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We experimentally demonstrate a new acoustic sensor based on the concept of quantum mechanical scattering
fidelity and the Loschmidt echo applied to classical acoustic waves in air. The sensor employs a one-recording-
-channel time-reversal mirror that exploits spatial reciprocity to sensitively measure the classical analog of the
scattering fidelity of an enclosed region. The experiments are carried out in a stairwell using a simple speaker and
microphone. The input is a 7.0 kHz signal that is amplitude modulated with a 1 ms long pulse. We examine the
sensitivity of the time-reversed reconstructed pulse to phase noise, long term drift, and to typical perturbations
caused by the rotation of an object in the scattering environment.

PACS numbers: 03.55.Kk, 05.45.Mt, 43.58.+z, 43.60.+d

1. Introduction

Classically chaotic systems show exponential sensitiv-
ity to small changes in initial conditions. Such sensitivity
makes chaotic dynamics conceptually attractive for use
as a sensor of very small changes. However, many sensors
and detectors operate by sending out and receiving wave
excitations. For example SONAR and RADAR detect
the presence of an object by sending out a wave distur-
bance and measuring a reflected signal, and using infor-
mation from the reflected signal to determine the range
and motion of the object. However, one can imagine
other types of wave scattering, including those that have
an underlying chaotic classical limit, which may be sen-
sitive to objects in a different way. In particular, if one
imagines a scattering system whose closed counterpart
shows chaotic dynamics in the limit of small wavelength,
the wave scattering properties might be extremely sen-
sitive to small perturbations of the system. This idea
motivates our development of a new sensor paradigm to
exploit the sensitivity of wave scattering systems to small
perturbations of the scattering environment.

However, linear wave systems cannot be chaotic. The
concept of diverging trajectories makes no sense in the
case of linear waves [1]. Nevertheless wave systems that
have chaotic dynamics in the classical (small wavelength)

limit can show unique properties. The study of wave
systems whose classical dynamics is chaotic is known as
“wave chaos” or “quantum chaos” [2]. In particular, these
wave-chaotic systems have eigenfunctions whose statis-
tical properties are well described as those of a random
superposition of plane waves (the Berry hypothesis [3]).
This property can be exploited to create an elegant and
general statistical theory of the scattering properties of
wave chaotic systems. In related work, we have created
a random coupling model to understand the frequency-
-domain and time-domain properties of wave chaotic sys-
tems [4–7], and this model has been tested through ex-
periments on a microwave resonator [8, 9].

Wave chaotic systems have wave scattering properties
that are quite sensitive to small perturbations of the
scattering environment. One measure of this sensitiv-
ity was developed in the context of quantum mechan-
ics, where it is known as fidelity [10]. Quantum fidelity
is a measure of how sensitive the dynamics of a quan-
tum mechanical system is to small perturbations of its
Hamiltonian. It can be defined as follows. A system
is prepared in a given initial state |ψ(0)〉, propagated
forward in time under an unperturbed time-reversible
Hamiltonian H to some time t, |ψ(t)〉 = U(t)|ψ(0)〉 where
U(t) = exp(− iHt/~) is the time evolution operator. At
that time the evolution is stopped and the system is prop-
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agated backward in time under a perturbed Hamiltonian
H + H ′ to create a new state U ′(−t)U(t)|ψ(0)〉 where
U ′(−t) = exp[i(H +H ′)t/~]. The overlap of this forward
and backward propagated state with the initial state is
known as the fidelity, fH′(t) = 〈ψ(0)|U ′(−t)U(t)|ψ(0)〉.
The fidelity is unity in the absence of perturbations for
any H and t. However, in the presence of perturba-
tions the fidelity will decay with t at a rate depending
on H and the perturbation. Fidelity is also known as the
Loschmidt echo (LE) [10], and thus makes connection to
spin-echo experiments widely used in nuclear magnetic
resonance [11].

Considerable progress to measure the LE with classi-
cal waves has been made by the development of “time-
-reversal mirrors” for classical waves in acoustics [12, 13]
and electromagnetics [14–16]. Such mirrors collect and
record a propagating wave as a function of time, and at
some later time propagate it in the opposite direction in
a time-reversed fashion. In general it is not possible to
mirror all waves in this manner. However, this problem is
mitigated considerably in the special case of a billiard sys-
tem with classically chaotic ray dynamics. Under these
conditions a single-channel time-reversal mirror can very
effectively approximate the conditions required to imple-
ment the “Loschmidt echo” definition of fidelity [17, 16].
Further simplifications can be gained by making use of
spatial reciprocity of the wave equation to simplify the
implementation of a “Loschmidt echo” measure of fidelity.
Here we present a new sensor paradigm for classical-wave-
-based sensors by measuring the scattering fidelity of a
ray-chaotic billiard system through the coherent time-
-reversed reconstruction of an excitation pulse which can
detect small changes in scattering.

2. Experiment

A Loschmidt echo scattering fidelity experiment is
demonstrated using acoustic waves in a 2-story-tall en-
closed stairwell, roughly 6 m deep ×2.5 m wide ×6.5 m
tall [18]. A desktop speaker and microphone (Samson
C01U) inside the stairwell are connected to a controlling
computer stationed outside the enclosure (see Fig. 1).
A 7 kHz sound wave that is amplitude modulated with
a 1 ms long pulse is broadcast into the stairwell. The
response of the stairwell is recorded at the location of
the microphone. The signal recorded is quite sensitive
to the geometry of scattering objects inside the stairwell,
and is called a sona. Operation of a time reversal mir-
ror would demand that we next interchange the location
of the microphone and the speaker before broadcasting
a time reversed sona back into the enclosure. However,
spatial reciprocity of the acoustic wave equation, which
states that interchanging the location of a source and a
receiver does not alter what is recorded, is used to sim-
plify the experiment. The time reversed sona broadcast
retraces its ray trajectories in the stairwell in a time re-
versed manner, and collapses on the microphone recon-
structing a time reversed version of the original pulse.

Fig. 1. Schematic diagram of the acoustic time rever-
sal mirror experiment, which utilizes spatial reciprocity
for sound waves in a stairwell. A computer outside
the reverberant cavity is connected to a speaker and
a microphone that are placed inside the enclosure many
wavelengths apart.

The above mentioned experimental procedure to recon-
struct a time reversed pulse is used to investigate the fol-
lowing issues. The robustness of the acoustic time rever-
sal mirror is investigated by broadcasting a time reversed
sona after numerically modifying its phase information.
The long term drift induced by uncontrollable environ-
mental changes to the cavity is studied by reconstructing
time reversed pulses successively over a long time period
using a single sona signal recorded at an earlier time. The
feasibility of the acoustic time reversal mirror as a sensor
is then demonstrated as follows. A time reversed pulse is
reconstructed in a stairwell with a given configuration of
objects, then the same sona signal is used to reconstruct
a time reversed pulse after we rotate a rectangular box
to a new orientation in the stairwell. The time reversed
pulses reconstructed before and after the perturbation
to the cavity are compared with a goal of detecting the
perturbation.

3. Results

3.1. Phase noise added to the sona

The robustness of the time reversal mirror to phase
noise/manipulation that corrupts the sona signal is stud-
ied. We performed an experiment in which the digitized
sona signal is numerically modified before it is time re-
versed and broadcasted back into the cavity it was col-
lected from. Specifically, the sona is Fourier transformed
to get its magnitude and phase information in the fre-
quency domain (with a frequency step of 2 Hz between
data points). Gaussian distributed random numbers with
zero mean and a given standard deviation, which is sys-
tematically varied from 0 to π, are added to the phase of
the Fourier transform of the sona. The unaltered mag-
nitude information, and the modified phase information
are used to generate a modified sona signal using inverse
Fourier transform. This modified sona is then time re-
versed and broadcasted into the cavity, and the peak to
peak amplitude of the reconstructed pulse is measured.
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The peak to peak amplitude of the reconstructed pulse
is observed to diminish as the standard deviation of the
phase noise is increased (see Fig. 2). This result is also
seen using a theoretical model that applies similar phase
noise to the sona signal.

Fig. 2. A plot of peak-to-peak amplitude (PPA) of the
reconstructed pulse amplitude in volts versus the stan-
dard deviation of the Gaussian phase noise distribution
in radians. Gaussian distributed random numbers with
zero mean and a standard deviation, which is systemat-
ically varied between 0 and π, are added to the phase of
the Fourier transform of the sona signal. This effectively
scales the reconstructed pulse by a Gaussian function of
the standard deviation of the underlying phase noise.

Because the system is linear, the effect of phase noise
on the sona can be directly calculated. The sona
can be expressed as a Fourier transform as S(t) =∫

dωS(ω)e iωt. With added phase noise, distributed as

P∆θ (θ) =
1√

2π(∆θ)2
e−

θ2

2(∆θ)2 ,

the modified sona becomes

Snoisy(t) =
∫

dωS̃(ω)
∫

dθe iωt e iθP (θ).

Carrying out the integral over the random variable leads
to

Snoisy(t) =
∫

dωS̃(ω)e iωt e−
(∆θ)2

2 .

Clearly the sona signal is reduced in magnitude by an
amount that depends on the width of the Gaussian dis-
tribution ∆θ.

The degradation of the sona signal translates into
degradation of the reconstructed pulse, as shown in
Fig. 2. The peak-to-peak amplitude of the reconstructed
pulse versus width of the Gaussian phase noise distribu-
tion is fit to a Gaussian function as

Vp−p(∆θ) = V0 + Ae−B
(∆θ)2

2 ,

and the three parameters V0, A, and B are allowed to
vary. The result shows an excellent fit with V0 = 0.14 V,
A = 1.58 V, and B = 1.14. The value of B is very close

to the expected value of 1, while the offset value V0 is the
background level in the extremely noisy limit.

3.2. Long-term drift of the reconstructed pulse

As the time reversed sona signal is periodically broad-
cast into the cavity, the reconstructed time reversed pulse
consistently reproduces itself up to some statistical mea-
surement fluctuation. Particularly, we look at the fluctu-
ations in the peak-to-peak amplitude of the reconstructed
pulse as a single time reversed sona is periodically broad-
casted into a nominally unperturbed cavity every 10 s
over a time period of 20 min (see Fig. 3). For short time

Fig. 3. Long term drift in the PPA in volts of the re-
constructed time reversed pulse in the stairwell. The
PPA exhibits a drift as the reverberant cavity and air
medium go through thermally-induced changes in time.

periods, the statistical variation of the peak-to-peak am-
plitude is about ±2%. However, there are uncontrollable
changes to the cavity over long time periods, such as
thermal expansion or perhaps changes in temperature of
the air, and these play a role in the drift of the recon-
structed time reversed pulse amplitude on longer time
scales (>10 min).

3.3. Effect of a volume-preserving perturbation

Finally, we test the feasibility of the acoustic time
reversal mirror to detect volume preserving perturba-
tions to the cavity by comparing reconstructed pulses
before and after a specific perturbation of the scatter-
ing environment. The perturbation we perform involves
rotating a rectangular cardboard box (with a volume
of 30 × 60 × 80 cm3), located inside the stairwell, by
90 degrees. The reconstructed time-reversed pulses be-
fore and after perturbation are compared in one of the
following ways: (1) the peak-to-peak amplitude of the
two pulses are compared, or (2) the normalized cross
correlation between the two reconstructed pulses is calcu-
lated. The peak-to-peak amplitude of the reconstructed
pulse drops from 1.11 V to 0.92 V upon the perturba-
tion; this is a reduction by 17% (see Fig. 4), which is
significant compared to the typical statistical fluctuation
of about ±2% between nominally identical reconstructed
pulses (Fig. 3). On the other hand, the normalized cross
correlation of the pulses before and after perturbation is
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Fig. 4. The effect of a volume preserving perturbation
on the reconstructed time reversed (TR) pulse. The TR
pulses (a) before (PPA = 1.11 V) and (b) after (PPA =
0.92 V) perturbation have a normalized correlation of
93%, but the PPA drops by 17%. The perturbation is
done by rotating a rectangular box (30×60×80 cm3) by
ninety degrees inside the reverberant cavity (stairwell).

93%. From this and many other measurements [18] it
is clear that monitoring the decrease in the peak-to-peak
amplitude of the reconstructed time-reversed pulse is not
only computationally simpler but it is also a statistically
more reliable mechanism to detect perturbations.

4. Discussion

The advantage of using time reversal mirrors for sens-
ing applications stems from the underlying chaos present
in the closed ray-dynamic version of the scattering sys-
tem. The chaos implies that a broadcast pulse reflects
off of most parts of the cavity before being recorded by
the microphone. The time reversed sona also explores the
cavity in a time reversed manner before reconstructing as
a time reversed pulse at the microphone. Any changes in
the boundary conditions of the cavity break time reversal
invariance, resulting in a degradation of the reconstruc-
tion of the pulse. We have shown that this degradation
manifests itself clearly as a drop in the peak to peak am-
plitude of the reconstructed time reversed pulse.

Because of the chaotic nature of the ray dynamics of
the enclosure, the waves broadcast are “space filling” and
reach all parts of the cavity. This has the advantage
of increasing the sensitivity to scattering perturbations
throughout the volume. The disadvantage is that the
sensor cannot easily identify the location and size of the
perturbation. Further work is needed to refine the sen-
sor to reveal more detailed information about the loca-
tion and nature of the perturbation giving rise to the
signal [18].

5. Conclusions

We have developed a new class of sensors that exploits
the scattering properties of wave chaotic systems along

with time-reversal invariance and spatial reciprocity of
the wave equation. This sensor measures the classical
analog of the quantum fidelity to detect small changes in
a scattering environment.
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