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Intermodulation in nonlinear SQUID metamaterials: Experiment and theory
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The response of nonlinear metamaterials and superconducting electronics to two-tone excitation is critical
for understanding their use as low-noise amplifiers and tunable filters. A new setting for such studies is that
of metamaterials made of radio frequency superconducting quantum interference devices (rf-SQUIDs). The
two-tone response of self-resonant rf-SQUID meta-atoms and metamaterials is studied here via intermodulation
(IM) measurement over a broad range of tone frequencies and tone powers. A sharp onset followed by a surprising
strongly suppressed IM region near the resonance is observed. Using a two time scale analysis technique, we
present an analytical theory that successfully explains our experimental observations. The theory predicts that
the IM can be manipulated with tone power, center frequency, frequency difference between the two tones, and
temperature. This quantitative understanding potentially allows for the design of rf-SQUID metamaterials with
either very low or very high IM response.
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I. INTRODUCTION

Nonlinearity is a key consideration in a wide range
of important applications including amplifiers [1–3] and
tunable filters [4]. Introduction of nonlinearity into meta-
materials facilitates tunability, design flexibility, and self-
induced nonlinear responses [5,6], giving rise to develop-
ments in metamaterial-based amplifiers [7,8], filters [9–11],
and antennas [12–14]. However, as data streams containing
multifrequency signals pass through these nonlinear com-
ponents, they generate intermodulation (IM) products via
frequency mixing [15]. The same issue appears in intrinsically
nonlinear superconducting electronics. The IM between two
input frequencies f1 and f2 leads to products at frequen-
cies pf1 ± qf2 (p and q are integers), forming side bands
and additional noise that could diminish the performance
of superconducting devices [4,16–27]. On the other hand,
IM generation can be used as a diagnostic to determine
various types of defects in superconductors [28–31], to
study unconventional superconductors [28,29,31–41], and to
amplify microwave signals [2,27,42,43], even at the quantum
limit in Josephson parametric amplifiers [1,3] and Josephson
metamaterials [7]. Therefore, IM is of mutual research interest
in wireless communication, nonlinear metamaterials, as well
as in quantum information processing, and superconducting
electronics and materials. Extensive measurement and theory
have been devoted to IM in these fields [18,25,44–52].

rf-SQUID metamaterials combine the advantages of super-
conducting electronics and nonlinear metamaterials [5,53,54].
An rf-SQUID is the macroscopic quantum version of a split
ring resonator (SRR) with the gap capacitance in the SRR
replaced by a nonlinear Josephson junction. SQUIDs can be
very sensitive to dc and rf magnetic flux, on the scale of the
flux quantum �0 = h/2e = 2.07 × 10−15 T m2, where h is
Planck’s constant and e is the elementary charge. Previous
work reveals that rf-SQUID meta-atoms and metamaterials
have a resonant frequency tunability of up to 80 THz/G
by varying the dc magnetic flux when the driving rf flux
amplitude is low [55–57]. In Ref. [58] the authors studied

the bistability of rf-SQUID meta-atoms and metamaterials
driven by intermediate rf flux amplitudes. The bistability
results in a lower resonant frequency and a nearly full
disappearance of resonance absorption (transparency). Such
broadband transparency can be switched on and off via
drive frequency, signal amplitude, or dc flux hysteresis [58].
These properties make rf-SQUID metamaterials attractive for
tunable filters, gain-modulated antennas [59], and wideband
power limiters for direct-digitizing rf receivers [60] in next-
generation wireless communication systems.

Basically, an rf-SQUID is a nonlinear resonator with a
manipulatable resonant frequency and absorption that depend
on the dc and rf flux amplitudes, the temperature, and the drive
signal history [55–58,61–69]. We will study IM generation
around this tunable, bistable resonance.

In this paper we report comprehensive results from experi-
mental and theoretical IM studies of rf-SQUID meta-atoms and
metamaterials around resonance. We focus on the case where
two input signals have the same amplitude, as opposed to IM
amplification experiments where one tone is much stronger
than the other. We find that under certain combinations of tone
power and frequency, the SQUID shows a sudden onset of
the third order IM generation followed by a near-zero third
order IM generation (gap). This phenomenon is a result of the
bistable properties of rf-SQUIDs. This intrinsic suppression of
IM generation may be useful as a mechanism for depressing
signal mixing in communication applications. A detailed
theoretical model is presented to explain this surprising gap
feature in IM generation. The intensity of IM generation
sensitively depends on the parameters of the rf-SQUIDs, and
can be modulated by dc/rf magnetic field, and temperature,
potentially allowing one to design and tune the IM generation
to meet various requirements for applications.

II. EXPERIMENT DETAILS

Two-dimensional metamaterials were constructed by po-
sitioning rf-SQUID meta-atoms in a square grid array
on a planar substrate [Fig. 1(a)]. The single rf-SQUID
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FIG. 1. (a) Left: The optical image of meta-atoms of a 27 × 27
array metamaterial. Inset shows details of a single SQUID. Right:
The 3D structure of a single rf-SQUID. The distance between two
niobium layers is exaggerated to show the overlap capacitance.
(b) The experimental setup for our IM measurements. (c) The circuit
model for a single SQUID. (d) Experimental measurements of output
power from the 27 × 27 rf-SQUID metamaterial at a temperature of
T = 4.6 K as a function of frequency when two signals of the same
amplitude are injected at a center frequency of 21.499 GHz and a
difference frequency of 1 MHz.

meta-atoms, and the metamaterials, were fabricated using
the Hypres 0.3 μA/μm2 Nb/AlOx/Nb junction process on
silicon substrates, and the meta-atom has a superconducting
transition temperature Tc = 9.2 K. A 3D perspective drawing
of a single rf-SQUID is shown in Fig. 1(a). Two Nb films (135
and 300 nm thick) connected by a via and a Josephson
junction make up the superconducting loop with geomet-
rical inductance L. The capacitance C has two parts: the
overlap between two layers of Nb with 200 nm thick SiO2

dielectric in between, and the Josephson junction intrinsic
capacitance. A single rf-SQUID can thus be treated as a
resistively and capacitively shunted Josephson junction (RCSJ
model) in parallel with superconducting loop inductance
[Fig. 1(c)]. The rf-SQUIDs are designed to be low noise
{� = 2πkBT /(�0Ic) < 1, where T is the temperature, Ic is
the critical current in the Josephson junction, �0 = h/2e is the

quantum flux, and LF = (kBT )−1[�0/(2π )]2 � L [70]} and
nonhysteretic (βrf = 2πLIc/�0 < 1). No dc magnetic flux is
applied for this set of experiments.

In the experimental setup Fig. 1(b), the rf-SQUID array sits
in a rectangular waveguide orientated so that the rf magnetic
field of the TE mode is perpendicular to the rf-SQUIDs.
Before each two-tone experiment, a single-tone transmission
experiment is conducted to determine the resonant frequency
at which the system has maximum power absorption. IM prod-
ucts are then measured systematically around the resonance;
two signals of frequencies f1 and f2 having the same amplitude
and a small difference in frequency �f = f2 − f1 > 0 are
injected. The output signal contains the two main tones and
their harmonics, as well as IM products.

An example of the generation of an IM spectrum in
the metamaterial around resonance (of a 27 × 27 array of
rf-SQUIDs) is shown in Fig. 1(d) with �f = 1 MHz. This
spectrum was measured under a fixed tone center frequency
and a fixed tone power. The output signal at frequency
fi = pf1 + qf2 is called the (|p| + |q|)th order IM. We
focus on nearby IM products which are of the third, fifth,
seventh,. . . order. The IM signals generated at nearby fre-
quencies f3 = 2f1 − f2 and f4 = 2f2 − f1, called the lower
and upper third order IM (f2 > f1), respectively, are of
most concern in communications and mixing applications.
When the metamaterial is superconducting (measured at
T = 4.6 K), there is strong IM generation observed above
the noise floor up to 51st order. There is no observed IM
output when temperature is above the transition temperature
Tc = 9.2 K.

The IM spectrum changes considerably as the center
frequency and tone power are varied. We mainly examine
the modulation of the third order IM power. Again we first
search for resonance in a single-tone experiment as the input
power varies. In the intermediate power regime, higher input
power results in a shift of the resonant frequency to lower
values [58], as seen in the purple curve in Fig. 2(a). The
third order IM power is then measured with two-tone input
around the resonance. Figure 2(a) shows the upper third order
IM power Pf4 (colors) generated from a single rf-SQUID
meta-atom as a function of the input tone power (horizontal
axis) and the center frequency (vertical axis) of the two tones.
The IM generation generally follows the resonant frequency
curve. Intermodulation is small for low input tone powers
(< − 80 dBm), with a peak just below the resonant frequency.
As the input power increases, the IM generation also increases
while shifting to lower frequencies. At the same time a second
peak appears above the resonant frequency, forming an IM
gap where the IM is reduced to nearly the noise level around
the resonant frequency. The same phenomenon is observed
for a 7 × 7 array rf-SQUID metamaterial and an 11 × 11
array rf-SQUID metamaterial. Operating the meta-atom or
metamaterial in the gap regime minimizes the third order IM
frequency mixing.

Figure 2(c) compares the measured lower and upper third
order IM products (Pf3 and Pf4 ) as a function of frequency
around the gap feature at −65 dBm. Both IM powers show
a sharp onset above the noise level at around 17 GHz, and
decrease to a minimum value at 18 GHz, then reach another
peak at around 18.4 GHz before dropping continuously at
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FIG. 2. The upper third IM power Pf4 generated from a single
rf-SQUID meta-atom as a function of the applied rf flux and the
center frequency of the two tones for (a) experiment and (b) numerical
simulation. The purple curve indicates the resonant frequency for
a single-tone excitation. The frequency cut for output power at
the third IM Pf3 (blue solid line) and Pf4 (black dashed line) at
−65 dBm for (c) experiment and (d) simulation. Note that (c) is
plotted by averaging the measured frequency cut at the tone power
ranging from −65.2 to −64.8 dBm (with a step of 0.1 dBm) to reduce
the noise. The spacing between the two input tones is 10 MHz, and
the temperature is 4.6 K.

higher frequencies. However, the upper tone Pf4 has a higher
peak and a substantially lower dip than the lower tone Pf3 .
This asymmetry between two same-order IM tones was also
observed in other SQUID samples and in our numerical
simulations. We now wish to explore the origins of the features
seen in the data, including the sharp onset and the dip in the
third IM generation, as well as the asymmetry between the
upper and lower IM output signals.

III. MODELING

A. Numerical simulation

In this section we explore a simple circuit model that
reproduces the effects seen in the previous sections. The
circuit model suggests treating a single rf-SQUID as an RCSJ
in parallel with superconducting loop inductance [Fig. 1(c)].
We assume a uniformly driven and uncoupled SQUID array
metamaterial can also be described by the single junction
RCSJ model. The macroscopic quantum gauge-invariant phase
difference across the junction δ determines the current through
the junction I = Ic sin δ (Ic is the critical current of the
junction). In a closed superconducting loop δ is related to the
total magnetic flux inside the loop: δ − 2π�tot/�0 = 2πn,
where n is an integer, and again �0 = h/2e. Here we can take
n to be 0 without loss of generality as shifting δ by 2π leaves

the current I unchanged [71]. The voltage across the junction
can be written as V = 2π�0dδ/dt .

The time evolution of the phases is determined by the RCSJ
circuit equation [71], obtained by demanding that the total
flux through the loop �tot is the combination of the dc and rf
applied flux [�dc + �rf(t)], and the induced flux due to the
self inductance L of the loop,

�tot = �dc + �rf(t) − L

(
Ic sin δ + V

R
+ C

dV

dt

)
. (1)

Here Ic sin δ + V/R + CdV/dt is the total current through
the loop, which flows through the parallel combination of
the junction, shunt resistance R, and capacitance C in the
RCSJ model. Replacing �tot by �0δ/2π and V by �0dδ/dt

in Eq. (1) and rearranging terms, we obtain the dimensionless
RCSJ equation:

d2δ

dτ 2
+ 1

Q

dδ

dτ
+ δ + βrf sin δ = φdc + φrf(τ ), (2)

where βrf = 2πLIc/�0, φdc = 2π�dc/�0, φrf = 2π�rf/�0,
ωgeo = (LC)−1/2, τ = ωgeot , and Q = R

√
C/L.

Typical parameter values are as follows. The inductance,
L = 280 pH, of the single SQUID meta-atom is calcu-
lated numerically by Fasthenry based on its geometrical
structure [72]. Other parameters such as the capacitance
C = 0.495 pF, the shunt resistance in the junction R = 1780
Ohm (4.6 K), and the critical current Ic = 1.15 μA, are
determined by fitting to the measured geometrical resonant
frequency ωgeo/2π = 13.52 GHz, the measured quality factor
Q = 75, and the quantity βrf = 0.98. The quantities ωgeo,
Q, and βrf were directly measured in previous single-tone
transmission experiments [57,58]. For our setup, the rf flux φrf

driving the loop results from the injected rf power inside the
rectangular waveguide. Note that the single SQUID meta-atom
has an inner diameter of 200 μm, and an outer diameter of
800 μm. Other meta-atoms in our SQUID metamaterials all
have smaller sizes. Thus the rf flux amplitude through the
SQUID loop is always much smaller than the flux quantum in
the rf power range we consider in this work. Thus, |φrf| < 2π .

The time-dependent functional form of the rf flux is
determined by the driving signal. To study intermodulation,
the circuit is driven with two tones, which generally can be
written

φrf = φrf,1 sin(�1τ + θ1) + φrf,2 sin(�2τ + θ2), (3)

where �1,2 = 2πf1,2/ωgeo and f1 and f2 are the frequencies
of the two injected signals. Here the two tones have different
amplitudes φrf,1 and φrf,2, and phases θ1 and θ2.

The driving flux can also be written in the form of a complex
phasor envelope modulated by a carrier at the mean frequency
� = (�1 + �2)/2,

φrf,a = Re[ei�τ−iπ/2φe(τ )], (4)

where the envelope function φe(τ ) = φrf,1 exp(−i��τ/2 +
iθ1) + φrf,2 exp(i��τ/2 + iθ2) and �� = �2 − �1 > 0 is
the difference frequency. For the situation in our experiment,
�� � �, i.e., the carrier frequency is much greater than
the envelope frequency. This will lead to a number of
simplifications in the analysis. At present it allows us to argue
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FIG. 3. The lower and higher main tone output amplitudes δ1 and
δ2, and third order tones δ3 and δ4 for a single rf-SQUID meta-atom at
−65 dBm calculated with (a) numerical simulation and (b) analytical
model. Plots of δ(t) over a beat period at 17.35 GHz and −65 dBm
calculated by (c) numerical simulation and (d) steady-state analytical
model. The dashed boxes in (c) point out the overshooting ringing
features in numerical simulation. The spacing between the two input
tones is 10 MHz, the temperature is 4.6 K, and the applied dc flux is
set to zero.

that the results will not depend on the relationship between
the carrier and the envelope phases. Since the relative phase
between the carrier and the envelope is unimportant we may
shift the time axis in the carrier and the envelope independently.
Shifting time in the carrier by τsc = −�−1(θ1 + θ2) and in the
envelope by τse = ��−1(θ1 − θ2) removes the phases θ1 and
θ2 from the problem. Equivalently we can set θ1 = θ2 = 0.

We first consider the case of equal amplitude tones (set
φrf,1 = φrf,2 = φs to be the amplitude) and set θ1 = θ2 = 0.
We then solve Eq. (2) for δ(τ ) using the previously described
circuit parameters. Under all circumstances explored here
δ(τ ) is observed to be sinusoidal to a good approximation.
Figure 3(c) is an example of the solution to δ(τ ) at an input
power of −65 dBm, with tone frequencies f1 and f2 centered
around f = 17.35 GHz and separated by of �f = 10 MHz.
The dense blue curves are the fast carrier oscillations and
the vertical extreme of the blue represents the slowly varying
envelope. More precisely, δ(τ ) can be represented in the form
of a modulated complex phasor envelope, the same as the form
of the driving rf flux in Eq. (4). In this example, the envelope
varies on a time scale 3 orders of magnitude longer than the
carrier period. One beat period of the envelope is shown in
Fig. 3(c).

Furthermore, to investigate IM, we extract the amplitude
and phase of δi for frequency component fi via Fourier
transform of δ(τ ). Since magnetic flux is related to δ through
δ = 2π (�tot/�0), we can extract the generated third order IM
magnetic flux �3,4. The IM flux translates into an IM magnetic
field inside the SQUID loop of area A, i.e., B3,4 = �3,4/A. The
excited IM magnetic field transmits through the rectangular
waveguide and generates the third order IM powers at the
detector. The SQUID is inductively coupled to the waveguide
via a coupling coefficient g [73], so only part of the IM
power couples to the waveguide mode. The final simulated
output IM power is adjusted by varying g (g ≈ 0.015 for the

single SQUID meta-atom), and plotted as a function of center
frequency and tone power in Fig. 2(b) for the upper third order
IM tone Pf4 , with a cut through −65 dBm plotting both lower
and upper third order IM powers (Pf3 and Pf4 ) in Fig. 2(d).
The cut through the simulated IM power displays a similar
sharp onset and gap feature as observed in the experiment, as
well as the prominent asymmetry between the two IM tones.

Since δi is a surrogate for the output tone power Pfi

(δi ∼ √
Pfi

) and a direct solution of the nonlinear equation,
we use this quantity to analyze the degree of IM generation.
Figure 3(a) shows amplitudes of δ1 to δ4 as a function of tone
center frequency at an input power of −65 dBm, which shows
the same asymmetric gap feature. The upper third order IM
output δ4 reduces to nearly zero inside the gap. We plot δ(t)
during one beat period of the input rf signal at the onset center
frequency (17.35 GHz) of the abrupt IM generation peak in
Fig. 3(c). The δ(t) envelope stays at a higher amplitude in the
first quarter of the signal beat period, suddenly decreases to
a low amplitude, and gradually increases before it jumps to
a higher amplitude again. Note that each abrupt jumps comes
with an overshoot feature [labeled as dashed boxes in Fig. 3(c)]
with a frequency around 1.5 GHz. The overshoot frequency is
intermediate to the fast oscillation (17.35 GHz) and the slow
modulations (10 MHz).

B. Steady-state analytical model

In this section we develop an analytical model to understand
the unique phenomena revealed in the experiment and the
numerical solutions of the previous sections. We adopt the
observation that the gauge-invariant phase δ(τ ) and the driving
flux can be represented as in Eq. (4) as a rapidly varying carrier
modulated by an envelope. Thus, we insert Eq. (4) on the
right-hand side of Eq. (2). We first look for solutions where
the time variation of the envelope is so slow that the temporal
derivatives of it can be ignored. This leads (after neglecting
harmonics of the drive signal, which will be justified below)
to a time dependent gauge-invariant phase:

δ(τ ) = δ̄ + δ̃ sin(�τ + θ ),

where � = (ω1 + ω2)/(2ωgeo) and δ̄, δ̃, and θ are taken to be
constants that depend parametrically on τ through the slow
variation of φrf(τ ) = φ̃rf = φe. Here δ̄ and δ̃ denote the dc part
and the slowly varying envelope of δ, respectively, θ is the
phase of δ (which can also vary slowly with time).

For the nonlinear term in Eq. (2) we have
sin δ = sin[δ̄ + δ̃ sin(�τ + θ )] = sin δ̄ cos[δ̃ sin(�τ + θ )] +
cos δ̄ sin[δ̃ sin(�τ + θ )]. In principle this term will contain
all harmonics of the carrier, n� (n = 0,1,2, . . . ), and induce
harmonics in the gauge-invariant phase δ(τ ). However, higher
harmonics in the gauge-invariant phase are suppressed by
the second derivative term in Eq. (2) (capacitive current).
This is confirmed in our numerical solutions where the
amplitudes of higher harmonics (components of frequency
2� and 3�) of δ are at least 2 orders of magnitude lower
than the fundamental frequency component. We note that
for the examples considered here the dc phase δ̄ is zero
and consequently only odd harmonics are present. We thus
neglect these higher order harmonic terms when we expand
sin[δ̃ sin(�τ + θ )] and cos[δ̃ sin(�τ + θ)]. As a result, we
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FIG. 4. Analytical solutions of steady-state model [Eqs. (5)–(7)]
at an rf power of −65 dBm which is around the gap feature. (a)
The relationship between δ̃ and φ̃rf for five remarkable frequencies.
φlh denotes the value of rf flux required for transitions of δ̃ from
low to high amplitude solution branch, and φhl denotes the rf flux
value for the transition from high to low amplitude solution. (b)–
(f) Blue curves represent δ(t) calculated by the analytical model
for (a) 17.3 GHz, right before the onset of strong IM generation,
(b) 17.35 GHz, at the onset, (c) 17.7 GHz, at the gap, (d) 18.4 GHz,
at the second peak, and (e) 19.5 GHz, low IM generation. The red
curve is φ̃rf as a function of time during a beat period. φlh and φhl are
marked in the figures as black and green lines. All assume φdc = 0.

obtain sin δ ≈ sin δ̄J0(δ̃) + 2 cos δ̄J1(δ̃) sin(�τ + θ ), where
J0(δ̃) and J1(δ̃) are Bessel functions. Separating the dc,
in-phase, and quadrature components of Eq. (2), leads to three
coupled equations for the three unknowns (δ̄, δ̃, and θ ),

(1 − �2)δ̃ + 2βrf cos δ̄J1(δ̃) = φ̃rf cos θ, (5)

�

Q
δ̃ = −φ̃rf sin θ, (6)

δ̄ + βrf sin δ̄J0(δ̃) = φdc. (7)

We construct δ(t) by solving Eqs. (5)–(7) to find δ̄, δ̃, and
θ for a given φ̃rf and φdc. The relationship between δ̃ and φ̃rf

at different frequencies (f1 + f2)/2 is plotted in Fig. 4(a) for
our standard parameter set φdc = 0, Q = 75, and βrf = 0.98.
The oscillation amplitude δ̃ as a function of rf flux amplitude
φ̃rf is symmetric about the origin, so only positive φ̃rf is
shown. Figure 4(a) indicates that δ̃ can be single valued or
multivalued depending on the fast-oscillation frequency and
the slowly varying envelope amplitude φ̃rf. For cases where
δ̃ is multivalued, we let φhl and φlh denote the lower and

upper critical rf flux values [as labeled in Fig. 4(a)] between
which there are three solutions for the oscillation amplitude
δ̃. When this occurs (φhl < φ̃rf < φlh) the middle solution is
always unstable and the largest and the smallest solutions are
stable. Thus, if φ̃rf is in the bistable regime, and δ̃ is on the
lower (higher) stable branch, then, as φ̃rf is slowly increased
(decreased) through φlh (φhl), the solution for δ̃ will experience
a jump transition from the lower (higher) stable branch to the
higher (lower) stable branch.

For two equal amplitude input tones with a fixed center
frequency and a fixed tone power φ̃rf is a sinusoidal function
with a peak value of 2φs , and a frequency of ��/2, i.e. φ̃rf =
2φs cos ��τ/2.

Figures 4(b)–4(f) show the evolution of δ(t) at different
center frequencies (blue), as well as the relationship between
the envelopes of the rf flux φ̃rf (red curves), the transition rf flux
values φlh (black horizontal lines) and φhl (green horizontal
lines) for positive and negative φ̃rf values during a beat period
(ωgeo��/2π = 10 MHz). For tone center frequencies below
17.3 GHz, although δ̃ is bistable, the envelope of rf flux φ̃rf is
always below φlh, so δ̃ remains on the low amplitude branch
during a beat period. Above 18.6 GHz, δ̃ as a function of
φ̃rf becomes single valued. Both cases give rise to low IM
generation.

Between 17.3 and 18.6 GHz, however, the peak value of
φ̃rf exceeds the upper bistable transition rf flux amplitude φlh,
while the minimum value of φ̃rf is below φhl , so there are four
discontinuous jumps in δ(t) during a beat period. Changing the
center frequency from 17.35 to 17.7 GHz makes the solutions
for δ̃ stay on the high-amplitude branch longer [Fig. 4(d)].
This is because φlh is smaller for higher frequencies [as seen
in Fig. 4(a)], so it is easier for φ̃rf to pass the low-to-high
transition. The sudden asymmetric state jumps during a beat
period generates rich IM products.

We extract the IM components of δ by Fourier transform
as discussed for the numerical simulation, and extract the
amplitude of two main tones and two third order IM tones of
δ, plotted in Fig. 3(b). The analytically calculated amplitudes
of IM tones are almost the same as those in the full numerical
simulation. However, comparison of time dependent gauge-
invariant phase δ(t) between the full numerical calculation
and the analytical calculation in Figs. 3(c) and 3(d) indicates
that the dynamical ringing appears around the state jumps in
the full-nonlinear numerical calculation but is not present in
the steady-state solutions to Eqs. (5) to (7). These will be
investigated subsequently.

C. Dynamical model

The ringing behavior of δ(t) during state jumps indicates
that the system requires time to transition from one stable state
to another. We study this process using a dynamical model
for the complex amplitude of the phase δ̂, where δ(τ ) = δ̄ +
Re[δ̂(τ )ei�τ−iπ/2].

For two equal amplitude input tones, the envelope of the
rf flux φ̂rf = φe = 2φs cos(��τ/2) is real. In this case, sin δ

is expanded as sin δ̄J0(|δ̂|) + 2 cos δ̄J1(|δ̂|)Re(δ̂ei�τ−iπ/2)/|δ̂|
with negligible higher order terms assuming that the higher
harmonics of δ are much smaller than the base frequency
component. In deriving an equation for the envelope, we adopt
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the approximations that Q � 1 and that δ̂(τ ) changes slowly,
|�δ̂| � |dδ̂/dτ |. Thus in Eq. (2) we replace d/(Qdτ ) with
i�/Q, and d2/dτ 2 with −�2 + 2i�d/dτ . This yields a first-
order nonlinear equation for the phasor δ̂ and a transcendental
equation for the steady part of δ(t),

i�

[
2

d

dτ
+ 1

Q

]
δ̂ +

[
1 − �2 + βrf cos δ̄

2J1(|δ̂|)
|δ̂|

]
δ̂ = φ̂rf,

(8)

δ̄ + βrf sin δ̄J0(|δ̂|) = φdc. (9)

To analyze the dynamics, we express δ̂ as an in-phase part
and a quadrature part, i.e., δ̂ = δR + iδI , and write the real
and imaginary parts of Eq. (8). We note that in the absence
of losses (Q → ∞) one can construct a Hamiltonian function
for the nonlinear system. Including losses we have

d

dτ
δR = − 1

2Q
δR − ∂

∂δI

H (|δ̂|), (10a)

d

dτ
δI = − 1

2Q
δI + ∂

∂δR

H (|δ̂|), (10b)

where

H = 1

4�
[(1 − �2)|δ̂|2] − 2βrf cos δ̄J0(|δ̂|) − δRφ̂rf

is the Hamiltonian. Equilibrium states of the system Eq. (10)
are the same as those described by Eqs. (5)–(7). However,
we note that the Q value for our system is quite large, Q ≈
75. As a result we look for equilibria of the lossless system
Q → ∞, which are located in the δR-δI plane at the stationary
values of the Hamiltonian ∂H/∂δR = ∂H/∂δI = 0. Equilibria
will be stable if they are at maximal or minimal points of H

when (∂2H/∂δ2
I )(∂2H/∂δ2

R) > 0. Note that the Hamiltonian
is symmetric about δI = 0.

In Figs. 5(a)–5(c) we plot the Hamiltonian as a function
of δR and δI at a center frequency of 17.35 GHz and
−65 dBm tone power, when the rf flux amplitude φ̂rf is at
its peak (0.23), zero (0.0), and negative maximum (−0.23)
during a beat period. Figure 5(e) shows a cut through the
δI = 0 plane, plotting H as a function of δR at various rf flux
values. In Fig. 5(f) a blow-up of the dashed region is shown that
traces the minimum and maximum of H as the rf flux envelope
evolves with time. Note that the state transition occurs at an rf
flux amplitude of 0.22 for this frequency. When rf flux is zero,
the Hamiltonian H is symmetric around the origin, and has a
local minimum (stable point) centered at the origin. As the rf
flux increases, the H (δR) curve tilts so that the peak located
in the positive region of δR decreases and moves towards the
origin; gradually meeting the dip which moves away from the
origin along the δR axis. At the same time another peak rises
up. As the rf flux value reaches 0.23, the lower peak and the
dip between the two peaks disappear. The system then has to
transition to another stable state located at the higher peak in
the negative δR region. At an rf flux of −0.23, H tilts to the
other side [Fig. 5(c)].

Because of the high value of Q, the system’s transition
trajectory from one stable state to another follows the constant
contour lines of the Hamiltonian surfaces in a spiral manner.

FIG. 5. The calculated Hamiltonian of a single rf SQUID as a
function of δR and δI for rf flux amplitudes of (a) 0.23, (b) 0.0, and
(c) −0.23. (d) The color map of the calculated Hamiltonian as a
function of δR and δI for rf flux amplitude of 0.23, with contours
from −1 to −0.5 with a step of 0.05. (e) The calculated Hamiltonian
as a function of δR when δI = 0 with different values of rf flux.
(f) A zoom-in plot of the dashed box in (e). The transition rf flux
value to bistability is around 0.22. All assume a center frequency of
17.35 GHz.

Figure 5(d) shows the contour lines (from −1 to −0.5 with a
step of 0.05) on top of the Hamiltonian color map at φ̂rf = 0.23.

We can find the trajectory of δ̂(t) for φdc = 0 by solving
Eq. (8) to obtain δR and δI during a beat period as φ̂rf changes.
Again, we look at the solutions for a center frequency of
17.35 GHz at −65 dBm input tone power. The time trajectory
of the phase envelope δ̂ in the δR-δI plane during the beat
period as calculated by the dynamical model is shown in
Fig. 6(a). Compare this with Figs. 6(b) and 6(c) which present
the δ̂ trajectories extracted from δ(t) in the full nonlinear
numerical calculation and the steady-state model, respectively.
Figures 6(a) and 6(b) are almost identical to each other,
serving to validate the dynamical model. In the trajectory plots
Figs. 6(a) and 6(b) we see four colored in-spiraling orbits
centered around four corresponding dense regions (red and
black dense regions are close to each other near the origin);
the dense regions denote the steady-state solutions right after
a state jump. We can clearly see these four states in the
steady-state trajectory [Fig. 6(c)] labeled as A, B, C, and D.
The blue dense region in Figs. 6(a) and 6(b) is the solution at
the beginning of a beat period, corresponding to state A. As
the rf flux amplitude during a beat period reduces below φhl ,
the high-amplitude state has to jump to state B (red). For the
steady-state solution [Fig. 6(c)], the system oscillates in the
high-amplitude branch following the blue curve, then directly
jumps to state B (red dot). In numerical simulation of Eq. (2)
and the dynamical model Eqs. (10a) and (10b) though, the
system goes through several orbits before settling down at the
low-amplitude stable state B (red dense region) near the origin
in the δ plane. It follows from Eqs. (10a) and (10b) that the
area in phase enclosed by the orbit decreases exponentially
at a rate 2/Q during approach to the equilibrium point. The
boundary between the two colors denotes the time when the
system starts to jump to another state.

The in-spiraling orbits during a transition are predicted by
the Hamiltonian analysis. The shape of the trajectory before
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FIG. 6. The time elapsed trajectories for δ̂(t) for one beat period
calculated by (a) the dynamical model, (b) the numerical simulation,
and (c) the steady-state model. The inset of (c) zooms in on the
trajectory around the origin by five times. (d) δ(t) calculated from
the dynamical model, and (e) is a zoom-in of the dashed box in (d)
showing the ringing behavior.

jumping to state A matches the contour lines in Fig. 5(d),
except that the trajectory is not symmetric about δI axis due
to the losses (parametrized by Q) which is not included in
the Hamiltonian. The number of trajectory orbits during the
transition illustrates the relaxation time of a state jump. The
relaxation time also depends on the losses.

Figure 6(d) displays the δ(t) calculated by the dynamical
model; Fig. 6(e) is a zoom-in for the selected region near
a state jump. The colors match the colored curves in the
trajectory plots Figs. 6(a) to 6(c). There are very clear ringing
features during a jump, which is a reflection of damped spiral
orbits. The ringing feature oscillates at a frequency of around
1.5 GHz, and can cause sidebands in the IM spectrum.

IV. DISCUSSION

Three models for IM generation in rf-SQUIDs have been
discussed. The solutions to the full numerical nonlinear model
contain the most complete information for the response of rf-
SQUIDs to two-tone excitation, yet gives little insight into the
underlying physics. The steady-state analytical model greatly
simplifies the second order nonlinear differential equation to
three coupled algebraic equations, and sheds light on the origin
of the unique IM features—the state jumps during a beat period
cause an abrupt increase in IM products. While it predicts
the same level of IM generation as calculated by numerical
simulation (Fig. 3), the steady-state model lacks the dynamics
accompanying each state jump, which can be understood
using the nonlinear dynamical model. This model reduces the
full nonlinear equation to a complex first order differential
equation, and allows for construction of a Hamiltonian for the
SQUID. The topology of the Hamiltonian surfaces evolves

continuously as the envelope of the drive signal changes.
The topology determines the form of the trajectories δ̂(t) to
be spirals during transitions as the SQUID switches from
one stable state to another, resulting in ringing features
in δ(t).

The models all include dc flux as a variable that affects
the response of the SQUID. In this paper we focus on the
zero dc flux case. Varying the dc flux value would modify
the relationship between the envelope of δ and the envelope
of φrf [zero flux case shown in Fig. 4(a)], but would preserve
bistability and thus the discontinuous jumps during a beat
period. In the future we plan to explore the effect of nonzero
dc flux on IM generation.

We also note that utilizing two equal-amplitude tone inputs
always results in the rf flux envelope passing through zero
during the beat period. Thus the IM products of the SQUID
are independent of the system’s history, even in the bistable
regime. As long as the rf flux envelope peak (determined by
tone power) exceeds the transition point φlh, the SQUID will
experience four discontinuous jumps during a beat period.
However, if the two tones have different amplitudes, so that
the minimum value of the envelope is higher than φhl , the
amplitude of the phase envelope depends on the direction of
tone power sweep. In an upward sweep the phase amplitude
δ̂ resides in the low-amplitude branch during the whole beat
period until the tone power increases to the point that the rf flux
envelope peak exceeds φlh; δ will then keep oscillating in the
high-amplitude branch during a beat period. In a downward
tone power scan though, δ would modulate with the beating rf
flux in the high-amplitude branch until the peak drops below
φhl . The IM amplification experiment of an 11 × 11 SQUID
array metamaterial, where the power amplitude of one tone
is always 20 dB higher than the other, shows significantly
more hysteresis in rf power scanning than the equal-amplitude
IM case. The lack of discontinuous jumps during a beat
period in the hysteretic IM amplification process brings in
new phenomena worth investigating in the future.

V. CONCLUSION

We have shown that the rf-SQUID meta-atoms and metama-
terials have a rich nonlinear spectrum due to the nonlinearity
of the Josephson junctions. Experiment, numerical simulation,
and analytic models all show a sharp onset, followed by a dip,
in the third order IM output. rf-SQUID array metamaterials
display behaviors that are similar to those of single rf-SQUID
meta-atoms. The sharp onset of IM generation comes from a
series of asymmetric jumps between two stable states of the rf-
SQUID as the drive amplitude modulates during a beat period
of the input signal. Each state jump creates a transient response
appearing as ringing in the time domain. The time evolution
of the junction gauge-invariant phase δ(t) can be explained
by a dynamical model employing a Hamiltonian analysis with
damping. Our analytical models can potentially be used to
design SQUID metamaterials to generate either very high or
very low IM products in response to multitone excitation. In
addition, these models can also be applied to design other
nonlinear systems employing Josephson junctions, such as the
Josephson parametric amplifiers.
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