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We study the statistical properties of the impedance matrix (related to the scattering matrix) describing the
input-output properties of waves in cavities in which ray trajectories that are regular and chaotic coexist (i.e.,
“mixed” systems). The impedance can be written as a summation over eigenmodes where the eigenmodes
can typically be classified as either regular or chaotic. By appropriate characterizations of regular and chaotic
contributions, we obtain statistical predictions for the impedance. We then test these predictions by comparison
with numerical calculations for a specific cavity shape, obtaining good agreement.
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I. INTRODUCTION

In principle, for a given configuration, properties of wave
systems are completely determined, and thus are not random.
However, at short wavelength, these properties can be very
sensitively dependent on small configurational changes or
changes of the free space wavelength. If the configuration
or free space wavelength is regarded as slightly uncertain
within some small range and the wave properties vary wildly
in this range, then a statistical approach may be warranted.
This type of approach was originally introduced by Wigner in
reference to the energy levels of large nuclei [1–3], and later
employed to study classically chaotic quantum systems [2,4].
Here we focus on quasi-two-dimensional microwave cavities
and quantum dots which couple to an external environment
through suitable openings (called “leads” or “ports”). The
statistical properties in chaotic cavities with external con-
nections have been well studied using various approaches,
e.g., the Poisson kernel [5,6] or the random coupling model
(RCM) [7]. The RCM (employed in the present paper) focuses
on impedance matrices (related to scattering matrices through
an elementary transformation) and replaces the eigenfunctions
and eigenenvalues in the impedance formula by suitably
chosen random quantities. Past work has shown that the
RCM, and, equivalently, the Poisson kernel yield results that
agree well with statistical data obtained from experiments
and numerical computations on microwave cavities [6,8–10].
However, in general, such systems may have not only either
all chaotic or all regular orbits, but also typically a mixture
of coexisting chaotic and regular orbits. We call such systems
“mixed.” The statistical properties of impedance matrices in
mixed systems are the subject of this paper.

For specificity we focus on a particular mixed system,
a “mushroom” cavity [Fig. 1(a)] [11], which has a clearly
divided phase space [12]. For most modes of this system, we
find that it is possible to separate them into two classes, regular
and chaotic (this may not hold for other systems). Using this
separation, we decompose the impedance formula into chaotic
and regular parts. We then derive the probability distribution
associated with the chaotic part of the impedance, while,
for the regular part we utilize exact (numerically calculated)
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or approximate theoretical eigenmodes. To test our theory,
we numerically solve for eigenvalues and eigenfunctions
of our mushroom cavity and insert them into the exact
formula.

This paper is organized as follows. In Sec. II we review
the impedance formula in two-dimensional cavities, introduce
the random coupling model, generalize the RCM to mixed
systems, introduce the mushroom cavity (an example of a
mixed system), and apply our generalized RCM to this cavity.
In Sec. III we numerically calculate the impedance matrix of
the mushroom cavity and compare the numerical results with
results from our statistical theory. Conclusions and discussion
are presented in Sec. IV.

The general problem of wave properties of systems whose
ray equations have a mixed phase space was first addressed
by Berry and Robnik [13], who studied the spectra of mixed
closed systems. Subsequently, many other researchers have
investigated spectra and wave functions of closed systems
with mixed ray orbit phase space (e.g., [14,15]). The problem
of characterizing the input-output properties of mixed open
systems, however, has, to our knowledge, been addressed
relatively little [16–18].

II. REVIEW OF THEORY

A. Impedance of a cavity

In the presentation that follows, we consider the context
of electromagnetic waves. However, we emphasize that, with
appropriate notational changes, these considerations apply
equally well to quantum waves, acoustic waves, elastic waves,
etc.

We consider a vacuum-filled, quasi-two-dimensional (ver-
tically thin) microwave cavity with cavity height h and M ports
as shown in Fig. 1. We denote the two-dimensional interior of
the cavity by � ∈ R2. If the frequency is not too high (i.e.,
the wavelength is greater than 2h), then only vertical electric
fields are excited inside the cavity,

�E = Ez(�x,t)ẑ, (1)

where �x ∈ � is a two-dimensional position vector. The surface
charge density on the bottom plate of such a cavity is ρs =

062906-11539-3755/2013/87(6)/062906(9) ©2013 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.87.062906


MING-JER LEE, THOMAS M. ANTONSEN, AND EDWARD OTT PHYSICAL REVIEW E 87, 062906 (2013)

π/α

Ports

Ω

∂Ω

x̂

ŷ ẑ
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FIG. 1. (Color online) (a) Top view of the quasi-two-dimensional
cavity coupling with M = 2 ports (fed by coaxial transmission lines),
where the region interior to the cavity is denoted �. (b) Side view
of the cavity at a port. In some previous works, a mushroom billiard
similar to that in (a) was used [11], but the billiard section below
the quarter circular cap was a rectangle of width ρ0. This, however,
introduced neutrally stable ray orbits that bounce back and forth
horizontally between the vertical walls of the rectangle. By using
the above triangular bottom part (as in Ref. [19]) (a) we avoid the
nongeneric effects of such orbits.

−ε0Ez, and the voltage difference between the two plates is

VT (�x,t) = hEz(�x,t). (2)

The surface current density on the bottom plate is related to
the magnetic field �H , which is perpendicular to �E, by

�Js = �H × ẑ. (3)

We assume that the fields are excited by M localized current
sources, which inject surface charge density on the bottom
plate,

ρ̇s(�x,t) =
M∑

j=1

Ij (t)uj (�x), (4)

where uj (�x) is the normalized profile function of port j ,∫
d2 �xuj (�x) = 1, and we regard Eq. (4) as modeling the

currents induced by the transmission-line-fed ports shown in
Fig. 1. With Eq. (3), the continuity equation for the surface
charge can be written as

∂

∂t
(−ε0Ez) + �∇ · ( �H × ẑ) = ρ̇s =

M∑
j=1

Ijuj . (5)

Differentiating Eq. (5), using Faraday’s law, �∇ × �E =
−μ0∂ �H/∂t , and expressing Ez via Eq. (2), we obtain

1

c2

∂2

∂t2
VT − ∇2VT = hμ0

M∑
j=1

uj

∂

∂t
Ij , (6)

where c = 1/
√

μ0ε0 is the speed of light. Assuming that
VT (�x,t) = V̂T (�x)ejωt , Ii(t) = Îie

jωt , Eq. (6) can be rewritten
as

(∇2 + k2)V̂T = −jkhη0

M∑
j=1

uj Îj , (7)

where k = ω/c, and η0 = √
μ0/ε0 is the free space impedance.

We expand V̂T in the basis of the eigenfunctions of the
closed cavity, i.e.,

V̂T =
∞∑

n=1

cnφn, (8)

where φn satisfies the Helmholtz equation with Dirichlet
boundary condition and a proper normalization condition, i.e.,

(∇2 + k2
n)φn(�x) = 0, �x ∈ �, (9)

φn(�x) = 0, �x ∈ ∂�, (10)

∫
�

φiφjd
2 �x = δij , (11)

and we order the mode labeling according to the convention,
k2
n+1 � k2

n. Inserting Eq. (8) into Eq. (7), multiplying by φm(�x),
and integrating over �, we obtain

cm = −jkhη0

M∑
j=1

〈ujφm〉Îj

k2 − k2
m

, (12)

where 〈· · ·〉 ≡ ∫
�

· · · d2 �x. The voltage at port i is defined as

V̂i = 〈uiV̂T 〉, (13)

where the port voltages Vi are expressed in phaser form, Vi =
V̂ie

jωt . Using Eqs. (8), (12), and (13), we obtain

V̂i =
M∑

j=1

Zij Îj , (14)

where the i,j element of the impedance matrix Z is given by

Zij = −jkhη0

∞∑
n=1

〈uiφn〉〈ujφn〉
k2 − k2

n

. (15)

Equation (15) states that, in a lossless cavity, the impedance
is purely imaginary, since the eigenfunctions for Eqs. (9)
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and (10) are real. It also states that, if we know all the
eigenfunctions and eigenvalues of the closed cavity, we
can calculate the matrix elements of Z exactly. Note that
〈uiφn〉 → 0 as the port size becomes much greater than several
wavelengths. Thus, the infinite sum in Eq. (15) can be replaced
by a finite sum, i.e.,

Zij = −jkhη0

N∑
n=1

〈uiφn〉〈ujφn〉
k2 − k2

n

, (16)

where N satisfies the condition 2π/kN � (size of ports). For
systems that are large compared to a wavelength (2π/k) and
may have some uncertainty in their specification, it is often of
practical interest to dispense with the necessity of numerically
calculating all N eigenfunctions and to instead look for a
statistical description. The latter will be our goal.

B. Random coupling model

The random coupling model treats the case where typical
ray orbits are all chaotic and is based on the supposition
that, in the short wavelength limit, the statistical properties
of the impedance of a chaotic cavity can be obtained from Eq.
(16) by replacing k2

n and 〈uiφn〉 by suitable random variables.
According to Weyl’s formula [20] for a two-dimensional cavity
of area A, the mean spacing between two adjacent eigenvalues,
k2
n − k2

n−1, is 4π/A, i.e.,

� ≡ 〈k2
n − k2

n−1〉 = 4π

A
. (17)

References [1,2,21] state that the normalized eigenvalue spac-
ing sn ≡ (k2

n − k2
n−1)/� of a time-reversible chaotic system

has similar statistical properties to the spacings of the eigen-
values of large matrices randomly drawn from the Gaussian
orthogonal ensemble (GOE) of random matrices with unit
mean eigenvalue spacing. In this paper, our eigenfunctions
are always real, as appropriate to time-reversible systems,
and, henceforth, the GOE is automatically assumed when we
mention random matrices.

Berry [22] argues that the wave function at any point in a
chaotic billiard has similar statistical properties to a random
superposition of many plane waves,

φn(�x) ≈ Re

⎧⎨
⎩

J∑
j=1

αj exp (ikn�ej · �x + iβj )

⎫⎬
⎭ , J  1, (18)

where it is assumed that �x is not too close to the billiard
boundary, the wave number kn is fixed, but the propagation
directions �ej , amplitudes αj , and phases βj are random
variables. To be more specific, the directions and phases are
uniformly distributed in [0,2π ], and all amplitudes have the
same distribution. By the central limit theorem, for J  1,
φn(�x) evaluated at the point �x is a Gaussian random variable
with zero mean, and its variance can be determined by the
normalization condition, i.e.,∫

�

φ2
nd

2 �x = 1, (19)

which implies

E{φ2
n} = 1/A. (20)

The probability distribution function of the overlap integral
〈uiφn〉 is Gaussian with expectation value zero (since φn is
a Gaussian with expection value zero), and by Eq. (18) the
variance of 〈uiφn〉 is

E{〈uiφn〉2} = 1

A

∫ 2π

0

dθ

2π
|ū(�kn)|2, (21)

where �kn = (kn cos θ,kn sin θ ), and ū(�kn) is the Fourier trans-
form of the profile function u(�x),

ū(�kn) =
∫

d2 �xu(�x) exp (−i�kn · �x). (22)

Note that the variance of 〈uiφn〉 depends on the eigen-
value k2

n through Eq. (22) where |�kn| = kn. If 2π/kn 
(size of the port), the profile function of the port can be
approximated by a δ function, i.e., 〈uiφn〉 = φn(�xi); if 2π/kn is
comparable to the port size, we need to consider the variations
of φn over the ports. Eventually, for short enough wavelength
we have E{〈uiφn〉} → 0 as kn → ∞.

For an M-port system, we need to consider the same
wave function at different positions; e.g., if 2π/k 
(size of the port), for two ports located at �xi and �xj , we need
to consider 〈uiφn〉 ∼= φn(�xi) and 〈ujφn〉 ∼= φn(�xj ), which are
not, in general, independent, although independence can be
approximately assumed if the ports are many wavelengths
apart. In the RCM, we build in this relation by writing

�n ≡ [〈u1φn〉, . . . ,〈uMφn〉]T = 1√
A

wn, (23)

where the 1/
√

A factor is based on the expectation value of
φ2

n, and wn (n = 1,2, . . . ,N ) is an M-dimensional, zero-mean,
standard Gaussian random vector whose covariance matrix
may have nonzero nondiagonal elements reflecting correlation
between nearby ports. We can rewrite the impedance matrix
as

Z = −jkhη0
�

4π

N∑
n=1

wnwT
n

k2 − k2
n

. (24)

where we have used Eq. (17) to replace A.
In the case of identical transmission line inputs that are far

enough apart, we can neglect correlations between the ports
and the covariance matrix of wn is 1M×M ; i.e., E(wiwj ) = δij

for i,j = 1,2, . . . ,M . In this case, we introduce the normalized
reactance matrix

� = − 1

π

∑
n

wnwT
n

k̃2 − k̃2
n

, (25)

where k̃2 = k2/� and the mean spacing k̃2
n − k̃2

n−1 between
normalized eigenvalues is 1. In this case the impedance matrix
becomes

Z = j
khη0

4
�. (26)

Note that the normalized reactance matrix � is independent of
all system-specific information, such as the cavity shape, area,
etc.; namely, it is universal for all chaotic cavities with widely
separated ports.
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FIG. 2. (Color online) (a) Two regular orbits with slightly differ-
ent initial conditions. (b) Two chaotic orbits with slightly different
initial conditions. (c) Magnitude squared of the n ≈ 10 002th eigen-
mode (regular) and kn ≈ 253.496 413. (d) n ≈ 10 003th eigenmode
(chaotic) and kn ≈ 253.501 722.

C. Impedance in mixed systems

For a generic two-dimensional billiard, both regular and
chaotic phase space regions coexist, and we call such a system
mixed. Percival’s conjecture [23] states that semiclassical
eigenmodes in mixed systems exist in eitherregular or chaotic
regions. Our numerical computations support this conjecture
(see Fig. 2). At short wavelength, the number of regular and
chaotic eigenstates can be approximately counted by the partial
Weyl law [24],

N̄�(k2) = A�

4π
k2 + O(k), (27)

where � = R denotes regular trajectories and � = C denotes
chaotic trajectories, A�/A is the ratio of the phase space
volume occupied by �, and A� is given by

A� = ∫
�

d2 �x 1
2π

∫ 2π

0 dθζ�(�x,θ ). (28)

Here, ζ�(�x,θ ) is the characteristic function of � at (�x,θ ), i.e.,
ζ�(�x,θ ) = 1 if the trajectory running through �x at angle θ

belongs to � and ζ�(�x,θ ) = 0 otherwise.
Following the above approach, we decompose (16) into the

contributions ZR and ZC to the impedance from the regular
eigenmodes and chaotic eigenmodes, as follows:

Z = ZR + ZC (29a)

and

ZR,ij = −jkhη0

NR∑
r

〈uiφr〉〈ujφr〉
k2 − k2

r

, (29b)

ZC,ij = −jkhη0

NC∑
c

〈uiφc〉〈ujφc〉
k2 − k2

c

, (29c)

where φr (φc) denotes regular (chaotic) wave functions, r =
1,2, . . . ,NR (c = 1,2, . . . ,NC), and NR + NC = N .

The semiclassical wave function distribution for chaotic
eigenfunctions in mixed systems can be described by the so-
called restricted random wave model [25],

P�x(φ) = 1√
2πσ 2(�x)

exp

[
− φ2

2σ 2(�x)

]
, (30)

where

σ 2(�x) = 1

2πAC

∫ 2π

0
dθζC(�x,θ ). (31)

In a two-dimensional pure chaotic cavity, σ 2 = 1/A is inde-
pendent of �x.

The statistics of k2
c in mixed systems is hypothesized to

be similar to the statistics of k2
n in chaotic systems, but the

mean of the spacing between chaotic eigenvalues, k2
c+1 − k2

c ,
is given by 4π/AC , as opposed to 4π/A in the purely chaotic
case. Thus, the statistics of the chaotic normalized reactance
in mixed systems should be identical to the statistics of the
normalized reactance in chaotic systems.

We do not expect to find explicit universal statistics for the
regular eigenfunctions φr as they are dependent on the cavity
shape. However, the regular normalized reactance in mixed
systems is always Lorentzian distributed (see the Appendix).

D. Mushroom billiard

The mushroom billiard [11,26] was first introduced by
Bunimovich. Since the cap of the mushroom is a quarter circle,
there are orbits that never leave the cap region and are the
same as the orbits in a complete quarter circle billiard having
the same radius R [see Fig. 2(a)]. These orbits are tangent
to a circular caustic with a radius Cr . If the caustic radius
Cr > ρ0 (see Fig. 1) this orbit is trapped in the cap and is
integrable. There are also chaotic orbits that travel throughout
the whole billiard [Fig. 2(b)], visiting both the cap region
and the triangular region below the cap. Thus, the mushroom
billiard is an example of a mixed system.

The eigenmodes of the Helmholtz equation in a quarter
circle with radius R can be described by two quantum numbers
(m,n) ↔ r , and the corresponding eigenfunction is

φr
∼= φ(0)

mn(ρ,θ ) = NmnJm(kmnρ) sin mθ, (32)
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with normalization constant

Nmn = 2
√

2√
πRJ ′

m(kmnR)
, (33)

and φ(0)
mn ≡ 0 outside the quarter circle. Here Jm is mth-order

Bessel function of the first kind, and kmn is the eigen wave
number such that kmnR is the nth zero of Jm.

To relate the quantum eigenmodes to the classical motion
[27], we first define the classical probability distribution for
position ρ,

PCL(ρ) = ρ√
R2 − C2

r

√
ρ2 − C2

r

, (34)

where PCL(ρ)dρ represents the fraction of time a classical
trajectory spends in the interval dρ at ρ, R > ρ > Cr . The
classical caustic radius Cr is defined in terms of the angle
of incidence φ that the trajectory makes with respect to the
boundary at R, Cr/R = sin φ. The analogous caustic radius
Cr from the wave function (32) is identified by equating the
Bessel function order to its argument,

Cr = Rmn ≡ m

kmn

R. (35)

For eigenmodes with Rmn < ρ0, the classical orbit in the full,
quarter circle billiard will travel to the root of the mushroom
so the orbit in the mushroom is no longer integrable, and
the corresponding φ(0)

mn modes in (32) are not present in our
system. Thus, we can approximate (29b) using the quarter
circle eigenfunctions φ(0)

mn given by Eq. (32),

Zij,R = −jkhη0

∑
m,n

ρ0 < Rmn < R

〈uiφ
(0)
mn〉〈ujφ

(0)
mn〉

k2 − k2
mn

. (36)

In order to apply the RCM for the chaotic contribution to
the mushroom cavity, we need the statistics of k2

c (the eigen-
values of the chaotic modes) and φc(�x) (the corresponding
eigenmodes). The distribution of k2

c is taken to be the same as
that of the eigenvalues of a random matrix with the same mean
spacing �C = 〈k2

c+1 − k2
c 〉 = 4π/AC . Using Eq. (28), we can

calculate the equivalent chaotic area of the mushroom cavity,

AC =
√

3

2
ρ2

0 + 1

2

[
ρ0

√
R2 − ρ2

0 + R2 arcsin
(ρ0

R

)]
. (37)

To develop a random coupling model in a mixed system,
we need to rewrite Eq. (23) as

�n = Qwn, (38)

where Q is an M × M diagonal matrix, which describes the
classical chaotic probability at each port,

Q2
ii =

∫
�

ui(�x)σ 2(�x)d2 �x, (39)

where σ (�x) has been defined in Eq. (31). Thus in the case where
all transmission lines are identical, the chaotic contribution to
the impedance matrix (29c) can be written

ZC,ij (k2) = j
khη0

4
ACQiiQjj�ij . (40)

Figures 2(c) and 2(d), respectively, show representative,
numerically computed, regular and chaotic eigenfunctions.

These figures and others (not shown) demonstrate that,
consistent with Percival’s conjecture [23], the eigenfunctions
concentrate either in the regular or chaotic phase space regions,
thus justifying the decomposition (II C). We next test the
statistics predicted by Eq. (40) by comparison with direct
numerical computations on our mushroom billiard example.

III. NUMERICAL EXPERIMENT

In order to test our theory for the impedance in mixed
system, we numerically solve the Helmholtz equation for its
eigenfunctions and eigenenvalues to calculate Eq. (II C) and
compare with our statistical model, Eqs. (36) and (40). We
use about 10 000 eigenmodes for the sum in Eq. (16). For our
numerical eigenmode solutions, we use the scaling method
introduced by Vergini and Saraceno [19,28] which facilitates
relatively fast solutions. It has already been shown that this
method yields accurate results for the eigenmodes of the
mushroom billiard [26]. We use α = 3/4 [see Fig. 1(a)] rather
than the value α = 2/3 employed in Ref. [26], in order to allow
application of Steed’s method [29] for efficient evaluation of
the Besssel function.

After solving for all eigenmodes, we classify these eigen-
functions by examining the magnitudes of their normal
derivatives as a function of the boundary coordinate s (see
Fig. 3).

By this means we can associate all our numerically calcu-
lated regular eigenmodes with one of the analytically predicted
approximate eigenmodes (32). Moreover, we have also com-
pared the regular eigenfunctions and eigenenvalues determined
by our numerical solutions with the approximate analytic
solutions; they agree well. Thus, the regular contribution to
the impedance matrix (29b) is very well approximated by
Eq. (36) with our approximate analytic regular eigenfunctions
(32). (Alternatively, one can also characterize the regular
contribution to Z in a more universal manner, independent
of specific geometry, as described in the Appendix.)

Our first goal is to test our statistical model for the chaotic
contribution to ZC = Z − ZR , where our model requires
only simple system information (cavity area, phase space
distribution) rather than all numerical eigenfunctions. For
simplicity, we choose all ports to be identical, uncorrelated,
and pointlike, i.e., ui(�x) = δ(�x − �xi); thus, Qii = σ (�xi) and
Eq. (16) becomes

Zij (k2) = jkhη0ξij (k2), (41)

where

ξij (k2) =
N∑

n=1

φn(�xi)φn(�xj )

k2 − k2
n

, (42)

and we similiarly define ξC and ξR .
We choose the cutoff NC = NAC/A = 2k2/�C . With this

definition, the expectation value of

ξC,ij (k2) =
2k2/�C∑

c=1

φc(�xi)φc(�xj )

k2 − k2
c

(43)

is zero since we expect equal numbers of k2
c such that k2

c >

k2 and k2
c < k2. Our goal is to find the probability density

functions of ξC,ij if we randomly choose a k2 (see Fig. 4).
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FIG. 3. (Color online) (a) Regular eigenmode φ14,3(�x) in �.
(b) Corresponding magnitude of the normal derivative of φ14,3(�x)
versus s.

We use a Monte Carlo method to generate realizations of Eq.
(43). In each realization, we generate k2

1,k
2
2, . . . ,k

2
NC

by calcu-
lating the eigenvalues of a GOE random matrix and unfold the

10 11 12 13 14 15

−4

−2

0

2

4

ξ C
,ij

k2

FIG. 4. (Color online) Numerical calculation of ξC,ii (red trian-
gles) and ξC,ij (black squares) in the mushroom cavity vs energy
(k2).

spectra [2] such that the mean spacing is 4π/AC ; we also gen-
erate (φ1(�xi),φ1(�xj )),(φ2(�xi),φ2(�xj )), . . . ,(φNC

(�xi),φNC
(�xj ))

according to Eqs. (30) and (31); then we calculate ξC,ij at each
value of k2; finally, we construct a probability density function
for ξC,ij . After NR realizations, we have NR probability
density functions for ξC,ij , i.e., pn(ξ ), n = 1, . . . ,NR . We then
calculate the mean and variance of the probability density at
each ξ , i.e.,

p̄(ξ ) = 1
NR

∑NR

n=1 pn(ξ ), (44)

σ 2
p(ξ ) = 1

NR

∑NR

n=1 [pn(ξ ) − p̄(ξ )]2 . (45)

We also calculate Eq. (43) numerically for different port
positions from the numerically determined eigenfunctions and
eigenvalues and compare with our statistical model Monte
Carlo method (see Fig. 5). Our statistical model of impedance
in different port positions is the statistical model of the same
normalized impedance [Eq. (25)] with a position-dependent
factor ACQiiQjj , defined in Eqs. (28), (31), (39), and (40).
The agreement between the numerical result and our statistical
model for the different cases in Fig. 5 shows that the chaotic
contribution to the impedance in a mixed system has the same
statistics as the impedance in a purely chaotic system, provided
one accounts for variations in the size of the chaotic portion
of phase space accessible at the locations of the ports.

Our second goal is to compare the previous statistical model
of ξij in Ref. [7] (which assumes that the classical trajectories
are all chaotic) with our statistical model of ξij [which includes
chaotic contributions (ξC,ij ) and an approximated formula for
regular contributions (ξR,ij ) defined in Eq. (42)]. Figure 6
shows that our statistical model (red solid curves) predicts
the probability density function of ξij much better than the
previous result (blue dashed curves) that one would obtain by
supposing that the entire phase space was chaotic.

Note that, in our formulation in Eq. (32), φmn(�xi) = 0 if �xi is
located in the stem of the mushroom. Therefore, if at least one
port, say port i, is located in the stem of the mushroom, then
ξR,ij = 0 and only chaotic modes contribute to the impedance,
i.e., ξij = ξC,ij . In the insets of Fig. 6, we show probability
density functions of ξR,ij calculated from numerically obtained
regular eigenmodes and the probability density function of
ξR,ij calculated from our approximate regular eigenmodes [δ
function (red) at ξR,ij = 0 for the insets to Figs. 6(a) and 6(b)
and the red curve in the inset to Fig. 6 (c)]. In particular,
we observe that the probability density function (PDF) widths
in the insets to Figs. 6(a) and 6(b) are much less than for
the inset to Fig. 6(c). The small PDF widths in the insets to
Figs. 6(a) and 6(b) can perhaps be explained by dynamical
tunneling (see [30,31]); however, this effect is not significant
in the probability density function of ξij = ξR,ij + ξC,ij which
is the convolution of the probability density functions of ξC,ij

and ξR,ij .

IV. DISCUSSION

In this paper, we develop a method for obtaining the short
wavelength statistical properties of the impedance matrix of
wave systems whose ray equations yield a “mixed” phase space
with coexisting chaotic and regular orbits. In obtaining our
results for the mushroom billiard, we assume that the regular
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FIG. 5. (Color online) Plot of the probability density function
from numerical solution (black histogram) and mean probability
density function from Monte Carlo simulation (red solid curve),
Eq. (44), with root mean squared error bounds (blue dashed curve),
Eq. (45). The black and red dots are the position of coaxial
transmission lines (ports), in case (a) one port in the chaotic region
and the other in the mixed region, (b) both ports in the chaotic region,
and (c) both ports in the mixed region.

eigenmodes are approximately the same as the eigenmodes
in a quarter circle cavity. In formulating our theory, we have
neglected the possibility that there may be some modes where
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FIG. 6. (Color online) Plot of the probability density function
of ξij = ξR,ij + ξC,ij from the numerical eigenmode solution (black
histogram), our statistical model that treats regular and chaotic contri-
butions separately (red solid curve), and a previous statistical model
that assumes that all eigenmodes are chaotic (blue dashed curve).
The black and red dots are the positions of coaxial transmission lines
(ports), in case (a) one port in the chaotic region and the other in the
mixed region, (b) both ports in the chaotic region, and (c) both ports
in the mixed region. The insets show the probability density functions
of the regular contribution ξR,ij for numerical eigenmode solutions
(black histogram) and for the approximate eigenmode in Eq. (32) (red
solid curve).
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the regular and chaotic phase space regions are coupled by
dynamical tunneling, thus changing both the eigenfunctions
and the eigenenergies. These mixed modes, whose eigenfunc-
tions show characteristics of both regular and chaotic behavior,
can change the wave scattering properties at k2 near these
resonances, and this effect can be treated semiclassically for
the particular modes under consideration. However, in our
formulation, we are not interested in specific k2 values but
rather the PDF for a randomly chosen k2 value. In our system
the number of these chaotic-regular mixed modes appears to be
relatively small compared with modes that are predominantly
confined to either the regular or the chaotic phase space
regions. Thus, we expect mixed chaotic-regular modes do not
make a significant contribution to the mode counting formula
in Eq. (27), and this expectation is confirmed by the good
agreement between our numerical results and theory.

In our model, appropriate to the situation that we numeri-
cally tested, we assume that φn(�xi) and φn(�xj ) are independent
Gaussian random variables for chaotic wave functions, which
applies only if ports i and j are far apart, k|�xi − �xj |  1,
and both ports are not close to the cavity boundary. This
assumption, however, is not essential: two-point correlations in
the random wave model have been previously studied [32,33]
and can be accounted for by regarding φn(�xi) and φn(�xj )
as correlated bivariate Gaussian random variables with a
correlation that takes into account direct and indirect ray paths
between �xi and �xj [34].
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APPENDIX: LORENTZIAN DISTRIBUTION OF THE
REGULAR NORMALIZED IMPEDANCE

Consider the normalized impedance

�ij = − 1

π

N∑
n=1

wniwnj

k̃2 − k̃2
n

, (A1)

where (wni,wnj ) are bivariate random variables with prob-
ability density functionfij (wni,wnj ), and k̃2

n are independent
random variables distributed uniformly on (0,k̃2

N ), i.e., the PDF
is fk̃2 (k̃2) = 1/k̃2

N . Let

ξn,ij = − 1

π

wniwnj

k̃2 − k̃2
n

, (A2)

such that

�ij =
∑

n

ξn,ij . (A3)

The PDF f�(z) and the characteristic function of �, ��(t) are
given by

f�(z) =
∫

dξ1 · · · dξN

N∏
n=1

fξ (ξn)δ

(
z −

∑
n′

ξn′

)
, (A4)

��(t)=
∫

dξ1 · · · dξN

N∏
n=1

fξ (ξn) exp

(
it

∑
n′

ξn′

)
= [�ξ (t)]N,

(A5)

where fξ (ξn) is the PDF of ξ and �ξ (t) =∫
dξn exp(itξn)fξ (ξn) is the characteristic function of ξ .

We can calculate �ξ (t) by directly evaluating the integral

�ξ (t) =
∫

dwnidwnjfij (wni,wnj )

×
∫ k̃2

N

0
dk̃2

n

1

k̃2
N

exp

(
−it

1

π

wniwnj

k̃2 − k̃2
n

)
. (A6)

For small values of t , relevant in the limit N  1, the second
integral of (A6) is

1

k̃2
N

∫ k̃2
N

0
dk̃2

n exp

(
−it

1

π

wniwnj

k̃2 − k̃2
n

)

= 1 + |t ||wniwnj |
k̃2
N

− it
1

π

wniwnj

k̃2
N

ln

∣∣∣∣ k̃2

k̃2
N − k̃2

∣∣∣∣ + O(t2),

(A7)

which to first order in t yields

�ξ (t) ≈
∫

dwnidwnjfij (wni,wnj )

×
(

1 + |t ||wniwnj |
k̃2
N

− it
1

π

wniwnj

k̃2
N

ln

∣∣∣∣ k̃2

k̃2
N − k̃2

∣∣∣∣
)

= 1 − 1

k̃2
N

(
−it

E{wniwnj }
π

ln

∣∣∣∣ k̃2

k̃2
N − k̃2

∣∣∣∣
+|t |E{|wniwnj |}

)
, (A8)

where E{· · ·} = ∫ · · · fij (wni,wnj )dwnidwnj . Now, we calcu-
late ��(t); since the mean spacing between adjacent k̃2

n is
normalized to unity, we can replace k̃2

N in (A8) by N and
insert it into (A5). As N → ∞, we obtain

��(t) =
[

1 − 1

N

(
−it

E{wniwnj }
π

ln

∣∣∣∣ k̃2

k̃2
N − k̃2

∣∣∣∣
+|t |E{|wniwnj |}

)]N

→ exp

(
it

E{wniwnj }
π

× ln

∣∣∣∣ k̃2

k̃2
N − k̃2

∣∣∣∣ − |t |E{|wniwnj |}
)

. (A9)

Comparing with the characteristic function of a Lorentzian
random variable (RV) with mode x0 and width W , �(t) =
exp (itx0 − W |t |), we know �ij is Lorentzian distributed
with mode E{wniwnj }(ln |k̃2| − ln |k̃2

N − k̃2|)/π and width
E{|wniwnj |}. Since the spacing distribution of k̃2

n for reg-
ular systems is exponentially distributed, as N → ∞, the
distribution of k̃2

n is uniformly distributed in (0,N ); thus, the
normalized impedances of regular systems are also Lorentzian
distributed, and all the system-specific information is included
in the mode and width of the Lorentzian.
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