>
<thead>
<tr>
<th>Reference Freq</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

:REFerence[:SOURce]

Supported

E8267D with Option 601 or 602

```
[:SOURce]:RADio:MTONe:ARB:REFerence[:SOURce] INTernal|EXTernal
[:SOURce]:RADio:MTONe:ARB:REFerence[:SOURce]?
```

This command selects either an internal or external reference for the waveform clock. If EXTernal is selected, the external frequency value must be entered and the clock signal must be applied to the BASEBAND GEN REF IN rear-panel connector. See “:REFerence:EXTernal:FREQuency” on page 287 to enter the external reference frequency.
Digital Modulation Commands
Multitone Subsystem–Option 601 or 602 [:SOURce:RADio:MTONe:ARB]

Example

:RAD:MTON:ARB:REF EXT
The preceding example sets an external reference as the waveform clock.

*RST INT
Key Entry ARB Reference Ext Int

:SCLock:RATE

Supported ES267D with Option 601 or 602
[:SOURce]:RADio:MTONe:ARB:SCLock:RATE <sample_clock_rate>
[:SOURce]:RADio:MTONE:ARB:SCLock:RATE?

This command sets the ARB sample clock rate.

The multitone generator should be on before executing this command. If this command is executed before the multitone generator is active, the entered value will be overridden by a calculated factory default value. Refer to “[:STATe]” on page 280 to activate the modulation format.

Example

:RAD:MTON:ARB:SCL:RATE 1E6
The preceding example sets the sample clock rate to 1 megahertz.

*RST +1.00000000E+006
Range 1–1E8
Key Entry ARB Sample Clock

:SETup

Supported ES267D with Option 601 or 602
[:SOURce]:RADio:MTONe:ARB:SETup "<file_name>"
[:SOURce]:RADio:MTONE:ARB:SETup?

This command retrieves a multitone waveform file from the signal generator's MTONE directory. The directory path is implied in the command and does not need to be specified. After the waveform file is loaded into memory you must send the command to turn on the Multitone generator. For information on the file name syntax, see “File Name Variables” on page 10.

Example

:RAD:MTON:ARB:SET "Multi_Setup"
The preceding example loads the Multi_Setup waveform file into the signal generator's memory.

Key Entry Load From Selected File
Digital Modulation Commands
Multitone Subsystem–Option 601 or 602 ([SOURce]:RADio:MTONE:ARB)

:SETup:STORe

Supported
E8267D with Option 601 or 602

[:SOURce]:RADio:MTONE:ARB:SETup:STORe "<file_name>"

This command stores the current multitone waveform setup in the signal generator’s MTONE directory using the "<file_name>" file name. The directory path is implied in the command and does not need to be specified.

Example

:RAD:MTON:ARB:SET:STOR "Multi_Setup1"

The preceding example stores the current multitone setup to the Multi_Setup1 file and stores it in the signal generator’s MTONE directory.

Key Entry
Store To File

:SETup:TABLe

Supported
E8267D with Option 601 or 602

[:SOURce]:RADio:MTONE:ARB:SETup:TABLe <freq_spacing>,<num_tones>,{<phase>,<state>}

[:SOURce]:RADio:MTONE:ARB:SETup:TABLe?

This command creates and configures a multitone waveform. The frequency offset, power, phase, and state value are returned when a query is initiated. The parameter format is as follows:

- `<freq_spacing>`: Spacing is limited by the 80 MHz bandwidth of the arbitrary waveform generator and the number of tones desired. No units are specified.
- `<num_tones>`: There must be a minimum of two tones and a maximum of 64.
- `<phase>`: 0-359
- `<state>`: An enabled state is +1. A disabled state is 0.

NOTE
Frequency offset is related to frequency spacing. Frequency offset between tones equals the frequency spacing.

To set the frequency spacing, refer to “:SETup:TABLe:FSPacing” on page 290. To set the power level for tones refer to “:ROW” on page 292.

Example

:RAD:MTON:ARB:SET:TABL 1000000,3,90,1,60,0,45,1

The preceding example creates a multitone setup consisting of 3 tones with 1 megahertz tone spacing. The first tone phase is 90 degrees and the state is on. The second tone phase is 60 degrees and the state is off. The third tone phase is 45 degrees and the state is on.

<table>
<thead>
<tr>
<th>TONE</th>
<th><frequency offset></th>
<th><power></th>
<th><phase></th>
<th><state></th>
</tr>
</thead>
<tbody>
<tr>
<td>Tone 1</td>
<td>-35000</td>
<td>+0.00000000E+000</td>
<td>+0</td>
<td>+1</td>
</tr>
<tr>
<td>Tone 2</td>
<td>-25000</td>
<td>+0.00000000E+000</td>
<td>+0</td>
<td>+1</td>
</tr>
<tr>
<td>Tone 3</td>
<td>-15000</td>
<td>+0.00000000E+000</td>
<td>+0</td>
<td>+1</td>
</tr>
<tr>
<td>Tone 4</td>
<td>-5000</td>
<td>+0.00000000E+000</td>
<td>+0</td>
<td>+1</td>
</tr>
<tr>
<td>Tone 5</td>
<td>+5000</td>
<td>+0.00000000E+000</td>
<td>+0</td>
<td>+1</td>
</tr>
</tbody>
</table>
Chapter 5

Digital Modulation Commands

Multitone Subsystem–Option 601 or 602 ([SOURce]:RADio:MTONe:ARB)

[:SOURce]:RADio:MTONe:ARB

- **[:SOURce]:RADio:MTONe:ARB:SETup:TABLe:FSPacing**

 This command sets the frequency spacing between tones. The variable `<freq_spacing>` is expressed in hertz (Hz–MHz) and is limited to the 80 megahertz bandwidth of the arbitrary waveform generator.

 Example

 `:RAD:MTON:ARB:SET:TABL:FSP 100KHZ`

 The preceding example sets a 100 kHz frequency spacing between tones.

 Range

 - `<freq_spacing>` (2 tones): 1E4–8E7
 - `<freq_spacing>` (>2 tones): 1E4 to (80 MHz ÷ (num_tones – 1))

 Key Entry

 Freq Spacing

 [:SOURce]:RADio:MTONe:ARB:SETup:TABLe:NTONes

 This command defines the number of tones in the multitone waveform. To specify the number of tones and additional parameters required to create or configure a multitone waveform, refer to “[:SETup:TABLE] on page 289. This command is the third step in creating a multitone waveform. Refer to “Creating a Multitone Waveform” on page 280 for all four steps.

 Example

 The preceding example sets four tones in the current multitone table.

 Range

 2–64

 Key Entry

 Number Of Tones

<freq_spacing> (2 tones): 1E4–8E7

<freq_spacing> (>2 tones): 1E4 to (80 MHz ÷ (num_tones – 1))

<freq_spacing>: 0–359

Key Entry

Freq Spacing

Number Of Tones

Toggle State
:SETup:TABLE:PHAsE:INITialize

Supported
E8267D with Option 601 or 602

```plaintext
[:SOURce]:RADio:MTONe:ARB:SETup:TABLE:PHAsE:INITialize FIXed|RANDom
[:SOURce]:RADio:MTONe:ARB:SETup:TABLE:PHAsE:INITialize?
```

This command initializes the phase in the multitone waveform table.

- **FIXed**: This choice sets the phase of all tones to the fixed value of 0 degrees.
- **RANDom**: This choice sets the phase of all tones to random values based on the setting on the random seed generator.

To change the random number generator seed value, refer to "*:SETup:TABLE:PHAsE:INITialize:SEED" on page 291.

This command is the first step in creating a multitone waveform. Refer to "Creating a Multitone Waveform" on page 280 for all four steps.

Example

```plaintext
```

The preceding example sets the phase for the tones to a random number.

RST

FIX

Key Entry

Initialize Phase Fixed Random

:SETup:TABLE:PHAsE:INITialize:SEED

Supported
E8267D with Option 601 or 602

```plaintext
[:SOURce]:RADio:MTONe:ARB:SETup:TABLE:PHAsE:INITialize:SEED FIXed|RANDom
[:SOURce]:RADio:MTONe:ARB:SETup:TABLE:PHAsE:INITialize:SEED?
```

This command initializes the random number generator seed that is used to generate phase values for the multitone waveform tones.

- **FIXed**: This choice sets the random number generator seed to a fixed value. This selection will generator random and repeatable phase values: the same phase values will be generated with subsequent execution of the command.
- **RANDom**: This choice sets the random number generator seed to a random value. This changes the phase value after each initialization of the phase.

Example

```plaintext
```

The preceding example sets the random number generator seed to a random value.

RST

FIX

Key Entry

Random Seed Fixed Random
Digital Modulation Commands
Multitone Subsystem—Option 601 or 602 [:SOURce]:RADio:MTONe:ARB

:ROW

Supported
ES267D with Option 601 or 602

[:SOURce]:RADio:MTONe:ARB:SETup:TABLE:ROW <row_number>,<power>,<phase>,<state>

This command modifies the indicated tone (row) of the multitone waveform.

- **<row_number>**
The number of rows for this variable is determined by the :SETup:TABLE command.
- **<power>**
The power level of the tone defined in the row number. Power levels for all tones must not exceed the power level of the signal generator. The power variable is expressed in decibels (dB)
- **<phase>**
The phase of the tone relative to the carrier. The phase variable is expressed in degrees.
- **<state>**
The state of the tone in this row can be enabled or disabled.

Frequency offset, power, phase, and state value are returned when a query is initiated. The output format is as follows:

```
 freq_offset, power, phase, state
```

Refer to “SETup:TABLE” on page 289 for information on how to change the number of rows. This command is the final step in creating a multitone waveform. Refer to “Creating a Multitone Waveform” on page 280 for all four steps.

Example

```
:RAD:MTON:ARB:SET:TABLE:ROW 2,-10,40,0
```

The preceding example modifies row number two in the currently selected multitone table. The power is set to –10 dB, the phase is set to 40 degrees, and the state is off.

- **RST**
  ```
  3.50000000E+004 <power>: +0.00000000E+000
  +0.00000000E+000 <phase>: +0.00000000E+000 <state>: 1
  ```

- **Range**
  ```
  -4E7 to 4E7 <power>: −80 to 0 <phase>: 0–359 <state>: 1
  ```

- **Key Entry**
  ```
  Goto Row  Toggle State
  ```

[:STAte]

Supported
ES267D with Option 601 or 602

[:SOURce]:RADio:MTONe:ARB[:STAte] ON|OFF|1|0

This command enables or disables the operating state of the multitone waveform generator.
Example
[:SOURce]:RADio:TTONe:ARB ON

The preceding example turns on the multitone generator.

*RST 0

Key Entry Multitone Off On

Two Tone Subsystem ([SOURce]:RADio:TTONe:ARB)

 ALIGNment

Supported E8267D with Option 601 or 602

[:SOURce]:RADio:TTONe:ARB:ALIGNment LEFT|CENTer|RIGHT

[:SOURce]:RADio:TTONe:ARB:ALIGNment?

This command will align the two tones either left, center or right of the carrier frequency.

Example
:RAD:TTON:ARB:ALIGN CENT

The preceding example aligns each of the two tones equidistant from the carrier frequency.

Key Entry Alignment Left Cent Right

APPLY

Supported E8267D with Option 601 or 602

[:SOURce]:RADio:TTONe:ARB:APPLY

This command will cause the two-tone waveform to be regenerated using the current settings.

This command has no effect unless the two-tone waveform generator is enabled and a change has been made to the frequency spacing setting.

Key Entry Apply Settings

FSPacing

Supported E8267D with Option 601 or 602

[:SOURce]:RADio:TTONe:ARB:FSPacing <freq_spacing>

[:SOURce]:RADio:TTONe:ARB:FSPacing?

This command sets the frequency spacing between the tones.

The variable <freq_spacing> is expressed in hertz (Hz–MHz).
Digital Modulation Commands
Two Tone Subsystem ([SOURce]:RADio:TTONe:ARB)

Example
:[SOURce]:RADio:TTONe:ARB:FSP 10MHZ
The preceding example sets a 10 megahertz frequency spacing for the two tones.

*RST +1.00000000E+004
Range 1E2–8E7
Key Entry Freq Separation

:HEADer:CLEar

Supported E8267D with Option 601 or 602
[[SOURce]:RADio:TTONe:ARB:HEADer:CLEar
This command clears the header information from the header file used for the two-tone waveform format. Header information consists of signal generator settings and marker routings associated with the waveform file. Refer to the E8257D/67D PSG Signal Generators User's Guide for information on header files.

For this command to function, two tone must be on. To turn two tone on, see “:STATe” on page 304.

*RST N/A
Key Entry Clear Header

:HEADer:SAVE

Supported E8267D with Option 601 or 602
[[SOURce]:RADio:TTONe:ARB:HEADer:SAVE
This command saves the header information to the header file used for the two-tone waveform format. Header information consists of signal generator settings and marker routings associated with the waveform file. Refer to the E8257D/67D PSG Signal Generators User's Guide for information on header files.

For this command to function, two tone must be on. To turn two tone on, see “:[STATe]” on page 302.

*RST N/A
Key Entry Save Setup To Header

:IQ:EXTernal:FILTer

Supported E8267D with Option 601 or 602
[[SOURce]:RADio:TTONe:ARB:IQ:EXTernal:FILTer 40e6|THrough
[[SOURce]:RADio:TTONe:ARB:IQ:EXTernal:FILTer?
This command selects the filter or through path for I/Q signals routed to the rear-panel I and Q outputs. Selecting a filter with this command automatically sets “:IQ:EXTernal:FILTer:AUTO” on page 282 to OFF.
Digital Modulation Commands
Two Tone Subsystem [:SOURce]:RADio:TTONe:ARB

40e6 This choice applies a 40 MHz baseband filter.
THROugh This choice bypasses filtering.

Example
The preceding example sets the through path for I/Q signal.

*RST
Key Entry 40.000 MHz Through

:IQ:EXTer nal:FILTer:AUTO

Supported E8267D with Option 601 or 602
[:SOURce]:RADio:TTONe:ARB:IQ:EXTernal:FILTer:AUTO ON|OFF|1|0
[:SOURce]:RADio:TTONe:ARB:IQ:EXTernal:FILTer:AUTO?
This command enables or disables the automatic filter selection for I/Q signals routed to the rear-panel I/Q outputs.
ON(1) This choice automatically selects the 40 MHz filter optimized for the current signal generator settings.
OFF(0) This choice disables the auto feature and allows you to select the 40 MHz filter or a through path. Refer to “:IQ:EXTer nal:FILTer” on page 258 for selecting a filter or through path.

Example
The preceding example enables the automatic filter selection.

*RST 1
Key Entry I/Q Output Filter Manual Auto

:IQ:MODulation:ATTen

Supported E8267D with Option 601 or 602
[:SOURce]:RADio:TTONe:ARB:IQ:MODulation:ATTen <val><unit>
[:SOURce]:RADio:TTONe:ARB:IQ:MODulation:ATTen?
This command sets the attenuation level of the I/Q signals being modulated through the signal generator RF path. The variable <val> is expressed in decibels (dB).

Example
The preceding example sets the modulator attenuator to 20 dB.

*RST +2.00000000E+000
Range 0–40 dB
Key Entry Modulator Atten Manual Auto
Digital Modulation Commands
Two Tone Subsystem [:SOURce]:RADio:TTONe:ARB

[:IQ:MODulation:ATTen:AUTO]

Supported E8267D with Option 601 or 602

[:SOURce]:RADio:TTONe:ARB:IQ:MODulation:ATTen:AUTO ON|OFF|1|0

This command enables or disables the modulator attenuator auto mode. The auto mode will be switched to manual if the signal generator receives an AUTO OFF or AUTO ON command.

ON (1) This choice enables the attenuation auto mode which allows the signal generator to select the attenuation level that optimizes performance based on the current conditions.

OFF (0) This choice holds the attenuator at its current setting or at a selected value. Refer to “:IQ:MODulation:ATTen” on page 282 for setting the attenuation value.

Example

The preceding example enables the attenuator automatic mode.

*RST 1

Key Entry Modulator Atten Manual Auto

[:IQ:MODulation:FILTer]

Supported E8267D with Option 601 or 602

[:SOURce]:RADio:TTONe:ARB:IQ:MODulation:FILTer 40e6|THRough

This command enables you to select a filter or through path for I/Q signals modulated onto the RF carrier. Selecting a filter using this command will automatically set “:IQ:MODulation:FILTer:AUTO” on page 284 to OFF (0) mode.

40E6 This choice applies a 40 MHz baseband filter to the I/Q signals.

THRough This choice bypasses filtering.

Example

The preceding example selects the 40 MHz filter.

*RST THR

Key Entry 40.000 MHz Through
Digital Modulation Commands
Two Tone Subsystem [:SOURce]:RADio:TTONe:ARB

:IQ:MODulation:FILTer:AUTO

Supported E8267D with Option 601 or 602

[:SOURce]:RADio:TTONe:ARB:IQ:MODulation:FILTer:AUTO ON|OFF|1|0
[:SOURce]:RADio:TTONe:ARB:IQ:MODulation:FILTer:AUTO?

This command enables or disables the automatic filter selection for I/Q signals modulated onto the RF carrier.

ON (1) This choice will automatically select the 40 MHz filter optimized for the current signal generator setting.

OFF (0) This choice disables the automatic filter selection and allows you to select a digital modulation filter or through path. Refer to “:IQ:MODulation:FILTer” on page 236 for selecting a filter or through path.

Example

:RAD:TTON:ARB:IQ:MDEStination:ALCHold NONE|M1|M2|M3|M4
[:SOURce]:RADio:TTONe:ARB:MDEStination:ALCHold?

This command disables the marker ALC hold function, or it enables the marker hold function for the selected marker.

Use the ALC hold function when you have a waveform signal that incorporates idle periods, or when the increased dynamic range encountered with RF blanking is not desired. The ALC circuitry responds to the marker signal during the marker pulse (marker signal high), averaging the modulated signal level during this period.

The ALC hold function operates during the low periods of the marker signal. The marker polarity determines when the marker signal is high. For a positive polarity, this is during the marker points. For a negative polarity, this is when there are no marker points. To set a marker’s polarity, see “:MPOLarity:MARKer1|2|3|4” on page 300. For more information on markers, see “:MARKer:[SET]” on page 239.

NOTE Do not use the ALC hold for more than 100 ms, because it can affect the waveform’s output amplitude.
The marker signal has a minimum of a two-sample delay in its response relative to the waveform signal response. To compensate for the marker signal delay, offset marker points from the waveform sample point at which you want the ALC sampling to begin.

The ALC hold setting is part of the file header information, so saving the setting to the file header saves the current marker routing for the waveform file.

NOTE A waveform file that has unspecified settings in the file header uses the previous waveform’s routing settings.

For more information on the marker ALC hold function, see the E8257D/67D PSG Signal Generators User’s Guide. To configure marker points, refer to the following sections located in the Dual ARB subsystem:
- For clearing a single marker point or a range of marker points, see “:MARKer:CLEar” on page 237.
- For clearing all marker points, see “:MARKer:CLEar:ALL” on page 238.
- For shifting marker points, see “:MARKer:ROTate” on page 238.
- For setting marker points, see “:MARKer:[SET]” on page 239.

NONE This terminates the marker ALC hold function.

M1–M4 These are the marker choices. The ALC hold feature uses only one marker at a time.

Example

```
```

The preceding example routes marker two to the ALC hold function.

CAUTION The pulse function incorporates ALC hold. Incorrect ALC sampling can create a sudden unleveled condition that may create a spike in the RF output, potentially damaging a DUT or connected instrument. Ensure that you set markers to let the ALC sample over an amplitude that accounts for the high power levels within the signal.

```
[:SOURce]:RADio:TTOn:ARB:MDEStination:PULSe NONE|M1|M2|M3|M4
[:SOURce]:RADio:TTOn:ARB:MDEStination:PULSe?
```

This command disables the marker RF blanking/pulse function, or it enables the marker RF blanking/pulse function for the selected marker.

This function automatically incorporates the ALC hold function, so there is no need to select both functions for the same marker.

NOTE Do not use ALC hold for more than 100 ms, because it can affect the waveform’s output amplitude.
The signal generator blanks the RF output when the marker signal goes low. The marker polarity determines when the marker signal is low. For a positive polarity, this is during the marker points. For a negative polarity, this is when there are no marker points. To set a marker’s polarity, see “:MPOLarity:MARKer1|2|3|4” on page 300. For more information on markers, see “:MARKer:[SET]” on page 239.

NOTE Set marker points prior to using this function. Enabling this function without setting marker points may create a continuous low or high marker signal, depending on the marker polarity. This creates the condition where there is either no RF output or a continuous RF output.

To configure marker points, refer to the following sections located in the Dual ARB subsystem:
- For clearing a single marker point or a range of marker points, see “:MARKer:CLEar” on page 237.
- For clearing all marker points, see “:MARKer:CLEar:ALL” on page 238.
- For shifting marker points, see “:MARKer:ROTate” on page 238.
- For setting marker points, see “:MARKer:[SET]” on page 239.

The marker signal has a minimum of a two-sample delay in its response relative to the waveform signal response. To compensate for the marker signal delay, offset marker points from the waveform sample point at which you want the RF blanking to begin.

The RF blanking setting is part of the file header information, so saving the setting to the file header saves the current marker routing for the waveform file.

NOTE A waveform file that has unspecified settings in the file header uses the previous waveform’s routing settings. This could create the situation where there is no RF output signal, because the previous waveform used RF blanking.

For more information on the marker RF blanking function, see the *E8257D/67D PSG Signal Generators User’s Guide*.

NONE This terminates the marker RF blanking/pulse function.

M1–M4 These are the marker choices. The RF blanking/pulse feature uses only one marker at a time.

Example

The preceding example routes marker three to the Pulse/RF Blanking function.

RST NONE

Key Entry None Marker 1 Marker 2 Marker 3 Marker 4
Digital Modulation Commands
Two Tone Subsystem [:SOURce]:RADio:TTONe:ARB

:MPOLarity:MARKer1|2|3|4

Supported
E8267D with Option 601 or 602

[:SOURce]:RADio:TTONe:ARB:MPOLarity:MARKer1|2|3|4 NEGative|POSitive

This command sets the polarity for the selected marker.

For a positive marker polarity, the marker signal is high during the marker points. For a negative marker polarity, the marker signal is high during the period of no marker points. To configure marker points, refer to the following sections located in the Dual ARB subsystem:

- For clearing a single marker point or a range of marker points, see “:MARKer:CLEar” on page 237.
- For clearing all marker points, see “:MARKer:CLEar:ALL” on page 238.
- For shifting marker points, see “:MARKer:ROTate” on page 238.
- For information on markers and setting marker points, see “:MARKer:[SET]” on page 239.

Example

:RAD:TTONe:ARB:MPOL:MARK1 POS

The preceding example sets the polarity for marker one to positive.

*RST

POS

Key Entry	Marker 1 Polarity Neg Pos	Marker 2 Polarity Neg Pos	Marker 3 Polarity Neg Pos	Marker 4 Polarity Neg Pos

:REFerence:EXTernal:FREQuency

Supported
E8267D with Option 601 or 602

[:SOURce]:RADio:TTONe:ARB:REFerence:EXTernal:FREQuency <val>

This command allows you to enter the frequency of the external reference.

The variable <val> is expressed in hertz (Hz–MHz).

The value specified by this command is effective only when you are using an external ARB reference applied to the BASEBAND GEN REF IN rear-panel connector.

To specify external as the ARB reference source type, refer to “:REFerence:[SOURce]” on page 246.

Example

:RAD:TTONe:ARB:REF:EXT:FREQ 1MHZ

The preceding example sets the external reference to 1 megahertz.

*RST

+1.00000000E+007

Range

2.5E5–1E8

Key Entry | Reference Freq
Digital Modulation Commands
Two Tone Subsystem [:SOURce]:RADio:TTOn:ARB

[:REFerence[:SOURce]]

Supported

ES267D with Option 601 or 602

[:SOURce]:RADio:TTOn:ARB:REFerence[:SOURce] INTernal|EXTernal

This command selects either an internal or external reference for the waveform clock. If EXTernal is selected, the external frequency value must be entered and the clock signal must be applied to the BASEBAND GEN REF IN rear-panel connector. See “[:REFerence:EXTernal:FREQuency]” on page 287 to enter the external reference frequency.

Example

:RAD:TTON:ARB:REF EXT

The preceding example sets an external reference as the waveform clock.

*RST

INT

Key Entry

ARB Reference Ext Int

:SCLock:RATE

Supported

ES267D with Option 601 or 602

[:SOURce]:RADio:TTOn:ARB:SCLock:RATE <sample_clock_rate>

This command sets the ARB sample clock rate.

The multitone generator should be on before executing this command. If this command is executed before the multitone generator is active, the entered value will be overridden by a calculated factory default value. Refer to “[:STATe]” on page 280 to activate the modulation format.

Example

:RAD:TTON:ARB:SCL:RATE 1MHZ

The preceding example sets the ARB sample clock to 1 MHz.

*RST

+1.00000000E+008

Range

1–1E8

Key Entry

ARB Sample Clock
Digital Modulation Commands
Wideband Digital Modulation Subsystem ([SOURce]:WDM)

[:STATe]

Supported
ES267D with Option 601 or 602

[:SOURce]:RADio:TTONe:ARB[:STATe] ON|OFF|1|0
[:SOURce]:RADio:TTONe:ARB[:STATe]?

This command enables or disables the on/off operational state of the two-tone waveform generator function.

Example
:RAD:TTON:ARB ON

The preceding example turns on the two-tone generator.

*RST
 0

Key Entry Two Tone Off On

Wideband Digital Modulation Subsystem ([SOURce]:WDM)

:IQADjustment:IOFFset

Supported
ES267D with Option 015

[:SOURce]:WDM:IQADjustment:IOFFset <val><unit>
[:SOURce]:WDM:IQADjustment:IOFFset?

This command sets the I channel offset value, as a percent of the full scale. 100% offset is equivalent to 500 mV DC at the input connector.

Example
:WDM:IQAD:IOFF 100MV

The preceding example sets an offset of 100 mV DC for the I signal.

*RST
 +0.00000000E+000

Range
−5E1 to +5E1

Key Entry I Offset

:IQADjustment:QOFFset

Supported
ES267D with Option 015

[:SOURce]:WDM:IQADjustment:QOFFset <val><unit>
[:SOURce]:WDM:IQADjustment:QOFFset?

This command sets the Q channel offset value, as a percent of the full scale. 100% offset is equivalent to 500 mV DC at the input connector.

Example
:WDM:IQAD:QOFF 100MV

The preceding example sets an offset of 100 mV DC for the Q signal.

Digital Modulation Commands

Wideband Digital Modulation Subsystem [:SOURce]:WDM

:IQADjustment:QSKew

Supported

E8267D with Option 601 or 602 and Option 015

\[
[:\text{SOURce}]:\text{WDM}:\text{IQADjustment}:\text{QSKew} \ <\text{val}>
\]

\[
[:\text{SOURce}]:\text{WDM}:\text{IQADjustment}:\text{QSKew}?
\]

This command adjusts the phase angle between the I and Q vectors.

The variable \(<\text{val}>\) is expressed in degrees with a minimum resolution of 0.1.

Positive skew increases the angle from 90 degrees while negative skew decreases the angle from 90 degrees. When the quadrature skew is zero, the phase angle is 90 degrees. If the signal generator is operating at frequencies greater than 3.3 GHz, quadrature skew settings greater than ±5 degrees will not be within specifications.

This command is effective only if the state of the I/Q adjustment function is set to ON. Refer to ":IQADjustment[:STATe]" on page 303.

Example

:WDM:IQAD:QSK 3.1

The preceding example sets the skew value for the Q signal to 3.1 degrees.

:IQADjustment[:STATe]

Supported

E8267D with Option 015

\[
[:\text{SOURce}]:\text{WDM}:\text{IQADjustment}[:\text{STATe}] \ \text{ON}|\text{OFF}|1|0
\]

\[
[:\text{SOURce}]:\text{WDM}:\text{IQADjustment}[:\text{STATe}]?
\]

This command enables or disables the wideband I/Q adjustments.

Example

:WDM:IQAD ON

The preceding example enables I/Q adjustments.
:STATe

Supported
E8267D with Option 015

[:SOURce]:WDM:STATe ON|OFF|1|0
[:SOURce]:WDM:STATe?

This command enables or disables the wideband I/Q modulator. The I/Q modulator is automatically enabled whenever a digital modulation form is turned on and when active, the I/Q annunciator appears on the signal generator’s display.

Example

:WDM:STAT ON

The preceding example enables the wideband I/Q modulator.

*RST 0

Key Entry
I/Q Off On
6 Digital Signal Interface Module Commands

- “Digital Subsystem ([SOURce])” on page 305

Digital Subsystem ([SOURce])

:DIGItal:CLK:CPS

Supported E8267D Option 601 or 602 with Option 003

[:SOURce]:DIGItal:CLK:CPS 1|2|4

[:SOURce]:DIGItal:CLK:CPS?

This command selects the number of clock cycles per sample. The command is used with parallel or parallel interleaved port configurations. If this command is executed with a serial port configuration or an IF signal type, the parameter value is changed, but it is not used by the interface module until the port configuration is changed to parallel or parallel interleaved, and the signal type is changed to IQ.

The query returns the currently set value, regardless of the port configuration, you must query all four states (clocks per sample, port configuration, data direction, and signal type) to know the interface module’s current setup.

Example

:DIG:CLK:CPS 2

The preceding example sets two clock cycles for each sample.

*RST 1

Range 1,2,or 4

Key Entry Clocks Per Sample
Digital Signal Interface Module Commands
Digital Subsystem [:SOURce]

:DIGital:CLOCk:PHASe

Supported E8267D Option 601 or 602 with Option 003 or 004

[:SOURce]:DIGital:CLOCk:PHASe <val>
[:SOURce]:DIGital:CLOCk:PHASe?

This command sets the phase for the clock relative to the leading edge transition of the data. At 0 degrees the clock and leading edge of the data signal are aligned. Any phase value between 0 and 360 degrees can be used in the command, however, the signal generator rounds up or down to get 90, 180, 270 and 0 degree settings. For example 140 degrees will cause the signal generator to use the 180 degree setting.

If this command is executed when the clock rate is less than 10 MHz or greater than 200 MHz, the resolution of this setting changes to 180 degrees, and the maximum phase becomes 180 degrees.

Example

:DIG:CLOC:PHAS 90DEG

The preceding example sets the clock phase to 90 degrees. The clock signal leading edge transition will be delayed by 1/4 of a clock period relative to the leading edge data transition.

*RST +0.00000000E+000

Range 0 – 360 deg

Key Entry Clock Phase

:DIGital:CLOCk:POLarity

Supported E8267D Option 601 or 602 with Option 003 or 004

[:SOURce]:DIGital:CLOCk:POLarity POSitive|NEGative
[:SOURce]:DIGital:CLOCk:POLarity?

This command sets the alignment for the clock signal to positive or negative. Positive selects the leading edge transition of the clock signal to align with the leading edge data transition and negative selects the falling edge transition of the clock signal to align with the leading edge of the data.

Example

:DIG:CLOC:POL NEG

The preceding example sets the clock falling edge transition to align with the leading edge data transition.

*RST POS

Key Entry Clock Polarity

`:DIGital:CLOCk:RATE

Supported E8267D Option 601 or 602 with Option 003 or 004

[[:SOURce]:DIGital:CLOCk:RATE <val>
[[:SOURce]:DIGital:CLOCk:RATE?

This command sets the clock rate. If an external clock is used, the rate set with this command must match the external clock rate. Only clock phase settings of 0 or 180 degrees are valid for a clock rate setting below 10 MHz or above 200 MHz. The variable <val> is a expressed in hertz

Example

:DIG:CLOC:RATE 200MHZ

The preceding example sets the clock rate to 200 megahertz.

*RST +1.000000E+008

Range 1 kHz–400 MHz

Key Entry Clock Rate

`:DIGital:CLOCk:REFerence:FREQuency

Supported E8267D Option 601 or 602 with Option 004

[[:SOURce]:DIGital:CLOCk:REFence:FREQuency <freq>
[[:SOURce]:DIG:CLOC:REF:FREQ?

This command allows you to specify the frequency of the external reference supplied to the Freq Ref connector. This command is valid only when the clock source is set to internal.

If this command is executed when the clock source is not set to internal, the parameter value is changed, but it is not used by the signal generator until the clock source is changed to internal.

Because a query returns the currently set value, regardless of the clock source, you must query both states (reference frequency and clock source) to know the signal generator’s current setup.

Example

:DIG:CLOC:REF:FREQ 50MHZ

The preceding example specifies a 50 megahertz external reference frequency.

*RST +1.000000E+007

Range 1–100 MHz

Key Entry Reference Frequency
:DIGital:CLOCk:SOURCe

Supported E8267D Option 601 or 602 with Option 003 or 004

[:SOURce]:DIGital:CLOCk:SOURCe INternal|EXTernal|DEVice

[:SOURce]:DIG:CLOC:SOURCe?

This command selects one of three possible clock sources.

Example

:DIG:CLOC:SOUR DEV

The preceding example uses the “Device Interface Connector” input clock.

*RST INT

Key Entry Clock Source

:DIGital:CLOCk:SKEW

Supported E8267D Option 601 or 602 with Option 003 or 004

[:SOURce]:DIGital:CLOCk:SKEW <val>

[:SOURce]:DIGital:CLOCk:SKEW?

This command sets the clock signal skew value. The skew is a fine-tune adjustment for the course tune clock phase function and helps to align the clock with valid data states. This is useful at high clock rates and available only for clock frequencies above 10 megahertz. The variable <val> is expressed in nanoseconds.

Example

:DIG:CLOC:SKEW 2NS

The preceding example sets the clock skew to 2 nanoseconds.

*RST +0.00000000E+000 ns

Range -5ns to 5ns

Key Entry Clock Skew

:DIGital:DATA:ALIGnment

Supported E8267D Option 601 or 602 with Option 003 or 004

[:SOURce]:DIGital:DATA:ALIGnment MSB|LSB

[:SOURce]:DIGital:DATA:ALIGment?

This command selects the bit alignment for word less than 16 bits in length. The MSB (most significant bit) selection maintains the MSB of the word on the same data line while the LSB (least significant bit) will move depending on the word size. The opposite effect occurs when the alignment is set to LSB.
Example

:DIG:DATA:ALIG MSB

The preceding example sets the MSB word format.

*RST LSB

Key Entry Word Alignment

:DIGital:DATA:BORDer

Supported E8267D Option 601 or 602 with Option 003 or 004

[:SOURce]:DIGital:DATA:BORDer MSB|LSB

[:SOURce]:DIGital:DATA:BORD?

This command selects the bit order for data transmitted through the N5102A module. Data can be in least significant (LSB) bit first or most significant (MSB) bit first.

Example

:DIG:DATA:BORD MSB

The preceding example specifies data in MSB first format.

*RST LSB

Key Entry Bit Order

:DIGital:DATA:DIRection

Supported E8267D Option 601 or 602 with Option 003 or 004

[:SOURce]:DIGital:DATA:DIRection OUTPut|INPut

[:SOURce]:DIGital:DATA:DIRection?

This command selects an input or output direction for data flow through the N5102A module.

Example

:DIG:DATA:DIR INP

The preceding example selects input as the direction of data flow.

*RST Output (unless only Option 004 is installed)

Key Entry Direction
:DIGital:DATA:IGain

Supported E8267D Option 601 or 602 with Option 003

[:SOURce]:DIGital:DATA:IGain <val>
[:SOURce]:DIGital:DATA:IGain?

This command adjusts the gain of the I data in the N5102A module. The adjustment does not affect the Q data. The variable <val> is expressed as a percentage delta from 100%.

The offset is an adjustment to the analog level that is represented by the digital sample. The analog voltage is limited to a 16-bit data sample. If the amplitude of the signal, after gain is applied, cannot be represented by 16 bits, the signal will be clipped.

Example

:DIG:DATA:IG 10

The preceding example turns off wideband amplitude modulation.

*RST +0.00000000E+000

Range –12.5 through 12.5

Key Entry I Gain

:DIGital:DATA:INEGate

Supported E8267D Option 601 or 602 with Option 003 or 004

[:SOURce]:DIGital:DATA:INEGate OFF|ON|0|1
[:SOURce]:DIGital:DATA:INEGate?

This command enables or disables the negation of the I data sample. Negation changes the sample by expressing it in two's complement form, multiplying by negative one, and converting back to the selected numeric format. This can be done for I samples, Q samples, or both.

The sample or word represents a quantized analog voltage level. For a 16-bit sample, the range is from 0 to 65535 in offset binary or -32768 to +32767 in 2's complement mode.

Example

:DIG:DATA:INEG ON

The preceding example enables negation of the I data.

*RST 0

Key Entry Negate I
:DIGital:DATA:IOFFset

Supported
E8267D Option 601 or 602 with Option 003

[:SOURce]:DIGital:DATA:IOFFset <val>

[:SOURce]:DIGital:DATA:IOFFset?

This command adjusts the DC offset for I data. The command is available for the N5102A module output mode. The variable `<val>` is expressed as a +/- 100% of the full scale value. Refer to the E8257D/67D PSG Signal Generators Key Reference for more information.

Example

:DIG:DATA:IOFF 40

The preceding example sets the I offset to 40% of full scale.

RST

+0.00000000E+000

Range

-100 to +100

Key Entry

I Offset

:DIGital:DATA:IQSWap

Supported
E8267D Option 601 or 602 with Option 003 or 004

[:SOURce]:DIGital:DATA:IQSWap OFF|ON|0|1

[:SOURce]:DIGital:DATA:IQSWap?

This command enables or disables swapping of the I and Q data. When enabled, the I data is sent to the N5102A's Q bus and the Q data is sent to the I bus.

Example

:DIG:DATA:IQSW ON

The preceding example enables swapping of I and Q data.

RST

0

Key Entry

Swap IQ

:DIGital:DATA:NFORmat

Supported
E8267D Option 601 or 602 with Option 003 or 004

[:SOURce]:DIGital:DATA:NFORmat OBINary|TCOMplement

[:SOURce]:DIGital:DATA:NFORmat?

This command selects the binary format used to represent the transmitted data values. The selections are offset binary or 2's complement.

Example

:DIG:DATA:NFOR OBIN

The preceding example selects the offset binary format to represent data values.

RST

TCOM

Key Entry

Numeric Format

Digital Signal Interface Module Commands
Digital Subsystem ([:SOURce])

:DIGit:DATA:POLarity:FRAME

Supported
E8267D Option 601 or 602 with Option 003 or 004

```
[:SOURce]:DIGit:DATA:POLarity:FRAME POSitive|NEGative
```

This command selects the polarity of the frame marker for serial transmission. The frame marker indicates the beginning of each sample or byte of data. The command is valid for serial transmission only.

- **POS**
 This choice selects a positive polarity. The frame marker is high for the first data sample.

- **NEG**
 This choice selects a negative polarity. The frame marker is low for the first data sample.

Example

`:DIG:DATA:POL:FRAM NEG`

The preceding example selects a negative polarity for the frame marker.

RST
POS

Key Entry
Frame Polarity

:DIGit:DATA:POLarity:IQ

Supported
E8267D Option 601 or 602 with Option 003 or 004

```
[:SOURce]:DIGit:DATA:POLarity:IQ POSitive|NEGative
```

This command selects the logic level for I and Q data. Positive selects a high logic level at the output as a digital one and negative selects a low logic level at the output as a digital one.

- **POS**
 This choice selects a logic high level as digital one.

- **NEG**
 This choice selects a logic low level as a digital one.

Example

`:DIG:DATA:POL:IQ NEG`

The preceding example turns off wideband amplitude modulation.

RST
POS

Key Entry
IQ Polarity
Digital Signal Interface Module Commands
Digital Subsystem ([:SOURce])

:DIGital:DATA:QGain

Supported E8267D Option 601 or 602 with Option 003

[:SOURce]:DIGital:DATA:QGain <val>
[:SOURce]:DIGital:DATA:QGain?

This command adjusts the gain for Q data in the N5102A module. The adjustment does not affect the I data. The variable <val> is expressed as a percentage delta from 100%. The offset is an adjustment to the analog level that is represented by the digital sample. The analog voltage is limited to a 16-bit data sample.

Example
:DIG:DATA:QG 10

The preceding example increases the gain for Q data by 10% above the nominal value.

*RST +0.00000000E+000

Range -12.5 through 12.5

Key Entry Q Gain

:DIGital:DATA:QNEGate

Supported E8267D Option 601 or 602 with Option 003 or 004

[:SOURce]:DIGital:DATA:QNEGate OFF|ON|0|1
[:SOURce]:DIGital:DATA:QNEGate?

This command enables or disables the negation of the Q data sample. Negation changes the sample by expressing it in two's complement form, multiplying by negative one, and converting back to the selected numeric format.

The sample or word represents a quantized analog voltage level. For a 16-bit sample, the range is from 0 to 65535 in offset binary or -32768 to +32767 in 2's complement mode.

Example
:DIG:DATA:QNEG ON

The preceding example enables negation of the Q data.

*RST 0

Key Entry Negate Q
Digital Signal Interface Module Commands
Digital Subsystem [:SOURce]

:DIGital:DATA:QOFFset

Supported E8267D Option 601 or 602 with Option 003

[:SOURce]:DIGital:DATA:QOFFset <val>
[:SOURce]:DIGital:DATA:QOFFset?

This command adjusts the DC offset for Q data. The command is available for the N5102A module output mode. The variable <val> is expressed as a +/− 100% of the full scale value.

Example
:DIG:DATA:QOFF 40

The preceding example sets the Q offset to 40% of full scale.

*RST +0.00000000E+000
Range −100 through 100
Key Entry Q Offset

:DIGital:DATA:ROTation

Supported E8267D Option 601 or 602 with Option 003

[:SOURce]:DIGital:DATA:ROTation <val>
[:SOURce]:DIGital:DATA:ROTation?

This command rotates the IQ data in the IQ plane. This command is valid for the N5102A output mode. The variable <val> is expressed in degrees with a range from 0 to 360.

Example
:DIG:DATA:ROT 45

The preceding example rotates the IQ constellation 45 degrees.

*RST +1.00000000E+000
Range 0–360
Key Entry Rotation

:DIGital:DATA:SCALing

Supported E8267D Option 601 or 602 with Option 003

[:SOURce]:DIGital:DATA:SCALing <val>
[:SOURce]:DIGital:DATA:SCALing?

This command enables scaling of the I and Q data to the level indicated by the <val> variable. This command is valid for the N5102A output mode. The variable <val> is expressed as a percentage.
Example

:DIG:DATA:SCAL 50

The preceding example scales the I and Q data to amplitude to 50% of the nominal value.

RST +1.00000000E+002

Range -100 through 100

Key Entry Scaling

:**DIGital:DATA:SIZE**

Supported E8267D Option 601 or 602 with Option 003 or 004

[:SOURce]:DIGital:DATA:SIZE <val>

[:SOURce]:DIGital:DATA:SIZE?

This command selects the number of bits in each sample. A sample can have a maximum word length of 16 bits.

Example

:DIG:DATA:SIZE 8

The preceding example sets the sample word size to eight bits.

RST +1.60000000E+001

Range 4–16

Key Entry Word Size

:**DIGital:DATA:STYPe**

Supported E8267D Option 601 or 602 with Option 003

[:SOURce]:DIGital:DATA:STYPe IQ|IF

[:SOURce]:DIGital:DATA:STYPe?

This command selects the output format for the IQ data. The IQ selection outputs digital I and Q data. Whereas the IF (intermediate frequency) selection modulates the I and Q data onto the IF frequency. The IF is calculated as 1/4 the clock sample rate. This command is valid only for the N5102A output mode.

Example

:DIG:DATA:STYP IF

The preceding example sets the output data to IF.

RST IQ

Key Entry Signal Type
Digital Signal Interface Module Commands

Digital Subsystem [:SOURce]

:DIGital:DATA:TYPE

Supported

E8267D Option 601 or 602 with Option 003 or 004

[:SOURce]:DIGital:DATA:TYPE \(\text{SAMPLEs|PPSamples} \)

[:SOURce]:DIGital:DATA:TYPE?

This command selects filtered baseband data or unfiltered baseband data as the transmitted data type.

If this command is executed while an ARB modulation format is active, the parameter choice is changed, but it is not used by the interface module until a real-time modulation format is turned on.

Because a query returns the current choice, regardless of whether or not an ARB format is active, you must query both states (data type and the modulation format) to know the signal generator’s current setup.

SAMPLEs

This choice selects DAC samples at the data transmitted.

PPSamples

This choice selects pre-filtered samples which are unfiltered I and Q data.

Example

: DIG: DATA: TYPE PFS

The preceding example sets the data type to pre-filtered I and Q data.

* RST SAMP

Key Entry

Data Type

:DIGital:DIAgnostic:LOOPback

Supported

E8267D Option 601 or 602 with Option 003 or 004

[:SOURce]:DIGital:DIAgnostic:LOOPback \(\text{DIGBus|CABLe|N5102A|DEVice} \)

[:SOURce]:DIGital:DIAgnostic:LOOPback?

This command selects a loop back test that validates the integrity of digital data. Refer to the E8257D/67D PSG Signal Generators Key Reference for more information.

DIGBus

This choice selects a loop back test using the Digital Bus Loop Back Fixture test board.

CABLe

This choice selects a loop back test on the PSG Digital Bus connector at the signal generator side.

N5102A

This choice selects a loop back test for the N5102A module.

DEVice

This choice selects a loop back test using the LOOP BACK TEST SINGLE ENDED IO DUAL 40 PIN board.

Example

: DIG: DIAG: LOOP?

The preceding example runs the diagnostic test for device and returns a pass or fail state.

* RST Device Intfc

Key Entry

Loop Back Test Type
:DIGITAL:LOGIC[:TYPE]

Supported E8267D Option 601 or 602 with Option 003 or 004

[:SOURce]:DIGITAL:LOGIC[:TYPE] LVDS|LVTT1|CMOS15|CMOS18|CMOS25|CMOS33

[:SOURce]:DIGITAL:LOGIC[:TYPE]?

This command selects the logic data type used by the device being tested.

LVDS This choice selects low voltage differential signaling as the logic data type.
LVTT1 This choice selects a low voltage TTL signal as the logic data type.
CMOS15 This choice selects a 1.5 volt CMOS signal as the logic data type.
CMOS18 This choice selects a 1.8 volt CMOS signal as the logic data type.
CMOS25 This choice selects a 2.5 volt CMOS signal as the logic data type.
CMOS33 This choice selects a 3.3 volt CMOS signal as the logic data type.

Example

:DIG:LOG CMOS15

The preceding example selects 1.5 volt CMOS as the logic data type.

*RST

CMOS33

Key Entry Logic Type

:DIGITAL:PCONFIG

Supported E8267D Option 601 or 602 with Option 003 or 004

[:SOURce]:DIGITAL:PCONFIG PARallel|SERial|PINTIQ|PINTI

[:SOURce]:DIGITAL:PCONFIG?

This command selects the data transmission type used for communication between the N5102A module and the device under test. Refer to the E8257D/67D PSG Signal Generators Key Reference for more information.

PARallel This choice selects parallel data transmission.
SERial This choice selects serial data transmission.
PINTIQ This choice selects parallel interleaving data transmission. The I data is transmitted on the rising clock edge and the Q data on the falling edge.
PINTI This choice selects parallel interleaving data transmission. The Q data is transmitted on the rising clock edge and the I data on the falling edge.

Example

:DIG:PCON PINTI

The preceding example selects parallel interleaving using the QI format

*RST PAR

Key Entry Port Config
Digital Signal Interface Module Commands
Digital Subsystem [:SOURce]

::DIGital::PRESet::PTHRough

Supported
E8267D Option 601 or 602 with Option 003 or 004

[:SOURce]:DIGital::PRESet::PTHRough

This command sets up the preset condition for the N5102A module and allows transmission of data through the module with no modifications. The command is valid only when a modulation format is active.

Example

::DIG::PRES::PTHR

The preceding example sets the N5102A module to a preset condition and allows data to pass through unmodified.

Key Entry
Pass Through Preset

::DIGital[:STATe]

Supported
E8267D Option 601 or 602 with Option 003 or 004

[:SOURce]:DIGital[:STATe] 0|1|OFF|ON

[:SOURce]:DIGital[:STATe]?

This command enables or disables the operating state of the N5102A module.

Example

::DIG ON

The preceding example turns on the N5102A module.

*RST OFF

Key Entry
N5102A Off On
7 SCPI Command Compatibility

This chapter provides a compatibility listing of SCPI commands. Many commands unique to other Agilent signal generator models are also supported by the PSG Signal Generator:

- " :SYSTem:IDN" on page 319
- "E8257D/67D Compatible Commands" on page 320
- "E8241A/44A/51A/54A and the E8247C/57C/67C PSG Compatible SCPI Commands" on page 320
- "8340B/41B and 8757D Compatible Commands" on page 321
- "836xxB/L Compatible SCPI Commands" on page 334
- "8373xB and 8371xB Compatible SCPI Commands" on page 350
- "8375xB Compatible SCPI Commands" on page 358
- "8662A/63A Compatible Commands" on page 370

:SYSTem:IDN

Supported All
:SYSTem:IDN "<string>"

This command modifies the identification string that the *IDN? query returns. Sending an empty string returns the query output to its factory shipped setting. The maximum string length is 72 characters.

Modification of the *IDN? query output enables the PSG to identify itself as another signal generator when it is used as a backward compatible replacement.

The display diagnostic information, shown by pressing the Diagnostic Info softkey, is not affected by this command.

Example

:SYST:IDN "Agilent Technologies, Exxxx, US4000000, c.00.00.1234"

The preceding example changes and sets the identification string for the signal generator.
E8257D/67D Compatible Commands

The following commands are compatible with the E8257D and E8267D signal generators. These commands were documented in earlier versions of firmware but are now deprecated and may be removed from future firmware versions.

:DATA:PRAM?

Supported E8267D with Option 601 or 602

:MEMORY:DATA:PRAM?

This query determines whether there is a user-defined pattern in the pattern RAM (PRAM). This command is not compatible with the “**:DATA:PRAM:FILE:BLOCK” or “**:DATA:PRAM:FILE:LIST” commands.

:RST 0

:DATA:PRAM:BLOCk

Supported E8267D with Option 601 or 602

:MEMORY:DATA:PRAM:BLOCk <data_block>

This command downloads the block-formatted data directly into pattern RAM. This command is still valid for backward compatibility; however, it has been replaced by the “**:DATA:PRAM:FILE:BLOCk” command.

:DATA:PRAM:LIST

Supported E8267D Option 601 or 602

:MEMORY:DATA:PRAM:LIST <uint8>[,<uint8>,<...>]

This command downloads the list-formatted data directly into pattern RAM. This command is still valid for backward compatibility; however, it has been replaced by the “**:DATA:PRAM:FILE:LIST” command.

<uint8> This variable is any of the valid 8-bit, unsigned integer values between 0 and 255.

[,<uint8>,<...>] This variable identifies the value of the second and subsequent 8-bit unsigned integer variables.

Range 0–255

E8241A/44A/51A/54A and the E8247C/57C/67C PSG Compatible SCPI Commands

All commands are fully supported. To use the commands, select SCPI as the remote language. See “**LANguage**” on page 87 for selecting the language type.
SCPI Command Compatibility
8340B/41B and 8757D Compatible Commands

The tables in this section provide the following:

Table 7-1 on page 321: a comprehensive list of 8340B/41B and 8757D programming codes, listed in alphabetical order. The equivalent SCPI command sequence for each supported code is provided; codes that are not supported by the PSG family are indicated as such in the command column.

Table 7-2 on page 332: a list of the implemented 8340B/41B and 8757D programming codes that set the active function. This table also indicates which codes are compatible with the RB command (knob), and lists the operation active (OA) query, the operation prior (OP) query, and the increment (up), and the decrement (down) SCPI commands.

NOTE Compatibility is provided for GPIB only; RS-232 and LAN are not supported.

When using the programming codes in this section, you can:

- set the PSG system language to 8340 or 8757 for the current session:
  ```
  Utility > GPIB/RS-232 LAN > Remote Language > 8340B (or 8757D)
  ```
 or send the command:
  ```
  :SYST:LANG "8340" (or "8757")
  ```

- set the PSG system language to 8340 or 8757 so that it does not reset with either preset, instrument power cycle or *RST command:
  ```
  Utility > Power On/Preset > Remote Language > 8340B (or 8757D)
  ```
 or send the command:
  ```
  :SYST:PRESET:LANG "8340" (or "8757")
  ```


Table 7-1 8340B/41B Prog. Codes & Equivalent SCPI Sequences

<table>
<thead>
<tr>
<th>Cmd</th>
<th>Description</th>
<th>8340</th>
<th>8757</th>
<th>Equivalent SCPI Command Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>Internal leveling mode</td>
<td>Y</td>
<td>Y</td>
<td>[:SOURce]:POWer:ALC:SOURce INTernal</td>
</tr>
<tr>
<td>A2</td>
<td>External leveling mode with diode detector</td>
<td>Y</td>
<td>Y</td>
<td>[:SOURce]:POWer:ALC:SOURce DIODe [:SOURce]:POWer:ALC:SOURce:EXTernal:COUPling <val> dB</td>
</tr>
<tr>
<td>A3</td>
<td>External leveling mode with power meter</td>
<td>Y</td>
<td>Y</td>
<td>supported, but has no effect on PSG</td>
</tr>
<tr>
<td>AK0</td>
<td>Amplitude markers off</td>
<td>Y</td>
<td>Y</td>
<td>[:SOURce]:MArk:AMPlitude OFF</td>
</tr>
<tr>
<td>AK1</td>
<td>Amplitude markers on</td>
<td>Y</td>
<td>Y</td>
<td>[:SOURce]:MArk:AMPlitude ON</td>
</tr>
<tr>
<td>AL0</td>
<td>Alternate sweep mode off</td>
<td>Y</td>
<td>Y</td>
<td>:SYSTem:ALTernate:STATe OFF</td>
</tr>
<tr>
<td>AL1</td>
<td>Alternate sweep mode on</td>
<td>Y</td>
<td>Y</td>
<td>:SYSTem:ALTernate:STATe ON ; :SYSTem:ALTernate n</td>
</tr>
</tbody>
</table>
SCPI Command Compatibility

8340B/41B and 8757D Compatible Commands

<table>
<thead>
<tr>
<th>Cmd</th>
<th>Description</th>
<th>8340</th>
<th>8757</th>
<th>Equivalent SCPI Command Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>AM0</td>
<td>Amplitude modulation off</td>
<td>Y</td>
<td>N</td>
<td>[:SOURce]:AM1:STATe OFF</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>[:SOURce]:AM2:STATe OFF</td>
</tr>
<tr>
<td>AM1</td>
<td>Amplitude modulation on</td>
<td>Y</td>
<td>N</td>
<td>[:SOURce]:AM1:STATe OFF</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>[:SOURce]:AM2:STATe ED[1]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>[:SOURce]:AM2:EXTERNAL[1]:COUpling DC</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>[:SOURce]:AM2:DEPTh 100</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>[:SOURce]:AM2:EXTERNAL[1]:IMPedance 600</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>[:SOURce]:AM2:STATe ON</td>
</tr>
<tr>
<td>A80</td>
<td>Alternate state selection: select current front panel</td>
<td>Y</td>
<td>Y</td>
<td>supported, but no equivalent SCPI command sequence</td>
</tr>
<tr>
<td>A81</td>
<td>Alternate state selection: select recalled state</td>
<td>Y</td>
<td>Y</td>
<td>supported, but no equivalent SCPI command sequence</td>
</tr>
<tr>
<td>AT</td>
<td>Set attenuator</td>
<td>Y</td>
<td>N</td>
<td>[:SOURce]:POWer:ATTenuation <val><unit></td>
</tr>
<tr>
<td>AU</td>
<td>Auto-coupled mode to obtain shortest possible sweep time</td>
<td>Y</td>
<td>N</td>
<td>[:SOURce]:SWEep:TIME:AUTO ON</td>
</tr>
<tr>
<td>BC</td>
<td>Advance to next frequency band crossing</td>
<td>N</td>
<td>N</td>
<td>not supported</td>
</tr>
<tr>
<td>C1</td>
<td>1 MHz crystal marker frequency</td>
<td>N</td>
<td>Y</td>
<td>supported, but has no effect on PSG</td>
</tr>
<tr>
<td>C2</td>
<td>10 MHz crystal marker frequency</td>
<td>N</td>
<td>Y</td>
<td>supported, but has no effect on PSG</td>
</tr>
<tr>
<td>C3</td>
<td>50 MHz crystal marker frequency</td>
<td>N</td>
<td>Y</td>
<td>supported, but has no effect on PSG</td>
</tr>
<tr>
<td>C4</td>
<td>External crystal marker frequency</td>
<td>N</td>
<td>Y</td>
<td>supported, but has no effect on PSG</td>
</tr>
<tr>
<td>CA0</td>
<td>Amplitude crystal markers off</td>
<td>N</td>
<td>Y</td>
<td>supported, but has no effect on PSG</td>
</tr>
<tr>
<td>CA1</td>
<td>Amplitude crystal markers on</td>
<td>N</td>
<td>Y</td>
<td>supported, but has no effect on PSG</td>
</tr>
<tr>
<td>CF</td>
<td>Center frequency (step sweep)</td>
<td>Y</td>
<td>Y</td>
<td>[:SOURce]:SWEep:MODE AUTO</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>[:SOURce]:FREQuency:MODE SWEep</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>[:SOURce]:FREQuency:CENTer <val><unit></td>
</tr>
<tr>
<td>CL0</td>
<td>Intensity crystal markers off</td>
<td>N</td>
<td>Y</td>
<td>supported, but has no effect on PSG</td>
</tr>
<tr>
<td>CL1</td>
<td>Intensity crystal markers on</td>
<td>N</td>
<td>Y</td>
<td>supported, but has no effect on PSG</td>
</tr>
<tr>
<td>C8</td>
<td>Clear both status bytes</td>
<td>Y</td>
<td>Y</td>
<td>*CLS</td>
</tr>
<tr>
<td>CW</td>
<td>Set CW frequency</td>
<td>Y</td>
<td>Y</td>
<td>[:SOURce]:SWEep:MODE AUTO</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>[:SOURce]:FREQuency:MODE CW</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>[:SOURce]:FREQuency:CENT<val><unit></td>
</tr>
<tr>
<td>DB</td>
<td>dB(m) terminator</td>
<td>Y</td>
<td>Y</td>
<td>dB</td>
</tr>
<tr>
<td>DF</td>
<td>Delta frequency (step sweep)</td>
<td>Y</td>
<td>Y</td>
<td>[:SOURce]:SWEep:MODE AUTO</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>[:SOURce]:FREQuency:MODE SWEep</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>[:SOURce]:FREQuency:SPAN <val><unit></td>
</tr>
<tr>
<td>DN</td>
<td>Step down (decrements active function by step value)</td>
<td>Y</td>
<td>Y</td>
<td>supported, see Table 6.2 on page 230</td>
</tr>
</tbody>
</table>

Table 7-1 8340B/41B Prog. Codes & Equivalent SCPI Sequences (Continued)
Table 7-1 8340B/41B Prog. Codes & Equivalent SCPI Sequences (Continued)

<table>
<thead>
<tr>
<th>Cmd</th>
<th>Description</th>
<th>8340</th>
<th>8757</th>
<th>Equivalent SCPI Command Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>DP0</td>
<td>Display blanking off</td>
<td>N</td>
<td>Y</td>
<td>DISPLAY[:WINDow][:STATe] OFF</td>
</tr>
<tr>
<td>DP1</td>
<td>Display blanking on</td>
<td>N</td>
<td>Y</td>
<td>DISPLAY[:WINDow][:STATe] ON</td>
</tr>
<tr>
<td>DU0</td>
<td>Display update off</td>
<td>N</td>
<td>Y</td>
<td>DISPLAY[:WINDow][:STATe] OFF</td>
</tr>
<tr>
<td>DU1</td>
<td>Display update on</td>
<td>Y</td>
<td>Y</td>
<td>DISPLAY[:WINDow][:STATe] ON</td>
</tr>
<tr>
<td>EF</td>
<td>Entry display off</td>
<td>Y</td>
<td>Y</td>
<td>DISPLAY[:WINDow][:STATe] OFF</td>
</tr>
<tr>
<td>EK</td>
<td>Enable knob</td>
<td>N</td>
<td>Y</td>
<td>not supported</td>
</tr>
<tr>
<td>EM0</td>
<td>Extended marker mode off</td>
<td>N</td>
<td>Y</td>
<td>supported, but no equivalent SCPI command sequence</td>
</tr>
<tr>
<td>EM1</td>
<td>Extended marker mode on</td>
<td>N</td>
<td>Y</td>
<td>supported, but no equivalent SCPI command sequence</td>
</tr>
<tr>
<td>F1</td>
<td>20 MHz/V PM sensitivity</td>
<td>N</td>
<td>N</td>
<td>not supported</td>
</tr>
<tr>
<td>F2</td>
<td>6 MHz/V PM sensitivity</td>
<td>N</td>
<td>N</td>
<td>not supported</td>
</tr>
<tr>
<td>FA</td>
<td>Start frequency (step sweep)</td>
<td>Y</td>
<td>Y</td>
<td>[:SOURce]:SMBus:MODE AUTO</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>[:SOURce]:PRFerency:MODE SMBus</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>[:SOURce]:PRFerency:STAR <val><unit></td>
</tr>
<tr>
<td>FB</td>
<td>Stop frequency (step sweep)</td>
<td>Y</td>
<td>Y</td>
<td>[:SOURce]:SMBus:MODE AUTO</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>[:SOURce]:PRFerency:MODE SMBus</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>[:SOURce]:PRFerency:STOP <val><unit></td>
</tr>
<tr>
<td>FL0</td>
<td>CW filter off</td>
<td>N</td>
<td>Y</td>
<td>supported, but has no effect on PSG</td>
</tr>
<tr>
<td>FL1</td>
<td>CW filter on</td>
<td>N</td>
<td>Y</td>
<td>supported, but has no effect on PSG</td>
</tr>
<tr>
<td>FM0</td>
<td>Frequency modulation off</td>
<td>Y</td>
<td>N</td>
<td>[:SOURce]:FM1:STATe OFF</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>[:SOURce]:FM2:STATe OFF</td>
</tr>
<tr>
<td>FM1</td>
<td>Frequency modulation on</td>
<td>Y</td>
<td>N</td>
<td>[:SOURce]:FM1:STATe OFF</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>[:SOURce]:FM2:STATe EXT2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>[:SOURce]:FM2:EXTeRnal2:COUPling DC</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>[:SOURce]:FM2:EXTeRnal2:IMPedance 50</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>[:SOURce]:FM2:STATe ON</td>
</tr>
<tr>
<td>FM1</td>
<td>Frequency modulation sensitivity</td>
<td>Y</td>
<td>N</td>
<td>[:SOURce]:FM2[:DEVIation] <val><unit></td>
</tr>
<tr>
<td>FP</td>
<td>Fast phase lock</td>
<td>Y</td>
<td>N</td>
<td>supported, but has no effect on PSG</td>
</tr>
<tr>
<td>GZ</td>
<td>GHz terminator</td>
<td>Y</td>
<td>Y</td>
<td>GZ</td>
</tr>
<tr>
<td>HZ</td>
<td>Hz terminator</td>
<td>Y</td>
<td>Y</td>
<td>HZ</td>
</tr>
<tr>
<td>IF</td>
<td>Increment frequency</td>
<td>Y</td>
<td>N</td>
<td>TRIGger[:SEQUence][:IMMediate]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>or [:SOURce]:PRFerency[:OK] UP</td>
</tr>
<tr>
<td>IL</td>
<td>Input learn string</td>
<td>Y</td>
<td>Y</td>
<td>supported, but no equivalent SCPI command sequence</td>
</tr>
</tbody>
</table>
Table 7-1 8340B/41B Prog. Codes & Equivalent SCPI Sequences (Continued)

<table>
<thead>
<tr>
<th>Cmd</th>
<th>Description</th>
<th>8340</th>
<th>8757</th>
<th>Equivalent SCPI Command Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP</td>
<td>Instrument preset</td>
<td>Y</td>
<td>N</td>
<td>SYSTem:PRESet</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>[[:SOURce]:FREQuency[:CW]:STEP</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>[:INCHement] 1 GHZ</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>[[:SOURce]:FREQuency:MULTiplier</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td><saved multiplier></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>[[:SOURce]:SHExp:MODE AUTO</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>[[:SOURce]:FREQuency:MODE SHExp</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>[[:SOURce]:FREQuency:START 2 GHz or MIN</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>[[:SOURce]:FREQuency:STOP MAX</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>[[:SOURce]:POWer[:LEVel]:I:MMediate]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>[:AMPLitude] 0 dB</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>OUTput[[:STATe] ON</td>
</tr>
<tr>
<td>IP</td>
<td>Instrument preset</td>
<td>N</td>
<td>Y</td>
<td>SYSTem:LANGuage "8757"</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>[[:SOURce]:SHExp:MODE AUTO</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>[[:SOURce]:FREQuency:MODE SHExp</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>[[:SOURce]:FREQuency:START 2 GHz or MIN</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>[[:SOURce]:FREQuency:STOP MAX</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>[[:SOURce]:POWer[:LEVel]:I:MMediate]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>[:AMPLitude] 0 dB</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>OUTput[[:STATe] ON</td>
</tr>
<tr>
<td>IX</td>
<td>Input micro learn string</td>
<td>N</td>
<td>Y</td>
<td>supported, but has no effect on PSG</td>
</tr>
<tr>
<td>KE</td>
<td>Key release</td>
<td>Y</td>
<td>Y</td>
<td>supported, but no equivalent SCPI command sequence</td>
</tr>
<tr>
<td>KZ</td>
<td>kHz terminator</td>
<td>Y</td>
<td>Y</td>
<td>KHZ</td>
</tr>
<tr>
<td>MO</td>
<td>Frequency marker off</td>
<td>Y</td>
<td>Y</td>
<td>[[:SOURce]:MARKer[n]:[STATe] OFF</td>
</tr>
<tr>
<td>MO</td>
<td>Frequency marker off</td>
<td>Y</td>
<td>Y</td>
<td>[[:SOURce]:MARKer0:[STATe] ON</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>[[:SOURce]:MARKer0:FREQuency <val><unit></td>
</tr>
<tr>
<td>M1</td>
<td>Turn on and set frequency marker 0</td>
<td>Y</td>
<td>Y</td>
<td>[[:SOURce]:MARKer1:[STATe] ON</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>[[:SOURce]:MARKer1:FREQuency <val><unit></td>
</tr>
<tr>
<td>M2</td>
<td>Turn on and set frequency marker 1</td>
<td>Y</td>
<td>Y</td>
<td>[[:SOURce]:MARKer2:[STATe] ON</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>[[:SOURce]:MARKer2:FREQuency <val><unit></td>
</tr>
<tr>
<td>M3</td>
<td>Turn on and set frequency marker 2</td>
<td>Y</td>
<td>Y</td>
<td>[[:SOURce]:MARKer3:[STATe] ON</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>[[:SOURce]:MARKer3:FREQuency <val><unit></td>
</tr>
<tr>
<td>M4</td>
<td>Turn on and set frequency marker 3</td>
<td>Y</td>
<td>Y</td>
<td>[[:SOURce]:MARKer4:[STATe] ON</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>[[:SOURce]:MARKer4:FREQuency <val><unit></td>
</tr>
<tr>
<td>M5</td>
<td>Turn on and set frequency marker 4</td>
<td>Y</td>
<td>Y</td>
<td>[[:SOURce]:MARKer5:[STATe] ON</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>[[:SOURce]:MARKer5:FREQuency <val><unit></td>
</tr>
<tr>
<td>M6</td>
<td>Turn on and set frequency marker 5</td>
<td>Y</td>
<td>Y</td>
<td>[[:SOURce]:MARKer6:[STATe] ON</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>[[:SOURce]:MARKer6:FREQuency <val><unit></td>
</tr>
<tr>
<td>M7</td>
<td>Turn on and set frequency marker 6</td>
<td>Y</td>
<td>Y</td>
<td>[[:SOURce]:MARKer7:[STATe] ON</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>[[:SOURce]:MARKer7:FREQuency <val><unit></td>
</tr>
</tbody>
</table>
Table 7-1 8340B/41B Prog. Codes & Equivalent SCPI Sequences (Continued)

<table>
<thead>
<tr>
<th>Cmd</th>
<th>Description</th>
<th>8340</th>
<th>8757</th>
<th>Equivalent SCPI Command Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>M8</td>
<td>Turn on and set frequency marker 8</td>
<td>Y</td>
<td>Y</td>
<td>[:SOURce]:MARKer8[:STATe] ON</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>[:SOURce]:MARKer8:FREQuency <val><unit></td>
</tr>
<tr>
<td>M9</td>
<td>Turn on and set frequency marker 9</td>
<td>Y</td>
<td>Y</td>
<td>[:SOURce]:MARKer9[:STATe] ON</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>[:SOURce]:MARKer9:FREQuency <val><unit></td>
</tr>
<tr>
<td>MC</td>
<td>Active marker to center frequency</td>
<td>Y</td>
<td>Y</td>
<td>supported, but no equivalent SCPI command sequence</td>
</tr>
<tr>
<td>MD</td>
<td>Marker delta</td>
<td>N</td>
<td>N</td>
<td>not supported</td>
</tr>
<tr>
<td>MP0</td>
<td>Marker 1-2 sweep off</td>
<td>N</td>
<td>N</td>
<td>not supported</td>
</tr>
<tr>
<td>MP1</td>
<td>Marker 1-2 sweep on</td>
<td>N</td>
<td>N</td>
<td>not supported</td>
</tr>
<tr>
<td>MS</td>
<td>Milliseconds terminator</td>
<td>Y</td>
<td>Y</td>
<td>MS</td>
</tr>
<tr>
<td>MZ</td>
<td>MHz terminator</td>
<td>Y</td>
<td>Y</td>
<td>MZH</td>
</tr>
<tr>
<td>NA</td>
<td>Network analyzer mode</td>
<td>N</td>
<td>Y</td>
<td>supported, but no equivalent SCPI command sequence</td>
</tr>
<tr>
<td>NT</td>
<td>Network analyzer trigger</td>
<td>N</td>
<td>Y</td>
<td>supported, but has no effect on PSG</td>
</tr>
<tr>
<td>OA</td>
<td>Output active parameter</td>
<td>Y</td>
<td>Y</td>
<td>supported, see Table 6-2 on page 234</td>
</tr>
<tr>
<td>OB</td>
<td>Output next bandcross frequency</td>
<td>N</td>
<td>N</td>
<td>not supported</td>
</tr>
<tr>
<td>OC</td>
<td>Output coupled parameters (start frequency, center frequency, sweep time)</td>
<td>Y</td>
<td>Y</td>
<td>[:SOURce]:FREQuency:STARt? [:SOURce]:FREQuency:CENTer? [:SOURce]:SWEep:TIME?</td>
</tr>
<tr>
<td>OD</td>
<td>Output diagnostic values</td>
<td>N</td>
<td>N</td>
<td>not supported</td>
</tr>
<tr>
<td>OE</td>
<td>Output when executed</td>
<td>N</td>
<td>Y</td>
<td>supported, but no equivalent SCPI command sequence</td>
</tr>
<tr>
<td>OF</td>
<td>Output fault</td>
<td>Y</td>
<td>N</td>
<td>supported, but no equivalent SCPI command sequence</td>
</tr>
<tr>
<td>OI</td>
<td>Output identification</td>
<td>Y</td>
<td>Y</td>
<td>*IDN?</td>
</tr>
<tr>
<td>OK</td>
<td>Output last lock frequency</td>
<td>N</td>
<td>N</td>
<td>not supported</td>
</tr>
<tr>
<td>OL</td>
<td>Output learn string</td>
<td>Y</td>
<td>Y</td>
<td>supported, but no equivalent SCPI command sequence</td>
</tr>
<tr>
<td>OM</td>
<td>Output mode string</td>
<td>N</td>
<td>Y</td>
<td>supported, but no equivalent SCPI command sequence</td>
</tr>
<tr>
<td>OP</td>
<td>Output interrogated parameter</td>
<td>Y</td>
<td>Y</td>
<td>supported, see Table 6-2 on page 234</td>
</tr>
<tr>
<td>OPA2</td>
<td>Output external detector coupling factor</td>
<td>Y</td>
<td>Y</td>
<td>[:SOURce]:POWer:ALC:SOURce:EXTernal :COUPling?</td>
</tr>
<tr>
<td>OPAT</td>
<td>Output attenuator</td>
<td>Y</td>
<td>N</td>
<td>[:SOURce]:POWer:ATTenuation?</td>
</tr>
<tr>
<td>OFCF</td>
<td>Output center frequency</td>
<td>Y</td>
<td>Y</td>
<td>[:SOURce]:FREQuency:CENTer?</td>
</tr>
</tbody>
</table>
Table 7-1 8340B/41B Prog. Codes & Equivalent SCPI Sequences (Continued)

<table>
<thead>
<tr>
<th>Cmd</th>
<th>Description</th>
<th>8340</th>
<th>8757</th>
<th>Equivalent SCPI Command Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>OPCW</td>
<td>Output CW frequency</td>
<td>Y</td>
<td>Y</td>
<td>[:SOURce]:FREQuency:CW?</td>
</tr>
<tr>
<td>OPDF</td>
<td>Output delta frequency</td>
<td>Y</td>
<td>Y</td>
<td>[:SOURce]:FREQuency:SPAN?</td>
</tr>
<tr>
<td>OPFA</td>
<td>Output start frequency</td>
<td>Y</td>
<td>Y</td>
<td>[:SOURce]:FREQuency:STARt?</td>
</tr>
<tr>
<td>OPFB</td>
<td>Output stop frequency</td>
<td>Y</td>
<td>Y</td>
<td>[:SOURce]:FREQuency:STOP?</td>
</tr>
<tr>
<td>OPFM1</td>
<td>Output FM sensitivity</td>
<td>Y</td>
<td>N</td>
<td>[:SOURce]:FM[:DEViation]?</td>
</tr>
<tr>
<td>OPMA</td>
<td>Output marker 0 frequency</td>
<td>Y</td>
<td>Y</td>
<td>[:SOURce]:MARKer0:FREQuency?</td>
</tr>
<tr>
<td>OPM1</td>
<td>Output marker 1 frequency</td>
<td>Y</td>
<td>Y</td>
<td>[:SOURce]:MARKer1:FREQuency?</td>
</tr>
<tr>
<td>OPM2</td>
<td>Output marker 2 frequency</td>
<td>Y</td>
<td>Y</td>
<td>[:SOURce]:MARKer2:FREQuency?</td>
</tr>
<tr>
<td>OPM3</td>
<td>Output marker 3 frequency</td>
<td>Y</td>
<td>Y</td>
<td>[:SOURce]:MARKer3:FREQuency?</td>
</tr>
<tr>
<td>OPM4</td>
<td>Output marker 4 frequency</td>
<td>Y</td>
<td>Y</td>
<td>[:SOURce]:MARKer4:FREQuency?</td>
</tr>
<tr>
<td>OPM5</td>
<td>Output marker 5 frequency</td>
<td>Y</td>
<td>Y</td>
<td>[:SOURce]:MARKer5:FREQuency?</td>
</tr>
<tr>
<td>OPM6</td>
<td>Output marker 6 frequency</td>
<td>Y</td>
<td>Y</td>
<td>[:SOURce]:MARKer6:FREQuency?</td>
</tr>
<tr>
<td>OPM7</td>
<td>Output marker 7 frequency</td>
<td>Y</td>
<td>Y</td>
<td>[:SOURce]:MARKer7:FREQuency?</td>
</tr>
<tr>
<td>OPM8</td>
<td>Output marker 8 frequency</td>
<td>Y</td>
<td>Y</td>
<td>[:SOURce]:MARKer8:FREQuency?</td>
</tr>
<tr>
<td>OPM9</td>
<td>Output marker 9 frequency</td>
<td>Y</td>
<td>Y</td>
<td>[:SOURce]:MARKer9:FREQuency?</td>
</tr>
</tbody>
</table>
| OPPL | Output power level | Y | Y | [:SOURce]:POWer[:LEVEL][:IMMediate][:AMPLitude]?
| OPPL | Output power sweep span | Y | Y | [:SOURce]:POWer:SPAN? |
| OPBS | Output # of sweep buckets | N | N | supported, but no equivalent SCPI command sequence |
| OPPL | Output power level | Y | Y | [:SOURce]:POWer[:LEVEL][:IMMediate][:AMPLitude]?
| OPPL | Output power level | N | N | [:SOURce]:POWer[:LEVEL][:IMMediate][:AMPLitude]?
| OPPL | Output ALC level | Y | N | [:SOURce]:POWer:ALC[:LEVEL]?
| OPPL | Output ALC level | Y | N | [:SOURce]:POWer:ALC[:LEVEL]?
| OPPL | Output ALC level | N | N | [:SOURce]:POWer:ALC[:LEVEL]?
| OPPL | Output frequency step size | Y | Y | [:SOURce]:FREQuency[:CM]:STEP [:INCriment]?
| OPPL | Output frequency step size | Y | N | [:SOURce]:FREQuency[:CM]:STEP [:INCriment]?
| OPPL | Output frequency step size | Y | N | [:SOURce]:FREQuency[:CM]:STEP [:INCriment]?
| OPPL | Output frequency step size | Y | Y | [:SOURce]:FREQuency[:CM]:STEP [:INCriment]?
| OPPL | Output swept CW frequency | Y | N | [:SOURce]:FREQuency[:CM]:STEP [:INCriment]?
| OPPL | Output frequency multiplier | Y | Y | [:SOURce]:FREQuency[MULTiplier]?
Table 7-1 8340B/41B Prog. Codes & Equivalent SCPI Sequences (Continued)

<table>
<thead>
<tr>
<th>Cmd</th>
<th>Description</th>
<th>8340</th>
<th>8757</th>
<th>Equivalent SCPI Command Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>OPSF</td>
<td>Output frequency offset</td>
<td>Y</td>
<td>Y</td>
<td>[:SOURce]:FREQuency:OFFSet?</td>
</tr>
<tr>
<td>OPSE</td>
<td>Output power step size</td>
<td>Y</td>
<td>N</td>
<td>[:SOURce]:POWer[:LEVel][:IMMediate][:AMPLitude]:STEP[:INCRement]?</td>
</tr>
<tr>
<td>OPSP</td>
<td>Output sweep step points</td>
<td>Y</td>
<td>N</td>
<td>[:SOURce]:POWer[:LEVel][:IMMediate][:AMPLitude]?</td>
</tr>
<tr>
<td>OPSM</td>
<td>Output ALC level</td>
<td>Y</td>
<td>Y</td>
<td>[:SOURce]:POWer:ALC:LEVel?</td>
</tr>
<tr>
<td>OPSR</td>
<td>Output power level</td>
<td>N</td>
<td>N</td>
<td>not supported</td>
</tr>
<tr>
<td>OPSR</td>
<td>Output attenuator</td>
<td>Y</td>
<td>N</td>
<td>[:SOURce]:POWer:ATTenuation?</td>
</tr>
<tr>
<td>OPSS</td>
<td>Output sweep step points</td>
<td>N</td>
<td>Y</td>
<td>[:SOURce]:SWep:POINts?</td>
</tr>
<tr>
<td>OPSS</td>
<td>Output power slope</td>
<td>Y</td>
<td>Y</td>
<td>[:SOURce]:POWer:SLOpe?</td>
</tr>
<tr>
<td>OPSS</td>
<td>Output manual frequency</td>
<td>Y</td>
<td>Y</td>
<td>[:SOURce]:FREQuency:MANual?</td>
</tr>
<tr>
<td>OPSS</td>
<td>Output sweep step points</td>
<td>Y</td>
<td>Y</td>
<td>[:SOURce]:SWep:POINts?</td>
</tr>
<tr>
<td>OPSP</td>
<td>Output power step size</td>
<td>Y</td>
<td>Y</td>
<td>[:SOURce]:POWer[:LEVel][:IMMediate][:AMPLitude]:STEP[:INCRement]?</td>
</tr>
<tr>
<td>OPST</td>
<td>Output sweep time</td>
<td>Y</td>
<td>Y</td>
<td>[:SOURce]:SWep:TIME?</td>
</tr>
<tr>
<td>OPTL</td>
<td>Output sweep time limit</td>
<td>Y</td>
<td>Y</td>
<td>[:SOURce]:SWep:TIME:LLIMit?</td>
</tr>
<tr>
<td>OR</td>
<td>Output internally measured power level</td>
<td>N</td>
<td>N</td>
<td>not supported</td>
</tr>
<tr>
<td>OS</td>
<td>Output status bytes</td>
<td>Y</td>
<td>Y</td>
<td>supported, but no equivalent SCPI command sequence</td>
</tr>
<tr>
<td>OS</td>
<td>Output micro learn string</td>
<td>N</td>
<td>Y</td>
<td>supported, but has no effect on PSG</td>
</tr>
<tr>
<td>PL</td>
<td>Set power level</td>
<td>Y</td>
<td>Y</td>
<td>[:SOURce]:POWer:ATTenuation:AUTO ON</td>
</tr>
<tr>
<td>PM0</td>
<td>Pulse modulation off</td>
<td>Y</td>
<td>Y</td>
<td>[:SOURce]:PULM:STATe OFF</td>
</tr>
<tr>
<td>PM1</td>
<td>Pulse modulation on</td>
<td>Y</td>
<td>N</td>
<td>[:SOURce]:PULM:SOUrce EXTERNAL [:SOURce]:PULM:STATe ON</td>
</tr>
<tr>
<td>PM1</td>
<td>27.8 KHz square wave pulse modulation on</td>
<td>N</td>
<td>Y</td>
<td>[:SOURce]:PULM:SOUrce SCALar [:SOURce]:PULM:STATe GB</td>
</tr>
<tr>
<td>PM1</td>
<td>Power sweep off</td>
<td>Y</td>
<td>Y</td>
<td>[:SOURce]:POWer:MODE FIXed</td>
</tr>
<tr>
<td>PS0</td>
<td>Power sweep on</td>
<td>Y</td>
<td>Y</td>
<td>[:SOURce]:POWer:MODE SWep</td>
</tr>
<tr>
<td>PS0</td>
<td>Power sweep off</td>
<td>Y</td>
<td>Y</td>
<td>[:SOURce]:POWer:SPAN <val> dB</td>
</tr>
<tr>
<td>R2</td>
<td>Extended status byte #2 mask</td>
<td>N</td>
<td>Y</td>
<td>supported, but has no effect on PSG</td>
</tr>
<tr>
<td>R8</td>
<td>Control knob remotely</td>
<td>Y</td>
<td>Y</td>
<td>supported, but no equivalent SCPI command sequence</td>
</tr>
<tr>
<td>RC</td>
<td>Recall state</td>
<td>Y</td>
<td>Y</td>
<td>*RCL <reg_num>[,<seq_num>]</td>
</tr>
</tbody>
</table>

SCPI Command Compatibility
8340B/41B and 8757D Compatible Commands
SCPI Command Compatibility
8340B/41B and 8757D Compatible Commands

Table 7-1 8340B/41B Prog. Codes & Equivalent SCPI Sequences (Continued)

<table>
<thead>
<tr>
<th>Cmd</th>
<th>Description</th>
<th>8340</th>
<th>8757</th>
<th>Equivalent SCPI Command Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>RE</td>
<td>Extended status byte mask</td>
<td>Y</td>
<td>Y</td>
<td>supported, but no equivalent SCPI command sequence</td>
</tr>
<tr>
<td>RF0</td>
<td>RF output off</td>
<td>Y</td>
<td>Y</td>
<td>OUTPut[:STATe] OFF</td>
</tr>
<tr>
<td>RF1</td>
<td>RF output on</td>
<td>Y</td>
<td>Y</td>
<td>OUTPut[:STATe] ON</td>
</tr>
<tr>
<td>RM</td>
<td>Status byte mask</td>
<td>Y</td>
<td>Y</td>
<td>*SRE <mask></td>
</tr>
<tr>
<td>RP0</td>
<td>RF peaking off</td>
<td>Y</td>
<td>N</td>
<td>supported, but has no effect on PSG</td>
</tr>
<tr>
<td>RP1</td>
<td>RF blanking off</td>
<td>N</td>
<td>Y</td>
<td>supported, but has no effect on PSG</td>
</tr>
<tr>
<td>RS</td>
<td>Reset sweep</td>
<td>Y</td>
<td>Y</td>
<td>supported, but no equivalent SCPI command sequence</td>
</tr>
<tr>
<td>S1</td>
<td>Continuous sweep mode</td>
<td>Y</td>
<td>Y</td>
<td>[:SOURce]:SWEep:MODE AUTO</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>[:SOURce]:SWEep:GENeration</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ANALog:TRIGger[:SEQUence]:SOURce</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>IMMedi ate:INITiate:CONT inuous[:ALL] ON</td>
</tr>
<tr>
<td>S2</td>
<td>Single sweep mode</td>
<td>Y</td>
<td>Y</td>
<td>[:SOURce]:SWEep:MODE AUTO</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>[:SOURce]:SWEep:GENeration</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ANALog:TRIGger[:SEQUence]:SOURce</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>IMMedi ate:INITiate:CONT inuous[:ALL] OFF</td>
</tr>
<tr>
<td>S3</td>
<td>Manual frequency sweep mode</td>
<td>Y</td>
<td>Y</td>
<td>[:SOURce]:SWEep:MODE MANual</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>[:SOURce]:SWEep:GENeration</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ANALog:TRIGger[:SEQUence]:SOURce</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>IMMedi ate:INITiate:CONT inuous[:ALL] OFF</td>
</tr>
<tr>
<td>SB</td>
<td>Number of sweep buckets</td>
<td>N</td>
<td>Y</td>
<td>supported, but no equivalent SCPI command sequence</td>
</tr>
<tr>
<td>SC</td>
<td>Seconds terminator</td>
<td>Y</td>
<td>Y</td>
<td>s</td>
</tr>
<tr>
<td>SF</td>
<td>Frequency step size</td>
<td>Y</td>
<td>Y</td>
<td>[:SOURce]:FREQuency[:CW]:STEP[:INCRement] <val><unit></td>
</tr>
<tr>
<td>SG</td>
<td>Single sweep mode</td>
<td>Y</td>
<td>Y</td>
<td>[:SOURce]:SWEep:MODE AUTO</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>[:SOURce]:SWEep:GENeration ANALog</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>:TRIGger[:SEQUence]:SOURce IMMedi ate</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>:INITiate:CONT inuous[:ALL] OFF</td>
</tr>
<tr>
<td>SH</td>
<td>Shift prefix</td>
<td>Y</td>
<td>Y</td>
<td>supported, but no equivalent SCPI command sequence</td>
</tr>
<tr>
<td>SH01</td>
<td>Blank display</td>
<td>N</td>
<td>Y</td>
<td>DISPLAY[:WINDOW][:STATe] OFF</td>
</tr>
<tr>
<td>SHA1</td>
<td>Disable ALC and set power level</td>
<td>Y</td>
<td>N</td>
<td>[:SOURce]:POWer:ALC[:STATe] OFF</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>[:SOURce]:POWer[:LEVEL][:IMMediate]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>[:AMPLitude] <val><unit></td>
</tr>
<tr>
<td>Cmd</td>
<td>Description</td>
<td>8340</td>
<td>8757</td>
<td>Equivalent SCPI Command Sequence</td>
</tr>
<tr>
<td>-----</td>
<td>-------------</td>
<td>------</td>
<td>------</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>SHA2</td>
<td>External leveling mode with millimeter head module</td>
<td>Y</td>
<td>N</td>
<td>[:SOURCE]:POWer:ALC:SOURce MMHead [:SOURCE]:POWer:ALC:LEVel <val>:dB</td>
</tr>
<tr>
<td>SHAK</td>
<td>Immediate YTF peak</td>
<td>Y</td>
<td>N</td>
<td>supported, but has no effect on PSG</td>
</tr>
<tr>
<td>SHAL</td>
<td>Retain multiplication factor on power on/off and preset</td>
<td>Y</td>
<td>Y</td>
<td>supported, but no equivalent SCPI command sequence</td>
</tr>
<tr>
<td>SHAM</td>
<td>Pulse modulation enhancement</td>
<td>Y</td>
<td>N</td>
<td>supported, but has no effect on PSG</td>
</tr>
<tr>
<td>SHAZ</td>
<td>External leveling mode with millimeter head module</td>
<td>Y</td>
<td>N</td>
<td>[:SOURCE]:POWer:ALC:SOURce MMHead [:SOURCE]:POWer:ALC:LEVel <val>:dB</td>
</tr>
<tr>
<td>SHCF</td>
<td>Frequency step size</td>
<td>Y</td>
<td>N</td>
<td>[:SOURCE]:FREQuency[:CW]:STEP[:INCRement] <val><unit></td>
</tr>
<tr>
<td>SHCF</td>
<td>Coarse CW resolution</td>
<td>N</td>
<td>Y</td>
<td>supported, but has no effect on PSG</td>
</tr>
<tr>
<td>SHCW</td>
<td>Swept CW</td>
<td>N</td>
<td>Y</td>
<td>[:SOURCE]:SHlep:MODE AUTO [:SOURCE]:FREQuency:MODE SHlep [:SOURCE]:FREQuency:STARt <val><unit> [:SOURCE]:FREQuency:STOP <val><unit></td>
</tr>
<tr>
<td>SHDF</td>
<td>Fine CW resolution</td>
<td>N</td>
<td>Y</td>
<td>supported, but has no effect on PSG</td>
</tr>
<tr>
<td>SHEF</td>
<td>Restore cal. const. access function</td>
<td>N</td>
<td>N</td>
<td>not supported</td>
</tr>
<tr>
<td>SHFA</td>
<td>Frequency multiplier</td>
<td>Y</td>
<td>Y</td>
<td>[:SOURCE]:FREQuency:MULTiplier <val></td>
</tr>
<tr>
<td>SHFH</td>
<td>Frequency offset</td>
<td>Y</td>
<td>Y</td>
<td>[:SOURCE]:FREQuency:OFFSet <val><unit></td>
</tr>
<tr>
<td>SHIP</td>
<td>Reset multiplication factor to 1 and preset instrument</td>
<td>Y</td>
<td>Y</td>
<td>supported, but no equivalent SCPI command sequence</td>
</tr>
<tr>
<td>SHMO</td>
<td>All frequency markers off</td>
<td>Y</td>
<td>Y</td>
<td>[:SOURCE]:MARKer:AOFF</td>
</tr>
<tr>
<td>SHM1</td>
<td>Turn on and set marker delta</td>
<td>Y</td>
<td>N</td>
<td>[:SOURCE]:MARKer:MODE DELTa</td>
</tr>
<tr>
<td>SHM2</td>
<td>Enable counter interface</td>
<td>N</td>
<td>Y</td>
<td>supported, but has no effect on PSG</td>
</tr>
<tr>
<td>SHM3</td>
<td>Disable counter interface</td>
<td>N</td>
<td>Y</td>
<td>supported, but has no effect on PSG</td>
</tr>
<tr>
<td>SHM4</td>
<td>Diagnostics: test/display results</td>
<td>N</td>
<td>N</td>
<td>not supported</td>
</tr>
<tr>
<td>SHMO</td>
<td>All frequency markers off</td>
<td>N</td>
<td>Y</td>
<td>[:SOURCE]:MARKer:AOFF</td>
</tr>
<tr>
<td>SHMP</td>
<td>Set start frequency to marker 1 and set stop frequency to marker 2</td>
<td>Y</td>
<td>Y</td>
<td>[:SOURCE]:POWer[:LEVel][:IMMediate] [:AMPLitude]:STEP[:INCRement] <val></td>
</tr>
<tr>
<td>SHPL</td>
<td>Power step size</td>
<td>Y</td>
<td>N</td>
<td>[:SOURCE]:POWer[:LEVel1][:IMMediate] [:AMPLitude]:STEP[:INCRement] <val></td>
</tr>
<tr>
<td>SHPM</td>
<td>27.8 KHz square wave pulse modulation on</td>
<td>Y</td>
<td>Y</td>
<td>[:SOURCE]:PULM:SOURce SCALar [:SOURCE]:PULM:STATe ON[:Sens] :MODulation[:STATe] ON[:Sens]</td>
</tr>
</tbody>
</table>

Table 7-1 8340B/41B Prog. Codes & Equivalent SCPI Sequences (Continued)
Table 7-1 8340B/41B Prog. Codes & Equivalent SCPI Sequences (Continued)

<table>
<thead>
<tr>
<th>Cmd</th>
<th>Description</th>
<th>8340</th>
<th>8757</th>
<th>Equivalent SCPI Command Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>SHPS</td>
<td>Decouple attenuator and ALC (control ALC independently)</td>
<td>Y</td>
<td>Y</td>
<td>[:SOURce]:POWER:ATTenuation:AUTO OFF</td>
</tr>
<tr>
<td>SHRC</td>
<td>Unlock save/recall</td>
<td>Y</td>
<td>Y</td>
<td>supported, but no equivalent SCPI command sequence</td>
</tr>
<tr>
<td>SHRF</td>
<td>Disable ALC and set power level</td>
<td>Y</td>
<td>N</td>
<td>[:SOURce]:POWER[:STATe] OFF</td>
</tr>
<tr>
<td>SHRP</td>
<td>Auto track</td>
<td>Y</td>
<td>N</td>
<td>supported, but has no effect on PSG</td>
</tr>
<tr>
<td>SHS10</td>
<td>Disable display update</td>
<td>Y</td>
<td>N</td>
<td>DISPLAY[:WINDOW][:STATe] OFF</td>
</tr>
<tr>
<td>SHS11</td>
<td>Re-enable display update</td>
<td>Y</td>
<td>N</td>
<td>DISPLAY[:WINDOW][:STATe] ON</td>
</tr>
<tr>
<td>SHS3</td>
<td>Display fault diagnostic</td>
<td>N</td>
<td>N</td>
<td>not supported</td>
</tr>
<tr>
<td>SHSL</td>
<td>Set attenuator from front panel</td>
<td>Y</td>
<td>Y</td>
<td>[:SOURce]:POWER:ATTenuation <val><unit></td>
</tr>
<tr>
<td>SHSN</td>
<td>Stepped sweep</td>
<td>N</td>
<td>Y</td>
<td>supported, but has no effect on PSG</td>
</tr>
<tr>
<td>SHSS</td>
<td>Reset step sizes to default values</td>
<td>N</td>
<td>Y</td>
<td>supported, but has no effect on PSG</td>
</tr>
<tr>
<td>SHST</td>
<td>Zoom function</td>
<td>N</td>
<td>N</td>
<td>not supported</td>
</tr>
<tr>
<td>SHSV</td>
<td>Lock save/recall</td>
<td>Y</td>
<td>Y</td>
<td>supported, but no equivalent SCPI command sequence</td>
</tr>
<tr>
<td>SHT1</td>
<td>Test displays</td>
<td>N</td>
<td>N</td>
<td>not supported</td>
</tr>
<tr>
<td>SHT2</td>
<td>Bandcrossing penlift</td>
<td>N</td>
<td>N</td>
<td>not supported</td>
</tr>
<tr>
<td>SHT3</td>
<td>Display unlock indicators</td>
<td>N</td>
<td>N</td>
<td>not supported</td>
</tr>
<tr>
<td>SHGZ</td>
<td>IO Channel</td>
<td>N</td>
<td>N</td>
<td>not supported</td>
</tr>
<tr>
<td>SHMZ</td>
<td>IO Subchannel</td>
<td>N</td>
<td>N</td>
<td>not supported</td>
</tr>
<tr>
<td>SHKZ</td>
<td>Write to IO</td>
<td>N</td>
<td>N</td>
<td>not supported</td>
</tr>
<tr>
<td>SHHZ</td>
<td>Read from IO</td>
<td>N</td>
<td>N</td>
<td>not supported</td>
</tr>
<tr>
<td>SHVR</td>
<td>Frequency offset</td>
<td>N</td>
<td>N</td>
<td>not supported</td>
</tr>
<tr>
<td>SLO</td>
<td>Power slope off</td>
<td>Y</td>
<td>Y</td>
<td>[:SOURce]:POWER:SLOPe:STATe OFF</td>
</tr>
<tr>
<td>SL1</td>
<td>Power slope on</td>
<td>Y</td>
<td>N</td>
<td>[:SOURce]:POWER:SLOPe:STATe ON</td>
</tr>
</tbody>
</table>
SCPI Command Compatibility

8340B/41B and 8757D Compatible Commands

<table>
<thead>
<tr>
<th>Cmd</th>
<th>Description</th>
<th>8340</th>
<th>8757</th>
<th>Equivalent SCPI Command Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>SL1</td>
<td>Power slope on</td>
<td>N</td>
<td>Y</td>
<td>[:SOURce]:POWer:SLOPe:STATe ON</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>[:SOURce]:POWer:SLOPe <value> [DB/Hz]</td>
</tr>
<tr>
<td>SM</td>
<td>Manual frequency sweep mode</td>
<td>Y</td>
<td>Y</td>
<td>[:SOURce]:SWEp:MODE MANUAL</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>[:SOURce]:FREQuency:MANual <val><unit></td>
</tr>
<tr>
<td>SN</td>
<td>Number of points in a stepped sweep</td>
<td>Y</td>
<td>Y</td>
<td>[:SOURce]:SWEp:MODE AUTO</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>[:SOURce]:SWEp:GENERation STEPped</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>[:SOURce]:LIST:TYPE STEP</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>[:SOURce]:LIST:TRIGger:SOURCE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>[:SOURce]:SWEp[:SEQuence]:SOURce</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>[:SOURce]:SWEp:GENeration STEPped</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>[:SOURce]:SWEp:POINts <val></td>
</tr>
<tr>
<td>*</td>
<td>Power step size</td>
<td>Y</td>
<td>Y</td>
<td>[:SOURce]:POWer[:LEVel][:IMMediate]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>[:AMPLitude]:STEP[:INCRement] <val></td>
</tr>
<tr>
<td>ST</td>
<td>Sweep time</td>
<td>Y</td>
<td>Y</td>
<td>[:SOURce]:SWEp:MODE AUTO</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>[:SOURce]:SWEp:TIME <val> <unit></td>
</tr>
<tr>
<td>SV</td>
<td>Save state</td>
<td>Y</td>
<td>Y</td>
<td>*SAV <reg_num>[,.<seq_num>]</td>
</tr>
<tr>
<td>SW0</td>
<td>Swap network analyzer channels</td>
<td>Y</td>
<td>Y</td>
<td>supported, but has no equivalent SCPI command sequence</td>
</tr>
<tr>
<td>SW1</td>
<td>Swap network analyzer channels</td>
<td>Y</td>
<td>Y</td>
<td>supported, but has no equivalent SCPI command sequence</td>
</tr>
<tr>
<td>SX</td>
<td>External sweep type</td>
<td>N</td>
<td>Y</td>
<td>supported, but has no effect on PSG</td>
</tr>
<tr>
<td>T1</td>
<td>Free run sweep trigger mode</td>
<td>Y</td>
<td>Y</td>
<td>:TRIGger[:SEQuence]:SOURce IMMEDIATE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>:INITiate:CONTinuous[:ALL] ON</td>
</tr>
<tr>
<td>T2</td>
<td>Line sweep trigger mode</td>
<td>N</td>
<td>N</td>
<td>not supported</td>
</tr>
<tr>
<td>T3</td>
<td>External sweep trigger mode</td>
<td>Y</td>
<td>Y</td>
<td>:TRIGger[:SEQuence]:SOURce EXTERNAL</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>:INITiate:CONTinuous[:ALL] ON</td>
</tr>
<tr>
<td>T4</td>
<td>Single sweep trigger mode</td>
<td>N</td>
<td>Y</td>
<td>:INITiate[:IMMediate][:ALL]</td>
</tr>
<tr>
<td>TL</td>
<td>Sweep time limit</td>
<td>Y</td>
<td>Y</td>
<td>[:SOURce]:SWEp:TIME:LLIMIT <val> <unit></td>
</tr>
<tr>
<td>TS</td>
<td>Take sweep</td>
<td>Y</td>
<td>Y</td>
<td>:TSWeep</td>
</tr>
<tr>
<td>UP</td>
<td>Step up (increments active function by step value)</td>
<td>Y</td>
<td>Y</td>
<td>supported, see Table 6-2 on page 224</td>
</tr>
<tr>
<td>VR</td>
<td>CW vernier</td>
<td>N</td>
<td>Y</td>
<td>supported, but has no effect on PSG</td>
</tr>
</tbody>
</table>
Table 7-2 8340 and 8757 Code Compatibility

<table>
<thead>
<tr>
<th>Code</th>
<th>Sets Active Function</th>
<th>Comp. with OA/OP</th>
<th>Comp. with UP/DN</th>
<th>Comp. with RB (Knob)</th>
<th>Equivalent SCPI Commands for OA/OP query and UP/DN command</th>
</tr>
</thead>
<tbody>
<tr>
<td>A2</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>[:SOURce]:POWer:ALC:SOURce::EXTernal:COUPling?</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>[:SOURce]:POWer:ATTenuation UP</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>[:SOURce]:POWer:ATTenuation DOWN</td>
</tr>
<tr>
<td>AT</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>[:SOURce]:POWer:ATTenuation?</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>[:SOURce]:POWer:ATTenuation UP</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>[:SOURce]:POWer:ATTenuation DOWN</td>
</tr>
<tr>
<td>CF</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td>[:SOURce]:POWer:ATTenuation?</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>[:SOURce]:POWer:ATTenuation UP</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>[:SOURce]:POWer:ATTenuation DOWN</td>
</tr>
<tr>
<td>CW</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>[:SOURce]:FREQuency:[CW]?</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>[:SOURce]:FREQuency:[CW] UP</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>[:SOURce]:FREQuency:[CW] DOWN</td>
</tr>
<tr>
<td>DF</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td>[:SOURce]:FREQuency:SPAN?</td>
</tr>
<tr>
<td>PA</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td>[:SOURce]:FREQuency:STARt?</td>
</tr>
<tr>
<td>FH</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td>[:SOURce]:FREQuency:STOP?</td>
</tr>
<tr>
<td>FM1</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td>[:SOURce]:PM2[:DEViation]?</td>
</tr>
<tr>
<td>MA</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td>[:SOURce]:MARKer0:FREQuency?</td>
</tr>
<tr>
<td>M1</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td>[:SOURce]:MARKer1:FREQuency?</td>
</tr>
<tr>
<td>M2</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td>[:SOURce]:MARKer2:FREQuency?</td>
</tr>
<tr>
<td>M3</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td>[:SOURce]:MARKer3:FREQuency?</td>
</tr>
<tr>
<td>M4</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td>[:SOURce]:MARKer4:FREQuency?</td>
</tr>
<tr>
<td>M5</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td>[:SOURce]:MARKer5:FREQuency?</td>
</tr>
<tr>
<td>M6</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td>[:SOURce]:MARKer6:FREQuency?</td>
</tr>
<tr>
<td>M7</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td>[:SOURce]:MARKer7:FREQuency?</td>
</tr>
<tr>
<td>M8</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td>[:SOURce]:MARKer8:FREQuency?</td>
</tr>
<tr>
<td>M9</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td>[:SOURce]:MARKer9:FREQuency?</td>
</tr>
<tr>
<td>PL</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>[:SOURce]:POWer[:LEVEL][:IMMediate][:AMPLitude]?</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>[:SOURce]:POWer[:LEVEL][:IMMediate][:AMPLitude] UP</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>[:SOURce]:POWer[:LEVEL][:IMMediate][:AMPLitude] DOWN</td>
</tr>
<tr>
<td>P8</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td>[:SOURce]:POWer:SPAN?</td>
</tr>
<tr>
<td>BC</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td>none</td>
</tr>
</tbody>
</table>
Table 7-2 8340 and 8757 Code Compatibility (Continued)

<table>
<thead>
<tr>
<th>Code</th>
<th>Sets Active Function</th>
<th>Comp. with OA/OI</th>
<th>Comp. with UP/DN</th>
<th>Comp. with RB (Knob)</th>
<th>Equivalent SCPI Commands for OA/OI query and UP/DN command</th>
</tr>
</thead>
<tbody>
<tr>
<td>SB</td>
<td>✓ ✓</td>
<td></td>
<td></td>
<td></td>
<td>supported, but no equivalent SCPI command sequence</td>
</tr>
<tr>
<td>SF</td>
<td>✓ ✓ ✓</td>
<td></td>
<td></td>
<td></td>
<td>[:SOURce]:FREQuency[:CW]:STEP[:INCRement]?</td>
</tr>
<tr>
<td>SHA1</td>
<td>✓ ✓ ✓ ✓</td>
<td></td>
<td></td>
<td></td>
<td>[:SOURce]:POWer[:LEVel]:[IMMediate]:[AMPLitude]?</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>[:SOURce]:POWer[:LEVel]:[IMMediate]:[AMPLitude] UP</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>[:SOURce]:POWer[:LEVel]:[IMMediate]:[AMPLitude] DOWN</td>
</tr>
<tr>
<td>SHA2</td>
<td>✓ ✓ ✓</td>
<td></td>
<td></td>
<td></td>
<td>[:SOURce]:POWer:ALC:LEVel?</td>
</tr>
<tr>
<td>SHA3</td>
<td>✓ ✓ ✓ ✓</td>
<td></td>
<td></td>
<td></td>
<td>[:SOURce]:POWer:ALC:LEVel?</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>[:SOURce]:POWer:ATTenuation UP</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>[:SOURce]:POWer:ATTenuation DNN</td>
</tr>
<tr>
<td>SHAZ</td>
<td>✓ ✓</td>
<td></td>
<td></td>
<td></td>
<td>[:SOURce]:POWer:ALC:LEVel?</td>
</tr>
<tr>
<td>SHCF</td>
<td>✓ ✓</td>
<td></td>
<td></td>
<td></td>
<td>[:SOURce]:FREQuency[:CW]:STEP[:INCRement]?</td>
</tr>
<tr>
<td>SHCW</td>
<td>✓ ✓</td>
<td></td>
<td></td>
<td></td>
<td>[:SOURce]:FREQuency:STARt? or</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>[:SOURce]:FREQuency:STOP?</td>
</tr>
<tr>
<td>SHFA</td>
<td>✓ ✓</td>
<td></td>
<td></td>
<td></td>
<td>[:SOURce]:FREQuency:MULTiplier?</td>
</tr>
<tr>
<td>SHFB</td>
<td>✓ ✓</td>
<td></td>
<td></td>
<td></td>
<td>[:SOURce]:FREQuency:OFFSet?</td>
</tr>
<tr>
<td>SHPL</td>
<td>✓ ✓</td>
<td></td>
<td></td>
<td></td>
<td>[:SOURce]:POWer[:LEVel]:[IMMediate]:[AMPLitude]:STEP[:INCRement]?</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>[:SOURce]:POWer:ATTenuation UP</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>[:SOURce]:POWer:ATTenuation DNN</td>
</tr>
<tr>
<td>SHPS</td>
<td>✓ ✓</td>
<td></td>
<td></td>
<td></td>
<td>[:SOURce]:POWer:ALC:LEVel?</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>[:SOURce]:POWer:ATTenuation UP</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>[:SOURce]:POWer:ATTenuation DNN</td>
</tr>
<tr>
<td>SHRF</td>
<td>✓ ✓</td>
<td></td>
<td></td>
<td></td>
<td>[:SOURce]:POWer[:LEVel]:[IMMediate]:[AMPLitude]?</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>[:SOURce]:POWer[:LEVel]:[IMMediate]:[AMPLitude] UP</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>[:SOURce]:POWer[:LEVel]:[IMMediate]:[AMPLitude] DOWN</td>
</tr>
<tr>
<td>SHSL</td>
<td>✓ ✓</td>
<td></td>
<td></td>
<td></td>
<td>[:SOURce]:POWer:ATTenuation?</td>
</tr>
<tr>
<td>SHSN</td>
<td>✓ ✓</td>
<td></td>
<td></td>
<td></td>
<td>[:SOURce]:SWEep:POINts?</td>
</tr>
<tr>
<td>SL</td>
<td>✓ ✓</td>
<td></td>
<td></td>
<td></td>
<td>[:SOURce]:POWer:SLOPe?</td>
</tr>
<tr>
<td>EM</td>
<td>✓ ✓</td>
<td></td>
<td></td>
<td></td>
<td>[:SOURce]:FREQuency:MANual?</td>
</tr>
<tr>
<td>SN</td>
<td>✓ ✓</td>
<td></td>
<td></td>
<td></td>
<td>[:SOURce]:SWEep:POINts?</td>
</tr>
<tr>
<td>SP</td>
<td>✓ ✓</td>
<td></td>
<td></td>
<td></td>
<td>[:SOURce]:POWer[:LEVel]:[IMMediate]:[AMPLitude]:STEP[:INCRement]?</td>
</tr>
</tbody>
</table>
SCPI Command Compatibility
836xxB/L Compatible SCPI Commands

Table 7-2 8340 and 8757 Code Compatibility (Continued)

<table>
<thead>
<tr>
<th>Code</th>
<th>Sets Active Function</th>
<th>Comp. with OA/OP</th>
<th>Comp. with UP/DN</th>
<th>Comp. with RB (Knob)</th>
<th>Equivalent SCPI Commands for OA/OP query and UP/DN command</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td>[:SOURce]:SWEep:TIME?</td>
</tr>
<tr>
<td>SV</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td>none</td>
</tr>
<tr>
<td>TL</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td>[:SOURce]:SWEep:TIME:LLIMit?</td>
</tr>
</tbody>
</table>

836xxB/L Compatible SCPI Commands

Table 7-3 is a comprehensive list of 836xxB/L SCPI commands arranged by subsystem. Commands that are supported by the PSG are identified, in addition to commands that are unsupported. Use the legend within the table to determine command compatibility.

The preset state of the PSG differs from that of the 836xxB/L. The RF output and sweep are turned off in the PSG, while in the 836xxB/L, these parameters are turned on. To optimize the benefit of using 836xxB/L compatible commands with a PSG, set up a user-defined preset state, emulating the preset state of the 836xxB/L.

To use the commands, select 8360 as the remote language. See ":LANGUAGE" on page 87 for selecting the language type.

When using the programming codes in this section, you can:

- set the PSG system language to 8360 Series for the current session:

 Utility > GPIB/RS-232 LAN > Remote Language > 8360 Series

 or send the command:

 :SYST:LANG "8360"

- set the PSG system language to 8360 so that it does not reset with either preset, instrument power cycle or *RST command:

 Utility > Power On/Preset > Preset Language > 8360 Series

 or send the command:

 :SYST:PRESET:LANG "8360"

NOTE Some of the PSG supported commands are a subset of the 836xxB/L commands. When this occurs, the syntax supported by the PSG is shown in addition to the syntax that is not supported.
Table 7-3 836xxB/L SCPI Commands

<table>
<thead>
<tr>
<th></th>
<th>83620B & 83640B</th>
<th>83620L & 83640L</th>
</tr>
</thead>
<tbody>
<tr>
<td>IEEE Common Commands</td>
<td></td>
<td></td>
</tr>
<tr>
<td>*CLS</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>*ESE <data></td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>*ESE?</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>*ESR?</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>*IDN?a</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>*LRN?</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>*OPC</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>*OPC?</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>*OPT?</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>*RCL <reg_num></td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>*RST</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>*SAV <reg_num></td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>*SRE <data></td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>*SRE?</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>*STB?</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>*TRG</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>*TST?</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>*WAI</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Abort Subsystem</td>
<td></td>
<td></td>
</tr>
<tr>
<td>:ABORT</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Amplitude Modulation Subsystem</td>
<td></td>
<td></td>
</tr>
<tr>
<td>:AM[:DEPTH] <num> [PCT]</td>
<td>MAXimum</td>
<td>MINimum</td>
</tr>
<tr>
<td>:AM[:DEPTH]? [MAXimum</td>
<td>MINimum]</td>
<td>Y</td>
</tr>
</tbody>
</table>
SCPI Command Compatibility

836xxB/L Compatible SCPI Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Supported by PSG</th>
<th>83620B & 83640B</th>
<th>83620L & 83640L</th>
</tr>
</thead>
<tbody>
<tr>
<td>:AM:INTernal:FREQuency <code><num></code></td>
<td>Y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>:AM:INTernal:FREQuency?</td>
<td>Y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>:AM:INTernal:FUNCtion</td>
<td>Y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>:AM:SOURce</td>
<td>Y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>:AM:MODE</td>
<td>Y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>:AM:STATe</td>
<td>Y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>:AM:TYPE</td>
<td>Y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>:CALibration:AM:AUTO</td>
<td>N</td>
<td></td>
<td></td>
</tr>
<tr>
<td>:CALibration:AM:AUTO?</td>
<td>N</td>
<td></td>
<td></td>
</tr>
<tr>
<td>:CALibration:AM[:EXECute]</td>
<td>N</td>
<td></td>
<td></td>
</tr>
<tr>
<td>:CALibration:PEAKing:AUTO</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>:CALibration:PEAKing:AUTO?</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>:CALibration:PEAKing[:EXECute]</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>:CALibration:PMETer:DETector:INITiate?</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>:CALibration:PMETer:DETector:NEXT? <code><num></code></td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>:CALibration:PMETer:FLATness:INITiate?</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>:CALibration:PMETer:FLATness:NEXT? <code><value></code></td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>:CALibration:SPAN:AUTO</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
</tbody>
</table>

Calibration Subsystem

Table 7-3 836xxB/L SCPI Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Supported by PSG</th>
<th>83620B & 83640B</th>
<th>83620L & 83640L</th>
</tr>
</thead>
<tbody>
<tr>
<td>:CALibration:AM:AUTO</td>
<td>Y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>:CALibration:AM:AUTO?</td>
<td>Y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>:CALibration:AM[:EXECute]</td>
<td>Y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>:CALibration:PEAKing:AUTO</td>
<td>Y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>:CALibration:PEAKing:AUTO?</td>
<td>Y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>:CALibration:PEAKing[:EXECute]</td>
<td>Y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>:CALibration:PMETer:DETector:INITiate?</td>
<td>Y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>:CALibration:PMETer:DETector:NEXT? <code><num></code></td>
<td>Y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>:CALibration:PMETer:FLATness:INITiate?</td>
<td>Y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>:CALibration:PMETer:FLATness:NEXT? <code><value></code></td>
<td>Y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>:CALibration:SPAN:AUTO</td>
<td>Y</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 7-3 836xxB/L SCPI Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Y= Supported by PSG</th>
<th>N= Not supported by PSG</th>
<th>83620B & 83640B</th>
<th>83620L & 83640L</th>
</tr>
</thead>
<tbody>
<tr>
<td>:CALibration:SPAN:AUTO?</td>
<td>N</td>
<td>N</td>
<td></td>
<td></td>
</tr>
<tr>
<td>:CALibration:SPAN[:EXECute]</td>
<td>N</td>
<td>N</td>
<td></td>
<td></td>
</tr>
<tr>
<td>:CALibration:TRACk</td>
<td>N</td>
<td>N</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Correction Subsystem</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>:CORRection:ARRay[i]{<value>[DB]}</td>
<td></td>
<td></td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>:CORRection:ARRay[i]?</td>
<td></td>
<td></td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>:CORRection:FLATness {<num>[freq suffix],[<num>[DB]]}</td>
<td>N</td>
<td>N</td>
<td></td>
<td></td>
</tr>
<tr>
<td>:CORRection:FLATness?</td>
<td>Y</td>
<td>Y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>:CORRection:SOURce[i] ARRay</td>
<td>FLATness</td>
<td>N</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>:CORRection:SOURce[i]?</td>
<td></td>
<td></td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>:CORRection[:STATE] ON</td>
<td>OFF</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>:CORRection[:STATE]?</td>
<td></td>
<td></td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Diagnostics Subsystem</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>:DIAGnostics:ABUS? <value></td>
<td>N</td>
<td>N</td>
<td></td>
<td></td>
</tr>
<tr>
<td>:DIAGnostics:ABUS:AVERage <value></td>
<td>N</td>
<td>N</td>
<td></td>
<td></td>
</tr>
<tr>
<td>:DIAGnostics:ABUS:AVERage?</td>
<td></td>
<td></td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>:DIAGnostics:ABUS:STATus?</td>
<td>N</td>
<td>N</td>
<td></td>
<td></td>
</tr>
<tr>
<td>:DIAGnostics:INSTrument:PMETer:ADDRess <value></td>
<td></td>
<td></td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>:DIAGnostics:INSTrument:PMETer:ADDRess?</td>
<td></td>
<td></td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>:DIAGnostics:INSTrument:PRINter:ADDRess <value></td>
<td></td>
<td></td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>:DIAGnostics:INSTrument:PRINter:ADDRess?</td>
<td></td>
<td></td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>:DIAGnostics:IORW <value>,<value></td>
<td>N</td>
<td>N</td>
<td></td>
<td></td>
</tr>
<tr>
<td>:DIAGnostics:IORW? <value></td>
<td>N</td>
<td>N</td>
<td></td>
<td></td>
</tr>
<tr>
<td>:DIAGnostics:OUTPut:FAULT?</td>
<td>N</td>
<td>N</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
836xxB/L SCPI Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>83620B & 83640B</th>
<th>83620L & 83640L</th>
</tr>
</thead>
<tbody>
<tr>
<td>:DIAGnostic:RESult?</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>:DIAGnostic:TEST:CONTinue</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>:DIAGnostic:TEST:DATA:DESC?</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>:DIAGnostic:TEST:DATA:MAXimum?</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>:DIAGnostic:TEST:DATA:MINimum?</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>:DIAGnostic:TEST:DATA:VALUE?</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>:DIAGnostic:TEST:DISable {<num>}</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>:DIAGnostic:TEST:ENABLE {<num>}</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>:DIAGnostic:TEST[:EXECute] <value></td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>:DIAGnostic:TEST:LOG:SOURce ALL</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>:DIAGnostic:TEST:LOG:SOURce?</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>:DIAGnostic:TEST:LOG[:STATE]?</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>:DIAGnostic:TEST:LOG[:STATE] ON</td>
<td>OFF</td>
<td>1</td>
</tr>
<tr>
<td>:DIAGnostic:TEST:LOOP ON</td>
<td>OFF</td>
<td>1</td>
</tr>
<tr>
<td>:DIAGnostic:TEST:LOOP?</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>:DIAGnostic:TEST:NAME? [<value>]</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>:DIAGnostic:TEST:POINTS?</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>:DIAGnostic:TEST:RESULT? [<value>]</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>:DIAGnostic:TEST:TINT? <value></td>
<td>N</td>
<td>N</td>
</tr>
</tbody>
</table>

Display Subsystem

<table>
<thead>
<tr>
<th>Command</th>
<th>83620B & 83640B</th>
<th>83620L & 83640L</th>
</tr>
</thead>
<tbody>
<tr>
<td>:DISPLAY[:STATE] ON</td>
<td>OFF</td>
<td>1</td>
</tr>
<tr>
<td>:DISPLAY[:STATE]?</td>
<td>Y</td>
<td>Y</td>
</tr>
</tbody>
</table>

Frequency Modulation Subsystem

<table>
<thead>
<tr>
<th>Command</th>
<th>83620B & 83640B</th>
<th>83620L & 83640L</th>
</tr>
</thead>
<tbody>
<tr>
<td>:FM:COUpling AC</td>
<td>DC</td>
<td>Y</td>
</tr>
<tr>
<td>:FM:COUpling?</td>
<td>Y</td>
<td></td>
</tr>
</tbody>
</table>
Table 7-3 836xxB/L SCPI Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>83620B & 83640B</th>
<th>83620L & 83640L</th>
</tr>
</thead>
<tbody>
<tr>
<td>:FM[:DEViation] <val><unit></td>
<td>MAXimum</td>
<td>MINimum</td>
</tr>
<tr>
<td>:FM[:DEViation]? [MAXimum</td>
<td>MINimum]</td>
<td>Y</td>
</tr>
<tr>
<td>:FM:FILTer:HPAsS <num>[<freq suffix>]</td>
<td>MAXimum</td>
<td>MINimum</td>
</tr>
<tr>
<td>:FM:FILTer:HPAsS? [MAXimum</td>
<td>MINimum]</td>
<td>N</td>
</tr>
<tr>
<td>:FM:INTernal:FREQuency <num>[<freq suffix>]</td>
<td>MAXimum</td>
<td>MINimum</td>
</tr>
<tr>
<td>:FM:INTernal:FUnCTion SINusoid</td>
<td>SQUare</td>
<td>TRIangle</td>
</tr>
<tr>
<td>:FM:INTernal:FUnCTion?</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>:FM:SOURce INTERNAL</td>
<td>EXTernal</td>
<td>Y</td>
</tr>
<tr>
<td>:FM:SOURce?</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>:FM:SENSitivity <val><freq suffix/V></td>
<td>MAXimum</td>
<td>MINimum</td>
</tr>
<tr>
<td>:FM:STATE ON</td>
<td>OFF</td>
<td>1</td>
</tr>
<tr>
<td>:FM:STATE?</td>
<td>Y</td>
<td></td>
</tr>
</tbody>
</table>

Frequency Subsystem

<table>
<thead>
<tr>
<th>Command</th>
<th>83620B & 83640B</th>
<th>83620L & 83640L</th>
</tr>
</thead>
<tbody>
<tr>
<td>:FREQuency:CENTer <num>[<freq suffix>]</td>
<td>MAXimum</td>
<td>MINimum</td>
</tr>
<tr>
<td>:FREQuency:CENTer? [MAXimum</td>
<td>MINimum]</td>
<td>Y</td>
</tr>
<tr>
<td>:FREQuency[:CW]:FIXed <num>[<freq suffix>]</td>
<td>MAXimum</td>
<td>MINimum</td>
</tr>
<tr>
<td>:FREQuency[:CW]? [MAXimum</td>
<td>MINimum]</td>
<td>Y</td>
</tr>
<tr>
<td>:FREQuency[:FIXed]? [MAXimum</td>
<td>MINimum]</td>
<td>Y</td>
</tr>
<tr>
<td>:FREQuency[:CW]:AUTO ON</td>
<td>OFF</td>
<td>1</td>
</tr>
<tr>
<td>:FREQuency[:CW]:AUTO?</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>:FREQuency[:FIXed]:AUTO ON</td>
<td>OFF</td>
<td>1</td>
</tr>
<tr>
<td>:FREQuency[:FIXed]:AUTO?</td>
<td>N</td>
<td>N</td>
</tr>
</tbody>
</table>
Table 7-3 836xxB/L SCPI Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>83620B & 83640B</th>
<th>83620L & 83640L</th>
</tr>
</thead>
<tbody>
<tr>
<td>:FREQuency:MANual <num>[freq suffix]</td>
<td>MAXimum</td>
<td>MINimum</td>
</tr>
<tr>
<td>:FREQuency:MANual?</td>
<td>[MAXimum</td>
<td>MINimum]</td>
</tr>
<tr>
<td>:FREQuency:MODE FIXed</td>
<td>CW</td>
<td>SWEep</td>
</tr>
<tr>
<td>:FREQuency:MODE?</td>
<td>YY</td>
<td></td>
</tr>
<tr>
<td>:FREQuency:MULTiplier <num></td>
<td>MAXimum</td>
<td>MINimumb</td>
</tr>
<tr>
<td>:FREQuency:MULTiplier?</td>
<td>[MAXimum</td>
<td>MINimum]</td>
</tr>
<tr>
<td>:FREQuency:MULTiplier:STATE ON</td>
<td>OFF</td>
<td>1</td>
</tr>
<tr>
<td>:FREQuency:MULTiplier:STATE?</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>:FREQuency:OFFSet <num></td>
<td>MAXimum</td>
<td>MINimum</td>
</tr>
<tr>
<td>:FREQuency:OFFSet?</td>
<td>[MAXimum</td>
<td>MINimum]</td>
</tr>
<tr>
<td>:FREQuency:OFFSet:STATE ON</td>
<td>OFF</td>
<td>1</td>
</tr>
<tr>
<td>:FREQuency:OFFSet:STATE?</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>:FREQuency:SPAN <num>[freq suffix]</td>
<td>MAXimum</td>
<td>MINimum</td>
</tr>
<tr>
<td>:FREQuency:SPAN?</td>
<td>[MAXimum</td>
<td>MINimum]</td>
</tr>
<tr>
<td>:FREQuency:START <num>[freq suffix]</td>
<td>MAXimum</td>
<td>MINimum</td>
</tr>
<tr>
<td>:FREQuency:START?</td>
<td>[MAXimum</td>
<td>MINimum]</td>
</tr>
<tr>
<td>:FREQuency:STEP:AUTO ON</td>
<td>OFF</td>
<td>1</td>
</tr>
<tr>
<td>:FREQuency:STEP:AUTO?</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>:FREQuency:STEP[:INCReement] <num>[freq suffix]</td>
<td>MAXimum</td>
<td>MINimum</td>
</tr>
<tr>
<td>:FREQuency:STEP[:INCReement]?</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>:FREQuency:STOP <num>[freq suffix]</td>
<td>MAXimum</td>
<td>MINimum</td>
</tr>
<tr>
<td>:FREQuency:STOP?</td>
<td>[MAXimum</td>
<td>MINimum]</td>
</tr>
</tbody>
</table>
SCPI Command Compatibility

836xxB/L Compatible SCPI Commands

Initiate Subsystem

<table>
<thead>
<tr>
<th>Command</th>
<th>83620B & 83640B</th>
<th>83620L & 83640L</th>
</tr>
</thead>
<tbody>
<tr>
<td>:INITiate:CONTinuous ON</td>
<td>OFF</td>
<td>1</td>
</tr>
<tr>
<td>:INITiate:CONTinuous?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>:INITiate[:IMMediate]</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

List Subsystem

<table>
<thead>
<tr>
<th>Command</th>
<th>83620B & 83640B</th>
<th>83620L & 83640L</th>
</tr>
</thead>
<tbody>
<tr>
<td>:LIST:DWELL {<num>[<time suffix>]</td>
<td>MAXimum</td>
<td>MINimum}</td>
</tr>
<tr>
<td>:LIST:DWELL? [MAXimum</td>
<td>MINimum]</td>
<td></td>
</tr>
<tr>
<td>:LIST:FREQuency {<value>[<freq suffix>]</td>
<td>MAXimum</td>
<td>MINimum}</td>
</tr>
<tr>
<td>:LIST:FREQuency?</td>
<td></td>
<td>Y</td>
</tr>
<tr>
<td>:LIST:MANual <num></td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>:LIST:MANual?</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>:LIST:MANual</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>:LIST:MANual?</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>:LIST:MODE AUTO</td>
<td>MANual</td>
<td>Y</td>
</tr>
<tr>
<td>:LIST:MODE?</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>:LIST[:POWer]:CORRection {<value>[DB]</td>
<td>MAXimum</td>
<td>MINimum}</td>
</tr>
<tr>
<td>:LIST[:POWer]:CORRection?</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>:LIST[:POWer]:CORRection:POINTS? [MAXimum</td>
<td>MINimum]</td>
<td>N</td>
</tr>
<tr>
<td>:LIST:TRIGger:SOURce IMMEDIATE</td>
<td>BUS</td>
<td>EXTERNAL</td>
</tr>
<tr>
<td>:LIST:TRIGger:SOURce?</td>
<td>Y</td>
<td>Y</td>
</tr>
</tbody>
</table>

Marker Subsystem

<table>
<thead>
<tr>
<th>Command</th>
<th>83620B & 83640B</th>
<th>83620L & 83640L</th>
</tr>
</thead>
<tbody>
<tr>
<td>:MARKer[n]:AMPLitude[:STATe] ON</td>
<td>OFF</td>
<td>1</td>
</tr>
<tr>
<td>:MARKer[n]:AMPLitude[:STATe]?</td>
<td></td>
<td>N</td>
</tr>
<tr>
<td>:MARKer[n]:AMPLitude:VALUE <value>[DB]</td>
<td>MAXimum</td>
<td>MINimum</td>
</tr>
<tr>
<td>:MARKer[n]:AMPLitude:VALUE? [MAXimum</td>
<td>MINimum]</td>
<td>N</td>
</tr>
</tbody>
</table>

Table 7-3 836xxB/L SCPI Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Supported by PSG</th>
<th>Not supported by PSG</th>
</tr>
</thead>
<tbody>
<tr>
<td>:INITiate:CONTinuous ON</td>
<td>OFF</td>
<td>1</td>
</tr>
<tr>
<td>:INITiate:CONTinuous?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>:INITiate[:IMMediate]</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Y= Supported by PSG
N= Not supported by PSG

83620B & 83640B
83620L & 83640L
SCPI Command Compatibility

836xxB/L Compatible SCPI Commands

Table 7-3 836xxB/L SCPI Commands

<table>
<thead>
<tr>
<th>Y= Supported by PSG</th>
<th>N= Not supported by PSG</th>
<th>83620B & 83640B</th>
<th>83620L & 83640L</th>
</tr>
</thead>
<tbody>
<tr>
<td>:MARKer[n]:AOFF</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>:MARKer[n]:DELTa?</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>:MARKer[n]:FREQuency [value][<freq suffix>]</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>:MARKer[n]:FREQuency? [MAXimum</td>
<td>MINimum]</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>:MARKer[n]:MODE FREQuency</td>
<td>DELTa</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>:MARKer[n]:MODE?</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>:MARKer[n]:REFerence <n></td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>:MARKer[n]:REFerence?</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>:MARKer[n][:STATe] ON</td>
<td>OFF</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>:MARKer[n][:STATe]?</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
</tbody>
</table>

Measure Subsystem

| :MEASure:AM? | N |
| :MEASure:FM? | N |

Modulation Subsystem

:MODulation:OUTPut:SOURce AM	FM	N		
:MODulation:OUTPut:SOURce?	N			
:MODulation:OUTPut:STATe ON	OFF	1	0	Y
:MODulation:OUTPut:STATe?	Y			
:MODulation:STATe?	Y			

Power Subsystem

:POWer:ALC:BANDwidth	:BWIDth [value][<freq suffix>]	Y	Y			
:POWer:ALC:BANDwidth	:BWIDth:AUTO ON	OFF	1	0	Y	Y
:POWer:ALC:BANDwidth	:BWIDth:AUTO?	Y	Y			
SCPI Command Compatibility

836xxB/L Compatible SCPI Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>83620B & 83640B</th>
<th>83620L & 83640L</th>
</tr>
</thead>
<tbody>
<tr>
<td>:POWer:ALC:CFACtor <value>[DB]</td>
<td>MAXimum</td>
<td>MINimum</td>
</tr>
<tr>
<td>:POWer:ALC:CFACtor? [MINimum</td>
<td>MAXimum]</td>
<td>Y</td>
</tr>
<tr>
<td>:POWer:ALC:SOURce PMETer</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>:POWer:ALC:SOURce INTernal</td>
<td>DIODE</td>
<td>MMHead</td>
</tr>
<tr>
<td>:POWer:ALC:SOURce?</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>:POWer:ALC[:STATe] ON</td>
<td>OFF</td>
<td>1</td>
</tr>
<tr>
<td>:POWer:ALC[:STATe]?</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>:POWer:AMPLifier:STATE ON</td>
<td>OFF</td>
<td>1</td>
</tr>
<tr>
<td>:POWer:AMPLifier:STATE?</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>:POWer:AMPLifier:STATE:AUTO ON</td>
<td>OFF</td>
<td>1</td>
</tr>
<tr>
<td>:POWer:AMPLifier:STATE:AUTO?</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>:POWer:ATTenuation <num>[DB]</td>
<td>MAXimum</td>
<td>MINimum</td>
</tr>
<tr>
<td>:POWer:ATTenuation? [MAXimum</td>
<td>MINimum]</td>
<td>Y</td>
</tr>
<tr>
<td>:POWer:ATTenuation:AUTO ON</td>
<td>OFF</td>
<td>1</td>
</tr>
<tr>
<td>:POWer:ATTenuation:AUTO?</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>:POWer:CENTer <num>[<lvl suffix>]</td>
<td>MAXimum</td>
<td>MINimum</td>
</tr>
<tr>
<td>:POWer:CENTer? [MAXimum</td>
<td>MINimum]</td>
<td>Y</td>
</tr>
<tr>
<td>:POWer[:LEVel] <num>[<lvl suffix>]</td>
<td>MAXimum</td>
<td>MINimum</td>
</tr>
<tr>
<td>:POWer[:LEVel]? [MAXimum</td>
<td>MINimum]</td>
<td>Y</td>
</tr>
<tr>
<td>:POWer:MDE</td>
<td>FIXed</td>
<td>SWRep</td>
</tr>
<tr>
<td>:POWer:MDE?</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>:POWer:OFFSet <num>[DB]</td>
<td>MAXimum</td>
<td>MINimum</td>
</tr>
<tr>
<td>:POWer:OFFSet? [MAXimum</td>
<td>MINimum]</td>
<td>Y</td>
</tr>
<tr>
<td>:POWer:OFFSet:STATe ON</td>
<td>OFF</td>
<td>1</td>
</tr>
<tr>
<td>:POWer:OFFSet:STATe OFF</td>
<td>0</td>
<td>d</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Y= Supported by PSG</th>
<th>N= Not supported by PSG</th>
</tr>
</thead>
<tbody>
<tr>
<td>:POWer:ALC:CFACtor <value>[DB]</td>
<td>MAXimum</td>
</tr>
<tr>
<td>:POWer:ALC:CFACtor? [MINimum</td>
<td>MAXimum]</td>
</tr>
<tr>
<td>:POWer:ALC:SOURce PMETer</td>
<td>N</td>
</tr>
<tr>
<td>:POWer:ALC:SOURce INTernal</td>
<td>DIODE</td>
</tr>
<tr>
<td>:POWer:ALC:SOURce?</td>
<td>Y</td>
</tr>
<tr>
<td>:POWer:ALC[:STATe] ON</td>
<td>OFF</td>
</tr>
<tr>
<td>:POWer:ALC[:STATe]?</td>
<td>Y</td>
</tr>
<tr>
<td>:POWer:AMPLifier:STATE ON</td>
<td>OFF</td>
</tr>
<tr>
<td>:POWer:AMPLifier:STATE?</td>
<td>N</td>
</tr>
<tr>
<td>:POWer:AMPLifier:STATE:AUTO ON</td>
<td>OFF</td>
</tr>
<tr>
<td>:POWer:AMPLifier:STATE:AUTO?</td>
<td>N</td>
</tr>
<tr>
<td>:POWer:ATTenuation <num>[DB]</td>
<td>MAXimum</td>
</tr>
<tr>
<td>:POWer:ATTenuation? [MAXimum</td>
<td>MINimum]</td>
</tr>
<tr>
<td>:POWer:ATTenuation:AUTO ON</td>
<td>OFF</td>
</tr>
<tr>
<td>:POWer:ATTenuation:AUTO?</td>
<td>Y</td>
</tr>
<tr>
<td>:POWer:CENTer <num>[<lvl suffix>]</td>
<td>MAXimum</td>
</tr>
<tr>
<td>:POWer:CENTer? [MAXimum</td>
<td>MINimum]</td>
</tr>
<tr>
<td>:POWer[:LEVel] <num>[<lvl suffix>]</td>
<td>MAXimum</td>
</tr>
<tr>
<td>:POWer[:LEVel]? [MAXimum</td>
<td>MINimum]</td>
</tr>
<tr>
<td>:POWer:MDE</td>
<td>FIXed</td>
</tr>
<tr>
<td>:POWer:MDE?</td>
<td>Y</td>
</tr>
<tr>
<td>:POWer:OFFSet <num>[DB]</td>
<td>MAXimum</td>
</tr>
<tr>
<td>:POWer:OFFSet? [MAXimum</td>
<td>MINimum]</td>
</tr>
<tr>
<td>:POWer:OFFSet:STATe ON</td>
<td>OFF</td>
</tr>
<tr>
<td>:POWer:OFFSet:STATe OFF</td>
<td>0</td>
</tr>
</tbody>
</table>
SCPI Command Compatibility

836xxB/L Compatible SCPI Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>83620B & 83640B</th>
<th>83620L & 83640L</th>
</tr>
</thead>
<tbody>
<tr>
<td>:POWer:OFFSet:STATe?</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>:POWer:RANGE <value>[<lvl suffix>]</td>
<td>MAXimum</td>
<td>MINimum</td>
</tr>
<tr>
<td>:POWer:RANGE?</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>:POWer:SEARch ON</td>
<td>OFF</td>
<td>1</td>
</tr>
<tr>
<td>:POWer:SEARch?</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>:POWer:SLOPe <value>[<freq suffix>]</td>
<td>MAX</td>
<td>MIN</td>
</tr>
<tr>
<td>:POWer:SLOPe? [MAXimum</td>
<td>MINimum]</td>
<td>Y</td>
</tr>
<tr>
<td>:POWer:SLOPe:STATE ON</td>
<td>OFF</td>
<td>1</td>
</tr>
<tr>
<td>:POWer:SLOPe:STATE?</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>:POWer:SPAN <value>[DB]</td>
<td>MAXimum</td>
<td>MINimum</td>
</tr>
<tr>
<td>:POWer:SPAN? [MAXimum</td>
<td>MINimum]</td>
<td>Y</td>
</tr>
<tr>
<td>:POWer:STARt <val><unit></td>
<td>MAXimum</td>
<td>MINimum</td>
</tr>
<tr>
<td>:POWer:STARt? [MAXimum</td>
<td>MINimum]</td>
<td>Y</td>
</tr>
<tr>
<td>:POWer:STATe ON</td>
<td>OFF</td>
<td>1</td>
</tr>
<tr>
<td>:POWer:STATe?</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>:POWer:STEP:AUTO ON</td>
<td>OFF</td>
<td>1</td>
</tr>
<tr>
<td>:POWer:STEP:AUTO?</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>:POWer:STEP[:INCRement] <num>[DB]</td>
<td>MAXimum</td>
<td>MINimum</td>
</tr>
<tr>
<td>:POWer:STEP[:INCRement]? [MAXimum</td>
<td>MINimum]</td>
<td>Y</td>
</tr>
<tr>
<td>:POWer:STOP <val><unit></td>
<td>MAXimum</td>
<td>MINimum</td>
</tr>
<tr>
<td>:POWer:STOP? [MAXimum</td>
<td>MINimum]</td>
<td>Y</td>
</tr>
</tbody>
</table>

Pulse Modulation Subsystem

<table>
<thead>
<tr>
<th>Command</th>
<th>83620B & 83640B</th>
<th>83620L & 83640L</th>
</tr>
</thead>
<tbody>
<tr>
<td>:FULM:EXTernal:DELay <value>[<time suffix>]</td>
<td>MAXimum</td>
<td>MINimum</td>
</tr>
</tbody>
</table>
SCPI Command Compatibility

836xxB/L Compatible SCPI Commands

Table 7-3 836xxB/L SCPI Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Supported by PSG</th>
<th>83620B & 83640B</th>
<th>83620L & 83640B</th>
</tr>
</thead>
<tbody>
<tr>
<td>:PULM:EXTERNAL:POLarity NORMal</td>
<td>INVerted</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>:PULM:EXTERNAL:POLarity?</td>
<td>Y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>:PULM:INTERNAL:FREQuency <num>[<freq suffix>]</td>
<td>MAXimum</td>
<td>MINimum</td>
<td>Y</td>
</tr>
<tr>
<td>:PULM:INTERNAL:GATE ON</td>
<td>OFF</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>:PULM:INTERNAL:GATE?</td>
<td>N</td>
<td></td>
<td></td>
</tr>
<tr>
<td>:PULM:INTERNAL:PERiod <num>[<time suffix>]</td>
<td>MAXimum</td>
<td>MINimum</td>
<td>Y</td>
</tr>
<tr>
<td>:PULM:INTERNAL:TRIGger:SOURce INTernal</td>
<td>EXTERNal</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>:PULM:INTERNAL:WIDTH <num>[<time suffix>]</td>
<td>MAXimum</td>
<td>MINimum</td>
<td>Y</td>
</tr>
<tr>
<td>:PULM:SLEW <value>[<time suffix>]</td>
<td>MAXimum</td>
<td>MINimum</td>
<td>N</td>
</tr>
<tr>
<td>:PULM:SLEW?</td>
<td>[MAXimum</td>
<td>MINimum]</td>
<td>N</td>
</tr>
<tr>
<td>:PULM:SLEW:AUTO ON</td>
<td>OFF</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>:PULM:SLEW:AUTO?</td>
<td>N</td>
<td></td>
<td></td>
</tr>
<tr>
<td>:PULM:SOURce SCALar</td>
<td>N</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>:PULM:SOURce INTernal</td>
<td>EXTERNal</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>:PULM:SOURce?</td>
<td>Y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>:PULM:STATe ON</td>
<td>OFF</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>:PULM:STATe?</td>
<td>Y</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Pulse Subsystem

<table>
<thead>
<tr>
<th>Command</th>
<th>Supported by PSG</th>
<th>83620B & 83640B</th>
<th>83620L & 83640B</th>
</tr>
</thead>
<tbody>
<tr>
<td>:PULSe:FREQuency <num>[<freq suffix>]</td>
<td>MAXimum</td>
<td>MINimum</td>
<td>Y</td>
</tr>
<tr>
<td>:PULSe:FREQuency?</td>
<td>[MAXimum</td>
<td>MINimum]</td>
<td>Y</td>
</tr>
<tr>
<td>:PULSe:PERiod <num>[<time suffix>]</td>
<td>MAXimum</td>
<td>MINimum</td>
<td>Y</td>
</tr>
</tbody>
</table>
SCPI Command Compatibility

836xxB/L Compatible SCPI Commands

| Command | Y | N
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>:PULSe:PERiod? [MAXimum</td>
<td>MINimum]</td>
</tr>
<tr>
<td>:PULSe:WIDTh <num> [<time suffix>]</td>
<td>Y</td>
</tr>
<tr>
<td>:PULSe:WIDTh? [MAXimum</td>
<td>MINimum]</td>
</tr>
</tbody>
</table>

Reference Oscillator Subsystem

| Command | Y | N
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>:ROSCillator:SOURce?</td>
<td>Y</td>
</tr>
<tr>
<td>:ROSCillator:SOURce:AUTO ON</td>
<td>OFF</td>
</tr>
<tr>
<td>:ROSCillator:SOURce:AUTO?</td>
<td>Y</td>
</tr>
<tr>
<td>:ROSCillator:SOURce INTernal</td>
<td>EXTernal</td>
</tr>
</tbody>
</table>

Status Subsystem

| Command | Y | N
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>:STATus:OPERation:CONDition?</td>
<td>Y</td>
</tr>
<tr>
<td>:STATus:OPERation:ENABLE <value></td>
<td>Y</td>
</tr>
<tr>
<td>:STATus:OPERation:ENABLE?</td>
<td>Y</td>
</tr>
<tr>
<td>:STATus:OPERation[:EVENT]?</td>
<td>Y</td>
</tr>
<tr>
<td>:STATus:OPERation:NTRansition <value></td>
<td>Y</td>
</tr>
<tr>
<td>:STATus:OPERation:NTRansition?</td>
<td>Y</td>
</tr>
<tr>
<td>:STATus:OPERation:PTRansition <value></td>
<td>Y</td>
</tr>
<tr>
<td>:STATus:OPERation:PTRansition?</td>
<td>Y</td>
</tr>
<tr>
<td>:STATus:PRESet</td>
<td>Y</td>
</tr>
<tr>
<td>:STATus:QUEStionable:CONDition?</td>
<td>Y</td>
</tr>
<tr>
<td>:STATus:QUEStionable:ENABLE <value></td>
<td>Y</td>
</tr>
<tr>
<td>:STATus:QUEStionable:ENABLE?</td>
<td>Y</td>
</tr>
<tr>
<td>:STATus:QUEStionable[:EVENT]?</td>
<td>Y</td>
</tr>
<tr>
<td>:STATus:QUEStionable:NTRansition <value></td>
<td>Y</td>
</tr>
<tr>
<td>:STATus:QUEStionable:NTRansition?</td>
<td>Y</td>
</tr>
<tr>
<td>:STATus:QUEStionable:PTRansition <value></td>
<td>Y</td>
</tr>
</tbody>
</table>

Table 7-3 836xxB/L SCPI Commands

<table>
<thead>
<tr>
<th>Y= Supported by PSG</th>
<th>N= Not supported by PSG</th>
<th>83620B & 83640B</th>
<th>83620L & 83640L</th>
</tr>
</thead>
<tbody>
<tr>
<td>:PULSe:PERiod? [MAXimum</td>
<td>MINimum]</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>:PULSe:WIDTh <num> [<time suffix>]</td>
<td>Y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>:PULSe:WIDTh? [MAXimum</td>
<td>MINimum]</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>:ROSCillator:SOURce?</td>
<td>Y</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>:ROSCillator:SOURce:AUTO ON</td>
<td>OFF</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>:ROSCillator:SOURce:AUTO?</td>
<td>Y</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>:ROSCillator:SOURce INTernal</td>
<td>EXTernal</td>
<td>NONE</td>
<td>Y</td>
</tr>
</tbody>
</table>
Table 7-3 836xB/L SCPI Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>83620B & 83640B</th>
<th>83620L & 83640L</th>
</tr>
</thead>
<tbody>
<tr>
<td>:STATus:QUEStionable:FTRansition?</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Sweep Subsystem</td>
<td></td>
<td></td>
</tr>
<tr>
<td>:SWEep:CONTrol:STATe ON</td>
<td>OFF</td>
<td>1</td>
</tr>
<tr>
<td>:SWEep:CONTrol:STATe?</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>:SWEep:CONTrol:TYPE MASTer</td>
<td>SLAVe</td>
<td>N</td>
</tr>
<tr>
<td>:SWEep:CONTrol:TYPE?</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>:SWEep:DWELl <num>[<time suffix>]</td>
<td>MAXimum</td>
<td>MINimum</td>
</tr>
<tr>
<td>:SWEep:DWELl? [MAXimum</td>
<td>MINimum]</td>
<td>Y</td>
</tr>
<tr>
<td>:SWEep:DWELl:AUTO ON</td>
<td>OFF</td>
<td>1</td>
</tr>
<tr>
<td>:SWEep:DWELl:AUTO?</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>:SWEep:GENeration STEPped</td>
<td>ANALog</td>
<td>N</td>
</tr>
<tr>
<td>:SWEep:GENeration?</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>:SWEep:MANual:POINT <num></td>
<td>MAXimum</td>
<td>MINimum</td>
</tr>
<tr>
<td>:SWEep:MANual[:RELative] <value></td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>:SWEep:MANual[:RELative]?</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>:SWEep:MARKer:STATe ON</td>
<td>OFF</td>
<td>1</td>
</tr>
<tr>
<td>:SWEep:MARKer:STATe?</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>:SWEep:MARKer:XFER</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>:SWEep:MODE AUTO</td>
<td>MANual</td>
<td>Y</td>
</tr>
<tr>
<td>:SWEep:MODE?</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>:SWEep:POINts <num></td>
<td>MAXimum</td>
<td>MINimum</td>
</tr>
<tr>
<td>:SWEep:STEP <value>[<freq suffix>]</td>
<td>MAXimum</td>
<td>MINimum</td>
</tr>
<tr>
<td>:SWEep:STEP? [MAXimum</td>
<td>MINimum]</td>
<td>N</td>
</tr>
</tbody>
</table>
SCPI Command Compatibility

836xxB/L Compatible SCPI Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>83620B</th>
<th>83640B</th>
<th>83620L</th>
<th>83640L</th>
</tr>
</thead>
<tbody>
<tr>
<td>:SWEep:TIME <value>[<time suffix>]</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>:SWEep:TIME? [MAXimum</td>
<td>MINimum]</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>:SWEep:TIME:AUTO</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>:SWEep:TIME:AUTO?</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>:SWEep:TIME:LLIMit <value>[<time suffix>]</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>:SWEep:TIME:LLIMit? [MAXimum</td>
<td>MINimum]</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>:SWEep:TRIGger:SOURce IMMEDIATE</td>
<td>BUS</td>
<td>EXTERNAL</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>:SWEep:TRIGger:SOURce?</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
</tbody>
</table>

System Subsystem

<table>
<thead>
<tr>
<th>Command</th>
<th>83620B</th>
<th>83640B</th>
<th>83620L</th>
<th>83640L</th>
</tr>
</thead>
<tbody>
<tr>
<td>:SYSTem:ALTernate <value></td>
<td>MAXimum</td>
<td>MINimum</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>:SYSTem:ALTernate?</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>:SYSTem:ALTernate:STATe ON</td>
<td>OFF</td>
<td>1</td>
<td>0</td>
<td>N</td>
</tr>
<tr>
<td>:SYSTem:ALTernate:STATe?</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>:SYSTem:COMMunicate:GPIB:ADDRess <number></td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>:SYSTem:DUMP:PRINTER?</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>:SYSTem:ERROr?</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>:SYSTem:LANGuage CIIL</td>
<td>COMPatible</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>:SYSTem:LANGuage SCPI</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>:SYSTem:MMHead:SELECT:AUTO ON</td>
<td>OFF</td>
<td>1</td>
<td>0</td>
<td>Y</td>
</tr>
<tr>
<td>:SYSTem:MMHead:SELECT:AUTO?</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>:SYSTem:MMHead:SELECT FRONT</td>
<td>REAR</td>
<td>NONE</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>:SYSTem:MMHead:SELECT?</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>:SYSTem:PRESet[:EXECute]</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>:SYSTem:PRESet:SAVE</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>:SYSTem:PRESet:TYPE FACTory</td>
<td>USER</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>:SYSTem:PRESet:TYPE?</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
</tbody>
</table>
Table 7-3 836xxB/L SCPI Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>83620B & 83640B</th>
<th>83620L & 83640L</th>
</tr>
</thead>
<tbody>
<tr>
<td>:SYSTem:SECurity:COUNt <value></td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>:SYSTem:SECurity:COUNt?</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>:SYSTem:SECurity[:STATe] ON</td>
<td>OFF</td>
<td>1</td>
</tr>
<tr>
<td>:SYSTem:SECurity[:STATe]?</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>:SYSTem:VERSion?</td>
<td>Y</td>
<td>Y</td>
</tr>
</tbody>
</table>

Trigger Subsystem

<table>
<thead>
<tr>
<th>Command</th>
<th>83620B & 83640B</th>
<th>83620L & 83640L</th>
</tr>
</thead>
<tbody>
<tr>
<td>:TRIGger[:IMMediate]</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>:TRIGger:ODELay <value>[time suffix]</td>
<td>MAXimum</td>
<td>MINimum</td>
</tr>
<tr>
<td>:TRIGger:ODELay? [MAXimum</td>
<td>MINimum]</td>
<td>N</td>
</tr>
<tr>
<td>:TRIGger:SOURce IMMEDIATE</td>
<td>BUS</td>
<td>EXTERNAL</td>
</tr>
<tr>
<td>:TRIGger:SOURce?</td>
<td>Y</td>
<td>Y</td>
</tr>
</tbody>
</table>

TAscEEP Subsystem

<table>
<thead>
<tr>
<th>Command</th>
<th>83620B & 83640B</th>
<th>83620L & 83640L</th>
</tr>
</thead>
<tbody>
<tr>
<td>:TSMeeP</td>
<td>N</td>
<td>N</td>
</tr>
</tbody>
</table>

Unit Subsystem

<table>
<thead>
<tr>
<th>Command</th>
<th>83620B & 83640B</th>
<th>83620L & 83640L</th>
</tr>
</thead>
<tbody>
<tr>
<td>:UNIT:AM DB</td>
<td>PCT</td>
<td>N</td>
</tr>
<tr>
<td>:UNIT:AM?</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>:UNIT:POWer {<lvl suffix>}</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>:UNIT:POWer?</td>
<td>Y</td>
<td>Y</td>
</tr>
</tbody>
</table>

a. The identification information can be modified for the PSG to reflect the signal generator that is being replaced. Refer to " :SYSTem:IDN" on page 319 for more information.
b. A multiplier of zero is not allowed.
c. The PSG will accept this command, but it has no effect.
d. This command resets the power offset level to 0dBm. It does not turn off or disable the power offset feature.
e. Since the PSG does not have a front panel millimeter head (source module) interface connector, the "FRONT" suffix defaults to the rear connector.
f. Flash memory allows only a limited number of "writes and erasures", excessive use of this command will reduce the memory lifetime.
g. This command can take several hours to execute because the PSG memory size is much larger than the HP 836xx memory.
8373xB and 8371xB Compatible SCPI Commands

Table 7-4 is a comprehensive list of 8373xB and 8371xB SCPI commands arranged by subsystem. Commands that are supported by the PSG are identified, in addition to commands that are unsupported. Use the legend within the table to determine command compatibility.

To use the commands, select 8371xB or 8373xB as the remote language. See "LANguage" on page 87 for selecting the language type.

When using the programming codes in this section, you can:

- set the PSG system language to 8371xB or 8373xB for the current session:
 Utility > GPIB/RS-232 LAN > Remote Language > 8371xB or 8373xB
 or send the command:
 :SYST:LANG "83712" or "83732"

- set the PSG system language to 8360 so that it does not reset with either preset, instrument power cycle or *RST command:
 Utility > Power On/Preset > Preset Language > 8360 Series
 or send the command:
 :SYST:PRESET:LANG "83712" or "83732"

- set the *IDN? response to any 8373xB- or 8371xB-like response you prefer. Refer to the :SYSTem:IDNcommand on page 319.

NOTE Some of the PSG supported commands are subsets of the 8373xB and 8371xB commands. When this occurs, the syntax supported by the PSG is shown in addition to the syntax that is not supported.

Table 7-4 8373xB and 8371xB SCPI Commands

<table>
<thead>
<tr>
<th></th>
<th>83731B & 83732B</th>
<th>83711B & 83712B</th>
</tr>
</thead>
<tbody>
<tr>
<td>IEEE Common Commands</td>
<td></td>
<td></td>
</tr>
<tr>
<td>*CLS</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>*DMC</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>*EMC</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>*EMC?</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>*ESE <data></td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>*EER?</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>*ESR?</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>*GMC?</td>
<td>N</td>
<td>N</td>
</tr>
</tbody>
</table>

SCPI Command Compatibility

8373xB and 8371xB Compatible SCPI Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>83731B & 83732B</th>
<th>83711B & 83712B</th>
</tr>
</thead>
<tbody>
<tr>
<td>*IDN?^a</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>*LMC?</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>*LRN?</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>*OPC</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>*OPC?</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>*OPT?</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>*PNC</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>*PSC</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>*PSC?</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>*RCL <reg_num></td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>*RMC</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>*RST?</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>*SAV <reg_num></td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>*SRE <data></td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>*SRE?</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>*STB?</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>*TST?</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>*WAI</td>
<td>Y</td>
<td>Y</td>
</tr>
</tbody>
</table>

Abort Subsystem

:ABORt

Amplitude Modulation Subsystem

[:SOURCE]:AM[:DEPTH] <val><unit>^b

[:SOURCE]:AM [:DEPTH] <num>[<PCT>]|<num>DB

[:SOURCE]:AM [:DEPTH]:STEP[:INCREMENT] incr|MINimum|MAXimum|DEFault

[:SOURCE]:AM:INTernal:FREQuency <num> [<freq suffix> | incr| MINimum|MAXimum|DEFault

[:SOURCE]:AM:INTernal:FREQuency:STEP[:INCREMENT] Y

^a Supported by PSG

^b Not supported by PSG

Table 7-4 8373xB and 8371xB SCPI Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>83731B & 83732B</th>
<th>83711B & 83712B</th>
</tr>
</thead>
<tbody>
<tr>
<td>*IDN?</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>*LMC?</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>*LRN?</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>*OPC</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>*OPC?</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>*OPT?</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>*PNC</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>*PSC</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>*PSC?</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>*RCL <reg_num></td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>*RMC</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>*RST?</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>*SAV <reg_num></td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>*SRE <data></td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>*SRE?</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>*STB?</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>*TST?</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>*WAI</td>
<td>Y</td>
<td>Y</td>
</tr>
</tbody>
</table>

^a Supported by PSG

^b Not supported by PSG

Abort Subsystem

:ABORt

Amplitude Modulation Subsystem

[:SOURCE]:AM[:DEPTH] <val><unit>^b

[:SOURCE]:AM [:DEPTH] <num>[<PCT>]|<num>DB

[:SOURCE]:AM [:DEPTH]:STEP[:INCREMENT] incr|MINimum|MAXimum|DEFault

[:SOURCE]:AM:INTernal:FREQuency <num> [<freq suffix> | incr| MINimum|MAXimum|DEFault

[:SOURCE]:AM:INTernal:FREQuency:STEP[:INCREMENT] Y

^a Supported by PSG

^b Not supported by PSG

Table 7-4 8373xB and 8371xB SCPI Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>83731B & 83732B</th>
<th>83711B & 83712B</th>
</tr>
</thead>
<tbody>
<tr>
<td>[:SOURce]:AM:FUNCTION SINusoid</td>
<td>SQUare</td>
<td>TRIangle</td>
</tr>
<tr>
<td>[:SOURce]:AM:SENSitivity <val></td>
<td>MIN</td>
<td>MAX</td>
</tr>
<tr>
<td>[:SOURce]:AM:SOURce FEED</td>
<td>N</td>
<td>Y</td>
</tr>
<tr>
<td>[:SOURce]:AM:SOURce?</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>[:SOURce]:AM:STATe ON</td>
<td>OFF</td>
<td>Y</td>
</tr>
<tr>
<td>[:SOURce]:AM:STATe?</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>[:SOURce]:AM:TYPE LINear</td>
<td>EXPonential</td>
<td>Y</td>
</tr>
<tr>
<td>[:SOURce]:AM:TYPE?</td>
<td>Y</td>
<td></td>
</tr>
</tbody>
</table>

Display Subsystem

<table>
<thead>
<tr>
<th>Command</th>
<th>83731B & 83732B</th>
<th>83711B & 83712B</th>
</tr>
</thead>
<tbody>
<tr>
<td>:DISPLAY[:WINDOW]:STATe ON</td>
<td>OFF</td>
<td>1</td>
</tr>
<tr>
<td>:DISPLAY[:WINDOW]:STATe?</td>
<td>Y</td>
<td>Y</td>
</tr>
</tbody>
</table>

Initiate Subsystem

<table>
<thead>
<tr>
<th>Command</th>
<th>83731B & 83732B</th>
<th>83711B & 83712B</th>
</tr>
</thead>
<tbody>
<tr>
<td>:INITiate:CONTinuous ON</td>
<td>OFF</td>
<td>1</td>
</tr>
<tr>
<td>:INITiate:CONTinuous?</td>
<td>Y</td>
<td></td>
</tr>
</tbody>
</table>

Correction Subsystem

<table>
<thead>
<tr>
<th>Command</th>
<th>83731B & 83732B</th>
<th>83711B & 83712B</th>
</tr>
</thead>
<tbody>
<tr>
<td>[:SOURce]:CORRection:FLATness[:DATA] <freq>,<corr.>,... <freq>,<corr.></td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>[:SOURce]:CORRection:FLATness:POINts <points></td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>[:SOURce]:CORRection[:STATe] ON</td>
<td>OFF</td>
<td>Y</td>
</tr>
<tr>
<td>[:SOURce]:CORRection[:STATe]?</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>[:SOURce]:CORRection:CSET[:SELect] tableno</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>[:SOURce]:CORRection:CSET[:SELect]?</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>[:SOURce]:CORRection:CSET:STATe ON</td>
<td>OFF</td>
<td>1</td>
</tr>
<tr>
<td>[:SOURce]:CORRection:CSET:STATe?</td>
<td>N</td>
<td>N</td>
</tr>
</tbody>
</table>

Frequency Modulation Subsystem

<table>
<thead>
<tr>
<th>Command</th>
<th>83731B & 83732B</th>
<th>83711B & 83712B</th>
</tr>
</thead>
<tbody>
<tr>
<td>[:SOURce]:FM:COUPling AC</td>
<td>DC</td>
<td>Y</td>
</tr>
<tr>
<td>[:SOURce]:FM:COUPling?</td>
<td>Y</td>
<td></td>
</tr>
</tbody>
</table>
Table 7-4 8373xB and 8371xB SCPI Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Y= Supported by PSG</th>
<th>N= Not supported by PSG</th>
<th>83731B & 83732B</th>
<th>83711B & 83712B</th>
</tr>
</thead>
<tbody>
<tr>
<td>[:SOURce]:PM[:DEviation] <val><unit></td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[:SOURce]:PM[:DEviation]:STEP[:INCrement] <val></td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[:SOURce]:PM[:DEviation]:STEP</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[:SOURce]:PM[:DEviation]:STEP?</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[:SOURce]:PM:INternal:FREQuency <num>[<freq suffix>]</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[:SOURce]:PM:INternal:FREQuency[:STEP]:[INCrement] incr</td>
<td>MINimum</td>
<td>MAXimum</td>
<td>DEFault</td>
<td>N</td>
</tr>
<tr>
<td>[:SOURce]:PM:INternal:FREQuency[:STEP]:MINimum</td>
<td>MAXimum</td>
<td>DEFault</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>[:SOURce]:PM:INternal:FREQuency[:STEP]:DEFault</td>
<td>N</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[:SOURce]:PM:INternal:FREQuency[:CW</td>
<td>:FIXed]</td>
<td>MAXimum</td>
<td>MINimum</td>
<td>DEFault</td>
</tr>
<tr>
<td>[:SOURce]:PM:INternal:FREQuency[:CW</td>
<td>:FIXed]:STEP <val><unit></td>
<td>Y</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>[:SOURce]:PM:INternal:FREQuency[:CW</td>
<td>:FIXed]:STEP?</td>
<td>Y</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>[:SOURce]:PM:INternal:FREQuency:MULTiplier <val></td>
<td>UP</td>
<td>DOWN</td>
<td>DEFault</td>
<td>Y</td>
</tr>
<tr>
<td>[:SOURce]:PM:INternal:FREQuency:MULTiplier?</td>
<td>Y</td>
<td>Y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[:SOURce]:PM:INternal:FREQuency:MULTiplier[:STEP]:[INCrement] incr</td>
<td>MINimum</td>
<td>MAXimum</td>
<td>DEFault</td>
<td>N</td>
</tr>
<tr>
<td>[:SOURce]:PM:INternal:FREQuency:MULTiplier[:STEP]:DEFault</td>
<td>N</td>
<td>N</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Frequency Subsystem

<table>
<thead>
<tr>
<th>Command</th>
<th>Y= Supported by PSG</th>
<th>N= Not supported by PSG</th>
<th>83731B & 83732B</th>
<th>83711B & 83712B</th>
</tr>
</thead>
<tbody>
<tr>
<td>[:SOURce]:PM:INternal:FREQuency:MULTiplier</td>
<td>Y</td>
<td>Y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[:SOURce]:PM:INternal:FREQuency:MULTiplier[:STEP]</td>
<td>Y</td>
<td>Y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[:SOURce]:PM:INternal:FREQuency:MULTiplier[:STEP]:MINimum</td>
<td>MAXimum</td>
<td>DEFault</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>[:SOURce]:PM:INternal:FREQuency:MULTiplier[:STEP]:DEFault</td>
<td>N</td>
<td>N</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Memory Subsystem

<table>
<thead>
<tr>
<th>Command</th>
<th>Y= Supported by PSG</th>
<th>N= Not supported by PSG</th>
<th>83731B & 83732B</th>
<th>83711B & 83712B</th>
</tr>
</thead>
<tbody>
<tr>
<td>:MEMory:CATalog[:ALL]?</td>
<td>Y</td>
<td>Y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>:MEMory:CATalog:TABLE?</td>
<td>N</td>
<td>N</td>
<td></td>
<td></td>
</tr>
<tr>
<td>:MEMory:CATalog:MACRo</td>
<td>N</td>
<td>N</td>
<td></td>
<td></td>
</tr>
<tr>
<td>:MEMory:RAM:INITialize</td>
<td>N</td>
<td>N</td>
<td></td>
<td></td>
</tr>
<tr>
<td>:MEMory:TABLE:FREQuency freq,...freq[:MINimum</td>
<td>MAXimum]</td>
<td>N</td>
<td>N</td>
<td></td>
</tr>
</tbody>
</table>
Table 7-4 8373xB and 8371xB SCPI Commands

<table>
<thead>
<tr>
<th>Y= Supported by PSG</th>
<th>N= Not supported by PSG</th>
<th>S3731B & S3732B</th>
<th>S3711B & S3712B</th>
</tr>
</thead>
<tbody>
<tr>
<td>:MEMory:TABLE:FREQuency? MINimum</td>
<td>MAXimum</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>:MEMory:TABLE:FREQuency:POINts?</td>
<td></td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>:MEMory:TABLE:LOSS [:MAGNitude] cf,...cf</td>
<td>MINimum</td>
<td>MAXimum</td>
<td>N</td>
</tr>
<tr>
<td>:MEMory:TABLE:LOSS [:MAGNitude]?</td>
<td></td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>:MEMory:TABLE:LOSS [:MAGNitude]:POINts?</td>
<td></td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>:MEMory:TABLE:SELect tableno</td>
<td></td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>:MEMory:TABLE:SELect?</td>
<td></td>
<td>N</td>
<td>N</td>
</tr>
</tbody>
</table>

Modulation Subsystem

[[:SOURce]:MODulation:AOFF]

[[:SOURce]:MODulation:STATe ON|OFF]

[[:SOURce]:MODulation:STATe?]

Output Subsystem

[;OUTPut:IMPedance?]

[;OUTPut:PROTection[:STATe] ON|OFF]

[;OUTPut:PROTection[:STATe]?]

[;OUTPut[:STATe] ON|OFF|1|0]

[;OUTPut[:STATe]?]

Phase Modulation Subsystem

[[:SOURce]:PM:COUPling AC|DC]

[[:SOURce]:PM[:DEViation] <val><unit>]

[[:SOURce]:PM[:DEViation]:STEP[:INCRement]]

[[:SOURce]:PM:INTernal:FREQuency <val><unit>]

[[:SOURce]:PM:INTernal:FREQuency:STEP[:INCRement]]

[[:SOURce]:PM:INTernal:FUNCTION SINUsoid|SQUare|TRIAngle|RAMP|UNIFORM|GAUssian]

[[:SOURce]:PM:RANGe AUTO|LOW|HIGH]

[[:SOURce]:PM:SENSitivity sens|MINimum|MAXimum|DEFault]

N= Not supported by PSG

Y= Supported by PSG
SCPI Command Compatibility

8373xB and 8371xB SCPI Commands

Table 7-4
<table>
<thead>
<tr>
<th>Command</th>
<th>83731B & 83732B</th>
<th>83711B & 83712B</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Power Subsystem

- [:SOURCE]:POWer::PROTection:STATe ON|OFF
- [:SOURCE]:POWer::PROTection:STATe?
- [:SOURCE]:POWer::ATTenuation:AUTO ON|OFF
- [:SOURCE]:POWer::ATTenuation:AUTO?
- [:SOURCE]:POWer::LEVEL ampl|MINimum|MAXimum|UP|DOWN|DEFault
- [:SOURCE]:POWer::LEVEL?

Pulse Modulation Subsystem

- [:SOURCE]:PULM:EXTernal:POLarity NORMal|INVerted
- [:SOURCE]:PULM:EXTernal:POLarity?
- [:SOURCE]:PULM:SOURce INTernal|EXTernal
- [:SOURCE]:PULM:SOURce?

Pulse Subsystem

- [:SOURCE]:PULM:STATe ON|OFF|1|0
- [:SOURCE]:PULM:STATe?
SCPI Command Compatibility

8373xB and 8371xB Compatible SCPI Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>83731B & 83732B</th>
<th>83711B & 83712B</th>
</tr>
</thead>
<tbody>
<tr>
<td>[:SOURce]:PULSe:DELay delay</td>
<td>MINimum</td>
<td>MAXimum</td>
</tr>
<tr>
<td>[:SOURce]:PULSe:DELay?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[:SOURce]:PULSe:DELay:STEP <num>[-time suffix] [DEFault]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[:SOURce]:PULSe:DELay:STEP? [DEFault]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[:SOURce]:PULSe:DOUBle[:STATE] ON</td>
<td>OFF</td>
<td></td>
</tr>
<tr>
<td>[:SOURce]:PULSe:DOUBle[:STATE]?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[:SOURce]:PULSe:FRQuency freq</td>
<td>MINimum</td>
<td>MAXimum</td>
</tr>
<tr>
<td>[:SOURce]:PULSe:FRQuency?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[:SOURce]:PULSe:FRQuency:STEP freq</td>
<td>DEFault</td>
<td></td>
</tr>
<tr>
<td>[:SOURce]:PULSe:FRQuency:STEP? [MIN</td>
<td>MAX</td>
<td>DEF]</td>
</tr>
<tr>
<td>[:SOURce]:PULSe:PERiod <num>[-time suffix]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[:SOURce]:PULSe:PERiod?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[:SOURce]:PULSe:PERiod:STEP <num>[-time suffix]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[:SOURce]:PULSe:PERiod:STEP?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[:SOURce]:PULSe:TRANSition[:LEADing] SLOW</td>
<td>MEDium</td>
<td>FAST</td>
</tr>
<tr>
<td>[:SOURce]:PULSe:TRANSition[:LEADing]?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[:SOURce]:PULSe:TRANSition:STATe ON</td>
<td>OFF</td>
<td></td>
</tr>
<tr>
<td>[:SOURce]:PULSe:TRANSition:STATe?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[:SOURce]:PULSe:WIDTh MAXimum</td>
<td>MINimum</td>
<td>UP</td>
</tr>
<tr>
<td>[:SOURce]:PULSe:WIDTh? [MAXimum</td>
<td>MINimum</td>
<td>DEFault]</td>
</tr>
<tr>
<td>[:SOURce]:PULSe:WIDTh:STEP <num>[-time suffix] [DEFault]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[:SOURce]:PULSe:WIDTh:STEP? MINimum</td>
<td>MAXimum</td>
<td>DEFault</td>
</tr>
</tbody>
</table>

Reference Oscillator Subsystem

<table>
<thead>
<tr>
<th>Command</th>
<th>83731B & 83732B</th>
<th>83711B & 83712B</th>
</tr>
</thead>
<tbody>
<tr>
<td>[:SOURce]:ROSCillator:SOURce?</td>
<td>Y</td>
<td>Y</td>
</tr>
</tbody>
</table>

Status Subsystem

<table>
<thead>
<tr>
<th>Command</th>
<th>83731B & 83732B</th>
<th>83711B & 83712B</th>
</tr>
</thead>
<tbody>
<tr>
<td>:STATus:OPERation:CONDITION?</td>
<td>Y</td>
<td>Y</td>
</tr>
</tbody>
</table>
SCPI Command Compatibility

8373xB and 8371xB Compatible SCPI Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>83731B & 83732B</th>
<th>83711B & 83712B</th>
</tr>
</thead>
<tbody>
<tr>
<td>:STATus:OPERation:ENABle <value></td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>:STATus:OPERation:ENABle?</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>:STATus:OPERation[:EVENT]?</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>:STATus:OPERation:NTTransition <value></td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>:STATus:OPERation:NTTransition?</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>:STATus:OPERation:PTRransition <value></td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>:STATus:OPERation:PTRransition?</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>:STATus:PRESet</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>:STATus:QUEStionable:CONDition?</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>:STATus:QUEStionable:ENABle <value></td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>:STATus:QUEStionable:ENABle?</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>:STATus:QUEStionable[:EVENT]?</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>:STATus:QUEStionable:NTTransition <value></td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>:STATus:QUEStionable:NTTransition?</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>:STATus:QUEStionable:PTRransition <value></td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>:STATus:QUEStionable:PTRransition?</td>
<td>Y</td>
<td>Y</td>
</tr>
</tbody>
</table>

System Subsystem

<table>
<thead>
<tr>
<th>Command</th>
<th>83731B & 83732B</th>
<th>83711B & 83712B</th>
</tr>
</thead>
<tbody>
<tr>
<td>:SYSTem:COMMunicate:GPIB:ADDRess <number></td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>:SYSTem:COMMunicate:PMETer:ADDRess</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>:SYSTem:ERRor?</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>:SYSTem:KEY keycode</td>
<td>MINimum</td>
<td>MAXimum</td>
</tr>
<tr>
<td>:SYSTem:KEY?</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>:SYSTem:LANGuage "COMP=8673"</td>
<td>"COMPatibility=8673"</td>
<td>N</td>
</tr>
<tr>
<td>:SYSTem:LANGuage "SCPI"</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>:SYSTem:LANGuage?</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>:SYSTem:PRESet</td>
<td>Y</td>
<td>Y</td>
</tr>
</tbody>
</table>
Table 7-4 8373xB and 8371xB SCPI Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>83731B & 83732B</th>
<th>83711B & 83712B</th>
</tr>
</thead>
<tbody>
<tr>
<td>:SYSTem:VERSion?</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Trigger Subsystem</td>
<td></td>
<td></td>
</tr>
<tr>
<td>:TRIGger[:SEQUence</td>
<td>:START]:SOURce IMMediate</td>
<td>EXTernal</td>
</tr>
<tr>
<td>:TRIGger[:SEQUence</td>
<td>:START]:SOURce?</td>
<td>N</td>
</tr>
<tr>
<td>:TRIGger:SEQUence2:STOP:SOURce IMMediate</td>
<td>EXTernal</td>
<td>N</td>
</tr>
<tr>
<td>:TRIGger:SEQUence2:STOP:SOURce?</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>:TRIGger:SEQUence2:SLPe</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>Unit Subsystem</td>
<td></td>
<td></td>
</tr>
<tr>
<td>:UNIT:FREQuency {<freq suffix>}</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>:UNIT:FREQuency?</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>:UNIT:POWer {<lvl suffix>}</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>:UNIT:POWer?</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>:UNIT:TIME</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>:UNIT:TIME?</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>:UNIT:VOLTage {<lvl suffix>}</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>:UNIT:VOLTage?</td>
<td>N</td>
<td>N</td>
</tr>
</tbody>
</table>

a. The identification information can be modified for the PSG to reflect the signal generator that is being replaced. Refer to ":SYSTem:IDN" on page 319 for more information.
b. In linear mode, % cannot be used to select percent as the unit. Use PCT to specify percent as the unit.
c. A multiplier of zero is not allowed.
d. If FEED is selected, the query returns INT. FEED and INTernal are synonymous.

8375xB Compatible SCPI Commands

Table 7-5 is a comprehensive list of 83751B and 83752B SCPI commands, arranged by subsystem. Commands that are supported by the PSG are identified, in addition to commands that are unsupported. Use the legend within the table to determine command compatibility.

To use the commands, select 8375xB as the remote language. See ":LANGuage" on page 87 for selecting the language type.
When using the programming codes in this section, you can:

- set the PSG system language to 8375xB for the current session:

 Utility > GPIB/RS-232 LAN > Remote Language > 8375xB

 or send the command:

 :SYST:LANG "83752"

- set the PSG system language to 8375xB so that it does not reset with either preset, instrument power cycle or *RST command:

 Utility > Power On/Preset > Preset Language > 8375xB

 or send the command:

 :SYST:PRESET:LANG "83752"

- set the *IDN? response to any 8375xB-like response you prefer. Refer to the :SYSTem:IDNcommand on page 319.

NOTE Some supported commands require the installation of hardware or firmware options.

<table>
<thead>
<tr>
<th>Table 7-5 8375xB SCPI Commands</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y= Supported by PSG</td>
</tr>
<tr>
<td>N= Not supported by PSG</td>
</tr>
<tr>
<td>IEEE Common Commands</td>
</tr>
<tr>
<td>Y</td>
</tr>
<tr>
<td>N</td>
</tr>
<tr>
<td>*CLS</td>
</tr>
<tr>
<td>N</td>
</tr>
<tr>
<td>*DMC</td>
</tr>
<tr>
<td>N</td>
</tr>
<tr>
<td>*EMC</td>
</tr>
<tr>
<td>N</td>
</tr>
<tr>
<td>*EMC?</td>
</tr>
<tr>
<td>N</td>
</tr>
<tr>
<td>*ESE <value></td>
</tr>
<tr>
<td>Y</td>
</tr>
<tr>
<td>*ESE?</td>
</tr>
<tr>
<td>Y</td>
</tr>
<tr>
<td>*ESR?</td>
</tr>
<tr>
<td>Y</td>
</tr>
<tr>
<td>*GMC? <label></td>
</tr>
<tr>
<td>N</td>
</tr>
<tr>
<td>*IDN?</td>
</tr>
<tr>
<td>Y</td>
</tr>
<tr>
<td>*LMC?</td>
</tr>
<tr>
<td>N</td>
</tr>
<tr>
<td>*LRN?</td>
</tr>
<tr>
<td>N</td>
</tr>
<tr>
<td>*OPC</td>
</tr>
<tr>
<td>Y</td>
</tr>
</tbody>
</table>
Table 7-5 8375xB SCPI Commands (Continued)

<table>
<thead>
<tr>
<th>Command</th>
<th>83751B & 83752B</th>
</tr>
</thead>
<tbody>
<tr>
<td>*OPC?</td>
<td>Y</td>
</tr>
<tr>
<td>*OPT?</td>
<td>N</td>
</tr>
<tr>
<td>*PMC</td>
<td>N</td>
</tr>
<tr>
<td>*PSC ON</td>
<td>OFF</td>
</tr>
<tr>
<td>*PSC?</td>
<td>Y</td>
</tr>
<tr>
<td>*RCL <reg_num></td>
<td>Y</td>
</tr>
<tr>
<td>*RMC <label></td>
<td>N</td>
</tr>
<tr>
<td>*RST</td>
<td>Y</td>
</tr>
<tr>
<td>*SAV <reg_num></td>
<td>Y</td>
</tr>
<tr>
<td>*SRE <value></td>
<td>Y</td>
</tr>
<tr>
<td>*SRE?</td>
<td>Y</td>
</tr>
<tr>
<td>*STB?</td>
<td>Y</td>
</tr>
<tr>
<td>*TRG</td>
<td>Y</td>
</tr>
<tr>
<td>*TST?</td>
<td>Y</td>
</tr>
<tr>
<td>*WAI</td>
<td>Y</td>
</tr>
</tbody>
</table>

Abort Subsystem

;ABORt Y

Amplitude Modulation Subsystem

;AM:SOURce1 INTernal|EXTernal N | Y
;AM:SOURce INTernal|EXTernal

;AM:SOURce1? N | Y
;AM:SOURce? Y

;AM:STATE ON|OFF|1|0 | Y |

;AM:STATE? Y

Calibration Subsystem

;CALibration:PEAk:[:EXECute] N
<table>
<thead>
<tr>
<th>SCPI Command Compatibility</th>
<th>8375xB SCPI Commands (Continued)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y= Supported by PSG</td>
<td>N= Not supported by PSG</td>
</tr>
<tr>
<td>:CALibration:PEAKing[:EXECute]? <dac_va></td>
<td></td>
</tr>
<tr>
<td>:CALibration:PMETer:FLATness:INITiate? USER</td>
<td></td>
</tr>
<tr>
<td>:CALibration:SECurity:CODE <old> <new></td>
<td></td>
</tr>
<tr>
<td>:CALibration:SECurity:PASSword <passwd></td>
<td></td>
</tr>
<tr>
<td>:CALibration:TRACK</td>
<td></td>
</tr>
<tr>
<td>Correction Subsystem</td>
<td></td>
</tr>
<tr>
<td>:CORRection:FLATness:AMPL <value>[DB],<value>[DB]...</td>
<td></td>
</tr>
<tr>
<td>:CORRection:FLATness:AMPL?</td>
<td></td>
</tr>
<tr>
<td>:CORRection:FLATness:FREQ <value>[<freqsuffix>],<value>[<freqsuffix>]...</td>
<td></td>
</tr>
<tr>
<td>:CORRection:FLATness:FREQ?</td>
<td></td>
</tr>
<tr>
<td>:CORRection:FLATness:POINTs? MAXimum</td>
<td>MINimum</td>
</tr>
<tr>
<td>:CORRection:VOLTs:OFFSet</td>
<td></td>
</tr>
<tr>
<td>:CORRection:VOLTs:OFFSet?</td>
<td></td>
</tr>
<tr>
<td>:CORRection:VOLTs:SCALe</td>
<td></td>
</tr>
<tr>
<td>:CORRection:VOLTs:SCALe?</td>
<td></td>
</tr>
<tr>
<td>:CORRection[:STATe] ON</td>
<td>OFF</td>
</tr>
<tr>
<td>:CORRection[:STATe]?</td>
<td></td>
</tr>
<tr>
<td>Diagnostics Subsystem</td>
<td></td>
</tr>
<tr>
<td>:DIAG:LRNS?</td>
<td></td>
</tr>
<tr>
<td>:DIAGnostic:TEST:FULLtest:REPort?</td>
<td></td>
</tr>
<tr>
<td>:DIAGnostic:TEST:FULLtest?</td>
<td></td>
</tr>
<tr>
<td>Display Subsystem</td>
<td></td>
</tr>
<tr>
<td>:DISPlay[:STATe] ON</td>
<td>OFF</td>
</tr>
</tbody>
</table>
SCPI Command Compatibility

8375xB Compatible SCPI Commands

Table 7-5 8375xB SCPI Commands (Continued)

<table>
<thead>
<tr>
<th>Y= Supported by PSG</th>
<th>N= Not supported by PSG</th>
<th>83751B & 83752B</th>
</tr>
</thead>
<tbody>
<tr>
<td>:DISPlay[:STATE]?</td>
<td></td>
<td>Y</td>
</tr>
<tr>
<td>Frequency Modulation Subsystem</td>
<td></td>
<td></td>
</tr>
<tr>
<td>:FM:COUPling AC</td>
<td>DC</td>
<td></td>
</tr>
<tr>
<td>:FM:COUPling?</td>
<td></td>
<td>Y</td>
</tr>
<tr>
<td>:FM:SENSitivitY <value><freqsuffix/V></td>
<td></td>
<td>Y</td>
</tr>
<tr>
<td>:FM:SENSitivitY?</td>
<td></td>
<td>Y</td>
</tr>
<tr>
<td>:FM:SOURCe1 EXTernal</td>
<td></td>
<td>N</td>
</tr>
<tr>
<td>:FM:SOURCe EXTernal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>:FM:SOURCe1?</td>
<td></td>
<td>N</td>
</tr>
<tr>
<td>:FM:SOURCe?</td>
<td></td>
<td>Y</td>
</tr>
<tr>
<td>:FM:STATe ON</td>
<td>OFF</td>
<td>1</td>
</tr>
<tr>
<td>:FM:STATe?</td>
<td></td>
<td>Y</td>
</tr>
<tr>
<td>Frequency Subsystem</td>
<td></td>
<td></td>
</tr>
<tr>
<td>:FREQuency:CENTer <value><freqsuffix></td>
<td></td>
<td>Y</td>
</tr>
<tr>
<td>:FREQuency:CENTer?</td>
<td></td>
<td>Y</td>
</tr>
<tr>
<td>:FREQuency:MANual <value><unit></td>
<td>UP</td>
<td>DOWN</td>
</tr>
<tr>
<td>[:SOURCe[1]]:FREQuency:MANual?</td>
<td></td>
<td>N</td>
</tr>
<tr>
<td>[:SOURCe]:FREQuency:MANual?</td>
<td></td>
<td>Y</td>
</tr>
<tr>
<td>:FREQuency:MODE FIXed</td>
<td>CW</td>
<td>SWEep</td>
</tr>
<tr>
<td>:FREQuency:MODE?</td>
<td></td>
<td>Y</td>
</tr>
<tr>
<td>:FREQuency:MULTiplier <value></td>
<td></td>
<td>Y</td>
</tr>
<tr>
<td>:FREQuency:MULTiplier:STATe ON</td>
<td>OFF</td>
<td>1</td>
</tr>
<tr>
<td>:FREQuency:MULTiplier:STATe?</td>
<td></td>
<td>N</td>
</tr>
<tr>
<td>:FREQuency:MULTiplier?</td>
<td></td>
<td>Y</td>
</tr>
<tr>
<td>:FREQuency:OFFSet <value></td>
<td></td>
<td>Y</td>
</tr>
<tr>
<td>:FREQuency:OFFSet:STATe ON</td>
<td>OFF</td>
<td>1</td>
</tr>
<tr>
<td>:FREQuency:OFFSet:STATe?</td>
<td></td>
<td>Y</td>
</tr>
</tbody>
</table>
8375xB SCPI Commands (Continued)

<table>
<thead>
<tr>
<th>Command</th>
<th>PSG Compatibility</th>
<th>83751B & 83752B</th>
</tr>
</thead>
<tbody>
<tr>
<td>:FREQuency:OFFSet?</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>:FREQuency:SPAN <value><freqsuffix>[<freqsuffix>]</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>:FREQuency:SPAN?</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>:FREQuency:STARt <value><freqsuffix>[<freqsuffix>]</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>:FREQuency:STARt?</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>:FREQuency:STEP[:INCRement] <value><freqsuffix></td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>:FREQuency:STEP[:INCRement]?</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>:FREQuency:STOP <value><freqsuffix>[<freqsuffix>]</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>:FREQuency:STOP?</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>:FREQuency[:CW][:FIXed] <value><freqsuffix>[<freqsuffix>]</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>:FREQuency[:CW][:FIXed]:AUTO ON</td>
<td>OFF</td>
<td>1</td>
</tr>
<tr>
<td>:FREQuency[:CW][:FIXed]:AUTO?</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>:FREQuency[:CW][:FIXed]?</td>
<td>Y</td>
<td></td>
</tr>
</tbody>
</table>

Initiate Subsystem

<table>
<thead>
<tr>
<th>Command</th>
<th>PSG Compatibility</th>
<th>83751B & 83752B</th>
</tr>
</thead>
<tbody>
<tr>
<td>:INITiate:CONTinuous ON</td>
<td>OFF</td>
<td>1</td>
</tr>
<tr>
<td>:INITiate:CONTinuous?</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>:INITiate[:IMMediate]</td>
<td>Y</td>
<td></td>
</tr>
</tbody>
</table>

Marker Subsystem

<table>
<thead>
<tr>
<th>Command</th>
<th>PSG Compatibility</th>
<th>83751B & 83752B</th>
</tr>
</thead>
<tbody>
<tr>
<td>[:SOURce[1]]::MARKer[n]::AMPLitude[:STATe] ON</td>
<td>OFF</td>
<td>1</td>
</tr>
<tr>
<td>[:SOURce]::MARKer[n]::AMPLitude[:STATe] ON</td>
<td>OFF</td>
<td>1</td>
</tr>
<tr>
<td>[:SOURce[1]]::MARKer[n]::AMPLitude[:STATe]?</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>[:SOURce]::MARKer[n]::AMPLitude[:STATe]?</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>:MARKer[n]::AOFF</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>:MARKer[n]::FREQuency <value><unit></td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>:MARKer[n]::FREQuency?</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>:MARKer[n]::MODE FREQuency</td>
<td>DELTa</td>
<td>Y</td>
</tr>
</tbody>
</table>
SCPI Command Compatibility

8375xB Compatible SCPI Commands

<table>
<thead>
<tr>
<th>Y= Supported by PSG</th>
<th>N= Not supported by PSG</th>
<th>83751B & 83752B</th>
</tr>
</thead>
<tbody>
<tr>
<td>:MARKer[n]:MODE?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>:MARKer[n]:REFerence <n></td>
<td></td>
<td></td>
</tr>
<tr>
<td>:MARKer[n]:REFerence?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>:MARKer[n][:STATe] ON</td>
<td>OFF</td>
<td>1</td>
</tr>
<tr>
<td>:MARKer[n][:STATe]?</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Memory Subsystem

<table>
<thead>
<tr>
<th>:MEMory:RAM:INITialize[:ALL]</th>
<th></th>
</tr>
</thead>
</table>

Output Subsystem

<table>
<thead>
<tr>
<th>:OUTPut:IMPedance?</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>:OUTPut[:STATe] ON</td>
<td>OFF</td>
</tr>
<tr>
<td>:OUTPut[:STATe]?</td>
<td></td>
</tr>
</tbody>
</table>

Power Subsystem

<table>
<thead>
<tr>
<th>:POWer:CFACtor <value>[DB]</th>
<th>UP</th>
<th>DOWN</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>:POWer:CFACtor?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>:POWer:ALC:SOURce1</td>
<td>INTERNAL</td>
<td>DIODE</td>
<td>PMETER</td>
</tr>
<tr>
<td>:POWer:ALC:SOURce</td>
<td>INTERNAL</td>
<td>DIODE</td>
<td>PMETER</td>
</tr>
<tr>
<td>:POWer:ALC:SOURce1?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>:POWer:ALC:SOURce?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>:POWer:ALC[:STATe] ON</td>
<td>OFF</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>:POWer:ALC[:STATe]?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>:POWer:ATTenuation <value>[DB]</td>
<td>UP</td>
<td>DOWN</td>
<td></td>
</tr>
<tr>
<td>:POWer:ATTenuation:AUTO ON</td>
<td>OFF</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>:POWer:ATTenuation:AUTO?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>:POWer:ATTenuation?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>:POWer:CENTer <value>[lvlsuffix]</td>
<td>UP</td>
<td>DOWN</td>
<td></td>
</tr>
<tr>
<td>:POWer:CENTer?</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 7-5 8375xB SCPI Commands (Continued)

<table>
<thead>
<tr>
<th>Command</th>
<th>Supported by PSG</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>:POWer:MODE FIXed</td>
<td>Y</td>
<td>Supported by PSG</td>
</tr>
<tr>
<td>:POWer:MODE?</td>
<td>Y</td>
<td>Supported by PSG</td>
</tr>
<tr>
<td>:POWer:OFFSet <value>[DB]</td>
<td>Y</td>
<td>Supported by PSG</td>
</tr>
<tr>
<td>:POWer:OFFSet:STATe ON</td>
<td>Y</td>
<td>Supported by PSG</td>
</tr>
<tr>
<td>:POWer:OFFSet?</td>
<td>Y</td>
<td>Supported by PSG</td>
</tr>
<tr>
<td>:POWer:SLOPe <value>[DB/freqsuffix]</td>
<td>N</td>
<td>Not supported by PSG</td>
</tr>
<tr>
<td>:POWer:SLOPe:STATe ON</td>
<td>N</td>
<td>Not supported by PSG</td>
</tr>
<tr>
<td>:POWer:SLOPe?</td>
<td>N</td>
<td>Not supported by PSG</td>
</tr>
<tr>
<td>:POWer:SPAN <value>[DB]</td>
<td>Y</td>
<td>Supported by PSG</td>
</tr>
<tr>
<td>:POWer:SPAN?</td>
<td>Y</td>
<td>Supported by PSG</td>
</tr>
<tr>
<td>:POWer:START <value>[<lvlsuffix>]</td>
<td>Y</td>
<td>Supported by PSG</td>
</tr>
<tr>
<td>:POWer:START?</td>
<td>Y</td>
<td>Supported by PSG</td>
</tr>
<tr>
<td>:POWer:STATe ON</td>
<td>Y</td>
<td>Supported by PSG</td>
</tr>
<tr>
<td>:POWer:STEP[:INCRement] <value>[DB]</td>
<td>Y</td>
<td>Supported by PSG</td>
</tr>
<tr>
<td>:POWer:STOP <value>[<lvlsuffix>]</td>
<td>Y</td>
<td>Supported by PSG</td>
</tr>
<tr>
<td>:POWer:STOP?</td>
<td>Y</td>
<td>Supported by PSG</td>
</tr>
<tr>
<td>:POWer[:LLevel] <value>[<lvlsuffix>]</td>
<td>Y</td>
<td>Supported by PSG</td>
</tr>
<tr>
<td>:POWer[:LLevel]?</td>
<td>Y</td>
<td>Supported by PSG</td>
</tr>
</tbody>
</table>

Pulse Modulation Subsystem

<table>
<thead>
<tr>
<th>Command</th>
<th>Supported by PSG</th>
</tr>
</thead>
<tbody>
<tr>
<td>:PULM:SOURce1 INTernal</td>
<td>N</td>
</tr>
<tr>
<td>:PULM:SOURce INTernal</td>
<td>N</td>
</tr>
<tr>
<td>SCPI Command Compatibility</td>
<td>83751B & 83752B</td>
</tr>
<tr>
<td>---------------------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>Pulse Subsystem</td>
<td></td>
</tr>
<tr>
<td>:PULSe:FREQuency <value>[<freqsuffix>]</td>
<td>Y</td>
</tr>
<tr>
<td>:PULSe:FREQuency?</td>
<td>Y</td>
</tr>
<tr>
<td>:PULSe:PERiod <value>[<timesuffix>]</td>
<td>Y</td>
</tr>
<tr>
<td>:PULSe:PERiod?</td>
<td>Y</td>
</tr>
<tr>
<td>:PULSe:WIDTh <value>[<timesuffix>]</td>
<td>Y</td>
</tr>
<tr>
<td>:PULSe:WIDTh?</td>
<td>Y</td>
</tr>
<tr>
<td>Reference Oscillator Subsystem</td>
<td></td>
</tr>
<tr>
<td>:ROSCillator:SOURcel1 INTernal</td>
<td>EXTernal</td>
</tr>
<tr>
<td>:ROSCillator:SOURcel1 AUTO ON</td>
<td>OFF</td>
</tr>
<tr>
<td>:ROSCillator:SOURcel1 AUTO?</td>
<td>Y</td>
</tr>
<tr>
<td>:ROSCillator:SOURcel1?</td>
<td>Y</td>
</tr>
<tr>
<td>:ROSCillator:SOURcel?</td>
<td>Y</td>
</tr>
<tr>
<td>Status Subsystem</td>
<td></td>
</tr>
<tr>
<td>:STATus:OPERation:CONDition?</td>
<td>Y</td>
</tr>
<tr>
<td>:STATus:OPERation:ENABLE <value></td>
<td>Y</td>
</tr>
<tr>
<td>:STATus:OPERation:ENABLE?</td>
<td>Y</td>
</tr>
<tr>
<td>:STATus:OPERation:NTRansition <value></td>
<td>Y</td>
</tr>
<tr>
<td>:STATus:OPERation:NTRansition?</td>
<td>Y</td>
</tr>
<tr>
<td>:STATus:OPERation:PTRansition <value></td>
<td>Y</td>
</tr>
<tr>
<td>:STATus:OPERation:PTRansition?</td>
<td>Y</td>
</tr>
</tbody>
</table>
SCPI Command Compatibility

8375xB Compatible SCPI Commands

<table>
<thead>
<tr>
<th>Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>:STATus:OPERation[:EVENT]?</td>
</tr>
<tr>
<td>:STATus:PRESet</td>
</tr>
<tr>
<td>:STATus:QUESTionable:CONDition?</td>
</tr>
<tr>
<td>:STATus:QUESTionable:ENABLE <value></td>
</tr>
<tr>
<td>:STATus:QUESTionable:ENABLE?</td>
</tr>
<tr>
<td>:STATus:QUESTionable:NTRansition <value></td>
</tr>
<tr>
<td>:STATus:QUESTionable:NTRansition?</td>
</tr>
<tr>
<td>:STATus:QUESTionable:PTRansition <value></td>
</tr>
<tr>
<td>:STATus:QUESTionable:PTRansition?</td>
</tr>
<tr>
<td>:STATus:QUESTionable[:EVENT]?</td>
</tr>
</tbody>
</table>

Sweep Subsystem

<table>
<thead>
<tr>
<th>Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>:SWEep:CONTrol:TYPE MASTer</td>
</tr>
<tr>
<td>:SWEep:CONTrol:TYPE?</td>
</tr>
<tr>
<td>:SWEep:DWELl <value>[<timesuffix>]</td>
</tr>
<tr>
<td>:SWEep:DWELl:AUTO ON</td>
</tr>
<tr>
<td>:SWEep:DWELl:AUTO?</td>
</tr>
<tr>
<td>:SWEep:DWELl?</td>
</tr>
<tr>
<td>:SWEep:GENERation ANALog</td>
</tr>
<tr>
<td>:SWEep:GENERation?</td>
</tr>
<tr>
<td>:SWEep:MANual:POINT <value></td>
</tr>
<tr>
<td>:SWEep:MANual:POINT?</td>
</tr>
<tr>
<td>:SWEep:MANual[:RELative] <value></td>
</tr>
<tr>
<td>:SWEep:MANual[:RELative]?</td>
</tr>
<tr>
<td>:SWEep:MARKer:STATe ON</td>
</tr>
<tr>
<td>:SWEep:MARKer:STATe?</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Command</th>
<th>83751B & 83752B</th>
</tr>
</thead>
<tbody>
<tr>
<td>:STATus:OPERation[:EVENT]?</td>
<td>Y</td>
</tr>
<tr>
<td>:STATus:PRESet</td>
<td>Y</td>
</tr>
<tr>
<td>:STATus:QUESTionable:CONDition?</td>
<td>Y</td>
</tr>
<tr>
<td>:STATus:QUESTionable:ENABLE <value></td>
<td>Y</td>
</tr>
<tr>
<td>:STATus:QUESTionable:ENABLE?</td>
<td>Y</td>
</tr>
<tr>
<td>:STATus:QUESTionable:NTRansition <value></td>
<td>Y</td>
</tr>
<tr>
<td>:STATus:QUESTionable:NTRansition?</td>
<td>Y</td>
</tr>
<tr>
<td>:STATus:QUESTionable:PTRansition <value></td>
<td>Y</td>
</tr>
<tr>
<td>:STATus:QUESTionable:PTRansition?</td>
<td>Y</td>
</tr>
<tr>
<td>:STATus:QUESTionable[:EVENT]?</td>
<td>Y</td>
</tr>
<tr>
<td>:SWEep:CONTrol:TYPE MASTer</td>
<td>SLAVe</td>
</tr>
<tr>
<td>:SWEep:CONTrol:TYPE?</td>
<td>Y</td>
</tr>
<tr>
<td>:SWEep:DWELl <value>[<timesuffix>]</td>
<td>Y</td>
</tr>
<tr>
<td>:SWEep:DWELl:AUTO ON</td>
<td>OFF</td>
</tr>
<tr>
<td>:SWEep:DWELl:AUTO?</td>
<td>N</td>
</tr>
<tr>
<td>:SWEep:DWELl?</td>
<td>Y</td>
</tr>
<tr>
<td>:SWEep:GENERation ANALog</td>
<td>STEPped</td>
</tr>
<tr>
<td>:SWEep:GENERation?</td>
<td>Y</td>
</tr>
<tr>
<td>:SWEep:MANual:POINT <value></td>
<td>Y</td>
</tr>
<tr>
<td>:SWEep:MANual:POINT?</td>
<td>Y</td>
</tr>
<tr>
<td>:SWEep:MANual[:RELative] <value></td>
<td>N</td>
</tr>
<tr>
<td>:SWEep:MANual[:RELative]?</td>
<td>N</td>
</tr>
<tr>
<td>:SWEep:MARKer:STATe ON</td>
<td>OFF</td>
</tr>
<tr>
<td>:SWEep:MARKer:STATe?</td>
<td>N</td>
</tr>
</tbody>
</table>
Table 7-5 8375xB SCPI Commands (Continued)

<table>
<thead>
<tr>
<th>Command</th>
<th>83751B & 83752B</th>
</tr>
</thead>
<tbody>
<tr>
<td>:SWEep:MARKer:XFER</td>
<td>N</td>
</tr>
<tr>
<td>:SWEep:MODE AUTO</td>
<td>MANual</td>
</tr>
<tr>
<td>:SWEep:MODE?</td>
<td>Y</td>
</tr>
<tr>
<td>:SWEep:POINts <value></td>
<td>Y</td>
</tr>
<tr>
<td>:SWEep:POINts?</td>
<td>Y</td>
</tr>
<tr>
<td>:SWEep:POWer:STEP <value>[<lvlsuffix>]</td>
<td>N</td>
</tr>
<tr>
<td>:SWEep:POWer:STEP?</td>
<td>N</td>
</tr>
<tr>
<td>:SWEep:TIME <value>[<timesuffix>]</td>
<td>N</td>
</tr>
<tr>
<td>:SWEep:TIME:AUTO ON</td>
<td>OFF</td>
</tr>
<tr>
<td>:SWEep:TIME:AUTO?</td>
<td>Y</td>
</tr>
<tr>
<td>:SWEep:TIME:LLIMIT <value>[<timesuffix>]</td>
<td>Y</td>
</tr>
<tr>
<td>:SWEep:TIME:LLIMIT?</td>
<td>Y</td>
</tr>
<tr>
<td>:SWEep:TIME?</td>
<td>Y</td>
</tr>
<tr>
<td>:SWEep[:FREQuency]:STEP <value>[<freqsuffix>]</td>
<td>N</td>
</tr>
<tr>
<td>:SWEep[:FREQuency]:STEP?</td>
<td>N</td>
</tr>
<tr>
<td>:SWEep[:POINts]:TRIGger:SOURce IMMEDIATE</td>
<td>BUS</td>
</tr>
<tr>
<td>:SWEep[:POINts]:TRIGger:SOURce IMMEDIATE</td>
<td>BUS</td>
</tr>
<tr>
<td>:SWEep[:POINts]:TRIGger:SOURce?</td>
<td>N</td>
</tr>
<tr>
<td>:SWEep[:POINts]:TRIGger[:IMMediate]</td>
<td>N</td>
</tr>
<tr>
<td>System Subsystem</td>
<td></td>
</tr>
<tr>
<td>:SYSTem:ALTernate <reg num></td>
<td>Y</td>
</tr>
<tr>
<td>:SYSTem:ALTernate:STATe ON</td>
<td>OFF</td>
</tr>
<tr>
<td>:SYSTem:ALTernate:STATe?</td>
<td>Y</td>
</tr>
<tr>
<td>:SYSTem:ALTernate?</td>
<td>Y</td>
</tr>
<tr>
<td>:SYSTem:COMMunicate:GPIB:ADDRess <value></td>
<td>Y</td>
</tr>
</tbody>
</table>
SCPI Command Compatibility

8375xB Compatible SCPI Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>PSG Support</th>
<th>83751B & 83752B</th>
</tr>
</thead>
<tbody>
<tr>
<td>:SYSTem:COMMunicate:PMETer:ADDRess <value></td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>:SYSTem:COMMunicate:PMETer:TYPE SCPI</td>
<td>70100A</td>
<td>437B</td>
</tr>
<tr>
<td>:SYSTem:COMMunicate:PMETer:TYPE?</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>:SYSTem:ERRor?</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>:SYSTem:KEY:DISable SAVE</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>:SYSTem:KEY:DISable? SAVE</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>:SYSTem:KEY:ENABLE SAVE</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>:SYSTem:KEY:ENABLE? SAVE</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>:SYSTem:KEY[:CODE] <value></td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>:SYSTem:KEY[:CODE]?</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>:SYSTem:LANGuage SCPI""""""TM""""""COMP*</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>:SYSTem:LANGuage?</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>:SYSTem:PRESet:TYPE FACTory</td>
<td>USER</td>
<td>Y</td>
</tr>
<tr>
<td>:SYSTem:PRESet:TYPE?</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>:SYSTem:PRESet[:EXECute]</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>:SYSTem:PRESet[:USER]:SAVE</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>:SYSTem:SECurity:CLEar</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>:SYSTem:SECurity:COUNt <value></td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>:SYSTem:SECurity:KLOCK ON</td>
<td>OFF</td>
<td>O</td>
</tr>
<tr>
<td>:SYSTem:SECurity:ZERO ON</td>
<td>OFF</td>
<td>O</td>
</tr>
<tr>
<td>:SYSTem:VERSion?</td>
<td>Y</td>
<td></td>
</tr>
</tbody>
</table>

Trigger Subsystem

<table>
<thead>
<tr>
<th>Command</th>
<th>Support</th>
</tr>
</thead>
<tbody>
<tr>
<td>:TRIGger:SOURce1 IMMEDIATE</td>
<td>BUS</td>
</tr>
<tr>
<td>:TRIGger:SOURce IMMEDIATE</td>
<td>BUS</td>
</tr>
</tbody>
</table>
SCPI Command Compatibility
8662A/63A Compatible Commands

Table 7-5 8375xB SCPI Commands (Continued)

<table>
<thead>
<tr>
<th>Command</th>
<th>Y= Supported by PSG</th>
<th>N= Not supported by PSG</th>
<th>83751B & 83752B</th>
</tr>
</thead>
<tbody>
<tr>
<td>:TRIGger:SOURcel?</td>
<td></td>
<td></td>
<td>N</td>
</tr>
<tr>
<td>:TRIGger:SOURce?</td>
<td></td>
<td></td>
<td>Y</td>
</tr>
<tr>
<td>:TRIGger[:IMMediate]</td>
<td></td>
<td></td>
<td>Y</td>
</tr>
</tbody>
</table>

Tweep Subsystem

Table 7-6 on page 371: a comprehensive list of 8662A/63A programming commands, listed in alphabetical order. The equivalent SCPI command sequence for each supported code is provided. Codes that have no equivalent SCPI command sequence are indicated in the command column, as are codes that are not supported by the PSG family.

Table 7-7 on page 377: a list of the implemented 8662B/63B programming commands that set the active function. This table also indicates which codes are compatible with the increment (up), and the decrement (down) SCPI commands.

To use the commands, select 866xA as the remote language. See ":LANGuage" on page 87 for selecting the language type.

When using the programming codes in this section, you can:

- set the PSG system language to 866xA for the current session:
 Utility > GPIB/RS-232 LAN > Remote Language > 866xA
 or send the command:
 :SYST:LANG "8662" or "8663"

- set the PSG system language to 866xA so that it does not reset on a preset, an instrument power cycle or a *RST command:
 Utility > Power On/Preset > Preset Language > 866xA
 or send the command:
 :SYST:PRESET:LANG "8662" or "8663"

NOTE Compatibility is provided for GPIB only; RS-232 and LAN are not supported.

Device Clear does not preset the instrument.
To reproduce the sweep functionality, use the PSG List Sweep features.
Table 7-6 8662A/63A Commands & Equivalent SCPI Sequences

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
<th>8662</th>
<th>8663</th>
<th>Equivalent SCPI Command Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>#1</td>
<td>Write require service mask</td>
<td>N</td>
<td>N</td>
<td>not supported</td>
</tr>
<tr>
<td>#2</td>
<td>Deferred execution mode</td>
<td>N</td>
<td>N</td>
<td>not supported</td>
</tr>
<tr>
<td>#3</td>
<td>Immediate execution mode</td>
<td>N</td>
<td>N</td>
<td>not supported</td>
</tr>
<tr>
<td><D</td>
<td><dBm</td>
<td>Y</td>
<td>Y</td>
<td>DBM</td>
</tr>
<tr>
<td>AM</td>
<td>AM modulation</td>
<td>Y</td>
<td></td>
<td>AM:DEPTH <val> <units> AM:TRAC ON FM:STAT OFF AM:STAT ON</td>
</tr>
<tr>
<td></td>
<td>See also: Table 7-7 on page 377</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AO</td>
<td>Amplitude off</td>
<td>Y</td>
<td>Y</td>
<td>OUTPut:STATe OFF</td>
</tr>
<tr>
<td>AP</td>
<td>Amplitude</td>
<td>Y</td>
<td>Y</td>
<td>POW:REF:STATe OFF, POWer:AMPL <val> <units> OUTPut:STATe ON</td>
</tr>
<tr>
<td>AS</td>
<td>BLSQ</td>
<td>Auto sequence</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>CT</td>
<td>Configure trigger</td>
<td>Y</td>
<td>Y</td>
<td>no equivalent SCPI command sequence</td>
</tr>
<tr>
<td>−D</td>
<td>−dBm</td>
<td>Y</td>
<td>Y</td>
<td>DBM</td>
</tr>
<tr>
<td>DB</td>
<td>dB</td>
<td>Y</td>
<td>Y</td>
<td>DB</td>
</tr>
<tr>
<td>DG</td>
<td>Degree</td>
<td>Y</td>
<td></td>
<td>DBG</td>
</tr>
<tr>
<td>DM</td>
<td>dBm</td>
<td>Y</td>
<td>Y</td>
<td>DBM</td>
</tr>
<tr>
<td>DN</td>
<td>Decrement</td>
<td>Y</td>
<td>Y</td>
<td>See Table 7-7 on page 377</td>
</tr>
<tr>
<td>FA</td>
<td>Start frequency</td>
<td>Y</td>
<td>Y</td>
<td>See W2, W3, W4, and Table 7-7 on page 377</td>
</tr>
<tr>
<td>FB</td>
<td>Stop frequency</td>
<td>Y</td>
<td>Y</td>
<td>See W2, W3, W4, and Table 7-7 on page 377</td>
</tr>
<tr>
<td>FM</td>
<td>FM modulation</td>
<td>Y</td>
<td></td>
<td>FM:DEV <val> <units> AM:STAT OFF AM:STAT ON</td>
</tr>
<tr>
<td></td>
<td>See also: Table 7-7 on page 377</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FR</td>
<td>Center frequency</td>
<td>Y</td>
<td>Y</td>
<td>See W2, W3, W4, and Table 7-7 on page 377</td>
</tr>
<tr>
<td>FS</td>
<td>Span frequency</td>
<td>Y</td>
<td>Y</td>
<td>See W2, W3, W4, and Table 7-7 on page 377</td>
</tr>
<tr>
<td>Command</td>
<td>Description</td>
<td>8662</td>
<td>8663</td>
<td>Equivalent SCPI Command Sequence</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
<td>------</td>
<td>------</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>GZ</td>
<td>GHz</td>
<td>Y</td>
<td>Y</td>
<td>GZ</td>
</tr>
<tr>
<td>HZ</td>
<td>Hz</td>
<td>Y</td>
<td>Y</td>
<td>Hz</td>
</tr>
<tr>
<td>IS</td>
<td>Set increment. Adds "STEP:INCR" to active function command.</td>
<td>Y</td>
<td>Y</td>
<td>no equivalent SCPI command sequence</td>
</tr>
<tr>
<td>KZ</td>
<td>kHz</td>
<td>Y</td>
<td>Y</td>
<td>KZ</td>
</tr>
<tr>
<td>L1</td>
<td>Learn front panel</td>
<td>N</td>
<td>N</td>
<td>not supported</td>
</tr>
<tr>
<td>L2</td>
<td>Fast learn</td>
<td>N</td>
<td>N</td>
<td>not supported</td>
</tr>
<tr>
<td>M0</td>
<td>M0</td>
<td>Modulation off</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>M1</td>
<td>For 8662A: <mod> = FM or AM, depending on which is on.</td>
<td>Y</td>
<td></td>
<td><mod>:SOURCE INT1 <mod>:INT1:FREQ 400Hz</td>
</tr>
<tr>
<td></td>
<td>Modulation source internal 400 Hz</td>
<td></td>
<td></td>
<td>AM:INT1:FREQ 400 MHz PM:INT2:FREQ 400 MHz PULM:INT1:FREQ 400 MHz</td>
</tr>
<tr>
<td></td>
<td>For 8663A: Executes MF with <freq> = 400 Hz</td>
<td></td>
<td></td>
<td>AM:INT1:FREQ 1 kHz PM:INT2:FREQ 1 kHz PULM:INT:FREQ 1 kHz</td>
</tr>
<tr>
<td>M2</td>
<td>For 8662A: <mod> = FM or AM, depending on which is on.</td>
<td>Y</td>
<td></td>
<td><mod>:SOURCE INT1 <mod>:INT1:FREQ 1kHz</td>
</tr>
<tr>
<td></td>
<td>Modulation source internal 1 kHz</td>
<td></td>
<td></td>
<td>AM:INT1:FREQ 1 kHz PM:INT2:FREQ 1 kHz PULM:INT:FREQ 1 kHz</td>
</tr>
<tr>
<td></td>
<td>For 8663A: Executes MF with <freq> = 1 kHz</td>
<td></td>
<td></td>
<td>AM:INT1:FREQ 1 kHz PM:INT2:FREQ 1 kHz PULM:INT:FREQ 1 kHz</td>
</tr>
<tr>
<td>M3</td>
<td>For 8662A: <mod> = FM or AM, depending on which is on.</td>
<td>Y</td>
<td></td>
<td><mod>:SOURCE EXT <mod>:EXT:COUPling AC <mod>:EXT:IMP 600</td>
</tr>
<tr>
<td></td>
<td>Modulation source external AC</td>
<td></td>
<td></td>
<td>AM:EXT:FREQ 400 Hz PM:EXT:FREQ 400 Hz PULM:EXT:FREQ 400 Hz</td>
</tr>
<tr>
<td></td>
<td>For 8663A: <mod> = AM, FM, or PM, depending on which is on.</td>
<td>Y</td>
<td></td>
<td><mod>:SOURCE EXT<n> <mod>:EXT<n>:COUPling AC <mod>:EXT<n>:IMP 600</td>
</tr>
<tr>
<td></td>
<td><n> = 1 for AM, 2 for FM or PM</td>
<td></td>
<td></td>
<td>AM:EXT:FREQ 400 Hz PM:EXT:FREQ 400 Hz PULM:EXT:FREQ 400 Hz</td>
</tr>
<tr>
<td>M4</td>
<td>For 8662A: <mod> = FM or AM, depending on which is on.</td>
<td>Y</td>
<td></td>
<td><mod>:SOURCE EXT <mod>:EXT:COUPling DC <mod>:EXT:IMP 600</td>
</tr>
<tr>
<td></td>
<td>Modulation source external DC</td>
<td></td>
<td></td>
<td>AM:EXT:FREQ 400 Hz PM:EXT:FREQ 400 Hz PULM:EXT:FREQ 400 Hz</td>
</tr>
<tr>
<td></td>
<td>For 8663A: <mod> = AM, FM, or PM, depending on which is on.</td>
<td>Y</td>
<td></td>
<td><mod>:SOURCE EXT<n> <mod>:EXT<n>:COUPling DC <mod>:EXT<n>:IMP 600</td>
</tr>
<tr>
<td></td>
<td><n> = 1 for AM, 2 for FM or PM</td>
<td></td>
<td></td>
<td>AM:EXT:FREQ 400 Hz PM:EXT:FREQ 400 Hz PULM:EXT:FREQ 400 Hz</td>
</tr>
<tr>
<td>MF</td>
<td>Modulation frequency</td>
<td></td>
<td></td>
<td>AM:AM:SOURCE INT1 AM:SOURCE INT1:FREQ <freq></td>
</tr>
<tr>
<td></td>
<td><mod> = FM, or PM, depending on which is on.</td>
<td></td>
<td></td>
<td>FM or PM <mod>:SOURCE INT2 <mod>:SOURCE INT2:FREQ <freq></td>
</tr>
<tr>
<td></td>
<td>Also see: M1, M2, and Table 7-7 on page 377</td>
<td></td>
<td></td>
<td>Pulse: PULM:SOURCE INT1 PULM:INT:FREQ <freq> PULM:SOURCE INT SQUARE</td>
</tr>
</tbody>
</table>
Table 7-6 8662A/63A Commands & Equivalent SCPI Sequences (Continued)

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
<th>8662</th>
<th>8663</th>
<th>Equivalent SCPI Command Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>MS</td>
<td>Read status key message</td>
<td>Y</td>
<td>Y</td>
<td>no equivalent SCPI command sequence</td>
</tr>
<tr>
<td>MV</td>
<td>mV</td>
<td>Y</td>
<td>Y</td>
<td>MV</td>
</tr>
<tr>
<td>MZ</td>
<td>MHz</td>
<td>Y</td>
<td>Y</td>
<td>MHz</td>
</tr>
<tr>
<td>N1</td>
<td>Linear 100 steps</td>
<td>Y</td>
<td>Y</td>
<td>See W2, W3, and W9</td>
</tr>
<tr>
<td>N2</td>
<td>Linear 1000 steps</td>
<td>Y</td>
<td>Y</td>
<td>See W2, W3, and W9</td>
</tr>
<tr>
<td>N3</td>
<td>Step size</td>
<td>Y</td>
<td>Y</td>
<td>See W2, W3, W4, and Table 7-7 on page 377</td>
</tr>
<tr>
<td>N4</td>
<td>Log 10% steps</td>
<td>Y</td>
<td>Y</td>
<td>See W2, W3, and W9</td>
</tr>
<tr>
<td>N5</td>
<td>Log 1% steps</td>
<td>Y</td>
<td>Y</td>
<td>See W2, W3, and W9</td>
</tr>
<tr>
<td>PC</td>
<td>%</td>
<td>Y</td>
<td>Y</td>
<td>PCT</td>
</tr>
<tr>
<td>PL</td>
<td>Pulse modulation</td>
<td>Y</td>
<td></td>
<td>PULM:STAT ON</td>
</tr>
<tr>
<td>PM</td>
<td>Phase modulation</td>
<td>Y</td>
<td></td>
<td>PM:STAT ON See also Table 7-7 on page 377</td>
</tr>
<tr>
<td>R1</td>
<td>Knob resolution x10</td>
<td>N</td>
<td>N</td>
<td>not supported</td>
</tr>
<tr>
<td>R2</td>
<td>Knob resolution /10</td>
<td>N</td>
<td>N</td>
<td>not supported</td>
</tr>
<tr>
<td>R3</td>
<td>Knob off</td>
<td>N</td>
<td>N</td>
<td>not supported</td>
</tr>
<tr>
<td>R5/BLR1</td>
<td>Knob hold</td>
<td>N</td>
<td>N</td>
<td>not supported</td>
</tr>
<tr>
<td>R5/BLR2</td>
<td>Knob increment</td>
<td>N</td>
<td>N</td>
<td>not supported</td>
</tr>
<tr>
<td>RC</td>
<td>Recall</td>
<td>Y</td>
<td>Y</td>
<td>*RCL</td>
</tr>
<tr>
<td>RD</td>
<td>Knob down</td>
<td>Y</td>
<td>Y</td>
<td>LIST:MANual DOWN</td>
</tr>
<tr>
<td>EM</td>
<td>Read require service mask</td>
<td>N</td>
<td>N</td>
<td>not supported</td>
</tr>
<tr>
<td>RU</td>
<td>Knob up</td>
<td>Y</td>
<td>Y</td>
<td>LIST:MANual UP</td>
</tr>
<tr>
<td>SP00</td>
<td>System preset</td>
<td>Y</td>
<td>Y</td>
<td>SYSTem:PRESet</td>
</tr>
<tr>
<td>SP10</td>
<td>Frequency offset off</td>
<td>Y</td>
<td>Y</td>
<td>FREQ:OFFS:STAT OFF</td>
</tr>
<tr>
<td>SP11</td>
<td>Positive frequency offset</td>
<td>Y</td>
<td>Y</td>
<td>FREQ:OFFS <value> FREQ:OFFS:STAT ON FREQ:CN <displayed value></td>
</tr>
<tr>
<td>SP12</td>
<td>Negative frequency offset</td>
<td>Y</td>
<td>Y</td>
<td>FREQ:OFFS <value> FREQ:OFFS:STAT ON FREQ:CN <displayed value></td>
</tr>
</tbody>
</table>
Table 7-6 8662A/63A Commands & Equivalent SCPI Sequences (Continued)

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
<th>8662</th>
<th>8663</th>
<th>Equivalent SCPI Command Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>SP20</td>
<td>ALC bandwidth normal</td>
<td>Y</td>
<td>Y</td>
<td>POWER:ALC:BANDwidth:AUTO ON</td>
</tr>
<tr>
<td>SP21</td>
<td>ALC bandwidth < 1 kHz</td>
<td>Y</td>
<td>Y</td>
<td>POWER:ALC:BANDwidth:AUTO OFF:POWER:ALC:BANDwidth 1KHZ</td>
</tr>
<tr>
<td>SP30</td>
<td>Amplitude reference off</td>
<td>Y</td>
<td>Y</td>
<td>POWER:REF:STATe OFF</td>
</tr>
<tr>
<td>SP31</td>
<td>Amplitude reference</td>
<td>Y</td>
<td>Y</td>
<td>POWER:REF <val> <val> = current amplitude setting POWER:REF:STATe ON</td>
</tr>
<tr>
<td>SP32</td>
<td>Amplitude reference relative to 1 μV</td>
<td>Y</td>
<td>Y</td>
<td>POWER:REF 106.99DBM POWER:REF:STATe ON POWER 1UV</td>
</tr>
<tr>
<td>SP40</td>
<td>External AM off</td>
<td>Y</td>
<td>N</td>
<td>not supported</td>
</tr>
<tr>
<td></td>
<td>Modulation frequency sweep mode off</td>
<td>N</td>
<td>N</td>
<td>not supported</td>
</tr>
<tr>
<td>SP41</td>
<td>Internal FM + external AM (AC)</td>
<td>Y</td>
<td>N</td>
<td>not supported</td>
</tr>
<tr>
<td></td>
<td>Modulation frequency sweep mode on</td>
<td>N</td>
<td>N</td>
<td>not supported</td>
</tr>
<tr>
<td>SP42</td>
<td>Internal FM + external AM (DC)</td>
<td>Y</td>
<td>Y</td>
<td>FM1:SCRB INT1 FM1:INT1:FRQ 400 Hz FM1:STAT ON FM1:SCRB EXT1 FM1:EXT1:IMP 600 FM1:DEPTH 95 PCT FM1:EXT1:COUP AC FM1:STAT ON</td>
</tr>
<tr>
<td>SP50</td>
<td>AUX FM off</td>
<td>Y</td>
<td>Y</td>
<td>FM2:STAT OFF</td>
</tr>
<tr>
<td>SP51</td>
<td>AUX FM on</td>
<td>Y</td>
<td>Y</td>
<td>FM2:STAT OFF</td>
</tr>
<tr>
<td></td>
<td>RF (MHz) FM Deviation (kHz)</td>
<td>Y</td>
<td>Y</td>
<td>FM2:SCRB EXT2 FM2:EXT2:COUP DC FM2:EXT2:IMP 600 FM2:DEV <dev> kHz FM2:STAT ON</td>
</tr>
<tr>
<td>0.01–120</td>
<td>25</td>
<td>Y</td>
<td>Y</td>
<td>FM2:SCRB EXT2 FM2:EXT2:COUP DC FM2:EXT2:IMP 600 FM2:DEV <dev> kHz FM2:STAT ON</td>
</tr>
<tr>
<td>1280–2560</td>
<td>100</td>
<td>Y</td>
<td>Y</td>
<td>FM2:SCRB EXT2 FM2:EXT2:COUP DC FM2:EXT2:IMP 600 FM2:DEV <dev> kHz FM2:STAT ON</td>
</tr>
<tr>
<td>SP60</td>
<td>Parameter shift keying off</td>
<td>N</td>
<td>N</td>
<td>not supported</td>
</tr>
<tr>
<td>SP61</td>
<td>Parameter shift keying up/down (two-key)</td>
<td>N</td>
<td>N</td>
<td>not supported</td>
</tr>
<tr>
<td>SP62</td>
<td>Parameter shift keying up/down (one-key)</td>
<td>N</td>
<td>N</td>
<td>not supported</td>
</tr>
<tr>
<td>SP70</td>
<td>External PM input impedance 50Ω Effects the behavior of M3 and M4.</td>
<td>Y</td>
<td>N</td>
<td>no equivalent SCPI command sequence</td>
</tr>
<tr>
<td>Command</td>
<td>Description</td>
<td>8662</td>
<td>8663</td>
<td>Equivalent SCPI Command Sequence</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
<td>------</td>
<td>------</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>SP71</td>
<td>External PM input impedance 60Ω2</td>
<td>Y</td>
<td>Y</td>
<td>no equivalent SCPI command sequence</td>
</tr>
<tr>
<td>SP80</td>
<td>Special functions 10-62 off</td>
<td>Y</td>
<td>Y</td>
<td>FM2:STAT OFF AM:STAT OFF FREQ:OFFS:STAT OFF</td>
</tr>
<tr>
<td>SP81</td>
<td>Amplitude conversion (V-dBm)</td>
<td>N</td>
<td>N</td>
<td>not supported</td>
</tr>
<tr>
<td>SP82</td>
<td>Display GPIB address</td>
<td>N</td>
<td>N</td>
<td>not supported</td>
</tr>
<tr>
<td>SP83</td>
<td>ROM test</td>
<td>N</td>
<td>N</td>
<td>not supported</td>
</tr>
<tr>
<td>SP84</td>
<td>RAM test</td>
<td>N</td>
<td>N</td>
<td>not supported</td>
</tr>
<tr>
<td>SP85</td>
<td>Amplitude correction off</td>
<td>Y</td>
<td>Y</td>
<td>POWER:ALC:STATe OFF</td>
</tr>
<tr>
<td>SP86</td>
<td>Amplitude correction on</td>
<td>Y</td>
<td>Y</td>
<td>POWER:ALC:STATe ON</td>
</tr>
<tr>
<td>SP87</td>
<td>Amplitude correction on (includes sweep)</td>
<td>Y</td>
<td>Y</td>
<td>POWER:ALC:STATe ON</td>
</tr>
<tr>
<td>SP88</td>
<td>GPIB operator request response</td>
<td>N</td>
<td>N</td>
<td>not supported</td>
</tr>
<tr>
<td>SP89</td>
<td>Auto sequence</td>
<td>N</td>
<td>N</td>
<td>not supported</td>
</tr>
<tr>
<td>SP90</td>
<td>Set auto sequence step delay</td>
<td>N</td>
<td>N</td>
<td>not supported</td>
</tr>
<tr>
<td>SP91</td>
<td>Enable frequency hopping mode</td>
<td>N</td>
<td>N</td>
<td>not supported</td>
</tr>
<tr>
<td>SP92</td>
<td>Knob (restore normal operation)</td>
<td>N</td>
<td>N</td>
<td>not supported</td>
</tr>
<tr>
<td>SP93</td>
<td>Manual amplitude level control</td>
<td>N</td>
<td>N</td>
<td>not supported</td>
</tr>
<tr>
<td>SP94</td>
<td>Knob, 120 increments per revolution</td>
<td>N</td>
<td>N</td>
<td>not supported</td>
</tr>
<tr>
<td>SP95</td>
<td>Knob, 120 increments per revolution, reconfigure AUX con.</td>
<td>N</td>
<td>N</td>
<td>not supported</td>
</tr>
<tr>
<td>SP96</td>
<td>Modulation oscillator off when modulation is off</td>
<td>N</td>
<td>N</td>
<td>not supported</td>
</tr>
<tr>
<td>SP97</td>
<td>Modulation oscillator on</td>
<td>N</td>
<td>N</td>
<td>not supported</td>
</tr>
<tr>
<td>SP98</td>
<td>Turn display on</td>
<td>Y</td>
<td>Y</td>
<td>DISP ON</td>
</tr>
<tr>
<td>SP99</td>
<td>Turn display off</td>
<td>Y</td>
<td>Y</td>
<td>DISP OFF</td>
</tr>
<tr>
<td>SP2.0</td>
<td>Power up preset off</td>
<td>N</td>
<td>N</td>
<td>not supported</td>
</tr>
<tr>
<td>SP2.1</td>
<td>Power up preset on</td>
<td>N</td>
<td>N</td>
<td>not supported</td>
</tr>
<tr>
<td>SQ</td>
<td>Sequence</td>
<td>N</td>
<td>N</td>
<td>not supported</td>
</tr>
<tr>
<td>SS</td>
<td>BLSST</td>
<td>Set sequence</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>ST</td>
<td>Store</td>
<td>Y</td>
<td>Y</td>
<td>*SAV</td>
</tr>
<tr>
<td>T1</td>
<td>0.5 ms per step</td>
<td>Y</td>
<td>Y</td>
<td>SWEEP:DWELL 0.5ms Beyond PSG range limit, is set to 1ms.</td>
</tr>
<tr>
<td>T2</td>
<td>1 ms per step</td>
<td>Y</td>
<td>Y</td>
<td>SWEEP:DWELL 1ms</td>
</tr>
</tbody>
</table>
SCPI Command Compatibility
8662A/63A Compatible Commands

Table 7-6 8662A/63A Commands & Equivalent SCPI Sequences (Continued)

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
<th>8662</th>
<th>8663</th>
<th>Equivalent SCPI Command Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>T3</td>
<td>2 ms per step</td>
<td>Y</td>
<td>Y</td>
<td>SWEEP:DWELL 2ms</td>
</tr>
<tr>
<td>T4</td>
<td>10 ms per step</td>
<td>Y</td>
<td>Y</td>
<td>SWEEP:DWELL 10ms</td>
</tr>
<tr>
<td>T5</td>
<td>100 ms per step</td>
<td>Y</td>
<td>Y</td>
<td>SWEEP:DWELL 100ms</td>
</tr>
<tr>
<td>TR</td>
<td>Trigger</td>
<td>Y</td>
<td>Y</td>
<td>no equivalent SCPI command sequence</td>
</tr>
<tr>
<td>UP</td>
<td>Increment</td>
<td>Y</td>
<td>Y</td>
<td>See Table 7-7 on page 377</td>
</tr>
<tr>
<td>UV</td>
<td>mV</td>
<td>Y</td>
<td>Y</td>
<td>UV</td>
</tr>
<tr>
<td>W1</td>
<td>Sweep off</td>
<td>Y</td>
<td>Y</td>
<td>FREQ:MODE ON LIST:TRIG:SOUR IMM</td>
</tr>
<tr>
<td>W2</td>
<td>Auto sweep mode on</td>
<td>Y</td>
<td>Y</td>
<td>INIT:CONT ON SWEEP:MODE AUTO LIST:TRIG:SOUR IMM LIST:DWELL:TYPE STEP LIST:TYPE LIST FREQ:MODE LIST</td>
</tr>
<tr>
<td>W4</td>
<td>Single sweep mode on</td>
<td>Y</td>
<td>Y</td>
<td>INIT:CONT OFF SWEEP:MODE AUTO LIST:DWELL:TYPE STEP LIST:TYPE LIST FREQ:MODE LIST INIT</td>
</tr>
<tr>
<td>X1</td>
<td>Marker 1</td>
<td>N</td>
<td>N</td>
<td>not supported</td>
</tr>
<tr>
<td>X2</td>
<td>Marker 2</td>
<td>N</td>
<td>N</td>
<td>not supported</td>
</tr>
<tr>
<td>X3</td>
<td>Marker 3</td>
<td>N</td>
<td>N</td>
<td>not supported</td>
</tr>
<tr>
<td>X4</td>
<td>Marker 4</td>
<td>N</td>
<td>N</td>
<td>not supported</td>
</tr>
<tr>
<td>X5</td>
<td>Marker 5</td>
<td>N</td>
<td>N</td>
<td>not supported</td>
</tr>
<tr>
<td>X6</td>
<td>Marker off</td>
<td>N</td>
<td>N</td>
<td>not supported</td>
</tr>
<tr>
<td>X7</td>
<td>All markers off</td>
<td>N</td>
<td>N</td>
<td>not supported</td>
</tr>
<tr>
<td>Y0</td>
<td>Remote stepped sweep off</td>
<td>Y</td>
<td>Y</td>
<td>FREQ:MODE ON LIST:TRIG:SOUR IMM</td>
</tr>
</tbody>
</table>
Table 7-6 8662A/63A Commands & Equivalent SCPI Sequences (Continued)

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
<th>Sets Active Function</th>
<th>Compatible with UP/DN</th>
<th>8662</th>
<th>8663</th>
<th>Equivalent SCPI Command Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y1/Y2</td>
<td>Remote stepped sweep on</td>
<td>Y Y Y</td>
<td>Y</td>
<td>Y</td>
<td>INIT:CONT ON
SINGLE:MODE AUTO
LIST:DWELL:TYPE STEP
LIST:TYPE LIST
FREQ:MODE LIST
LIST:TRIG:SOUR BUS</td>
<td></td>
</tr>
<tr>
<td>Y3</td>
<td>Execute remote stepped sweep</td>
<td>Y Y Y</td>
<td>Y</td>
<td>*TSO</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 7-7 8662/63B Command Compatibility

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
<th>Sets Active Function</th>
<th>Compatible with UP/DN</th>
<th>8662</th>
<th>8663</th>
<th>Equivalent SCPI Commands for UP/DN and Increment</th>
</tr>
</thead>
<tbody>
<tr>
<td>AM</td>
<td>AM modulation</td>
<td>Y Y Y Y</td>
<td>Y</td>
<td>AM:DEPTH UP
AM:DEPTH:STP:INCR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AP</td>
<td>Amplitude</td>
<td>Y Y Y Y</td>
<td>Y</td>
<td>POW:AMPL UP
POW:AMPL:STP:INC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FA</td>
<td>Start frequency</td>
<td>Y Y Y Y</td>
<td>Y</td>
<td>FREQ:CN:STEP:INC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FB</td>
<td>Stop frequency</td>
<td>Y Y Y Y</td>
<td>Y</td>
<td>FREQ:CN:STEP:INC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FM</td>
<td>FM modulation</td>
<td>Y Y Y Y</td>
<td>Y</td>
<td>FM:DEV UP
FM:DEV:STP:INCR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FR</td>
<td>Center frequency</td>
<td>Y Y Y Y</td>
<td>Y</td>
<td>FREQ:CN UP
FREQ:CN:STEP:INC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FS</td>
<td>Span frequency</td>
<td>Y Y Y Y</td>
<td>Y</td>
<td>FREQ:CN:STEP:INC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MF</td>
<td>Modulation frequency</td>
<td>Y Y Y</td>
<td>Y
MOD:INT:FREQ UP
MOD:INT:FREQ:STP:INC
MOD = AM</td>
<td>FM</td>
<td>PM</td>
<td>PULM</td>
</tr>
<tr>
<td>N3</td>
<td>Step size</td>
<td>Y Y Y Y</td>
<td>Y</td>
<td>no equivalent SCPI commands</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PM</td>
<td>Phase modulation
Not compatible with any FM modulation.</td>
<td>Y Y</td>
<td>Y</td>
<td>PM:DEV UP
PM:DEV:STP:INC</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SCPI Command Compatibility
8662A/63A Compatible Commands
SCPI Command Compatibility
8662A/63A Compatible Commands
Symbols

ΦM Dev Couple Off On softkey 174
ΦM Dev softkey 173
ΦM Off On softkey 172
ΦM Path 1 2 softkey 166
ΦM Stop Rate softkey 168
ΦM Sweep Time softkey 171
ΦM Tone 2 Amp Percent of Peak softkey 170
π/4 DQPSK softkey
See custom subsystem keys
See Dmodulation subsystem keys
of Carriers softkey 270, 273
Points softkey 128
Skipped Points softkey 239

Numerics

1048576 softkey 187
128QAM softkey
See custom subsystem keys
See Dmodulation subsystem keys
131072 softkey 187
16 1’s & 16 0’s softkey
See custom subsystem keys
16384 softkey 187
16PSK softkey
See custom subsystem keys
See Dmodulation subsystem keys
16QAM softkey
See custom subsystem keys
See Dmodulation subsystem keys
2.100 MHz softkey 184
256QAM softkey
See custom subsystem keys
See Dmodulation subsystem keys
262144 softkey 187
2-Lvl FSK softkey
See custom subsystem keys
See Dmodulation subsystem keys
32 1’s & 32 0’s softkey
See custom subsystem keys
32768 softkey 187
32QAM softkey
See custom subsystem keys
See Dmodulation subsystem keys
4 1’s & 4 0’s softkey
See custom subsystem keys
40.000 MHz softkey 182, 184
digital modulation subsystem 214, 226
dual ARB subsystem 234
external I/Q filter 258, 281, 294
I/Q modulation filter 236, 263, 296
modulation attenuation 283
4-Lvl FSK softkey

See custom subsystem keys
See Dmodulation subsystem keys
4QAM softkey
See custom subsystem keys
See Dmodulation subsystem keys
524288 softkeys 187
64 1’s & 64 0’s softkey
See custom subsystem keys
64QAM softkey
See custom subsystem keys
See Dmodulation subsystem keys
65536 softkey 187
8 1’s & 8 0’s softkey
See custom subsystem keys
8340, 8360, 8757 Language 91
8340B/41B, compatible commands 321
836xxB/L, compatible commands 334
8371xB, compatible commands 350
8373xB, compatible commands 350
8375xB, compatible commands 358
8648A/B/C/D softkey 87, 91
8656B,8657A/B softkey 87, 91
8657D NADC softkey 87, 91
8657D PDC softkey 87, 91
8657J PHS softkey 87, 91
8662A/63A, compatible commands 370
8757D, compatible commands 321
8PSK softkey
See custom subsystem keys
See Dmodulation subsystem keys
A

abort list/step sweep 98
Access denied 51
Activate Secure Display softkey 93
Add Comment To Seq[n] Reg[nn] softkey 56
Adjust Phase softkey 117
ALC 133, 137
ALC BW softkey 133
ALC Hold 241, 264, 297
ALC hold markers
Dmodulation subsystem 264
dual ARB subsystem 241
multitone subsystem 284
two tone subsystem 297
ALC level 134
ALC Off On softkey 137
Align DACs softkey 198, 231
Alignment Left Cent Right softkey 293
All softkey 42, 55
alternate amplitude markers
AWGN ARB subsystem 184
alternate frequency 155, 162
Index

Alternate Sweep Off On softkey 84
Alternate Sweep softkey 84
AM softkeys
AM Depth 145, 151, 152
AM Depth Couple Off On 152
AM Mode Normal Deep 144
AM Off On 150
AM Path 1 2 143
AM Rate 146
AM Start Rate 146
AM Stop Rate 147
AM Sweep Rate 149
AM Tone 1 Rate 146
AM Tone 2 Amp Percent Of Peak 147
AM Tone 2 Rate 147
AM Type LIN EXP 151
Ampl softkeys
Ampl Offset 141
Ampl Ref Off On 140
Ampl Ref Set 140
Ampl Start 140
Ampl Stop 141
Amplitude
LF output 161
list sweep points 123
amplitude and frequency correction pair 104
Amplitude hardkey 142
Amplitude Markers Off On softkey 130
amplitude modulation subsystem keys
AM Depth 145, 151, 152
AM Depth Couple Off On 152
AM Mode Normal Deep 144
AM Off On 150
AM Path 1 2 143
AM Rate 146
AM Start Rate 146
AM Stop Rate 147
AM Sweep Rate 149
AM Tone 1 Rate 146
AM Tone 2 Amp Percent Of Peak 147
AM Tone 2 Rate 147
AM Type LIN EXP 151
Ext Coupling DC AC 146
Ext Impedance 50 Ohm 600 Ohm 146
Ext1 150
Ext2 150
Gaussian 148, 169
Incr Set 144, 153
Internal 1 2 150
Negative 148, 169
Positive 148, 169
Uniform 148
Uniform softkey 169
amplitude units 29
APCO 25 206
APCO 25 C4FM softkey
See custom subsystem keys
See Dmodulation subsystem keys
APCO 25 w/C4FM softkey 206, 270, 272
APCO 25 w/C4QPSK softkey 270, 272
APCO 25 w/CQPSK softkey 206
Apply Settings softkey 293
Apply to Waveform softkey 237, 239
Arb AWGN Off On softkey 189
ARB Off On softkey 258
arb player 11
ARB Reference Ext Int softkey
See AWGN subsystem keys
See Dmodulation subsystem keys
See dual ARB subsystem keys
See multifont subsystem keys
ARB sample clock rate 244
ARB Sample Clock softkey 188, 248, 269, 288, 301
Arbitrary waveform
clipping 230
runtime scaling 247
scaling files 247
Atten Hold Off On softkey 138
attenuator 27, 219, 224, 225, 226, 262, 282, 295
attenuator auto 224
attenuator bandwidth 226
avtomatic leveling control 133, 137
AWGN
carrier bandwidth 245
carrier to noise 245
flat noise bandwidth 244
note state off on 244
AWGN ARB subsystem keys
Marker Polarity Neg Pos 187
AWGN subsystem
ALC hold 185
RF blanking/pulse 186
AWGN subsystem keys
1048576 187
131072 187
16384 187
2.100 MHz 184
262144 187
32768 187
40.000 MHz 182, 184
524288 187
65536 187
alc hold 185
alternate amplitude 184
Arb AWGN Off On 189
ARB Reference Ext Int 188
ARB Sample Clock 188
Bandwidth 182
Index

Clear Header 183
l/Q Mod Filter Manual Auto 184
l/Q Output Filter Manual Auto 183
Modulator Atten Manual Auto 183
Noise Seed Fixed Random 189
None 186
Reference Freq 187
Save Setup To Header 183
Through 182, 184
Waveform Length 187

B
backward compatible SCPI commands
*IDN? output 319
8340B/41B 321
836xxB/L 334
8371xB 350
8373xB 350
8375xB 358
8662A/63A 370
8757D 321
band and channel selection 109
Bandwidth softkey 182, 189
baud rate 26
BBG Data Clock Ext Int softkey
See custom subsystem keys
BBG Ref Ext Int softkey
See custom subsystem keys
BBG1 softkey 216, 229
Binary softkey 38, 57
binary values 13
Bit softkey 38
blanking 63
blanking, display 32
Bluetooth softkey 266
boolean SCPI parameters 7
boolean, numeric response data 8
BPSK softkey
See custom subsystem keys
See Dmodulation subsystem keys
Brightness softkey 30
Build New Waveform Sequence softkey 248
burst
rise time 196
shape 50, 197
shape rise delay 194
shape rise time 196
Burst Gate In Polarity Neg Pos softkey 64, 65
Bus softkey
AM trigger source 149
Dmodulation subsystem keys 277
dual ARB subsystem keys 254
FM trigger source 156
list trigger source 124
low trigger source
low frequency output subsystem keys 164
modulation subsystem keys 171
trigger subsystem keys 100
bus trigger source
custom subsystem 210
Dmodulation subsystem 277
dual ARB subsystem 254

C
calibration subsystem 16
calibration subsystem keys 18
Calibration Type DC User Full 17
Calibration Type User Full 20
DCF/M/DCM Cal 16
Execute Cal 16, 19
I/Q Calibration 16
Revert to Default Cal Settings 17, 19
Start Frequency 18, 20
Stop Frequency 18, 20
Calibration Type DC User Full softkey 17
capture screen 31
carrier bandwidth 245
Carrier Phases Fixed Random softkey 271
carrier to noise 245
catalog, mass memory subsystem 57
CDPD softkey 206, 270, 272
carrier bandwidth 245
carrier to noise 245
carrier frequency 327
channel and band selection 109
can channel number 108
carrier frequency 327
clear header 60
Clear Header softkey 183, 232, 261, 280, 294
clearing markers 237, 238
Clip |I+jQ| To softkey 230
Clip |I| To softkey 230
Clip |Q| To softkey 230
circuit
clipping
waveform files 230
Clipping softkey 230
Clipping Type |I+jQ| |I|,|Q| softkey 230
clock 30
capturing
command screen 31
command tree, SCPI 5
Common Mode I/Q Offset softkey 217
comunication subsystem keys
Default Gateway 22
GPIB Address 21
Hostname 22
IP Address 23
LAN Config 22
Meter Address 24
Meter Channel A B 24
Meter Timeout 25
Power Meter 25

Index 381
Index

Reset RS-232 26
RS-232 Baud Rate 26
RS-232 ECHO Off On 26
RS-232 Timeout 27
subnet 23
COMP, 8340, 8360, 8757 Language 87
compatible commands
8257D/67D 320
Configure Cal Array softkey 104
connector selection, triggering
custom subsystem 212
Dmodulation subsystem 278
dual ARB subsystem 255
continuous
segment advance 253
Continuous softkey
custom subsystem keys 207
Dmodulation subsystem keys 274
dual ARB subsystem keys 253
continuous sweep 98
continuous trigger
response selection
custom subsystem 208
Dmodulation subsystem 275
dual ARB subsystem 252
trigger mode
custom subsystem 207
Dmodulation subsystem 274
dual ARB subsystem 250
contrast hardkeys 31
Copy File softkey 43, 58
correction
frequency and amplitude pair 104
correction subsystem 103
correction subsystem keys
Configure Cal Array 104
Flatness Off On 105
Load From Selected File
flatness 103
Preset List 104
Store To File 105
creating a waveform
multitone 280
sequence, dual ARB 248
custom
continuous 207
gate 207
trigger 208
Custom Digital Mod State softkey 270, 272
Custom Off On softkey 213
custom subsystem 213
delay query 200
predefined setup 206
triggering, See triggers
custom subsystem keys
π/4 DQPSK 204
128AM 204
16 1’s & 16 0’s 198
16PSK 204
16QAM 204
256QAM 204
2-Lvl FSK 204
32 1’s & 32 0’s 198
32QAM 204
4 1’s & 4 0’s 198
4-Lvl FSK 204
4QAM 204
64 1’s & 64 0’s 198
64QAM 204
8 1’s & 8 0’s 198
8PSK 204
Align DACs 198
APCO 25 C4FM 201
APCO 25 w/C4FM 206
APCO 25 w/CQPSK 206
BBG Data Clock Ext Int 190
BBG Ref Ext Int 200
Bluetooth 206
BPSK 204
Burst Shape Fall Time 194
Burst Shape Rise Delay 195
Bus 210
CDPD 206
Continuous 207
DBFSK 204
Diff Data Encode Off On 199
Ext 198, 210
Ext BBG Ref Freq 201
Ext Data Clock Normal Symbol 200
Ext Delay Bits 211
Ext Delay Off On 211
Ext Polarity Neg Pos 212
Fall Delay 192, 193
Fall Time 193
Filter Alpha 190
Filter BbT 191
FIX4 198, 199
Free Run, trigger 208
Freq Dev 202
Gate Active Low High 209
Gated 207
Gaussian 201
Gray Coded QPSK 204
I/Q Scaling 202
IS-95 OQPSK 204
IS-95 QPSK 204
MSK 204
None 206
Index

Nyquist 201
Optimize FIR For EVM ACP 197
OQPSK 204
Patt Trig In 1, Patt Trig In 2 212
Patt Trig In 1, Patt Trig In 2 212
Phase Dev 203
Phase Polarity Normal Invert 204
FN data pattern 198
QPSK 204
Rectangle 201
Rise Delay 194
Rise Time 196
Root Nyquist 201
Sine 197
Single 207
Symbol Rate 205
Trigger & Run 208
Trigger Key 210
UN3/4 GSM Gaussian 201
User File 197, 198
User FSK 203, 204
User I/Q 203, 204
CW frequency 116

D
D8PSK softkey
See custom subsystem keys
See Dmodulation subsystem keys
data
memory subsystem 43, 58
data append
memory subsystem 44
data bit 45
data block 50
Data Clock Out Neg Pos softkey 67
Data Clock Polarity Neg Pos softkey 64, 66, 69
data files 43, 58
data FSK 46
data IQ 47
Data Out Polarity Neg softkey 67, 69
data pattern 198
Data Polarity Neg softkey 65, 66
DATA/CLK/SYNC Rear Outputs Off On softkey 69
date format 29
dBm softkey 101
dBuV softkey 101
dBuVemf softkey 101
DC softkey 162
DFCM/DCFM Cal softkey 16
decimal values 13
DECT softkey 270, 272
default calibration 19
Default Gateway softkey 22
defaults, restore factory 117
delay query 200
delay, I/Q 216
delay, triggering
custom subsystem 211
Dmodulation subsystem 278, 279
dual ARB subsystem 255, 256
Delete softkeys
Delete All ARB DMOD Files 53
Delete All ARB MMOD Files 54
Delete All ARB MTONE Files 54
Delete All Binary Files 52
Delete All Bit Files 53
Delete All Files 52
Delete All FSK Files 53
Delete All I/Q FLS Files 53
Delete All List Files 54
Delete All NVWFM Files 59
Delete All SEQ Files 54
Delete All Shape Files 54
Delete All State Files 55
Delete All UFLT Files 55
Delete All WFM Files 60
Delete File 55, 60
Delta Markers softkey 131
Delta Ref Set softkey 132
deviation, FSK 266
DHCP 22
Diagnostic Info softkey 27, 28, 29, 34, 86
diagnostic subsystem keys
Diagnostic Info 27, 28, 29
Installed Board Info 27
License Info 28
Options Info 28
Diff Data Encode Off On softkey 199
Diff. Mode I Offset softkey 217
Diff. Mode Q Offset softkey 218
Digital Modulation Off on softkey 280
digital modulation subsystem keys
40.000 MHz 214, 226
BBG1 216, 229
Common Mode I/Q Offset 217
Diff. Mode I Offset 217
Diff. Mode Q Offset 218
Ext 50 Ohm 216, 229
Ext 600 Ohm 216, 229
Ext In 600 Ohm I Offset 219
Ext In 600 Ohm Q Offset 220
Ext Input Level (nnn mV) default Man Meas 225
High Crest Mode Off On 215
I Offset 221
I/Q Adjustments Off On 224
Index

I/Q Delay 216
I/Q Gain Balance Source 1 220
I/Q Mod Filter Manual Auto 227
I/Q Off On 230, 304
I/Q Out Gain Balance 218
I/Q Output Atten 219
I/Q Output Filter Manual Auto 214
I/Q Timing Skew 222
I/Q Timing Skew Path softkey 223
Int I/Q Skew Corrections Off On 228
Int I/Q Skew Corrections RF BB Off 228
Modulation Atten Optimize Bandwidth 226
Modulator Atten Manual Auto 224, 225, 226
Off 216, 229
Q Offset 221
Quadrature Skew 222
Summing Ratio (SRC1/SRC2) x.xx dB 229
Through 214, 226
digital signal interface module
See digital subsystem keys
digital subsystem keys
Bit Order 309
Clock Phase 306
Clock Polarity 306
Clock Rate 307
Clock Skew 308
Clock Source 308
Data Type 316
Direction 309
Frame Polarity 312
I Gain 310
I Offset 311
IQ Polarity 312
Logic Type 317
Loop Back Test Type 316
N5102A Off On 318
Negate I 310
Negate Q 313
Numeric Format 311
Pass Through Preset 318
Port Config 317
Q Gain 313
Q Offset 314
Reference Frequency 307
Rotation 314
Scaling 314
Signal Type 315
Swap IQ 311
Word Alignment 308
Word Size 315
directories 11
discrete response data 8
discrete SCPI parameters 7
display 28
secure mode 93
display blanking 32
display subsystem keys
Brightness 30
display contrast 31
Inverse Video Off On 31
Update in Remote Off On 32
displayed amplitude units 29
DMOD softkey 39
Dmodulation subsystem
markers, See markers
triggering, See triggers
Dmodulation subsystem keys
π/4 DQPSK 267
of Carriers 270, 273
128QAM 267
16PSK 267
16QAM 267
256QAM 267
2-Lvl FSK 267
32QAM 267
40.000 MHz 258, 263
4-Lvl FSK 267
4QAM 267
64QAM 267
8PSK 267
APCO 25 C4FM 259
APCO 25 w/C4FM 270, 272
APCO 25 w/C4QPSK 270, 272
ARB Reference Ext Int 268
ARB Sample Clock 269, 288, 301
BPSK 267
Bus 277
Carrier Phases Fixed Random 271
CDPD 270, 272
Clear Header 261
Continuous 274
Custom Digital Mod State 270, 272
d8PSK 267
dect 270, 272
digital Modulation Off On 280
EDGE 270, 272
Ext 277
Ext Delay Off On 279
Ext Delay Time 278
Ext Polarity Neg Pos 279
Filter Alpha 260
Filter BbT 260
Free Run 275
Freq Dev 266
Freq Spacing 270
Gate Active Low High 276
<table>
<thead>
<tr>
<th>Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gated 274</td>
</tr>
<tr>
<td>Gaussian 259</td>
</tr>
<tr>
<td>Gray Coded QPSK 267</td>
</tr>
<tr>
<td>GSM 270, 272</td>
</tr>
<tr>
<td>I/Q Mod Filter Manual Auto 263</td>
</tr>
<tr>
<td>I/Q Output Filter Manual Auto 259</td>
</tr>
<tr>
<td>Immediate 269</td>
</tr>
<tr>
<td>Initialize Table 272</td>
</tr>
<tr>
<td>Insert Row 272</td>
</tr>
<tr>
<td>IS-95 OQPSK 267</td>
</tr>
<tr>
<td>IS-95 QPSK 267</td>
</tr>
<tr>
<td>Load/Store 271</td>
</tr>
<tr>
<td>Marker Polarity Neg Pos 267</td>
</tr>
<tr>
<td>Markers 264, 265</td>
</tr>
<tr>
<td>Modulator Atten Manual Auto 262</td>
</tr>
<tr>
<td>MSK 267</td>
</tr>
<tr>
<td>Multicarrier Off On 270</td>
</tr>
<tr>
<td>NADC 270, 272</td>
</tr>
<tr>
<td>None 264, 265</td>
</tr>
<tr>
<td>Nyquist 259</td>
</tr>
<tr>
<td>Off 269</td>
</tr>
<tr>
<td>On 269</td>
</tr>
<tr>
<td>Optimize FIR For EVM ACP 261</td>
</tr>
<tr>
<td>OQPSK 267</td>
</tr>
<tr>
<td>Patt Trig In 1,2 278</td>
</tr>
<tr>
<td>PDC 270, 272</td>
</tr>
<tr>
<td>PHS 270, 272</td>
</tr>
<tr>
<td>PWT 270, 272</td>
</tr>
<tr>
<td>QPSK 267</td>
</tr>
<tr>
<td>Rectangle 259</td>
</tr>
<tr>
<td>Reference Freq 188, 268</td>
</tr>
<tr>
<td>Reset & Run 275</td>
</tr>
<tr>
<td>Root Nyquist 259</td>
</tr>
<tr>
<td>Save Setup To Header 262</td>
</tr>
<tr>
<td>Select File 270</td>
</tr>
<tr>
<td>Single 274</td>
</tr>
<tr>
<td>Store Custom Dig Mod State 273</td>
</tr>
<tr>
<td>Symbol Rate 273</td>
</tr>
<tr>
<td>TETRA 270, 272</td>
</tr>
<tr>
<td>Through 258, 263</td>
</tr>
<tr>
<td>Trigger & Run 275</td>
</tr>
<tr>
<td>Trigger Key 277</td>
</tr>
<tr>
<td>UN3/4 GSM Gaussian 259</td>
</tr>
<tr>
<td>User FIR 259</td>
</tr>
<tr>
<td>User FSK 267</td>
</tr>
<tr>
<td>User I/Q 267</td>
</tr>
<tr>
<td>Do External Input Level Measurement softkey 226</td>
</tr>
<tr>
<td>Do Power Search softkey 134, 135, 136</td>
</tr>
<tr>
<td>documentation, list of xxii</td>
</tr>
<tr>
<td>downloading files 51</td>
</tr>
<tr>
<td>dual ARB subsystem 231</td>
</tr>
<tr>
<td>alternate amplitude 241</td>
</tr>
<tr>
<td>clipping 230</td>
</tr>
<tr>
<td>generate sine 231</td>
</tr>
<tr>
<td>markers, See markers</td>
</tr>
<tr>
<td>runtime scaling 247</td>
</tr>
<tr>
<td>scaling waveform files 247</td>
</tr>
<tr>
<td>Through 234</td>
</tr>
<tr>
<td>triggering, See triggers</td>
</tr>
<tr>
<td>VCO clock 257</td>
</tr>
<tr>
<td>dual ARB subsystem keys</td>
</tr>
<tr>
<td># Skipped Points 239</td>
</tr>
<tr>
<td>40.000 MHz 234, 236</td>
</tr>
<tr>
<td>Apply to Waveform 237, 239</td>
</tr>
<tr>
<td>ARB Off On 258</td>
</tr>
<tr>
<td>ARB Reference Ext Int 246</td>
</tr>
<tr>
<td>ARB Sample Clock Rate 248</td>
</tr>
<tr>
<td>Build New Waveform Sequence 248</td>
</tr>
<tr>
<td>Bus 254</td>
</tr>
<tr>
<td>carrier bandwidth 245</td>
</tr>
<tr>
<td>Clear Header 232</td>
</tr>
<tr>
<td>Clip</td>
</tr>
<tr>
<td>Clip</td>
</tr>
<tr>
<td>Clip</td>
</tr>
<tr>
<td>Clipping 230</td>
</tr>
<tr>
<td>Clipping Type</td>
</tr>
<tr>
<td>Continuous 253</td>
</tr>
<tr>
<td>Edit Repetitions 248</td>
</tr>
<tr>
<td>Ext 254</td>
</tr>
<tr>
<td>Ext Delay Off On 256</td>
</tr>
<tr>
<td>Ext Delay Time 255</td>
</tr>
<tr>
<td>Ext Polarity Neg Pos 213, 256</td>
</tr>
<tr>
<td>First Mkr Point 237, 239</td>
</tr>
<tr>
<td>Free Run 252</td>
</tr>
<tr>
<td>Gate Active Low High 252</td>
</tr>
<tr>
<td>Gated 250</td>
</tr>
<tr>
<td>Header RMS 232</td>
</tr>
<tr>
<td>I/Q Mod Filter Manual Auto 236</td>
</tr>
<tr>
<td>I/Q Output Filter Manual Auto 234</td>
</tr>
<tr>
<td>Immediate 246</td>
</tr>
<tr>
<td>Insert Waveform 248</td>
</tr>
<tr>
<td>Last Mkr Point 237, 239</td>
</tr>
<tr>
<td>Marker 1 2 3 4 237</td>
</tr>
<tr>
<td>Marker Polarity Neg Pos 243</td>
</tr>
<tr>
<td>Markers 238, 239, 241, 242</td>
</tr>
<tr>
<td>Modulator Atten Manual Auto 235</td>
</tr>
<tr>
<td>Name and Store 248</td>
</tr>
<tr>
<td>noise 244, 245</td>
</tr>
<tr>
<td>None 241, 242</td>
</tr>
<tr>
<td>Off 246</td>
</tr>
<tr>
<td>On 246</td>
</tr>
<tr>
<td>Patt Trig In 1 255</td>
</tr>
<tr>
<td>Patt Trig In 2 255</td>
</tr>
<tr>
<td>Reference Freq 245, 300</td>
</tr>
<tr>
<td>Reset & Run 252</td>
</tr>
<tr>
<td>Save Setup To Header 233</td>
</tr>
<tr>
<td>Scale Waveform Data 247</td>
</tr>
<tr>
<td>Scaling 247</td>
</tr>
</tbody>
</table>
Index

Segment Advance 250
Select Waveform 257, 258
Set Marker Off All Points 238
Set Marker Off Range Of Points 237
Set Marker On Range Of Points 239
Single 250, 253
Through 234, 236
Toggle Marker 1 2 3 4 248
Trigger & Run 252
Trigger Key 254
Waveform Runtime Scaling 247
Dual-Sine softkey 158, 162, 170
dwell points 120

dwell time 120, 121

E
E8241A
44A, 51A, 54A 320
E8247C, 57C, 67C 320
echo state 26
EDGE softkey 270, 272
Edit Repetitions softkey 248
Enter Secure Mode softkey 95
Erase All softkey 94
Erase and Overwrite All softkey 96
Erase and Sanitize All softkey 96
Erase softkey 94
ERROR 221 51
Error Info softkey 85, 86
Event 1 Polarity Neg Pos 68, 70
Event 2 Polarity Neg Pos 68, 70
Execute Cal softkey 16, 18, 19, 20
Ext 50 Ohm softkey 216, 229
Ext 600 Ohm softkey 216, 229
Ext BBG Ref Freq softkey
See custom subsystem keys
Ext Data Clock Normal Symbol softkey
See custom subsystem keys 200
Ext Delay Bits softkey 211
Ext Delay Off On softkey
custom subsystem 211
dmodulation subsystem 279
dual ARB subsystem 256
Ext Delay Time softkey 255, 278
Ext Detector Coupling Factor softkey 137
Ext In 600 Ohm I Offset softkey 219
Ext In 600 Ohm Q Offset softkey 220
Ext Polarity Neg Pos softkey
custom subsystem 212
dmodulation subsystem 279
dual ARB subsystem 213, 256
Ext Polarity Normal Inverted softkey
pulse modulation subsystem 175
Ext softkey
custom subsystem 198, 210
dmodulation subsystem 277
dual ARB subsystem 254
List/Sweep subsystem 124
low frequency output subsystem 164
trigger subsystem 100
Ext softkeys
Ext 149, 156
Ext Coupling DC AC 146, 154, 167
Ext Impedance 50 Ohm 600 Ohm 146, 154, 168
Ext Pulse 180
Ext1 150
Ext1|2 172
Ext2 150, 158
extended numeric SCPI parameter 6
external filter 214
external frequency reference 268
external module start frequency 88
external module stop frequency 88
External Ref Bandwidth softkey 117
external reference oscillator 117
external trigger source
custom subsystem 210
dmodulation subsystem 277
dual ARB subsystem 254

F
Fall Delay softkey
See custom subsystem keys
Fall Time softkey 194
See custom subsystem keys
file
names 10, 43, 58
retrieval 51
systems 57
types 57
file names 11
filename 11
Filter Alpha softkey
See custom subsystem keys
See Dmodulation subsystem keys
Filter BbT softkey
See custom subsystem keys
See Dmodulation subsystem keys
filter external 214
filters
digital modulation subsystem 214, 226
dmodulation subsystem 259, 263
dual ARB subsystem 234, 236
multitone subsystem 281, 283
two tone subsystem 286, 286
Index

FIR data 45
FIR softkey 39
firmware revision 29
First Mkr Point softkey 237, 239
FIX4 softkey 196, 199
 See custom subsystem keys
fixed frequency 111
fixed power 138
flat noise bandwidth 244
Flatness Off On softkey 105
flatness preset 104
FM softkeys
 FM ΦM Normal High BW 167
 FM Dev 159
 FM Dev Couple Off On 160
 FM Off On 159
 FM Path 1 2 153
 FM Rate 157
 FM Start Rate 157
 FM Sweep Rate 156
 FM Tone 1 Rate 157
 FM Tone 2 Amp Percent of Peak 155
 FM Tone 2 Rate 155
forgot listening and precise talking 5
free run 252
Free Run softkey
 AM trigger source 149
 custom subsystem 208
 Dmodulation subsystem 275
dual ARB subsystem 252
 FM trigger source 156
 list trigger source 124
 low frequency output subsystem 164
 phase modulation subsystem 171
 trigger subsystem 100
Freq Channels softkey 106, 108
Freq CW softkey 111
Freq Dev softkey
 See custom subsystem keys
 See Dmodulation subsystem keys
Freq Separation softkey 293
Freq Spacing softkey 270, 289, 290
Freq Span softkey 114
frequency
 CW mode 116
 internal modulation 161
 list sweep points 121
 list sweep query 122
 mode 111
 reference 113
 start 114
 stop 115
frequency and amplitude correction pair 104
Frequency hardkey 109, 116
frequency modulation subsystem keys
 Bus 156
 Dual-Sine 158
 Ext 156
 Ext Coupling DC AC 154
 Ext Impedance 50 Ohm 600 Ohm 154
 Ext2 158
 FM Dev 159
 FM Dev Couple Off On 160
 FM Off On 159
 FM Path 1 2 153
 FM Rate 157
 FM Source 158
 FM Start Rate 157
 FM Sweep Rate 156
 FM Tone 1 Rate 157
 FM Tone 2 Amp Percent of Peak 155
 FM Tone 2 Rate 155
 Free Run 156
 Gaussian 157
 Incr Set 154
 Internal 1 2 158
 Internal 2 158
 Negative 158
 Noise 158
 Positive 158
 Ramp 158
 Sine 158
 Square 158
 Swept-Sine 158
 Triangle 158
 Trigger Key 156
 Uniform 157
frequency multiplier 90
frequency subsystem 105
frequency subsystem keys
 Adjust Phase 117
 External Ref Bandwidth 117
 Freq Center 105
 Freq Channel 106, 108
 Freq CW 111
 Freq Manual 110
 Freq Multiplier 111
 Freq Offset 109, 112
 Freq Ref Off On 113
 Freq Ref Set 113
 Freq Span 114
 Freq Start 114, 115
 Frequency 109, 116
 Internal Ref Bandwidth 118
 Phase Ref Set 117
 Ref Oscillator Source Auto Off On 118
 Restore Factory Defaults 117
 Sweep Type 111
Index

FSK softkey 39
Function Generator softkey 165
function shape 158

G
gain 218, 220
Gate Active Low High softkey
custom subsystem 209
Dmodulation subsystem 276
dual ARB subsystem 252
gated 274
Gated softkey
custom subsystem keys 207
Dmodulation subsystem 274
dual ARB subsystem 250
gated trigger 250
gated trigger mode
custom subsystem 207
Dmodulation subsystem 274
dual ARB subsystem 250
gateway 22
Gaussian 148, 169
Gaussian softkey 157, 163
See custom subsystem keys
See Dmodulation subsystem keys
generate sine 231
Goto Row softkey 292
GPIB Address softkey 21
Gray Coded QPSK softkey
See custom subsystem keys
See Dmodulation subsystem keys
GSM softkey 270, 272
GTLOCAL 21

H
header description 61
Help Mode Single Cont softkey 86
hexadecimal values 13
High Crest Mode Off On softkey 215
hostname softkey 22

I
I offset external 219
I Offset softkey 221, 302
I/Q Adjustments Off On softkey 224, 303
I/Q calibration 16, 17
I/Q Calibration softkey 16
I/Q calibration start stop 18
I/Q clipping 230
I/Q Gain Balance Source 1 softkey 220
I/Q Mod Filter Manual Auto softkey 184, 227, 236, 263, 284, 297
I/Q Off On softkey 230, 304
I/Q Out Gain Balance softkey 218
I/Q Output Atten softkey 219
I/Q Output Filter Manual Auto softkey 182, 214, 234, 250, 282, 295
I/Q Scaling softkey
See custom subsystem keys
I/Q softkey 40
I/Q Timing Skew Path 223
I/Q timing Skew softkey 222
IDN command 86
IEEE 488.2 common command keys
Diagnostic Info 34
RECALL Reg 35
Run Complete Self Test 37
Save Reg 36
Save Seq[n] Reg[nn] 36
Select Seq 35
IEEE 488.2 common commands
CLS 33
ESE 33
ESE? 33
ESR? 34
OPC 34
OPC? 34
PSC 35
PSC? 35
RST 35
SAV 36
SRE 36
SRE? 36
STB? 37
TRG 37
WAI 37
Immediate softkey 246, 269
Incr Set hardkey 144, 153, 154, 176
See phase modulation subsystem keys
Initialize Phase Fixed Random softkey 291
Initialize Table softkey 272
Insert Row softkey 272
Insert Waveform softkey 248
Installed Board Info softkey 27
Int I/Q Skew Corrections RF BB Off softkey 228
Int softkeys
Int Doublet 179, 180
Int Free-Run 179, 180
Int Gated 179, 180
Int Phase Polarity Normal Invert 215, 227
Int Triggered 179, 180
integer response data 8
interface module
See digital subsystem keys
Internal Ref Bandwidth softkey 118
Internal softkeys
Internal 1 172
Internal 1 2 150, 158
Internal 2 158, 172
Internal Monitor 165
Internal Square 179, 180
Inverse Video Off On softkey 31
IP address 22
IP Address softkey 23
IQ Delay softkey 216
IS-95 QPSK softkey
See custom subsystem keys
IS-95 QPSK softkey
See Dmodulation subsystem keys
IS-95 QPSK softkey
See custom subsystem keys
See Dmodulation subsystem keys

L
LAN Config softkey 22
LAN, hostname 22
Language softkey 87, 91
Last Mkr Point softkey 237, 239
Leveling Mode softkey 136
LF Out softkeys
LF Out Amplitude 161
LF Out Off On 165
LF Out Stop Freq 161, 162, 168
LF Out Sweep Time 164
LF Out Tone 2 Amp % of Peak 162
LF Out Tone 2 Freq 161, 162, 168
License Info softkey 28
list data 50
list frequency mode 111
list power mode 138
List softkey 40, 57
list sweep data 57
list/sweep subsystem 119
Load From Selected File softkey 56, 61, 103, 288
load list data 61
Load List From Step Sweep softkey 125
Load/Store softkey 271
local 21
Local hardkey
communication subsystem 21
low frequency output subsystem keys
Bus 164
DC 162
Dual-Sine 162
Ext 164
Free Run 164
Function Generator 165
Gaussian 163
Internal Monitor 165
LF Out Amplitude 161
LF Out Off On 165
LF Out Stop Freq 161, 162, 168
LF Out Sweep Time 164
LF Out Tone 2 Amp % of Peak 162
LF Out Tone 2 Freq 161, 162, 168
Negative 163
Noise 162
Positive 163
Ramp 162
Sine 162
Square 162
Swept-Sine 162
Triangle 162
Trigger Key 164
Uniform 163
Low Pass Filter below 2 GHz Off On 38
low-band filter subsystem keys
Low Pass Filter below 2 GHz Off On 38

M
Manual Freq softkey 110
Manual Mode Off On softkey 123, 128
Manual Point softkey 122
marker 1 2 3 4 264, 284, 285
Marker 1 2 3 4 softkey 238, 239
Marker 1 Polarity Neg Pos softkey
Dmodulation subsystem 267
dual ARB subsystem 243
multitone subsystem 286
two tone subsystem 300
Marker 1 softkey
Dmodulation subsystem 264, 265
dual ARB subsystem 241, 242
multitone subsystem 284, 285
two tone subsystem 297, 298
Marker 1|2|3|4 Polarity Neg Pos softkey
AWGN ARB subsystem 187
Marker 1|2|3|4 softkey 184, 185
Marker 1|2|3|4 softkey 186
Marker 2 Polarity Neg Pos softkey
Dmodulation subsystem 267
dual ARB subsystem 243
multitone subsystem 286
two tone subsystem 300
Marker 2 softkey
Dmodulation subsystem 264, 265
dual ARB subsystem 241, 242
multitone subsystem 284, 285
two tone subsystem 297, 298
Marker 3 Polarity Neg Pos softkey
Dmodulation subsystem 267
dual ARB subsystem 243
multitone subsystem 286
two tone subsystem 300
Marker 3 softkey
Index

Marker 3 softkey
Dmodulation subsystem 264, 265
dual ARB subsystem 241, 242
multitone subsystem 284, 285
two tone subsystem 297, 298
Marker 4 Polarity Neg Pos softkey
Dmodulation subsystem 267
dual ARB subsystem 243
multitone subsystem 286
two tone subsystem 300
Marker 4 softkey
Dmodulation subsystem 264, 265
dual ARB subsystem 241, 242
multitone subsystem 284, 285
two tone subsystem 297, 298
Marker Delta Off On softkey 131
Marker Freq softkey 131
Marker On Off softkey 132
Marker softkey 237
marker subsystem 130
marker subsystem keys
Amplitude Markers Off On 130
Delta Markers 131
Delta Ref Set 132
Marker Delta Off On 131
Marker Freq 131
Marker On Off 132
Marker Value 130
Turn Off Markers 130
Marker Value softkey 130
Markers 130, 131, 132, 237, 265
markers
ALC hold 185
Dmodulation subsystem 264
ARC subsystem 241
multitone subsystem 284
two tone subsystem 297
alternate amplitude
AWGN subsystem 184
AWGN ARB subsystem 186
AWGN subsystem 185
clear all 238
clearing 237
marker polarity
AWGN subsystem
marker polarity 187
Dmodulation subsystem 267
dual ARB subsystem 243
multitone subsystem 286
two tone subsystem 300
RF blanking/pulse 186
Dmodulation subsystem 265
dual ARB subsystem 242
multitone subsystem 285
two tone subsystem 298
setting 239
shifting points 238
mass memory subsystem keys
Binary 57
Delete All NVWFM Files 59
Delete All WFM Files 60
Delete File 60
List 57
Load From Selected File 61
State 57
Store To File 62
User Flatness 57
Master softkey 126
mcarrier 272
MDMOD softkey 40
measurement units 101
memory 11
memory subsystem 45, 46, 47, 55
memory subsystem keys 49, 50
Add Comment To Seq[n] Reg[nn] 56
All files 42
All softkey 55
Binary 38
Bit 38
Copy 43, 58
Data PRAM 48
Delete All ARB DMOD Files 53
Delete All ARB MTONE Files 54
Delete All Binary Files 52
Delete All Bit Files 53
Delete All Files 52
Delete All FIR Files 53
Delete All FSK Files 53
Delete All I/Q Files 53
Delete All List Files 54
Delete All MDMOD Files 54
Delete All SEQ Files 54
Delete All Shape Files 54
Delete All State Files 55
Delete All UFLT Files 55
Delete File 55
DMOD 39
FIR 39
FSK 39
I/Q catalog 40
List 40
Load From Selected File 56
MDMOD 40
MTONE 41
Oversample Ratio 45
Rename File 56, 61

390 Index
Index

SEQ 41
SHAPE 41
State 42
Store To File 57
User Flatness 42
Meter Address softkeys 24
Meter Channel A B softkey 24
Meter Timeout softkey 25
Mod On/Off hardkey 63
modulation 204
modulation off on 63
Modulator Atten (nnn dB) Manual Auto softkey 225
Modulator Atten Manual Auto softkey 183, 224, 235, 262, 282, 296
Modulator I/Q Output Atten softkey 225
module, digital signal interface
See digital subsystem keys
move, files 56, 61
MSK softkey
See custom subsystem keys
See Demodulation subsystem keys
MSUS 11, 57
MTONE softkey 41
Multicarrier Off On softkey 270
multicarrier setup 270
multiplier 89
multitone markers, See markers
Multitone Off On softkey 292
multitone subsystem keys
 40.000 MHz 281, 283, 296
 ARB Reference Ext Int 287, 301
 Clear Header 280
 Freq Spacing 289, 290
 Goto Row 292
 I/Q Mod Filter Manual Auto 284
 I/Q Output Filter Manual Auto 282
 Initialize Phase Fixed Random 291
 Load From Selected File 288
 Marker 1 284, 285
 Marker 1 Polarity Neg Pos 286
 Marker 2 284, 285
 Marker 2 Polarity Neg Pos 286
 Marker 3 284, 285
 Marker 3 Polarity Neg Pos 286
 Marker 4 284, 285
 Marker 4 Polarity Neg Pos 286
 Modulator Atten Manual Auto 282, 283
 Multitone Off On 292
 None 284, 285
 Number Of Tones 289, 290
 Random Seed Fixed Random 291
 Reference Freq 287
 Save Setup To Header 281
 Store To File 289
 Toggle State 289, 292
 mV softkey 101
 mVemf softkey 101

N
N5102A
 bit order 309
 clock phase 306
 clock polarity 306
 clock rate 307
 clock skew 308
 clock source 308
data type 316
direction 309
frame polarity 312
I gain 310
i offset 311
iq polarity 312
logic type 317
loop back test type 316
N5102A off on 318
negate I 310
negate Q 313
numeric format 311
pass through 318
port config 317
Q gain 313
Q offset 314
reference frequency 307
rotation 314
scaling 314
signal type 315
swap IQ 311
word alignment 308
word size 315
NADC softkey 270, 272
Name and Store softkey 248
Negative softkey 148, 158, 163, 169
noise 244, 245
noise bandwidth 244
Noise Seed Fixed Random softkey 180
Noise softkey 158, 162, 170, 171
noise state on 244
None softkey 94, 184, 185, 186, 206, 241, 242, 264, 265, 284, 285, 297, 298
non-volatile memory 11
Normal Inverted Polarity 175
Number Of Tones softkey 289, 290
numeric boolean response data 8
numeric SCPI parameter 6
numeric, extended SCPI parameter 6
Nyquist softkey
Index

See custom subsystem keys
See Dmodulation subsystem keys

O
octal values 13
OEM
frequency band 89
multiplier 90
on off, select 88
start 88
stop 88
Off softkey 216, 220, 246, 269
offset frequency 112
offset, common mode 217
offset, differential Q 218
offset, ext I/Q signal 217
On softkey 246, 269
Optimize FIR For EVM ACP softkey
See custom subsystem keys
See Dmodulation subsystem keys
Optimize for (nnn sps) Bandwidth softkey 226
options
007, marker subsystem 130
015, wideband digital modulation subsystem 302
AWGN real-time subsystem 189
AWGN subsystem 182
601 or 602
digital modulation subsystem 214
Dmodulation subsystem 258
dual ARB subsystem 230
601 or 602
all subsystem 293
custom subsystem 190
multitone subsystem 280
options
601 or 602
all subsystem 181
Options Info softkey 28
OQPSK softkey
See custom subsystem keys
See Dmodulation subsystem keys
oscillator
bandwidth 117
reference 117
source 118
Output Blanking Off On Auto softkey 62, 63
output subsystem keys
Mod On/Off 63
Output Blanking Off On Auto 62, 63
RF On/Off 63
Oversample Ratio softkey 45
Overwrite softkey 94

P
parameter types. See SCPI command parameter types
paths, SCPI command tree 5
Patt Trig In 1 softkey
See custom subsystem keys
See Dmodulation subsystem keys
Patt Trig In 2 255
Patt Trig In 2 softkey
See custom subsystem keys
See Dmodulation subsystem keys
See dual ARB subsystem keys
PDC softkey 270, 272
persistent
power on states 92
preset states 92
phase adjustment 117
Phase Dev softkey
See custom subsystem keys
phase modulation subsystem keys
ΦM Sweep Time 171, 167
ΦM Dev 173
ΦM Dev Couple Off On 174
ΦM Off On 172
ΦM Path 1 2 166
ΦM Tone 2 Ampl Percent of Peak 170
ΦM Tone 2 Rate 168
Bus 171
Bus, Free run, Ext, Trigger Key 171
dual-Sine 170
Ext Coupling DC AC 167
Ext Impedance 50 Ohm 600 Ohm 168
Ext1|2 172
Free Run 171
Incr Set 166, 174
Internal 1 172
Internal 2 172
Noise 170, 171
Ramp 170, 171
Sine 170, 171
Square 170, 171
Swept-Sine 170
Triangle 170, 171
Trigger Key 171
Phase Polarity Normal Invert softkey 204
Phase Ref Set softkey 117
PHS softkey 270, 272
PN11 softkey
See custom subsystem keys
PN15 softkey
See custom subsystem keys
PN20 softkey
See custom subsystem keys
Index

PN23 softkey
See custom subsystem keys
PN9 Mode Preset softkey 92
PN9 softkey
See custom subsystem keys
points
dwell 120
selection 122
polarity
burst gate 64, 65
data clock input 64, 66
data clock output 67, 69
data input 65, 66
data output 67, 69
digital modulation subsystem 227
event 1 2 3 4 68, 70
I/Q 215
markers
AWGN ARB subsystem 187
Dmodulation subsystem 267
dual ARB subsystem 243
multitone subsystem 286
two tone subsystem 300
symbol sync input 65, 67
symbol sync output 68, 70
triggers
custom subsystem 209, 212
Dmodulation subsystem 276, 279
dual ARB subsystem 252, 256
Positive softkey 148, 158, 163, 169
power
list sweep query 123
start 140
stop 141
units 101
power meter
address 24
channel B 24
timeout
GPIB 25
Power Meter softkey 25
Power On Last Preset softkey 90
power on states 92
Power Search Manual Auto softkey 134, 136
Power Search Reference Fixed Mod softkey 135
power subsystem 133
power subsystem keys 139
ALC BW 133
ALC BW Auto 133
ALC Off On 137
Ampl Offset 141
Ampl Ref Off On 140
Ampl Ref Set 140
Ampl Start 140
Ampl Stop 141
Amplitude 142
Atten Hold Off On 138
Do Power Search 134, 135, 136
Ext Detector Coupling Factor 137
Leveling Mode 136
Power Search Manual Auto 134, 135, 136
Set ALC Level 134
Set Atten 137
power-on 27
PRAM
data pattern 199
downloads 48
list 49
PRAM DATA BLOCK 50
PRAM LIST 50
PRAM? 50
precise talking and forgiving listening 5
predefined setups, custom subsystem 206
preset 74
Preset hardkey 91
Preset List softkey 104, 125
Preset Normal User softkey 93
preset states 92
protection state 139
Pulse Frequency 176
pulse modulation subsystem 175, 176
pulse modulation subsystem keys 178
Delay Step 176
Ext Pulse 180
Int Doublet 179, 180
Int Free-Run 179, 180
Int Gated 179, 180
Int Triggered 179, 180
Internal Square 179, 180
Pulse Delay 175
Pulse Off On 180
Pulse Period 177
Pulse Rate 176
Pulse Width 178
Pulse Period Increment 178
Pulse/RF blanking 242
pulse/RF blanking 186
pulse/rf blanking 186
pulse/RF blanking markers
Dmodulation subsystem 265
dual ARB subsystem 242
multitone subsystem 285
two tone subsystem 298
PWT softkey 270, 272
Q
Q external offset 220
Index

Q Offset softkey 221, 302
QPSK softkey
 See custom subsystem keys
Quadrature Skew softkey 222, 303
query
 frequency points 122
 power points 123
Query, IDN? 86
quotes, SCPI command use of 12

R
ramp positive/negative 158
Ramp softkey 158, 162, 170, 171
ramp sweep 128
 range 114
 selecting 127
 span 114
 time 129
ramp, low frequency 163
Random Seed Fixed Random softkey 291
ratio, source 229
real response data 8
Real-time AWGN Off On softkey 189
real-time AWGN subsystem keys
 Bandwidth 189
 Real-time AWGN Off On 189
real-time custom triggering, See triggers
real-time noise 244
RECALL Reg softkey 35
recall state files 56
Rectangle softkey
 See custom subsystem keys
 See Dmodulation subsystem keys
rectangular waveguide 89
Ref Oscillator Source Auto Off On softkey 118
Reference Freq softkey
 See AWGN subsystem keys
 See Dmodulation subsystem keys
 See dual ARB subsystem keys
 See multitone subsystem keys
reference oscillator bandwidth 117
reference oscillator internal 118
remote 32
Rename File softkey 56, 61
reset & run 252, 275
Reset & Run softkey
 Dmodulation subsystem 275
 dual ARB subsystem 252
Reset RS-232 softkey 26
response data types. See SCPI commands response
types
Restore Factory Defaults softkey 117
Restore Sys Defaults softkey 92
Retrace Off On softkey 124
retrace, sweeps 124
retrigger, single mode 246, 269
Revert to Default Cal Settings softkey 17, 19
revision number, firmware 29
rf blanking 242
RF blanking/pulse markers
 Dmodulation subsystem 265
dual ARB subsystem 242
 multitone subsystem 285
two tone subsystem 298
RF On/Off hardkey 63
Rise Delay softkey 195
 See custom subsystem keys
Rise Time softkey 196
 See custom subsystem keys
RMS header info 232
Root Nyquist softkey
 See custom subsystem keys
 See Dmodulation subsystem keys
rotate markers 238
route subsystem keys
 Burst Gate In Polarity Neg Pos 64, 65
data Clock Out Neg Pos 67
data Clock Polarity Neg Pos 64, 66, 69
data Out Polarity Neg Pos 67, 69
data Polarity Neg Pos 65, 66
data/CLK/SYNC Rear Outputs Off On 69
event 1 Polarity Neg Pos 68, 70
event 2 Polarity Neg Pos 68, 70
symbol Sync Out Polarity Neg Pos 68, 70
symbol Sync Polarity Neg Pos 65, 67
RS-232 Band Rate softkey 26
RS-232 ECHO Off On softkeys 26
RS-232 reset 26
RS-232 Timeout softkeys 27
Run Complete Self Test softkey 37
runtime scaling 247

S
Sanitize softkey 94
save flatness data 105
Save Reg softkey 36
Save Seq[n] Reg[nn] softkey 36
Save Setup To Header softkey 183, 233, 262, 281, 294
save state files 56
Save User Preset softkey 93
Scale Waveform Data softkey 247
scaling
 during playback 247
 waveform files 247
Scaling softkey 247
Index

SCPI
 backward compatible
 *IDN? output 319
 8340B/41B 321
 836xxB/L 334
 837xxB 350
 837xxB 350
 837xxB 358
 8662A/63A 370
 8757D 321
basics 2
binary 13
command tree 4
command tree paths 5
command types 4
command variables 10
compatible
 8257D/67D 320
errors 85, 86
hexadecimal 13
MSUS variable 11
octal 13
overview 1
parameter and response types 5
parameter types
 boolean 7
 discrete 7
 extended numeric 6
 numeric 6
 string 8
parameters 5
program messages 9
quote usage 12
response data types
 discrete 8
 integer 8
 numeric boolean 8
 real 8
 string 9
responses 5
root command 5
syntax 2
version, system subsystem 98
SCPI command subsystems
 all 181, 283, 302
 amplitude modulation 143
 AWGN 182
 AWGN real-time 189
 calibration 16
 communication 21
 correction 103
 custom 190
diagnostic 27
digital modulation 214
digital subsystem N5102A 305
display 29
Dmodulation 258
dual ARB 230
frequency 105
frequency modulation 153
IEEE 488.2 common commands 33
list/sweep 119
low frequency output 161
low-band filter 38
marker 130
mass memory 57
memory 38
multitone 280
output 62
phase modulation 166
power 133
pulse modulation 175
route 64
status 71
system 84
trigger 98
Tsweep 142
screen blanking 32
screen capture 31
Screen Saver Delay
 1 hr softkey 96
Screen Saver Mode softkeys 97
Screen Saver Off On softkeys 97
secure wave directory 51
security functions
 erase 94
 none 94
 overwrite 94, 96
 sanitize 94, 96
 secure display 93
 secure mode 95
segment advance 250
softkey 250
trigger mode 250, 274
trigger response 253
Select File softkey 270
Select Seq softkey 35
Select Waveform softkey 257, 258
SEQ softkey 41
sequence files 11
sequence, creating 248
Set ALC Level softkey 134
Set Atten softkey 137
Set Marker Off All Points softkey 238
Set Marker Off Range Of Points softkey 237
Set Marker On Range Of Points softkey 239
setting markers 239
Index

SHAPE softkey 41
shift markers 238
Sine softkey 158, 197
See low frequency output subsystem keys
See phase modulation subsystem keys
single 274
segment advance 253
trigger mode
custom subsystem 207
Dmodulation subsystem 274
dual ARB subsystem 250
trigger responses 246, 269
Single softkey
custom subsystem 207
Dmodulation subsystem 274
dual ARB subsystem 250
dual ARB subsystem keys 253
Single Sweep softkey 99, 142
skew 222, 223
skew, I/Q
adjustment 222
path 228
state 228
Slave softkey 126
software options 28
source
bbgi 216
external 216
internal 216
sum 216
summing ratio 229
source I/Q modulator 229
source trigger
custom subsystem 210
Dmodulation subsystem 277
dual ARB subsystem 254
Span Type User Full softkey 136
Square softkey 158, 162, 170, 171
start frequency 114
Start Frequency softkey 18, 20, 135
State softkey 42, 57
Status Byte Register commands
IDN? 34
RCL 35
status register commands 71–83
step and list frequencies 111
step and list power 138
Step Dwell softkey 127
step sweep
selecting 123, 127
stop frequency 115
Stop Frequency softkey 18, 20, 135
Store Custom Dig Mod State softkey 273
store list data 62
Store To File softkey 57, 62, 105, 289
string response data 9
string SCPI parameter 8
strings, quote usage 12
Subnet Mask softkey 23
subsystems
correction 103
frequency 105
list/sweep 119
marker 130
power 133
T Sweep 142
Summing Ratio (SRC1/SRC2) x.xx dB softkey 229
sweep
abort 142
commands 119–129
Control softkey 128
Direction Down Up softkey 119
rate 156
Retrace Off On softkey 124
Time Manual Auto softkey 129
Time softkey 129
Type List Step softkey 125
Type softkey 127, 138
Sweep Repeat Single Cont softkey 98
Swept-Sine softkey 158, 162, 170
Symbol Out Polarity Neg Pos softkey 68
Symbol Rate softkey 273
Symbol Sync Out Polarity Neg Pos softkey 70
Symbol Sync Polarity Neg Pos softkey 65, 67
system
capability 84
date 85
preset 91
system commands 84–98
system subsystem keys
8648A/B/C/D 87, 91
8656B,8657A/B 87, 91
8657D NADC 87, 91
8657D PDC 87, 91
8657J PHS 87, 91
Activate Secure Display 93
Alternate Sweep Off On 84
Alternate Sweep Seq 0, Register 1-9 84
Diagnostic Info 86
Enter Secure Mode 95
erase 94
Erase All 94
Erase and Overwrite All 96
Erase and Sanitize All 96
Error Info 85, 86
Help Mode Single Cont 86
none 94
overwrite 94

396
Index

PN9 Mode Preset 92
Power On Last Preset 90
Preset 91
Preset Normal User 93
Restore Sys Defaults 92
sanitize 94
Save User Preset 93
SCPI 87, 91
Screen Saver Delay
 1 hr 96
Screen Saver Mode 97
Screen Saver Off On 97
Time/Date 85, 98
View Next Error Message 85, 86

T
 table setup, multitone 289
 TETRA softkey 270, 272
 through 281, 283, 294, 296
 Through softkey 182, 184, 214, 226, 234, 236, 258, 263, 281, 283, 294, 296
 time, dwell 121
 Time/Date softkey 85, 98
 timeout RS-232 27
 Toggle Marker 1 2 3 4 softkey 248
toggle state 289
 Toggle State softkey 289, 292
 Triangle softkey 158, 162, 170, 171
 trigger 277
 segment advance 250
 Trigger & Run softkey
 custom subsystem 208
 Dmodulation subsystem 275
dual ARB subsystem 252
 trigger commands 98–101
 trigger custom
 free 208
 single 207
 Trigger In Polarity Neg Pos softkey 100
 Trigger Key softkey
 Dmodulation subsystem 277
dual ARB subsystem keys 254
 frequency modulation subsystem 156
 list/sweep subsystem 124
 low frequency output subsystem 164
 phase modulation subsystem 171
 trigger subsystem 100
 trigger key trigger source
 custom subsystem 210
 Dmodulation subsystem 277
dual ARB subsystem 254
 Trigger Out Polarity Neg Pos softkey 99
 trigger source, list sweep 124

 trigger subsystem keys
 Bus 100, 149
 Ext 100, 149
 Free Run 100, 149
 Single Sweep 99
 Sweep Repeat Single Cont 98
 Trigger In Polarity Neg Pos 100
 Trigger Key 100
 Trigger Out Polarity Neg Pos 99
 trigger sweep
 bus 149
 trigger sweep
 external 149
 immediate 149
 key 149
 triggers
 connector selection
 custom subsystem 212
 Dmodulation subsystem 278
dual ARB subsystem 255
delay
 custom subsystem 211
 Dmodulation subsystem 278, 279
dual ARB subsystem 255, 256
 mode selection
 custom subsystem 207
 Dmodulation subsystem 274
dual ARB subsystem 250
 polarity selection
 cont & single mode, custom 212
 cont & single mode, Dmodulation 279
 cont, single, & seg adv mode, dual ARB 256
gate mode, custom 209
gate mode, Dmodulation 276
gate mode, dual ARB 252
 response selection
 continuous mode, custom 208
 continuous mode, Dmodulation 275
 continuous mode, dual ARB 252
 segment advance mode, dual ARB 253
 single mode, Dmodulation 269
 single mode, dual ARB 246
 source selection
 custom subsystem 210
 Dmodulation subsystem 277
dual ARB subsystem 254
 Tsweep subsystem 142
 Turn Off Markers softkey 130
two tone markers, See markers
two tone Off On softkey 302
two tone subsystem keys
 40.000 MHz 294
 Alignment Left Cent Right 293
 Apply Settings 293
Index

Clear Header 294
Freq Separation 293
I/Q Mod Filter Manual Auto 297
I/Q Output Filter Manual Auto 295
Marker 1 297, 298
Marker 1 Polarity Neg Pos 300
Marker 2 297, 298
Marker 2 Polarity Neg Pos 300
Marker 3 297, 298
Marker 3 Polarity Neg Pos 300
Marker 4 297, 298
Marker 4 Polarity Neg Pos 300
Modulator Atten Manual Auto 295, 296
None 297, 298
Save Setup To Header 294
two tone Off On 302

U
UN3/4 GSM Gaussian softkey
See custom subsystem keys
See Dmodulation subsystem keys
Uniform softkey 148, 157, 163
unit subsystem keys
dBuV 101
dBuVemf 101
mV 101
mVemf 101
units 101
uV 101
uVemf 101
units 29, 101
unprotected
memory subsystem 51
unspecified RMS 232
Update in Remote Off On softkey 32
uploading files 51
User File softkey 197
See custom subsystem keys
User FIR softkey
See custom subsystem keys
See Dmodulation subsystem keys
user flatness corrections, state 105
User Flatness softkey 42, 57
user flatness, delete files 55
User FSK softkey
See custom subsystem keys
See Dmodulation subsystem keys
User I/Q softkey
See custom subsystem keys
See Dmodulation subsystem keys
uV softkey 101
uVemf softkey 101
V
VCO Clock Ext Int softkey 213, 257
View Next Error Message softkey 85, 86
volatile memory 11
W
waveform
multitone 280
sequence, dual ARB 248
waveform clipping 230
Waveform Length softkey 187
Waveform Runtime Scaling softkey 247
waveform scaling
during playback 247
files 247
waveform shape 158
waveguide 89
WB IQ Calibration 19
WB IQ calibration full 20
WB IQ calibration start 20
WB IQ calibration stop 20
Wide Band IQ Calibration 18
wideband digital modulation subsystem keys
I Offset 302
I/Q Adjustments Off On 303
Q Offset 302
Quadrature Skew 303
window state 32
WR bands 89