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Abstract—A statistical model, the Random Coupling Model,
that describes the coupling of radiation into and out of large
electrical enclosures is described and generalized. Particular
attention is paid to the case in which the ports are electrically
large and described by multiple modes (distributed ports). We
find a compact expression for a model of the enclosure impedance
that can be used to generate probability distributions for fields at
the enclosures ports. Results are of interest in the evaluation of
power leakage in complex metallic structures and reverberation
chambers, and the evaluation of the effectiveness of shielding in
the presence of apertures.

I. INTRODUCTION

A statistical approach is often taken to describe the exci-
tation of, and field distribution in, complicated electromag-
netic enclosures [1], [2], [3], [4], [5], [6], [7]. The basic
idea is that due to a combination of the complexity of the
geometry, uncertainties in precise locations of boundaries or
objects in the enclosure, and the sensitive dependence of the
fields to the frequency of excitation, first principles solutions
of the Maxwell equations are not practical, or needed, to
make predictions of distributions of quantities of interest. In
the statistical approach one instead attempts to predict the
probability distribution for measuring a particular field value
using a model based on a minimum of information about the
enclosure of interest. Such a model is relevant to prediction
and design of immunity methods in complex electromagnetic
environments.
One such statistical approach is the Random Coupling Model
(RCM) [6], [7]. RCM is based on the use of Random Matrix
Theory (RMT) [8] that has found wide application in meso-
scopic and nuclear physics [8], [9], [10], [11], [12]. The model
incorporates system specific information about the near field
behaviour of the ports of the enclosure, the volume of the
enclosure, and a measure of the enclosures quality factor, and
predicts the statistical behaviour of the enclosures scattering
parameters (actually the impedance matrix from which the
scattering matrix can be obtained). This model was introduced
in [5], [6], [7] for a specific geometry, namely planar cavities
excited by point like sources. The validity of the model has
been verified by comparison with both numerically calculated
and experimentally measured scattering parameters.
The formulation of the model for the case of three-dimensional
cavities, with arbitrary polarization of the fields inside, and

with ports that are large compared with a wavelength has not
previously been presented. The purpose of this paper is to
make such a presentation.

II. THE RANDOM COUPLING MODEL

A. Definition of RCM

RCM works by first identifying a suitable set of voltages
and currents that are linearly related and that can be used to
describe the interaction of the fields within the cavity with
signals to and from the outside world. In the case of planar
cavities in [5], [6], [7], voltages and currents were those at
the ends of transmission lines that were used to couple to
the enclosure. Then RCM, provides a model for the linear
relation between these voltages and currents that mimics the
behaviour of the fields in the enclosure. The model is based
on the following approach. First one imagines representing
the fields inside the enclosure in a complete basis of modes,
and calculates the excitation of these modes due to coupling
to the ports. One then writes a formal expression for the
matrix impedance that involves the modes and their resonant
frequencies. The real modes and resonant frequencies are too
complicated, and too sensitive to details, to calculate. So, these
are replaced by representations that are based on RMT and the
assumption that modes appear to be random superpositions of
plane waves. The result is a compact expression for a model
of the cavity impedance matrix

Zcav = i=
{
Zrad

}
+
[
Rrad

]1/2 · ξ · [Rrad
]1/2

, (1)

where Zrad = Rrad + i=
(
Zrad

)
is in the simplest theory an

Np ×Np diagonal matrix (where Np is the number of ports)
whose elements are the complex radiation impedances of the
ports, and we have adopted the notation that a double underline
indicates a matrix quantity. Here, the radiation impedance
provides the linear relation between voltages and currents at
a port in the case in which waves are allowed to enter the
enclosure through the port but not return, as if they were
absorbed in the enclosure. The matrix ξ is an element of
the Lorentzian ensemble [8] and can be defined for a lossless
cavity as

ξ =
i

π

∑
n

∆k2wnw̃n

(k20 − k2n)
. (2)
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Here wn is a vector of uncorrelated, zero mean, unit width
Gaussian random variables, and kn2 are the eigenvalues of
a matrix selected from the Guassian Orthogonal Ensemble
(GOE) [13], where the central eigenvalue is shifted to be close
to k20 = ω2/c2 and ω, is the frequency of excitation. The shift
implies that ξ has zero mean. The eigenvalues are scaled so
that the average spacing between eigenvalues near the central
one is ∆k2, which is selected to match the mean spacing of
resonances of the enclosure in the frequency range of interest.
The effect of internal losses, or additional ports (beyond the
Np already considered), can be treated simply by making the
replacement k20 → k20 (1 + j/Q) in the denominator of (2).
In this way the statistics of the ξ matrix depend on the loss
parameter α = k20/

(
Q∆k2

)
. It is through the matrix ξ that

the propagation of waves in the enclosure from one port to
another and back is modeled.

We now discuss the ways in which the impedance (or ad-
mittance) matrix is defined for a port, and then discuss how its
values are determined. We generally identify three situations of
interest, which we label the terminal case, the closed aperture
case, and the open aperture case. The precise definition of
the impedance matrix will vary in these cases, as will the
method of calculation of the matrix. However, all three of
these cases can still be treated within the RCM. The terminal
case applies to the situation where a port is excited through a
single mode transmission line, and the excitation of the port
can be prescribed by a single variable: the voltage, or current,
or amplitude of the incident wave on the transmission line.
Our studies [5], [6], [7] of the excitation of cavities by signals
on cables are examples of this case. In addition, a terminal or
lead on an integrated circuit can be treated as an example of
this case if one considers the input to the circuit as a lumped
element and the conductors and dielectric material surrounding
the integrated circuit as an antenna. In the terminal case,
determination of the radiation impedance becomes equivalent
to solving for the fields surrounding an antenna that is driven
by a transmission line. It is thus important to account for the
geometry and dielectric properties of the material surrounding,
within several wavelengths, the terminal. Calculation of the
port impedance can be quite complicated as it involves the
self-consistent determination of the current in all conductors
and polarization of all dielectrics near the port. A simple case
is that of an antenna that is small compared with a wavelength.
In this case the current distribution in the antenna is fixed.
An example of this is that of a coaxial antenna in a two
dimensional cavity [5], [6], [7].

The procedure for treating a pin on an integrated circuit
in the terminal case is as follows. One imagines that there
is a fixed current source within the integrated circuit that
excites the conductors surrounding the integrated circuit and
that radiates energy away form the integrated circuit. The
voltage that appears at the terminal, divided by the fixed
current defines the radiation impedance for that port. When
analyzing the statistics of the voltages that appear at that
terminal, when the integrated circuit is placed in the cavity, it

is necessary to account for the impedance seen looking into
the integrated circuit. In the Random Coupling Model one
assumes that the port terminal is connected to a load with this
impedance.

B. Superposition of current distributions

One case where a closed-form expression can be obtained is
the calculation of the impedance for a set of ports that can be
modeled as a superposition of fixed current distributions. We
assume the current density profile can be written as the product
of a port current, Ip , and a basis of spatially dependent profile
functions, up (x)

J (x) =
∑
p

up (x) Ip, , (3)

here the sum is over elements of the basis. The corresponding
port voltage is then defined as

Vp = −
∫
d3xup (x) · E (x) . (4)

This definition preserves power balance,

P =
1

2
<
{∫

d3E · J∗
}

=
1

2
<

{∑
p

VpI
∗
p

}
. (5)

To calculate the radiation impedance we insert expression (3)
in the Maxwell equations, Fourier transform in space, solve
for the Fourier transform of the electric field, take the inverse
transform, and insert the expression for the electric field in
(4). The result is

Vp =
∑
p′

Zrad
pp′ (k0) Ip′ , (6)

where

Zrad
pp′ (k0 = ω/c) =

√
µ

ε

∫
d3k

(2π)
3

ik0
k20 − k2

ũp ·∆1 · ũ∗p′ . (7)

Here
∆1 =

1k2 − kk
k2

+
kk
k2k20

(
k20 − k2

)
. (8)

The radiation impedance matrix is a complex quantity. The
residue at the pole k = k0 in (7) gives the radiation resistance

Rrad
pp′ (k0) = <

(
Zrad
pp′

)
=

√
µ

ε

∫
k20dΩk

16π2
ũ∗p ·

1k2 − kk
k2

· ũ∗p′ ,

(9)
where Ωk is the two dimensional solid angle of the wave vector
k. The radiation resistance is frequency dependent through
k0 = ω/c , and we note that there is an implicit k0 dependence
through the Fourier transforms of the port functions. The
impedance of a cavity excited by the same port currents can
be expressed by expanding the fields inside the cavity in a
basis of electric and magnetic modes

E =
∑
n

(V em
n eemn (x) + V es

n eesn (x)) , (10)

and
H =

∑
n

Iemn hem
n (x) . (11)
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Here the electromagnetic modes satisfy the pair of equations,
−ikneemn = ∇ × hem

n , and iknhem
n = ∇ × eemn with the

tangential components of the electric field equal to zero on
the boundary.

The electrostatic modes are irrotational eesn = −∇φn, where
the potential satisfies the Helmoltz equation

(
∇2 + k2n

)
φn =

0, with the Dirichelet boundary conditions, φn|B = 0. The
electrostatic modes are needed to represent electric fields that
have non-vanishing divergence inside the cavity. It can be
shown that all the electric field modes are orthogonal. The
mode amplitudes are determined by projecting the Maxwell
equations onto the basis functions for each field type. The
result of this action is an expression for the port voltages that
is equivalent to (6) except that the radiation impedance matrix
is replaced by a cavity impedance matrix

Zcav
pp′ (k0) =

√
µ

ε

∑
n

(
ik0

k20 − k2n

uem
pn uem

p′n

V em
+

i

k0

ues
pnues

p′n

V es

)
,

(12)
where u(·)

pn =
∫
d3x e(·)n (x) · up (x), is the projection of

the magnetic field of the cavity mode onto the port current

profile, and V (·) =
∫
d3x

∣∣∣e(·)n

∣∣∣2 is a normalization factor
for the eigenfunctions. Expression (12) is general and gives
an exact expression for the impedance matrix of a lossless
cavity in terms of the cavity modes. As mentioned before,
RCM proposes modifying (12) in the following way:
• replace the exact eigenmodes with putative modes corre-

sponding to random superpositions of plane waves;
• replace the exact spectrum k2n of eigenmodes with one

generated by a random matrix from the GOE.
Carrying out the first step, we write for the components of the
electromagnetic eigenmodes,

e(em)
n = lim

N→∞

√
2

N

N∑
j=1

< [bj exp (θj + kj · x)] , (13)

where θj are uniformly distributed in the interval [0, 2π],
|kj | = kn, with the direction of kj uniformly distributed
over a 4π solid angle, |bj = 1|, with bj uniformly distributed
in angle in the plane perpendicular to kj . Except as men-
tioned, all random variables characterizing each plane wave
are independent. A similar expression can be made for the
scalar potential φn generating the electrostatic modes. With
eigenfunctions expressed as a superposition of random plane
waves, each factor u(·)

pn appearing in (12) becomes a zero mean
Guassian random variable. The correlation matrix between two
such factors can then be evaluated by forming the product of
two terms, averaging over the random variables parameterizing
the eigenfunctions and taking the limit N →∞ . We find for
the electromagnetic modes the following expectation value,〈

uem
pn uem

p′n

V em

〉
=

∫
dΩk

8πV
ũp ·

[
1k2 − kk

k2

]
· ũ∗p′ . (14)

Here, |k| = kn, Ωk represents the spherical solid angle of k,
and V is the volume of the cavity. A similar analysis of the

electrostatic modes gives〈
ues
pnues

p′n

V es

〉
=

∫
dΩk

4πV
ũp ·

[
kk
k2

]
· ũ∗p′ . (15)

The connection between the cavity case (12) and the radiation
case (7) is now beginning to emerge. Specifically, we note that
the factors uem

pn are zero mean Gaussian random variables with
a correlation matrix given by (15). We can express the product
uem
pn uem

p′n
in terms of uncorrelated zero mean, unit width

Gaussian random variables by diagonalizing the correlation
matrix. We now introduce matrix notation and represent the
pp

′
element of the product as

uem
pn uem

p′n

V em
= 2

√
ε

µ
∆kn

{[
Rrad

]1/2 · wnw
T
n ·
[
Rrad

]1/2}
pp′

,

(16)
where Rrad is the radiation resistance matrix (9), wn is a
vector of uncorrelated, zero mean, unit width Gaussian random
variables, and ∆kn = π2/

(
V k2n

)
is the mean spacing between

electromagnetic eigenmodes of a three dimensional cavity.
Substituting (16) into (12) we have

Zcav
pp′ =

{∑
n

2ik0∆kn
π (k20 − k2n)

[
Rrad

]1/2 · wnw
T
n ·
[
Rrad

]1/2}
pp′

+iXes
pp′ (k0) .

(17)

Here, in the limit of a large cavity, we have approximated the
sum of the pairs of gaussian random variables representing
the electrostatic contribution to the cavity impedance by their
average values and using the mean spacing formula for elec-
trostatic modes converted the sum to an integral

∑
n ∆kn →∫∞

0
dkn. Similarly we can evaluate the expected value of an

element of the cavity impedance matrix by averaging over the
wn, and replacing the sum over eigenvalues in (17) with a
continuous integral. Comparing with the definitions (6) and
(7) we see 〈

Zpp′

〉
= iXrad

pp′ (k0) = i=
{
Zrad
pp′

}
. (18)

The second step is to replace the exact spectrum of eigen-
values, k2n in (17) by a spectrum produced by random matrix
theory. These are adjusted so that the mean spacing matches
that of the actual cavity in the vicinity kn ≈ k0. The result
is then expressed in compact form as (1). The radiation
impedance defined by (6) and (7) has off-diagonal components
that describe the fields induced at one port as a result of
currents flowing in another. If the ports are close together
the off-diagonal terms are comparable to the diagonal ones,
and they have a significant effect on the predicted cavity
impedance. However, these effects are captured by (1) simply
by using the non-diagonal radiation impedance. If the ports
are separated by a distance of many wavelengths these off
diagonal terms are smaller than the diagonal terms and have a
less significant effect on the cavity impedance. Further, in the
case of well-separated ports the radiation impedance matrix
includes only the effect of direct propagation from one port
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to another, and not the effect of ray paths that bounce from
a wall of the cavity in propagating from one port to another.
We have recently shown [15], [16] how these ray paths can
be included in the development of a model cavity impedance,
but we will not pursue this effect further here. (Generally,
these orbits do not contribute coherently when one considers
ensemble averages over large enough ranges of frequency or
large enough variations in cavity shape.)

C. Planar apertures

Expressions (7) and (17) apply when the port is represented
as a current distribution with a number of components that
have different spatial profiles. Another case of interest is that
of an enclosure excited through an aperture. In this case the
port is characterized by an impedance (or scattering) matrix
that has a dimension equal to the number of modes used to
represent the fields in the aperture. For example, suppose the
port is treated as an aperture in a planar conductor whose
surface normal n̂ is parallel to the z-axis. The components of
the fields transverse to z in the aperture can be expressed as
a superposition of a basis of modes (for example, the modes
of a waveguide with the same cross sectional shape as the
aperture)

Et =
∑
s

Vses (x⊥) , (19)

and
Ht =

∑
s

Isn̂× es (x⊥) , (20)

where es is the basis mode, (having only transverse fields)
normalized such that

∫
aperture

dx2⊥ |es|
2

= 1 and n̂ is the
outward normal to the cavity, which we take to be in the z-
direction. In the radiation case we solve the Maxwell equations
in the half space z > 0 subject to the boundary conditions that
Et = 0 on the conducting plane except at the aperture where it
is given by (19). We then evaluate the transverse components
of the magnetic field on the plane z = 0, and project them on
to the basis n̂ × es (x⊥) at the aperture to find the magnetic
field amplitudes Is in (20). The result is a matrix relation
between the magnetic field amplitudes and the electric field
amplitudes in the aperture

Is =
∑
s′

Y rad
ss′

(k0)Vs′ , (21)

where

Y rad
ss′

(k0 = ω/c) =

√
µ

ε

∫
d3k

(2π)
3

2ik0
k20 − k2

ẽs ·∆2 · ẽ∗s′ , (22)

with

∆2 =
k⊥k⊥
k2⊥

+

(
k2 − k2⊥
k2

+

(
k20 − k2

)
k2⊥

k2k20

)
(k× n̂) (k× n̂)

k2⊥
×
(
k20 − k2

)
.

(23)

and

ẽs =

∫
aperture

d2x⊥ exp (−ik⊥ · x⊥) es (x⊥) . (24)

If we repeat the process, but assume the aperture opens
into a cavity rather than an infinite half space, the radiation
admittance is replaced by a cavity admittance. Following the
steps leading to (17), i.e., under the assumptions that the
eigenmodes of the closed cavity can be replaced by superpo-
sitions of random plane waves, and the spectrum of the cavity
eigenmodes can be replaced by one corresponding to a random
matrix from the Gaussian Orthogonal Ensemble, the statistical
properties of the cavity admittance can be represented as
follows

Y cav = i=
{
Y rad

}
+
[
Grad

]1/2 · ξ · [Grad
]1/2

=

i=
{
Y rad

}
+ δY cav ,

(25)

where Grad is the radiation conductance, i.e., Y cav = Grad +
i=
{
Y rad

}
, the matrix ξ is the same as defined in (2), and

δY cav is the fluctuating part of Y cav .
Expression (21) is derived for an arbitrary basis. If the

aperture is connected to a waveguide (z < 0) an appropriate
basis is the set of modes of a waveguide. A subset of the
modes will propagate in the waveguide, and the others will
be cut-off. For a sufficiently long waveguide the propagating
modes represent the channels for energy to enter and leave the
cavity. The cut-off modes will be present in the waveguide,
but localized to the region near z = 0. To account for the cut-
off modes we imagine partitioning the voltages and currents
in (19) and (20) into the two groups: propagating and cut-off
modes. For the cut-off modes we insert Is = Y0,sVs in (20)
where Y0,s is the imaginary admittance associated with cut-off
mode s in the waveguide. We can then imagine solving for the
voltages of the cut-off modes in terms of the voltages of the
propagating modes. Substituting the cut-off voltages back into
(21) gives a proper admittance matrix relation involving only
the propagating modes. We assert that relation (25) applies
to the statistics of the reduced dimension cavity matrix as
well. The elements of the reduced radiation admittance matrix
will be different from the corresponding elements of the full
radiation admittance matrix due to the effect of the cut-off
modes. However, the relation between the radiation admittance
matrix and the cavity admittance matrix is preserved.

We now consider the open aperture case where the aperture
is illuminated by a plane wave incident with a wave vector kinc

and polarization of magnetic field Hinc that is perpendicular
to kinc. We imagine writing the fields for z < 0 as the sum of
the incident wave, the wave that would be specularly reflected
from an infinite planar surface, and a set of outgoing waves
associated with the presence of the aperture. The incident and
specularly reflected waves combine to produce zero tangential
electric field on the plane z = 0. Thus, the outgoing waves
for z < 0 associated with the aperture can be expressed in
terms of the electric fields in the aperture just as the outgoing
waves for z > 0 can, the two cases being mirror images. So,
relation (19) continues to represent the tangential electric fields
in the plane z = 0. For the magnetic field we have separate
expansions for z > 0 and z < 0. The electric field amplitudes
are then determined by the condition that the magnetic fields
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are continuous in the aperture at z = 0. For z = 0+ we have
H>

t −
∑

s I
>
s n̂ × es (x⊥), with I> = Y > · V , where Y > is

either the radiation admittance matrix or the cavity admittance
matrix depending on the circumstance. For z = 0− we have
H<

t −
∑

s I
<
s n̂×es (x⊥)+2Hinc exp

(
ikinc · x⊥

)
, where I< =

Y rad · V (the minus sign accounts for the mirror symmetry)
and the factor of two multiplying the incident field comes from
the addition of the incident and specularly reflected magnetic
fields. Projecting the two magnetic field expressions on the
aperture basis, and equating the amplitudes gives(

Y > + Y rad
)
· V = 2Iinc , (26)

where Iincs = −n̂ · ẽs
(
kinc
⊥
)
× Hinc, and ẽs is the Fourier

transform of the aperture electric field. Expression (26) can
be inverted to find vector of voltages, and then from (21) the
power passing through the aperture can be determined.
The terminal case leads naturally to consideration of an
impedance matrix while the aperture case leads to considera-
tion of an admittance matrix. In cases involving both apertures
and terminals it is possible to consider a hybrid matrix. In that
case we construct an input column vector φ that consists of the
aperture voltages and terminal currents and an output vector
ψ that consists of the aperture currents and terminal voltages

φ =

(
V A

IP

)
, (27)

and

ψ =

(
IA

V P

)
, (28)

where V A,P are the aperture and port voltages, and IP,A are
the aperture and port currents. These are then related by a
hybrid matrix T , ψ = T · φ, where

T = i=
{
U
}

+
[
V
]1/2 · ξ · [V ]1/2 . (29)

Here, the matrices U and V are block diagonal

U =

[
Y rad 0

0 Zrad

]
, (30)

and V = <
{
U
}

. The dimension of U and V is (Ns +Np)×
(Ns +Np), where Np is the number of port currents and Ns

is the number of port voltages. Here, we have assumed that the
ports and apertures are sufficiently separated such that the off
diagonal terms in U , describing the excitation of port voltages
by aperture voltages, and aperture currents by port currents,
are approximately zero. In this case we can take the square
root in (29)[

V
]1/2

=

[ [
Y rad

]1/2
0

0
[
Zrad

]1/2
]
. (31)

Matrix T defined in (29) can then be used to calculate the
signal received at ports due to the illumination of an aperture.
Specifically, let us assume that the aperture is illuminated by
a plane-wave as in (26) so that Iinc is known. The aperture
currents then must be given by IA = −Y · V A + 2Iinc.

( Xcr, Ycr )
Y

X

L

W

Fig. 1. Planar rectangular aperture adopted for preliminary computations
based on RCM.

Let us also assume that the ports are connected to load
impedances described by the diagonal matrix ZL. The ele-
ments of ZLrepresent the characteristic impedance of ports
fed by transmission lines or the internal impedance of circuit
elements that are being treated as ports. The vector of aperture
voltages and port currents is then given by the matrix equation(

Y rad 0
0 ZL

)
·
(
V A

IP

)
+ T ·

(
V A

IP

)
=

(
2Iinc

0

) (32)

Once (32) is solved for the port currents, the port voltages,
including the voltages on designated terminals, is given by
V P = −ZL · IP .

III. MONTECARLO SIMULATION OF CHAOTIC CAVITIES:
RECTANGULAR APERTURE

The effectiveness of the present approach is now illustrated
by performing Montecarlo evaluations of expression (25). In
particular, we focus on the computation of its fluctuating part
δY cav given in terms of aperture conductance, which depends
on k0, aperture geometry, and related field distribution, through

Grad
ss′

(k0 = ω/c) =

√
µ

ε

∫
k20dΩk

8π2
ẽs

·
[

k⊥k⊥
k2⊥

+
(k× n̂) (k× n̂)

k2⊥

]
· ẽ∗s′ .

(33)

The computation of smoothly varying =
(
Y rad

ss′

)
involves the

Cauchy principal value calculation and is deferred for the time
being. The radiation conductance Grad

ss′ is computed assuming
a proper set of orthogonal basis functions, es for transverse
field distribution of the aperture and then Fourier transforming
with respect to transverse coordinates. We adopted the canon-
ical shape of [17, Eq. (2)], valid for both electrically narrow
and large planar rectangular apertures of Fig. 2 [18]. The
fluctuating matrix ξ represents the chaotic scattering taking
place within the cavity. It depends only on the loss parameter
α [6], [7], and will be computed by Montecarlo simulation.
To do this we used the strategy of [5] for generating ξ,
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Fig. 2. CDF of the fluctuating part of the cavity admittance: s = 0, s
′
= 0.
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Fig. 3. CDF of the fluctuating part of the cavity admittance: s = 1, s
′
= 1.

specifically 600 eigenvalues calculated from a random matrix
of the GOE and a loss factor α = 6 have been used.
Cumulative distribution functions (CDFs) of

∣∣∣δY cav
ss′

∣∣∣ have
been obtained for different working frequencies, aperture
dimensions, and for two selected modes: the diagonal entries
(s = 0, s

′
= 0) Fig. 2, and (s = 1, s

′
= 1) in Fig.

3. Each simulation has been performed assuming a square
L × L aperture, and generating 1000 random realizations of

the cavity. The computational burden due to the Montecarlo
generation and the double integral performed for 50 aperture
modes required the usage of a parallel supercomputer (total
computation time: about 10 hours). We notice a clear departure
of distributions corresponding to propagating modes, where
admittance increases dramatically for apertures L/λ� 1 .

IV. CONCLUSION

The Random Coupling Model, originally derived for quasi-
planar cavities, has been extended to arbitrary three- dimen-
sional cavities. The form of the model, in particular, the
relation between the radiation impedances of the ports and
the statistically fluctuating matrix generated from Random
Matrix Theory is preserved. Methods for calculating the
radiation impedance matrices for ports that are treated as
superpositions of current distributions or apertures have been
described. The resulting expressions should be useful in the
theoretical evaluation and prediction of coupled field levels in
complex electromagnetic environments, such as reverberation
chambers.
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