





## The Process









## Starting HFSS

- Click the Microsoft Start button, select Programs, and select the Ansoft > HFSS 9 > HFSS 9.
- Or Double click on the HFSS 9 icon on the Windows Desktop



## Adding a Design

- Mhen you first start HFSS a new project will be automatically added to the Project Tree.
- ▲ To add an HFSS Design to the project, select the menu item *Project > Insert HFSS Design*







## Ansoft Desktop





## Ansoft Desktop - Project Manager

- Multiple Designs per Project
- Multiple Projects per Desktop
- Integrated Optimetrics Setup
  - Requires License for Analysis









### Set Solution Type

- To set the solution type:
  - Select the menu item HFSS > Solution Type
  - 2. Solution Type Window:
    - 1. Choose Driven Modal
    - Click the **OK** button



### HFSS - Solution Types

- ▲ Driven Modal calculates the modal-based S-parameters. The S-matrix solutions will be expressed in terms of the incident and reflected powers of waveguide modes.
  - Generalized S-parameters
- ▲ Driven Terminal calculates the terminal-based S-parameters of multi-conductor transmission line ports. The S-matrix solutions will be expressed in terms of terminal voltages and currents.
- ▲ **Eignemode** calculates the eigenmodes, or resonances, of a structure. The Eigenmode solver finds the resonant frequencies of the structure and the fields at those resonant frequencies.

### Convergence

- ▲ Driven Modal Delta S for modal S-Parameters. This was the only convergence method available for Driven Solutions in previous versions.
- **Driven Terminal**<sup>New</sup> Delta S for the single-ended or differential nodal S-Parameters.
- Eigenmode Delta F



#### Set Model Units

- To set the units:
  - 1. Select the menu item 3D Modeler > Units

#### Set Default Material

- ▲ To set the default material:
  - 1. Using the 3D Modeler Materials toolbar, choose **Select**
  - 2. Select Definition Window:
    - 1. Type **pec** in the **Search by Name** field
    - 2 Click the **OK** button









### 





- The Coordinate Entry fields allow equations to be entered for position values.
  - Examples: 2\*5, 2+6+8, 2\*cos(10\*(pi/180)).
- Variables are not allowed in the Coordinate Entry Field
- Note: Trig functions are in radians





# 3D Modeler - Object Properties

Commands





Attributes





### 3D Modeler - Model Tree

Select menu item 3D Modeler > Group by Material







**Object View** 









Name

Name

Material

Model

Color

Attribute

Solve Inside

Transparent

Display Wireframe

Orientation



Box1

Global

Value

∨acuum ✓

굣

Edit

0





### 3D Modeler - Commands

- Parametric Technology
  - Dynamic Edits Change Dimensions
  - Add Variables
    - Project Variables (Global) or Design Variables (Local)
    - Animate Geometry
    - Include Units Default Unit is meters
  - Supports mixed Units







### 3D Modeler - Primitives

- 2D Draw Objects
  - ▲ The following 2D Draw objects are available:
    - Rectangle, Circle, Line, Point, Spline, Ellipse, Regular Polygon (v8.5 circle)



- 3D Draw Objects
  - ▲ The following 3D Draw objects are available:
    - Box, Cylinder, Sphere, Torus, Helix, Bond Wire, Cone, Regular Polyhedron (v8.5 cylinder)





Toolbar: 2D Objects

Toolbar: 3D Objects







## 3D Modeler - Boolean Operations/Transformations

- - Unite combine multiple primitives
    - Unite disjoint objects (Separate Bodies to separate)
  - **Subtract** remove part of a primitive from another
  - Intersect- keep only the parts of primitives that overlap
  - Split break primitives into multiple parts along a plane (XY, YZ, XZ)

- ▲ 3D Modeler > Surfaces > Move Faces Resize or Reposition an objects face along a normal or vector.
- Edit > Arrange >
  - Move Translates the structure along a vector
  - Rotate Rotates the shape around a coordinate axis by an angle
  - Mirror Mirrors the shape around a specified plane
  - Offset Performs a uniform scale in x, y, and z.



- Edit > Duplicate >
  - Along Lines Create multiple copies of an object along a vector
  - Around Axis Create multiple copies of an object rotated by a fixed angle around the x, y, or z axis
  - Mirror Mirrors the shape around a specified plane and creates a duplicate

*Edit > Scale* - Allows non-uniform scaling in the x, y, or z direction



## Duplicate boundaries with geometry

- Works with all boundaries and excitations
- 1. Select the menu item *Tools > Options > HFSS Options*
- 2. HFSS Options Window:
  - 1. Click the **General** tab

    - Duplicate boundaries with geometry: 
      ☐ Checked
  - 2. Click the **OK** button
- Example:
  - Assign an Excitation to the face of an object
  - Duplicate the object around an axis three times
  - The Excitation is automatically duplicated







### 3D Modeler - Selection

- Selection Types
  - Object (Default)
  - Face
  - Edge
  - Vertex



- All Objects
- All Visible Object
- By Name





- Highlight Selection Dynamically By default, moving the mouse pointer over an object will dynamically highlight the object for selection. To select the object simply click the left mouse button.
  - Multiple Object Selection Hold the CTRL key down to graphically select multiple objects
  - Next Behind To select an object located behind another object, select the front object, press the **b** key to get the next behind. Note: The mouse pointer must be located such that the next behind object is under the mouse pointer.
  - ▲ To Disable: Select the menu item Tools > Options > 3D Modeler Options
    - ♠ From the Display Tab, uncheck Highlight selection dynamically







# 3D Modeler - Moving Around



Step 3: CTRL+Enter Keys set a local reference

Step 4: Hold Z key and set height





### 3D Modeler - Views

- View > Modify Attributes >
  - Orientation Predefined/Custom View Angles
  - ▲ Lighting Control angle, intensity, and color of light
  - Projection Control camera and perspective
  - Background Color Control color of 3D Modeler background
- View > Visibility Controls the display of: 3D Modeler Objects, Color Keys, Boundaries, Excitations, Field Plots
- View > Options Stereo Mode, Drag Optimization, Color Key Defaults
- View > Render > Wire Frame or Smooth Shaded (Default)
- View > Coordinate System > Hide or Small (Large)
- View > Grid Setting Controls the grid display









## Changing the View

#### Toolbar



▲ Context Menu



#### **Predefined View Angles**



#### Shortcuts

- Since changing the view is a frequently used operation, some useful shortcut keys exist. Press the appropriate keys and drag the mouse with the left button pressed:
  - ALT + Drag Rotate
    - In addition, there are 9 pre-defined view angles that can be selected by holding the ALT key and double clicking on the locations shown on the next page.
  - Shift + Drag Pan
  - ▲ ALT + Shift + Drag Dynamic Zoom



😯 CreateBox

🖆 🔼 Coordinate Systems

RelativeCS1 بالمحادثة

🚱 Global

⊕ ⊞ FaceCS1

🗄 🕳 Planes i

🗓 🐠 Lists

Points

· CreateFaceCS

■ Model

**⊟** ■ Box1



## 3D Modeler - Coordinate System

- Can be Parameterized
- Working Coordinate System
  - ▲ Currently selected CS. This can be a local or global CS
- - The default fixed coordinate system
- Relative CS
  - User defined local coordinate system.
    - Offset
    - Rotated
    - Both



Toolbar: Coordinate System

Face CS (setting available to automatically switch to face coordinate system in the 3D Modeler Options),



Step 1: Select Face



Step 3: Set X-Axis



Step 2: Select Origin



New Working CS



Cone created with Face CS



Change Box Size and Cone is automatically positioned with the top face of the box



## HFSS - Solution Setup

- M HFSS > Analysis Setup > Add Solution Setup
- Picking the Adapt Frequency
  - See User Guide Chapter 2











## HFSS - Frequency Sweep

M HFSS > Analysis Setup > Add Sweep





## HFSS - Frequency Sweep

- Discrete Solves using adaptive mesh at every frequency
  - Matrix Data and Fields at every frequency in sweep
- ♠ Fast ALPS
  - Matrix Data and Fields at every frequency in sweep
- Interpolating Adaptively determines discrete solve points using the adaptive mesh
  - Matrix Data at every frequency in sweeps
  - Fields at last adaptive solution





### Boundary Display

- To verify the boundary setup:
  - Select the menu item HFSS > Boundary Display (Solver View)
  - 2. From the Solver View of Boundaries, toggle the Visibility check box for the boundaries you wish to display.
    - Note: The background (Perfect Conductor) is displayed as the outer boundary.
    - Note: The Perfect Conductors are displayed as the **smetal** boundary.
  - 3. Click the Close button when you are finished

## Analyze

#### Model Validation

- To validate the model:
  - 1. Select the menu item *HFSS > Validation Check*
  - 2. Click the **Close** button
    - Note: To view any errors or warning messages, use the Message Manager.

### Analyze

- To start the solution process:
  - 1. Select the menu item *HFSS > Analyze*











## What Information does HFSS Compute?

#### Matrix Data

- Modal/Terminal/Differential
  - ▲ S-, Y-, and Z-Parameters
  - **№** VSWR
- Excitations
  - Complex Propagation Constant (Gamma)
  - <sup>⋆</sup> Zo
- Full-Wave Spice
  - Full-Wave Spice Broadband Model
  - ▲ Lumped RLC Low Frequency Model
  - Partial Fraction Matlab
  - Export Formats HSPICE, PSPICE, Cadence Spectre, and Maxwell SPICE



- Rectangular, Polar
- Smith Chart
- Data Tables
- Common Output Formats:
  - Neutral Models Files (NMF) (Optimetrics only)
    - Parametric Results
  - ▲ Touchstone, Data Tables, Matlab, Citi
  - Graphics Windows Clipboard







### HFSS - Matrix Data

- M HFSS > Results > Solution Data
- Export
  - NMF, Touchstone, Data Tables, etc
  - **NOTE**: Make sure the **Simulation** is set to a **Sweep** before exporting. The Adaptive Passes will only export a single frequency point.
- Equivalent Circuit Export
  - M HSPICE, PSPICE, Cadence Spectre, Maxwell SPICE





### Overview

## Results - Data Management

- M HFSS > Results > Browse Solutions
  - Solved model variations are retained. Unless otherwise notified by HFSS.
- M HFSS > Results > Clean Up Solutions





### M HFSS > Results > Import Solutions













## What Information does HFSS Compute?

- Fields
  - Modal/Terminal/Differential
    - Electric Field
    - Magnetic Field
    - Current (Volume/Surface)
    - Power
    - Specific Absorption Rate
  - Radiation
    - ▲ 2D/3D Far-/Near-Fields
    - Arrays
    - **▲** RCS
  - Field Calculator
    - User Defined Field Calculations
  - Common Display Formats
    - Volume
    - Surface
    - Vector
    - 2D Reports Rectangular, Polar, Radiation Patterns
  - Common Output Formats:
    - Animations AVI, GIF
    - Data Tables
    - Graphics Windows Clipboard, BMP, GIF, JPG, TIFF, VRML







### Fields

- Select Object Volume, Surface, or Line to display fields
- M HFSS > Fields > Plot Fields >
- Modify Plot Solution/Frequency/Qty
- Plot Attributes









# Mesh Display

- Field Overlay
  - 1. Select an object
  - 2. Select the menu item *HFSS > Fields > Plot Mesh*







### Menu Structure

- Draw Primitives
- **3D Modeler** Settings and Boolean Operations
  - ▲ Edit Arrange, Duplicate
- MFSS Boundaries, Excitations, Mesh Operations, Analysis Setup, Results



Line Seament



### Measure

- - Position Points and Distance
  - ▲ Length Edge Length
  - ▲ Area Surface Area







## Options - General

- Tools > Options > General
  - ▲ **Temp Directory** Location used during solution process
    - Make sure it is at least 512MB free disk.
    - If you get out of disk errors, check this

### Options - HFSS

- Tools > Options > HFSS
  - Number of Processors Requires additional license
  - Memory Limit Soft Set to 80% of Physical RAM







## Converting Older HFSS Projects to HFSS v9

- From HFSS v9.0,
  - 1. Select the menu item *File > Open*
  - 2. Open dialog
    - 1. Files of Type: Ansoft Legacy EM Projects (.cls)
    - 2. Browse to the existing project and select the .cls file
    - 3. Click the **Open** button

#### What is Converted?

- Converts Entire Model: Geometry/Materials/Boundary/Sources/Setup
- Solutions, Optimetrics projects and Macros are not converted

## Legacy License

- Existing customers using HFSS v8.5 should have received legacy licenses with the new v9.0 licenses.
  - ★ These licenses allow you to run either v9.0 or v8.5.
  - ▲ Easy transition from v8.5 to v9.0
  - Contact your Account Manager if this feature is not available.

## Recommended Service Packs (SP)

- Microsoft Windows XP SP1 or higher
- Microsoft Windows 2000 SP3 or higher
- Microsoft Windows NT SP6a





## Project Files

- Everything regarding the project is stored in an ascii file
  - File: roject\_name.hfss
  - Double click from Windows Explorer will open and launch HFSS v9
- Results/Mesh are stored in a folder named project\_name.hfssresults
- Lock file: ct\_name.lock.hfss
  - Created when a project is opened
- Auto Save File: project\_name.hfss.auto
  - Mhen recovering, software only checks date.
    - ▲ If error occurred when saving the auto file, the date will be newer then the original.
    - Look at file size (Provided in recover dialog)

### Scripts

- Default Script recorded in v9
  - Visual Basic Script
- Supported Scripting Languages (Windows)
  - Anything that is COM capable
    - JavaScript, Matlab, Excel, Visual Basic, C/C++

### Remote Solves

- Tools > Options > General
- Uses DCOM





## Ansoft Designer SV

- Ansoft Designer™ SV is a full-featured subset of Ansoft's commercially distributed Ansoft Designer
- Ansoft Designer SV contains a complete high-frequency linear circuit simulator, schematic and layout design entry, powerful design utilities, and post-processing, all integrated in an easy-to-use environment. The software also includes a complete set of linear distributed transmission line models, discontinuities, vendor component parts, and ideal circuit elements.
- Ansoft Designer SV allows the simulation of S-, Y-, and Z-parameters, group delay, noise figure, and stability circles of RF and microwave circuits. Utilities include real-time tuning, filter and TRL synthesis, and Smith Tool matching. Post-processing includes rectangular plots, Smith Charts, polar plots, and data tables. Additionally, Ansoft Designer SV comes with a set of real-world examples.
- Free Download: www.ansoft.com/ansoftdesignersv





## For Technical Support

- The following link will direct you to the Ansoft Support Page. The Ansoft Support Pages provide additional documentation, training, and application notes. Web Site: <a href="http://www.ansoft.com/support.cfm">http://www.ansoft.com/support.cfm</a>
- Technical Support:

## Application Engineers for North America

- The names and numbers in this list may change without notice
  - Ansoft Office: Pittsburgh, PA, 412-261-3200
    - Yianni Antoniadis, x175, yantoniadis@ansoft.com
  - Ansoft Office: Boston, MA, 781-229-8900
    - ▲ Jim Delap, x133, <u>idelap@ansoft.com</u>
  - Ansoft Office: Boulder, CO, 303-541-9525
    - Bryan Boots, x31, <u>bboots@ansoft.com</u>
    - Brian Gray, x32, bgray@ansoft.com
  - Ansoft Office: El Segundo, CA, 310-426-2287
    - Aaron Edwards, <u>aedwards@ansoft.com</u>
    - ▲ Liza Ma, Ima@ansoft.com
    - Peter Shin, pshin@ansoft.com
  - Ansoft Office: Santa Clara, CA, 408-261-9095
    - Harpreet Randhawa, x210, <a href="mailto:hrandhawa@ansoft.com">hrandhawa@ansoft.com</a>
    - ▲ Denis Soldo, x214, dsoldo@ansoft.com
  - Others
    - Matt Commens, IL, 847-925-9066, mcommens@ansoft.com
    - Lisa Murphy, AZ, 408-288-1114, <a href="mailto:lmurphy@ansoft.com">lmurphy@ansoft.com</a>
    - ▲ Jim Sherman, FL, 727-394-1023, jsherman@ansoft.com
  - Canada
    - Markus Kopp, Ottawa, 613-241-0500, mkopp@ansoft.com