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We study the statistical properties of the impedance (Z) and scattering (S) matrices of
open electromagnetic cavities with several transmission lines or waveguides connected
to the cavity. In this paper, we mainly discuss the single port case. The generalization
to multiple ports is treated in a companion paper. The model we consider is based
on assumed properties of chaotic eigenfunctions for the closed system. Analysis of
the model successfully reproduces features of the random matrix model believed to
be universal, while at the same time incorporating features which are specific to
individual systems as treated by the Poisson kernel of Mello et al. Statistical properties
of the cavity impedance Z are obtained in terms of the radiation impedance (i.e.,
the impedance seen at a port with the cavity walls moved to infinity). Effects of wall
absorption are discussed. Theoretical predictions are tested by direct comparison with
numerical solutions for a specific system. (Here the word universal is used to denote
high frequency statistical properties that are shared by the members of the general
class of systems whose corresponding ray trajectories are chaotic. These universal
properties are, by definition, independent of system-specific details.)
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Introduction

The problem of the coupling of electromagnetic radiation in and out of structures is a
general one which finds applications in a variety of scientific and engineering contexts.
Examples include the susceptibility of circuits to electromagnetic interference, the con-
finement of radiation to enclosures, as well as the coupling of radiation to structures used
to accelerate charged particles.

Because of the wave nature of radiation, the coupling properties of a structure de-
pend in detail on the size and shape of the structure, as well as the frequency of the
radiation. In considerations of irregularly shaped electromagnetic enclosures for which
the wavelength is fairly small compared with the size of the enclosure, it is typical that
the electromagnetic field pattern within the enclosure, as well as the response to external
inputs, can be very sensitive to small changes in frequency and to small changes in the
configuration. Thus, knowledge of the response of one configuration of the enclosure
may not be useful in predicting that of a nearly identical enclosure. This motivates a
statistical approach to the electromagnetic problem.

While our ability to numerically compute the response of particular structures has ad-
vanced greatly in recent years, the kind of information needed for a statistical description
may not be obtainable directly from numerical computation.

Thus it would seem to be desirable to have specific analytical predictions for the
statistics of electromagnetic quantities in such circumstances. This general problem has
received much attention in previous work (e.g., Holland & St. John, 1994, 1999; Lehman
& Miller, 1991; Kostas & Boverie, 1991; Price, Davis, & Wenaas, 1993; Hill, 1994;
Barthélemy, Legrand, & Mortessagne, 2004). Some of the main issues addressed are: the
probability distribution of fields at a point, the correlation function of fields at two points
near each other, the statistics of the excitation of currents in cables or in small devices
within the enclosure, the cavity Q, the statistics of coupling to the enclosure, and the
statistics of scattering properties. A fundamental basis for most of these studies is that,
due to the complexity of the enclosure and the smallness of the wavelength compared to
the enclosure size, the electromagnetic fields approximately obey a statistical condition
that we shall call the random plane wave hypothesis, which assumes that a superposition
of random plane wave can be used to describe the statistics of chaotic wave functions
(Berry, 1983). This work has been quite successful in obtaining meaningful predictions,
and some of these have been tested against experiments with favorable results. A good
introduction and overview is provided in the book by Holland and St. John (1999).

In addition to this previous work on statistical electromagnetics (Holland & St. John,
1994, 1999; Lehman & Miller, 1991; Kostas & Boverie, 1991; Price, Davis, & Wenaas,
1993; Hill, 1994; Barthélemy, Legrand, & Mortessagne, 2004), much related work has
been done by theoretical physicists. The physicists are interested in solutions of quantum
mechanical wave equations when the quantum mechanical wavelength is short compared
with the size of the object considered. Even though the concern is not electromagnetics,
the questions addressed and the results are directly applicable to wave equations in general
and to electromagnetics in particular. The start of this line of inquiry was a paper by
Eugene Wigner (1955). Wigner’s interest was in the energy levels of large nuclei. Since
the energy level density at high energy is rather dense, and since the solution of the wave
equations for the levels was inaccessible, Wigner proposed to ask statistical questions
about the levels. Wigner’s results apply directly to the statistics of resonant frequencies
in highly overmoded irregularly shaped electromagnetic cavities. Since Wigner’s work,
and especially in recent years, the statistical approach to wave equations has been a very



Chaotic Impedance/Scattering Statistics: Single Port 5

active area in theoretical physics, where the field has been called “quantum chaos.” We
emphasize, however, that the quantum aspect to this work is not inherent and that a better
terminology, emphasizing the generality of the issues addressed, might be “wave chaos.”
For a review, see chapter 11 of Ott (2002) or the books by Gutzwiller (1990) or Haake
(1991).

Wigner’s approach was to introduce what is now called Random Matrix Theory
(RMT) (Mehta, 1991). In RMT the linear wave equation is replaced or modelled by a
linear matrix equation where the elements of the matrix are random variables. This follows
from Wigner’s hypothesis that the eigenvalues for a complicated (in our case chaotic)
system have the same statistics as those of matrices drawn from a suitable ensemble.
Based on symmetry arguments, Wigner proposed that the matrix statistics are those that
would result if the matrix were drawn from different types of ensembles, where the
relevant ensemble type depends only on gross symmetries of the modelled system. The
two ensembles that are relevant to electromagnetic problems are the Gaussian Orthogonal
Ensemble (GOE) and the Gaussian Unitary Ensemble (GUE). In both cases, all the matrix
elements are zero mean Gaussian random variables. In the GOE all the diagonal element
distributions have the same width, while all the off-diagonal element distributions have
widths that are half that of the diagonal elements. The matrices are constrained to be
symmetric, but otherwise the elements are statistically independent. The GOE case is
intended to model wave systems that have time reversal symmetry (TRS). That is, the
time domain equations are invariant under the transformation t → −t . This is the case
for electromagnetic waves if the permittivities and permeabilities tensors are real and
symmetric. In the GUE the matrices are constrained to be Hermitian. In this case the off-
diagonal elements are complex and the distributions of their real and imaginary parts are
independent and Gaussian and the width of these Gaussians is again one half the width
of the real diagonal elements. The GUE case is intended to model systems for which
time reversal symmetry is broken (TRSB). This case will apply in electromagnetics if a
nonreciprocal element such as a magnetized ferrite or a cold magnetized plasma is added
to the system.

In this paper we mainly consider an irregularly shaped cavity with a single trans-
mission line and/or waveguide connected to it, and we attempt to obtain the statistical
properties of the impedance Z and the scattering matrix S (which are both scalars in the
cases we consider) characterizing the response of the cavity to excitations from the con-
nected transmission line, where the wavelength is small compared to the size of the cav-
ity. We will treat specifically the case of cavities that are thin in the vertical (z-direction)
direction. In this case the resonant fields of the closed cavity are transverse electromag-
netic (TMz, �E = Ez(x, y)ẑ), and the problem admits a purely scalar formulation. While
the two-dimensional problem has practical interest in appropriate situations (e.g., the high
frequency behavior of the power plane of a printed circuit), we emphasize that the results
for the statistical properties of Z and S matrices are predicted to apply equally well to
three-dimensional electromagnetics and polarized waves. We note that previous work on
statistical electromagnetics (Holland & St. John, 1994, 1999; Lehman & Miller, 1991;
Kostas & Boverie, 1991; Price, Davis, & Wenaas, 1993; Hill, 1994; Barthélemy, Legrand,
& Mortessagne, 2004) is for fully three-dimensional situations. Our main motivation for
restricting our considerations here to two dimensions is that it makes possible direct
numerical tests of our predictions (such numerical predictions might be problematic in
three dimensions due to limitations on computer capabilities). Another benefit is that
analytical work and notation are simplified.
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For an electrical circuit or electromagnetic cavity with ports, the impedance matrix
provides a characterization of the structure in terms of the linear relation between the
voltages and currents at all ports,

V̂ = ZÎ , (1)

where V̂ and Î are column vectors of the complex phasor amplitudes of the sinusoidal
port voltages and currents. The scattering matrix S is related to the impedance matrix
Z by

S = Z
1/2
0 (Z + Z0)

−1(Z − Z0)Z
−1/2
0 , (2)

where Z0 is the characteristic impedance of the transmission line.
As discussed in the next section, the impedance matrix Z can be expressed in terms of

the eigenfunctions and eigenvalues of the closed cavity. We will argue that the elements of
the Z matrix can be represented as combinations of random variables with statistics based
on the random plane wave hypothesis for the representation of chaotic wave functions
and results from random matrix theory (Wigner, 1951; Ott, 2002) for the distribution of
the eigenvalues.

This approach to determination of the statistical properties of the Z and S matrices
allows one to include the generic properties of these matrices, as would be predicted by
representing the system as a random matrix drawn from an appropriate ensemble. It also,
however, allows one to treat aspects of the S and Z matrices which are specific to the
problems under consideration (i.e., so-called nonuniversal properties).

These nonuniversal properties have previously been treated within the context of the
so-called Poisson Kernel based on a “maximum information entropy” principle (Mello,
Peveyra, & Seligman, 1985), and Brouwer (1995) later provided a microscopic justifica-
tion and showed that the Poisson Kernel can be derived from Wigner’s RMT description
of the Hamilton. Here the statistics of the S matrix depend in a nontrivial way on the
average of S taken in a narrow frequency range. This characterizes the system-specific
aspects of the coupling. Our approach allows one to predict the average based on another
informative quantity, the radiation impedance, which itself characterizes the coupling of
the port to the enclosure. The radiation impedance is the impedance that applies at the
port when waves are launched into the cavity and (by making the distant walls perfectly
absorbing) not allowed to return. Our interpretation of the role of the radiation impedance
is equivalent to Brouwer’s (1995) interpretation of the Poisson kernel in terms of scat-
tering from a cascaded configuration of a lossless multiport and a perfectly coupled
cavity described by RMT. We show that the separation of universal and system-specific
properties is more natural when considering the impedance rather than scattering matrix.
Specifically, the universal properties of the cavity impedance are observed by subtracting
from the raw cavity impedance the radiation reactance and normalizing the result to the
radiation resistance. The statistics of the resulting variable, which we term the normalized
cavity impedance, depend only on a single parameter characterizing the internal loss of
the cavity.

The Poisson kernel description of the scattering amplitude has been applied to data
obtained from microwave scattering experiments on cavities with absorption (Doron &
Smilansky, 1990; Méndez-Sánchez et al., 2003; Kuhl et al.). Two different methods
have recently been described (Méndez-Sánchez et al., 2003; Kuhl et al.) for extract-
ing the universal properties of the scattering amplitude from the system-specific ones.
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The system-specific properties are characterized in terms of averages of the scattering
amplitude and its modulus squared over ranges of frequency. A fitting procedure is then
used to characterize the universal fluctuations. The impedance approach has also been
applied to experimental data (Warne et al., 2003; Hemmady et al., 2004). In Hemmady
et al. (2004) the radiation impedance is measured directly and the complex normalized
impedance is formed by subtracting the radiation reactance and normalizing to the radi-
ation resistance. The probability distribution function of the normalized impedance was
then compared directly with Monte Carlo numerical evaluations of the prediction.

The main contribution of this paper is to describe the statistical properties of the cav-
ity impedance. First we show (also shown in Warne et al. (2003)) that the relation between
the cavity impedance and the radiation impedance follows from the assumption that the
eigenfunctions of the cavity satisfy the random plane wave hypothesis of Berry (1983).
We then verify the relation between the cavity impedance and the radiation impedance
for a specific realization by numerical simulation using the High Frequency Structure
Simulation software (HFSS). Next, using Monte Carlo methods we evaluate theoretical
predictions for the probability distribution functions for the real and imaginary parts of
the normalized impedance for different values of internal absorption in the cavity. The
distribution of the real part of the normalized impedance is closely related to the distri-
bution of values that is known as the local density of states (Efetov & Prigodin, 1993).
Finally, we derive expressions for the mean and variance of the normalized impedance
as functions of the level of internal loss in the cavity.

Our paper is organized as follows. We first present the statistical model. We then
illustrate our model by application to the statistics of the impedance seen at a single
transmission line input to a cavity that is irregularly shaped, highly overmoded, lossless,
and nongyrotropic (i.e., no magnetized ferrite). We then relate the impedance matrix
characteristics to those of the scattering matrix and generalize our model to incorporate
the effects of distributed loss (such as wall absorption). Throughout, our analytical results
will be compared with direct numerical solutions of the wave problem. We conclude with
a discussion and summary of results.

Modelling with Random Plane Waves

We consider a closed cavity with ports connected to it. For specificity, in our numerical
work, we consider the particular, but representative, example of the vertically thin cavity
shown in Figure 1a coupled to the outside via a coaxial transmission cable. Figure 1b
shows an example of how this cavity might be connected to a transmission line via
a hole in the bottom plate. The cavity shape in Figure 1 is of interest here because
the concave curvature of the walls insures that typical ray trajectories in the cavity are
chaotic. (Figure 1a is a quarter of the billiard shown in Figure 2c.) For our purposes, a
key consequence of the chaotic property of the shape in Figure 1a is that, if we consider
the trajectory of a particle bouncing with specular reflection at the walls (equivalently
a ray path), then a randomly chosen initial condition (i.e., random in position �x within
the cavity and isotropically random in the orientation θ of the initial velocity vector)
always generates an orbit that is ergodic within the cavity. Here by ergodic we mean the
following: For any spatial region R within the cavity, in the limit of time t → ∞, the
fraction of time the orbit spends in R is the ratio of the area of R to the entire area of the
two-dimensional cavity, and, furthermore, the collection of velocity orientations θ of the
orbit when it is in R generates a uniform distribution in [0, 2π ). Thus the orbit uniformly
covers the phase space (�x, θ ). This is to be contrasted with the case of a rectangular
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Figure 1. (a) Top view of the cavity used in our numerical simulation. (b) Side view of the details
of a possible coupling.

cavity, 0 ≤ x ≤ a, 0 ≤ y ≤ b, which represents a shape for which orbits (rays) are
nonchaotic. In that case, if the initial velocity orientation with respect to the x-axis is
θ0, then at any subsequent time only four values of θ are possible: θ0, 2π − θ0, π − θ0,
π + θ0. In cases such as Figure 1a we assume that the previously mentioned hypotheses
regarding eigenfunctions and eigenvalue distributions provide a useful basis for deducing
the statistical properties of the Z and S matrices, and, in what follows, we investigate
and test the consequences of this assumption.

The vertical height h of the cavity is small, so that, for frequencies of interest, the
only propagating waves inside the cavity have electric fields that are purely vertical,

�E = Ez(x, y)ẑ. (3)

This electric field gives rise to a charge density on the top plate ρs = −ε0Ez, and also
generates a voltage VT (x, y) = −hEz(x, y) between the plates. The magnetic field is
perpendicular to ẑ,

�B = (Bx, By) = µ0 �H, (4)

and is associated with a surface current density �Js = �H × ẑ flowing on the top plate.
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The cavity excitation problem for a geometry like that in Figure 1b is system specific.
We will be interested in separating out statistical properties that are independent of the
coupling geometry and have a universal (i.e., system-independent) character. For this
purpose, we claim that it suffices to consider a simple solvable excitation problem, and
then generalize to more complicated cases, such as the coupling geometry in Figure 1b.
Thus we consider the closed cavity (i.e., with no losses or added metal), with localized
current sources resulting in a current density �Js(x, y, t) = ∑

i Ii(t)ui(x, y)ẑ between
the plates. The profile functions ui(x, y) are assumed to be localized; i.e., ui(x, y) is
essentially zero for (x − xi)

2 + (y − yi)
2 > l2i , where li is much smaller than the lateral

cavity dimension. ui(x, y) characterizes the distribution of vertical current at the location
of the ith model input (analogous to the ith transmission line connected to the cavity,
although, for this model, there are no holes in the upper or lower plates). The profile is
normalized such that ∫

dxdyui(x, y) = 1. (5)

For the sake of simplicity, we only consider the single port case in this paper (i.e.,
there is only one localized source and we may thus drop the subscript i on ui(x, y)).
The injection of current serves as a source in the continuity equation for surface charge,
∂ρs/∂t + ∇ · �Js = Iu(x, y), where ∇ = (∂/∂x, ∂/∂y). Expressed in terms of fields, the
continuity equation becomes

∂

∂t
(−ε0Ez) + ∇ · (H̃ × ẑ) = Iu(x, y). (6)

Differentiating Eq. (6) with respect to t and using Faraday’s law, we obtain

∂2

∂t2
(−ε0Ez) + ∇ · 1

µ0
∇Ez = u(x, y)

∂I

∂t
. (7)

Expressing the electric field in terms of the voltage VT = −Ezh, we arrive at the driven
wave equation

1

c2

∂2

∂t2
VT − ∇2VT = hµ0u

∂I

∂t
, (8)

where c is speed of light, c2 = 1/(µ0ε0).
Assuming sinusoidal time dependence ejωt for all field quantities, we obtain the

following equation relating V̂T and Î , the phasor amplitudes of the voltage between the
plates and the port current:

(∇2 + k2)V̂T = −jωhµ0uÎ = −jkhη0uÎ , (9)

where η0 = √
µ0/ε0 is the characteristic impedance of free space and k = ω/c. Thus

Eq. (9) represents a wave equation for the voltage between the plates excited by the input
current.

To complete our description and arrive at an expression of the form of Eq. (1), we
need to determine the port voltage V . We take its definition to be a weighted average of
the spatially dependent voltage VT (x, y, t),

V =
∫

dxdyu(x, y)VT (x, y, t). (10)
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This definition is chosen because it then follows from Eq. (6) that the product IV gives
the rate of change of field energy in the cavity, and thus Eq. (10) provides a reasonable
definition of port voltage. Solution of Eq. (9) and application of (10) to the complex
phasor amplitude V̂T provide a linear relation between V̂ and Î , which defines the
impedance Z.

To solve Eq. (9), we expand V̂T in the basis of the eigenfunctions of the closed cavity,
i.e., V̂T = ∑

n cnφn, where (∇2 + k2
n)φn = 0,

∫
φiφjdxdy = δij , and φn(x, y) = 0 at

the cavity boundary. Thus, multiplying Eq. (9) by φn and integrating over (x, y) yields

cn(k
2 − k2

n) = −jkhη0〈uφn〉Î , (11)

where kn = ωn/c, ωn is the eigenfrequency associated with φn, and 〈uφn〉 = ∫
φnudxdy.

Solving for the coefficients cn and computing the voltage V̂ yields

V̂ = −j
∑
n

khη0〈uφn〉2

k2 − k2
n

Î = ZÎ . (12)

This equation describes the linear relation between the port voltage and the current
flowing into the port. Since we have assumed no energy dissipation so far (e.g., due
to wall absorption or radiation), the impedance of the cavity is purely imaginary, as is
indicated by Eq. (12).

The expression for Z in Eq. (12) is equivalent to a formulation introduced by Wigner
and Eisenbud (1947) in nuclear-reaction theory in 1947, which was generalized and
reviewed by Lane and Thomas (1958), and Mahaux and Weidenmüller (1996). Recently,
a supersymmetry approach to scattering based on this formulation was introduced by
Verbaarschot, Weidenmüller, and Zirnbauer (1985) and further developed by Lewenkopf
and Weidenmüller (1991) and Fyodorov and Sommers (1997) (which they called the
“K-matrix” formalism) and it has also been adapted to quantum dots by Jalabert, Stone,
and Alhassid (1992).

Explicit evaluation of Eq. (12) in principle requires determination of the eigenvalues
and corresponding eigenfunctions of the closed cavity. We do not propose to do this.
Rather, we adopt a statistical approach to replace 〈uφn〉 and k2

n with random variables with
appropriate distribution, such that we can construct models for the statistical behavior
of the impedance. For high frequencies such that k = ω/c � L−1, where L is a
typical dimension of the cavity, the sum in Eq. (12) will be dominated by high order
(short wavelength) modes with knL � 1, and the properties of the short wavelength
eigenfunctions can be understood in terms of ray trajectories. For geometries like that in
Figure 1a, ray trajectories are chaotic.

The assumed form of the eigenfunction from the random plane wave hypothesis is

φn = lim
N→∞

√
2

AN
Re

{
N∑
i=1

αi exp(jkn�ei · �x + jθi)

}
, (13)

where �ei are randomly oriented unit vectors (in the x-y plane), θi is random in [0, 2π ],
and αi are random. This statistical model for φn is motivated by the previously discussed
ergodicity of ray paths in chaotic cavities (e.g., Figure 1a); i.e., the random orientation
of �ei corresponds to the uniform distribution of ray orientations θ . Using (13) we can
calculate the overlap integral 〈uφn〉 appearing in the numerator of (12). Being the sum
of contributions from a large number of random plane waves, the central limit theorem
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implies that the overlap integral will be a Gaussian random variable with zero mean. The
variance of the overlap integral can be obtained using Eq. (13):

E{〈uφn〉2} = 1

A

∫ 2π

0

dθ

2π
|ū(�kn)|2, (14)

where E{.} denotes the expected value, ū(�kn) is the Fourier transform of the profile
function u(x, y),

ū(�kn) =
∫

dxdyu(x, y) exp(−j �kn · �x), (15)

and �kn = (kn cos θ, kn sin θ). The integral in (14) over θ represents averaging over the
directions �ej of the plane waves. The variance of 〈uφn〉 depends on the eigenvalue k2

n.
If we consider a localized source u(x, y) such that the size of the source is less than the
typical wavelength 2π/kn, then the variance will be A−1 (recall the normalization of u
given by Eq. (5)).

Modelling of Eq. (12) also requires specifying the distribution of eigenvalues kn
appearing in the denominator. According to the Weyl formula (Ott, 2002), for a two-
dimensional cavity of area A, the average separation between adjacent eigenvalues, k2

n −
k2
n−1, is 4πA−1. Thus, one requirement of the sequence of eigenvalues is that they have

a mean spacing 4πA−1. The distribution of spacings of adjacent eigenvalues is predicted
to have the characteristic Wigner form for cavities with chaotic trajectories. In particular,
defining the normalized spacing, sn = A(k2

n−k2
n−1)/4π , it is found that there are two basic

cases which (for reasons explained subsequently) are called “time reversal symmetric”
(TRS) and “time-reversal symmetry broken” (TRSB). The probability density function
for sn is predicted to be closely approximated by

P(sn) = π

2
sn exp(−πs2

n/4) (16)

for chaotic systems with TRS and

P(sn) = 32

π
s2
n exp(−4s2

n/π) (17)

for the TRSB system. Thus, a second requirement on the sequence of eigenvalues is that
they have the correct spacing distribution. The TRS case applies to systems where the
permittivity and permeability tensors are real and diagonal. The TRSB case applies to
systems where the permittivity or permeability tensors are complex but hermitian, as they
are for a magnetized ferrite.

One approach of ours will be to generate values for the impedance assuming that
sequences of eigenvalues can be generated from a set of separations sn which are inde-
pendent and distributed according to Eq. (16). The usefulness of the assumption of the
independence of separations will have to be tested, as it is known that there are long
range correlations in the spectrum, even if nearby eigenvalues appear to have independent
spacings. A more complete approach is to use a sequence of eigenvalues taken from the
spectra of random matrices. When this is done the impedance defined in Eq. (12) (with
independent Gaussian distributions for the overlap integrals) is completely equivalent to
that obtained in RMT. We will find that in some cases it is sufficient to consider the
simpler spectra, generated from independent spacing distributions, but in other cases,
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for example, when losses are considered or when correlations of impedance values at
different frequencies are considered, the correlations in eigenvalues exhibited by random
matrix theory are important. This will be discussed more thoroughly later in the paper.

A key assumption in our model is the statistical independence of the overlap inte-
grals, 〈uφn〉, and the eigenvalues kn. This we argue on the basis that each eigenfunction
satisfies the plane wave hypothesis and successive eigenfunctions appear to be indepen-
dent. A second justification comes from random matrix theory where it is known that
the probability distribution for the eigenvalues of a random matrix is independent of that
of the elements of the eigenfunctions (Mehta, 1991, chap. 3). Indeed, the result from
the random plane wave hypothesis (Eq. (18), below) turns out to be equivalent to past
work on scattering matrices that was based on coupling to systems described by random
matrix theory (Mello, Peveyra, & Seligman, 1985).

Combining our expressions for 〈uφn〉 and using the result that for a two-dimensional
cavity the mean spacing between adjacent eigenvalues is 4 = 4πA−1, the expression for
the cavity impedance given in Eq. (12) can be rewritten,

Z = − j

π

∞∑
n=1

4
RR(kn)w

2
n

k2 − k2
n

, (18)

where wn is taken to be a Gaussian random variable with zero mean and unit variance,
the kn are distributed independent of the wn, and RR is given by

RR(k) = khη0

4

∫
dθ

2π
|u(�k)|2. (19)

Our rationale for expressing the impedance in the form of Eq. (18) and introduc-
ing RR(kn) is motivated by the following observation. Suppose we allow the lateral
boundaries of the cavity to be moved infinitely far from the port. That is, we consider
the port as a two-dimensional free-space radiator. In this case, we solve Eq. (9) with a
boundary condition corresponding to outgoing waves, which can be readily done by the
introduction of Fourier transforms. This allows us to compute the phasor port voltage V̂

by Eq. (10). Introducing a complex radiation impedance ZR(k) = V̂ /Î (for the problem
with the lateral boundaries removed), we have

ZR(k) = − j

π

∫ ∞

0

dk2
n

k2 − k2
n

RR(kn), (20)

where RR(kn) is given by Eq. (19) and kn is now a continuous variable. The impedance
ZR(k) is complex with a real part obtained by deforming the kn integration contour to
pass above the pole at kn = k. This follows as a consequence of applying the outgoing
wave boundary condition, or equivalently, letting k have a small negative imaginary part.
Thus, we can identify the quantity RR(k) in Eq. (19) as the radiation resistance of the
port resulting from one half the residue of the integral in (20) at the pole, k2

n = kn,

Re[ZR(k)] = RR(k), (21)

and

XR(k) = Im[ZR(k)]
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is the radiation reactance given by the principal part (denoted by P ) of the integral (20),

XR(k) = P

{
− 1

π

∫ ∞

0

dk2
n

k2 − k2
n

RR(kn)

}
. (22)

Based on the above, the connection between the cavity impedance, represented by
the sum in Eq. (18), and the radiation impedance, represented in Eq. (21) and Eq. (22), is
as follows. The cavity impedance, Eq. (18), consists of a discrete sum over eigenvalues
kn with weighting coefficients wn which are Gaussian random variables. There is an
additional weighting factor RR(kn) in the sum, which is the radiation resistance. The
radiation reactance, Eq. (22), has a form analogous to the cavity impedance. It is the
principle part of a continous integral over kn with random coupling weights set to unity.
While, Eqs. (18), (21), (22), have been obtained for the simple model input Ĵ = Î u(x, y)

in 0 ≤ z ≤ h with perfectly conducting plane surfaces at z = 0, h, we claim that these
results apply in general. That is, for a case like that in Figure 1b, ZR(k) (which for the
simple model is given by Eq. (20)) can be replaced by the radiation impedance for the
problem with the same port geometry. We also note that while (20) was obtained with
reference to a two-dimensional problem, the derivation and result are the same in three
dimensions. It is important to note that, while RR(k) is nonuniversal (i.e., depends on
the specific coupling geometry, such as that in Figure 2b), it is sometimes possible to
independently calculate it, and it is also a quantity that can be directly measured (e.g.,
an experimental radiation condition can be simulated by placing the absorber adjacent
to the lateral walls). In the next section, we will use the radiation impedance to nor-
malize the cavity impedance, yielding a universal distribution for the impedance of a
chaotic cavity.

Impedance Statistics for a Lossless, Time Reversal Symmetric Cavity

In the lossless case, the impedance of the cavity Z in Eq. (18) is a purely imaginary
number and S, the reflection coefficient, is a complex number with unit modulus. Terms
in the summation of Eq. (18) for which k2 is close to k2

n will give rise to large fluctuations
in Z as either k2 is varied or one considers different realizations of the random numbers.
The terms for which k2 is far from k2

n will contribute to a mean value of Z. Accordingly,
we write

Z = Z̄ + Z̃, (23)

where Z̄, the mean value of Z, is written as

Z̄ = − j

π

∑
n

4E

{
RR(k

2
n)

k2 − k2
n

}
, (24)

and we have used the fact that the w2
n are independent with E{w2

n} = 1. If we approximate
the summation in Eq. (24) by an integral, noting that 4 is the mean spacing between
eigenvalues, comparison with (22) yields

Z̄ = jXR(k), (25)

where XR = Im[ZR] is the radiation reactance defined by Eq. (22). Thus, the mean part
of the fluctuating impedance of a closed cavity is equal to the radiation reactance that
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would be obtained under the same coupling conditions for an antenna radiating freely;
i.e., in the absence of multiple reflections of waves from the lateral boundaries of the
cavity. The equivalent conclusion for the radiation scattering coefficient is evident from
the treatment of Brouwer (1995).

We now argue that, if k2 is large enough that many terms in the sum defining Z

satisfy k2
n < k2, then the fluctuating part of the impedance Z̃ has a Lorentzian distribution

with a characteristic width RR(k). That is, we can write

Z = j (XR + RRξ), (26)

where ξ is a zero mean unit width Lorentzian distributed random variable, Pξ (ξ) =
[π(1 + ξ2)]−1.

Lorentzian distribution appears in the theory of nuclear scattering (Krieger, 1967)
and arises as consequences of random matrix theory (Fyodorov & Sommers, 1997; Mello,
1995). That the characteristic width scales as RR(k) follows from the fact that the fluc-
tuating part of the impedance is dominated by terms for which k2

n � k2. The size of the
contribution of a term in the sum in Eq. (18) decreases as |k2 − k2

n| in the denominator
increases. The many terms with large values of |k2 − k2

n| contribute mainly to the mean
part of the reactance, with the fluctuations in these terms cancelling one another due to
the large number of such terms. The contributions to the mean part from the relatively
fewer terms with small values of |k2 − k2

n| tend to cancel due to the sign change of the
denominator while their contribution to the fluctuating part of the reactance is signifi-
cant since there are a smaller number of these terms. Consequently, when considering
impedance fluctuations, it suffices to treat RR(kn) as a constant in the summation in
Eq. (18) and factor it out. This results in a sum that is independent of coupling geometry
and is therefore expected to have a universal distribution.

Numerical Results for a Model Normalized Impedance

To test the arguments above, we consider a model normalized cavity reactance ξ̃ = X/RR

and also introduce a normalized wavenumber k̃2 = k2/4 = k2A/4π . In terms of this
normalized wavenumber, the average of the eigenvalue spacing [average of (k̃2

n+1 − k̃2
n)]

is unity. Our model normalized reactance is

ξ̃ = − 1

π

N∑
n=1

w2
n

k̃2 − k̃2
n

, (27)

where the wn are independent Gaussian random variables, k̃2
n are chosen according to

various distributions, and we have set RR(kn) to a constant value for n ≤ N and RR(kn) =
0 for n > N . The fluctuating part of jξ given by Eq. (27) mimics the fluctuating part of
the impedance Z in the case in which RR(kn) has a sharp cut-off for eigenmodes with
n > N . In terms of ξ , Eq. (26) becomes

Pξ̃ (ξ̃ ) = 1

π

1

[(ξ̃ − ξ̄ )2 + 1] , (28)

where ξ̄ is the mean of ξ .
First we consider the hypothetical case where the collection of k̃2

n values used in
Eq. (27) result from N independent and uniformly distributed random choices in the
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interval 0 � k̃2
n � N . In contrast to Eqs. (16), this corresponds to a Poisson distribution

of spacings P(s) = exp(−s) for large N . This case is analytically solvable (Mello, 1995)
and the mean value ξ̄ is

ξ̄ = P

{
− 1

π

∫ N

0

dk̃2
n

k̃2 − k̃2
n

}
= 1

π
ln

∣∣∣∣∣N − k̃2

k̃2

∣∣∣∣∣ ; (29)

furthermore, ξ has a Lorentzian distribution given by Eq. (28).
Our next step is to numerically determine the probability distribution function for

ξ given by (27) in the case where the spacing distribution corresponds to the TRS case
described by Eq. (3). We generated 106 realizations of the sum in Eq. (27). For each
realization we randomly generated N = 2000 eigenvalues using the spacing probability
distribution (3), as well as N = 2000 random values of wn chosen using a Gaussian
distribution for wn with E{wn} = 0 and E{w2

n} = 1. We first test the prediction of
Eq. (29) by plotting the median value of ξ versus k̃2 in Figure 2a. (We use the median
rather than the mean, since, for a random variable with a Lorentzian distribution, this
quantity is more robust when a finite sample size is considered.) Also plotted in Figure 2a
is the formula (29). We see that the agreement is very good. Next we test the prediction
for the fluctuations in ξ by plotting a histogram of ξ values for the case k̃2 = N/2 in
Figure 2b. From (29) for k̃2 = N/2 the mean is expected to be zero and, as can be
seen in the figure, the histogram (open circles) corresponds to a Lorentzian with zero
mean and unit width (solid line) as expected. Histograms plotted for other values of k̃2

agree with the prediction but are not shown. Thus, we find that the statistics of ξ are
the same for P(s) = exp(−s) (Poisson) and for P(s) given by Eq. (16). Hence we
conclude that the statistics of ξ are independent of the distribution of spacings. This is
further supported by Figure 2c, where the histogram of ξ for k̃2 = N/2 is plotted for the
case in which the spacing distribution is that corresponding to TRSB systems (the TSRB
case will be discussed more carefully in a subsequent paper). Again, the histogram is
in excellent agreement with (28). This implies that, for the lossless case, with a single
input transmission line to the cavity, the impedance statistics are not so sensitive to the
spacing distributions, as long as they have the same mean value.

The issue of long range correlations in the distribution of eigenvalues doesn’t affect
statistics of the impedance in the lossless case. In principle, one can also incorporate
additional eigenvalue correlation from random matrix theory in the statistics generating
the k2

n in Eq. (27) (and when losses are considered, this is necessary). We note that the
mean and width of the distribution in the random matrix approach are specific to the
random matrix problem. In contrast, in our formulation, these quantities are determined
by the geometry-specific port coupling to the cavity through the radiation impedance
ZR(k

2
n).

HFSS Simulation Result for the Normalized Impedance

To test our prediction for the distribution function of the normalized impedance, we have
computed the impedance for the cavity in Figure 1a for the coupling shown in Figure 1b
using the commercially available program HFSS (Ansoft). To create different realizations
of the configuration, we placed a small metallic cylinder of radius 0.6 cm and height h
at 100 different points inside the cavity. In addition, for each location of the cylinder,
we swept the frequency through a 2.0 GHz range (about 100 modes) from 6.75 GHz
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Figure 2. (a) Median of ξ versus k̃2/N , compared with Eq. (29). (b) Histogram of approximation
to Pξ (ξ) (solid dots) in the TRS case compared with a Lorentzian distribution of unit width.
(c) Same as (b) but for the TRSB case.
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to 8.75 GHz in 4000 steps of width 5 × 10−4 GHz. We generated 100,000 impedance
values. In addition, to obtain the radiation impedance, we also used HFSS to simulate
the case with radiation boundary conditions assigned to the sidewalls of the cavity. We
find that the average value of the cavity reactance (which we predict to be the radiation
reactance) has large systematic fluctuations. This is illustrated in Figure 3, where we plot
the median cavity reactance versus frequency. Here the median is taken with respect to
the 100 locations of the perturbing disc. Also shown in Figure 3 is the radiation reactance
XR(ω) = Im[ZR(ω)]. As can be seen the radiation reactance varies only slightly over
the plotted frequency range, whereas the median cavity reactance has large frequency-
dependent fluctuations about this value. On the other hand, we note that over the range
6.75–8.75 GHz, the average radiation reactance is 40.4 9 and the average of the median
cavity reactances is 42.3 9. Thus over this frequency band, there is good agreement.
The scale of the fluctuations in cavity reactance is on the order of 0.2 GHz, which is
much larger than the average spacing between cavity resonances, which is only 0.016
GHz. Thus, these fluctuations are not associated with individual resonances. Rather, the
frequency scale of 0.2 GHz suggests that they are multipath interference effects (L ∼ 100
cm), which survive in the presence of the moveable conducting disc. One possibility is
that the fluctuations are the result of scars (Heller, 1984), and this will be investigated in
the future. The implication of Figure 3 is that to obtain good agreement with the theory
predicting a Lorentzian distribution, it may be necessary to average over a sufficiently
large frequency interval.

To test the Lorentzian prediction we normalize the cavity impedance using the
radiation impedance as in Eq. (25) and Eq. (26); the normalized impedance values,
ξ̃ = {Im[Z(k)]−XR(k)]}/RR(k), are computed; and the resulting histogram approxima-
tions to Pξ (ξ̃ ) are obtained. Figure 4a shows the result for the case where we have used
data in the frequency range 6.75 GHz to 8.75 GHz (the range plotted in Figure 3). The
histogram points are shown as dots, and the theorectical unit width Lorentzian is shown

Figure 3. Median cavity reactance averaged over 100 realization versus frequencies ranged from
6.75 GHz to 8.75 GHz, compared with the corresponding radiation reactance Im[ZR(ω)].



18 X. Zheng et al.

Figure 4. Histogram approximation to Pξ (ξ) from numerical data calculated using HFSS in dif-
ferent frequency ranges. (a) 6.75–8.75 GHz, (b) 6.75–7.25 GHz, (c) 7.25–7.75 GHz, (d) 7.75–8.25
GHz, (e) 8.25–8.75 GHz.

as a solid curve. Good agreement between the predicted Lorentzian and the data is seen.
Figures 4b–e show similar plots obtained for smaller frequency ranges of width 0.5 GHz:
(b) 6.75–7.25 GHz, (c) 7.25–7.75 GHz, (d) 7.75–8.25 GHz, (e) 8.25–8.75 GHz. For these
narrow frequency ranges, we see that Figures 4b and 4c show good agreement with (28),
while, on the other hand, Figures 4d and 4e exhibit some differences. These are possibly
associated with the variances in the median cavity reactance shown in Figure 3, as the
agreement with the Lorentzian prediction improves when averaging over a large range
of frequencies.

Variation in Coupling

In this section, we bolster our arguments connecting the radiation impedance and the
normalization of the cavity impedance by showing that the relation is preserved when
the details of the coupling port are modified. Let us consider a one-port coupling case
in which the actual coupling is equivalent to the cascade of a lossless two-port and a
“pre-impedance” Z seen at terminal 2, as illustrated in Figure 5.

Figure 5. Schematic description of the two-port model.
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The impedance Z at terminal 2 then transforms to a new impedance Z′ at terminal 1
of the two-port according to

Z′ = jX̂11 + X̂12X̂21

jX̂22 + Z
, (30)

where jX̂ij is now the purely imaginary 2 by 2 impedance matrix of the lossless two-
port. We now ask how Z transforms to Z′ when (a) Z is the complex impedance ZR

corresponding to the radiation impedance into the cavity (i.e., the cavity boundaries are
extended to infinity) and (b) Z = jX is an imaginary impedance corresponding to a
lossless cavity, where X has a mean X̄ and Lorentzian distributed fluctuation X̃.

First considering case (a), the complex cavity impedance ZR = RR+jXR transforms
to a complex impedance Z′

R = R′
R + jX′

R , where

R′
R = RR

X̂12X̂21

R2
R + (X̂22 + XR)2

(31)

and

X′
R = X̂11 − (X̂22 + XR)

X̂12X̂21

R2
R + (X̂22 + XR)2

. (32)

In case (b) we consider the transformation of the random variable X to a new random
variable X′ according to X′ = X̂11 + X̂12X̂21/(X̂22 + X). One can show that if X is
Lorentzian distributed with mean XR and width RR then X′ will be Lorentzian distributed
with mean X′

R and the width R′
R . Thus, the relation between the radiation impedance

and the fluctuating cavity impedance is preserved by the lossless two-port. Accordingly,
we reassert that this relation holds in general for coupling structures whose properties
are not affected by the distant walls of the cavity. A treatment similar to that above has
also been given by Brouwer (1995) in the context of scattering with a scattering matrix
description of the connection between terminals 1 and 2.

We now summarize the main ideas of this section. The normalized impedance of
a lossless chaotic cavity with time-reversal symmetry has a universal distribution which
is a Lorentzian. The width of the Lorentzian and the mean value of the impedance
can be obtained by measuring the corresponding radiation impedance under the same
coupling conditions. The physical interpretation of this correspondence is as follows.
In the radiation impedance, the imaginary part is determined by the near field, which
is independent of cavity boundaries. On the other hand, the real part of the radiation
impedance is related to the far field. In a closed, lossless cavity, the real part of the
impedance vanishes. However, waves that are radiated into the cavity are reflected from
the boundaries, eventually returning to the port and giving rise to fluctuation in the cavity
reactance.

Statistics of Reflection Coefficient in the Lossless Case

In the previous section, we obtained a universal Lorentzian distribution for the chaotic
cavity impedance Z, after normalization by the radiation impedance

Z = j (XR + RRξ), (33)
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where ξ is a zero mean, unit width Lorentzian random variable. We now consider the
consequences for the reflection coefficient. Suppose we can realize the perfect coupling
condition, i.e., RR = Z0, XR = 0, in which the wave does not “feel” the transition from
the cable to the cavity. In this case the cavity reflection coefficient becomes

S = jξ − 1

jξ + 1
= exp[−j (2 tan−1 ξ + π)]. (34)

A standard Lorentzian distribution for ξ corresponds to a uniform distribution for tan−1 ξ

from [−π/2, π/2] and thus to a reflection coefficient uniformly distributed on the unit
circle.

In the general case (i.e., nonperfect coupling), we introduce γR = RR/Z0, γX =
XR/Z0, and express S as

S = ejφ = (Z + Z0)
−1(Z − Z0) = j (γRξ + γX) − 1

j (γRξ + γX) + 1
. (35)

We replace the Lorentzian random variable ξ by introducing another random variable ψ

via ξ = tan(ψ/2). Using this substitution, the Lorentzian distribution of ξ translates to a
distribution of ψ that is uniform in [0, 2π ]. We then have from Eq. (35)

ej (φ−φR) = e−jψ ′ + |ρR|
1 + |ρR|e−jψ ′ , (36)

where the “free space reflection coefficient” ρR ,

ρR = |ρR|ejφR = γR + jγX − 1

γR + jγX + 1
, (37)

is the complex reflection coefficient in the case in which the cavity impedance is set equal
to the radiation impedance (ξ̃ = −j ), and ψ ′ = ψ +π +φR + 2 tan−1[γX/(γR + 1)] is a
shifted version of ψ . Equations for the magnitude and phase of the free space reflection
coefficient ρR can be obtained from Eq. (37). Specifically,

|ρR| =
√
(γR − 1)2 + γ 2

X

(γR + 1)2 + γ 2
X

(38)

and

tan φR = 2γX
γ 2
R + γ 2

X − 1
. (39)

Equation (36) is essentially a statement of the Poisson kernel relation for a nonperfectly
coupled one-port cavity.

To compute the probability distribution function for φ, Pφ(φ), we note that, since ψ
is uniformly distributed on any interval of 2π , we can just as well take ψ ′, which differs
from ψ by a constant shift, to be uniformly distributed. Consequently, we have

Pφ(φ) = 1

2π

∣∣∣∣dψ ′

dφ

∣∣∣∣
= 1

2π

1 − |ρR|2
1 + |ρR|2 − 2|ρR| cos(φ − φR)

.

(40)
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Thus Pφ(φ) is peaked at the angle φR corresponding to the phase angle of the free space
reflection coefficient, with a degree of peaking that depends on |ρR|, the magnitude of
the free space reflection coefficient. “Perfect matching” corresponds to γR = 1, γX = 0,
and |ρR| = 0, in which case Pφ(φ) is uniform.

We next consider the case of poor matching for which |ρR| ∼= 1 and Pφ(φ) is
strongly peaked at φR . This behavior can be understood in the context of the frequency
dependence of the phase for a given realization. It follows from (35) and (27) that the
phase φ decreases by 2π as k2 increases by the spacing between eigenvalues. If |ρR| ∼= 1,
then for most of the frequencies in this interval, the phase is near φR . However, for the
small range of frequencies near a resonance, the phase will jump by 2π as the resonance
is passed. This indicates that the mode of the cavity is poorly coupled to the transmission
line. In the case of good matching, |ρR| = 0, all phases are equally likely, indicating
that, as a function of frequency, the rate of increase of phase is roughly constant. This
implies that the resonances are broad, and the cavity is well coupled to the transmission
line.

In order to describe the different coupling strengths, we consider the parameter g
originally introduced by Fyodorov and Sommers (1997):

g = 1 + |〈ejφ〉|2
1 − |〈ejφ〉|2 . (41)

Evaluating 〈S〉 using Eq. (40),

g = 1 + |ρR|2
1 − |ρR|2 . (42)

Thus, g has a minimum value of 1 in the perfectly matched case and is large if the
matching is poor, |ρR| ∼ 1. An analogous quantity is the voltage standing wave ratio on
the transmission line when the cavity impedance is set equal to the radiation impedance,

VSWR = 1 + |ρR|
1 − |ρR| = g +

√
g2 − 1. (43)

To test Eq. (40), we compared its predictions for the phase distribution with direct
numerical calculations obtained using HFSS (High Frequency Structure Simulator) for
the case of the cavity and coupling detail as specified in Figure 4. As compared to
what was done for Figure 4, we have narrowed the frequency range to 0.1 GHz bands
for each realization in 1000 10−4 GHz steps centered at 7 GHz, 7.5 GHz, 8 GHz, and
8.5 GHz. Instead of calculating the radiation impedance for every frequency, we use
the value of ZR at the middle frequency of the interval in calculating the values of
γR and γX. We present theoretical phase density distribution functions together with
numerical histogram results in Figure 6. The agreement between the theory, Eq. (40),
and the numerical results is surprisingly good, especially considering the rather small
(0.1 GHz) frequency range used.

Effect of Distributed Losses

We now consider the effect of distributed losses in the cavity. By distributed losses,
we mean losses that affect all modes in a frequency band equally (or at least approxi-
mately so). For example, wall losses and losses from a lossy dielectric that fills the cavity
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Figure 6. Histogram of the reflection phase distribution for an HFSS calculation for the cavity in
Figure 1 with center frequencies located at (a) 7 GHz, (b) 7.5 GHz, (c) 8 GHz, (d) 8.5 GHz, and
with sweeping span equal to 0.1 GHz. Numerical data are compared with Eq. (40) using parameters
determined by ZR at the corresponding center frequencies.

are considered distributed. (For the case of losses due to conducting walls, the losses are
approximately proportional to the surface resistivity, ∼ √

f , and vary little in a frequency
range 4f � f . In addition, there will also be variation of wall losses from mode to
mode due to different eigenmode structural details. These modal fluctuations, however,
are small when the modes are chaotic and the wavelength is short.) We use the random
coupling model to construct a complex cavity impedance accounting for distributed losses
in a manner analogous to the lossless case, Eq. (18),

Z = − j

π

∑
n

4
RR(kn)w

2
n

k2(1 − jσ ) − k2
n

, (44)

where σ represents the effect of losses. In particular, for loss due to wall absorption in
a two-dimensional cavity, the value of σ is equal to the ratio of the skin depth of the
conductor to the height of the cavity; if the cavity contains a lossy dielectric, σ is the
loss tangent of the dielectric. The cavity quality factor is related to σ by σ = Q−1. This
follows by noting that the real part of Z will have a Lorentzian dependence on frequency
(ω = kc) peaking at ω = knc with a full width at half maximum of ωσ .

The impedance Z will have a real part and an imaginary part. We expect that, if
k2σ � 4, corresponding to small losses, then the real part will be zero and the imaginary
part will have an approximately Lorentzian distribution. As losses are increased such that
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k2σ ∼ 4 (the imaginary part of the denominators in (44) is of the order of eigenvalue
spacing), the distributions of the real and imaginary part will change, reflecting that
extremely large values of |Z| are no longer likely. In the high loss limit, k2σ � 4,
many terms in the sum contribute to the value of Z. In this case, we expect that Z will
approach the radiation impedance with small (Gaussian) fluctuations.

In the appendix we evaluate the mean and variance of the real and imaginary part
of the complex impedance (44) Z = R + jX. There it is shown that the mean is the
radiation impedance ZR = RR + jXR , and the variances of the real and imaginary
parts are equal: V ar[R] = V ar[X]. In general, the distribution of R and X depends
on the correlations between eigenvalues of k2

n. However, in the low damping limit, the
correlations are unimportant and we obtain

V ar[R] = 3R2
R

2π

4

k2σ
(45)

for both the TRS and the TRSB cases. In the high damping limit k2σ � 4, correlations
are important and we obtain

V ar[R] = R2
R

π

4

k2σ
for the TRS case,

V ar[R] = R2
R

2π

4

k2σ
for the TRSB case.

(46)

This is to be contrasted with the result one would obtain if correlations in the eigenvalue
spacing were neglected; i.e., if the kn were assumed to be generated by adding inde-
pendent spacings generated from the distributions (16) and (17). In that case, using the
method in the appendix, one obtains

V ar[R] = R2
R

π

4

k2σ

(
1

2
+ 2

π

)
for the TRS case,

V ar[R] = R2
R

π

4

k2σ

(
3π

16

)
for the TRSB case.

(47)

These results are larger than those in Eq. (46) by 13.7% in the TRS case and 17.8% in
the TRSB case, thus illustrating the necessity of generating the k2

n using random matrix
theory if accurate results are desired in the lossy case k2σ > 4.

In a recent experimental paper (Warne et al., 2003), the impedance statistics of a
lossy TRS one-port microwave cavity were also considered. Their result is the same as
(44). One difference is that they generate the realizations of k2

n solely by use of Eq. (16)
with the assumption that the eigenvalue spacings are random independent variables.

We now investigate a model, normalized impedance, applicable in the one-port case
with loss, which is the generalization of Eq. (27):

ζ(σ ) = − j

π

N∑
n=1

w2
n

k̃2(1 − jσ ) − k̃2
n

. (48)
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The normalized impedance ζ will have a real part ρ > 0 and an imaginary part ξ ,
ζ = ρ + jξ . We expect that if k̃2σ � 1, corresponding to small loss, then ρ ∼= 0, and ξ

will have an approximately Lorentzian distribution.
In analogy to Eq. (26) we write for the cavity impedance

Z = jXR + RRζ, (49)

and we use (48) to generate probability distribution functions for the real and imaginary
part of ζ = ρ + jξ . We first generate N values of wn as independent Gaussian random
variables of unit width (for this purpose we use a suitable random number generator). We
next generate N values of the normalized eigenvalues k̃2

n. To do this we have utilized two
methods: (i) an approximate method based on Eq. (16) (for the TRS case) or Eq. (17)
(for the TRSB case), and (ii) a method based on random matrix theory. We pick the
value of k2 relative to the spectrum k2

n such that the median of ξ is zero.
For method (i) we independently generate N values of sn using the distribution (16)

or (17). We then obtain k̃2
n as k̃2

n = ∑n
n′=1 sn′ . The main assumption of this method is

that the spacings sn can be usefully approximated as uncorrelated. On the other hand, it
is known from random matrix theory that the spacings are correlated over long distance
(in n), and the thus the assumption of method (i) is questionable (compare (46) and
(47)). This motivates our implementation of method (ii). (See also Kogan, Mello, &
Liqun (2000).)

To implement method (ii) we generate an M×M random matrix with M large (M =
1000) drawn from the appropriate ensemble (GOE or GUE), again using a random number
generator. The width of the diagonal elements is taken to be unity. We then numerically
determine the eigenvalues. The average spacing between eigenvalues of random matrices
is not uniform. Rather, in the limit of large M , the eigenvalues λ are distributed in the
range −√

2M < λ <
√

2M , and the average spacing for eigenvalues near an eigenvalue
λ is given by

4(λ) = π/
√

2M − λ2 (50)

in both the TRS and TRSB cases. In order to generate a sequence of eigenvalues with
approximately uniform spacing we select out the middle 200 levels. We then normalize
the eigenvalues by multiplying 1/4(0) to create a sequence of k̃2

n values with average
spacing of unity.

Histogram approximations to the GOE probability distributions of Re[ζ ] and Im[ζ ]
obtained by use of (48) and method (ii) are shown in Figures 7a and 7b. These were
obtained using 30,000 random GOE matrix realizations of 1000 by 1000 matrices and
selecting the middle 200 eigenvalues of each realization. The resulting graphs are shown
for a range of damping values, k̃2σ = 0.01, 0.1, 0.5, 1, 5, and 10. As seen in Figure 7a,
when k̃2σ is increased, the distribution of ξ values becomes “squeezed.” Namely, the
Lorentzian tail disappears and the fluctuations in ξ decrease. Eventually, when σ enters
the regime, 1 � k̃2σ � N , the probability distribution function of ξ(σ ) approaches
a narrow Gaussian distribution centered at ξ = 0 (recall that ξ̄ = 0). As shown in
Figure 7b, as σ increases from zero, the distribution of the real part of ζ(σ ) which, for
σ = 0, is a delta function at zero, expands and shifts toward 1, becoming peaked around
1. In the very high damping case, both the real and the imagnary parts of ζ , ρ, and ξ will
be Gaussian distributed with the mean value equal to 1 and 0, respectively, and the same
variance inversely proportional to the loss (as shown in the appendix). As a consequence,
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the reflection coefficient |S|2 in the high damping limit is exponentially distributed. This
result is consistent with the theoretical discussion given by Kogan, Mello, and Liqun
(2000).

In general, the complex impedance distribution is not described using simple distri-
butions such as Gaussian or Lorenzian. The distribution of the real part of the impedance
has been studied in connection with the theory of mesoscopic systems and known as
the “local density of states” (LDOS). Through the supersymmetry approach, Efetov ob-
tained the probability density function for the LDOS in systems without time reversal
symmetry (Efetov & Prigodin, 1993). For chaotic systems with time reversal symmetry,
the corresponding exact formula was derived in a form of multiple integral (Taniguchi &
Prigodin, 1996). However, the difficulty in carrying out the fivefold integral makes it hard
to interpret the formulus in Taniguchi and Prigodin (1996). Very recently, Fyodorov and
Savin (2004) have proposed an interpolation formulas for the impedance distributions at
arbitary values of damping parameter. The suggested formulas satisfy all the asymptotic
behaviors in the physically interesting limiting cases, e.g., weak damping or very string
damping cases. Furthermore, these formulas seem to agree pretty well with the results of
the numerical simulations, though the agreement in the intermediate damping case is not
as good as in the limiting cases. In our paper, we still use the histograms generated from
the Monte-Carlo simulations as a comparison to the HFSS data; however, we believe
the formula presented by Fyodorov and Savin would be very helpful for most practical
purposes of comparison.

We noted that the variance of the real and imaginary parts of the complex impedance
are equal. There is a more fundamental connection between these that is revealed by
considering the reflection coefficient in the perfectly matched case,

αejφ = (ζ − 1)/(ζ + 1), (51)

where α and φ are random variables giving the magnitude and phase of the reflection
coefficient. It can be argued (Kogan, Mello, & Liqun, 2000) that φ and α are independent
and that φ is uniformly distributed in [0, 2π ]. The magnitude α is distributed on the
interval [0, 1] with a density that depends on losses. A plot of the probability distribution
for α taken from the data in Figures 7a and 7b is shown in Figure 8 for the damping
values 0.1, 0.5, 1, and 5.

We can express the actual complex reflection coefficient ρ in terms of the normalized
reflection coefficient by first finding the normalized impedance from (51), ζ = (1 +
αejφ)/(1 − αejφ), calculating the cavity impedance from (49), and expressing the result
in terms of the radiation reflection coefficient (37). The result is

ρ = ρR + αej(φ+4φ)

1 + αej(φ+4φ)ρ∗
R

, (52)

where tan(4φ/2) = −XR/(RR + Z0) depends on system-specific parameters. Since the
angle φ is uniformly distributed, it can be shifted by 4φ, thus eliminating 4φ from the
expression. Equation (52) is then a restatement of the Poisson kernel in the single port
case.

The independence of α and φ in Eq. (51) also guarantees the invariance of the
distribution of cavity impedances when a lossless two-port is added as discussed pre-
viously. In particular, the normalized cavity impedance ζ before the addition of the
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Figure 7. (a) Histogram of the imaginary part of ζ(σ ) with different values of the damping ob-
tained with method (ii); (b) histogram of the real part of ζ(σ ) with different dampings obtained
with method (ii)

two-port is given by

ζ = Z − jXR

RR

= 1 + αejφ

1 − αejφ
. (53)

With the addition of the lossless two-port as shown in Figure 5, impedances are trans-
formed to Z′, X′

R , and R′
R such that

ζ = Z′ − jX′
R

R′
R

= 1 + αej(φ−φc)

1 − αej(φ−φc)
, (54)
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Figure 7. (c) and (d) are histograms of the reactance and resistance from HFSS calculation with
a lossy top and bottom plate, compared with histograms from Eq. (48) computed as in (a) and (b)
(dashed line) and by method (i) (solid line).

where φc = (2β + π) depends only on the properties of the two port and the cavity
coupling port, and the angle β satisfies

cosβ = RR√
R2
R + (X11 + XR)2

, sin β = (X11 + XR)√
R2
R + (X11 + XR)2

. (55)

Since φ is uniformly distributed, so is the difference φ − φc. Consequently, the normalized
random variables ζ and ζ ′ have identical statistical properties.
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Figure 8. Histogram of the magnitude of reflection coefficient in the Eq. (51), α(σ), with different
values of the damping.

A by-product of (53) is that we can easily prove that its real part ρ = (1 −α2)/(1 +
α2 − 2α cosφ) and its imaginary part ξ = (2α sin φ)/(1 + α2 − 2α cosφ) have the same
variance and zero correlation. Since α and φ are independent, we can carry out the
integration over the uniformly distributed φ and obtain

V ar[ρ] = V ar[ξ ] =
〈

1 + α2

1 − α2

〉
α

− 1, Cov[ρ, ξ ] = 0, (56)

where 〈..〉α denotes the average over α. This property has been tested in microwave cavity
experiments with excellent agreement (Hemmady et al., 2004). For the high damping case,
ρ − 1 and ξ will become two independent Gaussian variables with zero mean and small
but same variances. This yields an exponential distribution for the α2, which is consistent
with the result obtained by Kogan, Mello, and Liqun (2000) based on the “maximum
information entropy” principle. For the weakly absorpting case, Beenakker and Brouwer
(2001) studied the distribution of α2 in the TRSB case through the time-delay matrix
and obtained a generalized Laguerre ensemble. However, for a TRS system with arbitary
loss, there is no simple formula for the distribution of reflection coefficients.

Using HFSS, we simulate the lossy case by specifying the material on the top and
bottom plates to be an imperfect conductor with a bulk resitivity of 70 m9·cm. In this case
we can calculate a value of σ = δ/h = 0.002, where δ is the skin depth and h the cavity
height. The corresponding parameter k̃2σ is 0.5 at 7.75 GHz. Histogram results for the
normalized reactance (ξ ) and resistance (ρ) fluctuations of ζhf ss = R−1

R (Zcav − jXR) =
ρ + jξ are plotted in Figures 7c and 7d together with the histograms generated from
Eq. (48) and using spectra from the random matrices. As can be seen, the histograms
from the HFSS simulations match those of the model.

Summary

We have applied the concepts of wave chaos to the problem of characterizing the statistics
of the impedance and scattering coefficient for irregular electromagnetic cavities with one
port in the small wavelength regime. The coupling of energy in and out of the port in
such cavities depends on both the geometry of the port and the geometry of the cavity.
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We found that these effects can approximately be separated. The geometry of the port
is characterized by its radiation impedance which has both a real and an imaginary part.
This impedance describes the port in the case in which the distant walls of the cavity
are treated as perfect absorbers (or else are removed to infinity). The effects of the
geometry of the cavity can be treated in a statistical way using Random Marix Theory.
The separation of the system-specific aspects of the coupling and the universal aspects has
previously been described using the Poisson kernel (Mello, Peveyra, & Seligman, 1985).
The relation of our approach to the Poisson kernel may be understood by comparing
the equivalent relations (49) and (52). To extract a universal quantity (ζ ) from a set of
impedance values (Z) one must subtract the radiation reactance and normalize to the
radiation resistance. To extract a universal quantity (αejφ) from a set of reflection values
(ρ) we must solve the bilinear relation (52) for the magnitude α and phase φ of the
normalized reflection coefficient. The normalized impedance and scattering amplitude
are related by αejφ = (ζ −1)/(ζ +1). If the radiation reflection coefficient ρR is known,
then (52) may be solved directly for normalized reflection coefficient,

αejφ = e−j4φ ρ − ρR

1 − ρρ∗
R

. (57)

The radiation reflection coefficient can be determined directly by measurement (Hem-
mady et al., 2004) or by ensemble averaging. According to Mello, Peveyra, and Seligman
(1985) the average of ρ is equal to ρR . This can be verified directly from (52) by aver-
aging over the uniformly distributed phase φ. Regardless of the value of α, one finds∫

dφ

2π
ρ = ρR. (58)

Thus if enough appropriate, statistically independent realizations are available to compute
the average of ρ, (58) can be used to find the universal reflection amplitude.

Consistent with previous results (Mello, Peveyra, & Seligman, 1985) our model
predicts that in the lossless case the impedance is Lorentzian distributed with a mean equal
to the radiation reactance and a width equal to the radiation resistance. The Lorentzian
prediction is tested by direct numerical solution of Maxwell’s equation for the cavity
of Figure 1. The predictions are verified if an additional averaging over frequency is
introduced. Effects of distributed loss and variation of coupling are also investigated and
we have generated PDFs for the real and imaginary parts of the normalized impedance. In
addition, we have calculated the mean and variance for these distributions and determined
the effect of correlations in the eigenfrequencies on the variances. The values of the
variance depend on the degree of loss in the cavity and can be used to quantify it.
Finally, we have compared the predicted distributions of the normalized impedance with
those obtained from a direct numerical simulation.

Appendix: Variance of Cavity Reactance and Resistance in the Lossy Case

From Eq. (44), we obtain the expression for the complex impedance in the single port
case,

Z(σ) = 1

π

N∑
1

[
4(k2

n)RR(k
2
n)w

2
n[k2

d + j (k2
n − k2)]

(k2 − k2
n)

2 + (k2
d)

2

]

= R(σ) + jX(σ),

(A.1)
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where 4 is the mean spacing 〈k2
n − k2

n−1〉, X(σ) and R(σ) are cavity reactance and
resistance in the lossy case, and k2

d = k2σ . In this appendix, we are going to evaluate
the mean and variance of X(σ) and R(σ) as well as their covariance.

We first investigate the mean of R(σ). We express the mean in terms of probability
distribution function for the eigenvalues k2

n:

E[R(σ)] = 1

π

∫
· · ·
∫

dk2
1 . . . dk

2
NPJ (k

2
1, . . . , k

2
N)

N∑
n′=1

RR4〈w2
n′ 〉k2

d

(k2 − k2
n′)2 + k4

d

, (A.2)

where PJ is the joint distribution of eigenlevels (k2
1, . . . , k

2
N ) assuming they are unordered.

Since the levels are not ordered, in each term of the sum, we can integrate over all k2
n �= k2

n′
and obtain N identical terms. Thus,

E[R(σ)] = N

π

∫
dk2

n′P1(k
2
n′)RR4〈w2〉 k2

d

(k2 − k2
n′)2 + k4

d

, (A.3)

where P1(k
2
n′) is the distribution for a single level. Here we have introduced an integer

N representing the total number of levels. We will take the limit of N → ∞. The
single-level probability distribution then satisfies by definition

P1(k
2
n′) = 1

N4(k2
n′)

. (A.4)

We next assume that the radiation resistance RR(k
2
n′) is relatively constant over the

interval of k2
n′ values satisfying |k2 − k2

n′ | < k2
d and we will move it outside the integral,

replacing it by RR(k
2). Assuming that k2

d is not too large (k2
d � k2), we can take the

end points at the integral to plus and minus infinity and evaluate Eq. (A.3) as

E[R] = RR

π

∫ ∞

−∞
dx

1

x2 + 1
= RR(k

2), (A.5)

where x = (k2
n′ − k2)/k2

d . Thus the expected value of the real part of cavity impedance
is the radiation resistance independent of the amount of damping. This is somewhat
surprising since we have previously asserted that in the lossless case, the cavity resistance
is zero. The constancy of the expected resistance results from the resonant nature of the
cavity impedance. When losses are small, k2σ = k2

d � 1, for almost all frequencies
the resistance is small. However, for the small set of frequencies near a resonance, the
resistance is large. This is evident in the histograms of Figure 7b. The result is that a
small chance of a large resistance and a large chance of a small resistance combine to
give an expected value resistance which is constant.

In order to obtain the variance of R(σ), we calculate the second moment of R(σ),

E[R(σ)2] =
(

1

π

)2 ∫
· · ·
∫

dk2
1 . . . dk

2
NPJ (k

2
1, . . . , k

2
N)

N∑
n′,m′=1

· 42RR(k
2
n′)RR(k

2
m′)〈w2

m′w2
n′ 〉k4

d

((k2 − k2
m′)2 + k4

d)((k
2 − k2

n′)2 + k4
d)

≡ I1 + I2.

(A.6)
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Following the arguments advanced to calculate E[R(σ)], we note that there will be N

terms in the double sum for which k2
n′ = k2

m′ , giving

I1 = N

π2

∫
dk2

n′P1(k
2
n′)

42R2(k2
n′)〈w4

n′ 〉k4
d

[(k2 − k2
n′)2 + k4

d ]2
, (A.7)

and N(N − 1) terms for which k2
m′ �= k2

n′ , giving

I2 = N(N − 1)
∫∫

dk2
n′dk2

m′
P2(k

2
n′ , k2

m′)4(k2
n′)4(k2

m′RR(k
2
n′)RR(k

2
m′)〈w2

n′ 〉〈w2
m′ 〉k4

d

[(k2 − k2
n′)2 + k4

d ][(k2 − k2
m′)2 + k4

d ]
.

(A.8)

For the first integral we use (A.4) for the single-level distribution function, and making
the same approximation as before, we obtain

I1 = R2
R(k

2)
〈w4〉4(k2)

2πk2
d

. (A.9)

For the second integral we need to introduce the two-level distribution function. For the
spectra that we consider, the two-level distribution has the form

P2(k
2
n′ , k2

m′) =
(

1

N4

)2

[1 − g(|k2
n′ − k2

m′ |)]. (A.10)

Here the function g describes the correlations between two energy levels. For uncorrelated
levels giving a Poisson distribution of spacings we have g = 0. In the presence of level
repulsion we expect g(0) = 1 with (1 − g) ∝ |k2

n′ − k2
m′ |β for small spacing, and β = 1

for TRS and β = 2 for TRSB systems. As |k2
n′ − k2

m′ | → ∞, g → 0 indicates loss of
correlation for two widely separated levels. The function g will be different for spectra
produced by random matrices and spectra generated from sequences of independent
spacings. Expressions of g for the spectra of random matrices can be found in the book
by Mehta (1991; see Chaps. 5 & 6). We will derive the expression for g for spectra
generated by sequences of independent spacings later in this appendix.

Based on expression (A.10) and the usual assumptions on the slow variations of RR

and 4 with eigenvalue k2
n′ we obtain

I2 = (E[R])2 − Ig, (A.11)

where the first term comes from the 1 in A.10 and the second term comes from the
correlation function g:

Ig = RR(k
2)〈w2〉2

π

∫ ∞

−∞
dk̃2

k2
d

2

4 + (k̃2/k2
d)

2
g(|k̃2|). (A.12)

The variance of R is thus given by

V ar[R] = E[R]2 − E[R2]

= R2
R

π

4

k2
d

[
〈w4〉

2
− 〈w2〉2

∫ ∞

−∞
dk̃2

4

2g(|k̃2|)
4 + (k̃2/k2

d)
2

]
.

(A.13)
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Note that since w is a Gaussian random variable with zero mean and unit variance,
〈w2〉 = 1 and 〈w4〉 = 3.

Equation (A.13) shows that the variances of R depend on k2
d/4, the ratio of the

damping width to the mean spacing of eigenvalues. In the low damping case, k2
d/4 � 1,

the integrand in (A.13) is dominated by the values of |k̃2| < 4 and we replace g by its
value g(0). Doing the integral we find

V ar[R] = R2
R

[
4

k2
d

〈w4〉
2π

− g(0)〈w2〉2

]
. (A.14)

Since the damping is small, the first term dominates and the variance is independent of
the eigenvalue correlation function. This is consistent with our previous findings that the
eigenvalue statistics did not affect the distribution of reactance values.

In the high damping limit, k2
d > 4, the integral in (A.13) is dominated by k̃2 values

of order 4, and we have

V ar[R] = R2
R

π

4

k2
d

[
3

2
−
∫ ∞

0

dk̃2

4
g(|k̃2|)

]
. (A.15)

The variance decreases as damping increases with a coefficient that depends on the cor-
relation function. Physically the correlations are important because in the high damping
case a relatively large number of terms in the sum (A.1) contribute to the impedance and
the sum is sensitive to correlations in these terms.

The integral of the correlation function can be evaluated for different spectra. For
spectra generated from random matrices, we have (Mehta, 1991)

g(s) = f (s)2 − ∂f

∂s

[(∫ s

0
ds′f (s′)

)
− 1

2
sgn(s)

]
(A.16)

for TRS matrices and

g(s) = f (s)2 (A.17)

for TRSB matrices, where f (s) = sin(πs)/(πs). In both cases, we find

∫ ∞

0
dsg(s) = 1

2
. (A.18)

However, to consider the TRSB case we need to repeat the calculation including complex
values of the Gaussian variable w. The result is

V ar[R(σ)] = R2
R

π

4

k2
d

[
1 −

∫ ∞

0

dk̃2

4
g(|k̃2|)

]
. (A.19)

For spectra generated by sequences of independent spacing distributions we will show

∫ ∞

0

dk̃2

4
g(|k̃2|) = 1 − 1

2
〈s2〉, (A.20)
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where 〈s2〉 is the expected value for the normalized nearest neighbor spacing squared.
Using (16) and (17), this gives

∫ ∞

0

dk̃2

4
g(|k̃2|) =




1 − 2

π
for TRS,

1 − 3π

16
for TRSB.

(A.21)

Note also that (A.20) gives the required value of zero for Poisson spacing distributions,
where 〈s2〉 = 2.

We can evaluate the expected value of the reactance and its variance, as well as
the covariance of reactance and resistance, using the same approach. We find that the
expected value of reactance is given by the radiation reactance,

E[X] = XR(k
2). (A.22)

The variance of the reactance is equal to that of the resistance (A.13); the covariance
between them is zero.

We now derive the g-integral (A.20) for spectra generated from independent spacings.
We introduce a conditional distribution Pm(s) that is the probability density that the mth

eigenvalue is in the range [s, s + ds] given that eigenvalue m = 0, is at zero. For
convenience, here s is the normalized spacing with unit mean. When m = 1, P1(s) is
the spacing distribution p(s). Thus, 1 − g(s) stands for the probability that there exists
an eigenlevel at [s, s + ds] given one level located at 0. This equality can be expressed
as the summation of Pm(s),

1 − g(s) =
∞∑
m=1

Pm(s). (A.23)

Pm(s) can be evaluated assuming the spacings are independent,

1 − g(s) =
∞∑
m=1

[∫ m∏
i=1

dsiP1(si)δ

(
s −

m∑
i=1

si

)]
. (A.24)

We Laplace transforme both sides of Eq. (A.24), and obtain

1

τ
−
∫ ∞

0
dse−τsg(s) =

∞∑
m=1

[P̄1(τ )]m = P̄1(τ )

1 − P̄1(τ )
. (A.25)

To evaluate
∫∞

0 dsg(s), we take the limit of τ → 0. The transform P̄1(τ ) can be expressed
in terms of the moments of P1(s),

P̄1(τ ) =
∫ ∞

0
e−sτP1(s)ds

∼
∫ ∞

0

(
1 − sτ + s2τ 2

2

)
P1(s)ds

= 1 − τ 〈s〉 + τ 2

2
〈s2〉.

(A.26)
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Thus, we can evaluate the integration of g(s) to be∫ ∞

0
dsg(s) = lim

τ→0

∫ ∞

0
dse−τsg(s)

= lim
τ→0

[
1

τ
− P̄1(τ )

1 − P̄1(τ )

]

= 1 − 1

2
〈s2〉,

(A.27)

which is Eq. (A.20).
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