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Universal statistics of the scattering coefficient of chaotic microwave cavities
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We consider the statistics of the scattering coefficof a chaotic microwave cavity coupled to a single
port. We remove the nonuniversal effects of the coupling from the experim8rdata using the radiation
impedance obtained directly from the experiments. We thus obtain the normalized scattering coefficient whose
probability density functionPDPF is predicted to be universal in that it depends only on the (gssility
facton of the cavity. We compare experimental PDFs of the normalized scattering coefficients with those
obtained from random matrix theolRMT), and find excellent agreement. The results apply to scattering
measurements on any wave chaotic system.
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[. INTRODUCTION that good enough statistics is obtained, but at the same time
be small enough that the variation of the coupling with fre-

The scattering of short-wavelength waves by chaotic Sys('quency is not significant. To the extent that these conditions

tems has motivated intense research activity, both theoreti- - o L .
cally and experimentallj1—3]. Some examples of wave cha- are satisfiedS will yield a good approximation to the desired

otic systems include quantum ddt4], atomic nuclei[5], (S. The quantity(S) in the theory describes diredor
microwave cavitie$2,6], and acoustic resonatof]. Since ~ PrompY processegl4] that depend only on the local geom-
these systems all have underlying chaotic ray dynamics, thglY Of the coupling ports, as opposed to complicated chaotic
wave pattern within the enclosure, as well as the response fgocesses res_ultmg from multiple reflectpns far_ removed
external inputs, can be very sensitive to small changes iffom the coupling port. On the other hand, in obtainfgs
frequency and to small changes in the configuration. Thidh Refs.[15,16], averaging of the scattering data of the full

motivates a statistical approach to the wave scattering prolshaotic system is employed. Thus, the data used to oBtain
lem [8]. are the same measured data whose statisti_cs is being s;udied.
The universal distribution for chaotic scattering matricesAlso note that(S) is presumed to characterize the coupling,
can be described by Dyson'’s circular enseniBlel0. How-  Which is independent of the chaos of the system and is thus,
ever, the circular ensemble cannot typically be directly comin principle, a nonstatistical quantity. In this paper we shall
pared with experimental data because it applies only in th@ursue another approa¢h7]. Specifically, we seek to char-
case of “ideal coupling”(which we define subsequently acterize the coupling in a manner that is both independent of

while in experiments there are nonideal, system-specific ef€ chaotic system and obtainable in a nonstatistical manner
fects due to the particular means of coupling between th&-€:» Without employing averagesAs we explain in more
scattering systerte.g., a microwave cavilyand the outside detail subsequently, thI'S latter point is of practical impor-
world. This nonuniversality of the raw experimental scatter—itaggss ?ﬁtﬁigiie?jf t}hi\JE?;r?nnt ;nﬁsgﬁjr;?z anlJciar?{ailtmple size
ing data has long been appreciated and addressed in theor&t: . 0 Dy ging 94 .
ical work [11-13. Of particular note is the work of Mello As discussed in Ref17], a direct means of investigating

Peveyra, and SeligmaiMPS), which introduces the distri- the statistics of typical chaotic scattering systems can be

bution known as the Poisson kernel, where a scattering mgased on determination of the radiation impedance of the

trix (S is used to parametrize the nonideal coupling. To ap_port Zrag OF equivalentlySqy, the complex radiation scatter-

ply this theory to an experiment, it is typically necessary tolng coefficient. The radiation scattering coefficigénéspec-

specify a procedure for determining a measured estimate fively, radiation impedangés the scattering coefficieriim-
P P 9 Cf)%edancbethat would be observed if the distant boundaries of

9. i . . . N . the cavity were made perfectly absorbing or moved to infin-
The first microwave experiments investigating scattermqty_ Therefore, it describes prompt processes at the port and

statistics by comparison with the theory of Ref$1-13 3 e shown to be equal {6). The perfect coupling case
were those of Re{_.15]. In ar_1a|y2|ng their experlm(_antal data, corresponds t.4=0, in which all incident wave energy
Refs.[15,16] obtain an estimate fofS) by averaging mea- enters the cavity

suredS values over a number of different configurations of 14 radiation scattering coefficie§,q can be directly
al

the cavity and over a suitable frequency rang®  easyred in microwave experiments without resorting to av-
—(1/2)Af] to [fo+(1/2)Af]. We denote this experimentally oraging over a range of frequencies. Note 8a4 depends

obtained average & For a given number of averaging con- on the microwave frequency and thus, for the purposes of
figurations, the chosen frequency range must be large enoughking into account couplingg,q can be a more useful and
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robust means of extracting universal properties from the data According to the statistical theory, the only parameter on
thanS, which depends on the frequency rangeover which ~ Which the statistics of ands depends is the loss due to the
the averaging is done. cavity wall absorption, which can be controlled and quanti-
Another fundamental quantity characterizing coupling tofied in our experiment. We will experimentally verify the key
the cavity is the impedancg which is related tc&S through ~ theoretical predictions based on the circular ensemble hy-

the bilinear transformation pothesis, such as the statistical independence of the magni-
tude and phase of the normalized scattering coefficeand
S=(z+2,)Yz-2,), (1) the uniform probability distribution for the phase. Different

. o __ degrees of loss and different coupling structures will be ex-
whereZ, is the characteristic impedance of the transmissioramined, and approximations to the probability density func-
line or waveguide feeding the port. The impedance linearlytions ofs andz will be compared with the theoretical predic-
relates the voltage and the current phasors at the port and {igns from random matrix theorfRMT).
determined solely by properties of the cavity and its port. In  ap expression similar to Eq6) was used by Kuhét al.
what follows we only discuss the one-port case; hed@)d  [16] to generate distributions of the scattering amplituBes
S are scalargrather than matriceshroughout this paper. A pased on theoretical predictions for the normalized scattering
more general discussion involving multiple ports can beamplitudes. Thus, it was assumed that the normalized scat-
found in Ref.[18]. Inverting the transformation E41), we  tering amplitude had the predicted properties of indepen-
can relate the radiation impedanZg,q=Rraq+iXrad 10 the  dence of magnitude and phase, and uniform distribution of

radiation scattering coefficiel§.y as phase. We will experimentally test these assumptions by us-
(1+S.) ing Eq. (5 dirgctly to (_determine the proper_ties af

2o = Zo_ad_ 2) Our paper is organized as follows. Section Il presents our

(1-Sad) experimental setup and data collection. Section Il carries out

the normalization process to recover universal scattering
characteristics and presents experimental histogram approxi-
mations to the probability density functions of the magnitude
and phase of the normalized scattering coefficgefar dif-
3) ferent coupling structures and losses. Section IV explores a
predicted relationship between the average cavity power re-
wherez is a complex random variable satisfyig)=1. The flection coefficient(|$2) and the magnitude of the radiation
random variable has universal properties and describes thescattering coefficient. Section V discusses the advantages of
impedance fluctuations of a perfectly coupled cavity. Theemploying the radiation scattering coefficient in uncovering
real part ofz is well known in solid state physics as the local Universal properties, or of predicting raw scattering data.
density of state§LDOS) and its statistics has been studied Section VI concludes the paper and gives the summary.
[20,21]. The imaginary part ok determines fluctuations in

In Refs.[17,19 it was shown that the cavity impedanZe
can be expressed in terms of a scaled impedaremed the
radiation impedancé,,4 as

Z= iXrad + RradZ,

t_he cavity reactance. D_iscussion of the.probability distrjbu— Il EXPERIMENTAL SETUP
tion of the normalized impedancefor microwave experi-
ments has been presented in a previous pggigr Microwave cavities with irregular shapésaving chaotic

The purpose of this paper is to study the universal statisray dynamicghave proven to be very fruitful for the study of
tical properties of the cavity scattering coefficientlefined wave chaos, where not only the magnitude, but also the

in terms of the normalized impedanze phase of scattering coefficients, can be directly measured
_ from experiments. Our experimental setup consists of an air-
s=(z-Dl(z+1) =|sle'%, (4)  filled quarter bow-tie chaotic cavifyFig. 1(a)] which acts as

, ) ) .. atwo-dimensional resonator below about 19 GB3]. Ray
which can be compared directly to theoretical predictiongyajectories in a closed billiard of this shape are known to be
based on ideal coupling. Combining E¢&)—(4), we obtain  chaqtic. This cavity has previously been used for the success-
a formu_la rela_tm_gs to the cavity scattering coefficie®and ¢ study of the eigenvalue spacing statistjég and eigen-
the cavity radiation scattering coefficieBtq function statistic$24,25 for a wave chaotic system. In order

1 +S: ) (S-S0 to investigate a scattering problem, we excite the cavity by
s= ad ad’ (5)  means of a single coaxial probe whose exposed inner con-

(1+Sag) (1 -SS,0) ductor, with a diametef2a) extends from the top plate and
makes electrical contact with the bottom plate of the cavity
[Fig. 1(b)]. In this paper we study the properties of the cavity
over a frequency range of 6—12 GHz, where the spacing
between two adjacent resonances is on the order of

5-30 MHz.

As in the numerical experiments in Ref4.7,18], our ex-
periment involves a two-step procedure. The first step is to
collect an ensemble of cavity scattering coefficieBtever
. (6) the frequency range of interest. Ensemble averaging is real-

The inverse of Eq(5) giving the actual scattering ampli-
tudeSin terms of the normalized scattering amplituglis a
statement of the Poisson kerfi&ll, 12 for a single-port cav-
ity with internal loss. We note that the first factor in E§)
is simply a phase shift which depends only on the couplin
geometry. Thus, the magnitude ®&atisfies

S- Srad
1- Séad

|S|=‘
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frequency stepping of 8000 equally spaced points over
6—12 GHz, we measure the radiation scattering coefficient
Saq for the cavity. Such an approach approximates the situ-
ation where the side walls are moved to infinity; therefore,

Circular Arc R=42.1" (106.9cm)
Antenna Entry Point

Y \ h=0.310" (7.87mm) Saq does not depend on the chaotic ray trajectories of the
B cavity, and thus gives a characterization of the coupling in-
3 AL dependent of the chaotic system. Reflecting the fact that the
a % Circular coupling aspects of the cavity typically vary over frequency,
Y O Are S.aq is usually frequency dependent.
o8 9;’ PERILRIAD Having measured the cavi§andS,,4, we then transform
v R=25.57 these quantities into the corresponding cavity and radiation
. )| (647cm) impedance$Z andZ,,y), respectively, using Eq$l) and(2).
(a) 177 (43.2cm) The normalized impedanceis obtained by Eq(3). In order
Coaxial to obtainz, every value of the determined cavity impedance
CAVITY LID | r/ Cable Z is normalized by the corresponding value gy at the
same frequency. The transformation in Ed) [or equiva-
Diameter 22) | Heignt (n) lently, Eq. (5)] yields the normalized scattering coefficient
s=|slexp(i ¢s), Which is the key quantity of interest in this
(b) CAVITY BASE paper. Since the artifacts of nonideal coupling are supposed

to have been “filtered out” through this normalization pro-
cess, the statistics of the ensembles@hlues should depend
only on the net cavity loss.

In order to test the validity of the theory for systems with
varying loss, we create different cavity cases with different
degrees of loss. Loss is controlled and parametrized by plac-
ing 15.2-cm-long strips of microwave absorber along the in-
) , , , ner walls of the cavity. These strips cover the side walls from
FIG. 1. (a) The physical dimensions of the quarter bow-tie Cha’the bottom to top lids of the cavity. We thus generate three

otic microwave resonator are shown along with the position of they;ge ot 105 scenariodoss case 0, loss case 1, loss case 3
single coupling port. Two metallic perturbations are systematlcally%

Antenna Entry Point

mICro - Ahsorber

(c)

scanned and rotated throughout the entire volume of the cavity t shown schematically in the insets to Fip¥]. The numbers

generate the cavity ensembl®) The details of the coupling port 1,3 Correspor!d o the_number of 15.2-cm-lo_ng Strips
(antenna and cavity heighth are shown in cross sectiofc) The placed along the inner cavity walls. The total perimeter of

implementation of the radiation case is shown, in which commerciaFhe cavity is 147.3 ,Cm' .
microwave absorber is used to line the inner walls of the cavity to The the?’ry pred'CtS. that, as long as thello_ss is the S,ame'
minimize reflections. the normalizedz or s will have the same statistical behavior.

This prediction will be tested in our experiments with two
ized by using two rectangular metallic perturbations withdifferent coupling geometries corresponding to coaxial
dimensions 26.% 40.6x 7.87 mn? (~1% of the cavity vol-  cables with two different inner diametefda=1.27 mm and
ume, which are systematically scanned and rotated through2a=0.625 mm, schematically shown in Fig(bl].
out the volume of the cavitjFig. 1(a)]. Each configuration
of the perturbers within the cavity volume results in a differ-
ent value for the measured value &fThis is equivalent to In this section, we present our experimental findings for
measurements on cavities having the same volume, loss, atite statistical properties of the normalized scattering coeffi-
coupling geometry for the port, but with different shapes.cient s, for different coupling geometries, and degrees of
The perturbers are kept far enough from the antenna so dsss. This section is divided into three parts. In the first part,
not to alter its near-field characteristics. For each configurawe give an example for the PDF efat a specific degree of
tion, the scattering coefficiel@is measured in 8000 equally quantified loss and a certain coupling geometry. In the sec-
spaced steps over a frequency range of 6—12 GHz. In totabnd part, we fix the degree of quantified loss, but vary the
100 different configurations are measured, resulting in aroupling by using coaxial cable antennas having inner con-
ensemble of 800 008 values. We refer to this step as the ductors of different diameters(2a=1.67 mm and a
“cavity case.” =0.635 mm. The PDF histograms for the magnitude and

The second step, referred to as the “radiation case,” inphase ofs in these two cases will be compared. Finally, in
volves obtaining the scattering coefficient for the excitationthe third part, we test the trend of the PDF|glf for a given
port when waves enter the cavity but do not return to thecoupling geometry and for three different degrees of quanti-
port. In the experiment, this condition is realized by remov-fied loss. Good agreement with random matrix theory is
ing the perturbers and lining the side walls of the cavity withfound in all cases.
commercial microwave absorb€¢ARC Tech DD10017D o
which provides about 25 dB of reflection loss between 6 and A. Statistical independence ofs| and ¢,

12 GHz[Fig. 1(c)]. Note that the side walls of the cavity are  The first example we give is based on loss cagee0, no
outside the near-field zone of the antenna. Using the samabsorbing strips in the cavitand coupling through a coaxial

Ill. EXPERIMENTAL RESULTS AND DATA ANALYSIS
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cable with inner diametere2=1.27 mm. Having obtained the
normalized impedance we transforne into the normalized
scattering coefficiens using Eq.(4). Since the walls of the
cavity are not perfect conductors, the normalized scattering
coefficients is a complex scalar with modulus less than 1.
(In loss case 0, most of the loss occurs in the top and bottom
cavity plates since they have much larger area than the side
walls.) Based on Dyson’s circular ensemble, one of the most
important properties of is the statistical independence of the
scattering phases and the magnitudés|. Figure Za) shows

a contour density plot ofs in the frequency range of
6—9.6 GHz for loss case 0. The gray scale level at a given
point in Fig. 2a) indicates the number of pointffor
{Re(s),Im(s)}] that fall within a local rectangular region of
size 0.02<0.02. We next arbitrarily take angular slices of
this distribution that subtend an angle #f4 radians at the
center, and compute the histogram approximations to the
PDF of |s| using the points within those slices. The corre-
sponding PDFs ofs| for the three slices are shown in Fig. ;
2(b). We observe that these PDFs are essentially identical, (2
independent of the angular slice. Figure)2shows PDFs of
¢s computed for all the points that lie within two annuli
defined by G<|s|<0.3 (starg and 0.3<|s| < 0.6 (hexagons
These plots support the hypothesis that the magnitugdsof
statistically independent of the phage of s, and thatgs is
uniformly distributed in O to Zr. This represents an experi-
mental test of Dyson’s circular ensemble hypothesis for
wave chaotic scattering.

Im(s)

B. Detail independence ofs

To further verify that the normalized does not include (b)
any artifacts of system-specific, nonideal coupling, we take
two identical wave chaotic cavities and change only the inner
diameter of the coupling coaxial cable froma2
=1.27 mm to 2=0.635 mm. Since the modification of the
coaxial cable size barely changes the properties of the cavity,
we assume that the loss parameters in these two cases are the
same. The difference in the coupling geometry manifests it-
self as gross differences in the distribution of the raw cavity
scattering coefficient&. This is clearly observable for the
PDFs of the cavity power reflection coefficigBt? as shown

in Fig. 3(@ and the PDFs for the phase 8f(denoteddgs) 0.0L . . . . . .
shown in Fig. &c), for loss case 0 over a frequency range of T3 2 A 0 1 2 3
6—11.85 GHz. However, after measurement of the corre- © ¢S

sponding radiation impedance and the normalization proce-

dure described above, we observe that the PDFs for the nor- FIG. 2. (a) Polar contour density plot for the real and imaginary
malized power reflection coefficients are nearly identical, agomponents of the normalized caviys=|slexp(i¢s)] for loss case
shown in Fig. 8b) for |s)2 and the phasé¢,) in Fig. 3(d). 0 in the frequency range of 6—9.6 GHz. The angular slices with the
This supports the theoretical prediction that the normalizegymbols(triangles, circles, squargmdicate the regions where the
scattering coefficierg is a universal quantity whose statistics PDF of|s] is calculated and shown itb). Observe that the PDFs of
does not depend on the nature of the coupling antenna. Simiie three regions are essentially identi¢el. The PDF of the phase
larly, in Fig. 3(c), the phaseps of the cavity scattering coef- ¢s of the normalized scattering coefficientor two annuli defined
ficient S shows preference for certain angles. This is ex-by 0=<[s/<0.3 (starg and 0.3<|5<0.6 (hexagons Observe that
pected because of the nonideal couplifgnpedance th_es_e phasg PDFs are nearly gnlf_orm in dlstrlbutlon._ T_he uniform
mismatch that exists between the antenna and the transmigdistribution is shown by the solid lingP(¢)=1/2m]. This is con-
sion line. After normalization, the effects of nonideal Cou_S|stent with the prediction that tHg is statistically independent of
pling are removed and only the scattering phase of an erfi® Phasabs of s

semble of ideally coupled chaotic systertia which all
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2a=0.635mm * 2a=1.27mm
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(b) Isl (d) ¢,

FIG. 3. (a) PDF for the un-normalized loss case 0 cal@y in the frequency range of 6—11.85 GHz for two different coupling antenna
diameters 2=0.635 mm (circles and 22=1.27 mm (solid star$. (b) PDF for the normalized cavitys|® in the frequency range of
6-—11.85 GHz for two different coupling antenna diameteas @.635 mm(circles and 22=1.27 mm(solid star$. Note that the disparities
seen in(a@) on account of the different coupling geometries disappear after normaliz&t)dPDF for the un-normalized cavity pha&és)
for loss case 0 in the frequency range of 6—11.85 GHz for two different coupling antenna dianseté&$35 mm(circles and 2
=1.27 mm(solid star$. (d) PDF for the normalized cavity phage) in the frequency range of 6—11.85 GHz for two different coupling
antenna diametersa20.635 mm(circles and 22a=1.27 mm(solid star$. The normalized phase PDFs for the stars and circlgsl)irare
nearly uniformly distributedthe gray line in Fig. 4d) shows a perfectly uniform distributiof®( ) =1/2a].

scattering phases are equally likelg seen. Hence, consis- can determine the damping parameter from measuring the
tent with theoretical expectations, the phag®f normalized variance of the PDFs of the real or imaginary parz@$uch
s data show an approximately uniform distributigfig.  as those shown in Fig.)4With this parameter determined,
3(d)]. we use a Monte Carlo simulation based on random matrix
o ) theory[see Eq.(29) of Ref.[17] and the discussion therdin
C. Variation of s with loss to calculate the theoretically predicted PDFs@nds. (Ap-
Having established that the coupling geometry is irrel-proximate formulas for the PDFs of R# [20] and Inz]
evant for the distribution o, we fix the coupling geometry [26], which agree well with the Monte Carlo results, are also
(coaxial cable with inner diametera21.27 mm and vary  available) The solid curves in Fig. 4 are plots from RMT for

the degree of quantified loss within the cavity. Three 10ss51yes ofk?/Q that are obtained by computing the variances,
cases will be considered, namely, loss cases 0, 1, and 3. {phjle the symbols are obtained from histogram approxima-
Ref. [17] the degree of loss is characterized by a singlejons to the PDFs of the normalized impedamcextracted
damping parameterk’/Q. Here, k?=k?/Ak?, where k  from the experimental data over a frequency range of
=27f/c is the wave number for the incoming frequenty 6.5-7.8 GHz. Generally, as the loss of the cavity increases,
and Akﬁ is the mean spacing of the adjacent eigenvakﬁes the PDF of the normalized imaginary part of the impedance
The quantityQ is the quality factor of the cavity. The param- loses its long tails and begins to sharpen up, developing a
eterk?/Q represents the ratio of the frequency width of theGaussian appearanfgig. 4(b)]. At the same time, the PDF
cavity resonances due to distributed losses, and the averagé the normalized real part smoothly evolves from being
spacing between resonant frequencies. peaked between R®=0 and Réz)=1, into a Gaussian-type
For sufficiently high loss, the variancés?) of the PDFs  distribution that peaks at Re =1 [Fig. 4(a)].

. ) - The symbols in Fig. Spresented on a semilogarithmic
m 2
F{;]he real and imaginary parts ptan be related te”/Q by scalg show the PDF of the normalized power reflection co-

efficient (r=|s?) in the frequency range 6.5-7.8 GHz for
2 2 s three different loss cases. The solid lines are the predictions
ORez2) = Timiz = Q(TK?). (7) ;
&2~ YIm(@) for the PDF ofr, P(r) for different values of the loss param-
This relation has been experimentally validated for differenteter k?/Q. In Fig. 5, thek?/Q parameters are the same as
cavities and for different coupling geometrig?]. Thus, we those for Fig. 4, and were obtained from the variances of the
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21 in the cavity. Referencgl8] predicts that the average value
of the cavity power reflection coefficieh®? depends only
on the magnitude of the radiation scattering coefficient

(|Sad) and the loss paramet&?/Q, and is independent of
the phase 08,4 The quantity|S,4 is related to the radiation
impedanceZ,,4=Raq+iXag) through the transformation

(Rrad B Zo)2 + (Xrad)2
(Rrad + Zo)2 + (Xrad)2 .

We consider a cavity having quantified lg$ésss Cases 0, 1,
and 3, with a coupling port of diametera2=1.27 mm and
over the frequency range of 6.5-7.8 GHz. Having experi-
mentally generated the normalizecs described above, we
then simulate an ensemble of similar cavities but with differ-
ent coupling “geometries.” This is done by means of a loss-
less two-port impedance transformatid8] of our z data, as
described by the relation

P(Re[z])

|Sradl = (8

-2 0 1 - 2 3 ’ — 1
(b) Imfz] 2 Wzrip); ©

FIG. 4. PDFs for the(a) real and(b) imaginary parts of the which corresponds to adding a reactive impedanides-in
normalized cavity impedancefor a wave chaotic microwave cav- parallel with the impedance
ity between 6.5 and 7.8 GHz with=7.87 mm and 8=1.27 mm, The quantityz’ thus simulates the impedance of a hypo-
for three values of loss in the cavitiopen stars: O, circles: 1, thetical cavity that is non-ideally coupled to the excitation
squares: 3 strips of absorbeAlso shown are single parameter, port, and the coupling geometry is characterized by the real
simultaneous fits for both PDHsolid curve$, where the loss pa- factor 8, which can be varied in a controlled manner. We

rameterl~<2/Q is obtained from the variance of the data(a and also define a transformed radiation impedami@) given by
(b).
, 1
N Zad= 0 A (10
PDFs of the real or imaginary parts ofWe observe that our (1+ip)
data conform well to the predictions from random matrix

For the generation af’ , the factorg is varied over the
theory for all degrees of loss. 9 0o B

same range of values as used to genezatélaving deter-

minedz' and its corresponding,y, we determine the scat-
IV. RELATIONSHIP BETWEEN CAVITY AND RADIATION tering coefficientss’ and s/, through the transformations

POWER REFLECTION COEFFICIENTS
) ) ) _ s'=Z-1I(Z +1), (11)
As a final experimental test, we would like to examine
how the measured cavity power reflection coefficient de- Sy = (Zoag = D2+ 1). (12)

pends only on the radiation scattering coefficient and losses _ )
A range of 8 values is chosen to cover all possible cou-

pling scenarios. We then plot the averagésif (i.e./s'|?) as
a function ofs/,. This approach is followed for all three loss
casegloss cases 0, 1, and 8esulting in the data sets with
star, circles, and squares, respectively, in Fig. 6. First note
that all curves originate from the poife|°=|s/,{ =1, which
may be thought of as the perfectigismatched case. Next,
considerls/,4| <1, and observe that as the losses increase, the
curves shift downwards for a fixed couplirigharacterized
by |sr.ql). This is intuitively reasonable because, as the ab-
sorption(losseg within the cavity increases, we expect less
signal to return to the antenriae., smalleris’|) for a given
FIG. 5. PDF for the normalized power reflection coefficient coupling|s;yql- From the vanance of the PDF of R for the
=|s? on a natural log scale for loss case 0, Is@rs, circles, and above loss cases, we determktéQ to be 0.81, 2.4, and 6.5
squares, respectivelyin the frequency range of 6.5—7.8 GHz. forloss cases 0, 1, and 3, respectively. The solid lines in Fig.
These are from the same data as used to obtain Fig. 4. Also shovfhare obtained from the RMT theoretical predictions for the
is the prediction of the model in Ref17] (solid lineg for P(r) perfectly c~oupled scattering coefficieswith the appropriate
using the values ok?/Q obtained from the variances of the distri- values fork?/Q. Next, these are transformed using E¢.
butions in Fig. 4. and(10) with the same range of coupling factd®) as used

In:[pn]
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1.0 7
“ 0.5
= ‘ =
\iclg=6.5

2

k/Q=24

2

k/0=081

0.0 T
0.0 0.5 1.0

| S;ad |

FIG. 6. Dependence of the average of the cavity power reflec-
tion coefficient|s'|> on the magnitude of the radiation scattering of |
coefficient|s/,, for different loss caseoss case 0: stars; loss case N
1: circles; loss case 3: square¥he data are shown for the fre-
quency range of 6.5—-7.8 GHz. Also shown are the numerical simu-

lations from the RMT based upon tﬁé/Q values 0.81, 2.4 and 6.5
for loss cases 0, 1, and 3, respectivedplid lines. -1

. . FIG. 7. (Color online Polar plot for the cavity scattering coef-
for the experimentally determined'. We observe 9ood ficient s=Re(S)+iIm(9) is shown for a frequency range of
agreement between the numerical simulations from RMTs_12 GHz for loss case 0 and with a coupling port of diameter
(solid lines in Fig. 6 and our experimentally derived points. 23=1.27 mm. The blue trace represents one single rendition of the
For a given lossy cavity one can also consider its losslesgavity for a selected position and orientation of the perturbers. Each
N-port equivalent. By the losslesN-port equivalent we circular loop represents an isolated resonance. The black trace is the
mean that the effect of the losses distributed in the walls oénsemble averagés),q, over 100 different locations and orienta-
our cavity can be approximated by a lossless cavity With tions of the perturbers within the cavity. The meandering nature of
-1 extra perfectly couple@pc) ports through which power the black trace shows that remnants of the cavity resonances are
coupled into the cavity can leave. The pojBt=|s,4=0 still present because of the finite number of ensemble averages. The
in Fig. 6 corresponds to perfect coupling. In this casefed trace shows the radiation scattering coefficient for the same
Ref. [18] predicts that the vertical axis intercept of theseport. This trace is smooth because the radiation scattering coeffi-
curves corresponds to the losslééport equivalent of the cient approximates the cavity boundaries being extended to infinity.
distributed losses within the cavity; i.e., &,/=0 we
have |s'[9,.=2/(N+1) (for time-reversal symmetric wave
chaotic systems Thus, in our experiment the quantified 0ss ,qjtion and orientation of the perturbéRig. 1(a)]. Isolated
in loss cases 0, 1, and 3 is equivalent+dl, 24, and 45 |o5qnances are seen as circular loops in the polar plot. The
perfectly coupled ports, respectively. In other words, for a”degree of coupling is indicated by the diameter of the loops.
intents and purposes, the.cavity can be considered IOSSIe??equency ranges where the coupling is good would mani-
but perfectly coupled to this number of ports. fest themselves as large loops, while those frequency ranges
with poor coupling result in smaller loops. Ensemble aver-
V. VALIDATING THE USE OF RADIATION IMPEDANCE aging 100 _s_uch differenF conf!gurations of this cavity for dif-
TO CHARACTERIZE NONIDEAL COUPLING ferent positions and orientations of the perturber_ produces
the black trace denoted &S);p, Note that even with 100
In sec. Ill we used the radiation impedan@.q), or the  cavity renditions, the fluctuations i(S);o, are still present
radiation scattering coefficiei§,q), as a tool to characterize and are seen as the meanders in the black trace. The red
the non-ideal couplingdirect processgshetween the an- trace, which corresponds to the radiation scattering coeffi-
tenna and the cavity. This quantity is measurable and is onlgjent for this antenna geometry, is devoid of such fluctuations
dependent on the local geometry around the port. As previthecause there are no reflected waves from the far walls back
ously noted, Refs[15,16 use configuration and frequency to the por} and is easily obtainable in practice without re-
averaged scattering data to obtain an approximatio{Sto  sorting to generating large ensemble sets of cavity configu-
For a given center frequendy, this procedure relies on the rations. Moreover, since the radiation impedance of the port
satisfaction of two requirements: first, the rangeAdfmust  is also a function of frequency, there is no constraint on the
be large enough to include a large number of modes; seconftequency span where the analysis for obtaining the universal
Sag Must vary little over the range dff. statistics ofs (or z) can be carried out.
The nature of the variation d with frequency is illus- To quantitatively illustrate this point, we recover the non-
trated in Fig. 7, where a pldRe(S),Im(S)] of the complex  universal scattering statistics of a given cavity for a given
scattering coefficient for a cavity in the frequency range oftype of coupling using only the measured radiation imped-

6—12 GHz is shown. The blue trace shows resultsSftor a
single configuration of the cavity corresponding to a given
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the nonuniversal system-specific scattering coefficient,
which we denote as.

In Fig. 8@a), the PDF of|S? is shown as the solid trace,
while the experimentally measured PDF|8F is shown as
the stars. In Fig. &), the PDF of¢g is shown as the solid
trace with experimentally measured PDFd¢f shown as the
stars. We observe good agreement between the numerically
generated estimate and the actual data. This result validates
the use of the radiation impedan(attering coefficientto
accurately parametrize the system-specific, nonideal cou-
pling of the ports, and also provides us with a way to predict
beforehand the statistical properties of other complicated en-
closures nonideally coupled to external ports.

VI. CONCLUSIONS

The results discussed in this paper serve to establish a
solid ground that can be used to extract universal statistical
properties from data on wave chaotic systems, or to engineer
oo& wave chaotic cavities with specific statistical transport prop-
(t;) 3 2 erties. In addition, given the frequency, volume, and amount
of losses(parametrized byQ) within the enclosure, and the
FIG. 8. (a) The experimental PDF for the loss case 0 cavity "adiation impedance of the ports, Re[&.?,lSll provide us
power reflection coefficiert{S?) (star$ over a frequency range of With a tool to predict the statistics of the cavity respofige
6—7.5 GHz. Also shown is the numerical estimzﬁéﬁz) (solid and$) a priori. . L
trace determined from RMT and the experimentally measured ra- We_ ha\(e shown that a simple normalization based on the
diation impedance of the pofZ,,g). (b) The experimental PDF for fadiation impedance can be used to remove nonuniversal,
the loss case O cavity scattering phége (stars over a frequency ~ System-specific coupling details and bring out the universal-

range of 6—7.5 GHz. Also shown is the numerical estimd@gp ity in the measured impedance and scattering statistics of
(solid trace determined from RMT and the experimentally mea- Wave chaotic systems. This normalization procedure has al-

sured radiation impedance of the port. We observe good agreemel@wed us to experimentally verify theoretical predictions for
between the measured data and the numerically estimated PDH$ie universal properties of a one-port wave chaotic system.
The inset shows the fluctuation [{8),o4 (Star$ over the frequency We have also tested several aspects of the theory in the realm
range of 6—7.5 GHz, while the solid trace shows the magnitude obf intermediate to high loss and for different coupling geom-
the experimentally measured radiation scattering coeffi¢|&nt|). etries, and find good agreement with theoretical predictions.
We have shown that the average of the cavity power reflec-
ance of the coupling port and the numerically generated nortion coefficient|§? depends only on the magnitude of the
malized impedance from RMT, which depends only upon radiation scattering coefficien®,4 and the degree of loss,
the net losses within the cavity. We consider a loss case nd have obtained good agreement between theory and ex-
cavity, over a frequency range of 6—7.5 GHz, which is ex-periments. Finally, we also demonstrate the ability of this
cited by means of a coaxial cable of inner diamef2a  normalization procedure to faithfully reproduce the nonuni-
=1.27 mm). The variation in[{S);d [inset of Fig. 8b)] ap-  versal statistics of the scattering coefficient phase and mag-
parently indicates that the coupling characteristics for thigitude of chaotic cavities wheliS)| is not constant over the
setup fluctuate over the given frequency range, undergoinfyequency range examined. These results should not be re-
roughly four or five oscillations over a range [(§),od of  garded as limited to microwave cavities or any specific cou-
order 0.2. Thus, the frequency-averagé);oJ would be  pling structure, but as applying to any wave chaotic system
expected to be an unreliable estimate to parametrize the cogoupled to the outside world.
pling over this frequency range.
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