S-Parameter Measurement Technique

VVM: The vector voltmeter measures the magnitude of a reference and test voltage and the difference in phase between the voltages. Because it can measure phase, it allows us to directly measure the S-parameters of a circuit.

Unfortunately, the use of the directional couplers and test cables connecting the measuring system to the vector voltmeter introduces unknown attenuation and phase shift into the measurements. These can be compensated for by making additional “calibration” measurements.
Reflection measurements: S_{11} or S_{22}
Reflection measurements: S_{11} or S_{22}

From the setup, it is seen that the voltage at channel A of the VVM (A^D) is proportional to the amplitude of the voltage wave entering the device under test (DUT) (a^D_1). Similarly, the voltage at channel B (B^D) is proportional to the amplitude of the voltage wave reflected from DUT (b^D_1). Thus we can write

$$A^D = K_A a^D_1$$

$$B^D = K_B b^D_1$$

Where K_A and K_B are constants that depend on the connecting cables. Since a^D_2 is zero because of the matched load at port 2, S_{11} is given by

$$S_{11} = \frac{b^D_1}{a^D_1} = \frac{B^D}{A^D} \frac{1}{K_A}$$
Reflection measurements: S_{11} or S_{22}

To find K_A and K_B it is necessary to make a second measurement with a known DUT. This is called a “calibration” measurement. If the DUT is removed and replaced by a short circuit, the voltage at channel A (A^s) and channel B (B^s) are given by

$$A^S = K_A a_1^S$$
$$B^S = K_B b_1^S$$

Where a_1^S is the amplitude of the voltage wave entering the short and b_1^S is the amplitude of the voltage wave reflected from the short. However, for a short circuit the ratio of these amplitudes is -1 (reflection coefficient of a short). Thus

$$\frac{b_1^S}{a_1^S} = \frac{B^S/K_B}{A^S/K_A} = -1$$
Reflection measurements: S_{11} or S_{22}

\[
\frac{K_B}{K_A} = -\frac{B^S}{A^S} \quad S_{11} = -\begin{pmatrix} \frac{B^D}{A^D} \\ \frac{B^S}{A^S} \end{pmatrix}
\]

Note: since VVM displays quantities in terms of magnitude and phase we can rewrite S_{11} as

\[
S_{11} = \frac{\Gamma^D}{\Gamma^S} \angle \left(\phi^D - \phi^S - \pi\right) \quad \begin{pmatrix} \frac{B^D}{A^D} \\ \frac{B^S}{A^S} \end{pmatrix} = \Gamma^D \angle \phi^D
\]

\[
\quad \Gamma^S \angle \phi^S
\]
Transmission measurements: S_{12} or S_{21}

The DUT is connected directly between two directional couplers. Voltage at A of the VVM is proportional to the voltage wave incident on the DUT while the voltage at B of the VVM is proportional to voltage wave transmitted through the DUT.
Transmission measurements: \(S_{12} \) or \(S_{21} \)

\[
A^D = K_A a_1^D \\
B^D = K_B b_2^D \\
\Rightarrow \quad S_{21} = \frac{b_2^D}{a_1^D} = \frac{B^D}{A^D} / K_B
\]

To find out the constants a calibration measurement must be made. Remove the DUT and connect both directional couplers directly together. The Known DUT in this case is just a zero-length guide with a transmission coefficient of unity. The measured voltages are:

\[
A^E = K_A a_1^E \\
B^E = K_B b_2^E
\]

where

\[
\frac{b_2^E}{a_1^E} = \frac{B^E}{A^E} / K_B = 1
\]

\[
\therefore \quad \frac{K_B}{K_A} = \frac{B^E}{A^E}
\]
Transmission measurements: S_{12} or S_{21}

$$S_{21} = -\left(\begin{array}{c} B^D \\ A^D \\ B^E \\ A^E \end{array} \right)$$

$$S_{21} = \frac{T^D}{T^E} \angle (\theta^D - \theta^E)$$

where

$$\left(\begin{array}{c} B^D \\ A^D \end{array} \right) = T^D \angle \theta^D$$

$$\left(\begin{array}{c} B^E \\ A^E \end{array} \right) = T^E \angle \theta^E$$
Scattering Parameters

Scattering Parameters (S-Parameters) plays a major role is network analysis

This importance is derived from the fact that practical system characterizations can no longer be accomplished through simple open- or short-circuit measurements, as is customarily in low-frequency applications.

In the case of a short circuit with a wire; the wire itself possesses an inductance that can be of substantial magnitude at high frequency.

Also open circuit leads to capacitive loading at the terminal.
Scattering Parameters

In either case, the open/short-circuit conditions needed to determine Z-, Y-, h-, and ABCD-parameters can no longer be guaranteed.

Moreover, when dealing with wave propagation phenomena, it is not desirable to introduce a reflection coefficient whose magnitude is unity.

For instance, the terminal discontinuity will cause undesirable voltage and/or current wave reflections, leading to oscillation that can result in the destruction of the device.

With S-parameters, one has proper tool to characterize the two-port network description of practically all RF devices without harm to DUT.
Definition of Scattering Parameters

- **S-parameters** are power wave descriptors that permit us to define the input-output relations of a network in terms of incident and reflected power waves.

\[
\begin{bmatrix}
a_1 \\
b_1 \\
\end{bmatrix} \quad \begin{bmatrix}
a_2 \\
b_2 \\
\end{bmatrix}
\]

\[\begin{bmatrix}
a_n \\
b_n \\
\end{bmatrix}\quad \text{normalized incident power waves}
\]

\[\begin{bmatrix}
a_n \\
b_n \\
\end{bmatrix}\quad \text{normalized reflected power waves} \]
Definition of Scattering Parameters

\[a_n = \frac{1}{2\sqrt{Z_0}} (V_n + Z_0 I_n) \] \hspace{1cm} (1)

\[b_n = \frac{1}{2\sqrt{Z_0}} (V_n - Z_0 I_n) \] \hspace{1cm} (2)

Index \(n \) refers either to port number 1 or 2. The impedance \(Z_0 \) is the characteristic impedance of the connecting lines on the input and output side of the network.
Inverting (1) leads to the following voltage and current expressions:

\[V_n = \sqrt{Z_0} (a_n + b_n) \] \hspace{1cm} (3)

\[I_n = \frac{1}{\sqrt{Z_0}} (a_n - b_n) \] \hspace{1cm} (4)
Definition of Scattering Parameters

Recall the equations for power:

\[
P_n = \frac{1}{2} Re\{V_n I_n^*\} = \frac{1}{2} \left(|a_n|^2 - |b_n|^2 \right) \quad (5)
\]

Isolating forward and backward traveling wave components in (3) and (4), we see

\[
a_n = \frac{V_n^+}{\sqrt{Z_o}} = \sqrt{Z_o} I_n^+ \quad (6)
\]

\[
b_n = \frac{V_n^-}{\sqrt{Z_o}} = -\sqrt{Z_o} I_n^- \quad (7)
\]
Definition of Scattering Parameters

We can now define S-parameters:

\[
\begin{pmatrix}
 b_1 \\
 b_2
\end{pmatrix}
= \begin{bmatrix}
 S_{11} & S_{12} \\
 S_{21} & S_{22}
\end{bmatrix}
\begin{pmatrix}
 a_1 \\
 a_2
\end{pmatrix}
\]

(8)
Definition of Scattering Parameters

\[S_{11} = \frac{b_1}{a_1} \bigg|_{a_2=0} = \frac{\text{Reflected power wave at port 1}}{\text{Incident power wave at port 2}} \quad (9) \]

\[S_{21} = \frac{b_2}{a_1} \bigg|_{a_2=0} = \frac{\text{Transmitted power wave at port 2}}{\text{Incident power wave at port 1}} \quad (10) \]

\[S_{22} = \frac{b_2}{a_2} \bigg|_{a_1=0} = \frac{\text{Reflected power wave at port 2}}{\text{Incident power wave at port 2}} \quad (11) \]

\[S_{12} = \frac{b_1}{a_2} \bigg|_{a_1=0} = \frac{\text{Transmitted power wave at port 1}}{\text{Incident power wave at port 2}} \quad (12) \]
Observations:

- $a_2=0$, and $a_1=0 \implies$ no power waves are returned to the network at either port 2 or port 1.
- However, these conditions can only be ensured when the connecting transmission line are terminated into their characteristic impedances.
- Since the S-parameters are closely related to power relations, we can express the normalized input and output waves in terms of time averaged power.

The average power at port 1 is given by

$$P_1 = \frac{1}{2} \frac{|V_1^+|^2}{Z_o} (1 - |\Gamma_{in}|^2) = \frac{1}{2} \frac{|V_1^+|^2}{Z_o} (1 - |S_{11}|^2) \quad (13)$$
Scattering Parameters

The reflection coefficient at the input side is expressed in terms of S_{11} under matched output according:

$$\Gamma_{in} = \frac{V_1^-}{V_1^+} = \frac{b_1}{a_1} \bigg|_{a_2=0} = S_{11} \quad (14)$$

This also allows us to redefine the VSWR at port 1 in terms of S_{11} as

$$VSWR = \frac{1 + |S_{11}|}{1 - |S_{11}|} \quad (15)$$
Scattering Parameters

We can identify the incident power in (13) and express it in terms of a_1:

$$\frac{1}{2} \left| V_1^+ \right|^2 = \frac{P_{\text{inc}}}{Z_o} = \frac{|a_1|^2}{2}$$

(16)

Maximal available power from the generator

The total power at port 1 (under matched output condition) expressed as a combination of incident and reflected powers:

$$P_1 = P_{\text{inc}} + P_{\text{refl}} = \frac{1}{2} \left(|a_1|^2 - |b_1|^2 \right) = \frac{|a_1|^2}{2} \left(1 - |\Gamma_{\text{in}}|^2 \right)$$

(17)
Scattering Parameters

If the reflected coefficient, or S_{11}, is zero, all available power from the source is delivered to port 1 of the network. An identical analysis at port 2 gives

$$P_2 = \frac{1}{2} \left(|a_2|^2 - |b_2|^2 \right) = \frac{|a_2|^2}{2} \left(1 - |\Gamma_{out}|^2 \right) \quad (18)$$

Meaning of S-Parameters

- S-parameters can only be determined under conditions of perfect matching on the input or the output side.

Measurement of S_{11} and S_{21} by matching the line impedance Z_o at port 2 through a corresponding load impedance $Z_L = Z_o$.

Microwave Physics and Techniques
UCSB – June 2003
Meaning of S-Parameters

This configuration allows us to compute S_{11} by finding the input reflection coefficient:

$$S_{11} = \Gamma_{in} = \frac{Z_{in} - Z_0}{Z_{in} + Z_0} \quad (19)$$

Taking the logarithm of the magnitude of S_{11} gives us the return loss in dB

$$RL = -20 \log|S_{11}| \quad (20)$$
Meaning of S-Parameters

With port 2 properly terminated, we find

\[S_{21} = \frac{b_2}{a_1}_{a_2=0} = \frac{V_2^- / \sqrt{Z_o}}{(V_1 + Z_o I_1) / (2 \sqrt{Z_o})}_{I_2^+ = V_2^+ = 0} \] (21)

Since \(a_2 = 0 \), we can set to zero the positive traveling voltage and current waves at port 2.

Replacing \(V_1 \) by the generator voltage \(V_{G1} \) minus the voltage drop over the source impedance \(Z_o \), \(V_{G1} - Z_o I_1 \) gives

\[S_{21} = \frac{2V_2^-}{V_{G1}} = \frac{2V_2}{V_{G1}} \] (22)
Meaning of S-Parameters

The forward power gain is

\[G_o = |S_{21}|^2 = \left| \frac{V_2}{V_{G1}/2} \right|^2 \] \hspace{1cm} (23)

If we reverse the measurement procedure and attach a generator voltage \(V_{G2} \) to port 2 and properly terminate port 1, we can determine the remaining two S-parameters, \(S_{22} \) and \(S_{12} \).
Meaning of S-Parameters

To compute S_{22} we need to find the output reflection coefficient Γ_{out} in a similar way for S_{11}:

$$S_{22} = \Gamma_{out} = \frac{Z_{out} - Z_0}{Z_{out} + Z_0}$$ \hspace{1cm} (24)$$

$$S_{12} = \left. \frac{b_1}{a_2} \right|_{a_1=0} = \frac{V_1^- / \sqrt{Z_0}}{(V_2 + Z_0 I_2) / (2 \sqrt{Z_0})} \bigg|_{I_1^+ = V_1^+ = 0}$$ \hspace{1cm} (25)$$

$$S_{12} = \frac{2V_1^-}{V_{G2}} = \frac{2V_1}{V_{G2}}$$ \hspace{1cm} (26)$$

$$G_{or} = |S_{12}|^2 = \left| \frac{V_1}{V_{G2}/2} \right|^2$$ \hspace{1cm} (27)$$

Reverse power gain
Determination of a T-network elements

Find the S-parameters and resistive elements for the 3-dB attenuator network. Assume that the network is placed into a transmission line section with a characteristic line impedance of $Z_0=50\ \Omega$
Determination of a T-network elements

An attenuator should be matched to the line impedance and must meet the requirement $S_{11} = S_{22} = 0$.

Because of symmetry, it is clear that $R_1 = R_2$.

$$Z_{in} = R_1 + \frac{R_3 (R_2 + 50\Omega)}{(R_3 + R_2 + 50\Omega)} = 50\Omega$$

Circuit for S_{11} and S_{21}
Determination of a T-network elements

We now investigate the voltage \(V_2 = V^-_2 \) at port 2 in terms of \(V_1 = V^+_1 \).

\[
V_2 = \left(\frac{R_3(R_1 + 50\Omega)}{(R_3 + R_1 + 50\Omega)} + \frac{50\Omega}{50\Omega + R_1} \right)V_1
\]
Determination of a T-network elements

For a 3 dB attenuation, we require

\[
S_{21} = \frac{2V_2}{V_{G1}} = \frac{V_2}{V_1} = \frac{1}{\sqrt{2}} = 0.707 = S_{12}
\]

Setting the ratio of \(V_2/V_1\) to 0.707 and using the input impedance expression, we can determine \(R_1\) and \(R_3\)

\[
R_1 = R_2 = \frac{\sqrt{2} - 1}{\sqrt{2} + 1} Z_0 = 8.58\Omega
\]

\[
R_3 = 2\sqrt{2}Z_0 = 141.4\Omega
\]
Determination of a T-network elements

Note: the choice of the resistor network ensures that at the input and output ports an impedance of 50 Ω is maintained. This implies that this network can be inserted into a 50 Ω transmission line section without causing undesired reflections, resulting in an insertion loss.
Chain Scattering Matrix

To extend the concept of the S-parameter presentation to cascaded network, it is more efficient to rewrite the power wave expressions arranged in terms of input and output ports. This results in the chain scattering matrix notation. That is,

\[
\begin{bmatrix}
 a_1 \\
 b_1
\end{bmatrix} = \begin{bmatrix}
 T_{11} & T_{12} \\
 T_{21} & T_{22}
\end{bmatrix} \begin{bmatrix}
 b_2 \\
 a_2
\end{bmatrix}
\] (28)

It is immediately seen that cascading of two dual-port networks becomes a simple multiplication.
Chain Scattering Matrix

Cascading of two networks A and B
Chain Scattering Matrix

If network A is described by

\[
\begin{pmatrix}
a_1^A \\
b_1^A
\end{pmatrix} = \begin{bmatrix} T_{11}^A & T_{12}^A \\ T_{21}^A & T_{22}^A \end{bmatrix} \begin{pmatrix}
b_2^A \\
a_2^A
\end{pmatrix}
\] \hspace{1cm} (29)

And network B by

\[
\begin{pmatrix}
a_1^B \\
b_1^B
\end{pmatrix} = \begin{bmatrix} T_{11}^B & T_{12}^B \\ T_{21}^B & T_{22}^B \end{bmatrix} \begin{pmatrix}
b_2^B \\
a_2^B
\end{pmatrix}
\] \hspace{1cm} (30)
Chain Scattering Matrix

\[
\begin{pmatrix}
 b_2^A \\
 a_2^A \\
 a_2^A \\
 b_1^B
\end{pmatrix} =
\begin{pmatrix}
 a_1^B \\
 b_1^B
\end{pmatrix}
\] (31)

Thus, for the combined system, we conclude

\[
\begin{pmatrix}
 a_1^A \\
 b_1^A
\end{pmatrix} =
\begin{bmatrix}
 T_{11}^A & T_{12}^A \\
 T_{21}^A & T_{22}^A
\end{bmatrix}
\begin{bmatrix}
 T_{11}^B & T_{12}^B \\
 T_{21}^B & T_{22}^B
\end{bmatrix}
\begin{pmatrix}
 b_2^B \\
 a_2^B
\end{pmatrix}
\] (31)
Chain Scattering Matrix

The conversion from S-matrix to the chain matrix notation is similar as described before.

\[
T_{11} = \frac{a_1}{b_2}\bigg|_{a_2=0} = \frac{a_1}{S_{21}a_1} = \frac{1}{S_{21}} \tag{32}
\]

\[
T_{12} = -\frac{S_{22}}{S_{21}} \tag{33}
\]

\[
T_{21} = \frac{S_{11}}{S_{21}} \tag{34}
\]

\[
T_{22} = -\left(\frac{S_{11}S_{22} - S_{12}S_{21}}{S_{21}}\right) = -\frac{\Delta S}{S_{21}} \tag{35}
\]
Chain Scattering Matrix

Conversely, when the chain scattering parameters are given and we need to convert to S-parameters, we find the following relations:

\[S_{11} = \left. \frac{b_1}{a_2} \right|_{a_2=0} = \frac{T_{21}b_2}{T_{11}b_2} = \frac{T_{21}}{T_{11}} \]
\[S_{12} = \frac{(T_{11}T_{22} - T_{12}T_{21})}{T_{11}} = \frac{\Delta T}{T_{11}} \]
\[S_{21} = \frac{1}{T_{11}} \]
\[S_{22} = -\frac{T_{12}}{T_{11}} \]
Conversion between Z- and S-Parameters

To find the conversion between the S-parameters and the Z-parameters, let us begin with defining S-parameters relation in matrix notation

\[\{b\} = [S]\{a\} \quad (40) \]

Multiplying by \(\sqrt{Z_o} \) gives

\[\sqrt{Z_o}\{b\} = \{V^-\} = \sqrt{Z_o}[S]\{a\} = [S]\{V^+\} \quad (41) \]

Adding \(\{V^+\} = \sqrt{Z_o}\{a\} \) to both sides results in

\[\{V\} = [S]\{V^+\} + \{V^+\} = ([S] + [E])\{V^+\} \quad (42) \]
Conversion between Z- and S-Parameters

To compare this form with the impedance expression

\[\{V\} = [Z]\{I\} \]

We have to express \(\{V^+\} \) in term of \(\{I\} \). Subtract \([S]\{V^+\}\) from both sides of

\[\{V^+\} = \sqrt{Z_0}\{a\} \]

\[\{V^+\} - [S]\{V^+\} = \sqrt{Z_0}(\{a\} - \{b\}) = Z_0\{I\} \quad (43) \]

\[\{V^+\} = Z_0([E] - [S])^{-1}\{I\} \quad (44) \]
Conversion between Z- and S-Parameters

Substituting (44) into (42) yields

\[
\{V\} = ([S] + [E])\{V^+\} = Z_\circ ([S] + [E])([E] - [S])^{-1}\{I\} \quad (45)
\]

or

\[
[Z] = Z_\circ ([S] + [E])([E] - [S])^{-1} \quad (46)
\]

Explicitly

\[
\begin{bmatrix}
Z_{11} & Z_{12} \\
Z_{21} & Z_{22}
\end{bmatrix}
= Z_\circ \begin{bmatrix}
1 + S_{11} & S_{12} \\
S_{21} & 1 + S_{22}
\end{bmatrix}
\begin{bmatrix}
1 - S_{11} & -S_{12} \\
-S_{21} & 1 - S_{22}
\end{bmatrix}^{-1}
\]

\[
= Z_\circ \begin{bmatrix}
1 + S_{11} & S_{12} \\
S_{21} & 1 + S_{22}
\end{bmatrix}
\begin{bmatrix}
1 - S_{22} & S_{12} \\
S_{21} & 1 - S_{11}
\end{bmatrix}
\]

(47)
Practical Network Analysis
Criteria for Distortionless Transmission

Linear Networks

- **Constant amplitude** over bandwidth of interest
- **Linear phase** over bandwidth of interest
Linear Versus Nonlinear Behavior

Linear behavior:
- Input and output frequencies are the same (no additional frequencies created)
- Output frequency only undergoes magnitude and phase change

Nonlinear behavior:
- Output frequency may undergo frequency shift (e.g., with mixers)
- Additional frequencies created (harmonics, inter-modulation)
Magnitude Variation with Frequency

\[f(t) = \sin \omega t + \frac{1}{3} \sin 3\omega t + \frac{1}{5} \sin 5\omega t \]
Phase Variation with Frequency

\[f(t) = \sin \omega t + \frac{1}{3} \sin 3\omega t + \frac{1}{5} \sin 5\omega t \]

Microwave Physics and Techniques
UCSB – June 2003
Criteria for Distortionless Transmission

Nonlinear Networks

Saturation, crossover, inter-modulation, and other nonlinear effects can cause signal distortion.
The Need for Both Magnitude and Phase

1. Complete characterization of linear networks

2. Complex impedance needed to design matching circuits

3. Complex values needed for device modeling

4. Time Domain Characterization

5. Vector Accuracy Enhancement

Microwave Physics and Techniques

UCSB – June 2003
High-Frequency Device Characterization

Lightwave Analogy

Incident Reflected Transmitted
Transmission Line Review

Low frequencies
- Wavelength $>>$ wire length
- Current (I) travels down wires easily for efficient power transmission
- Voltage and current not dependent on position

High frequencies
- Wavelength \approx or $<<$ wire (transmission line) length
- Need transmission-line structures for efficient power transmission
- Matching to characteristic impedance (Z_0) is very important for low reflection
- Voltage dependent on position along line
Transmission Line Terminated with Z_o

For reflection, a transmission line terminated in Z_o behaves like an infinitely long transmission line.

$V_{refl} = 0$! (all the incident power is absorbed in the load)
Transmission Line Terminated with Short, Open

For reflection, a transmission line terminated in a short or open reflects all power back to source.

\[Z_s = Z_0 \]

In phase (0°) for open
Out of phase (180°) for short
Transmission Line Terminated with $25\,\Omega$

- $Z_s = Z_o$
- $Z_L = 25\,\Omega$

Standing wave pattern does not go to zero as with short or open.
High-Frequency Device Characterization

Reflection

\[\frac{\text{Reflected}}{\text{Incident}} = \frac{A}{R} \]

- SWR
- S-Parameters \(S_{11}, S_{22} \)
- Reflection Coefficient \(\Gamma, \rho \)
- Return Loss
- Impedance, Admittance \(R+jX, G+jB \)

Transmission

\[\frac{\text{Transmitted}}{\text{Incident}} = \frac{B}{R} \]

- Gain / Loss
- S-Parameters \(S_{21}, S_{12} \)
- Transmission Coefficient \(T, \tau \)
- Insertion Phase
- Group Delay

Microwave Physics and Techniques

UCSB – June 2003
Reflection Parameters

Reflection Coefficient

$$\Gamma = \frac{V_{\text{reflected}}}{V_{\text{incident}}} = \rho \angle \Phi = \frac{Z_L - Z_O}{Z_L + Z_O}$$

Return loss

$$\rho = |\Gamma|$$

Return loss

$$\rho = |\Gamma|$$

Voltage Standing Wave Ratio

$$VSWR = \frac{E_{\text{max}}}{E_{\text{min}}} = \frac{1 + \rho}{1 - \rho}$$

No reflection

(Z_L = Z_0)

Full reflection

(Z_L = open, short)

| 0 dB | 0 |
| 0 dB | 1 |

Microwave Physics and Techniques

UCSB – June 2003
Transmission Parameters

Transmission Coefficient \(T \) = \(\frac{V_{\text{Transmitted}}}{V_{\text{Incident}}} = \tau e^{j\phi} \)

Insertion Loss (dB) = -20 Log \(\frac{V_{\text{Trans}}}{V_{\text{Inc}}} \) = -20 log \(\tau \)

Gain (dB) = 20 Log \(\frac{V_{\text{Trans}}}{V_{\text{Inc}}} \) = 20 log \(\tau \)
Deviation from Linear Phase

Use electrical delay to remove linear portion of phase response

- RF filter response
- Linear electrical length added (Electrical delay function)
- Deviation from linear phase

Low resolution

High resolution
Low-Frequency Network Characterization

H-parameters
\[V_1 = h_{11}I_1 + h_{12}V_2 \]
\[V_2 = h_{21}I_1 + h_{22}V_2 \]

Y-parameters
\[I_1 = y_{11}V_1 + y_{12}V_2 \]
\[I_2 = y_{21}V_1 + y_{22}V_2 \]

Z-parameters
\[V_1 = z_{11}I_1 + z_{12}I_2 \]
\[V_2 = z_{21}I_1 + z_{22}I_2 \]

\[h_{11} = \left. \frac{V_1}{I_1} \right|_{V_2=0} \]
\[h_{12} = \left. \frac{V_1}{V_2} \right|_{I_1=0} \]

(requires short circuit)
(requires open circuit)

All of these parameters require measuring voltage and current (as a function of frequency)
Limitations of H, Y, Z Parameters (Why use S-parameters?)

H, Y, Z parameters
- Hard to measure total voltage and current at device ports at high frequencies
- Active devices may oscillate or self-destruct with shorts opens

S-parameters
- Relate to familiar measurements (gain, loss, reflection coefficient ...)
- Relatively easy to measure
- Can cascade S-parameters of multiple devices to predict system performance
- Analytically convenient
 - CAD programs
 - Flow-graph analysis
- Can compute H, Y, or Z parameters from S-parameters if desired

\[
\begin{align*}
\text{Incident} & \quad S_{21} \quad \text{Transmitted} \\
\text{Reflected} & \quad S_{11} \quad \text{Port 1} \\
\text{Port 2} & \quad S_{22} \quad \text{Reflected} \\
\end{align*}
\]

\[
\begin{align*}
\text{b}_1 &= S_{11}\text{a}_1 + S_{12}\text{a}_2 \\
\text{b}_2 &= S_{21}\text{a}_1 + S_{22}\text{a}_2 \\
\end{align*}
\]
Measuring S-Parameters

Forward

\[S_{11} = \frac{\text{Reflected}}{\text{Incident}} = \frac{b_1}{a_1} \quad \text{a}_2 = 0 \]

\[S_{21} = \frac{\text{Transmitted}}{\text{Incident}} = \frac{b_2}{a_1} \quad \text{a}_2 = 0 \]

Reverse

\[S_{12} = \frac{\text{Transmitted}}{\text{Incident}} = \frac{b_1}{a_2} \quad \text{a}_1 = 0 \]

\[S_{22} = \frac{\text{Reflected}}{\text{Incident}} = \frac{b_2}{a_2} \quad \text{a}_1 = 0 \]
What is the difference between network and spectrum analyzers?

Network analyzers:
- measure components, devices, circuits, sub-assemblies
- contain source and receiver
- display ratioed amplitude and phase (frequency or power sweeps)

Spectrum analyzers:
- measure signal amplitude characteristics (carrier level, sidebands, harmonics...)
- are receivers only (single channel)
- can be used for scalar component test (*no phase*) with tracking gen. or ext. source(s)

Hard: getting (accurate) trace
Easy: interpreting results

Measures known signal

Measures unknown signals
Signal Separation

Measuring incident signals for ratioing

Splitter
- usually resistive
- non-directional
- broadband

Coupler
- directional
- low loss
- good isolation, directivity
- hard to get low freq performance
Forward Coupling Factor

\[
\text{Coupling Factor (dB)} = -10 \log \frac{P_{\text{coupling forward}}}{P_{\text{incident}}}
\]

Example of 20 dB Coupler

Source

- 0 dBm
- 1 mW

Coupling, forward

- -20 dBm
- .01 mW

- -.046 dBm
- .99 mW

Z₀
Directional Coupler Isolation (Reverse Coupling Factor)

Example of 20 dB Coupler "turned around"

Isolation Factor (dB) = \(-10 \log \frac{P_{coupled\, reverse}}{P_{incident}}\)

Microwave Physics and Techniques

UCSB – June 2003
Directional Coupler Directivity

Directivity (dB) = \[10 \log \left(\frac{P_{\text{coupled forward}}}{P_{\text{coupled reverse}}} \right) \]

\[\text{Directivity} = \frac{\text{Coupling Factor}}{\text{Isolation}} \]

Directivity (dB) = Isolation (dB) - Coupling Factor (dB)

Example of 20 dB Coupler with 50 dB isolation:
Directivity = 50 dB - 20 dB = 30 dB
Measuring Coupler Directivity the Easy Way

Directivity = 35 dB - 0 dB = 35 dB

Good approximation for coupling factors ≥ 10 dB

Assume perfect load

Source

0.018 (35 dB) (normalized)

Coupler Directivity

35 dB

1.0 (0 dB) (reference)

Source

load

short
Narrowband Detection - Tuned Receiver

- **Best** sensitivity / dynamic range
- Provides harmonic / spurious signal rejection
- Improve dynamic range by increasing power, decreasing IF bandwidth, or averaging
- Trade off noise floor and measurement speed

![Diagram showing signal processing with ADC/DSP block and frequency spectrum between 10 MHz and 26.5 GHz]
Comparison of Receiver Techniques

Broadband (diode) detection
-60 dBm Sensitivity
- higher noise floor
- false responses

Narrowband (tuned-receiver) detection
< -100 dBm Sensitivity
- high dynamic range
- harmonic immunity

Dynamic range = maximum receiver power - receiver noise floor
Dynamic Range and Accuracy

Dynamic range is very important for measurement accuracy!
Measurement Error Modeling

Systematic errors
- due to imperfections in the analyzer and test setup
- are assumed to be time invariant (predictable)
- can be characterized (during calibration process) and mathematically removed during measurements

Random errors
- vary with time in random fashion (unpredictable)
- cannot be removed by calibration
- main contributors:
 - instrument noise (source
 - phase noise, IF noise floor, etc.)
 - switch repeatability
 - connector repeatability

Drift errors
- are due to instrument or test-system performance changing after a calibration has been done
- are primarily caused by temperature variation
- can be removed by further calibration(s)
Systematic Measurement Errors

Six forward and six reverse error terms yields 12 error terms for two-port devices

Frequency response
- reflection tracking (A/R)
- transmission tracking (B/R)

Microwave Physics and Techniques
UCSB – June 2003
Types of Error Correction

Two main types of error correction:

- **response (normalization)**
 - simple to perform
 - only corrects for tracking errors
 - stores reference trace in memory, then does data divided by memory

- **vector**
 - requires more standards
 - requires an analyzer that can measure phase
 - accounts for all major sources of systematic error
Signal Flow Computations

Complicated networks can be efficiently analyzed in a manner identical to signals and systems and control.

in general

\[a_i \quad \Gamma_{ij} \quad b_j \]
Signal Flow Graphs

Basic Rules:

We’ll follow certain rules when we build up a network flow graph.

1. Each variable, a_1, a_2, b_1, and b_2 will be designated as a node.

2. Each of the S-parameters will be a branch.

3. Branches enter dependent variable nodes, and emanate from the independent variable nodes.

4. In our S-parameter equations, the reflected waves b_1 and b_2 are the dependent variables and the incident waves a_1 and a_2 are the independent variables.

5. Each node is equal to the sum of the branches entering it.
Signal Flow Graphs

Let’s apply these rules to the two S-parameters equations

\[b_1 = S_{11}a_1 + S_{12}a_2 \]
\[b_2 = S_{21}a_1 + S_{22}a_2 \]

First equation has three nodes: b_1, a_1, and a_2. b_1 is a dependent node and is connected to a_1 through the branch S_{11} and to node a_2 through the branch S_{12}. The second equation is similar.
The relationship between the traveling waves is now easily seen. We have a_1 incident on the network. Part of it transmits through the network to become part of b_2. Part of it is reflected to become part of b_1. Meanwhile, the a_2 wave entering port two is transmitted through the network to become part of b_1 as well as being reflected from port two as part of b_2. By merely following the arrows, we can tell what’s going on in the network. This technique will be all the more useful as we cascade networks or add feedback paths.
Arrangement for Signal Flow Analysis

\[b_s = \frac{\sqrt{Z_0}}{Z_G + Z_0} V_G \]
Analysis of Most Common Circuit

\[
\begin{align*}
\frac{a_1}{b_s} & \rightarrow \frac{1}{1 - \left(S_{11} + \frac{S_{12} S_{21}}{1 - S_{22} \Gamma_L} \right) \Gamma_S} \\
\end{align*}
\]
\[\Gamma_{in} = \frac{b_1}{a_1} = S_{11} + \frac{S_{12} S_{21}}{1 - S_{22} \Gamma_L} \Gamma_L \]

Note: Only \(\Gamma_L = 0 \) ensures that \(S_{11} \) can be measured.
Scattering Matrix

The scattered-wave amplitudes are linearly related to the incident wave amplitudes. Consider the N port junction

If the only incident wave is V^+_{1} then

$$V^-_{1} = S_{11}V^+_{1}$$

S_{11} is the reflection coefficient

The total voltage is port 1 is

$$V_{1} = V^+_{1} + V^-_{1}$$

Waves will also be scattered out of other ports. We will have

$$V^-_{n} = S_{n1}V^+_{n} \quad n = 2,3,4,...N$$
Scattering Matrix

If all ports have incident wave then

\[
\begin{bmatrix}
V_1^- \\
V_2^- \\
\vdots \\
V_N^-
\end{bmatrix} =
\begin{bmatrix}
S_{11} & S_{12} & S_{13} & \cdots & S_{1N} \\
S_{21} & S_{22} & S_{23} & \cdots & S_{2N} \\
\vdots & \vdots & \vdots & \cdots & \vdots \\
S_{N1} & S_{N2} & S_{N3} & \cdots & S_{NN}
\end{bmatrix}
\begin{bmatrix}
V_1^+ \\
V_2^+ \\
\vdots \\
V_N^+
\end{bmatrix}
\]

or

\[
[V^-] = [S][V^+]
\]

\([S]\) is called the scattering matrix \(S_{ij} = \frac{V_i^-}{V_j^+} \) for \(V_k^+ = 0 \) \((k \neq j)\)
Scattering Matrix

If we choose the equivalent Z_0 equal to 1 then the incident power is given by

$$\frac{1}{2} |V^+_n|^2$$

and the scattering will be symmetrical. With this choice

$$V = V^+ + V^-, I = I^+ + I^-$$

and

$$V^+ = \frac{1}{2} (V + I)$$
$$V^- = \frac{1}{2} (V - I)$$
Scattering Matrix

V^+ and V^- are the variables in the scattering matrix formulation; but they are linear combination of V and I.

Other normalization are

$$v = \frac{V}{\sqrt{Z_0}} \quad i = \frac{I}{\sqrt{Z_0}}$$

Just as in the impedance matrix there are several properties of the scattering matrix we want to consider.

1. A shift of the reference planes
2. S matrix for reciprocal devices
3. S matrix for the lossless devices
Scattering Matrix

Example: two-port network

Assume TE_{10} modes at t_1 and t_2

Equivalent Circuit

Apply KVL:

\[V_1 = Z_1 I_1 + Z_3 I_1 + Z_3 I_2 \]
\[V_2 = Z_2 I_2 + Z_3 I_2 + Z_3 I_1 \]
Scattering Matrix

If

\[Z_3 = Z_{12} = \frac{V_1}{I_2} \bigg|_{I_1=0} \]

\[Z_1 = Z_{11} - Z_{12} \]

\[Z_2 = Z_{22} - Z_{12} \]

Then we have

\[V_1 = Z_{11} I_1 + Z_{12} I_2 \]

\[V_2 = Z_{22} I_2 + Z_{12} I_2 \]

and

\[[V] = [Z][I] \]
Scattering Matrix

This can be transformed into an admittance matrix

\[
\begin{bmatrix}
I_1 \\
I_2
\end{bmatrix} =
\begin{bmatrix}
Y_{11} & Y_{12} \\
Y_{12} & Y_{22}
\end{bmatrix}
\begin{bmatrix}
V_1 \\
V_2
\end{bmatrix}
\]
Scattering Matrix

Traveling Wave:

\[V^+ = Ae^{-\delta x}, V^- = Ae^{\delta x} \]

\[V(x) = V^+(x) + V^-(x) \]

Similarly for current:

\[I(x) = I^+(x) - I^-(x) = \frac{V^+(x)}{Z_0} - \frac{V^-(x)}{Z_0} \]

Reflection Coefficient:

\[\Gamma(x) = \frac{V^-(x)}{V^+(x)} \]
Scattering Matrix

Introduce “normalized” variables:

\[v(x) = V(x)/\sqrt{Z_0}, \ i(x) = \sqrt{Z_0} I(x) \]

So that

\[v(x) = a(x) + b(x) \quad i(x) = a(x) - b(x) \quad \text{and} \quad b(x) = \Gamma(x) a(x) \]

This defines a single port network. What about 2-port?

2-port

\[b_1 = S_{11} a_1 + S_{12} a_2 \]
\[b_2 = S_{21} a_1 + S_{22} a_2 \]
Scattering Matrix

Each reflected wave \((b_1, b_2)\) has two contributions: one from the incident wave at the same port and another from the incident wave at the other port.

How to calculate \(S\)-parameters?

\[
S_{11} = \left. \frac{b_1}{a_1} \right|_{a_2=0} \quad \text{Input reflected coefficient with output matched.}
\]

\[
S_{12} = \left. \frac{b_1}{a_2} \right|_{a_1=0} \quad \text{Reverse transmission coefficient with input matched.}
\]

\[
S_{21} = \left. \frac{b_2}{a_1} \right|_{a_2=0} \quad \text{Transmission coefficient with output matched.}
\]

\[
S_{22} = \left. \frac{b_2}{a_2} \right|_{a_1=0} \quad \text{Output reflected coefficient with input matched.}
\]