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Machine learning (ML) has found widespread application over a broad range of important tasks. To enhance
ML performance, researchers have investigated computational architectures whose physical implementations
promise compactness, high-speed execution, physical robustness, and low-energy cost. Here, we experimentally
demonstrate an approach that uses the high sensitivity of reverberant short-wavelength waves for physical
realization and enhancement of computational power of a type of ML known as reservoir computing (RC).
The potential computation power of RC systems increases with their effective size. We here exploit the intrinsic
property of short-wavelength reverberant wave sensitivity to perturbations to expand the effective size of the RC
system by means of spatial and spectral perturbations. Working in the microwave regime, this scheme is tested
experimentally on different ML tasks. Our results indicate the general applicability of reverberant wave based
implementations of RC and of our effective reservoir size expansion techniques.
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I. INTRODUCTION

Machine learning (ML) algorithms have demonstrated the
capability to perform a variety of tasks without being con-
structed with specific knowledge of the rules governing the
task [1,2]. Important ML performance metrics, such as speed
and energy efficiency, depend on the computing platform on
which the ML algorithm operates. Accordingly, researchers
have been motivated to find platforms and associated algo-
rithms that optimize these metrics. In this regard, reservoir
computing (RC) [3–6], a type of ML that we describe in
Sec. II, has attracted attention because it can be realized in
a variety of physical forms [7–20].

Based on the preceding motivation, we present in Sec. III
an implementation of reservoir computing [4,5,12,21–24] that
utilizes the complex response of short-wavelength modes in
a reverberant cavity as the reservoir. When the wavelength
of the fields in a cavity is much smaller than the size of
the cavity, the wave field has effectively a high degree of
freedom. Equivalently, in this “short-wavelength” regime the
field can be thought of as a superposition of many modes:
the number of which is determined by the bandwidth of the
time-dependent signals to be produced and the spectral mode
density of the cavity. This number of participating modes
characterizes the effective amount of information contained in
a specification of the reservoir state at a given time. As such, it
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provides an upper limit on the information handling capacity
and computational power of the RC. In practice, however, this
upper limit may far exceed what is actually realized. We shall
loosely refer to the realized number as the RC “size.”

In this paper, we present a proof-of-principle experimental
demonstration of a short wavelength wave based RC system
operating in the microwave regime. Most importantly, by ex-
ploiting the high degree of freedom of the wave fields, and
by introducing several new reservoir enhancement techniques
(RETs), we show that a measure of the size of the RC system
can be made large, thus greatly enhancing the RC computa-
tional power. The potential computing power and versatility
of wave-based RC systems are demonstrated and assessed in
Sec. V through experimental and numerical tests on several
benchmark tasks.

II. CONVENTIONAL RESERVOIR COMPUTING

Reservoir computing is a general type of ML whose struc-
ture, in the case of continuous-time operation, can be specified
as follows. Input variables, in the form of a time (t ) dependent
vector u(t ), drive the evolution of a reservoir state r̂(t ). The
reservoir state r̂ is typically a high dimensional vector, and the
input u is a much lower dimensional signal vector to which
r̂ responds. [In our case, r̂ represents the field within the
wave-confining structure, e.g., the microwave cavity shown
in Fig. 1(a).]

The reservoir state evolves according to a reservoir dynam-
ical system f ,

dr̂(t )

dt
= f (r̂(t ), u(t )). (1)

In Eq. (1), it is assumed that f satisfies the “echo-state”
property [4,5], which requires that for any input time series
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FIG. 1. Reverberant wave systems for reservoir computing. (a) Schematic of the experimental setup. The input information is transferred
from a laboratory computer to the AWG and injected into the chaotic enclosure through a simple electric dipole antenna. Several diode-loaded
antennas are used to probe the EM field, whose voltage signals are measured by the oscilloscope and further transferred to the laboratory
computer and stored. The cavity shown in panel (a) is thin in the vertical, z direction, and has a shape in the (x, y) directions in which the
bottom and left walls are straight lines and the upper and right walls are circular arcs. This leads to a purely vertical electrical field Ez(x, y)
whose complex two-dimensional spatial distribution is shown in panel (a) via the blue-to-red color coding within the cavity. (b) Schematic of
the diode-loaded port. (c) The dynamics of diode-port voltage (red) under single-frequency (4 GHz) input wave (black) injected at the linear
input port. (d) The Fourier transform (FT) of the diode-port signal shown in (c).

u(t ), r̂(t ) becomes independent of the initial condition r̂(0)
as t becomes large. A time series of output vectors r(t ) of
dimension Nr is derived from the reservoir state r̂(t ) via a
function g,

r(t ) = g(r̂(t )). (2a)

The overall RC system output, denoted by a vector s(t ), is
taken to depend linearly on the vector r(t ),

s(t ) = W r(t ), (2b)

where W is a rectangular matrix, and the dimension Nr of
r(t ) is typically large compared with the dimension of the
vector s(t ). The elements of the matrix W are viewed as
adjustable parameters whose values are chosen through a
“training” procedure, whereby, based on training data consist-
ing of examples (u, s′) of inputs u(t ) and the corresponding
desired resulting outputs s′(t ), W is determined by minimiz-
ing the deviations of s(t ) (the actual RC output) from s′(t ).
Heuristically, the basic assumptions of reservoir computing
are that, (i) if the dimension Nr is large, and the Nr individual
elements of the time-dependent vector r(t ) evolve in diverse
ways, then the best fit of s(t ) = W r(t ) to s′(t ) will indeed be a
very good approximation to the time-varying vector s′(t ); and
(ii) following training, the RC system outputs will continue

to give a good approximation to the outputs s′(t ) that would
be desired for the post-training inputs. Based on item (i) we
shall view Nr as quantifying the notion of RC system size.
Operationally, item (ii) is promoted by the use of training
regularization (typically, for RC, ridge regression) meant to
prevent overfitting [5]. In general, either the function f , or
the function g, or both should be nonlinear to allow the RC
system to perform a wide variety of nonlinear tasks [25]. We
note that, by virtue of the linear relation s = W r, the training
of an RC system reduces to a simple linear regression. Thus,
the training of an RC can be very fast [26].

III. REVERBERANT WAVE RC

Figure 1 shows the proof-of-principle experimental mi-
crowave reverberant wave based RC system considered in
this paper. In Fig. 1(a), digital input signals are transformed
into analog waveforms by an Tektronix 70000A AWG (ar-
bitrary waveform generator) and stored for both the training
and testing time-series data sets. These analog waveforms
are exactly the same as the digital input signal stream. Note
that no signal formatting or masking is applied at this step.
The waveform is then amplified by the RF-Lambda 2-18GHz
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FIG. 2. Reservoir enhancement techniques (RETs). (a) The proposed architecture for f and r [Eqs. (3) to (5)]. (b) and (c) show schematics
of the boundary-condition method and the frequency-stirring method, respectively. The first method may be realized by the translation of
a metallic perturber shown as the cylinders. Under the same input waveform u0, uniquely different evolutions of the EM fields inside the
enclosure area are created by means of translating the perturber to new locations. In (c), the frequency-stirring technique utilizes small changes
of center frequency of a given input waveform to create new wave field configurations. In the experiment, the input wavelet is stretched or
shrunk by different amounts (forming the inputs u1, u2, and u3) in order to shift the center frequency. Each output arrow of panels (b) and
(c) represents one of the Nr components r (i) of the vector r.

amplifier (RFLUPA0218G5), and injected into a wave-chaotic
microwave cavity with an area A = 0.115 m2 [27–31]. The
shape of the cavity is formed from two straight walls inter-
secting at a right angle and two additional circular arc-shaped
walls. The characteristic length of the cavity is of A0.5 ∼
35 cm and thus the cavity is electrically large compared to
the nominal operating wavelength (∼5 cm). With a height of
d = 0.79 cm, the cavity can be considered to be quasi-2D
because the electric field is polarized in the z direction for
f < c/(2d ) = 18.9 GHz. Microwave absorbers are employed
inside to alter the fading memory of the system. For tasks run-
ning at ∼GHz rates, the cavity decay time is in the ∼ns range.
The port voltage signals are measured with an oscilloscope
(Agilent DSO91304A) with a sampling rate of 40 GS/s.

The timescale of the input (signals vary on the ∼100 ps
scale) is such that the input stream will excite hundreds of
cavity eigenmodes. The enclosure is designed to act as a
two-dimensional “quarter bow-tie shaped” geometry so that
the rays (straight-line orbits between specular reflection from
the cavity walls) show chaotic dynamics (i.e., ray orbits with
nearby initial conditions typically diverge exponentially as
they propagate and experience successive reflections from the
cavity’s enclosing walls). The EM field emerges as the real-
time superposition of all system modes, sampled at discrete
locations (the Nr output ports) in the system. To include non-
linearity into the otherwise linear cavity system, we installed
high switching speed diodes (Infineon BAS7004) at the output
ports [Fig. 1(b)] [29]. This nonlinearity is demonstrated by

the port voltage signal distortion of a sinusoidal wave injected
at the linear input port [Fig. 1(c)] and the resulting higher-
harmonic responses [Fig. 1(d)]. Thus, the complexity of the
reverberant wave reservoir is ensured by the short-wavelength
sensitivity property of the cavity fields and the nonlinear ele-
ments connected at the ports.

In analogy with the conventional RC, the reservoir layer
r̂(t ) is the field distribution within the cavity at time t , the
function f describes the field dynamics in the cavity and
to some extent the action of the diodes at the ports, Nr is
the number of available measurement channels, and g is the
nonlinear function realized by the ports and diodes [16]. The
geometrical simplicity of the cavity is in marked contrast to
network implementations of RC where the complexity of the
function f is built from a complex network topology. This
simplicity suggests the possibility of fabrication, and mechan-
ical robustness advantages of the wave-chaos approach.

Here the Nr diode-loaded ports serve as the observable
reservoir nodes and hence a measure of the RC size. The Nr

signals at the ports are recorded on the oscilloscope and trans-
ferred to a laboratory computer for off-line training [Fig. 1(a)].
The number of wave outputs (Nr) of the wave-based RC can,
in principle, be increased up to the resolution limit of the
operating wavelength. Challenges, however, arise because the
total number of measurement ports (Nr) in a physical RC may
be limited in practice. For example in our experiment, the
number of output ports is limited by the number of recording
channels on the oscilloscope (Fig. 1).
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IV. RESERVOIR ENHANCEMENT TECHNIQUES

To address the issue of the limited number of output ports
and replicate the RC performance of a cavity with more ports,
we introduce what we call reservoir enhancement techniques
(RETs). To formulate our description of RETs, we consider a
specific convenient structure for the Nr-dimensional function
f (r̂, u) in Eq. (1). In particular, we let Nr = MN ′

r and write
the Nr-dimensional vector r = g(r̂) as the concatenation of
M component vectors each of dimension N ′

r . Denoting these
component vectors r〈1〉, r〈2〉, . . . , r〈M〉, we have

r = [r〈1〉; r〈2〉; · · · ; r〈M〉]. (3)

Correspondingly, we write f as

f (r̂, u) = [ f 〈1〉(r̂〈1〉, u); f 〈2〉(r̂〈2〉, u); · · · ; f 〈M〉(r̂〈M〉, u)], (4)

so that

r̂ (i)
n+1 = f (i)(r̂ (i)

n , u(t )
)
. (5)

Thus, each of the r̂ (i) evolves independently of the others,
except from the mutual dependence on the input stream u(t ).
Comparing Eq. (5) with Eq. (1), we consider each of the
components r̂〈i〉 of r̂ to be the wave field distribution in a
hypothetical cavity described by f 〈i〉. The idea, illustrated in
Fig. 2(a), is to increase the diversity of the vector r by increas-
ing its dimension above that for M = 1 (ideally by the factor
M) so that W r can better fit the desired time dependence of s.
Accordingly, we desire the r̂〈i〉 to be very different for different
i, which implies that the f 〈i〉 must be different for different i.

This seems to present a challenge for physical implementa-
tion, as it seems to require M different physically constructed
cavities. However, we can achieve Eq. (4) with very different
f 〈i〉 and large M by taking advantage of the hallmark property
of short-wavelength reverberant waves, namely, extreme sen-
sitivity of the field distribution within the cavity, and hence
also f 〈i〉, to small changes in the cavity boundaries. Thus, in
our experiments in this paper we will make use of this sen-
sitivity through two alternative techniques allowing physical
implementation of Eqs. (3) and (5) using a single cavity. We
call these two techniques the “boundary-condition method”
[Fig. 2(b)] and the “frequency-stirring method” [Fig. 2(c)]. As
a proof-of-principle demonstration of the boundary-condition
method, we place a small conducting circular cylinder in
the cavity and move it to different locations, each location
corresponding to a different f 〈i〉. In the frequency-stirring
method we uniformly scale the duration of the input signal
time dependence by a factor β〈i〉, t → β〈i〉 t ; since the medium
within the cavity is air (essentially equivalent to vacuum), the
waves are nondispersive, and scaling time by β〈i〉 is equivalent
to scaling distances characterizing the shape of the cavity
walls uniformly by the factor (β〈i〉)−1. For an input waveform
centered at f0 = 4 GHz, we translate the perturber (a conduct-
ing cylinder of radius 1.5 cm and height 0.75 cm) by 1 cm
(∼0.2λ0) or shift the center frequency f0 by � f = 100 MHz
(∼3 resonator eigenmodes) to create a new reservoir.

Figures 2(b) and 2(c) show snapshots of the complex
electric field Ez landscape within the cavity obtained from
time-domain simulations. These simulations confirm that
small variations of system boundary conditions, as well as
small input time stretching or shrinking, result in drastically

different wave field spatial distributions. Virtual new unit
reservoirs each having distinct temporal dynamics are thus
created. The application of RET does require a longer oper-
ational time to conduct measurements with a single reservoir,
and a requirement to store all measured results and combine
them later. However, our RET serves as a unique way to
enhance the reservoir size without making new hardware,
new ports, or even new cable connections inside the system.
Although we have not implemented them in the experiments
reported in this paper, there are other ways of physically
achieving Eqs. (3)–(5) with a single cavity. For example,
one attractive possibility is to place a metasurface with elec-
tronically programmable surface impedance elements on a
portion of the cavity wall [32–35] and electronically switch
between many different surface impedance configurations.
This may be regarded as an electronic implementation of our
boundary-condition method which does not utilize the practi-
cally problematic process of physically moving a perturbing
object within the cavity. We note that related techniques for
enhancing the reservoir size are also proposed in Refs. [23,36–
38].

V. RESULTS

We have experimentally investigated the effectiveness of
our reverberant wave approach to implementing RC on sev-
eral different tasks. Ensembles of new reservoirs are created
by translating a metallic perturber and/or changing the os-
cillation period of the input signal from the AWG. In our
experiment, a combined RC of size Nr is given by

Nr = N0 Nb Nf , (6)

where N0, Nb, and Nf represent the number of measurement
channels, the number of applications of the boundary-
condition perturbation RET, and the number of applications
of the frequency-stirring RET, respectively.

For the experiments described below we used the bow-tie
cavity with N0 = 3 output ports. Without using RETs we
find that, for all of the 5 tasks tested, the RC system fails
to give useful results. However, with RET implemented, the
performance of all 5 tasks improves, becoming better as the
effective RC system size Nr increases [Figs. 3(d), 4(b), 4(d),
and 4(f)]. For the 5 examples tested we found that using RET
to sufficiently boost Nr resulted in excellent performance. In
the rest of this section we give results of our tests.

Example 1: The observer task applied to the continuous-
time chaotic Rössler attractor. For the observer task [6], the
RC system is expected to infer the time variation of unob-
served state variables of a dynamical system [in this example,
the y(t ) and z(t ) components of the chaotic Rössler system]
based only on observations of a subset of the system state
variables in this example the Rössler x(t ) component. The
Rössler system is governed by these equations,

ẋ = −y − z,

ẏ = x + ay,

ż = b + z(x − c),

(7)

where a = 0.5, b = 2.1, c = 3.5, and the overdot denotes
derivative with respect to time.
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FIG. 3. Observer task test results for the Rössler system. (a) and (b) The RC inferences of y(t ) and z(t ) (red solid line) versus time in
units of Tosc agree with their true values (black dashed line). (c) A plot at Nr = 90 (N0 = 3, Nb = 30) of the percent deviation of the Rössler
observer task NMSE,

∑
n |s(t ) − s′(t )|2/∑

n |s(t )|2, from the NMSE with optimal parameters (Tosc, Tdecay ) = (250, 700) as a function of the
input duration Tosc and the system decay time Tdecay. (d) The normalized mean-squared error in s versus Nr the dimension of r, which is varied,
e.g., for the experimental (solid) curves, by starting at a maximum value of Nr = 630 (corresponding to N0 = 3, Nb = 30, Nf = 7), and then
randomly removing virtual outputs to successively lower Nr .

Like other ML methods, this prediction task is carried out
without knowledge of the equations of motion of the Rössler
system, using only a finite duration of data of all three com-
ponents for training. The performance of the RC inference
s = (y, z) is evaluated using the normalized mean-squared
error, e.g., defined for the y variable as NMSE = ∑

n[yn −
y′

n]2/
∑

n y2
n, where y′ and y denote true and RC-inferred val-

ues, respectively, and n is the time index of the testing set data,
yn = y(n �t ), with �t chosen small enough compared to Tosc

(the timescale for the variation of the Rössler state) that y at
the discrete times n �t traces out a good approximation of
the continuous variation of y(t ). The NMSE of the Rössler z
component is computed analogously. Here Tosc is defined by
first noting that the frequency power spectrum of the RC input
(here the Rössler x series) shows a pronounced well-defined
lowest spectral component, and Tosc is defined as the period
corresponding to the frequency at the peak of this spectral
component. In the training period, the input is the Rössler x
component with ∼200 oscillation periods Tosc, and the testing
period includes ∼50 periods. We also note that we can vary
Tosc by application of the previously mentioned time scaling
of the RC system input (t → βt). With RET, a reservoir of
Nr = 630 output channels is created and this RC achieves
NMSE = (0.003, 0.014) for inference of the Rössler y and z
components, respectively. This combined RC size (Nr = 630)
is achieved from 30 applications of the RET boundary method
(Nb = 30) and 7 applications of the RET frequency-stirring
method (Nf = 7), which, from Eq. (6), when combined with
the 3 existing ports of the cavity (N0 = 3), yields Nr = 3 ×
30 × 7 = 630. In Figs. 3(a) and 3(b) the inferred Rössler y and

z components, obtained using the Nr = 630 RC, are plotted as
red solid lines and accurately reproduce their corresponding
true values (black dashed lines).

Figure 3(c) shows a heat map of the reservoir perfor-
mance, with Nr = 90, in the inference of s = (y, z) versus
the reservoir parameters Tosc and Tdecay. Here Tdecay denotes
the exponential damping time of waves of frequency 2π/Tosc

in the undriven cavity, and is varied by placing dissipative
material within the cavity. For an empty cavity, the measured
decay time is ∼2.14 ns. Thus the shortest decay time (left
boundary of the heat map) corresponds to the case of the
most lossy cavity. As shown in Fig. 3(d), as Nr increases via
applications of RETs (see figure caption), the RC performance
is greatly improved.

Example 2: The observer task for the discrete-time
chaotic Hénon map. Results for the RC observer task ap-
plied to the two-dimensional discrete-time chaotic Hénon
map, (xn+1, yn+1) = (1 − 1.4x2

n + yn, 0.3xn), are shown in
Figs. 4(a) and 4(b), where the variable x is observed and y is
inferred. Each input value of the discrete x series is sampled
for Tbin ∼ 60 ps. The decay time of the system is fixed at
Tdecay ∼ 600 ps. The training waveform of the Hénon map has
a length of 4000 time steps, and the testing waveform is set
to 1000 bins. We see that the RC-inferred values of y (plotted
in blue) agree well with the true values (plotted as a dashed
red curve). For these results, RETs yielding Nr = 540 (see
figure caption) were employed.

Example 3: The nonlinear channel equalization task. For
the nonlinear channel equalization (NCE) task, the goal is
to recover a random 4-level symbol sequence from a noisy
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FIG. 4. Hénon map observer task performance. (a) The true orbit yn (dashed red) and its RC inference (blue) as a function of time step n
for an RC size of Nr = 540 obtained using 3 cavity ports, 30 implementations of the boundary RET, and 6 implementations of the frequency-
stirring RET (Nr = 3 × 30 × 6 = 540). (b) The RC inference normalized error versus the reservoir size, Nr . Nonlinear channel equalizer
(NCE) task performance. (c) The RC performances (blue) for the NCE task. The targets are shown as red dashed lines. In (d), we show the
simulated (dashed) and experimental (solid) RC performance as a function of the reservoir size Nr . Function simulator task performance. (e)
The RC performance (blue) for the function simulator task. In (f), we show the simulated (dashed) and experimental (solid) RC performance
as a function of the dimension of the reservoir.

sequence which simulates the received signal sent through
a nonlinear multipath RF channel. For the 4-level symbol
sequence, a random series d (n) is chosen between the levels
{−3,−1, 1, 3}, and the RF channel signal is assumed
to be q(n) = 0.08d (n + 2) − 0.12d (n + 1) + d (n) +
0.18d (n − 1) − 0.1d (n − 2) + 0.091d (n − 3) − 0.05d (n −
4) + 0.04d (n − 5) + 0.03d (n − 6) + 0.01d (n − 7). The RC
system input for this NCE task is the channel signal q(n),
and the task is to retrieve the original four-level random d (n)
series. In the experiment, an input speed of Tbin ∼ 60 ps is
adopted, and the training/testing set includes 4000/1000 time
steps, respectively. The decay time of the system is fixed at
Tdecay ∼ 600 ps. The direct RC output is regularized to the
nearest level. Results for this test are shown in Figs. 4(c) and
4(d).

Example 4: The function simulator task. For the function
simulator task, the RC is expected to output any periodic
waveform that is desired. For this purpose, we take the input
to be a sinusoidal waveform with the period of the desired
waveform. In our test example we take the desired waveform
to be the cube of the sine wave, and we train the RC system
to give this output. The decay time of the system is fixed at
Tdecay ∼ 600 ps. We employ a 4 GHz sine wave input with
a duration of ∼300 oscillation periods. The lengths of the
training and testing sets are set to an 80 : 20 ratio. Results for
this test show very good agreement between the RC output
waveform and the target [Figs. 4(e) and 4(f)]. (We have also

confirmed that the wave-based RC is able to generate other
types of input functions, including two-tone and three-tone
signals.)

Example 5: The NARMA-10 task. For the 10-time-
step nonlinear autoregressive moving average (NARMA-
10) task, the input stream u(n) is a random series
drawn from the interval [0, 0.5]. The target output is
computed from the following 10th-order nonlinear re-
lationship: y(n + 1) = 0.3y(n) + 0.05y(n)[

∑9
i=0 y(n − i)] +

1.5u(n − 9) × u(n) + 0.1. Its complex behavior and a 10-state
memory requirement make the NARMA-10 task a popular
benchmark test for both software and hardware RC [14,18].
The training waveform has a length of 4000 random values,
and the testing waveform is set to 1000 values. With optimal
system parameters [cross in Fig. 5(b)], a RC with Nr = 90
achieves a performance of NMSE = 0.034 which compares
favorably with that reported in several recent photonic hard-
ware RC implementations (e.g., see [18]). The optimized
performance island occurs when Tdecay ∼ 9Tbin [Fig. 5(b)].
This empirical observation agrees nicely with the setup of the
NARMA-10 task where each output time step is determined
by its 10 previous inputs, thus demonstrating the complex
memory capacity of the wave-based RC. In the experiment,
the input is a time-domain waveform where each value is
sampled for Tbin ∼ 60 ps. We note that such choices of input
waveform speeds are limited by the sampling speed of both
the AWG and the oscilloscope.
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FIG. 5. (a) NARMA-10 task testing set performance at the optimal system parameters from an RC size of Nr = 90 (obtained via the 3
cavity ports with 30 applications of the boundary RET), shown as the cross in (b). (c) shows the deviation of the NMSE for an Nr = 90 (N0 =
3, Nb = 30) RC. The percent deviation is computed with respect to the NMSE of the optimal parameters (Tbin, Tdecay ) = (60, 550) as a function
of the input value duration Tbin and the system decay time Tdecay.

Besides experimental tests, we have also conducted elec-
tromagnetic (EM) numerical simulations in CST Microwave
Studio of the physical RC with the same shape cavity, identi-
cal degree of system loss, and realistic model of the diodes.
The high-dimensional combined RC is realized with the
RETs, where the boundary-condition perturbation is realized
using the cylindrical metallic perturber with the same dimen-
sion as the experimental one. As shown in Figs. 3(d), 4(b),
4(d), and 4(f), all of our experimental cases are faithfully
simulated with EM simulation numerical tools. The accurate
simulation capability of wave-based RC greatly benefits fu-
ture RC optimization and follow-up studies.

We also point out that the ultimate realization of the pro-
posed RC will have as many ports as needed to achieve a
desired performance. Using full-wave simulations, we tested
a version of the RC which has Nr � 3 ports installed in
one single cavity and found good performance (not shown
in the paper). In experiments, RET allows us to validate
our wave-based RC concept under our limited measurement
capabilities. It would otherwise be impossible for us to
demonstrate our hardware RC concept. The RET concepts
show that a reservoir consisting of a number of wave-based
RCs running in parallel will also work. Similar combined RC
configurations are also introduced in Refs. [20,22,23].

VI. CONCLUSION

Benefiting from the basic nature of short-wavelength re-
verberant wave systems, our RC scheme shows advantages in

its simplified physical structure and insensitivity to structural
details. The computational performance of the wave-based
RC, quantified by the testing set error for various benchmark
tests, is greatly improved by the expansion of the reservoir
size. We note that the efficacy of the output coupling matrix
W may degrade as the RC scattering properties change over
time (e.g., due to aging at very long time) [39,40]. However,
this performance drift can be quickly recalibrated because the
training of the RC is fast.

In summary, we have experimentally demonstrated a phys-
ical platform for reservoir computing utilizing the complex
dynamics of waves, and found good agreement between ex-
periments and simulations. By exploiting the fundamental
property of the short-wavelength systems (i.e., extreme sen-
sitivity of the wave field distribution to perturbations), we
formulate techniques for expanding the size and computa-
tional power of wave-based RC. We further demonstrate the
effectiveness of our approach by the successful execution of
different benchmark tests. Our general scheme for enhancing
the computational power of RC [Fig. 2(a)] may be of general
use beyond application to wave-based RC.
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[5] M. Lukoševičius and H. Jaeger, Reservoir computing ap-
proaches to recurrent neural network training, Comput. Sci.
Rev. 3, 127 (2009).

[6] Z. Lu, J. Pathak, B. Hunt, M. Girvan, R. Brockett, and
E. Ott, Reservoir observers: Model-free inference of un-
measured variables in chaotic systems, Chaos 27, 041102
(2017).

023167-7

https://doi.org/10.1038/nature14539
https://doi.org/10.1038/s41586-020-2973-6
https://doi.org/10.1162/089976602760407955
https://doi.org/10.1126/science.1091277
https://doi.org/10.1016/j.cosrev.2009.03.005
https://doi.org/10.1063/1.4979665


MA, ANTONSEN, ANLAGE, AND OTT PHYSICAL REVIEW RESEARCH 4, 023167 (2022)

[7] C. Fernando and S. Sojakka, Pattern recognition in a bucket, in
European Conference on Artificial Life (Springer, Berlin, 2003),
pp. 588–597.

[8] L. Appeltant, M. C. Soriano, G. Van der Sande, J. Danckaert,
S. Massar, J. Dambre, B. Schrauwen, C. R. Mirasso, and I.
Fischer, Information processing using a single dynamical node
as complex system, Nat. Commun. 2, 468 (2011).

[9] L. Larger, M. C. Soriano, D. Brunner, L. Appeltant, J. M.
Gutierrez, L. Pesquera, C. R. Mirasso, and I. Fischer, Photonic
information processing beyond Turing: An optoelectronic im-
plementation of reservoir computing, Opt. Express 20, 3241
(2012).

[10] Y. Paquot, F. Duport, A. Smerieri, J. Dambre, B. Schrauwen,
M. Haelterman, and S. Massar, Optoelectronic reservoir com-
puting, Sci. Rep. 2, 287 (2012).

[11] M. C. Soriano, D. Brunner, M. Escalona-Morãn, C. R. Mirasso,
and I. Fischer, Minimal approach to neuro-inspired information
processing, Front. Comput. Neurosci. 9, 68 (2015).

[12] D. Canaday, A. Griffith, and D. J. Gauthier, Rapid time series
prediction with a hardware-based reservoir computer, Chaos 28,
123119 (2018).

[13] F. Laporte, A. Katumba, J. Dambre, and P. Bienstman, Numer-
ical demonstration of neuromorphic computing with photonic
crystal cavities, Opt. Express 26, 7955 (2018).

[14] G. Tanaka, T. Yamane, J. B. Héroux, R. Nakane, N. Kanazawa,
S. Takeda, H. Numata, D. Nakano, and A. Hirose, Recent
advances in physical reservoir computing: A review, Neural
Networks 115, 100 (2019).

[15] F. Laporte, Novel architectures for brain-inspired photonic com-
puters, Ph.D. thesis, Universiteit Gent, 2020.

[16] M. Rafayelyan, J. Dong, Y. Tan, F. Krzakala, and S. Gigan,
Large-Scale Optical Reservoir Computing for Spatiotemporal
Chaotic Systems Prediction, Phys. Rev. X 10, 041037 (2020).

[17] G. Marcucci, D. Pierangeli, and C. Conti, Theory of Neuromor-
phic Computing by Waves: Machine Learning by Rogue Waves,
Dispersive Shocks, and Solitons, Phys. Rev. Lett. 125, 093901
(2020).

[18] Y. K. Chembo, Machine learning based on reservoir computing
with time-delayed optoelectronic and photonic systems, Chaos
30, 013111 (2020).

[19] U. Paudel, M. Luengo-Kovac, J. Pilawa, T. J. Shaw, and
G. C. Valley, Classification of time-domain waveforms using
a speckle-based optical reservoir computer, Opt. Express 28,
1225 (2020).

[20] X. Porte, A. Skalli, N. Haghighi, S. Reitzenstein, J. A. Lott,
and D. Brunner, A complete, parallel and autonomous photonic
neural network in a semiconductor multimode laser, J. Phys.:
Photonics 3, 024017 (2021).

[21] J. Torrejon, M. Riou, F. A. Araujo, S. Tsunegi, G. Khalsa, D.
Querlioz, P. Bortolotti, V. Cros, K. Yakushiji, A. Fukushima,
H. Kubota, S. Yuasa, M. D. Stiles, and J. Grollier, Neuromor-
phic computing with nanoscale spintronic oscillators, Nature
(London) 547, 428 (2017).

[22] K. Nakajima, K. Fujii, M. Negoro, K. Mitarai, and M.
Kitagawa, Boosting Computational Power through Spatial Mul-
tiplexing in Quantum Reservoir Computing, Phys. Rev. Appl.
11, 034021 (2019).

[23] Y. Zhong, J. Tang, X. Li, B. Gao, H. Qian, and H. Wu, Dy-
namic memristor-based reservoir computing for high-efficiency
temporal signal processing, Nat. Commun. 12, 408 (2021).

[24] D. J. Gauthier, E. Bollt, A. Griffith, and W. A. S. Barbosa,
Next generation reservoir computing, Nat. Commun. 12, 5564
(2021).

[25] L. Grigoryeva and J.-P. Ortega, Echo state networks are univer-
sal, Neural Networks 108, 495 (2018).

[26] P. R. Vlachas, J. Pathak, B. R. Hunt, T. P. Sapsis, M. Girvan,
E. Ott, and P. Koumoutsakos, Backpropagation algorithms and
reservoir computing in recurrent neural networks for the fore-
casting of complex spatiotemporal dynamics, Neural Networks
126, 191 (2020).

[27] P. So, S. M. Anlage, E. Ott, and R. N. Oerter, Wave Chaos
Experiments with and without Time Reversal Symmetry: GUE
and GOE Statistics, Phys. Rev. Lett. 74, 2662 (1995).

[28] S. Hemmady, X. Zheng, E. Ott, T. M. Antonsen, and S. M.
Anlage, Universal Impedance Fluctuations in Wave Chaotic
Systems, Phys. Rev. Lett. 94, 014102 (2005).

[29] M. Zhou, E. Ott, T. M. Antonsen, and S. M. Anlage, Scattering
statistics in nonlinear wave chaotic systems, Chaos 29, 033113
(2019).

[30] S. Ma, B. Xiao, Z. Drikas, B. Addissie, R. Hong, T. M.
Antonsen, E. Ott, and S. M. Anlage, Wave scattering properties
of multiple weakly coupled complex systems, Phys. Rev. E 101,
022201 (2020).

[31] S. Ma, S. Phang, Z. Drikas, B. Addissie, R. Hong, V. Blakaj,
G. Gradoni, G. Tanner, T. M. Antonsen, E. Ott, and S. M.
Anlage, Efficient Statistical Model for Predicting Electromag-
netic Wave Distribution in Coupled Enclosures, Phys. Rev.
Appl. 14, 014022 (2020).

[32] P. del Hougne, M. F. Imani, M. Fink, D. R. Smith, and G.
Lerosey, Precise Localization of Multiple Noncooperative Ob-
jects in a Disordered Cavity by Wave Front Shaping, Phys. Rev.
Lett. 121, 063901 (2018).

[33] C. C. Nadell, B. Huang, J. M. Malof, and W. J. Padilla, Deep
learning for accelerated all-dielectric metasurface design, Opt.
Express 27, 27523 (2019).

[34] B. W. Frazier, T. M. Antonsen, S. M. Anlage, and E. Ott,
Wavefront shaping with a tunable metasurface: Creating cold
spots and coherent perfect absorption at arbitrary frequencies,
Phys. Rev. Research 2, 043422 (2020).

[35] C. Qian, B. Zheng, Y. Shen, L. Jing, E. Li, L. Shen, and H. Chen,
Deep-learning-enabled self-adaptive microwave cloak without
human intervention, Nat. Photonics 14, 383 (2020).

[36] L. Grigoryeva, J. Henriques, L. Larger, and J.-P. Ortega, Nonlin-
ear memory capacity of parallel time-delay reservoir computers
in the processing of multidimensional signals, Neural Comput.
28, 1411 (2016).

[37] M. Freiberger, S. Sackesyn, C. Ma, A. Katumba, P. Bienstman,
and J. Dambre, Improving time series recognition and pre-
diction with networks and ensembles of passive photonic
reservoirs, IEEE J. Sel. Top. Quantum Electron. 26, 1
(2020).

[38] J. Pauwels, G. Van der Sande, G. Verschaffelt, and S. Massar,
Photonic reservoir computer with output expansion for unsuper-
vized parameter drift compensation, Entropy 23, 955 (2021).

[39] B. T. Taddese, T. M. Antonsen, E. Ott, and S. M. Anlage,
Sensing small changes in a wave chaotic scattering system, J.
Appl. Phys. 108, 114911 (2010).

[40] B. T. Taddese, G. Gradoni, F. Moglie, T. M. Antonsen, E. Ott,
and S. M. Anlage, Quantifying volume changing perturbations
in a wave chaotic system, New J. Phys. 15, 023025 (2013).

023167-8

https://doi.org/10.1038/ncomms1476
https://doi.org/10.1364/OE.20.003241
https://doi.org/10.1038/srep00287
https://doi.org/10.3389/fncom.2015.00068
https://doi.org/10.1063/1.5048199
https://doi.org/10.1364/OE.26.007955
https://doi.org/10.1016/j.neunet.2019.03.005
https://doi.org/10.1103/PhysRevX.10.041037
https://doi.org/10.1103/PhysRevLett.125.093901
https://doi.org/10.1063/1.5120788
https://doi.org/10.1364/OE.379264
https://doi.org/10.1088/2515-7647/abf6bd
https://doi.org/10.1038/nature23011
https://doi.org/10.1103/PhysRevApplied.11.034021
https://doi.org/10.1038/s41467-020-20692-1
https://doi.org/10.1038/s41467-021-25801-2
https://doi.org/10.1016/j.neunet.2018.08.025
https://doi.org/10.1016/j.neunet.2020.02.016
https://doi.org/10.1103/PhysRevLett.74.2662
https://doi.org/10.1103/PhysRevLett.94.014102
https://doi.org/10.1063/1.5085653
https://doi.org/10.1103/PhysRevE.101.022201
https://doi.org/10.1103/PhysRevApplied.14.014022
https://doi.org/10.1103/PhysRevLett.121.063901
https://doi.org/10.1364/OE.27.027523
https://doi.org/10.1103/PhysRevResearch.2.043422
https://doi.org/10.1038/s41566-020-0604-2
https://doi.org/10.1162/NECO_a_00845
https://doi.org/10.1109/JSTQE.2019.2929699
https://doi.org/10.3390/e23080955
https://doi.org/10.1063/1.3518047
https://doi.org/10.1088/1367-2630/15/2/023025

