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Abstract—In this paper, we analyze the field fluctuations in
weakly coupled complex cavities by using a random matrix theory
to model the chaotic scattering within each cavity. Universal
(chaotic) and non-universal are separated. In particular, non-
universal are found to be conveniently described by the radiation
impedance concept. Inherently, the development of the random
field regime is accounted for by taking each mode of the cavity
as a random plane wave expansion. Sources and sinks inside
the cavities are assumed to be electrically small. A model for the
cascaded cavities scenario is derived through the electric network
theory and random matrix theory for both lossy and lossless
cases. The adopted physical framework is a linear chain of two-
port cavities terminated by a one-port cavity. The field flowing
into this last cavity is related to the current excitation on the
first cavity through the coupling radiation impedance. Closed-
form expressions are derived for two interconnected cavities,
mimicking the nested reverberation chamber scenario. Finally,
the practical issue of measurements in a nested reverberation
chamber is presented and discussed. Accordingly, based on
physical arguments, the small fluctuations theory applies. Results
are of interest in interference propagation through complex
electromagnetic environment or planar circuits, EMC immunity
tests, and reverberation chambers.

I. INTRODUCTION

Over the last decades, there has been an increasing interest
in coupling of complex systems.
Several studies on the field properties inside electromagnetic
complex cavities have been performed in both the electro-
magnetic compatibility (EMC) and the theoretical physics
communities. The connection between reverberation chambers
and chaotic cavities has been investigated [1], [2]. Modeling
of reverberation chambers is grounded on the random plane-
wave spectrum, and statistical properties of the total field and
power/intensity are derived by taking ideal random complex
fields. On the other hand, by using random matrix theory
(RMT), the energy spectrum of chaotic cavities is assumed
to be discrete and uniformly distributed, so as the local field
can be expanded in a series of eigenfunctions with known
statistics. In the semiclassical limit, each cavity eigenmode
(wavefunction) can be locally represented by a plane-wave
superposition (Berry’s conjecture) [3], [4], [5]. Starting form
Maxwell’s equation for a quasi-planar cavity, upon application
of RMT and Berry’s conjecture, one arrives to a closed-form
solution of the cavity impedance matrix, relating port voltages
to currents [6], [7].

In this paper, we derive closed-form expressions for the
coupling impedance of interconnected cavities. We assume
that the coupling between two contiguous cavities takes place
through a small leaking port. Furthermore, the electromagnetic
energy flows from one cavity to another by an electrically
short cable, thus modeled as a direct connection. The coupling
impedance is defined as a complex scalar, linearly relating
the port voltage at the last cavity to the current excitation
at the first port of the chain. Joint application of electrical
network theory and random matrix theory (RMT) – i.e., the
Random Coupling Model (RCM) – leads to a compact form
for that impedance, where in the high-losses limit it is possible
to separate the non-universal (average) contribution from the
universal (fluctuating) part.
Such a model serves to investigate the physical properties and
coupling transformations in chains of heterogeneous (mixed
random, deterministic, chaotic or regular) EM cavities or
structures. Results are of interest in weak coupling of nested
reverberation chambers, transmission of interference in com-
plex electromagnetic systems, coupling of complex electrical
systems with several fluctuating elements, and chaotic chains
in general.

II. RANDOM MATRIX THEORY MODEL FOR COUPLING

RMT can be used to describe the chaotic wave scattering
inside a complex electromagnetic cavity [8]. Concerning the
reverberation chamber, we conveniently describe the inner
field by averaging over the statistical ensemble of cavities per-
turbed by different (statistically independent) configurations
of mechanical mode-stirrers [3]. Accordingly, even though a
full vectorial characterization of the local field would require
the calculation of the cavity (dyadic) Green’s function, the
average field characterization can be performed considering
considering the scalar Helmholtz equation.

A rigorous calculation has been previously carried out in
terms of port voltages and currents, thus considering the
cavity as a two-port network and exploiting the Telegrapher’s
equations. In such a scenario, the cavity radiation impedance
has been calculated, relating voltages and currents between
the ports in the absence of scattering from the walls of the
enclosure [6], [7]. This captures the non-universal features
associated with the ports.
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The coupling between two cavities is assumed to take place
through a concentrated (electrically small) perturbation; this
allows for approximating sources and leaks with ports.

We assume that the first cavity is excited by a small (with
respect to the cavity dimensions) antenna/source, and that the
inner field is eventually picked up by a small antenna/sink
in the last cavity. It is then straightforward to model this
system as a two-port network, fully characterized by a 2 × 2
impedance matrix. The bridging between electrical network
theory and field theory is carried out introducing the following
port voltage definition [6]

V (c) =

∫∫
V

(c)
T (x, y)u (x, y) dxdy , (1)

where the local voltage is related to the electric field by
V

(c)
T (x, y) = −E (x, y)h for the cavity c. Here, h is the height

of the quasi-planar cavity, where the field is quasi-electrostatic.
In a 3D reverberation chamber, assuming the ensemble field
homogeneity and ergodicity [3], the average Cartesian field
can be treated as a scalar field.

A. Two interconnected cavities

Starting from Maxwell’s equations we write, for a two-port
and a single-port cavity [6], [7]

(
∇2
⊥ + k21

)
V̂

(1)
T = −jk1h1η0

2∑
i=1

u
(1)
i Î

(1)
i , (2)(

∇2
⊥ + k22

)
V̂

(2)
T = −jk2h2η0u(2)1 Î

(2)
1 . (3)

Following the usual approach, we find a solution to the wave
equations expanding the voltage in eigenfunctions, hence

V̂
(1)
T =

∑
n1

cn1φn1 , (4)

V̂
(2)
T =

∑
n2

cn2φn2 , (5)

where φn are the voltage eigenfunctions, and with coefficients

cn1 =
−jk1h1η0

∑2
i=1

〈
u
(1)
i φ

(1)
n1

〉
Î
(1)
i

k21 − k2n1
, (6)

cn2 =
−jk2h2η0

〈
u
(2)
1 φ

(2)
n2

〉
Î
(2)
1

k22 − k2n2
, (7)

found upon multiplying (6) and (7) by φn1 and φn2 re-
spectively, and integrating over the chamber volume. Two
weakly coupled chaotic cavities can thus be modeled by direct
interconnection of double- and single-channel networks. This
means that, since the coupling takes place through a small
aperture or a material sample, the energy leakage can be re-
lated to a single mode of propagation, whence the transmission
line approximation becomes valid. According to the electrical
network theory, the first cavity is described by two constitutive
equations

V
(1)
1 = Z

(1)
11 I

(1)
1 + Z

(1)
12 I

(1)
2 , (8)

V
(1)
2 = Z

(1)
21 I

(1)
1 + Z

(1)
22 I

(1)
2 , (9)

τV V V

III
1

1 1

1

1

1 1

12

2

2

2

1 2

Z Z

ZZ

Z

1 1

11

11
12

21 22

2

Zc

Fig. 1. Network model of two weakly coupled reverberation chambers: the
first cavity is excited by a strongly localized current distribution, while the
power leaking out excites the second one. The electrical network theory arises
when τ → 0.

which can be gathered into the following matrix equation

V
(2)
1 = Z(2)I

(2)
1 , (10)

while the second (one-port) cavity is described by a scalar
equation without crossing impedances

V
(2)
1 = Z

(2)
11 I

(2)
1 . (11)

The basic model of coupling, realized connecting two (adi-
abatic) random/chaotic cavities and exciting the first one by
injection of an external current through a localized radiating
element (antenna) inside the cavity, is depicted in Fig. 1. To
assume direct interconnection between cavities does mean no-
delay, i.e., τ ≈ 0. If some field distribution appears in the
second cavity, this can be only due to the indirect excitation
originated by the first cavity. The coupling is formally realized
introducing the following boundary conditions at the intercon-
necting section

V
(1)
2 = V

(2)
1 , (12)

I
(1)
2 = −I(2)1 , (13)

in the constitutive equations (10) and (11), obtaining a cou-
pling equation for currents

Z
(1)
21 I

(1)
1 +

(
Z

(1)
22 + Z

(2)
11

)
I
(1)
2 = 0 . (14)

Upon direct substitution of Î(1)2 from (14) into (11), multi-
plying by u(2), integrating, and using the voltage boundary
condition again yields

V
(2)
1 =

∑
n2

jkh2η0

〈
u(2)φn2

〉2
I
(1)
2

k22 − k2n2
= −Z(2)

(
V

(2)
2 + Z

(1)
21 I

(1)
1

Z
(1)
22

)
,

(15)
which relates the voltage induced in the second cavity to the
current excitation of the first cavity, through the following
coupling impedance

Zc,2 =
Z(2)Z

(1)
21

Z(2) + Z
(1)
22

, (16)

formally identical to the cross-impedance Z21 of a cascade
connection of two two-ports networks [9, see (27) p. 170].
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B. Lossy cavity: weak fluctuation approximation

The expression in (16) is exact and also valid for cavities
with different geometry and electromagnetic parameters. For
instance, in high lossy scenario, the reduction of the magnitude
of fluctuation can be modeled by using first-order perturbation
theory [10]. In our context, the derivation of each impedance
involved in (16) is undertaken by RCM, thus they can be
separated into a mean value 〈Z〉 plus a fluctuating part δZ,
as usually done for the scattering matrix elements in quantum
chaos. Upon inserting such a decomposition into (16) yields

Zc,2 ≈
(
〈
Z(2)

〉
+ δZ(2))

〈
Z

(1)
21

〉
+
〈
Z(2)

〉
δZ

(1)
21 + δZ(2)δZ

(1)
21〈

Z(2)
〉

+ δZ(2) +
〈
Z

(1)
22

〉
+ δZ

(1)
22

(17)
The second-order fluctuation term δZ(2)δZ

(1)
21 can be ne-

glected and, for unstirred components (short-orbits due to
e.g. line-of-sight), the terms with

〈
Z

(j)
21

〉
(small but non-null)

survive [?]. Weak fluctuations yield

Zc,2 ≈
〈
Z(2)

〉〈
Z(2)

〉
+
〈
Z

(1)
22

〉 (δZ(1)
21,r + jδZ

(1)
21,i

)
, (18)

since in the denominator δZ(2) and δZ
(1)
22 are small if com-

pared with their associated mean values, and where j =
√
−1.

The statistical expression (18) gives a clear picture of the
fluctuation structure featuring the coupling impedance (and
then, the coupled field): its distribution function (DF) can be
approximated by the renormalized DF of the forward cross-
impedance characterizing the first cavity, viz.

fZc,2
(zc,2) ≈ fZc,2

(
A z(1)21

)
, (19)

with f(·) probability density function (pdf) of the random
variables z, and

A =

〈
Z(2)

〉〈
Z(2)

〉
+
〈
Z

(1)
22

〉 . (20)

C. Three interconnected elements

The coupling impedance of two interconnected cavities is
useful to characterize the pure fluctuation of the coupled field.
In a real scenario, the transmission between two complex
environments can take place through single- or multi-mode
interconnections (waveguides, cables), as well as passing
through a random overmoded environments.

Adopting the three-cavities model allows for characterizing
practical scenarios. Let us consider the situation of three
connected cavities, depicted in Fig. 2. On application of
constitutive equations and boundary conditions at the two
(connecting) sections yields

V
(3)
1 =

Z(3)Z
(2)
21 Z

(1)
21(

Z
(1)
22 + Z

(2)
11

)(
Z

(2)
22 + Z(3)

)
− Z(2)

12 Z
(2)
21

I
(1)
1 .

(21)
The denominator of (21) exhibits the determinant of the
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Fig. 2. Network model of three coupled chaotic elements.

following matrix relating the leakage currents, viz., (Z(1)
22 + Z

(2)
11

)
−Z(2)

12

−Z(2)
21

(
Z

(2)
22 + Z(3)

) [ I2
I3

]
=

[
−Z(1)

21 I1
0

]
,

(22)
where a current coupling matrix M2 arises

M2I = V . (23)

Thus, we obtain the following compact expression for the
coupling voltage

V3 =
Z(3)Z

(2)
21 Z

(1)
21

∆M2
I1 . (24)

Again, application of small fluctuation theory is pertinent
to the presence of losses (further enhanced by the coupling
leakage itself), yielding

Zc,3 ≈
〈
Z(3)

〉
δZ

(2)
21 δZ

(1)
21

〈M11〉 〈M22〉
, (25)

where average quantities <> involve only radiation
impedances, and short orbits [?]. From (25), we argue that
(the real or imaginary part of) coupling impedance fluctuates,
in the presence of high losses, as the renormalized product
of Gaussian DFs, i.e., following a Meijer-G function law.
Such an approximation is also supported by the fact that the
coupling takes place forwardly along the chain because of
losses (small backward signal) [11], thus

∣∣∣δZ(2)
12

∣∣∣ ≈ 0. In [6], it
has been shown that cavity impedances are related to the non-
universal features of each single port multiplied by a universal
fluctuating term, viz.

Z
(c)
ij =

√
R

(c)
ii ξ

(c)
√
R

(c)
jj , (26)

Z
(c)
ii = jX

(c)
ii +R

(c)
ii ξ

(c) , (27)

where the impedance parameter of cavity c relates the port i
with the port j, R(c)

ii is the real part of Z(c)
ii , R(c)

jj is the real part
of Z(c)

jj , and ξ is a random variable. Note that the fluctuations
in cavity c, ξ(c), depend only on the loss parameters of that
cavities [6], [7], [12], [13].
Of course, in the weak fluctuation limit, the fact that

〈
Z

(1)
21

〉
=〈

Z
(2)
12

〉
=
〈
Z

(2)
21

〉
= 0, and the forward coupling, leads to the

pdf of Zc

f (zc,3) ≈ f

( 〈
Z(3)

〉
〈M11〉 〈M22〉

z
(2)
21 z

(1)
21

)
, (28)
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with 〈M11〉 and 〈M22〉 are diagonal entries of the current
coupling matrix, provided the weak forward coupling condi-
tion

∣∣∣δZ(2)
21 δZ

(2)
12

∣∣∣ << 〈M11〉 〈M22〉 is satisfied. With these
remarks, and applying the small fluctuations theory, pdf (28)
can be recast as

fZc,3
(zc,3) ≈ f

〈Z(3)
〉√

R
(2)
22 R

(2)
11

√
R

(1)
22 R

(1)
11

〈M11〉 〈M22〉
ξ(2) ξ(1)


= f

(
N ξ(2) ξ(1)

)
,

(29)

where the renormalization factor emphasizes separate contri-
butions by each single port in each single cavity. The universal
fluctuation ξ(i) is Gaussian distributed in high-losses case,
while it is Lorentz-Cauchy distributed in lossless case [6].
Concerning the three-cavities chain, a very good agreement
has been found between numerical simulation and the follow-
ing law

fZc,3
(Im [x]) ≈

K0

(
Im[x]

σ
Z1
21
σ
Z2
21

)
πσZ1

21
σZ2

21

, (30)

expressing the solution of the Meijer-G path integral for the
product of two Gaussian distributions, where K0 is the 0-th
order Bessel function of the first kind, and x = zc/N . It is
interesting to notice the presence of a logarithmic singularity
at the origin.
The calculation of a bivariate pdf for the real and imaginary
parts of the coupling impedance is also possible for the product
of two complex random variables, upon a generalized Mellin
transform [14]

fZc (Re[zc], Im[zc]) ≈
N

(1 + Im[zc]2 + Re[zc]2)
2 . (31)

III. COUPLED POWER AND INFLUENCE OF THE LOSS
FACTORS

We wish to find the connection between the coupled signal
and the power entering each cavity, in the case of two
connected cavities.
Taking the absolute value of the coupling impedance, after
some algebra we get

f|Zc|2
(
|zc|2

)
≈ f

(
|A|2

∣∣∣z(1)21

∣∣∣2) , (32)

meaning that the distribution of the coupling impedance
squared magnitude is a rescaled version of the cross-
impedance squared magnitude distribution. Since real and
imaginary part of Z21 are Gaussian distributed for the case of
high-losses, upon variate transforming one obtains that |Z21|
is Rayleigh distributed, yielding

f|Zc|;σ (|zc|) =
|zc|
σ

e−|zc|
2/σ2

≈ |A| |z21|
σ

e−(|A||z21|)
2/σ2

,

(33)
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Fig. 3. Network model of three coupled chaotic elements.

where σ is related to the loss factor through the mean value
and the standard deviation of |Z21| and |A| [6], [7]

〈|Z21|〉 =
σ

|A|

√
π

2
(34)

Std (|Z21|) =
σ

|A|

√
4− π

2
, (35)

while |Zc|2 (and then the coupled power) is exponentially
distributed [15]

f|Zc|2;σ

(
|zc|2

)
=

1

β
e−|zc|

2/β ≈ 1

β
e−(|A||z21|)

2/β , (36)

where, again, β is related to the quality factor through the
mean value and the standard deviation of |Z21| and |A|〈

|Z21|2
〉

=
β

|A|
(37)

Std
(
|Z21|2

)
=

β2

|A|2
. (38)

These results are consistent with the scalar Cartesian field and
energy of a single [16], [3] and double [17] electromagnetic
reverberation chamber. We also notice that σ and β can
be easily derived in terms of radiation impedances and loss
factors, e.g., from [6, Eq. (6.12)], the variance theorem, and
(37) we have

β = |A| R
rad
11 Rrad22

πα
. (39)

with loss factor defined as α = δf3dB/∆f , where δf3−dB is
a typical 3-dB bandwidth of a resonant mode, and ∆f is the
mean spacing between modes [6], [12].

IV. NESTED REVERBERATION CHAMBER WITH SMALL
APERTURE

As a specific example of practical interest, we focus on
the nested reverberation chamber [17]. We further assume
that the coupling aperture is electrically small, so that the
port approximation and the direct connection approximation
(τ ≈ 0) apply. If the operation frequency is higher than
the lowest usable frequency (LUF) of the smallest chamber
[18], we obtain two weakly coupled overmoded chambers with
different loss factor α: the outer one is excited by a small
antenna, and the field in the inner one is picked up by a
small antenna. The complex voltage measured at the antenna
terminals (connected to a calibrated VNA port) is V3 in Fig.
3, obtained by replacing the third element of the chain in Fig.
2 with the input impedance of the VNA. Furthermore, we

205



notice that measured voltage V3 = R(3)I3 is equivalent to
the coupling voltage Vc,3 = Zc,3I1 related to the excitation
current through the coupling impedance. Therefore, given the
circuitry characteristics of the adopted instrument, the coupling
signal properties can be derived upon calculation of Zc,3. Thus,
exact (24) and (25) approximate (high-lossy limit) expressions
predict the coupled voltage fluctuations when the chambers
get mode-stirred. Related DFs can be easily compared with
measurements, given radiation impedances of antennae and
aperture, and dividing over the deterministic excitation current.
In the next section, we will present Montecarlo simulations of
the coupling impedance fluctuation.

V. MONTECARLO SIMULATION

In this Section, we develop the simulation strategy for vali-
dating theoretical findings on coupling impedance distribution,
and to verify the small fluctuation approximation employed
in lossy chains modeling. In [12], a Montecarlo method has
been presented and discussed. We basically use the same
strategy for generating the single impedances of each cavity,
and combine them according to the theoretical expressions
obtained for two and three interconnected cavities. In general,
the impedance matrix related to a M -ports cavity reads [7]

Z =
−j
π

WWT

λ− jα1
, (40)

where each entry of the matrix W represents the coupling
between the ith driving port and the jth eigenmode of the
cavity, behaving as an independent Gaussian-distributed ran-
dom variable with zero mean and unit variance, according to
RMT assumptions [8]. The matrix λ is a set of uniformly
distributed eigenvalues – i.e., mapping of eigenvalues having
semi-circle distribution [19].
In our simulations, we generated 600 random eigenvalues for
each cavity of the chain, and build the associated random
Green’s function selecting a value for the loss factor α. We
assumed identical cavities (homogeneous chain), with same
loss factor, identical radiation resistance Rii = 50 Ω, and
Xii = 20Ω for each port i.
Fig. 4 and 5 shows the pdf comparison for real and imaginary
parts of the coupling impedance for two connected cavities
and α = 10. As predicted by the theory, this pdf follows the
renormalized distribution of the complex cross-impedance, i.e.,
in the high-losses limit, a Gaussian DF [20]. This is confirmed
by the adopted approximation theory. In the weak fluctuation
limit, exact and approximate pdf of coupling impedance are
found to be in excellent agreement even with a small number
of samples. The coupling of chaotic cavities clearly highlights
a reduction in the magnitude of coupling fluctuation compared
to the uncoupled case, as a function of the number of elements
in the chain. The comparison of Im[Zc] for three cavities is
shown in Fig. 6. In the passage from 2 to 3 cavities, the dis-
tribution shape is dramatically changed: we notice squeezing
and improved peakedness. This is clearly due to the product
of cross-impedance fluctuations. Hence, it is worth making a
direct comparison of the theoretical law with the Montecarlo
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Fig. 4. Comparison between exact and approximate coupling impedance
distribution DF in high-losses case (weak fluctuation limit): real part for two
connected cavities for α = 10 and 5000 samples. The random variable zc
has [Ω] units.
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Fig. 5. Comparison between exact and approximate coupling impedance
distribution in high-losses case (weak fluctuation limit): imaginary part for
two connected cavities for α = 10 and 5000 samples.
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Fig. 6. Comparison between exact and approximate coupling impedance
distribution in high-losses case (weak fluctuation limit): imaginary part for a
chain of three cavities for α = 10 and 5000 samples.
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DF.
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Fig. 8. Comparison between exact and approximate coupling impedance
distribution in high-losses case (weak fluctuation limit): simulation of a VNA
provision for cavities with α = 10 and 5000 cavity realizations.

generated distribution. Fig. 7 shows a very good agreement
between theoretical and numerical results, despite the lack of
sampling near the origin, where a singular behavior occurs.
A comparison with measurements would require accounting
for radiation impedances, input impedance of the VNA, and
multiplying by the excitation current. Therefore, the distribu-
tions presented here can be easily renormalized for predicting
experimental fields measured in a weakly coupled reverbera-
tion chamber. Fig. 8 shows exact and approximate distributions
of the real part of Zc,3 (V3/I

(1)
1 ) for Z(3) = R(3) = 50 Ω,

mimicking the input impedance of a VNA port. In this case,
the VNA would be connected to a receiving antenna inside
the central cavity (inner reverberation chamber), connected
to the first one (outer chamber) through a small aperture.
The transmitting antenna is modeled by the first port, whose
exciting current is deterministic as opposed to stochastic. The
computation time is about 2 hours in a commercial laptop, as

the Montecarlo generation of cavity realizations is very fast.

VI. CONCLUSION

We derived closed-form expressions for the statistics of cou-
pling impedance of two- and three-connected complex cavities.
This has been carried out upon joint application of random
matrix theory and electrical network theory. The coupling
is assumed to take place through a cable or an electrically
small aperture. In this scenario, also modeling weakly coupled
reverberation chambers, the interconnection between cavities
is direct (τ = 0). Since the inner field of each cavity is
governed by a random/chaotic scattering [21], the impedances
involved in the calculation of the coupling impedance are
random variables. In the high-loss limit, the weak fluctuation
and the forward coupling approximation can be used to derive
the coupled field statistics. Here, we derived the approximate
probability density function of the coupling impedances: this is
governed by the fluctuation of the (forward) cross-impedances
of each single cavity in the chain. Results are of interest
in evaluation of coupling among complex systems, nested
reverberation chambers, and immunity/shielding test methods
in highly overmoded environments[18].
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