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We consider the statistics of the scattering coefficientS of a chaotic microwave cavity coupled to a single
port. We remove the nonuniversal effects of the coupling from the experimentalS data using the radiation
impedance obtained directly from the experiments. We thus obtain the normalized scattering coefficient whose
probability density functionsPDFd is predicted to be universal in that it depends only on the losssquality
factord of the cavity. We compare experimental PDFs of the normalized scattering coefficients with those
obtained from random matrix theorysRMTd, and find excellent agreement. The results apply to scattering
measurements on any wave chaotic system.
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I. INTRODUCTION

The scattering of short-wavelength waves by chaotic sys-
tems has motivated intense research activity, both theoreti-
cally and experimentallyf1–3g. Some examples of wave cha-
otic systems include quantum dotsf4g, atomic nucleif5g,
microwave cavitiesf2,6g, and acoustic resonatorsf7g. Since
these systems all have underlying chaotic ray dynamics, the
wave pattern within the enclosure, as well as the response to
external inputs, can be very sensitive to small changes in
frequency and to small changes in the configuration. This
motivates a statistical approach to the wave scattering prob-
lem f8g.

The universal distribution for chaotic scattering matrices
can be described by Dyson’s circular ensemblef8–10g. How-
ever, the circular ensemble cannot typically be directly com-
pared with experimental data because it applies only in the
case of “ideal coupling”swhich we define subsequentlyd,
while in experiments there are nonideal, system-specific ef-
fects due to the particular means of coupling between the
scattering systemse.g., a microwave cavityd and the outside
world. This nonuniversality of the raw experimental scatter-
ing data has long been appreciated and addressed in theoret-
ical work f11–13g. Of particular note is the work of Mello,
Peveyra, and SeligmansMPSd, which introduces the distri-
bution known as the Poisson kernel, where a scattering ma-
trix kSl is used to parametrize the nonideal coupling. To ap-
ply this theory to an experiment, it is typically necessary to
specify a procedure for determining a measured estimate of
kSl.

The first microwave experiments investigating scattering
statistics by comparison with the theory of Refs.f11–13g
were those of Ref.f15g. In analyzing their experimental data,
Refs. f15,16g obtain an estimate forkSl by averaging mea-
suredS values over a number of different configurations of
the cavity and over a suitable frequency rangeff0

−s1/2dDfg to ff0+s1/2dDfg. We denote this experimentally

obtained average asS̄. For a given number of averaging con-
figurations, the chosen frequency range must be large enough

that good enough statistics is obtained, but at the same time
be small enough that the variation of the coupling with fre-
quency is not significant. To the extent that these conditions
are satisfied,S̄will yield a good approximation to the desired
kSl. The quantity kSl in the theory describes directsor
promptd processesf14g that depend only on the local geom-
etry of the coupling ports, as opposed to complicated chaotic
processes resulting from multiple reflections far removed
from the coupling port. On the other hand, in obtainingS̄, as
in Refs. f15,16g, averaging of the scattering data of the full
chaotic system is employed. Thus, the data used to obtainS̄
are the same measured data whose statistics is being studied.
Also note thatkSl is presumed to characterize the coupling,
which is independent of the chaos of the system and is thus,
in principle, a nonstatistical quantity. In this paper we shall
pursue another approachf17g. Specifically, we seek to char-
acterize the coupling in a manner that is both independent of
the chaotic system and obtainable in a nonstatistical manner
si.e., without employing averagesd. As we explain in more
detail subsequently, this latter point is of practical impor-
tance because of the inherent inaccuracy and sample size
issues introduced by averaging a fluctuating quantity.

As discussed in Ref.f17g, a direct means of investigating
the statistics of typical chaotic scattering systems can be
based on determination of the radiation impedance of the
port Zrad or equivalentlySrad8, the complex radiation scatter-
ing coefficient. The radiation scattering coefficientsrespec-
tively, radiation impedanced is the scattering coefficientsim-
pedanced that would be observed if the distant boundaries of
the cavity were made perfectly absorbing or moved to infin-
ity. Therefore, it describes prompt processes at the port and
can be shown to be equal tokSl. The perfect coupling case
corresponds toSrad=0, in which all incident wave energy
enters the cavity.

The radiation scattering coefficientSrad can be directly
measured in microwave experiments without resorting to av-
eraging over a range of frequencies. Note thatSrad depends
on the microwave frequency and thus, for the purposes of
taking into account coupling,Srad can be a more useful and
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robust means of extracting universal properties from the data

thanS̄, which depends on the frequency rangeDf over which
the averaging is done.

Another fundamental quantity characterizing coupling to
the cavity is the impedanceZ, which is related toS through
the bilinear transformation

S= sZ + Zod−1sZ − Zod, s1d

whereZo is the characteristic impedance of the transmission
line or waveguide feeding the port. The impedance linearly
relates the voltage and the current phasors at the port and is
determined solely by properties of the cavity and its port. In
what follows we only discuss the one-port case; hence,Z and
S are scalarssrather than matricesd throughout this paper. A
more general discussion involving multiple ports can be
found in Ref.f18g. Inverting the transformation Eq.s1d, we
can relate the radiation impedanceZrad=Rrad+ iXrad to the
radiation scattering coefficientSrad as

Zrad = Zo
s1 + Sradd
s1 − Sradd

. s2d

In Refs. f17,19g it was shown that the cavity impedanceZ
can be expressed in terms of a scaled impedancez and the
radiation impedanceZrad as

Z = iXrad + Rradz, s3d

wherez is a complex random variable satisfyingkzl=1. The
random variablez has universal properties and describes the
impedance fluctuations of a perfectly coupled cavity. The
real part ofz is well known in solid state physics as the local
density of statessLDOSd and its statistics has been studied
f20,21g. The imaginary part ofz determines fluctuations in
the cavity reactance. Discussion of the probability distribu-
tion of the normalized impedancez for microwave experi-
ments has been presented in a previous paperf22g.

The purpose of this paper is to study the universal statis-
tical properties of the cavity scattering coefficients defined
in terms of the normalized impedancez

s= sz− 1d/sz+ 1d = usueifs, s4d

which can be compared directly to theoretical predictions
based on ideal coupling. Combining Eqs.s2d–s4d, we obtain
a formula relatings to the cavity scattering coefficientS and
the cavity radiation scattering coefficientSrad

s=
s1 + Srad

* d
s1 + Sradd

sS− Sradd
s1 − SSrad

* d
. s5d

The inverse of Eq.s5d giving the actual scattering ampli-
tudeS in terms of the normalized scattering amplitudes is a
statement of the Poisson kernelf11,12g for a single-port cav-
ity with internal loss. We note that the first factor in Eq.s5d
is simply a phase shift which depends only on the coupling
geometry. Thus, the magnitude ofs satisfies

usu = U S− Srad

1 − SSrad
* U . s6d

According to the statistical theory, the only parameter on
which the statistics ofz ands depends is the loss due to the
cavity wall absorption, which can be controlled and quanti-
fied in our experiment. We will experimentally verify the key
theoretical predictions based on the circular ensemble hy-
pothesis, such as the statistical independence of the magni-
tude and phase of the normalized scattering coefficients, and
the uniform probability distribution for the phase. Different
degrees of loss and different coupling structures will be ex-
amined, and approximations to the probability density func-
tions ofs andz will be compared with the theoretical predic-
tions from random matrix theorysRMTd.

An expression similar to Eq.s6d was used by Kuhlet al.
f16g to generate distributions of the scattering amplitudesS
based on theoretical predictions for the normalized scattering
amplitudes. Thus, it was assumed that the normalized scat-
tering amplitude had the predicted properties of indepen-
dence of magnitude and phase, and uniform distribution of
phase. We will experimentally test these assumptions by us-
ing Eq. s5d directly to determine the properties ofs.

Our paper is organized as follows. Section II presents our
experimental setup and data collection. Section III carries out
the normalization process to recover universal scattering
characteristics and presents experimental histogram approxi-
mations to the probability density functions of the magnitude
and phase of the normalized scattering coefficients for dif-
ferent coupling structures and losses. Section IV explores a
predicted relationship between the average cavity power re-
flection coefficientsuSu2d and the magnitude of the radiation
scattering coefficient. Section V discusses the advantages of
employing the radiation scattering coefficient in uncovering
universal properties, or of predicting raw scattering data.
Section VI concludes the paper and gives the summary.

II. EXPERIMENTAL SETUP

Microwave cavities with irregular shapesshaving chaotic
ray dynamicsd have proven to be very fruitful for the study of
wave chaos, where not only the magnitude, but also the
phase of scattering coefficients, can be directly measured
from experiments. Our experimental setup consists of an air-
filled quarter bow-tie chaotic cavityfFig. 1sadg which acts as
a two-dimensional resonator below about 19 GHzf23g. Ray
trajectories in a closed billiard of this shape are known to be
chaotic. This cavity has previously been used for the success-
ful study of the eigenvalue spacing statisticsf6g and eigen-
function statisticsf24,25g for a wave chaotic system. In order
to investigate a scattering problem, we excite the cavity by
means of a single coaxial probe whose exposed inner con-
ductor, with a diameters2ad extends from the top plate and
makes electrical contact with the bottom plate of the cavity
fFig. 1sbdg. In this paper we study the properties of the cavity
over a frequency range of 6–12 GHz, where the spacing
between two adjacent resonances is on the order of
25–30 MHz.

As in the numerical experiments in Refs.f17,18g, our ex-
periment involves a two-step procedure. The first step is to
collect an ensemble of cavity scattering coefficientsS over
the frequency range of interest. Ensemble averaging is real-
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ized by using two rectangular metallic perturbations with
dimensions 26.7340.637.87 mm3 s,1% of the cavity vol-
umed, which are systematically scanned and rotated through-
out the volume of the cavityfFig. 1sadg. Each configuration
of the perturbers within the cavity volume results in a differ-
ent value for the measured value ofS. This is equivalent to
measurements on cavities having the same volume, loss, and
coupling geometry for the port, but with different shapes.
The perturbers are kept far enough from the antenna so as
not to alter its near-field characteristics. For each configura-
tion, the scattering coefficientS is measured in 8000 equally
spaced steps over a frequency range of 6–12 GHz. In total,
100 different configurations are measured, resulting in an
ensemble of 800 000S values. We refer to this step as the
“cavity case.”

The second step, referred to as the “radiation case,” in-
volves obtaining the scattering coefficient for the excitation
port when waves enter the cavity but do not return to the
port. In the experiment, this condition is realized by remov-
ing the perturbers and lining the side walls of the cavity with
commercial microwave absorbersARC Tech DD10017Dd
which provides about 25 dB of reflection loss between 6 and
12 GHzfFig. 1scdg. Note that the side walls of the cavity are
outside the near-field zone of the antenna. Using the same

frequency stepping of 8000 equally spaced points over
6–12 GHz, we measure the radiation scattering coefficient
Srad for the cavity. Such an approach approximates the situ-
ation where the side walls are moved to infinity; therefore,
Srad does not depend on the chaotic ray trajectories of the
cavity, and thus gives a characterization of the coupling in-
dependent of the chaotic system. Reflecting the fact that the
coupling aspects of the cavity typically vary over frequency,
Srad is usually frequency dependent.

Having measured the cavitySandSrad, we then transform
these quantities into the corresponding cavity and radiation
impedancessZ andZradd, respectively, using Eqs.s1d ands2d.
The normalized impedancez is obtained by Eq.s3d. In order
to obtainz, every value of the determined cavity impedance
Z is normalized by the corresponding value ofZrad at the
same frequency. The transformation in Eq.s4d for equiva-
lently, Eq. s5dg yields the normalized scattering coefficient
s= usuexpsifsd, which is the key quantity of interest in this
paper. Since the artifacts of nonideal coupling are supposed
to have been “filtered out” through this normalization pro-
cess, the statistics of the ensemble ofs values should depend
only on the net cavity loss.

In order to test the validity of the theory for systems with
varying loss, we create different cavity cases with different
degrees of loss. Loss is controlled and parametrized by plac-
ing 15.2-cm-long strips of microwave absorber along the in-
ner walls of the cavity. These strips cover the side walls from
the bottom to top lids of the cavity. We thus generate three
different loss scenariossloss case 0, loss case 1, loss case 3d
fshown schematically in the insets to Fig 4sbdg. The numbers
0, 1, 3 correspond to the number of 15.2-cm-long strips
placed along the inner cavity walls. The total perimeter of
the cavity is 147.3 cm.

The theory predicts that, as long as the loss is the same,
the normalizedz or s will have the same statistical behavior.
This prediction will be tested in our experiments with two
different coupling geometries corresponding to coaxial
cables with two different inner diametersf2a=1.27 mm and
2a=0.625 mm, schematically shown in Fig. 1sbdg.

III. EXPERIMENTAL RESULTS AND DATA ANALYSIS

In this section, we present our experimental findings for
the statistical properties of the normalized scattering coeffi-
cient s, for different coupling geometries, and degrees of
loss. This section is divided into three parts. In the first part,
we give an example for the PDF ofs at a specific degree of
quantified loss and a certain coupling geometry. In the sec-
ond part, we fix the degree of quantified loss, but vary the
coupling by using coaxial cable antennas having inner con-
ductors of different diameterss2a=1.67 mm and 2a
=0.635 mmd. The PDF histograms for the magnitude and
phase ofs in these two cases will be compared. Finally, in
the third part, we test the trend of the PDF ofusu2 for a given
coupling geometry and for three different degrees of quanti-
fied loss. Good agreement with random matrix theory is
found in all cases.

A. Statistical independence ofzsz and fs

The first example we give is based on loss case 0si.e., no
absorbing strips in the cavityd and coupling through a coaxial

FIG. 1. sad The physical dimensions of the quarter bow-tie cha-
otic microwave resonator are shown along with the position of the
single coupling port. Two metallic perturbations are systematically
scanned and rotated throughout the entire volume of the cavity to
generate the cavity ensemble.sbd The details of the coupling port
santennad and cavity heighth are shown in cross section.scd The
implementation of the radiation case is shown, in which commercial
microwave absorber is used to line the inner walls of the cavity to
minimize reflections.
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cable with inner diameter 2a=1.27 mm. Having obtained the
normalized impedancez, we transformz into the normalized
scattering coefficients using Eq.s4d. Since the walls of the
cavity are not perfect conductors, the normalized scattering
coefficients is a complex scalar with modulus less than 1.
sIn loss case 0, most of the loss occurs in the top and bottom
cavity plates since they have much larger area than the side
walls.d Based on Dyson’s circular ensemble, one of the most
important properties ofs is the statistical independence of the
scattering phasefs and the magnitudeusu. Figure 2sad shows
a contour density plot ofs in the frequency range of
6–9.6 GHz for loss case 0. The gray scale level at a given
point in Fig. 2sad indicates the number of pointsffor
hRessd , Imssdjg that fall within a local rectangular region of
size 0.0230.02. We next arbitrarily take angular slices of
this distribution that subtend an angle ofp /4 radians at the
center, and compute the histogram approximations to the
PDF of usu using the points within those slices. The corre-
sponding PDFs ofusu for the three slices are shown in Fig.
2sbd. We observe that these PDFs are essentially identical,
independent of the angular slice. Figure 2scd shows PDFs of
fs computed for all the points that lie within two annuli
defined by 0ø usuø0.3 sstarsd and 0.3, usuø0.6 shexagonsd.
These plots support the hypothesis that the magnitude ofs is
statistically independent of the phasefs of s, and thatfs is
uniformly distributed in 0 to 2p. This represents an experi-
mental test of Dyson’s circular ensemble hypothesis for
wave chaotic scattering.

B. Detail independence ofs

To further verify that the normalizeds does not include
any artifacts of system-specific, nonideal coupling, we take
two identical wave chaotic cavities and change only the inner
diameter of the coupling coaxial cable from 2a
=1.27 mm to 2a=0.635 mm. Since the modification of the
coaxial cable size barely changes the properties of the cavity,
we assume that the loss parameters in these two cases are the
same. The difference in the coupling geometry manifests it-
self as gross differences in the distribution of the raw cavity
scattering coefficientsS. This is clearly observable for the
PDFs of the cavity power reflection coefficientuSu2 as shown
in Fig. 3sad and the PDFs for the phase ofS sdenotedfSd
shown in Fig. 3scd, for loss case 0 over a frequency range of
6–11.85 GHz. However, after measurement of the corre-
sponding radiation impedance and the normalization proce-
dure described above, we observe that the PDFs for the nor-
malized power reflection coefficients are nearly identical, as
shown in Fig. 3sbd for usu2 and the phasesfsd in Fig. 3sdd.
This supports the theoretical prediction that the normalized
scattering coefficients is a universal quantity whose statistics
does not depend on the nature of the coupling antenna. Simi-
larly, in Fig. 3scd, the phasefS of the cavity scattering coef-
ficient S shows preference for certain angles. This is ex-
pected because of the nonideal couplingsimpedance
mismatchd that exists between the antenna and the transmis-
sion line. After normalization, the effects of nonideal cou-
pling are removed and only the scattering phase of an en-
semble of ideally coupled chaotic systemssin which all

FIG. 2. sad Polar contour density plot for the real and imaginary
components of the normalized cavitys fs= usuexpsifsdg for loss case
0 in the frequency range of 6–9.6 GHz. The angular slices with the
symbolsstriangles, circles, squaresd indicate the regions where the
PDF of usu is calculated and shown insbd. Observe that the PDFs of
the three regions are essentially identical.scd The PDF of the phase
fs of the normalized scattering coefficients for two annuli defined
by 0ø usuø0.3 sstarsd and 0.3, usuø0.6 shexagonsd. Observe that
these phase PDFs are nearly uniform in distribution. The uniform
distribution is shown by the solid linefPsfd=1/2pg. This is con-
sistent with the prediction that theusu is statistically independent of
the phasefs of s.
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scattering phases are equally likelyd is seen. Hence, consis-
tent with theoretical expectations, the phasefs of normalized
s data show an approximately uniform distributionfFig.
3sddg.

C. Variation of s with loss

Having established that the coupling geometry is irrel-
evant for the distribution ofs, we fix the coupling geometry
scoaxial cable with inner diameter 2a=1.27 mmd and vary
the degree of quantified loss within the cavity. Three loss
cases will be considered, namely, loss cases 0, 1, and 3. In
Ref. f17g the degree of loss is characterized by a single
damping parameterk̃2/Q. Here, k̃2=k2/Dkn

2, where k
=2pf /c is the wave number for the incoming frequencyf
andDkn

2 is the mean spacing of the adjacent eigenvalueskn
2.

The quantityQ is the quality factor of the cavity. The param-
eter k̃2/Q represents the ratio of the frequency width of the
cavity resonances due to distributed losses, and the average
spacing between resonant frequencies.

For sufficiently high loss, the variancesss2d of the PDFs

of the real and imaginary parts ofz can be related tok̃2/Q by
f17g

sReszd
2 = sImszd

2 = Q/spk
,

2d. s7d

This relation has been experimentally validated for different
cavities and for different coupling geometriesf22g. Thus, we

can determine the damping parameter from measuring the
variance of the PDFs of the real or imaginary part ofz ssuch
as those shown in Fig. 4d. With this parameter determined,
we use a Monte Carlo simulation based on random matrix
theory fsee Eq.s29d of Ref. f17g and the discussion thereing
to calculate the theoretically predicted PDFs ofz ands. sAp-
proximate formulas for the PDFs of Refzg f20g and Imfzg
f26g, which agree well with the Monte Carlo results, are also
available.d The solid curves in Fig. 4 are plots from RMT for
values ofk̃2/Q that are obtained by computing the variances,
while the symbols are obtained from histogram approxima-
tions to the PDFs of the normalized impedancez extracted
from the experimental data over a frequency range of
6.5–7.8 GHz. Generally, as the loss of the cavity increases,
the PDF of the normalized imaginary part of the impedance
loses its long tails and begins to sharpen up, developing a
Gaussian appearancefFig. 4sbdg. At the same time, the PDF
of the normalized real part smoothly evolves from being
peaked between Reszd=0 and Reszd=1, into a Gaussian-type
distribution that peaks at Reszd=1 fFig. 4sadg.

The symbols in Fig. 5spresented on a semilogarithmic
scaled show the PDF of the normalized power reflection co-
efficient sr = usu2d in the frequency range 6.5–7.8 GHz for
three different loss cases. The solid lines are the predictions
for the PDF ofr, Psrd for different values of the loss param-

eter k̃2/Q. In Fig. 5, thek̃2/Q parameters are the same as
those for Fig. 4, and were obtained from the variances of the

FIG. 3. sad PDF for the un-normalized loss case 0 cavityuSu2 in the frequency range of 6–11.85 GHz for two different coupling antenna
diameters 2a=0.635 mm scirclesd and 2a=1.27 mm ssolid starsd. sbd PDF for the normalized cavityusu2 in the frequency range of
6–11.85 GHz for two different coupling antenna diameters 2a=0.635 mmscirclesd and 2a=1.27 mmssolid starsd. Note that the disparities
seen insad on account of the different coupling geometries disappear after normalization.scd PDF for the un-normalized cavity phasesfSd
for loss case 0 in the frequency range of 6–11.85 GHz for two different coupling antenna diameters 2a=0.635 mmscirclesd and 2a
=1.27 mmssolid starsd. sdd PDF for the normalized cavity phasesfsd in the frequency range of 6–11.85 GHz for two different coupling
antenna diameters 2a=0.635 mmscirclesd and 2a=1.27 mmssolid starsd. The normalized phase PDFs for the stars and circles insdd are
nearly uniformly distributedfthe gray line in Fig. 4sdd shows a perfectly uniform distribution,Psfd=1/2pg.
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PDFs of the real or imaginary parts ofz. We observe that our
data conform well to the predictions from random matrix
theory for all degrees of loss.

IV. RELATIONSHIP BETWEEN CAVITY AND RADIATION
POWER REFLECTION COEFFICIENTS

As a final experimental test, we would like to examine
how the measured cavity power reflection coefficient de-
pends only on the radiation scattering coefficient and losses

in the cavity. Referencef18g predicts that the average value
of the cavity power reflection coefficientuSu2 depends only
on the magnitude of the radiation scattering coefficient

suSradud and the loss parameterk̃2/Q, and is independent of
the phase ofSrad. The quantityuSradu is related to the radiation
impedancesZrad=Rrad+ iXradd through the transformation

uSradu =ÎsRrad − Zod2 + sXradd2

sRrad + Zod2 + sXradd2 . s8d

We consider a cavity having quantified losssloss Cases 0, 1,
and 3d, with a coupling port of diameter 2a=1.27 mm and
over the frequency range of 6.5–7.8 GHz. Having experi-
mentally generated the normalizedz as described above, we
then simulate an ensemble of similar cavities but with differ-
ent coupling “geometries.” This is done by means of a loss-
less two-port impedance transformationf18g of our z data, as
described by the relation

z8 =
1

s1/z+ ibd
, s9d

which corresponds to adding a reactive impedance −i /b in
parallel with the impedancez.

The quantityz8 thus simulates the impedance of a hypo-
thetical cavity that is non-ideally coupled to the excitation
port, and the coupling geometry is characterized by the real
factor b, which can be varied in a controlled manner. We
also define a transformed radiation impedanceszrad8 d given by

zrad8 =
1

s1 + ibd
. s10d

For the generation ofzrad8 , the factorb is varied over the
same range of values as used to generatez8. Having deter-
mined z8 and its correspondingzrad8 , we determine the scat-
tering coefficientss8 andsrad8 through the transformations

s8 = sz8 − 1d/sz8 + 1d, s11d

srad8 = szrad8 − 1d/szrad8 + 1d. s12d

A range ofb values is chosen to cover all possible cou-
pling scenarios. We then plot the average ofus8u2 si.e.,us8u2d as
a function ofsrad8 . This approach is followed for all three loss
casessloss cases 0, 1, and 3d resulting in the data sets with
star, circles, and squares, respectively, in Fig. 6. First note
that all curves originate from the pointus8u2= usrad8 u=1, which
may be thought of as the perfectlymismatched case. Next,
considerusrad8 u,1, and observe that as the losses increase, the
curves shift downwards for a fixed couplingscharacterized
by usrad8 ud. This is intuitively reasonable because, as the ab-
sorptionslossesd within the cavity increases, we expect less
signal to return to the antennasi.e., smallerus8ud for a given
couplingusrad8 u. From the variance of the PDF of Refzg for the

above loss cases, we determinek̃2/Q to be 0.81, 2.4, and 6.5
for loss cases 0, 1, and 3, respectively. The solid lines in Fig.
6 are obtained from the RMT theoretical predictions for the
perfectly coupled scattering coefficients with the appropriate

values fork̃2/Q. Next, these are transformed using Eqs.s9d
ands10d with the same range of coupling factorssbd as used

FIG. 4. PDFs for thesad real andsbd imaginary parts of the
normalized cavity impedancez for a wave chaotic microwave cav-
ity between 6.5 and 7.8 GHz withh=7.87 mm and 2a=1.27 mm,
for three values of loss in the cavitysopen stars: 0, circles: 1,
squares: 3 strips of absorberd. Also shown are single parameter,
simultaneous fits for both PDFsssolid curvesd, where the loss pa-

rameterk̃2/Q is obtained from the variance of the data insad and
sbd.

FIG. 5. PDF for the normalized power reflection coefficientr
= usu2 on a natural log scale for loss case 0, 1, 3sstars, circles, and
squares, respectivelyd in the frequency range of 6.5–7.8 GHz.
These are from the same data as used to obtain Fig. 4. Also shown
is the prediction of the model in Ref.f17g ssolid linesd for Psrd
using the values ofk̃2/Q obtained from the variances of the distri-
butions in Fig. 4.
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for the experimentally determinedz8. We observe good
agreement between the numerical simulations from RMT
ssolid lines in Fig. 6d and our experimentally derived points.

For a given lossy cavity one can also consider its lossless
N-port equivalent. By the losslessN-port equivalent we
mean that the effect of the losses distributed in the walls of
our cavity can be approximated by a lossless cavity withN
−1 extra perfectly coupledspcd ports through which power
coupled into the cavity can leave. The pointuSradu= usrad8 u=0
in Fig. 6 corresponds to perfect coupling. In this case,
Ref. f18g predicts that the vertical axis intercept of these
curves corresponds to the losslessN-port equivalent of the
distributed losses within the cavity; i.e., atusrad8 u=0 we
have uus8u2upc=2/sN+1d sfor time-reversal symmetric wave
chaotic systemsd. Thus, in our experiment the quantified loss
in loss cases 0, 1, and 3 is equivalent to,11, 24, and 45
perfectly coupled ports, respectively. In other words, for all
intents and purposes, the cavity can be considered lossless
but perfectly coupled to this number of ports.

V. VALIDATING THE USE OF RADIATION IMPEDANCE
TO CHARACTERIZE NONIDEAL COUPLING

In sec. III we used the radiation impedancesZradd, or the
radiation scattering coefficientsSradd, as a tool to characterize
the non-ideal couplingsdirect processesd between the an-
tenna and the cavity. This quantity is measurable and is only
dependent on the local geometry around the port. As previ-
ously noted, Refs.f15,16g use configuration and frequency
averaged scattering data to obtain an approximation tokSl.
For a given center frequencyf0, this procedure relies on the
satisfaction of two requirements: first, the range ofDf must
be large enough to include a large number of modes; second,
Srad must vary little over the range ofDf.

The nature of the variation ofS with frequency is illus-
trated in Fig. 7, where a plotfResSd , ImsSdg of the complex
scattering coefficient for a cavity in the frequency range of

6–12 GHz is shown. The blue trace shows results forS for a
single configuration of the cavity corresponding to a given
position and orientation of the perturbersfFig. 1sadg. Isolated
resonances are seen as circular loops in the polar plot. The
degree of coupling is indicated by the diameter of the loops.
Frequency ranges where the coupling is good would mani-
fest themselves as large loops, while those frequency ranges
with poor coupling result in smaller loops. Ensemble aver-
aging 100 such different configurations of this cavity for dif-
ferent positions and orientations of the perturber produces
the black trace denoted askSl100. Note that even with 100
cavity renditions, the fluctuations inkSl100 are still present
and are seen as the meanders in the black trace. The red
trace, which corresponds to the radiation scattering coeffi-
cient for this antenna geometry, is devoid of such fluctuations
sbecause there are no reflected waves from the far walls back
to the portd and is easily obtainable in practice without re-
sorting to generating large ensemble sets of cavity configu-
rations. Moreover, since the radiation impedance of the port
is also a function of frequency, there is no constraint on the
frequency span where the analysis for obtaining the universal
statistics ofs sor zd can be carried out.

To quantitatively illustrate this point, we recover the non-
universal scattering statistics of a given cavity for a given
type of coupling using only the measured radiation imped-

FIG. 6. Dependence of the average of the cavity power reflec-
tion coefficient us8u2 on the magnitude of the radiation scattering
coefficientusrad8 u, for different loss casessloss case 0: stars; loss case
1: circles; loss case 3: squaresd. The data are shown for the fre-
quency range of 6.5–7.8 GHz. Also shown are the numerical simu-

lations from the RMT based upon thek̃2/Q values 0.81, 2.4 and 6.5
for loss cases 0, 1, and 3, respectivelyssolid linesd.

FIG. 7. sColor onlined Polar plot for the cavity scattering coef-
ficient S=ResSd+ i ImsSd is shown for a frequency range of
6–12 GHz for loss case 0 and with a coupling port of diameter
2a=1.27 mm. The blue trace represents one single rendition of the
cavity for a selected position and orientation of the perturbers. Each
circular loop represents an isolated resonance. The black trace is the
ensemble averagekSl100 over 100 different locations and orienta-
tions of the perturbers within the cavity. The meandering nature of
the black trace shows that remnants of the cavity resonances are
still present because of the finite number of ensemble averages. The
red trace shows the radiation scattering coefficient for the same
port. This trace is smooth because the radiation scattering coeffi-
cient approximates the cavity boundaries being extended to infinity.
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ance of the coupling port and the numerically generated nor-
malized impedancez from RMT, which depends only upon
the net losses within the cavity. We consider a loss case 0
cavity, over a frequency range of 6–7.5 GHz, which is ex-
cited by means of a coaxial cable of inner diameters2a
=1.27 mmd. The variation inukSl100u finset of Fig. 8sbdg ap-
parently indicates that the coupling characteristics for this
setup fluctuate over the given frequency range, undergoing
roughly four or five oscillations over a range inukSl100u of
order 0.2. Thus, the frequency-averagedukSl100u would be
expected to be an unreliable estimate to parametrize the cou-
pling over this frequency range.

We can estimate the parameterk̃2/Q using the center fre-
quencysk=141.3 m−1d, the average spacing between eigen-
modes for our cavitysDkn

2=109.2 m−2d f22g, and typicalQ

values of sQ,225d, yielding an estimatedk̃2/Q=0.8. We
use this parameter to generate an ensemble ofssvd following
Ref. f17g and Eq.s4d, combine it with the measuredSradsvd
of the antenna, and employ Eq.s5d to obtain an estimate of

the nonuniversal system-specific scattering coefficient,

which we denote asS̃.

In Fig. 8sad, the PDF ofuS̃u2 is shown as the solid trace,
while the experimentally measured PDF ofuSu2 is shown as
the stars. In Fig. 8sbd, the PDF offS̃ is shown as the solid
trace with experimentally measured PDF offS shown as the
stars. We observe good agreement between the numerically
generated estimate and the actual data. This result validates
the use of the radiation impedancesscattering coefficientd to
accurately parametrize the system-specific, nonideal cou-
pling of the ports, and also provides us with a way to predict
beforehand the statistical properties of other complicated en-
closures nonideally coupled to external ports.

VI. CONCLUSIONS

The results discussed in this paper serve to establish a
solid ground that can be used to extract universal statistical
properties from data on wave chaotic systems, or to engineer
wave chaotic cavities with specific statistical transport prop-
erties. In addition, given the frequency, volume, and amount
of lossessparametrized byQd within the enclosure, and the
radiation impedance of the ports, Refs.f17,18g provide us
with a tool to predict the statistics of the cavity responsesZ
andSd a priori.

We have shown that a simple normalization based on the
radiation impedance can be used to remove nonuniversal,
system-specific coupling details and bring out the universal-
ity in the measured impedance and scattering statistics of
wave chaotic systems. This normalization procedure has al-
lowed us to experimentally verify theoretical predictions for
the universal properties of a one-port wave chaotic system.
We have also tested several aspects of the theory in the realm
of intermediate to high loss and for different coupling geom-
etries, and find good agreement with theoretical predictions.
We have shown that the average of the cavity power reflec-
tion coefficient uSu2 depends only on the magnitude of the
radiation scattering coefficientuSradu and the degree of loss,
and have obtained good agreement between theory and ex-
periments. Finally, we also demonstrate the ability of this
normalization procedure to faithfully reproduce the nonuni-
versal statistics of the scattering coefficient phase and mag-
nitude of chaotic cavities whenukSlu is not constant over the
frequency range examined. These results should not be re-
garded as limited to microwave cavities or any specific cou-
pling structure, but as applying to any wave chaotic system
coupled to the outside world.
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FIG. 8. sad The experimental PDF for the loss case 0 cavity
power reflection coefficientsuSu2d sstarsd over a frequency range of

6–7.5 GHz. Also shown is the numerical estimatePsuS̃u2d ssolid
traced determined from RMT and the experimentally measured ra-
diation impedance of the portsZradd. sbd The experimental PDF for
the loss case 0 cavity scattering phasesfsd sstarsd over a frequency
range of 6–7.5 GHz. Also shown is the numerical estimate PsfS̃d
ssolid traced determined from RMT and the experimentally mea-
sured radiation impedance of the port. We observe good agreement
between the measured data and the numerically estimated PDFs.
The inset shows the fluctuation inukSl100u sstarsd over the frequency
range of 6–7.5 GHz, while the solid trace shows the magnitude of
the experimentally measured radiation scattering coefficientsuSradud.
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