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Concepts from the field of wave chaos have been shown to successfully pre-

dict the statistical properties of linear electromagnetic fields in electrically large

enclosures. The Random Coupling Model (RCM) describes these properties by in-

corporating both universal features described by Random Matrix Theory and the

system-specific features of particular system realizations. This Ph.D. thesis stud-

ies various approaches to extend the RCM to the nonlinear domain. Nonlinearity
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dependent responses of complex electromagnetic structures. The sources of non-

linearity that have been studied include circuit elements such as diodes, nonlinear

dielectrics, and superconducting materials. Nonlinear systems in different scenarios

are studied and the RCM is applied and extended to explain the statistical results.

This is an important step in the ongoing effort to create the science of nonlinear

wave chaos.
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Chapter 1: Introduction to Wave Chaos

1.1 From Classical Chaos to Wave Chaos

In classical chaos, a system is defined to be chaotic when its motion is settled

neither into steady nor periodic nor quasi-periodic motion. For example, the exper-

iment of Shaw (1984) where time intervals between water drops from a faucet are

recorded (see Fig .1.1(a)). When the water inflow rate of the faucet is sufficiently

small, the time intervals between successive drops ∆tn = tn+1− tn are all equal. As

the inflow rate is increased, ∆tn will be periodic. And as the inflow rate is further

increased, the period of ∆tn will be increase. At sufficiently large inflow rate, ∆tn

losses regularity and it is argued to be chaotic. Another example of chaotic dynam-

ics occurs for the forced damped pendulum in a gravitational field (see Fig. 1.1(b)).

The motion of the angle θ is described by the equation:

d2θ

dt2
+ v

dθ

dt
+ sinθ = Tsin(2πft) (1.1)

where v represents the friction coefficient at the pivot, T and f represents the

magnitude and frequency of the applied torque. It has been shown that for some

choices of those system parameters v, T and f , chaotic behavior can be displayed

in this system.
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Figure 1.1: (a) Sketch of the water drops from a faucet. (b) Sketch of the forced,
damped, pendulum. [1]

In general, we can not use standard analytical functions to describe the chaotic

orbits. They appear to be very complex, irregular and difficult to predict. Chaotic

systems are very sensitive to the initial conditions and details of the system, as

well as noise. A typical feature of chaotic orbits is that a slight difference in the

initial distance ∆0 will grow exponentially with time ∆t ∼ ∆0exp(ht) [1], where

h > 0 is called the Lyapunov exponent. To illustrate this concept, we can consider

a particle moving in a 2D billiard having elastic scattering with the walls, with a

slight difference in initial conditions. If the billiard has a regular shape as shown

in Fig. 1.2(a), then after a certain amount of time, the ray trajectories will diverge

slowly, maybe linearly or polynomially with time. While if the billiard has a chaotic

shape such as a 1/4 bowtie billiard shown in Fig. 1.2(b), then the difference between

the ray trajectories will exponentially grow with time.

2



Figure 1.2: (a) Regular ray trajectories in a rectangular billiard. (b) Chaotic ray
trajectories in a bowtie billiard.

In Hamiltonian mechanics, a particle with position ~r and momentum ~p is

subject to Hamilton’s equations of motion with the Hamiltonian:

H =
~p · ~p
2m

+ V (~r) (1.2)

where m is the mass of the particle and V represents the potential. The motion is

constrained by the boundary conditions, which can be regular (Fig. 1.2(a)), chaotic

(Fig. 1.2(b)) or a mix of these two.

For electromagnetic waves ~E = E0e
−i(~k·~r−ωt), they are subject to the wave

equation:

1

c2

∂2

∂t2
~E = 52 ~E, (1.3)

(
ω2

c2
+ k2) ~E = 0, (1.4)

the equation is also constrained by the boundary conditions. In the case when the

wavelength is much smaller than the characteristic length of the billiard, the wave

properties will be very sensitive to the details of the system. A small change in the
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system may result in a very different solution to the wave equation. Furthermore, it

is computationally expensive to solve this wave equation in this situation. Instead,

in the field of “wave chaos”, the small wavelength limit is called the “ray limit” or

“semi-classical limit”. The waves in the billiards can be approximated as the ray

trajectories of a classical object. Thus when we refer to a wave chaotic system, we

mean a wave scattering system with a chaotic-shaped boundary.

1.2 Statistical Approaches

The scattering of short-wavelength waves in domains in which the correspond-

ing rays are chaotic (known as wave chaos) has inspired research activities in many

diverse contexts including quantum dots [7,8], atomic nuclei [9], optical cavities [10],

microwave cavities [11–13], acoustic resonators [14,15], and others. In this case the

response is extremely sensitive to the domain’s configuration, the driving frequency,

and ambient conditions such as temperature and pressure [16]. Numerical solution

of the detailed response of a particular system is computationally intensive and does

not necessarily provide much insight to other systems which are slightly different.

This leads to the adoption of a statistical description.

It is hypothesized that the wave properties of classically chaotic billiard sys-

tems show universal statistical properties described by Random Matrix Theory

(RMT) [17–19]. The statistics depend only on general symmetries, including the

presence or absence of time-reversal invariance and spin-1/2 degree of freedom,

and on the degree of loss. In the field of “wave chaos”, Random Matrix The-
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ory (RMT) has been shown to successfully describe many statistical properties of

bounded wave-chaotic systems (e.g., enclosures such as electromagnetic cavities),

including their eigenvalue spectra, eigenfunctions, scattering matrices, delay times,

etc. [19–26]. Wave systems also have system-specific features that modify the un-

derlying universal fluctuations. The Random Coupling Model (RCM) accounts for

those non-universal features such as the details of ports coupling waves into and

out of the domain of the cavity, short orbits that exist between the ports, and

specific persistent features of the enclosure in an ensemble of similar but different

realizations of a system [27–29]. Experimentally, the system-specific features are

captured by the impedance (reaction matrix) [30] averaged over an ensemble of re-

alizations. By applying this technique to remove non-universal properties, RMT

statistical properties have been uncovered in experimental data on ray chaotic 1D

quantum graphs [31], 2D electromagnetic cavities (known as billiards) [32] and 3D

cavities (e.g. reverberation chambers) [33].

The 1/4 bowtie 2D billiard shown in Fig. 1.2(b) is typical ray chaotic system

that we have used for a long time to study the properties of chaotic systems. [20,

26,34–36]. RCM has been verified in this system through a series of works examing

the statistical properties of scattering systems [28, 29, 32, 37]. RCM is shown to

have applications in studying statistics of induced voltages or electromagnetic fields

inside complicated enclosures and subjected to high frequency radiation [33,38], or

the problems of EMI/EMC in reverberation chambers [39]. The RCM approach can

also be applied in the wireless communication field [40], to study time dependent

variation in transmitted signal strength through a complex environment [41–43]. In
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other areas such as studying coupling between enclosures [44], propeties of accoustic

systems [45], etc, we can also find useful applications of RCM.

Based on the success of the RCM, it is of interest to explore directions extend-

ing its generality. Along this line, theories have been developed for “mixed” systems

which include both regular and chaotic ray dynamics [46], for networks of coupled

cavities in which waves propagate from one sub-system to another [44, 47], and for

modifications of scattering statistics due to losses localized in the ports, rather than

in the scattering system [48–50]. While such previous extensions have focused on

linear systems, it is of great interest to see how nonlinearity would modify the RCM.

Nonlinearity in wave-chaotic systems has been studied in several aspects. For

example, rogue waves can appear in linear wave chaotic scattering systems [51,52].

However, such waves can also appear in a variety of physical contexts and are en-

hanced by nonlinear mechanisms [53, 54]. In acoustics, Time-Reversed Nonlinear

Elastic Wave Spectroscopy (TR/NEWS) is based on the nonlinear time reversal

properties of a wave chaotic system [55]. TR/NEWS is proposed as a tool to de-

tect micro-scale damage features (e.g., delaminations, micro-cracks or weak adhesive

bonds) via their nonlinear acoustic signatures [56, 57]. Applying this idea to elec-

tromagnetic waves [58], the nonlinear electromagnetic time-reversal mirror shows

promise for novel applications such as exclusive communication and wireless power

transfer [59–62]. Theoretical study of stationary scattering from quantum graphs

has been generalized to the nonlinear domain, where the nonlinearity creates multi-

stability and hysteresis [63]. A wave-chaotic microwave cavity with a nonlinear

circuit feedback loop demonstrated sub-wavelength position sensing for a perturber
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inside the cavity [64]. Nonlinearity is a key ingredient in various machine learning

protocols, including neural networks [65, 66] and reservoir computing [67, 68]. Uti-

lizing wave chaotic layers, along with nonlinearity, offers an attractive way to enable

physical realizations of deep learning machines [69–71].

Linear wave chaotic systems have certain universal properties, while nonlin-

ear systems lose the property of linear superposition. This Ph.D. research studies

whether or not there are universal statistical properties in nonlinear wave chaotic

systems. Applying the RCM analysis to various nonlinear wave chaotic systems, we

ask the question: if and how can the RCM be modified for such systems? Note that

our approach is to empirically investigate various nonlinear wave chaotic systems

to establish benchmark experimental results and to challenge the theory to explain

those results.

1.3 The Random Coupling Model in Linear Systems

In the case of a linear ray-chaotic cavity with N ports, the Random Coupling

Model characterizes the fluctuations in the impedance Z and scattering S matrices.

The scattering and impedance matrices are related by a simple bilinear transforma-

tion [37]:

S = Z
1/2

0 (Z + Z0)−1(Z − Z0)Z
−1/2

0 (1.5)

where Z0 is a real diagonal matrix whose elements are the characteristic impedances

of the waveguide (or transmission line) input channels at the driving ports. The

statistical properties of the cavity impedance Zcav are described by a universally
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fluctuating impedance ξ that is ‘dressed’ by system-specific properties captured by

the ensemble average impedance Zavg as:

Zcav = i · Im(Zavg) + [Re(Zavg)]
1
2 · ξ · [Re(Zavg)]

1
2 (1.6)

where Zavg is an average of impedance over an ensemble of cavity realizations and

(or) frequencies. Zavg contains the system specific features including the radiation

impedance of the ports and short orbits that survive the ensemble averages [27–29].

The “radiation impedance” represents the impedance measured at the ports of the

scattering enclosure in the case that the waves are allowed to enter the enclosure

through the port but not return, as if they were absorbed in the enclosure or radiated

to infinity. Experimentally, it can be measured with the empty bowtie billiard whose

boundary is covered with perfect microwave absorbers. A “short orbit” is a ray

trajectory that leaves a port and soon returns to it, or another port, instead of

ergodically sampling the system. It is the result of the port-port interaction that

introduces deterministic field components which can remain fixed throughout the

ensemble [29]. Zavg can also be estimated if the radiation impedance of the ports

and the cavity shape are known [27].

By inverting Eq. (1.6) and subtracting the non-universal features from Zcav

in each realization, one can uncover a statistically fluctuating quantity that should

correspond to ξ. It has been hypothesized that all sufficiently complex wave chaotic

systems have universal impedance fluctuations described by Random Matrix Theory

(RMT) [17–19]. According to the theory, for a two port system [72,73],

ξrmt,a,b =
−i
π

M∑
m=1

WamWbm

λrmtm − iα
(1.7)
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The element ξrmt,a,b is the impedance between port a and port b, and the sum

is over the M eigenmodes of the closed wave scattering enclosure, Wam (or Wbm)

represents the coupling between the port a (or the port b) and the mth eigenmode.

Based on the assumption of the random plane wave hypothesis (the Berry hypoth-

esis), for a wave-chaotic cavity enclosure filled with reciprocal media (i.e. that

has time-reversal invariance), Wam and Wbm are independent Gaussian random real

variables of zero mean and unit variance. [72]. λrmtm is the mth eigenvalue of a large

random matrix. The statistics of these eigenvalues are based on RMT, and they are

found from a large random matrix selected from the GOE (Gaussian Orthogonal

Ensemble) for the time-reversal-invariant case. The details of generating λrmtm are

discussed in Appendix A of Ref. [38].

The loss parameter α is the only parameter determining the statistics of the

universal fluctuations. In the case of a two-dimensional billiard the loss parameter

is given by α = k2A/(4πQ) and can be interpreted as the ratio of the typical 3-dB

bandwidth of the resonant modes to the mean spacing in frequency between the

modes. k = 2πf/c is the wave number of frequency f , A represents the area of

the billiard, and Q is the typical loaded quality factor of the enclosure under the

assumption that losses are uniform. The loss mainly comes from the propagation

losses in the upper and lower plates. Fig. A.6 shows the distribution of ξrmt of a

one-port system for different α.

The algorithm for generating ξrmt can be developed based on Eq. (1.7). By

varying α, the universal statistics of ξ for systems with varying losses can be numer-

ically generated, and examples of these distributions are given in Ref. [38]. Starting
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with a statistical ensemble data set and going the other way around, one can fit

the experimentally extracted ξ to ξrmt(α), and the best matching distributions will

give an estimate of the loss parameter of the experimental system. Note that when

examining data, for a two port system, ξ can produce 8 histograms, i.e. real and

imaginary part for each element ξa,b. However due to the reciprocity of the sys-

tem, ξ12 = ξ21, and ξ11 has the same statistics as ξ22 according to Eq. (1.7). As a

result there are 4 unique histograms that are simultaneously fit using a single loss

parameter α. Experimental tests in various wave chaotic systems have systemat-

ically explored the effects of different loss parameters on the statistical properties

of impedance, ranging from cryogenic superconducting cavities (α ∼ 0.01) [3,74] to

three-dimensional complex enclosures (α > 10) [33].

To apply the RCM experimentally, one generally first generates an ensemble

of realizations of the chaotic system, getting an ensemble of Zcav. Then ξexp can be

extracted. By fitting the statistics of ξexp to RMT generated ξrmt, the loss parameter

α of the system can be estimated. An example together with other RCM analysis

is given in Appendix A.

1.4 Extending to Nonlinear Systems and Outline of the Thesis

There are several approaches to create nonlinear wave chaotic systems and

apply the RCM. For the nonlinear objects that can be introduced into the system

in the microwave regime, one could utilize circuit elements like diodes or BJTs,

or nonlinear dielectric or magnetic materials, or materials in the superconducting
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state. While nonlinear effects from passive elements in the microwave frequencies are

generally weak to observe, we have tried various approaches to enlarge the nonlinear

effects. Nonlinear properties include harmonic generation, amplitude dependent

responses, etc. Our approach is to empirically find interesting nonlinear effects and

then go back to see if we could extend the RCM to explain the results. This thesis

will present the efforts we have explored to create different nonlinear responses and

use RCM approach the explain them.

The generated harmonics are a natural result of the nonlinear responses. To

have measurable harmonic signals, an active 2nd harmonic generation circuit is at-

tached to the 1/4 bowtie billiard. The Vector Network Analyzer (VNA) in the

Frequency Offset Mode (FOM) is able to measure the absolute amplitude of the 2nd

harmonic signals. By moving the perturbers around, an ensemble of realizations of

this nonlinear system is generated, and the statistics of the 2nd harmonic signals

can be gathered. By carefully characterizing the nonlinear circuit, we are able the

create a model of the resulting 2nd harmonic statistics based on the Random Cou-

pling Model. The predicted statistics of the second harmonic fields agree quite well

with the experimental results [2]. Chapter 2 will present the details of the study on

harmonic statistics.

Another direction is to introduce nonlinearity and see the nonlinear effects on

the linear response properties such as the S-parameters. Considering our experiment

is mainly conducted in 2D microwave billiards, we have tried to use diodes and

superconducting billiards, both of which are passive nonlinear sources. To observe

a strong nonlinear signal requires high amplitude signals to drive them into the
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nonlinear domain. We therefore upgraded our VNA with a high power option. With

the appropriate external components, it is able to measure the 2-port calibrated S-

parameters with powers up to ∼37 dBm.

Chapter 3 presents the results of introducing diodes into the 1/4 bowtie bil-

liard. The initial proposal is to create a nonlinear environment where the diodes

are randomly distributed in the billiard. Since the signal decays substantially as it

propagates away from the excitation port, nonlinear responses were hardly observed

even with more than 30 diodes in the billiard. Thus, in the experiment a diode is

directly attached at the port to create a nonlinear port. This dramatically changes

the radiation impedance as well as the statistics of the raw normalized impedance.

The short orbits behavior also deviates from the RCM-based prediction. It turns

out that the port behaves like a nonlinear and lossy port. The recently developed

radiation efficiency model is adopted to describe the port. We also found that a

simulation in CST reproduces the key features observed in experiment [75]. For the

configuration where the diode is far away from the port in the billiard, some results

of CST simulations indicate a trend of changes in the impedance statistics.

The study of superconducting microwave billiards are presented in Chapter 4.

Superconducting materials show a nonlinear surface impedance Z = R + iX below

Tc. We start with a Pb coated copper microwave billiard that we have studied

before. It has been measured in the superconducting state at temperature T ∼6 K.

Applying RCM to the data, the fit α was found on the order of 0.01 [3]. Using the

VNA that is capable of measuring in a range of different powers, it is possible to

observe the nonlinear responses of this superconducting billiard. However, as shown
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in Chapter 4, the Pb billiard mainly shows nonlinear resistance R, i.e. the resonance

peak decreases with increased input powers. As a result, the cavity quality factor

Q changes with the input power. However since there is only a small change in Q,

in the case where α is so small, it is predicted that the change in statistics will be

hardly visible. In the experiment we find the changes in statistics are mainly due to

the varying noise levels during the measurements.

Complimentary to the Pb billiard, we propose a superconducting billiard that

will mainly show nonlinear reactance X [76]. It is expected that the resonance will

shift in frequency as the input power changes. Titanium Nitride (TiN) is reported to

have a high kinetic inductance and to be nonlinear in a reactive manner. We design

an experiment for the TiN on Silicon wafer cut-circle billiard. Two perturbation

methods are planned. The up-to-date progress for this experiment are also presented

in Chapter 4.

Apart from the work on nonlinear wave chaos, other work during my PhD

study is also documented in this dissertation. Chapter 5 documents the use of

the Corbino reflection technique to measure thin film or bulk material microwave

properties at room temperature. The Corbino technique is a one port measurement

of a sample with a circular contact configuration. It was originally developed to

characterize superconducting thin film properties [77,78]. We collaborate with Prof.

Liangbing Hu from the Department of Materials Science and Engineering. We want

to determine the microwave absorptance, transmittance and reflectance of a range of

different materials, from metal-like to dielectric-like. We find that this method is not

applicable for dielectric-like materials. The results and future work are addressed.

13



The conclusion for this dissertation and future work are given in Chapter 6.

The appendixes include some notes/manuals developed during my research. Various

approaches for RCM analysis of experimental data are summarized in appendix A.

Appendix B is a summary of results of nonlinear simulation. Appendix C is a manual

for implementing the high power VNA to measure the calibrated S-parameters.
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Chapter 2: Statistics of Second Harmonic Fields

Harmonic generation is a natural result of nonlinearity. As our first approach

to study nonlinear wave chaotic systems, we tried to add a pure harmonic generator

to the bowtie billiard. We analyzed the statistics of the fields in the system. This

chapter presents our study of the statistics of the 2nd harmonic fields.

2.1 Experimental Setup

In this experiment, an active nonlinear circuit is added to a ray-chaotic mi-

crowave billiard. The billiard, shown schematically in Fig. 2.1, has an area of

A = 0.115 m2, with corresponding characteristic length of A1/2 = 0.34 m. For the

microwave wavelengths used here (3 − 9 cm), the billiard is assumed to be large

compared to the wavelength (electrically large enclosure) and is considered to be

in the semiclassical or short-wavelength limit. The cavity has a height of d = 7.9

mm. Thus, below a frequency fmax = c/(2d) = 18.9 GHz, it is a quasi-2D billiard in

which the electric field is polarized in the short direction, and the magnetic field is in

the 2D plane of the cavity. For frequencies 2f > 7 GHz, the mode number is above

∼ 200 and it can be considered that the cavity is in the highly over-moded regime

(where there are many cavity modes at and below the frequency of interest) [12].
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The cavity has internal loss, giving rise to a finite quality factor (Q) for the resonant

modes of the closed system. We shall assume that a single Q describes the losses in

a given range of frequency [79]. The nonlinear circuit accepts input at a particular

frequency and generates and amplifies second harmonic output which is fed back

into the billiard. We study the statistics of the second harmonic fields in the cavity

for a fixed power at the input fundamental frequency.

Figure 2.1: Experimental setup: 1/4-bowtie cavity with an active nonlinear circuit.
(a) The vector network analyzer (Model: Keysight PNA N5242A or E8364C) mea-
sures the absolute power of harmonics at port 2 relative to the input fundamental
tone at port 1. (b) The active nonlinear circuit consists of two cascaded 3.5 GHz -
4.5 GHz band pass filters (Mini-Circuit VBFZ-4000-S+), a frequency doubler (Mini-
Circuit ZX9C-2-50-S+), two cascaded high pass filters (mini-circuit VHF-6010+),
a wide band power amplifier (HP83020A) and an isolator (FairviewMicrowave SFI
0418).
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Figure 2.2: (a) FOM measures the absolute power, 1f response is similar to the
S-parameters; (b) FOM measurement of the 2nd harmonics, mainly in 6− 12 GHz.

Here a symmetry-reduced “1/4-bowtie” shape (Fig. 2.1) quasi-two-dimensional

cavity at room temperature is used as the ray chaotic system [12]. To introduce non-

linearity, an active nonlinear circuit is connected to two ports of the billiard as shown

in Fig. 2.1. The active nonlinear circuit is designed to double the input frequency

in the range from 3.5 GHz to 4.5 GHz; other harmonics, as well as the fundamental

tone, are suppressed at the output. Measurements are taken between two additional

ports of the cavity, and an ensemble of billiard realizations is created by moving two

perturbers throughout the cavity. Thus the realizations maintain a fixed volume

and mean mode spacing. A sinusoidal tone at fundamental frequency 1f with a cer-

tain power is created in the Vector Network Analyzer (VNA) and injected through

port 1. Port 3 is the input of the active nonlinear circuit. Due to the ray-chaotic

properties of the cavity, the 1f signal received by port 3 varies over several decades

in power as a function of frequency and perturber locations. The output at port 4

will be at the 2nd harmonic frequency with a certain power. Port 4 serves as the
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source of a 2f signal injected into the cavity. The VNA is set in Frequency Offset

Mode (FOM), which provides the capability to have the VNA sources apply a tone

at one frequency and the receivers measure the response at any other frequency.

In our case, the VNA port 2 measures the absolute power of the 2nd harmonics of

the stimulus from port 1. Fig. 2.2 gives typical results of VNA in FOM measuring

1f response (Fig. 2.2(a)) which is like the transmission S-parameters and the 2nd

harmonic responses (Fig. 2.2(b)), for a single realization of the positions of the

perturbers. The 2nd harmonic signals are mainly in the 6 − 12 GHz range due to

the filters used.

2.2 Model

We separately characterize the nonlinear circuit under FOM. As shown in Fig.

2.3, for input powers in the range -45 dBm to -5 dBm, P out,2f vs. P in,1f for several

frequencies are plotted in Fig. 2.3(b). A linear fit to Pout,2f vs. Pin,1f shows that

they obey a simple empirical relation:

P out,2f = slope · P in,1f + intercept (dBm) (2.1)

where slope = 2.00 ± 0.01 and the amplifier contributes to the “intercept” term.

Note that power P is in dBm and the “intercept” here refers to intercept in units

of dBm, i.e. P out,2f when P in,1f = 0 dBm. In terms of power measured in Watts,

since PdBm = 10log(103×PW ), Eq. (2.1) is effectively P out,2f = P 2
in,1f ·Pnorm, where

Pnorm = 106 × Pintercept, and Pintercept is intercept converted into units of Watts.
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Figure 2.3: (a) Characterize the nonlinear circuit in FOM; (b) Pout,2f vs. Pin,1f at
f = 3.5, 4.0 and 4.5 GHz, respectively. Linear fit to Pout,2f vs. Pin,1f at f = 3.5
GHz gives slope = 2.00± 0.01.

To describe the statistical properties of the second harmonic signals measured

at port 2, a model of two cascaded linear cavities connected through the nonlinear

circuit is proposed (see Fig. 2.4). This choice was motivated by earlier work on

the statistics of impedance and power fluctuations in chains of wave chaotic cavities

connected by weak but linear coupling [44,47,79]. As shown in Fig. 2.4, the source

signal enters the cavity from port 1. The signal reaching port 3, which is the input

of the nonlinear circuit, is given by the linear transmission S-parameters between

port 1 and 3, denoted by S13. Its statistics are described by the linear Random

Coupling Model at 1f with loss parameter α1. The output signals of the nonlinear

circuit at port 4 are at the 2nd harmonic of the input at port 3. Their relation is

characterized by the empirical law of the active nonlinear circuit, Eq. (2.1). Lastly,

the 2nd harmonic signals received at port 2 are linearly related to the 2nd harmonic

signals introduced at port 4, which is given by the statistical fluctuations of the
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transmission S-parameters between port 2 and port 4 denoted by S24. The statistics

of S24 are described by the linear Random Coupling Model at frequency 2f with

loss parameter α2. Since the vector network analyzer in FOM measures power, we

have a simple relation for the power of 2nd harmonics received at port 2,

P out,2f = (P in,1f · |S13|2)2 · Pnorm · |S24|2 (Watts) (2.2)

where P in,1f , Pnorm are deterministic, in units of Watts; and |S13|2, |S24|2 are fluc-

tuating quantities.

Figure 2.4: Model of the nonlinear billiard in terms of cascaded cavities. The bowtie
with an active nonlinear circuit attached can be considered as two linear billiards
operating at different frequencies and loss parameters coupled through the nonlinear
circuit

2.3 Results

In the results shown below, there are 136 realizations for Pin,1f = −5 dBm

input, 99 for 0 dBm, and 91 for +5 dBm respectively. For each realization, the VNA

outputs a 1f signal sweeping from 3.5 GHz to 4.5 GHz with fixed power at port 1,

which is Pin,1f . With the FOM one then measures the response 2nd harmonics at
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port 2, Pout,2f . For each 1f input power, the histograms of power values of Pout,2f

are compiled over the ensemble of realizations as well as second harmonic frequency

between 7 - 9 GHz. These histograms of measured 2nd harmonic power are plotted

in Fig. 2.5 and will be compared with theory predictions.

To test the extended RCM model, we have two approaches. The “measured

product” is a calculation based on separate measurement of each linear component,

i.e. measurements of S13, S24. S-parameters between ports 1 and 3 are measured at

3.5 - 4.5 GHz, for 120 realizations of the positions of the perturbers. S-parameters

between ports 2 and 4 are measured at 7 - 9 GHz, again for 120 different realizations

of the perturber positions. In the direct experimental measurement of the 2f signal

with the 1f input, the 1f and 2f signals pass through the cavity with the same

perturber position. However, in the “measured product”, the S-parameters S13

and S24 are measured independently, each with a separate ensemble of perturber

positions. Their values will not correspond directly to those in the case in which

the entire transfer function is characterized. Statistically, the histograms for the

“measured product” and “experiment” will correspond if S13 and S24 are effectively

independent. By putting the measured quantities into the relation Eq. (2.2), we

create 1202 “realizations” of P out,2f . We call this a “super data set” and its P2f

statistics can be compared with those measured directly.
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Figure 2.5: Measurement of second harmonic power statistics and test of the model
of cascaded cavities. (a) The statistics of the output 2nd harmonic power predicted
by the model are compared with direct measurement results (blue). The statistics
are compiled over a 2 GHz range with center frequency of 8 GHz. (b) Three input
powers are measured: -5 dBm, 0 dBm and +5 dBm, and the distributions are shifted
by 10 dBm to overlap.The cutoff near 0 dBm for the +5 dBm curve comes from the
saturation of the VNA (Model E8364C). For P in,1f = −5 dBm, 0 dBm and 5 dBm,
the mean value is -33.6 dBm, -23.6 dBm and -14.3 dBm, respectively. The standard
deviations are 14.6 dBm, 14.8 dBm and 14.4 dBm, respectively.

Another approach, termed “simulation”, utilizes the RCM to generate a pre-

diction for the statistical distribution of power values. By using the measured en-

sembles of S13(1f) mentioned above, Zavg,13(1f) can be derived by averaging over

realizations. The RCM formulation (Eq. (1.6)) is applied to extract ξ(1f) from the

ensemble data. By fitting the histograms of ξ(1f), the loss parameter α1 between

3.5 GHz to 4.5 GHz is estimated. In practice, for each frequency window of 0.5

GHz, the loss parameter α1 is determined as the average loss parameter obtained

from fitting the histograms of the off-diagonal impedance elements Re{ξ12(1f)} and

Im{ξ12(1f)}. The same procedures are applied to the measured ensembles of S24(2f)

to derive Zavg,24(2f) and α2 between 7 GHz and 9 GHz. Having the Zavg and loss

parameters in the two frequency ranges of interest, we can perform Monte Carlo
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RMT simulations based on Eq. (1.7) to firstly get normalized impedance ξ, then to

generate ensembles of S13 and S24 using RCM (Eq. (1.6) and (1.5)). This approach

can be considered as a validity test of the RCM. Again, we generate 120 realizations

of S13 and S24 respectively, and substitute them into Eq.(2.2) to create a “super

data set” prediction for the histogram of Pout,2f . The result is based on simulated

universal quantities “dressed” by the measured non-universal features.

The loss parameters α at 1f and 2f are both less than 1. In such a low loss

chaotic environment, the individual cavity mode contributions to the S-parameters

will be sharp and distinct. The value of P in,1f at port 1 is set so that the majority 1f

power at port 3 falls within the range where Eq. (2.1) holds. As a result, the power

of the second harmonic signal spans a wide range. Figure 2.5 shows histograms of

second harmonic power plotted on a log scale with units of dBm. The histogram

is compiled from an ensemble of realizations and over a 2f output frequency range

from 7 to 9 GHz. For a fixed input power over a certain frequency band, the 2nd

harmonic output power varies over 8 - 10 decades. For example, Fig. 2.5(a) shows

the result for input power P in,1f = −5 dBm. The blue curve is the histogram from

direct measurement, where the received power of the 2nd harmonics varies from

-100 dBm to 0 dBm. It has a mean of -14.3 dBm and standard deviation of 14.4

dBm. The red curve is the “measured product”, also derived from measurement.

Although derived by a different approach, the overall statistics agrees very well with

our direct measurement of the second harmonic power. The black curve labeled

“simulation” is created based on the RCM as described above, and as shown in the
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plots, it agrees quite well with the red and blue curves, demonstrating the validity

of the Random Coupling Model.

To quantify the agreement, the coefficient of determination R2 traditionally

used in statistics is calculated for each model histogram with respect to the exper-

imental curve. R2 is always between 0 and 1 and is interpreted as the percentage

of variation in the response variable that is explained by the linear model [80]. In

general, the higher the R2, the better the model fits to the data. The red curve “mea-

sured product” has R2 = 0.995 and the black curve “simulation” has R2 = 0.994,

both indicating very good agreement. We emphasize that this model yielding this

agreement has no fitting parameter.

The model (Eq. (2.2)) predicts that changing the input power should simply

shift the PDFs of P out,2f by 10 dB for each 5 dB increase in input power. Fig.

2.5(b) shows the shifted curves of experimental results with respect to the 0 dBm

case. Indeed the overall distribution has a similar shape for each input power.

However, experimentally the VNA reaches its maximum detectable power at nearly

15 dBm. This is why there is a cutoff at high power for the curve of P in,1f = 5 dBm.

2.4 Comparison with other models

In the engineering context, the reverberation chamber (RC) has been used

to study the statistics of the fields scattered by nonlinear equipment, where it has

implications for EMC immunity testing of digital hardware. In [81] second harmonic

generation by nonlinear electronics irradiated in a reverberation chamber (RC) has
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been investigated. This situation involves a “bare” nonlinear source without filtering

or amplification, producing a small nonlinear response with low signal-to-noise ratio.

The statistics of the re-radiated harmonic spectrum were investigated by using a

model of cascaded random processes. Several models have been developed to analyze

the field statistics (Rayleigh distribution) as well as harmonic fields (Combined

Rayleigh and Double-Weibull distributions). However, the loss parameter of the

RC is generally high (i.e. α >> 1). Hence these models are valid in high loss

environments but show deviation in our low loss chaotic billiards, as the results

below demonstrate.

2.4.1 Rayleigh distribution of electric fields

We first focus on the statistics of linear fields in the 1/4-bowtie cavity. Ref. [81]

assumes that the distribution of the magnitude of the electric field strength |E| in

a reverberation chamber follows a Rayleigh distribution PRay(|E||σ), where

PRay(x|σ) =
x

σ2
exp(
−x2

2σ2
) (2.3)

and σ is a field scale parameter. To test this model in the 1/4-bowtie cavity, the

experiment has been conducted in various loss cases, ranging from a dry ice envi-

ronment (T ∼ −78◦C) to reach the low loss regime (loss parameter α1 = 0.31 at 1f ,

α2 = 0.82 at 2f) to a high loss environment (loss parameter α1 = 2.9 at 1f , α2 = 4.6

at 2f) by adding microwave absorber segments along the perimeter of the cavity at

room temperature. As loss increased, both the mean and standard deviation of field

statistics were seen to decrease.
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Figure 2.6: Best Rayleigh fit (red) by varying the scale parameter σ to the lin-
ear induced voltage in the load impedance between ports 1 and 3. An RCM pre-
diction (green) is shown for comparison. The RCM prediction is generated with
known Zavg and loss parameter α1, and by applying Eq. (1) in the main text
with Monte Carlo simulation. (a) low loss case α = 0.37,R2(RCM) = 0.993,
R2(Rayleigh) = 0.923 with σ = 0.0337; and (b) high loss case α = 2.50,
R2(RCM) = 0.992, R2(Rayleigh) = 0.997 with σ = 0.0201. Frequency range
3.5 GHz - 4.5 GHz.

The Rayleigh distribution relies on a scale parameter σ. Fig. 2.6 shows the

best Rayleigh fit (red) to the linear field statistics between port 1 and 3 in low loss

(Fig. 2.6(a)) case with loss parameter α = 0.37 and high loss case (Fig. 2.6(b)) with

α = 2.50. Here the Rayleigh fit is applied to the induced voltage V at the receiving

port since the induced voltage is proportional to the electric field at the port. To

calculate the induced voltage V , the power P is converted to voltage by considering

a Z0 = 50Ω load impedance at the receiving port. As a comparison, the RCM

prediction is generated (green). Without additional fitting parameters, the RCM

prediction is generated with known Zavg and loss parameter α1. Then Eqs. (2) and

(3) of the main text are applied by performing Monte Carlo RMT simulation. Fig.

2.6 shows that, as expected [41,42], the Rayleigh fit deviates from the experiment in
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the low loss case and fits well to the high loss case, while the RCM prediction agrees

well in both cases. In quantifying the agreement, R2 for RCM are both larger than

99%, while R2 = 0.923 in low loss and R2 = 0.997 in high loss for the Rayleigh fit.

2.4.2 Combined Rayleigh distribution of second harmonic fields

We now consider the statistics of second harmonics in the case shown in Fig.

2.5. The Combined Rayleigh distribution [81] is firstly based on the assumption that

the linear fields obey a Rayleigh distribution. The nonlinear element is modeled as

a reradiating source for harmonics, and the generated harmonic signal is related to

the incident signal by a power series for weak nonlinearity, i.e. for second harmonic

signal, V2f ∝ V 2
1f . The received harmonic signal is therefore the result of a cascaded

Rayleigh process. Using standard techniques to determine the overall distribution

of combined random process, the probability density functions (PDFs) of the 2nd

harmonic fields can be obtained as

P2nd(x|σ) =
1√
2σ

∫ ∞
0

e−t
2

e−x/(2
√

2σt)dt (2.4)

The Combined Rayleigh distribution also has the scale parameter σ to vary. Fig.

2.7 shows the best Combined Rayleigh fits to the second harmonic induced voltage.

Because the Rayleigh fit fails in the first (linear) process in the low-loss case, as

a result the experimental second harmonic statistics deviate from the combined

Rayleigh distribution, while both the Rayleigh and Combined Rayleigh models fit

well in the high loss case, shown in Fig. 2.7. The singular RCM based “simulation”

is generated for comparison. R2 for this RCM-based simulation are both larger
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than 98%, while R2 = 0.960 in low loss and R2 = 0.991 in high loss for Combined

Rayleigh fit.

Figure 2.7: RCM-based “simulation” prediction (red) and Combined Rayleigh
(green) fit to the second harmonic electric field between port 1 and 2 in: (a)
low loss case, α1 = 0.30, α2 = 0.78, P in,1f = -5 dBm, R2(simulation) = 0.994,
R2(C − Rayleigh) = 0.960 with σ = 0.0047; and (b) high loss case, α1 = 2.85, α2

= 4.56, P in,1f = 0 dBm, R2(simulation) = 0.984, R2(C − Rayleigh) = 0.991 with
σ = 0.0032. Frequency range 7 GHz - 9 GHz.

2.4.3 Double Weibull distribution of second harmonic fields

Later a more versatile statistical model called the Double Weibull distribution

was proposed to fit the mean normalized second harmonic electric field z̃ [82], where

z̃ = z/E[z] (E[·] is the expectation operator). This model describes the changing

statistical harmonics distribution from the Combined Rayleigh distribution due to

the nonlinearity strength variation, i.e. the power exponent n (V2f ∝ V n
1f ) of the

nonlinear source deviates from 2 as the input amplitude V1f increases [83]. z̃ has a

probability density function given by

f̃(z̃;n) =
πz̃

n
Γ

2
n (1 +

n

2
)

∫ ∞
0

x
2
n
−3exp(−x

2
n Γ

2
n (1 +

n

2
)− πz̃

4x2
)dx (2.5)
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where Γ(·) is the Gamma function. This distribution is independent of the scale

parameters σ mentioned before, being a function only of the power exponent n.

The Combined Rayleigh fit is a special case of this model with n = 2 for weak

nonlinearity. The power exponent n becomes the only fitting parameter. In the high

loss case where the Rayleigh fit is valid, the fitting parameter n shows a decrease

from 2.11 to 1.85 as the input power increases from -5 dBm to +10 dBm, indicating

saturation of the nonlinear circuit.

However, in the low loss case where both the Rayleigh and Combined Rayleigh

fits fail, the 2nd harmonic statistics still fit well to the Double-Weibull distribution.

Fig. 2.8(a) shows fits to the Double-Weibull distribution with R2 = 0.997, however

the fitted n is 2.50 in the low loss case. It should be noted that the nonlinear circuit

is the same and has been explicitly characterized to obey a square law (V2f ∝

V 2
1f ) in the operating regime of the experiment. A value of n = 2.5 for second

harmonic generation is therefore un-physical. Therefore the changing statistical

distribution from the Combined Rayleigh distribution is not only due to changes in

the nonlinearity strength but also loss of the cavity. For second harmonic statistics,

stronger nonlinearity causes n to decrease below 2; whereas low loss causes n to

increase beyond 2. In the high loss case, the fitting parameter of the Double Weibull

model approaches 2, with n = 2.08, as shown in Fig. 2.8(b). On the other hand

the Random Coupling Model based approach predicts the statistics very well both

in the low loss (Fig. 2.8(a), R2 = 0.997) and high loss environment (Fig. 2.8(b),

R2 = 0.987), it demonstrates that Eq. (3) of the main text with the Random

Coupling Model provides a simpler and physically reasonable explanation of the
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data.

Figure 2.8: Double Weibull and RCM based simulation fit to the mean normal-
ized induced 2nd harmonic voltage statistics between port 1 and 2 in: (a) low
loss case, α1 = 0.30, α2 = 0.78, P in,1f = -5 dBm, R2(simulation) = 0.997,
R2(D − Weibull) = 0.997; and (b) high loss case, α1 = 2.85, α2 = 4.56, P in,1f

= 0 dBm, R2(simulation) = 0.987, R2(D −Weibull) = 0.990, Frequency range 7
GHz - 9 GHz of the 1/4-bowtie cavity.

2.5 Conclusions

In summary, by adding an active nonlinear circuit to the ray-chaotic 1/4-

bowtie cavity, and extending the Random Coupling Model, it is possible to predict

the statistics of harmonics in a nonlinear wave chaotic system. The model of non-

linear cascaded cavities Eq. (2.2), which incorporates nonlinearity into the Random

Coupling Model, describes the effects of the active nonlinear circuit, and is valid both

in the low loss and high loss regimes. This is the first effort to extend the RCM to

the nonlinear domain. It is shown to be more general compared to previous models

of similar phenomena. The model does not require any fitting parameters although

a fair amount of independently-determined system-specific information is incorpo-
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rated into the model. The artificially fabricated nonlinear circuit is uni-directional,

filtered and amplified to produce only 2nd harmonics, making the system simple

to analyze. It paves the way for generalizing RCM to more complicated nonlinear

situations. It also offers an approach to nonlinear problems in acoustic, optical,

atomic and other chaotic systems.
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Chapter 3: Diode Loaded Bowtie Microwave Billiard

Nonlinear effects in wave chaotic systems manifest as harmonic and sub-

harmonic generation, driving amplitude dependent responses, etc. We have pre-

viously studied the statistics of harmonics generated in a wave chaotic system by

adding an active frequency multiplier to the 1/4-bowtie microwave billiard [2], which

is a vertically thin (less than a half-wavelength) microwave cavity whose horizontal

shape resembles a quarter of a bowtie (Fig. 3.1). This is quite relevant to the work

that investigates the electromagnetic field statistics created by nonlinear electronics

inside a wave chaotic reverberation chamber, and it has a number of applications

in the EMC (Electromagnetic Compatibility) community, such as electromagnetic

immunity testing of digital electronics [81,84]. Another approach to observe nonlin-

ear effects is to create a scattering system with amplitude dependent response. To

achieve this, we have introduced different sources of nonlinearity into the billiards,

and in this chapter we focus on a high frequency diode. Reaching the nonlinear

regime usually requires high amplitude inputs, hence we have implemented a high

power vector network analyzer (VNA) which is able to measure the scattering (S)

parameters for signals up to ∼ +43 dBm (' 20 Watts).

This chapter studies nonlinear wave chaotic properties by introducing diodes
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into the bowtie billiard. Almost the electronic devices in real life contain nonlinear

circuit elements such as diodes, transistors, etc, and the diode is the most common

and fundamental nonlinear element. It is very convenient to add a diode as a point-

like nonlinear element into the wave chaotic system. When adding this point-like

nonlinearity, it can be incorporated into the source port to construct a nonlinear

source, or it can also be added randomly into the billiard at locations far away from

the source to form a nonlinear environment. The following two sections study these

two cases correspondingly, starting with the simplest case where only one diode is

added.

3.1 Bowtie with a Nonlinear Port

In this work, we show the results for measurements of the nonlinear scattering

parameters in a diode-loaded 1/4-bowtie quasi two-dimensional microwave cavity.

The 1/4-bowtie cavity is a ray-chaotic billiard that displays universal statistical

properties predicted by RMT and RCM [11,12,24–26,35,37,42,72,73,79,85,86]. In

this case the diode acts as a nearly point-like nonlinearity in a wave chaotic system.

Attaching a diode to the excitation port, we observed that the raw cavity statistics

of the impedance change substantially with the excitation power. We extend the

RCM to this situation and use it to analyze our experimental results. We find that

when the radiation impedance becomes nonlinear, short orbits between the port and

a nearby wall, and the raw impedance statistics are strongly modified. We also find

that many of these changes are due to the fact that the admittance of the diode
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changes with the excitation power. The nonlinear diode competes with the cavity

admittance, substantially altering the response of the system. By implementing the

lossy port model extension of the RCM [48–50], the results are well explained by

the changing radiation efficiency of the diode-loaded port. As a result, The diode

effectively acts like a protection element in this configuration.

In the small signal limit, our system can be approximated as linear. To observe

a nonlinear response, the system must have some sort of nonlinear property, and a

large excitation signal is required. In our earlier studies of wave chaotic systems with

one port or multiple ports, we measured the scattering parameters and used these

measurements to study the statistical properties of the system. Here we measure

the high power S-parameters including a nonlinear element in the wave system, at

power levels achievable up to +43 dBm.

The Vector Network Analyzer (Keysight N5242A PNA-X) has been upgraded

with high power option H85 [6]. By removing the bias tee, it enables fully calibrated

high power S-parameters measurements up to 20 W (+43 dBm). The external

booster amplifier, coupler, attenuator, and isolators are chosen as follows. We have

used an RF-Lambda amplifier RFLUPA0218G5 working in the frequency range of

2-18 GHz, with output power up to +38 dBm (3 dB compression). By adding cou-

plers (RF-Lambda RFDC2G18G20) and additional attenuators, this configuration

is optimized for high power measurement. Note that the signal to noise ratio (SNR)

is decreased as the excitation power decreases. Measurements are taken at powers

of -5, +5, +15, +25, and +30 dBm, in the frequency range 4 ∼ 18 GHz, limited by

the isolator (Fairview Microwave SFI0418) bandwidth.
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To induce strong nonlinearity, a diode (Infineon BAS7004 with two diodes in

the package but only one is electrically connected) is soldered between the center

pin and cavity ground, as shown in the inset to Fig. 3.1. From the datasheet [87],

this diode has low transition capacitance, C ∼ 1.5 pF at 1 MHz, which decreases

nonlinearly to ∼0.5 pF as the reverse voltage increases. Its differential resistance

also changes nonlinearly as a function of the forward current. For typical forward

currents IF = 1 ∼ 15 mA, the resistance R changes from 80 to 20 Ω. A rough

estimate for the time constant τRC = RC ∼ 100 ps, which is close to the charge

carrier life-time as given in the data sheet. Thus this diode can respond in the

GHz frequency range and produces clear nonlinear responses, making it suitable for

our microwave wave chaos experiments [88, 89]. In addition, the diode package is

significantly smaller than the wavelengths used in this study (30-75 mm), rendering

it approximately “point like”. The connection shown in Fig. 3.1 has advantages in

terms of stability and reproducibility, due to the fact that when the bowtie billiard

is opened, the antenna and the top plate are attached together as one piece, and the

bottom plate is a separate piece. This in turn allows for excellent reproducibility of

¯̄Zrad,
¯̄Zcav and ¯̄Zavg measurements.
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Figure 3.1: Top view of the experiment setup of the 1/4-bowtie quasi-2D mi-
crowave billiard loaded with a diode attached to the single port. The diode (Infineon
BAS7004) is connected between the center pin of the port and the top plate. The
antenna pin is 7.6 mm long, 1.27 mm in diameter. The diode package has dimension
1.3× 2.9× 1 mm3. The Vector Network Analyzer (Keysight N5242A PNA-X) mea-
sures the scattering parameter at excitation levels up to +43 dBm with microwave
wavelengths from 3 to 7.5 cm. The two blue solid circles are metallic perturbers that
can be moved around to create ensemble realizations. The inset shows a side-view
cross section through the diode-loaded antenna.
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3.2 Results

3.2.1 Diode-Loaded Port Radiation Impedance

We first characterize the nonlinear port by measuring the radiation impedance.

The radiation impedance characterizes the port properties alone. It is measured by

creating an outward-only wave propagation condition in the experiment. This is

achieved to good approximation by covering the perimeter of the bowtie billiard

with microwave absorbers, as shown in Fig. 3.2(a). The radiation impedance mea-

sured without the diode is nearly identical for different input powers. Based on

our measurements it is safe to assume that there are no clear nonlinear effects due

to the microwave absorbers. Fig. 3.2(b) shows the measured radiation scattering

parameter Srad at different input power levels, and includes the case of the antenna

without the diode as well. Firstly, by adding the diode, the coupling of the port has

been changed substantially. The optimal coupling near 6 GHz for the antenna has

been moved to 8 ∼ 9 GHz when the diode is added. Comparing the nonlinear port

radiation impedance at different power levels, there is a nonlinear change in the 4

∼ 9 GHz range. The coupling is better at low power and the port generally reflects

more as power increases.
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Figure 3.2: (a) Schematic illustration of the perimeter of bowtie covered with mi-
crowave absorbers to facilitate measurements of the radiation impedance with walls
A, B, C and D labeled. (b) Measured |Srad| in the radiation case at different input
powers, compared to the case of the antenna with no diode.

3.2.2 Short Orbits

Short orbits are another system specific feature that the RCM can incorporate

for a more complete characterization of a complex scattering system. Short orbits

between the ports can survive over an ensemble average because they appear in

many or all of the realizations without modification. In refs. [27–29], the theory

was developed and experimentally validated. The results for a single short orbit

measurement are shown in Fig. 3.3. The inset of Fig. 3.3(a) is the experimental

configuration for measuring a short orbit between the port and wall A of the billiard.

The microwave absorbers of wall A are removed, so that there is a ray that goes

into the billiard through the port and immediately reflects from wall A and goes

back to the port. The direct measurements of the reflection S-parameter SA for this

case are shown in Fig. 3.3(a). We interprete the systematic wiggles in |SA| versus
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frequency (Fig. 3.3(b)) as arising from the short ray trajectory. The periodicity is

a function of the distance between the port and wall A. The experimental short ray

impedance correction is given by [28,29]

¯̄zExpcor = Re{ ¯̄Zrad}−1/2 · ( ¯̄Zwall − ¯̄Zrad) ·Re{ ¯̄Zrad}−1/2, (3.1)

where ¯̄Zwall is the measured impedance of the billiard with specific wall(s) exposed,

and ¯̄Zrad is the radiation impedance as deduced from the data in Fig. 3.2. Theo-

retically, the short ray correction here is given by [27–29]

zTheorycor = −exp[−(ik + κ)L− ikLport − iπ], (3.2)

where zTheorycor is the correction to the impedance due to the short ray that goes

into the billiard through port 1 and goes back through port 1, κ is the effective

attenuation parameter that takes account of propagation loss, L is twice the distance

between the nonlinear port and the exposed wall, which is 36 cm here, Lport is the

port-dependent constant length between the antenna and the input/output port.

Lport is typically 1-2 cm and is caused by the difference in location between the

calibrated reference plane at the end of the VNA transmission line and the practical

reference plane at the port antennas, due to the additional length in the SMA

connector.

Fig 3.3(b) shows the comparison between the theory and experiment for the

low power (-5 dBm) and high power (+30 dBm) cases. For the low power case, the

periodicity of the short ray zExpcor agrees reasonably well with the theory, although

the amplitude of the experimental curve varies with frequency. For the high power

case, there is larger disagreement between the theory and the experiment, both
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in periodicity and amplitude. This indicates that this nonlinear port destroys the

simple short orbit behavior, although at low power, it can still be approximated as

a linear port. As will be shown below, the deviation at high power is because the

diode admittance gets larger under high power excitation, such that it dominates

over the billiard admittance. As a result, the short ray impedance correction is

strongly modified. To some extent, this applies to the low power case as well.

Another concern is that the short ray calculation assumes the port to be a point-

like object. By attaching the diode, whose dimension is comparable to the antenna,

this nonlinear port has a more complicated structure, rendering the port an extended

object with no single “position” for the short-orbit calculation.

Figure 3.3: (a) SA measurement results as a function of frequency due to one short
orbit between the port and wall ”A” shown in the inset. The short orbit creates
systematic variations in the S-parameters. The periodicity is related to the distance
between the port and the exposed wall. The inset shows the experimental configura-
tion for measuring the short orbit. The microwave absorbers are removed from wall
A only, creating a single short orbit between the port and wall A. (b) Comparing
short orbit corrections to impedance, Re(zcor,A) from the experimental results for
low power (+5 dBm, blue) and high power (+30 dBm, green) cases, with theoretical
calculation (red), which assumes a linear response.

40



3.2.3 Ensemble Realizations

Figure 3.4: (a) Comparing the reflection S-parameter |S| of a typical single realiza-
tion of the 1/4-bow-tie cavity with diode-loaded port for low power (blue, -5 dBm)
and high power (green +30 dBm). (b) Histogram of normalized Re(ξ) obtained
from ensemble data using traditional linear RCM for a 1 GHz window centered at
7 GHz. The resulting fitted loss parameter α increases with power as shown in the
inset. R2 values in the legend indicate the goodness of fit [2].

Having studied how the system specific properties change in the presence of

the nonlinear port, we next analyze the statistics of the cavity itself. The microwave

absorbers are removed from all of the walls of the billiard. The metallic perturbers

shown in Fig. 3.1 are moved around to create 120 distinct static realizations. Fig.

3.4(a) shows reflection vs. frequency results for a typical realization for low (blue)

and high (green) input power. They have similar shapes as in the radiation case,

but are “dressed” with many resonance fluctuations. The linear RCM approach

applies well in the low power case, and we follow the RCM normalization process to

determine an experimental approximate, ξexp [28,32,79]. Fig. 3.4(b) shows, PDFs of

Re(ξexp) in the 6.5 to 7.5 GHz range for several different input powers. Clearly the
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PDF of the normalized impedance Re(ξexp) changes substantially with power, being

more widely distributed in the low power case, indicating stronger fluctuations, a

property which is associated with lower loss parameter α. Note that the Re(ξexp)

distribution is more concentrated near unity as power increases, consistent with a

high loss (high α) situation. If we naively fit this distribution function to the RCM

using α as the sole fitting parameter, the fitted loss parameter α increases with

power, as shown in the inset. The raw statistics of the system change substantially

with power because of the presence of the nonlinear port. However it should be noted

that these ξexp PDFs show substantial deviations from RMT predictions (note the

low fit R2 values at high power), making it clear that naive application of the RCM

breaks down in the nonlinear regime.

3.2.4 Radiation Efficiency of the Nonlinear Port (High Loss System)

In the RCM treatment presented above, we expect the loss parameter of the

system to be independent of the excitation power as long as the properties of the

cavity remain unchanged. The nonlinear property in this case is only associated

with the port. The RCM described in Eq. (1.6) is derived assuming a lossless linear

port. But this is no longer the case in this experiment. As we can see from Fig.

3.4(a) particularly in the vicinity of 6 GHz, the fluctuations are suppressed in the

high power case, indicating that excitations of the cavity modes is suppressed. In

this case, the port must be considered as a lossy port. Ref. [48, 49] have derived a

generalization of the RCM to account for the loss of the port. A radiation efficiency
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η is introduced to quantify the ratio of the power radiated by the port to the input

power to the antenna, η = Prad/Pin, (η is real and 0 6 η 6 1). In a high loss

system (i.e. α � 1), it can be shown that the impedance of a lossy antenna inside

a complex enclosure can be approximated as

¯̄Zin = ¯̄Zant + η ·Re{ ¯̄Zant} · δ¯̄ξ, (3.3)

where η is the radiation efficiency of the antenna, δ¯̄ξ = ¯̄ξ− ¯̄I, ¯̄I is the identity matrix

with diagonal elements 1 + i0, and ¯̄Zant is the input impedance of the lossy antenna

radiating in free space. Ref. [50] has successfully applied this model to a scaled

cavity, where the radiation efficiency accounts for the loss in free-space propagation

suffered through a remote injection path. In our case ¯̄Zin can be considered as ¯̄Zcav

and ¯̄Zant can be considered as ¯̄Zavg, therefore Eq. (3.3) can be modified as

¯̄Zcav = i · Im{ ¯̄Zavg}+ (¯̄I + η · δ¯̄ξ) ·Re{ ¯̄Zavg}, (3.4)

which is valid in the limit α � 1. To determine η for the nonlinear port, we first

measure ¯̄ξcav of the billiard when there is no diode attached to the antenna. In that

case ¯̄ξcav describes the properties of the billiard alone, (because all system-specific

properties have been removed), and as such it is a linear system. We use the linear

RCM approach, creating 120 realizations with the two perturbers, then applying

Eq. (1.6) to extract ¯̄ξcav and fit to RCM to find the corresponding loss parameter

α [28, 32, 79]. Additionally, to make the bowtie billiard a high loss system, the

perimeter of the billiard is partly (but uniformly) covered with microwave absorbers,

tuning the loss parameter to be α = 3 (4.5 GHz) to α = 7 (9.5 GHz). Then using

the value of α which characterizes loss in the cavity and ¯̄ξcav, we go back to the
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diode-loaded nonlinear port case, utilize Eq. (3.4) and vary η so that the statistics

of ¯̄ξ(η) agrees with ¯̄ξcav. Fig. 3.5(a) shows the fitted radiation efficiency from Im(ξ)

statistics, (the Re(ξ) statistics give similar results).

Fig. 3.5(a) shows that the radiation efficiency is strongly power-dependent in

the frequency range 4 ∼ 10 GHz. Between 6 and 9 GHz, the radiation efficiency

decreases with increasing power, meaning the port is getting more lossy as the

excitation power increases. There is a cross-over regime at low frequency 4 ∼ 6

GHz, where the radiation efficiency increases at high powers. And although it is

not shown in the plot, at 10 GHz and above, the radiation efficiency is almost

independent of power.

Figure 3.5: (a) Fitted radiation efficiency η (from Im(ξ) statistics) vs. frequency
and power. Each fit was done with data from 120 realizations and a window of 1
GHz. (b) Plot of diode admittance magnitude vs. frequency at various rf powers,
as well as the radiation admittance of the linear port |Y rad

no diode|

To explain the results, we are interested in characterizing the diode admit-

tance under different excitation powers. The diode is connected between the center

pin and the ground of the port. The billiard radiation admittance can also be
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considered as being connected between the center pin and ground. Therefore a

simple model is constructed by considering the diode and the billiard to be con-

nected in parallel. By measuring the port radiation admittance with (Y rad
with diode)

and without the diode (Y rad
no diode), the diode admittance can be approximated as

Ydiode ' Y rad
with diode − Y rad

no diode.

Fig. 3.5(b) shows the experimental results of |Ydiode| compared with |Y rad
no diode|.

Between 4 ∼ 6 GHz, |Ydiode| has similar values to |Y rad
no diode| and changes little with

power. Thus the diode admittance competes roughly equally with the billiard ad-

mittance. A small change in admittance value may result in a big change in fitted

radiation efficiency. However, between 6 and 9 GHz, the diode admittance domi-

nates the billiard admittance and generally increases with power. In this frequency

range, because the diode admittance is much larger than the billiard admittance

and increases with power, the radiation efficiency of the port decreases, consistent

with the results in Fig. 3.5(a).

To better understand the nonlinear port, we built a circuit model for simu-

lation in the finite difference time-domain code called CST(Computer Simulation

Technology). The SPICE models of the diode as well as the package are provided

by the manufacturer. In addition to the SPICE models, the dielectric properties of

the package near the port also affect the radiation impedance, and this was added

to the model. The internal capacitances of the package SPICE model were altered

because the diode is being used beyond its design frequency range. The simulated

amplitude dependent radiation S-parameters show relatively good agreement with

the experimental results (see section “Simulation in CST”). In addition the resultant
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radiation efficiency that is directly calculated as Prad/Pin is in general agreement

with the experimental results. Based on the circuit model, the nonlinearity arises

from the diode, which is approximated with an exponential I-V diode function [90].

The diode nonlinearity is shorted by parasitic capacitance in the package SPICE

model at high frequencies, thus the port model does not have power dependence at

10 GHz and above, consistent with the data.

3.2.5 Simulation in CST

To create a model that resembles the nonlinear port in CST, we first draw a

3D model that has the same dimensions as the physical port. All of the product

information about the diode and its packaging can be found on the manufacturer’s

webpage [87]. We have taken into account the diode package dimensions, the SPICE

model of the diode and the SPICE model of the package. Fig. 3.6(a) shows the port

configuration in CST. The physical diode package is approximated as a dielectric

block with its relative dielectric constant used as a fitting parameter (fitted εr = 10

as shown in Fig. 3.6(a)). The radiation scattering parameter is a property of the

port, hence the shape of the cavity does not play a role. In other words we establish a

condition where the waves radiating from the port are not reflected back to the port.

To achieve this, the top and bottom parallel rectangular plates are terminated with

radiation boundary conditions. There is only one external excitation port which is

defined on the antenna, and it is labelled as the yellow block with number “1” in Fig.

3.6(a). To include the SPICE model of the diode and package, another differential
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port, port 2, is also built between the center pin and ground. The SPICE models

of the diode and the package are integrated into one file ”pack2d v5” and attached

to port 2. The details of the SPICE model are given in Fig. 3.6(b). There are two

diodes in the package, and three pins, but we only connected two pins, say between

node 3 and node 2. The package model is specified to be valid up to 6 GHz. To

adapt the model to our situation where frequency is applied up to 18 GHz, we have

adjusted all the parasitic capacitances, i.e. C13, C23, and C12, to be approximately

2 orders of magnitude smaller than specified. The diode model for D1 and D2 is the

standard SPICE model including both DC characteristics and dynamic effects.

Figure 3.6: (a) Model in CST to simulate the radiation S-parameters of the nonlinear
port. The physical dimension and dielectric properties of the diode package are
included in the CST model. Note that the parallel plate waveguide is terminated
with radiating boundary conditions on all sides. (b) The complete SPICE model of
the diode and the package, indicated as ‘pack2d v5’ in (a).

The results of the simulation are shown in Fig. 3.7(b), and compared with

the radiation case experimental results shown in Fig. 3.7(a). The black curve is the

radiation S-parameter for the linear case where there is no diode attached to the

port. Adding the diode, the overall coupling to the cavity is changed substantially,
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and this is captured in the model. When changing the amplitude of the incident wave

from 0.1 V to 10 V, the simulated radiation S-parameters show similar amplitude

dependence as the experimental results. Thus the model captures the essential

behavior of the nonlinear port radiation properties.

Figure 3.7: (a) Experimental results of the radiation S-parameters at different input
powers. (b) Simulation in CST by importing the SPICE model of the diode and
package, and adding a dielectric block representing the physical dimension of the
package. |SRad| for different amplitudes with diode and no diode case.

Furthermore, we are also able to simulate the port radiation efficiency, which is

the ratio of the radiated power to the input power at the port. The total power from

the source Ptot is decomposed into several parts, i.e. the power directly reflected by

the port Pref , the power loss at the port, the power loss in the cavity, and the power

radiated through the boundary Prad. The power loss by the cavity is the Ohmic

loss of the copper parallel plate which is negligible. The input power at the port

can be calculated from the difference between the total power Ptot and the reflected

power Pref . In the simulation, the total power is a constant over frequency, and

the reflected power can be calculated from the simulated S11. To get the radiated
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power, we have defined 4 faces along the boundary of the parallel plate model, as

shown in Fig. 3.8. By integrating power on these 4 faces and summing them up, we

can get the total power radiated Prad.

The radiation efficiency η is then calculated as η = Prad/(Ptot − Pref ). Fig.

3.9(b) shows the simulated radiation efficiency for different input amplitudes of the

nonlinear port. Also shown are the experimental results in Fig. 3.9(a), where the

radiation efficiency η is fitted by comparing the statistics of normalized impedance ξ

with that in the linear case. It is clear that the CST simulation reproduces the key

features of the experimental case. There is a regime in which η increases with power

at low frequency. In the intermediate frequency regime, the radiation efficiency

decreases as the incident power increases. At high frequency, the behavior tends to

be power independent. Therefore we conclude that the radiation efficiency model

captures the essential behavior of the nonlinear port.

Figure 3.8: Model in CST to simulate the radiation efficiency with the nonlinear
port. Four faces are defined along the perimeter of the parallel plate structure, and
the port is labelled ‘2’. The total power radiated through the boundary can be
calculated by integrating the power density along each face, and summing them up
along these 4 faces.
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Figure 3.9: (a) Experimental radiation efficiency obtained by fitting the statistics
of ξ. (b) Radiation efficiency simulated in CST, by directly calculating the ratio of
Prad/(Ptot − Pref ).

3.3 Discussion and Future Work

3.3.1 Nonlinear Port with a Diode

We have shown that by attaching a diode to the center pin and ground of an

antenna, the port shows dramatic nonlinear behavior. By measuring the radiation

impedance, which characterizes the port properties, we find the impedance changes

considerably with the excitation power. The nonlinearity mainly occurs below 10

GHz, which is consistent with the diode time constant (τ ∼ 100 ps, 1/τ ∼ 10

GHz). “Short orbits” are another system specific property. At low power, the short

orbit behavior can still be approximately explained by theory, treating the port as a

linear point source. As power increases, the short orbit correction deviates from the

theoretical prediction. As the radiation efficiency fitting results show, this is because

at high power the diode admittance dominates over the billiard admittance.
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For the statistical results, if we blindly apply the RCM to the billiard with

diode-loaded port, one finds that the loss parameter increases with input power.

The RCM posits that the loss parameter determines the universal properties of the

chaotic system. In our case the billiard properties should not change with power

because the nonlinearity is only associated with the port. We applied the newly

developed radiation efficiency model to the port, using the radiation efficiency η to

quantify the proportion of power from the source radiated into the billiard. At high

power in the nonlinear region, the diode consumes most of the power, causing the

radiation efficiency to decrease. The diode thus prevents high power signals from

getting into the billiard [91].

There are several interesting questions for further study of this system. First,

the billiard had to be intentionally modified into a high loss system in order to use

the radiation efficiency model. The statistics of low-loss nonlinear systems cannot

be addressed at this time. In addition, another behavior we have observed is the

loss of reciprocity in a two-port version of this system, where one port is a nonlinear

port and the other is linear. We observed that S12 6= S21 when large amplitude

signals are applied. We note there is no general reciprocity theorem that holds for

nonlinear systems [92]. This behavior can be understood by considering that with

equal powers injected in both ports, the diode will be driven to nonlinearity when

power is injected in the port hosting the diode, and to a lesser extent when the

linear port is excited.

Besides the approach we used in this paper to analyze the nonlinear system,

we mention for completeness that high power S-parameters are sometimes called
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hot S-parameters [93], and the nonlinear effects can be fully characterized by the

so-called X-parameters measured by the nonlinear VNA [94,95]. However we believe

that the present treatment is best suited for understanding the statistical properties

of nonlinear wave chaotic systems in the semi-classical regime.

3.3.2 Diode Located in the Billiard

Several kinds of diodes have been tested in the bowtie. In addition up to

30 diodes have been placed randomly in the billiard. While no substantial power

dependent S-parameters have been measured so far, this might be due to the fact

that the diodes we have used are not coupling well enough to the signals. Simulation

in CST has shown that for diodes scattered around the bowtie billiard, there are

power dependent statistical features.

Fig. 3.10 is the simulation model of the bowtie billiard with two cylindrical

perturbers and a diode connected between the top and bottom plates at a location

away from the ports. The diode electric model and parameters are also shown in

the figure. The diode is fixed and the two perturbers have been moved around

for 90 realizations. The simulation is performed in the time domain to get the S-

parameters for each realization. The excitation signal is a Gaussian signal in the

frequency range of 2-16 GHz, and its amplitude can be varied.
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Figure 3.10: Model of the bowtie billiard (a) and diode (b) in CST

Figure 3.11: Simulated S21 for different input amplitudes of the diode-loaded 1/4-
bowtie (a) 2-16 GHz range; (b) Zoomed-in view of several modes near 7.9 GHz
shows that nonlinearity starts to appear for amp> 0.1.

Fig. 3.11 shows the S21 of one realization for different excitation amplitudes,

ranging from amplitude amp = 0.01 to 13. Note that CST uses the unit of
√
W

for the amplitude which is proportional to V (Volt). Fig. 3.11(b) is a detailed

view of several resonant peaks near 7.9 GHz, showing that S21 changes with the

input amplitude. Note that S21(f) with amp = 0.1 overlaps with amp = 0.01 which

53



indicates it is in the linear case. For pulse amplitude amp > 0.1, nonlinear response

from the diode changes S21. For many realizations, the simulation will become

numerically unstable if the excitation amplitude is too large. This is because the

time step is too large as the amplitude increases. The instability problem can be

solved by choosing a smaller stability factor for the time step. As a result of the

smaller time step, the total simulation time gets longer. Considering the trade-off,

amp = 0.1 and amp = 12 are selected for the ensemble simulation, which differ by

two orders of magnitude in the incident pulse amplitude.

Similar to the case of the nonlinear port experiment, several features mentioned

before are also observed for the scattered diode case in simulation. Fig. 3.12(a)

shows that S12 6= S21 for large amplitude amp = 12 while S12 = S21 for amp = 0.1.

Note also that Savg is different for amp = 0.1 and amp = 12, as shown in Fig.

3.12(b).

Figure 3.12: Plots of S-parameters vs. frequency in the diode loaded 1/4-bowtie.
(a) S12 6= S21 for high amplitude, amp = 12; (b) Savg over 90 realizations for amp
= 0.1 and amp=12.

For the statistical analysis, applying the linear RCM algorithm, the statistics
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of the normalized impedance ξ are shown to be different depending on the excita-

tion amplitudes, as seen in Fig. 3.13(b). As a result, the fitted loss parameter α

obtained from the normalized pdfs are different for the different amplitudes. Fig.

3.13(a) shows that the fitted loss parameter α is larger for high amplitude amp = 12

compared with the low amplitude case amp = 0.1. Recall that in the nonlinear port

case, higher input powers result in smaller loss apparent parameter. Further study

of this discrepancy need to be conducted. Also differing from the nonlinear port

case, these statistical differences are observed for all of the 8 ξ quantities, and they

are fairly consistent among the 8 quantities. The goodness of fit R2 are all > 0.99,

indicating very good fit.

Figure 3.13: (a) Fitted loss parameter α from Re(ξ11), using a 1 GHz window for
different input amplitudes, the higher amplitude excitation signal results in larger
fitted loss parameter; (b) The histograms of normalized impedance Re(ξ11) at fc = 7
GHz shows clear differences between the amp = 0.1 and amp = 12 cases, resulting
in different fitted loss parameter.
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3.4 Conclusions

To conclude, a diode based nonlinear port alters the radiation impedance, short

orbits, and raw impedance statistics of a wave chaotic systems from those observed

in linear systems. By using the Random Coupling Model with incorporation of

the diode nonlinear properties and a lossy port model, these nonlinear phenomena

are well explained, and verified by the simulation. The nonlinear property of the

port can be applied to protect delicate circuits from high power electromagnetic

microwave interference.
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Chapter 4: Superconducting Cut-Circle Microwave Billiards

Besides nonlinear circuits introduced in the room temperature environment,

superconducting materials offer another source of nonlinearity at microwave fre-

quencies. Their nonlinearity mainly comes from the surface impedance Z = R+ iX.

This chapter presents the details of the experiments done on two superconducting

microwave billiards. One is made of Lead (Pb) material which mainly shows a non-

linear resistivity R, and the other is Titanium Nitride (TiN) on Si wafer which is

expected to have a nonlinear reactance X. We are still working on the experiment

of TiN on Si wafer billiard. Here, the up-to-date results are recorded.

4.1 Nonlinear Impedance of the Lead Coated Superconducting Cut-

Circle Microwave Billiard

The Pb coated on Copper cut-circle cavity has been used for wave chaos mea-

surements by several groups [3, 23]. Below the transition temperature T < Tc, for

lead Tc = 7.2 K, the cavity boundary is made of superconducting material Pb. It

has been shown to give rise to a wave chaotic billiard with a very low loss parame-

ter α ∼ 0.01 [3]. However, materials in the superconducting state are intrinsically

nonlinear. Therefore this system is a very good candidate to realize a distributed
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nonlinear wave chaotic system.

4.1.1 Experimental Setup

The cavity dimensions are shown in Fig. 4.1(a). The cavity has a height of

h = 0.8 cm and is considered to be a 2D billiard for frequencies f < c/(2h) = 18.75

GHz. The perturber is made of Teflon and the perturbation is done by rotating the

perturber (note arrows in Fig. 4.1(a)) through a mechanical feed-through in the

refrigerator. The experimental setup and in-situ calibration have been discussed in

detail in [3] and here we follow the same procedure. To observe the nonlinearity,

the S-parameters are measured at different input powers. We have tried to replace

the perturber with a Nb cylinder with diameter of 4 cm. Nb has Tc = 9.3 K which

may make the system even more nonlinear but will reduce the volume of the cavity

since it is metallic. It turns out that the statistical results are not as good as from

the Teflon perturber. So we continue to use the teflon wedge perturber.

Fig. 4.1(b) shows the measured transmission S-parameters for different exci-

tation powers at T = 5.7 K. One resonant peak at 8.84 GHz is also shown. It shows

that by increasing the input power, the resonant peak shifts a little, while the height

decreases, indicating that the insertion loss increases. This superconducting cavity

mainly shows nonlinear resistive behavior.
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Figure 4.1: (a) From [3], dimension of Pb coated cut-circle cavity with a Teflon
perturber. The height of the cavity is h = 0.8 cm. Area A = 0.0409 m2. (b) |S21|
of the Pb cut-circle cavity at T=5.7 K for different input powers.

To obtain a base temperature below 1 K, all the stainless steel parts are re-

placed by brass or aluminum to improve their thermal conductivity. Fig. 4.2 shows

the experimental setup in the dilution refrigerator. The resulting S-parameters are

similar to Fig. 4.1(b) at T=5.7 K, but slightly more nonlinear. We also found that

ρ12 = 0.993, which is smaller than those obtained in the pulsed tube refrigerator.

The S-parameters mainly show resistive nonlinearity. As presented in Fig. 4.1(b),

the larger the input power, the lower the resonant peak, indicating a smaller quality

factor.
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Figure 4.2: Picture of the Pb cut-circle hung on the mixing chamber plate in the
BlueFors XLD400 dilution refrigerator.

To create an ensemble of realizations, a perturbation is introduced by rotating

the Teflon perturber. Another improvement in the dilution refrigerator experiment

is that the mechanical rotation is now controlled by a motor inside the cryostat.

Traditionally, the mechanical feed-through requires a rod extending from room tem-

perature all the way down to the cavity in order to rotate the perturber. This con-

figuration requires an opening in the plate at every stage of the fridge. However

these openings mean that the thermal radiation can not be totally blocked. In ad-

dition there is a thermal connection to the room temperature environment through

the rotary axis. One trial has shown that with the manually controlled mechanical

feed-through, the lowest temperature reached by the billiard is 600 mK. To avoid

this problem, we employ a motor located inside the cryogenic environment. A Phy-

ton VSS stepper motor for in-vacuum and cryo applications is installed and can be
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controlled by Matlab through a LabVIEW program (At the time of the experiment,

there was a communication/USB port issue with the computer. Matlab sometimes

lost communication with LabVIEW, so the perturbation had to be manually moni-

tored by means of the motor for each realization). This setup makes the mechanical

perturbation more consistent and automated. However, the electrical current sent

to the motor will generat heat, and since the base temperature is below 1 K, the

system is very sensitive to even a small amount of heat. Therefore the motor is

mounted on the 4 K plate, several stages above the mixing chamber plate. To min-

imize heat transfer, a stainless steel tube is used to connect the motor and the gear

stage that is attached to the billiard. The torque that can be applied by the motor

is determined by its current. It has a “stop” current Istop and a “run” or “boost”

current Irun. Istop is the current supplied when the motor is in the hold position

and Irun is the current supplied when the motor tries to rotate. A good mechanical

arrangement of the billiard and motor can decrease the torque required to hold and

move the perturber. In this run, Istop is set to 0.1 A and Irun=1 A. Powering on the

motor has the effect of gradually increasing the base temperature. And whenever

the motor is powered to rotate, the temperature on the 4 K plate will have a spike

increase of around 0.05 K, see the blue line in Fig. 4.3.

On the other hand, the high power VNA is connected to measure the S-

parameters up to +35 dBm. At the highest power Pin = +35 dBm, for a continuous

sweeping time of less than 20 s with 5 averages, the temperature of the billiard could

increase from 800 mK to more than 1 K. It then takes around 10 mins relaxation time

to get the cavity back to 800 mK. As the input power decreases, the temperature

61



increase and relaxation time are also smaller. In total, to measure 5 different powers

(-5, 5, 15, 25, 35 dBm), it takes ∼ 15 mins. The temperature changes during

measurement are shown in Fig. 4.3. A maximum of 32001 frequency data points

can be taken in each sweep. In order to observe each resonant peak in the S-

parameters, a 3 GHz frequency window is swept each time. So for each realization

in the 4-16 GHz range, it usually takes 1 hour, and more than one week to measure

100+ realizations.

Figure 4.3: Temperature vs. time, blue line (left axis) is the temperature change on
the 4 K plate, the spikes indicate when the motor is powered to rotate the perturber
in the cavity; the black line is the temperature on the Pb cavity (right axis), a
typical measurement sweeps from high power (35 dBm) to low power (-5 dBm) and
takes around 15 minutes.

Because of the heat introduced by the motor and VNA, the base temperature

of the Pb cavity has increased. When taking ensemble statistics, ideally the cav-

ity is expected to be at the same temperature for each realization. The lower the

starting temperature, the longer the time it takes for relaxation. A starting temper-
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ature of T=800 mK is chosen considering the trade-offs. The motor has a rotation

step parameter for each move, a value of 5.6 for that parameter approximates a 1

degree rotation. By rotating the Teflon perturber in this way, an ensemble of 114

realizations at 5 input powers have been recorded.

Figure 4.4: (a) Comparing |S21| for different output power levels (-5, 5, 15, 25, 35)
dBm, measured with high power network analyzer configuration with the supercon-
ducting Pb cavity at 800 mK. The signal-to-noise (SNR) for low power measurement
is clearly reduced. (b) |S21| for different input powers (-10, 0, 10) dBm, measured
with a network analyzer in the standard configuration.

Because of the external components (amplifier, coupler, isolator, etc) used,

the PNA with high power option imposes some limitations in dynamic range and

frequency. Especially at low powers, we can observe that the signal to noise ratio

(SNR) of the measured S-parameters is reduced, see Fig. 4.4(a). The reason why

the low power results are more noisy is addressed in Appendix C. To have better

results at low powers, we have connected another version of the PNA N5242A in

the standard low power configuration. A total of 200001 data points are taken in

the 4∼16 GHz range, at powers -10, 0, 10 dBm, respectively, and 121 realizations

are taken. A typical S21 result is shown in Fig. 4.4(b). The low power results are
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better than those taken with the high power option, and the SNR also improves as

power increases. With a rotation angle of 3.4◦ for each realization, a full circle takes

around 106 realizations, as shown in the correlation coefficient ρ(S
(1)
12 , S

(k)
12 ) in Fig.

4.5(a). In Fig. 4.5(a), the S12 correlation ρ(S
(1)
12 , S

(k)
12 ) between realization No. k

and the No. 1 realization is plotted.

Figure 4.5: (a) Correlation coefficient ρ(S
(1)
12 , S

(k)
12 ) for realizations of the supercon-

ducting Pb cavity at 800 mK measured with low power network analyzer (-10, 0
10) dBm, where k is the number of realizations; (b) Averaged quality factor Q at
T=800 mK decreases with increasing input power.

Fig. 4.5(b) shows the quality factor Q calculated from the Fourier Transform

of S12 (4-16 GHz) for the different input powers. (Appendix A Fig. A.4 shows an

example for calculation of Q.) Consistent with the single resonant peak shown in

Fig. 4.1(b), the higher the input power, the lower the resonant peak, indicating a

smaller quality factor. The surface resistance of the cavity can be nonlinear for a

number of reasons. One possibility is that the higher input power brings heat locally

to the cavity. Some domains of the cavity experience a local temperature increase.

The surface impedance ZS = RS + iXS of the Pb cavity changes with temperature.
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It is generally observed in superconductors that RS increases with temperature. As

a result, the resonant peaks in |S12| decrease with increased input power, and so

does the quality factor Q.

Concerning systematic errors, there is error coming from the TRL calibra-

tion. During the calibration a number of different standards are measured, requiring

switching to different channels. There is an assumption that each channel has the

same length and characteristics, but this will never be the case in practice [3]. And

there are interconnects in the transmission lines from the VNA down to the billiard

which will also induce noise.

4.1.2 Noise Effects and Low Loss Limit

Now we have created ensembles of realizations of the superconducting Pb cav-

ity for different input powers. It is very interesting to see whether there are any

statistical properties changing with power, especially when the RCM normalization

procedure is applied. Following similar procedures to those in [3], the in-situ cal-

ibration is applied through Thru-Reflection-Line (TRL) methods followed by the

pseudo-open approach. With the calibrated S-parameters, the RCM procedures are

applied to get Savg, Zavg, ξ, etc. Those calculations are performed for each power

independently. By fitting the statistics of the “universal” impedance ξ, the loss

parameter α, which indicates the lossyness of the system, can be extracted. Fig.

4.6 shows an example of Re(ξ12) statistics in the 12∼13 GHz range for different

input powers. The fitted loss parameter α is in the range of less than 0.1. For a
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two-dimensional billiard, the loss parameter α is inversely proportional to the qual-

ity factor Q, α = k2A/(4πQ), where k = 2πf/c is the wave number of frequency

f and A is the area of the billiard. As seen from the single realization results, the

quality factor Q decreases with increasing input power, so it is expected that the

loss parameter α should increase with increasing input power. However, Fig. 4.6

inset shows that the fitted loss parameter α actually decreases with increasing input

power. Also note that the results from the standard network analyzer configuration

show generally smaller α compared with the results from the high power network

analyzer configuration.

Figure 4.6: Re(ξ12) statistics of the superconducting Pb cavity at 800 mK in the
12∼13 GHz range for different input powers, including both high power and standard
configurations. The fitted α and goodness of fit R2 are also given in the legend. The
inset shows the fitted loss parameter α vs. the input power, for the high power and
low power configurations, respectively.

As we observe in the measured S-parameters shown in Fig. 4.4, we suspect
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that perhaps the noise has an effect on the statistical results. This is of particular

concern in such a low loss system, which requires a large dynamic range to measure

its S-parameters. To analyze the effect of noise on the statistical results, we have

done some simulations to artificially add noise to the S-parameters. There are

several approaches to adding noise. Firstly, we start from the experimental data. A

relatively “clean” set of measured S-parameters is chosen, such as the one measured

at high power Pin = 25 dBm. And then for each realization, a white Gaussian noise is

added using the Matlab built-in function awgn with parameter snr. Fig.4.7(a) shows

an example of adding noise of different snr to S21 data. This artificially modified

data displays clear similarity to the measured data in Fig. 4.4. Next, ensembles of

S-parameters with different amounts of noise are simulated. We can apply the RCM

procedures to obtain the statistical results and the fitted loss parameters. As shown

in Fig. 4.7(b), the statistics of Re(ξ12) in the 12∼13 GHz range change because

of noise. In particular note that the fitted loss parameter α increases as the noise

intensity is increased.

In another simulation, we have tried to add random noise (Matlab function

rand) constrained the maximum amplitude. A third approach is to start with ¯̄Zavg

and a loss parameter, say α = 0.01. Firstly to generate a set of ξ determined

by α based on RMT. Next ξ is coupled to ¯̄Zavg through the RCM construction

¯̄Zcav = i · Im( ¯̄Zavg) + [Re( ¯̄Zavg)]
1/2 · ¯̄ξ · [Re( ¯̄Zavg)]

1/2. An ensemble of realizations

of ¯̄Zcav can be created, and then converted to ¯̄Scav. Similarly, by adding different

amount of noise to ¯̄Scav, the effect on the statistical properties can be analyzed.

This method of simulation gets rid of any experimental restrictions and we can vary
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the loss parameter α to observe the effect of noise on the subsequently generated

“data” for ¯̄Savg. All these simulations show similar results to that shown in Fig.

4.7. For a low loss system, where α < 0.1, the noise can clearly cause a change in

the deduced “universal” statistics. The higher the noise level, the larger the fitted

loss parameter α for a given amount of loss in the cavity. Hence the statistics do

not reflect the properties of the system under test. We conclude that there is a low

loss limitation to our nonlinear RCM analysis.

Figure 4.7: (a) Adding white Gaussian noise to measured S21 vs. frequency data
with different snr. The snr values are 40 dB and 30 dB. (b) Statistics of Re(ξ12) in
12∼13 GHz and fitted loss parameter α as a result of adding noise.

To explain how the noise plays a role in the RCM analysis, we can take a look at

the distributions of ¯̄ξ for small α. As shown in Fig. A.6, for low loss parameter α, the

Re(ξ11) statistics are distributed in a narrow region just above 0. The distribution

has a sharp peak close to 0 for small α. As α increases, the statistics are more

widely distributed and centered close to 1. As noise is added, the Re(ξ11) statistics

change and tend to be more Gaussian-like distributed instead of being narrowly

peaked. This in turn causes the fitted α to increase. For the Im(ξ11) statistics,
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the distribution is widely spread for a low loss system and narrowly focused for a

high loss system, all centered at 0. Therefore the noise effect on the statistics is not

as prominent on Im(ξ11) as that on the Re(ξ11) statistics. The properties for the

off-diagonal distributions are similar. The Re(ξ21) distribution is narrowly focused

around 0 and the Im(ξ21) statistics are widely distributed for low loss parameter α.

Similarly as a result, the statistics of the real part is more susceptible to noise than

the imaginary part.

Figure 4.8: Im(ξ22) statistics for the 12∼13 GHz range of the superconducting Pb
cavity at 800 mK for different input powers, including both high power and standard
configurations. α is the fitted loss parameter and R2 is the goodness of fit. The
inset shows the fitted loss parameter α vs. the input power, for the high power and
low power configurations, respectively.

Fig. 4.9(a) shows the RCM theoretical distributions for low loss parameters

α 6 0.1, and compared with the theoretical prediction for zero loss (a Lorentzian

[26, 72, 73]. It is predicted that in the low loss limit α ∼ 0, Im(ξ11) tends to be
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a Lorentzian distribution with formula P (x) = 1
π(1+x2)

. As seen from Fig. 4.9(a),

for α < 0.1, the distributions look identical when plotted on a linear scale. The

differences among them mainly occur in the long tails. Fig. 4.9(b) shows their

differences in the tails if the distributions are plotted on a log scale. The smaller the

loss parameter, the distribution spreads over a wider range. Stated another way,

the variance of the distribution increases as the loss parameter decreases.

Figure 4.9: RCM predicted Im(ξ11) statistics for low loss parameters α 6 0.1.
Distributions are plotted in linear scale (a) and log scale (b), and compared with
the Lorentzian analytical expression which is expected in the α = 0 limit.
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Figure 4.10: (a) Experimental statistics of Im(ξ11) of the superconducting Pb cavity
at 800 mK for the 14∼15 GHz range for different input powers, plotted in log scale.
(b) A best fit to the tail of Im(ξ11) at Pin = 35 dBm showing the loss parameter α
is on the order of 10−3.

Due to the noise (as discussed above), the imaginary statistics tend to give a

smaller loss parameter from the billiard data. In order to properly find α, we need

to see the long-tail distributions of Im(ξ). Fig. 4.10(a) shows the experimental

results of the statistics of Im(ξ11) in the 14∼15 GHz range for input powers in the

high power configuration. As the power increases, the tails tend to be longer, i.e.

the distribution is more widely distributed. The distribution of Im(ξ11) can spread

up to normalized values of 6000. Compared with the theoretical distribution shown

in Fig. 4.9(b), the loss parameter could be as low as 10−4. Fig. 4.10(b) shows a

best fit to the statistics in the 15∼16 GHz range. The best fit gives α ∼ 10−3.

However, the tails of the blue curve clearly stretch out further than the fit (red). If

we calculate the variance σ2 of the distribution, and assume α = 1/(πσ2), then the

resulting α ∼ 0.0003. Thus there is no definitive conclusion of what the real α is.
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4.1.3 Further Discussion

From Fig. 4.6, One can see that the statistics measured with the standard

configuration give smaller loss parameter than those measured with the high power

configuration. This indicates that the new VNA in standard configuration has lower

noise and larger SNR. Fig. A.6 shows that from the Im(ξ11) statistics, the lower the

α, the lower the maximum height in the distribution (which occurs at Im(ξ11) = 0),

until it approaches 1/π = 0.318 as α→ 0. This means that the PDF at Im(ξ11) = 0

should not decrease lower than 0.318. However, the distributions of Im(ξ11) shown

in Fig. 4.8 have maximum height around 0.18 for the standard configuration data

sets. This appears to be unphysical and results in very poor fittings with low R2.

We did a series of simulations and RCM analysis to get a deeper understanding

of the statistical properties of low-loss billiards. We start with a Savg from experi-

ment, and transform it to Zavg. For α =0.1, 0.01, 0.001, 0.0001, an ensemble of 120

realizations of ξ are generated from RMT, respectively. As before, an ensemble of

Zcav and Scav are simulated accordingly. Then from Zcav, if we apply RCM to get

the normalized impedance ξ, the statistics of Re(ξ11) and Im(ξ11) are shown in Fig.

4.11. We find, as in the experiment, the smaller the α, the worse the fitting. Also

note that for the Im(ξ11) distributions, the lower its peak value at Im(ξ11) = 0 as α

decreases. One possible reason is that the smaller the α, the more widely distributed

the Im(ξ), and a much larger ensemble of statistics with good accuracy is required

to generate good statistics. This simulation might help to explain the unphysical

results observed for the statistics of Im(ξ11) at powers -10, 0, and 10 dBm.
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Figure 4.11: A simulation of 120 realizations starting with Savg and different loss
parameters. Then RCM is applied to get: (a) Statistics of Re(ξ11). (b) Statistics of
Im(ξ11).

As mentioned in the above discussion, there is an inconsistency of the fitted

loss parameter α between the statistics of Re(ξ) and Im(ξ), shown in Fig. 4.6 and

Fig. 4.8. We find that this result is prevalent in this billiard. We find that the

fitted loss parameter from the Im(ξ) statistics is always smaller than that from the

Re(ξ) statistics. We have tested the results in many configurations. For example,

we have directly connected the VNA to the billiard at room temperature, which

eliminates the transmission lines in the fridge and the TRL calibration. We have

investigated whether it is because the perturber is localized in one position, so that

the perturbation is not good enough, or that the port is too close to the edge of

the billiard. To find the answer, we created a CST model (Fig. 4.12(a)) to get

large ensembles of statistics. The port positions have been changed and the two

perturbers are allowed to move all around the billiard. Fig. 4.12(b) shows the

results of the fitted α from Re(ξ12) and Im(ξ12) statistics for an ensemble of 99

realizations. α is determined from the largest R2 which is best fit to the PDF. The
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error bar is determined by the change in fitted α that results in a 0.005 change

from the best fit R2. Note that the error bar in Im(ξ) is much larger than that in

Re(ξ). This also shows that in the low loss region, the PDF of Re(ξ) changes more

quickly than Im(ξ), hence it is more susceptible to noise. The discrepancy at low

frequencies in Fig. 4.12(b) can be understood from the fact that the mode density

is low and the wavelength is becoming comparable to the billiard dimension, thus

the statistics are not good. In the high frequency end, the loss parameters tend

to agree with each other considering the uncertainty. Overall, there is a tendency

for fit α from Re(ξ12) statistics are larger than that from Im(ξ12) statistics. These

numerical results are qualitatively similar to the experimental results, confirming

our suspicions that noise is playing a dominant role in our data analysis for this

nonlinear billiard.

Figure 4.12: (a) A CST model of the cut-circle billiard. The loss parameter of the
billiard can be tuned by changing the conductivity of the metal walls. (b) The fitted
loss parameter from Re(ξ12) statistics compared with that from Im(ξ12) statistics.
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4.1.4 Conclusion

We have shown that by putting a Pb coated cut-circle billiard into the dilution

refrigerator we have achieved a base temperature down to 500 mK and created

ensembles of realizations at 800 mK to 1 K with input powers up to 35 dBm.

With a cryogenic motor, we are able to make the perturbation more automatic

and more systematic. We have used two vector network analyzers to measure the

S-parameters at different powers. One implements with high power option that

measures S-parameter from -5 to +35 dBm. One is in a standard configuration

that measures between -10 to +10 dBm. We have shown that the billiard is in

the superconducting state and observed that the measured S-parameters are power

dependent.

From a single realization result, the data shows that the Pb billiard mainly

shows nonlinear resistance. The resonant peak in the S-parameters decreases as

the input power increases and there is virtually no shift of the resonance frequency

with power. As power increases, more circulating energy gets into the billiard. This

causes a nonlinear change in the surface impedance ZS = RS + iXS. We observe

that mainly the resistance RS increases, and as a result, the resonance in the S-

parameters decreases. Equivalently, the quality factor Q of the billiard decreases

with increasing power. The quality factor Q can also be calculated from the decay

time of the Fourier transform of the S-parameters. It shows that Q is around 6000

and decreases by around 100 as the input power increases by 10 dBm.

We are interested in the statistics of this nonlinear billiard. From Fig. 4.5(b),
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we see that Q ∼ 6000 and for ∆Q ∼ 100, we can make an estimation of the change

in α from the equation α = k2A/(4πQ). We expect dα = − k2A
4πQ2dQ = − α

Q
dQ

or dα/α = −dQ/Q. For Q = 6000, A = 0.0409 m2, f = 10 GHz, with k =

2πf/c, we can estimate α = 0.024. We expect that for a decrease of quality factor

dQ = 100 would result in an increase of loss parameter dα = 4 × 10−4, which is

a ∼ 1.6% change in α. Such a small change will be hardly seen in the statistics.

However, it turns out that the statistics change in a different direction from the

Q. As the input power increases, the loss parameter α obtained by fitting to the

normalized impedance statistics decreases. We found the reason to be the noise in

the measurement setup. The signal-to-noise ratio of the S-parameter measurements

decreases as power decreases. In such a low loss limit, the resulting noisy statistics

change in a way that resemble a higher loss case. We note that the statistics of the

real part of ξ are more susceptible to noise as the distribution is more sensitive to α

than that of the imaginary ξ statistics. It is very difficult to accurately determine

the loss parameter of the low loss system as it requires a measurement setup with

large dynamic range and it also requires a very large and high quality ensemble of

data.

σ2 is sensitive to small changes in α at low α since σ2 ∼ 1/α. But good

measurement of σ2 requires very good statistics of the ξ distribution. This requires

very good calibration in the limit where |S| → 1 (i.e. for very large fluctuating

values of the impedance). To improve the results, as mentioned in Appendix C, the

attenuation of the external attenuators can be decreased a little bit. For the PNA,

the IF filter bandwidth can be decreased in order to increase the signal-to-noise
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ratio of the S-parameter measurement, although as a result, the sweeping time will

increase. However these measures only yield limited improvement. Furthermore,

the trade-off among measurement time, heating effects, and noise effects need to be

considered.

4.2 TiN on Si Wafer Cut-Circle Microwave Billiard

Kinetic inductance comes from the inertia of the superconducting electrons

making up the rf current in the material. It is different from geometrical inductance

which comes from the inertia of magnetic field lines created by a current. From the

review written by Jonas Zmuidzinas [76], we get the idea that Kinetic inductance

can be made to change value substantially when a dc/ac current is passed through

the superconductor, without changing the losses at all. They can grow TiN super-

conducting films on Si wafers. The TiN material has very large kinetic inductance

and has a strong nonlinear reactance. Based on this, we proposed to create a chaotic

cavity with a TiN on Si wafer like the cut circle cavity. The two superconducting

films make a parallel plate resonator, assuming the open edges do not radiate too

much. We can excite it from the edge at two ports. We then slice off a section of

the wafer to make it a cut circle billiard. The chaotic property of a circular billiard

with a straight cut has been discussed in [96]. The combination of wave chaos and

nonlinearity of the superconductor will make it interesting to both communities. A

series of finite-element numerical simulations are made to verify this idea.

77



4.2.1 Simulations of the TiN Cut-circle Billiard In CST

Figure 4.13: Dimensions of the proposed billiard. (a) Top view: the Si wafer has a
diameter of D=200 mm. A straight cut of 50 mm wide is made from the edge. (b)
Cross-sectional view (not to scale): TiN is coated on both top and bottom of the Si
wafer. The thickness of the Si wafer is h=0.725 mm. The thickness of the TiN has
not been decided yet and needs further discussion.

The dimensions of the proposed billiard are shown in Fig. 4.13. The Si wafer

has a standard dimension of diameter D = 200 mm and thickness h = 0.725 mm.

A 50 mm wide part is cut away from the edge to make it a cut-circle ray-chaotic

billiard (white area in Fig. 4.13(a)). It can be cut by any amount between 0 and

R = 100 mm [96], for any crystal direction that is convenient. TiN will be coated on

top and bottom of the Si wafer, and the edges will be left un-coated. The thickness

of the TiN has not been decided and needs more discussion due to our limited

experience with this material. The sample needs to have high kinetic inductance

and strong (mainly) inductive nonlinearity at high rf current density, while having

minimal resistive nonlinearity at the same time.
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4.2.1.1 Eigen Modes of the TiN Cut-circle Billiard

Consider a billiard with walls in the shape of a cut circle. All orbits of a

Newtonian particle placed in such a billiard will be classically chaotic [96, 97]. We

are interested in the wave properties of such billiards in the short wavelength limit,

which is the regime of wave chaos. To verify that the cut-circle Si wafer billiard

can be used in our setup, the first question is its resonance frequencies and eigen

modes. We normally operate in the range of less than 20 GHz. Si has a dielectric

constant of εr = 11.9. The wavelength would be reduced by a factor of
√

11.9 = 3.45

compared to free space. A Si wafer normally has thickness in the range of less than

1 mm. By choosing a D = 200 mm diameter Si wafer with thickness of h = 725 µm,

the fundamental resonant mode is approximately at f1 = c
D
√
ε

= 433 MHz, and the

cut-off frequency for higher order modes is at fc = c
2h
√
ε

= 60 GHz.

Fig. 4.14(a) is a CST model made by cutting 50 mm away from a Si wafer with

top and bottom coated with PEC (perfect electrical conductor) material, and the

edges open. Two antennas are around 1 mm away from its edge to couple microwave

signal into the cavity. This configuration was shown to have good coupling for a

parallel plate resonator [98]. Fig. 4.14(c) shows the results of the S-parameters

which demonstrate good coupling between the antenna and the billiard. And by

looking at the electric field distribution, we see that the microwave signal is indeed

coupling into the Si wafer (and not simply propagating on the outer surfaces). The

resonant peaks in S21 should correspond to the eigen modes of the Si wafer. Fig.

4.15(a) shows a zoomed-in view of the resonant peaks near 5.9 GHz. The green
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Figure 4.14: (a) 3D model of the TiN on Si cut-circle billiard with two antenna
ports to couple signals in/out of the resonator. (b) A detailed view of how the
antenna couples to the billiard. (c) Simulated S-parameters of the configuration
with antenna to cut-circle edge distance d = 1 mm and antenna center pin length
h = 7 mm.

Figure 4.15: (a) A detailed view of the S-parameters near 5.9 GHz, search S21 peaks
as the eigen frequencies, excluding wiggles caused by finite time truncation of the
signal. (b) Field distribution for the 495th eigen mode at frequency 7.026 GHz
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Figure 4.16: (a) The mode frequencies found from S21 peaks, compared with the first
500 eigenmodes solved for the closed Si wafer cut-circle. (b) Eigen mode frequencies
fit to Weyl formula.

circles are the results of searching for the resonant frequencies, neglecting small

wiggles caused by finite time truncation in the simulation. The first 500 modes of

the closed billiard are solved in the eigen solver. Fig. 4.15(b) shows the electric

field distribution for the 495th eigen mode at 7.026 GHz. Fig. 4.16(a) shows the

comparison of the calculated eigen modes with the S21 resonant peak frequencies.

They have relatively good agreement. The number of “energy levels” N with energy

less than E ∼ k2 = (2πf/c)2 in a two-dimensional billiard and is given by the Weyl

formula N(E) = C1 ∗E +C2 ∗E1/2 +C3, where C1 = A/4π, C2 = −L/4π, and A is

the cross-sectional area of the cavity and L is the perimeter of the cavity. For our

Si cut-circle billiard, A = 0.011 m2, L = 0.3826 m. By fitting the first 500 eigen

modes to the Weyl fomula as shown in Fig. 4.16(b), it is estimated that there are

∼ 37, 729 modes below the cut-off frequency fc = 60 GHz.
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4.2.1.2 Perturbation

We expect to observe several kinds of nonlinearity in this billliard. The first

is that the kinetic inductance of the TiN films will be strongly temperature depen-

dent. For TiN film thickness smaller than the magnetic penetration depth λ, the

temperature dependent kinetic inductance will scale as Lk(T ) ∼ λ2(T ) and diverge

as the transition temperature Tc is approached from below. This will result in a res-

onant frequency shift downwards since each resonant mode has a resonant frequency

f0(T ) ∼ 1/
√
Lk(T ). All of the modes of the TiN resonator will shift considerably

with temperature, and this will constitute a global and fairly uniform perturbation

to the system. The second source of nonlinearity is that the kinetic inductance is

also a function of rf current flowing in the TiN. When rf signals are excited in the

billliard, in places where the currents are high, the surface reactance will change

considerably, whereas in places where the rf current is low there will be almost no

change in reactance. This nonlinearity will be different for each mode. This is a

very inhomogeneous and non-uniform perturbation. Lastly, we can create a scanned

laser probe that locally heats the TiN to elevated temperatures closer to Tc. This

will create a “bubble” of enhanced kinetic inductance and therefore also enhanced

surface reactance, with minimal change in resistance. We can scan this hot-spot to

perturb many modes of the TiN wafer resonator.

To get statistical results from the chaotic cavity experiment, proper pertur-

bation is required to create ensemble realizations. “Proper” means that among

realizations, the detailed configuration has been changed but the volume of the bil-
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liard remains the same (to maintain the same mean mode spacing). Since the Si

wafer is a solid medium, we can not put perturbers inside the billiard in the con-

ventional way. We have come up with two possible methods: the laser scanning

perturbation or the mechanical deformation perturbation. The experiments will be

done in the pulsed tube refrigerator (base T ∼ 5 K) or the dilution refrigerator (base

T ∼ 30 mK). Since we are interested in the nonlinear properties of the billiard, the

ensemble of data will be taken at different excitation powers. We have upgraded

the Keysight Vector Network Analyzer N5242A with the high power option which

enables power output up to ∼ +40 dBm. Then the RCM approach will be applied to

analyze the statistics at different excitation powers. We hope to uncover either uni-

versal or nonuniversal statistical features of this nonlinear wave chaotic system and

compare with other nonlinear wave chaotic systems as well. The simulation results

and detailed experimental procedures for each perturbation method are discussed

below.

A. Laser Shining Perturbation

One way to do the perturbation is to shine a laser spot on the TiN films. This

638 nm laser beam will cause de-paring and locally heat the sample. We already

have the setup to do laser scanning microscopy (LSM) experiments in the dilution

refrigerator. The adaptation to the Si wafer will be relatively straightforward. The

laser spot size can be controlled from 20 µm diameter to several mm or above. The

power can be controlled from 20 µW to 5 mW. A circular region on the wafer will

be heated by the laser and thus the TiN surface impedance will be changed locally.

It may be possible to briefly make a region of the film become normal. Since the
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TiN films have a strongly nonlinear reactance, we have simulated the S-parameters

for different reactance values of a circular spot on the TiN surface.

Here is a rough estimate of the reactance change caused by the laser heating.

Mattis Bardeen theory gives Lk(0) = ~Rn

π∆
for a wire with normal state resistance

Rn and superconducting gap parameter ∆, whose transverse dimensions are small

enough so that the current distribution is approximately uniform. Such conditions

can be achieved when the film width and thickness are less than the magnetic

penetration depth, which can be in the range of 10s of µm. The kinetic inductance

of such a wire is a function of current I flowing through the wire, Lk(I) = Lk(0)[1 +

(I/I∗)
2)] for I/I∗ � 1, where I∗ is on the order of the critical current of the wire.

Note that I2
∗ ∼ 1/Rn. The magnitude of the Kerr effect (i.e. the nonlinearity) is

enhanced in films with high normal state resistivity ρn owing both to large kinetic

inductance fraction α and small I∗. This implies that the maximum nonlinear

inductance will be achieved with films that have the highest normal state resistivity.

The TiN films have thicknesses t ranging from 20 nm to 100 nm and Tc values

ranging from 0.7 K and 4.5 K. The normal state resistivity of the film is typically

ρn = 100 µΩ − cm, and a positive residual resistance ratio (RRR), ρn(300K)
ρn(4K)

≈ 1.1.

Assuming t=20 nm, Rn = ρn/t = 50 Ω/sq. One has Lk(0) = ~Rn

π∆
= 11.35 pH/sq

with ∆ = 2kBTc. We estimate the reactance change δX = 2πfδLk = 0.43 Ω/sq

at f = 5 GHz, and it will be larger at higher frequencies. Fig. 4.17 shows that

due the reactance change from 0.1 Ohm/sq to 10 Ohm/sq, there is a substantial

frequency shift of the peaks in S12. We require frequency shift on the order of the

mean spacing between modes. This demonstrates that the laser perturbation is a
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Figure 4.17: (a) Schematic illustration of a laser perturbation on the PEC film
with a spot radius of 2 mm. The effect of the laser heating is modeled as changing
the reactance of the spot region. (b) Simulated S-parameters as the result of the
reactance change. An Ohmic sheet impedance of Z = R + i ∗X (Ω/sq) is assumed
for the spot. The X values are listed in the legend.

promising approach to create ensemble statistics.

B. Mechanical Perturbation

Another way to create a perturbation of the cut-circle eigenmodes is to me-

chanically deform the Si wafer shape. To do this, we are thinking of attaching

a piezo-electric piston to distort the Si wafer. By applying voltage to the piezo,

different amounts of force can be applied to the Si wafer to make a mechanical de-

formation. Fig. 4.18(a) and 4.18(b) shows the deformation of the Si wafer due to

a force intensity of 0.2 MPa on a 1 cm diameter circular region. This is equivalent

to a 1.6 kg mass on the circular region. The perimeter of the Si wafer is fixed in

position. The pictorial view of the displacement in Fig. 4.18(a) has been magnified

by a factor of 10 to see the deformation. The actual maximum displacement is ∼0.5

mm.
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Figure 4.18: Mechanical perturbation (a) cross-section view of the displacement
created by a pressure of 0.2 MPa on a circular area of diameter D = 1 cm, at
the (1,1) inch position from the circular center. The displacement view has been
magnified by a factor of 10 to see the deformation. The legend shows the actual
displacement. (b) Displacement overview of the deformed wafer.
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The largest stress the Si wafer experiences is 0.0439 GPa. Since CST cannot

determine whether the material breaks or not, we need to estimate this ourselves.

The ultimate tensile strength (or “failure stress”) of a material is the amount of stress

that a material can take before breaking. The “yield strength” of a material is the

amount of stress that a material can take before it becomes plastically deformed. For

silicon, it is assumed that the single crystalline Silicon does not yield until fracture

occurs. The fracture strength of silicon given in [99] is 7000 MPa. More practically,

the failure stresses are estimated to be in the order of 300 MPa by experience with

anisotropically etched diaphragms. Either way, the 43.9 MPa maximum stress on

the Si wafer estimated by CST should not break it.

The goal of the mechanical perturbation is to change the eigen modes of the

Si wafer. There are two ways to do the simulation of the change in eigenmodes.

In CST, the displacement fields from the Mechanical Solver can be imported in to

the Eigenmode Solver. A sensitivity analysis will give the change in eigen mode

frequency. The sensitivity analysis calculates a local derivative of the eigen modes

for small displacements, assuming that the field distribution to be the same between

the deformed and undeformed wafer. For the deformation given in Fig. 4.18, the

change in mode frequency is on the order of 10−3 ∼ 10−4 MHz, while the mode

spacing for the eigen modes is ∼ 15 MHz. If the force intensity is increased by

a factor of 10, the displacements, stress distribution, changes in frequency are all

increased by a factor of 10, correspondingly. This appears to be too small to us.

Another way to calculate the mode frequency changes due to the deformation is to

export the mesh of the deformed shape and solve for the new eigen modes directly.
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However, it turns out that there is a bug in CST in that the mesh is not imported

with the accuracy necessary for this kind of problem. CST is currenly addressing this

bug. They have replied that since the deformation is much less than the wavelength,

the minute change in the eigenmodes makes sense. The only time the eigenmode

would have a significant difference is if the deformation is probably around 20% or

so of the wavelength. For a 0.5 mm deformation of the wafer, we would need to

measure modes at 35 GHz and higher. Therefore the current hypothesis is either to

measure the S-parameters in a higher frequency range or to increase the magnitude

of the mechanical deformation. This requires experimental verification.
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4.2.2 Preliminary Results on the TiN Cut-circle Billiard

Figure 4.19: (a)Top view of the experiment setup, the Cu plate is made to support
different sizes of Si wafer. (b) Back view, a screw made of Teflon or other plastic
material is used for mechanical perturbation. (c) Detailed view of the setup, the
quartz block is used for mechanical support and thermal conduction. The Teflon
block in the SMA connector is used to provide electrical isolation between the wafer
and the connector as well as mechanical support to the wafer.

We have designed the experimental setup shown in Fig. 4.19. The design

allows for experiments on both 3-in wafers and 7-in wafers. It also allows for both

mechanical and laser shining perturbation. The single crystal quartz blocks are used
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for mechanical support and thermal coupling. We started testing using Nb on 3-in

Si wafers which we can make ourselves. Fig. 4.20 shows the actual experimental

setup in the pulsed tube refrigerator. The thermometer is placed on a separate

quartz block so that it experiences the same conditions as the wafer.

Figure 4.20: Experimental setup in pulsed tube fridge. A test sample of Nb on 3-in
Si wafer is used.

We found that the coupling between the antenna and the wafer is poor. So

we have tried several approaches to improve the coupling. Firstly, there are a lot of

resonances coming from the environment, since the inner can itself is made of metal

and can served a 3D chaotic system. To suppress the coupling to the environment,

microwave absorbers are covered on the inner can as well as around the lauch SMA

connector, shown in Fig. 4.21(a) and 4.21(b). Fig. 4.21(c) shows the measured raw
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transmission S-parameters S12 at room temperature where the resonances from the

environment are effectively suppressed. Essentially there is no resonance from the

wafer when it is measured at room temperature.

Figure 4.21: (a) Microwave absorbers are covered over the SMA launch connectors.
Microwave absorbers are also attached to the copper plate below the wafer. (b)
Interior of the can is also covered with microwave absorbers. (c) S12 measured at
room temperature with microwave absorbers used in (a) and (b).

Good thermal coupling of the wafer is achieved as the base temperature mea-

sured on top of the quartz block is 5.8 K. Since we measure S12 at different tem-

peratures, shown in Fig. 4.22(a), the change in S12 indicates the normal to super-

conducting transition. We find that the regular set of resonances seen in S12(f)

have a period of around ∆f =0.6 GHz. Equivalently, the length of the (apparently

one-dimensional) resonator is c/(∆f
√
ε(Si)) ∼ 16 cm which is the diameter of the

3 in wafer. It is found the quality factor Q of these resonances is around 70 (the

3 dB bandwidth calculation at 10 GHz gives Q ∼ 67; and FFT of |S12(f)| gives
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Q ∼ 83), indicating this is a high loss system. We conclude that only the shortest

orbits going directly between the excitation and receiving ports through the Si wafer

are observed. The Si wafer is undoped and it is reported that the dielectric loss of

Si at low temperature is in the order of tanδ ∼ 10−3 [100]. Since the Q values are

much less than 103, the experiment shows that the wafer we used is much more

lossy. Our next step is to utilize a truly low loss substrate such as sapphire.

Figure 4.22: Plots of transmission amplitude |S12| vs. frequency. (a) |S12| at different
temperatures shows Nb is superconducting at T = 6.1 K. (b) |S12| of the Nb two-
side coated Si wafer for different input powers at T = 6.1 K mainly shows nonlinear
resistivity of the Nb.

Fig. 4.22(b) shows the |S12| for different input powers at temperatures below

Tc. The results show nonlinear resistance from the Nb films on Si. For this run,

to improve the coupling, the SMA connectors are soldered directly to the wafer.

Though the contact is not very good due to the difficulty in soldering to the wafer,

there is still partial contact, and this creates strong coupling. For high input power,

the heating apparently drives Nb to the normal state and S12 appears to be the same

as that measured in the normal state. To avoid this, the coupling does not need to
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be that strong, and the use of the Teflon block in the original design is suggested.

The mechanical perturbation is also tested and judged to work.

We received a 30 nm thick TiN film sample on Si wafer from a commercial

source. With Chirs Eckberg in Prof. Johnpierre Paglione’s group, its superconduct-

ing temperature was measured to be 3.7 K in the Physical Property Measurement

System (PPMS). This source of TiN looks promising for creating a nonlinear re-

active cut-circle resonator. We now need to find the best coupling conditions to

observe the thousands of expected modes in this resonator, and to drive them into

the nonlinear reactive regime.

4.2.3 Future Work

A list of planned tests on the Nb billiard include:

1. apply our in-situ TRL calibration;

2. measure the loss parameter of the billiard, in the linear response regime;

3. check that the mechanical perturbation achieves a sufficiently strong pertur-

bation. This may require the use of piezo materials;

4. check the effects of laser perturbation when the wafer is cooled in the dilfridge.

When the above prodedures are confirmed, for the TiN billiard, we propose the

following measurements and data analysis procedures:

1. Put the billiard into the dilution refrigerator. Measure the transition temper-

ature Tc. It can be found from the sudden change of the S-parameters as a
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function of frequency.

2. For T < Tc, measure the low power S-parameters. Find the eigen spectrum of

the billiard and compare with the Weyl formula.

3. For T < Tc, measure the S-parameters at different powers, see how the S-

parameters change with power.

4. Measure the S-parameters at different temperatures with low power, both

above and below Tc. See how the S-parameters change with temperature.

• If temperature perturbation is good enough, i.e. frequency shift is com-

parable with the mean mode spacing, then ensemble statistics can be

created by changing the temperature. Such ensembles will also be col-

lected for high rf powers.

5. For laser shining perturbation, gradually increase the laser intensity to see

how the S-parameters (for low excitation power) change with laser intensity.

Find a laser power that is large enough for the required perturbation.

• Create ensemble statistics by changing the laser spot position. The en-

semble will also be collected for high rf powers.

6. To test the mechanical fracture stress at T < Tc, several dummy samples are

needed. The fracture stress might depend on the force position and how the

billiard is mounted.
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7. For T < Tc, gradually increase the mechanical stress. See how the S-parameters

(at low excitation power) change.

8. If the mechanial perturbation is good enough, vary the force positions and

strength to create the ensemble statistics. The ensemble will also be collected

for high rf powers.

9. Once the ensemble data is collected, apply the RCM technique to analyze the

data for each power, respectively.

• First test whether the RCM works for the low power case. Based on the

simulation, it should. If not, find the reason and correct it.

• Apply the RCM to the high power statistics, and see whether and how

the statistics change with power: this is our objective with respect to

nonlinear statistics! We wish to observe statistical changes with power

and explain why they change.

• We will also simulate the microwave properites of the real device once

the TiN film parameters are known.
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Chapter 5: Corbino Reflection Technique to Measure Material Mi-

crowave Properties

5.1 Experiment Setup

The Corbino reflection technique is a broadband non-resonant experiment at

mircrowave frequencies (from DC - 50 GHz) that measures the reflection of a mi-

crowave signal incident on the sample [101–105]. The measurement has a special

geometry in which the thin film forms a short circuit between the inner and outer

conductors of a coaxial cable as a thin disk (Fig. 5.1), called a Corbino disk [101,102].

It has the advantage that the currents in the film flow in the radial direction, and the

magnetic fields produced only exist in the azimuthal direction, thus the edge effects

are minimized. This technique is very useful to study the motion of magnetic vor-

tices in superconducting materials where edge contributions are significant [106–109].

It has also been used to measure the shielding effectiveness of carbon nanotube

films [77,78]. Under this geometry, the calibrated complex reflection coefficient S11

is then measured for the sample. By applying standard transmission line theory, the

surface impedance ZS of the sample can be extracted. We utilize this technique to

characterize the room temperature microwave properties of various film materials,

96



including the reflectivity RF , transmittance TF and absorptivity AF .

Figure 5.1: Schematic sketch of the Cobino measurement setup. The coaxial cable
inner radius is a = 0.254 mm; the outer radius b = 0.84 mm.

The calibration procedure and data analysis are addressed in Refs. [103,104].

The measured reflection coefficient S11 is related to the load impedance ZL presented

by the sample as:

S11 =
ZL − Z0

ZL + Z0

(5.1)

where Z0 is the characteristic impedance of the coaxial transmission line, typically

Z0 = 50 Ω. The load impedance ZL is the ratio of the total voltage across the

Corbino disk to the total current flowing through the disk. It depends on the geom-

etry of the Corbino disk as well as the properties of the sample. In our experiment,

the coaxial cable has an inner radius a = 0.254 mm and an outer radius b = 0.84

mm. The load impedance ZL is related to the surface impedance of the thin film

ZS through:

ZL = ΓZeff
S , Γ =

1

2π
ln(

b

a
) (5.2)

This measured surface impedance is the effective surface impedance of a thin film

97



on a substrate [4]:

Zeff
S = Zbulk

Zsub + Zbulktanh(−iq̂t0)

Zbulk + Zsubtanh(−iq̂t0)
(B.4) (5.3)

where q̂ = ω
c

√
ε̂ is the value of the wavevector of the bulk material.

q̂ =
ω

c
N̂ =

ω

c

√
εµ1/ε0µ0 = ω

√
εµ1 (5.4)

In SI units, Eq. 5.3 should reduce to (if q = ik, need to check for i, also check for

Eq. (5) in [110]):

Zeff
S = Zbulk

Zsub + Zbulktanh(kt0)

Zbulk + Zsubtanh(kt0)
(5.5)

where

Zbulk =

√
µ

ε
, k = ω

√
µε (5.6)

In the case |kt0| � 1, then tanh(kt0) ∼ 1, Zeff
S = Zbulk. While if |kt0| �

1, tanh(kt0) ∼ kt0,

Zeff
S =

(ω
√
µεt0)−1 +

√
µ/ε

Zsub√
ε
µ

+
(ω
√
µεt0)−1

Zsub

=
1/(kt0) + Zbulk/Zsub

1/Zbulk + 1/(kt0)
Zsub

(5.7)

in the case of |Zbulk| � |Zsub|, we can further simplify to

Zeff
S ≈ 1/(kt0)

1/Zbulk + 1/(kt0)
Zsub

=
1

ωεt0 + 1
Zsub

(5.8)

5.2 Derivation of RF , TF , AF

1. Obtain ε from Zeff
S . For |kt0| � 1, Zbulk = Zeff

S =
√

µ
ε
, thus ε = µ/(Zeff

S )2.

For |kt0| � 1, from Eq. 5.8:

ε ≈ (
1

Zeff
S

− 1

Zsub
)/ωt0 (5.9)
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2. Obtain σ = σ1 + iσ2 from ε = ε1 + iε2, refer to Fig. 5.2, and converted to

SI units:

σ1 = −ωε2, σ2 = ω(ε1 − ε0) (5.10)

where ε0 = 8.854× 10−12F/m. Note there is a sign change for σ in Gruner’s book,

which is not correct for SI units.

3. Get the complex refractive index N = n + iκ from ε, similarly, refer to

Fig. 5.2. Note that to distinguish Im{N} from the complex propagation constant

k, differing from Gruner’s book, we have used κ to denote the extinction coefficient

here.

n = { µ1

2µ0

[(
ε1

ε0

)2 + (
ε2

ε0

)2]1/2 +
ε1µ1

2ε0µ0

}1/2 (5.11)

κ = { µ1

2µ0

[(
ε1

ε0

)2 + (
ε2

ε0

)2]1/2 − ε1µ1

2ε0µ0

}1/2 (5.12)

where µ = µ1 + iµ2 is the permeability of the material and µ0 = 4π × 10−7 H/m.

4. Obtain α (power absorption coefficient with units of m−1), β (an angle

indicating the phase change on once passing through the medium of thickness t0

and refractive index n), φr (phase shift: the phase difference between the phases of

the reflected and the incident waves) from n, κ:

α =
2κω

c
=

4πκ

λ0

=
4πκf

c
=
µ1

µ0

σ1

nε0c
(2.3.18− 19), (5.13)

φr = atan(
−2κ

1− n2 − κ2
) (2.4.14, pg.37), (5.14)

β =
2πnt0
λ0

(B.11) (5.15)

Here λ0 is the wavelength in vacuum, λ0f = c, and we have used a result from Fig.

5.2, namely 2nκ = µ1ε2 to find that κ = µ1
µ0

σ1
2nωε0

in the last step for the expression

of α.
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5. Obtain RF , TF , AF from α, β, φr. For a material with finite thickness t0,

the reflectivity RF , transmission TF and absorptivity AF of a free-standing film (i.e.

no substrate effects included) are as follows.

RF = R
(1− exp(−αt0)2 + 4exp(−αt0)sin2β

[1−Rexp(−αt0)]2 + 4Rexp(−αt0)sin2(β + φr)
(B.9) (5.16)

R =
(1− n)2 + κ2

(1 + n)2 + κ2
(B.10a) (5.17)

TF =
[(1−R)2 + 4Rsin2φr]exp(−αt0)

[1−Rexp(−αt0)]2 + 4Rexp(−αt0)sin2(β + φr)
(B.12a) (5.18)

AF ≈
8ε2πt0/λ0

4 + 8ε2π/λ0 + (ε2
1 + ε2

2)4π2t20/λ
2
0

(B.18) (5.19)

This is valid for arbitrary thickness t0. We should have RF + TF + AF = 1. As

t0 →∞, RF → R. Note Eq. (B.18) for AF only holds for thin metallic film, which

satisfies ε2
1 � ε2

2 and nt0 � λ0. Otherwise, we can use AF = 1 − RF − TF to get

the absorptivity. The shielding effectiveness as a function of frequency for different

film thicknesses is calculated through SEtot = −10logT , T is the electromagnetic

radiation transmittance, which depends on the complex index of refraction N =

n+iκ and the bulk reflectivity R. This formula is applicable when the film thickness

is much less than the wavelength [77].

On the other hand, for electrically conductive materials, theoretically, the

electromagnetic interference shielding effectiveness (EMI SE) can be calculated from

the Simon formalism [111],

SE(dB) = 50 + 10log(
σ

f
) + 1.7t

√
σf (5.20)

where σ [S· cm−1] is the electrical conductivity, f [MHz] is the frequency and t [cm]

is the thickness of the shield. Experimentally, EMI SE is measured in decibels [dB]
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and defined as the logarithmic ratio of incoming power PI to transmitted power

PT as SE(dB) = 10log(PI/PT ). And the EMI shielding efficiency SE (%) can be

converted from the EMI shielding effectiveness (dB) using the equation:

SE(%) = (1− 10−
SE(dB)

10 )× 100 (5.21)

The EMI shielding efficiency SE (%) represents the ability of a material to block

waves in terms of percentage, which is essentially the complementary of transmit-

tance 1 − T in our calculation. We’ll compare our approach 5.18 with the Simon

formalism 5.20 for calculation of the shielding effectiveness of conductive materials.
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Figure 5.2: Table 2.1 from ref. [4], note that we have used κ instead of k for the

extinction coefficient.
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Figure 5.3: Table G.1 from ref. [4].

103



5.3 Results

We first present the data analysis for good metals whose material properties

we are familiar with, then three groups of new materials are measured. Their pre-

liminary properties are given in Table. 5.1, 5.2, and 5.3, respectively.

Table 5.1: Preliminary Examination on Wentao’s Samples

No. property DC R (Ω) Thickness (mm) d/m |kt0| vs. 1

1 like fresh wood >10M 2.61 d <

2 like carbonized wood 452 2.43 m <

3 like carbonized wood 320k/-137k 0.8 m <

Note: 1. DC resistance R is the measured resistance between the inner and outer

conductor of the coaxial cable shown in Fig. 5.1; 2. d/m: whether a material is

dielectric-like or metal-like is determined by whether it blocks the resonant peak of

the substrate or not; 3. |kt0| vs. 1: compare |kt0| vs. 1. Since there are different

approaches for |kt0| � 1 and |kt0| � 1, each assumption is taken respectively to

begin with, if the final results are consistent with the assumption, |kt0| vs. 1

relationship is determined.
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Table 5.2: Preliminary Examination on Geng’s Samples

No. property DC R (Ω) Thickness (mm) d/m |kt0| vs. 1

1 500 2h 1.26M 1.58 d <

2 600 2h 440k 1.63 d <

3 700 2h 84 1.81 m <

4 800 2h 5 1.17 m ∼

5 1000 2h 3 0.5 not d >

6 2000 2min 5 0.49 not d >

7 2000 4min 3 0.69 not d >

8 2000 6min 4 0.47 not d >

9 superwood 700 2h 50 1.1 m <

10 WC NiO 42 2.88 m <

11 WC CoxO 60 2.8 m <

Table 5.3: Preliminary Examination on Yubing’s Samples

No. property DC R (Ω) Thickness (µm) d/m |kt0| vs. 1

1 10% 129 d <

2 30% 80 d <

3 50% 110 d <

4 70% 220 m ∼

5 90% 384 m ∼
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5.3.1 Ideal measurements for good metal

We first derive the theoretical quantities we expect for good metal, |ε1| � |ε2|,

|σ1| � |σ2|, assuming σ = 1/ρ are real,

Zbulk ∼
√
iµω

σ1

=
iµω

k
=

1 + i

σ1δ
, k =

√
iµω

ρ
=

1 + i

δ
=

√
iωµ0σ1, δ =

√
2

µωσ1

(5.22)

Note that σ and ρ are complex in general. However the expression for the skin

depth δ often assumes that σ and ρ are real. So if we consider a copper film with

thickness t0 = 0.015 mm, ρ = 1.68× 10−8(Ω ·m), σ = 5.96× 107(S/m). We can get

Zbulk from Eq. 5.22, and Zeff
S = Zbulk for a good metal. From Eq. 5.2 we can get

ZL and from Eq. 5.1 we can get the expected measured S-parameters.

Then from Zeff
S we can follow the procedures to obtain ε,N and other quan-

tities. Fig. 5.4 and Fig. 5.5 shows the results. We have |S| ∼ 1 with phase=180o

which is like a short circuit. Impedance Re(Zeff
S ) = Im(Zeff

S ) as expected from

Eq. 5.22. Conductivity |σ1| � |σ2|, dielectric constant |ε1| � |ε2|, refractive index

n = κ, bulk reflectiviy R ∼ 1 and skin depth δ ∼ 1 µm. That all agrees what we are

familiar with. And the shielding effectiveness SE calculated from both approaches

agrees in general.
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Figure 5.4: Expected measured quantities for a copper film with thickness t=0.45

mm� δ. (a) S-parameter; (b) Effective impedance Zeff
S ; (c) Complex conductivity

σ; (d) Complex dielectric constant ε; (e) Complex refractive index N = n + iκ; (f)

α, β, φr.
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Figure 5.5: Expected measured quantities for a copper film with thickness t=0.45

mm � δ. (g) RF , TF , AF ; (h) skin depth δ, bulk reflectivity R; (i) compare shield-

ing effectiveness SE = log(T ) with Simon’s formula Eq. 5.20; (j) |kt0| � 1, the

substrate effect can be neglected.

5.3.2 Measured Al foil

We have measured Al foil on Rohacell substrate, with thickness t0 = 0.015

mm. Though it is good metal, the term |kt0| � 1 is not valid, we need to consider

the substrate effect, following the procedures in section II. Here we have used Zsub

as the the measured impedance directly on the substrate. As will be discussed in the

108



next section, that is not valid if the sample under study is dielectric-like material.

While since |Zbulk| � |Zsub|, the inaccuracy in Zsub does not affect the qualitative

conclusions here. Comparing with the ideal measurement for good metal, the skin

depth in Fig. 5.7(b) is much larger than expected. While for a 15 µm thickness

Al film, it shouldn’t have to consider the substrate effect. The reason is that the

S-parameter shown in Fig. 5.6(a) is not close enough to 1, i.e. it is limited by the

accuracy of the setup. One of our future efforts is to increase the accuracy of the

measurements.
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Figure 5.6: Measured quantities for a Al foil with thickness t=0.015 mm < δ. (a) S-

parameter; (b) Effective impedance Zeff
S ; (c) Complex conductivity σ; (d) Complex

dielectric constant ε; (e) Complex refractive index N = n+ iκ; (f) α, β, φr.
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Figure 5.7: Measured quantities for a Al foil with thickness t=0.015 mm < δ. (g)

RF , TF , AF ; (h) skin depth δ, bulk reflectivity R; (i) compare shielding effectiveness

SE = log(T ) with Simon’s formula Eq. 5.20; (j) Compare |kt0| vs. 1, |kt0| � 1, so

the substrate effect needs to be considered.

5.4 Future work

Our goal is to develop a general procedure to characterize the microwave prop-

erties of materials. Currently the procedures for good metals is verified, or if the

condition |Zeff
S | � |Zsub| holds. In the case that the substrate is a dielectric-like

material, we have to find the impedance of the dielectric-like material. We find the
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Corbino methods to deal with dielectric-like materials need further development.

The Corbino method measures the electrical impedance and relates it to the wave

impedance of the sample under study. Therefore in order to use the Corbino method,

it requires that the sample have some degree of metallic response. In general the

sample will display a metallic response through a physical current J = σE along

with a dielectric response through a parallel displacement current Jd = εdE/dt.

Since the Corbino method uses an open circuit as a standard, if the sample has only

a dielectric response, a bare substrate will act essentially like an open circuit. And

the measured impedance won’t reflect the wave impedance of the material. Hence

for dielectric materials, one must use a totally different approach to do calibration

and data analysis. There are some approaches for characterization of dielectrics

using a similar configuration [112–118]. We’ll refer to those methods and try to

develop a procedure to get the impedance of the dielectric-like materials.
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Chapter 6: Conclusions and Future Work

6.1 Conclusions

In this work, we have studied several nonlinear systems applying the Random

Coupling Model to each case. Circuit elements mainly exhibit nonlinear IV curves,

perhaps together with nonlinear capacitance and inductance. They are point-like

nonlinearities added to the wave chaotic systems. They can be associated with

the sources to create nonlinear ports, or can be located anywhere in the system to

create a nonlinear environment. The billiard made of superconducting materials has

nonlinear surface impedance. They represent wave chaotic systems with nonlinear

boundaries. We have studied the harmonic statistics as well as power dependent

statistics of the S-parameters. For the circuit elements added to generate harmonics

or a nonlinear port, we are able to characterize their nonlinear properties. The

billiard itself is still linear and the RCM can be applied in principle. For the Pb

cut circle, the loss parameter changes because the quality factor changes, which is

a result of the nonlinear surface resistance. It will be interesting to see how the

statistics change due to the nonlinear reactance like the TiN on Si wafer cut-circle

billiard.

We are also interested to see the nonlinear statistics in the system where the
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waves lack the property of linear superposition. For example, a system with a

continuous medium with nonlinear properties. We tried to put diodes randomly

in the bowtie billiard, and to look for nonlinear dielectric or magnetic materials,

etc. For diodes located in the billiard, simulations in CST (Computer Simulation

Technology) indicates a trend for the power dependent statistics. The higher the

input pulse amplitude, the larger the fitted loss parameter, one reason for this might

be that the input signal is converted into harmonics and lost at the driving frequency.

Meanwhile experimentally, we haven’t been able to observe the nonlinearity due

to the fact that the signal is too low when it reaches the diodes. Similarly for

the nonlinear dielectric or magnetic materials, we haven’t been able to find very

nonlinear materials or the signal is too low to drive the materials into the highly

nonlinear regime. Some preliminary simulations of nonlinear media are explored in

CST showing strong nonlinearity but also nonphysical features. Therefore no solid

conclusions can be drawn from it yet. The results of these simulations are detailed

in Appendix B.

Table 6.1: Summary of various kinds of nonlinearity studied

Nonlinear sources Mechanism Type of Nonlinearity

diode I − V curve, capacitance C point like

dielectrics/ferrites ~D( ~E) or ~B( ~H) continuum media

superconducting billiard impedance Z = R + iX boundary

Table 6.1 summarizes various kinds of nonlinearity we have considered. We

hope to cover as many different mechanisms of nonlinearity as we can. By examining
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various nonlinear wave chaotic systems, and applying the RCM analysis, the univer-

sal or non-universal properties of these nonlinear wave chaotic systems are analyzed.

The nonlinear circuits and impedance have covered a wide range of nonlinearities in

real life. Though the study is not complete, this is an important step in the ongo-

ing effort to create the science of nonlinear wave chaos. Furthermore, in acoustics,

there are corresponding definitions for the impedance and scattering matrix. The

RCM has been verified to work in over-moded acoustic enclosures as well [45]. Thus

from the study of the properties in those nonlinear microwave chaotic systems, it is

promising to generalize or predict the properties of nonlinear systems to a broader

range of nonlinearities and other wave chaotic systems as well.

6.2 Future Work

As seen from the dissertation, the nonlinear systems are mainly studied in

the 2D microwave billiards. This is because the 2D billiards have been deeply

studied to verify the RCM, and also the signals propagating in the 2D billiard are

stronger, thus easier to drive devices and materials into the nonlinear regime. We

have not been very successful in creating a continuous nonlinear medium, either

because the signal is too small or the lack of strong nonlinear sources. Therefore

the solution could be either to have larger signals or to look for more extreme

nonlinear sources. We have started to apply the RCM to quantum graphs which

are considered to be 1D microwave chaotic systems. The signals in 1D systems

can be more concentrated and stronger compared with 2D systems. If the RCM
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can be applied to the 1D graph, it will be easier to observe nonlinearities. To

find strong nonlinear sources, we can employ active circuit elements. Alternatively

our group studied rf SQUID metamaterials which are highly nonlinear. We recently

started applying machine learning techniques to study wave chaotic systems. Adding

nonlinearity would benefit the fields of both machine learning and wave chaos. The

interest in nonlinear systems is growing. Making use of X-parameters in statistical

analysis of fields might be a direction to more quantitatively study nonlinear systems.
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Appendix A: Procedure for RCM Data Analysis

Here we outline the process to collect and analyze data from microwave bil-

liards and attempt to identify the universal fluctuations of impedance embedded

in the data. This is the procedure of using the Random Coupling Model (RCM)

to remove the system-specific information from ensemble data and to recover the

universal fluctuations.

Take the one-port 1/4 bowtie billiard (Fig. A.1(a)) as an example to show the

procedure for RCM data analysis. The 1/4 bowtie billiard has an area A = 0.115 m2,

height h = 7.9 mm with cut-off frequency for higher-order modes fc = c/2h = 19

GHz, and fundamental resonant frequency f1 = c/(2
√
A) = 0.42 GHz [12]. The

mean mode spacing in a 2D billiard is ∆k2
n = 4π/A, ∆f2D = c2/ωA. For a 3D

cavity, the mean mode spacing is ∆k2
n = 2π2/kV , ∆f3D = πc3/2ω2V .

A.1 Gather ensemble data for the cavity scattering parameter S̄cav

The perturbers as shown in Fig. A.1(a) are moved to different positions for

each realization. The port location is typically several wavelengths away from the

billiard boundary and the perturbers. The perturbers should not alter the near-field

structure of the port(s), as we assume that the radiation impedance of the port(s) is
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the same in all realizations of the ensemble. It is also good to use perturbations that

keep the area (or volume) of the billiard fixed, thus preserving the same mean-mode

spacing in every realization.

Figure A.1: (a) One-port measurements of 1/4-bowtie billiard with two cylindrical
perturbers (the two blue solid circles). (b) Typical results for Scav Single realization
of the bowtie billiard with perturbers (blue). Savg Average over 120 realizations
(red). Srad Radiation S-parameters where the billiard boundaries are covered with
microwave absorbers, and no perturbers are present (yellow).

To obtain good statistics, a certain number of randomized ensemble realiza-

tions need to be collected. For the bowtie, around 90 realizations can be obtained

by randomly moving the perturbers, visiting all the space available, and this is a

good ensemble. A good perturbation should be able to shift the resonant frequency

on the order of the mean mode spacing. The Pearson correlation coefficient of the

S-parameter, defined as ρ(S1, S2) = cov(S1,S2)
σ(S1)σ(S2)

should be used to check the statistical

independence of the realizations [37]. Here the covariance cov(S1, S2) is taken over

the entire frequency range of the data, typically many GHz wide and encompassing

hundreds of modes. σ(S1) and σ(S2) are the standard deviation of S1 and S2, re-

spectively. Fig. A.2 shows an example of the correlation coefficients calculated for
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different realizations of a two-port bow-tie experiment, ρ(S1, Sk) and ρ(S1, Sk+1) for

S11 and S12 respectively, where k runs from 1 to the number of realizations in the

ensemble.

Figure A.2: For a two port bowtie experiment, with 91 realizations. (a) Correlation

coefficient ρ(S
(1)
11 , S

(k)
11 ) and ρ(S

(k)
11 , S

(k+1)
11 ). (b) Correlation coefficient ρ(S

(1)
12 , S

(k)
12 )

and ρ(S
(k)
12 , S

(k+1)
12 ). The correlation coefficient of S12 is much smaller compared

with that of S11.

Other measures of statistical quality include evaluation of the ratio Λ of the

maximum transmitted power to the minimum transmitted power at each frequency

[38]. One can also look at the uniformity of the angular distribution of the S-matrix

values in the complex S-plane [20].

A.2 Calculate the ensemble-averaged impedance ¯̄Zavg

The RCM is developed in the impedance domain. After getting a good en-

semble of S-parameters, first convert the S-parameters to Z-parameters.

¯̄Z = ¯̄Z
1/2

0 (¯̄1N + ¯̄S)(¯̄1N − ¯̄S)−1 ¯̄Z
1/2

0 (A.1)
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where ¯̄Z0 is a real diagonal matrix whose elements are the characteristic impedances

of the waveguide (or transmission line) input channels at the N driving ports, which

are typically 50 Ω. In addition ¯̄1N is an N × N unit matrix. RCM states that the

statistical properties of the cavity impedance Zcav are described by a universally

fluctuating impedance ¯̄xi that is dressed by system specific properties captured by

the ensemble average impedance Zavg as:

¯̄Zcav = i · Im( ¯̄Zavg) + [Re( ¯̄Zavg)]
1/2 · ¯̄ξ · [Re( ¯̄Zavg)]

1/2 (A.2)

where ¯̄Zavg is an average of impedance over an ensemble of cavity realizations and

(or) frequencies. ¯̄Zavg contains the system specific features including the radiation

impedance of the ports and short orbits that survive the ensemble averages [28,29].

The “radiation impedance” represents the impedance measured at the ports of the

scattering enclosure in the case that the waves are allowed to enter the enclosure

through the port but not return, as if they were absorbed in the enclosure or radiated

to infinity. Experimentally, it can be measured with the empty bowtie billiard whose

boundary is covered with perfect microwave absorbers. A “short orbit” is a ray

trajectory that leaves a port and soon returns to it, or another port, instead of

ergodically sampling the system. It is the result of the port-wall and port-port

interactions that introduce deterministic field components which can remain fixed

throughout part or all of the ensemble. Z̄avgg can also be estimated if the radiation

impedance of the ports and the port locations and cavity shape are known. Z̄avg

can be approximately obtained by appropriately frequency averaging Z̄cav; and Z̄rad

can be approximately obtained by appropriately frequency averaging Z̄avg. Fig. A.3
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shows the data from Fig. A.1 for the bow-tie billiard in terms of the three impedance

quantities defined above.

Figure A.3: Results shown in Fig. A.1(b) presented in the impedance domain. Z̄cav
- Single realization of the bowtie billiard with perturbers (blue). Z̄avg - Average over
120 realizations (red). Z̄rad - Radiation impedance where the billiard boundaries are
covered with microwave absorbers, and no perturbers are present (yellow).

A.3 Extract the fluctuating normalized impedance ¯̄ξ from the data

By inverting Eq. A.2 and subtracting the non-universal features from Z̄cav

in each realization, one can uncover a statistically fluctuating quantity ¯̄ξdata that is

embedded in the data, through Eq. A.3. Under some circumstance this fluctuating

quantity corresponds to the complex ¯̄ξ that is predicted by Random Matrix Theory.

¯̄ξdata = [Re( ¯̄Zavg)]
−1/2 · [ ¯̄Zcav − i · Im( ¯̄Zavg)] · [Re( ¯̄Zavg)]

−1/2 (A.3)

It has been hypothesized that all sufficiently complex wave chaotic systems have

universal impedance fluctuations described by the Random Matrix Theory (RMT).

According to the theory [72,73], for a two port system:

¯̄ξrmt,a,b = − i
π

M∑
m=1

WamWbm

λrmtm − iα
(A.4)
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The element ¯̄ξrmt,a,b is the impedance between port a and port b, and the sum is over

the M eigenmodes of the closed wave scattering enclosure, Wam (or Wbm) represents

the coupling between the port a (or the port b) and the mth eigenmode. Based on the

assumption of the random plane wave hypothesis (the Berry hypothesis), for a wave-

chaotic cavity enclosure filled with reciprocal media (i.e., that has wave propagation

properties that are time-reversal invariant), Wam and Wbm are independent Gaussian

random variables of zero mean and unit variance. λrmtm is the mth eigenvalue of a

large random matrix. The statistics of these eigenvalues are based on RMT, and they

are found from a large random matrix selected from the GOE (Gaussian Orthogonal

Ensemble) for the time-reversal-invariant case. The Matlab code for generating the

universal impedance statistics for a given loss parameter should be found in the

Anlage group drive.

Figure A.4: Line fit log(abs(FFT (S11))) to estimate the average quality factor Q =
−ω0/(2 ∗ slope), where ω0 if the center frequency of the frequency band utilized

The loss parameter α is the only parameter determining the statistics of the

universal fluctuations. In the case of a two-dimensional billiard the loss parameter is
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given by α = k2/(∆k2Q) = k2A/(4πQ) (3D is k3V/(2π2Q)); and can be interpreted

as the ratio of the typical 3-dB bandwidth of the resonant modes to the mean spacing

in frequency between the modes. k = 2πf/c is the wave number of frequency f . The

area of the billiard is A, and Q is the typical loaded quality factor of the enclosure

under the assumption that losses are uniform. The quality factor is measured from

the energy decay time constant (τ) for the enclosure from which Q = ωτ . The

energy decay time constant if obtained by inverse Fourier transforming the measured

reflection coefficient (S11(ω)) to the time domain, then squaring the result. The

squared result is referred as the power decay profile. The slope if computed by

smoothing the average of the power decay profile. The slope (-v [dB/s]) is then used

to compute the time constant quantity factor τ = 4.34/v. An example is given in

Fig. A.4.

A.4 Lowest Usable Frequency (LUF) of the RCM

The RCM only applies to the highly over-moded regime of an enclosure. Sev-

eral characteristic lengths can be used to determine the lowest usable frequency of

the RCM. The characteristic length of the mode stirrer is defined as Lstir =
√
Astir,

where Astir is the circular area that the mode stirrer sweeps as it rotates, for 2D

billiards. Similarly, the characteristic length of the 2D bowtie billiard is defined as

Lcav =
√
Acav, where Acav is the area of the billiard. For a metallic mode-stirrer, the

physical area of the mode stirrer is subtracted in calculating the area of the billiard.

The ratio of the characteristic lengths R = Lstir/Lcav can be used to determine the
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necessary size of the mode stirrers in different shape cavities. The ratio R should

be large enough to have a frequency change on the order of the mean mode spacing.

From various metrics to determine the lowest usable frequency, it is determined to be

λ/Lcav = 0.2 ∼ 0.35, where λ is the wavelength of the lowest usable frequency [119].

A.5 Determine the Loss Parameter α by fitting the statistics of ¯̄ξ

The algorithm for generating ¯̄ξrmt,a,b can be developed based on Eq. A.4. By

varying α, the universal statistics of ¯̄ξ for systems with varying losses can be nu-

merically generated. Starting with a statistical ensemble data set and going the

other way around, one can fit the experimentally extracted ¯̄ξdata to ¯̄ξrmt(α), and

the best matching distributions will give an estimate of the loss parameter of the

experimental system. Note that when examining data, for a two port system, ¯̄ξdata

will produce 8 histograms, i.e., real and imaginary part for each element ¯̄ξa,b. How-

ever due to the reciprocity of the system, ξ12 = ξ21, and ξ11 should have the same

statistics as ξ22 according to Eq. A.4. This is in fact a consistency check on the

data. As a result there are 4 unique histograms that are simultaneously fit using

a single loss parameter α. This is a very stringent constraint placed on the data

PDFs. Figure 5 shows a comparison of fits to Re(ξ11) and Im(ξ11) PDFs from the

one-port bow-tie cavity. They have been independently fit and similar α values are

obtained. Alternatively one could fit both PDFs simultaneously with a single value

of α. Another important check on the data is that for each distribution created one

should have mean values of < Re(ξ11) >= 1 and < Im(ξ11) >= 0. For the off-
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diagonal components of multi-dimensional impedance matrices one finds that both

the real and imaginary ¯̄ξ impedance matrix element PDFs should have mean values

of 0.

Figure A.5: (a) Experimentally obtained Re(ξ11) statistics from one-port bowtie
measurement, over 120 realizations in the frequency range 14.5 - 15 GHz. The
best fit PDF (R2 = 0.9985) gives α=2.1. For the Re(ξ11) statistics, one finds that
< Re(ξ11) >= 1. (b) Im(ξ11) statistics obtained in a similar way. The best fit PDF
gives α=2.0, which is almost the same as the fitting from the Re(ξ11). Its PDF has
a mean of < Im(ξ11) >= 0.

Fig. A.6 shows the ξrmt statistics predicted by Random Matrix Theory for var-

ious loss parameters α in a time-reversal symmetric (GOE) system [38,79]. For very

high loss α ∼ 10, the Re(ξ) and Im(ξ) statistics approach a Gaussian distribution

centered at 1 and 0, respectively. For extremely low loss α ∼0, the Im(ξ) distri-

bution goes to a Lorentzian 1/π(1 + x2), while the Re(ξ) distribution approaches a

“one-sided delta function” that always has a mean value of 1.
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Figure A.6: Random Matrix Theory predictions for the PDF of normalized
impedance for various loss parameters α in a time-reversal symmetric system, i.e.
GOE (Gaussian Orthogonal Ensemble) statistics. (a) Re(ξ11) statistics; (b) Im(ξ11)
statistics.

Figure A.7: (a) The consistency of fitted α from Re(ξ)11 and Im(ξ)11 experimental
PDFs. (b) The variance of Re(ξ)11 and Im(ξ)11 PDFs are predicted to be a/πα for
α� 1.

Fig. A.7(a) shows the comparison of fit α values for fits to the Re(ξ)11 and

Im(ξ)11 PDFs in a range of frequencies from 4 to 18 GHz in the bow-tie billiard.

The fits are performed on PDFs constructed in 1 GHz wide frequency windows

from an ensemble of 120 realizations of the 2D bow-tie. The error bars on the
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α values from the two PDFs are estimated by a 0.005 difference compared to the

best R2. Note that the fit values are consistent with each other within the error

bars. Fig. A.7(b) shows that the variance of the PDFs is a good predictor of the

loss parameter [32]. For diagonal elements of the normalized impedance matrix,

σ2(Re(ξ11)) = σ2(Im(ξ11)) = 1/πα; and for off-diagonal components, σ2(Re(ξ12)) =

σ2(Im(ξ12)) = 1/2πα; when α� 1 [32].

A.6 Some reasons why RCM statistics may NOT be seen in experi-

mental data

1. The ensemble is not of sufficiently high statistical quality. Perform the sta-

tistical tests noted in section A.1 above to make sure that the quality of the

data is good.

2. The RCM is simply not applicable to your data because one or more of the

basic assumptions of the model are not satisfied. For example, the loss may be

too inhomogeneous (e.g. there is a large hole in one side of the billiard [120]),

the random plane wave hypothesis may not be valid (for example in a graph),

the system may be a mixture of regular and chaotic classical phase space (e.g.

mushroom billiard) [46], or the ports may be lossy [48,119].

3. You may be trying to utilize the RCM in a low frequency regime below the

lowest usable frequency, as noted in section A.4 above [119].
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A.7 Weyl’s formula

For a two-dimensional billiard, the cumulative level density of states N(E)

which is the number of “energy levels” with energy less than E(E ∼ k2 = (2πf)2/c2),

where f is the cavity resonant frequency) is given by [121]

N(E) = C1E + C2E
1/2 +O(E0) (A.5)

In the case of the empty cavity without ferrite (GOE case), C1 = A/4π where

A is the cross-sectional area of the cavity, C2 depends on the cavity boundary

conditions, C2 = L/4π for Neumann boundary conditions and C2 = −L/4π for

Dirichlet boundary conditions, where L is the perimeter of the cavity. In the semi-

classical regime (N(E) � 1), and note that the first term, C1E, is large compared

to the second term. Thus, for large E, N(E) is approximately linear in E.

A.8 Short Orbit Correction

A “short orbit” (or a “short ray trajectory”) means one ray trajectory whose

length is not much longer than several times the characteristic size of the scattering

enclosure, and the trajectory enters the scattering enclosure from a port, bounces

(perhaps several times) within the scattering region, and then returns to a port. A

“port” is the region in which there is a connection from the billiard/scatterer to the

outside world.

Hart et al [27, 29]. extended the RCM by considered a port and its nearby

walls as a generalized port. This method takes the information of the geometry
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of the system to compute the short-orbit contribution to the radiation impedance.

More specifically, the generalized system-specific impedance matrix (the short-orbit

corrected radiation impedance matrix) is written as

¯̄ZSOC = ¯̄Zrad + ¯̄R
1/2

rad · ¯̄ζ · ¯̄R
1/2

rad (A.6)

where ¯̄Zrad is the diagonal radiation impedance matrix representing the features of

the ports, ¯̄Rrad is the real part of ¯̄Zrad, and ¯̄ζ = ¯̄ρ+ i¯̄χ is the short-orbit correction

matrix. For the system with N ports, the (n,m) element of the N ×N matrix ¯̄ζ is:

ζn,m =
∑
b(n,m)

[−pb(n,m)

√
Db(n,m)exp[−(ik+κ)Lb(n,m)− ikLport(n,m)− iβb(n,m)π]] (A.7)

where b(n,m) is an index over all classical trajectories which leave the nth port,

bounce βb(n,m) times, and return to the mth port. Note that for the off-diagonal term

(n 6= m), ζ(n,m) includes the direct orbit from the nth port to the mth port without

bouncing on the walls (β = 0). Lb(n,m) is the length of the trajectory b(n,m). The

effective attenuation parameter, κ = k/2Q = α∆k, takes account of loss, where Q

is the quality factor, α is the loss parameter, k denotes the wave number of a plane

wave, and ∆k is the average spacing between resonant wave numbers. Lport(n,m) is

the port dependent constant length between the nth port and the mth port, and it is

a correction term for the orbit length required to explain the experimental results.

Db(n,m) is the orbit stability factor which is a geometrical factor of the trajectory,

and it measures how the energy spreads out along the orbit path. pb(n,m) is the

survival probability of the trajectory due to the position of the perturbing objects

in the ensemble.
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A.9 Determine Zrad using the Time Gating Method (TGM)

Time-gating is a method by which a frequency domain measurement is ef-

fectively averaged over a sliding window in the frequency domain [48, 119]. The

method applies the Fourier transform of the measured complex reflection coefficient

to the time domain, gating it in time, and Fourier transforming back to the fre-

quency domain. If TG is the duration of gating, then T−1
G is the effective width

of the frequency window. The purpose of the time gating is the determination of

the radiation impedance of the port including the effect of nearby reflections and

excluding the effect of multiple far field reflections. It assumes the port is lossless

or very low loss.

The TGM is implemented in some modern vector network analyzers (VNA).

In a VNA, the reflection coefficient is measured in the frequency domain using a

swept CW source and a receiver that tracks the amplitude and the phase of the

received signal. The complex reflection coefficient S̄(f) is transformed to the time

domain using an inverse fast Fourier transform (IFFT), s(t) = F−1{S̄(f)}. This

time domain signal s(t) is multiplied by a gating window function g(t) to select

the duration of the time window of interest and suppress the rest. The gated time

domain signal is Fourier transformed back to the frequency domain to arrive at the

desired result S̄g(f), S̄(f) = F{s(t)g(t)}.

Another way to implement the TGM is to use the fact that multiplication in

the time domain is equivalent to a convolution in the frequency domain. The time

domain gating window is transformed to the frequency domain using a fast Fourier
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transform (FFT) and convolved with the raw frequency domain measurement. The

result is the gated reflection coefficient. This can be expressed as,

S̄g(f) = S̄(f)
⊗

Ḡ(f) (A.8)

where S̄g(f) is the unprocessed frequency domain S-parameter measurement, g(t)

is the gating function in time and Ḡ(f) is its Fourier transform, and
⊗

is the

convolution operator.

A.10 RCM for ports with highly localized loss

The radiation impedance of the port(s) can be measured by lining the walls

with absorbers, or by using the TGM method which does not require physical access

to the interior of the enclosure walls. However, when this is significant localized

loss at the port, the measured impedance at the terminal will not characterize the

amount of power that enters the cavity. The antenna must be considered as a T -

or π-network of impedances. For the general case where the enclosure is a high loss

system (α > 5), the equation for the impedance of a lossy antenna attached to a

complex enclosure is

Zin = Zant + ηRe[Zant]δξ (A.9)

where η is the radiation efficiency of the antenna. δξ = ξ−1 where ξ is the fluctuating

normalized impedance. Zant is the input impedance of the lossy antenna radiating

in free space. The radiation efficiency is defined as the ratio of the power radiated

to the power delivered to the antenna.
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Appendix B: Nonlinear Simulation

This part discusses some of the nonlinear simulations we have tried, mostly in

CST, as well as an introduction to X-parameters. In CST, we have tried simulation

with materials with nonlinear dielectric/magnetic models, built-in diode models,

and a nonlinear SPICE model. This is not an exhaustive treatment because there

could be other nonlinearity sources, such as nonlinear surface models, or nonlinear

simulations in other simulation tools.

B.1 Nonlinear Materials in CST

CST offers various models of materials for simulation, including conducting

materials, dispersive materials, nonlinear materials, surface impedance models, etc.

The details are given in the corresponding help page in the program. Here we

summarize the simulation we have done with the nonlinear materials.

Dielectrics or ferrites with nonlinear response are a class of nonlinearity sources

with continuum nonlinearity. To have a realistic modelling of these nonlinear mate-

rials, a general representation of the nonlinear response of the electric flux density
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~D(~r, t) to the electric field ~E(~r, t) could be

~D(~r, t) = ε0εL ~E(~r, t) + ε0χ
(2) ~E(~r, t) ~E(~r, t) + ε0χ

(3) ~E(~r, t) ~E(~r, t) ~E(~r, t) + ~PNL(~r, t)

(B.1)

where εL represents the linear contribution to the polarization, whereas χ(2) and

χ(3) correspond to the second and third order susceptibility, respectively. In general,

they are real second and third order tensors and therefore described by 9 and 27 real

values, respectively. In CST simulation, it is simplified to consider an anisotropic but

diagonal case where only 3 diagonal coefficients are needed, For the isotropic case,

further simplification can be made to consider only one real coefficient. The tensors

are then determined by one real coefficient times an identity matrix. ~PNL(~r, t)

is noted to include other sources of nonlinearity, eventually of order higher than

3. Similar representation also applies to the magnetic flux density ~B(~r, t) and the

magnetic field ~H(~r, t). Since Eq. B.1 is represented in the time domain, and there

is no easy Fourier transform of these equation, to include the nonlinear materials

into simulation, only the transient solver can be used.

In the simulation, the nonlinear model Eq. B.1 can be simplified to consider

only one term, for example, only consider the 2nd or 3rd order response. We can write

the nonlinear dependence of the field as a space-time variant material permittivity

and permeability,

~D(~r, t) = ε0εL ~E(~r, t) + ε0∆εNL ~E(~r, t) (B.2)

then for the 2nd order nonlinearity χ(2), we have ∆εNL = χ(2) ~E(~r, t) which may

produce both a positive and negative variation of the permittivity. As noted in the
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help page, the negative values of ∆εNL might cause the simulation to be unstable

and requires one to decrease the time step to enforce stability. As a result, the

total simulation time will be increased. While for the 3rd order nonlinearity χ(3),

∆εNL = χ(2) ~E(~r, t)2 will always be positive, hence there is no issues of stability.

Therefore we mainly studied models with the 3rd nonlinearity.

For the higher order term ~PNL(~r, t), CST offers two default models to consider

the effect of the finite response time of the material. The dispersive Kerr effect

considers that the medium changes its properties with time showing a relaxation

behavior. Alternatively the dispersive Raman effect considers the material showing

resonance effects. The details of the models are given on the CST help page. For

the purpose of our simulation, there are not big differences among these models.

Fig. B.1 shows the CST model that a 1/4 bowtie billiard with perturbers

resembling the real experimental setup we have. The billiard is filled with a nonlinear

material. And we will try various nonlinear models.
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Figure B.1: The CST model where the bowtie billiard is filled with a 3rd nonlinear
dielectric material ~D(~r, t) = ε0εL ~E(~r, t) + ε0χ

(3) ~E(~r, t)3. The two yellow circles are
perturbers.

Figure B.2: For the filled material with a nonlinear Kerr model, where χ
(3)
∞ = 10−9

[m/V]2, χ
(3)
S = 10−8 [m/V]2, and τ = 10−9. (a) Input Gaussian signal in the

frequency range 4-7 GHz at port 1 in the time domain; inset shows the Fourier
Transform of the signal in the frequency domain. (b) Fourier Transform of the
output signal at port 1 shows there is 3rd harmonic response.
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Figure B.3: For the filled material with a nonlinear 3rd order model, where χ(3)( ~B) =

0.001 [m/A]2. (a) |S11| for different χ(3)( ~E) in the frequency range of 2-16 GHz. (b)
Detailed view of the nonlinear response at several resonances.

For the material with a nonlinear Kerr model, Fig. B.2 shows that for an

input Gaussian pulse in the frequency range of 4-7 GHz at port 1 (see Fig. B.2(a)

and inset for its Fourier Transform), the Fourier Transform of the output signal

at port 1 shown in Fig. B.2(b) presents the 3rd order harmonic generation. This

demonstrates the nonlinear property of the material, and now we are interested to

see the S-parameters.

Fig. B.3 shows the S-parameters with nonlinear 3rd order model, including

both electrial and magnetic nonlinearity. By changing χ(3), the degree of nonlin-

earity is tuned. Fig. B.3(a) shows the S11 for several choices of χ(3)( ~E) and Fig.

B.3(b) is a detail view of several resonances. The S-parameters clearly change with

the parameter χ(3)( ~E), both in magnitude and position of the resonant frequency.

However, with the nonlinear term, the magnitude of the S-parameters become larger

than 1, which is nonphysical for a passive system. The situation gets worse as the
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material is made more nonlinear.

Figure B.4: For the filled material with a nonlinear 3rd order model, where χ(3)( ~B) =

0.001 [m/A]2, χ(3)( ~E) = 0 [m/V]2. (a) |S11| for different input amplitudes in the
frequency range of 2-16 GHz. (b) Detail view of the nonlinear response at several
resonances.

Another feature of nonlinear system is that the responses are amplitude de-

pendent. Therefore we expect the S-parameters will change for different input am-

plitudes. Fig. B.4 shows an example of S11 vs. input amplitude for a 3rd order

nonlinear material. We observe very good nonlinearity. As the amplitude increased,

it has a similar effect of increasing the nonlinearity of the system. And similarly, it

has the issue of |S11| > 1.

For the problem of |S11| > 1, we got some feedback from CST support. First,

finite difference time domain (FDTD) based code often struggles with cavity sim-

ulations. For the resonant billiard we study, the energy gets into the billiard at

resonant frequencies. While at some frequencies, the input signal get prompt reflec-

tion. When the energy gets into the billiard is lower than the noise floor, it could

cause inaccuracy in S-parameters results. The energy should converge in order to
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get correct S-parameters. “The resonances are quite broadband so it means the fre-

quency conversion could happen all over the spectrum. Even though Many spikes

occurs over unity at many frequencies, there are also many dips (the total energy

could still converge).” We have tried to increase the total simulation time, increase

the accuracy level (-80 dB), but the issue is not solved. And we’ve tried to make

the material with various loss tangent to converge faster. The problem is that it can

suppress the magnitude, but also the fluctuations, hence making the S-parameters

not that interesting.

B.2 Diode Simulation in CST

CST offers built-in models of lumped network elements to represent simple

electronic components, including RLC serial, RLC parallel, diode and general circuit.

Diode and general circuit can be used for nonlinear simulation. A general circuit

is defined by importing a SPICE file. The next section will show an example with

details to include SPICE model in simulation. For the built-in diode model, it is

defined by a simple exponential I-V characteristic, shown in Fig. B.5 (see help page).

Section 3.3.2 showed some results including the diode and observed the nonlinear

S-parameters with different input amplitudes. Similar to the nonlinear materials

discussed above, higher order harmonics are also generated by adding a diode. One

thing we find in the diode simulation is that the calculation becomes unstable if the

input amplitude is too large. An approach to improve the simulation is to decrease

the time step in simulation settings. But as a result, the total simulation time will
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also increase.

Figure B.5: Built-in diode model in CST lumped network element.

B.3 Incorporating a SPICE model in CST

SPICE models provide more freedom to define the circuit we want to simulate,

and we can incorporate it with 3D models in CST. Section 3.2.5 presented the

nonlinear port results including the SPICE model of the diode and package. It is very

promising as the simulation radiation S-parameters and power results reproduced

the key features we observed in experiment. Here I add more details of the procedure.

To begin with, one should know about the syntax to make a SPICE file.

CST accepts SPICE source file that ends with .cir. Here are some example tu-

torials for SPICE source files: https://www.seas.upenn.edu/~jan/spice/spice.

overview.html and https://www.cpp.edu/~prnelson/courses/ece220/220-spice-notes.
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pdf. For example, a SPICE model is constructed in section 3.2.5 with two diodes

and parasitic properties of the package. Since only two pins are used, it is imported

as a diode with two connections.

Figure B.6: Procedures to add a SPICE circuit with a 3D model. 1. Add a discrete
port in 3D window; 2. Set the ports to be differential ports; 3. Set external port
and connect with the imported SPICE circuit.

To simulate the SPICE circuit model with a 3D model, the procedures are

shown in Fig. B.6. First in the 3D window, a discrete edge port representing

the physical position where the diode will be connected is added. Then go to the

schematic window, two numbers indicating the ports will be shown. One is a waveg-

uide port which is defined on the cross section of the transmission lines where the

excitation signal comes in. Another is the discrete port that will connect to the

SPICE model. Setting the ports to differential allows the voltage signal to be mea-

sured between the differential pins instead of referring to the “ideal circuit ground”.

For the port with excitation signal, an external pin (the yellow box) is connected
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with respect to ground. And the imported SPICE model, named “pack2d v5”, is

connected to the discrete port.

Figure B.7: Set up a transient task with different amplitude excitation signals.

Next, the simulation task can be setup. Go to “task”, select “transient task”.

The dialog box for transient task is shown in Fig. B.7. Select “CST transient

co-simulation”; for dialog box for “Special...”, in “Maximum Frequency”, choose

“Manual Fmax” and then enter the “Max. resolved frequency”; for dialog box “De-

fine...”, here is where the amplitude of the excitation signal is determined, remember

to select “Signal” for “Source” to ensure the correct S-parameters will be simulated.

In the simulation presented in section 3.2.5, the total power on several faces are

also simulated. That is achieved by firstly defining the face planes to be evaluated.

One way to define a face is with the assistance of defining a waveguide port and
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then deleting that port. Then place power flow field monitors for simulation. After

the simulation is done, the power flow integral over the face can be evaluated in

the results template. The short tutorials for this power evaluation and setting up

transient co-simulation from CST are available in the Anlage Group Wikipage.

B.4 X-parameters

X-parameters were developed and introduced by Agilent Technologies as func-

tionality included in the N5242A Nonlinear Vector Network Analyzer, and the

W2200 Advanced Design System in 2008. Their website provides a lot of informa-

tion about X-parameters at https://www.keysight.com/main/editorial.jspx?

cc=US&lc=eng&ckey=1619575&nid=-32996.775208.02&id=1619575 X-parameters

are applicable to both large-signal and small-signal conditions, for linear and non-

linear components. They are an extension of S-parameters. X-parameters reduce to

S-parameters in the small-signal limit, but they also include rich nonlinear compo-

nent information including harmonic and inter-modulation distortion, compression

characteristics with power, and more at the fundamental and all the harmonics [5].

Just like S-parameters, X-parameters also allow for cascading of components that

are highly mismatched.

Different from the small signal S-Parameters which are ratios of the input

and output power waves, X-parameters measure the absolute amplitudes and all

the phases relative to the calibrated phase reference. Then the full waveforms are

constructed from that. The nonlinear VNA deals with X-parameters in the Poly-
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Harmonic Distortion (PHD) framework. And the simulation with X-parameters can

be done in its Advanced Design System (ADS). Here we give a basic introduction

to X-parameters and a circuit we have measured in collaboration with Prof. Sameer

Hemmady at the University of New Mexico. For more detailed study about X-

parameters, we refer to two books [94,95].

Fig. B.8 shows a spectral analysis of a two-port nonlinear circuit. Aef , Bef

denotes the input and output power waves, respectively. e is the port index and f

is the harmonic (or carrier) index. Then B1k and B2k will be a function of the input

harmonics.

B1k = F1k(DC,A11, A12, ..., A21, A22, ...) (B.3)

B2k = F2k(DC,A11, A12, ..., A21, A22, ...) (B.4)

For a simple case there is one large input complex phasors A11. Then the spectral

map of complex large input phasors to large complex output phasors for Bef can be

written in terms of X-parameters:

Be,f = X
(F )
ef (|A11|)P f+

∑
g,h

X
(S)
ef,gh(|A11)P f−h ·Agh+

∑
g,h

X
(T )
ef,gh(|A11)P f+h ·A∗gh (B.5)

where the upper index (F ) indicates the simpler nonlinear mapping, (S) and (T )

mean the linear non-analytic mapping. A∗gh is the complex conjugates of Agh. P

denotes the phase of the harmonics.
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Figure B.8: Spectral analysis of nonlinear components, from [5].

Figure B.9: Procedures to measure the X-parameters, from [5].

Fig. B.9 presents the procedures to measure X-parameters. It provides a

better understanding of those terms in Eq. B.5. Firstly, the measurement is done

with only one input large signal, say A1. By recording the harmonics at all the

ports, X(F ) terms are determined, which are the simplest nonlinear mapping. Then

a second source with a small signal is added, and the output harmonics are measured

simultaneously. This will give the X(S) terms. The third step is to offset the phase
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on the second driving signal by 90 degrees and measure the output harmonics again.

Then X(T ) terms can then be extracted. From the measurement process, we know

the X-parameters are defined under the large signal condition. And it reduces to

S-parameter in the small signal limit, i.e. as A11 shinks.

Figure B.10: Experimental setup at UNM for measuring the X-parameters of the
2nd harmonics circuit.
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Figure B.11: Simulation circuit in ADS. The “XNP1” is the measured X-parameters
file of the 2rd harmonics circuit.

We have collaborated with Prof. Sameer Hemmady at the University of New

Mexico to measure X-parameters of the active 2nd harmonic generator as described

in Chapter 2. Fig. B.10 shows the experimental setup to measure the circuit. The

VNA has a second external RF reference source. The comb generators are used for

cross-frequency phase calibration.
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Figure B.12: ADS simulation with measured circuit X-parameters. (a) Power sweep
at 4 GHz, spectral analysis from the 1st to the 4th order harmonics. Upper: Power
magnitude of the harmonics, the green line is a straght line with slope of 2; Lower:
Phases of the harmonics. (b) Frequency sweep for input power -10 dBm. Spectral
analysis from the 1st to the 4th order harmonics. Upper: Power magnitude; Lower:
Phases.

The measured X-parameters can be readily used for circuit design and sim-

ulation in the ADS program. As shown in Fig. B.11, X-parameter files work in

Harmonic Balance and Envolope simulation. The figure shows a circuit sketch to

analyze the measured file “XNP1”. Fig. B.12 are some simulation results of the

harmonics. As we know from Chapter 2, the circuit generates 2nd harmonics in the

frequency range of 3.5-4.5 GHz. The output power of the 2nd harmonic vs. the

input power 1st order fundamental curve has a slope of 2 and saturates when the

input power is close to 0 dBm. Fig. B.12(a) is the result of the harmonic response
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up to the 4th order as a function of the input power at 4 GHz, both in magnitude and

phase. It shows that the 2nd harmonics have the largest magnitude. And a green

line with slope of 2 agrees quite well with the 2nd harmonic curve. Fig. B.12(b)

shows the frequency dependence for input power -10 dBm in 3-5 GHz. It shows that

3.5-4.5 GHz is the range which has the largest 2nd order response. For the phase

plot, we have not found any interesting results from it yet.
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Appendix C: VNA High Power Option

C.1 Overview

The Agilent N5242A option H85 is a special configuration of the PNA-X net-

work analyzers, configured for high-power measurements. The bias tees between the

source attenuators and the test port couplers limit the maximum test port input

power to +30 dBm. So to meet the requirements of high power measurements, op-

tion H85 has been created to supply extended power range attenuators without bias

tees. Under this configuation, it is able to make high power network measurements

at RF levels up to 20 Watts (+43 dBm) from 10 MHz to 26.5 GHz.

The option H85 does not increase the output power of the N5242A analyzer.

It is designed to permit insertion of high power amplifiers and other signal condi-

tioning equipment to make high power measurements. The users need to supply

their own amplifiers and external components such as high power couplers, isolator

and attenuators, etc. When configuring these components, the users need to con-

sider the DUT requirements and protect the PNA from damage. This document is

a summary of the configuration we have built, ref. [6] is a very helpful document

including many details and guidelines.
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Figure C.1: 2-port two way high power configuration, Fig. 7 in ref. [6]. Damage
power levels and external components are labelled.
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C.2 Configuration

In our case, we want to make 2-port two-way high power calibrated S-parameter

measurements, in the frequency range of at least 2-18 GHz. The configuration in-

cluding the required components are shown in Fig. C.1, which is Fig. 7 in ref. [6].

When choosing these components, we also need to consider the damage levels of

the PNA. The damage levels of the affected components of the PNA are given in

Table 1-7 in ref. [6] and are summarized in Table. C.1. It is recommended that

those components are operated at less than 3 dB and preferably 6 dB below the

maximum power levels.

The components used are:

• RF-Lambda amplifier RFLUPA0218G5 (labelled No. 1, 6 in Fig. C.1) [122],

5W wide Band power amplifier 2-18 GHz

• AIRCOOLINGSYS1 (Integrated air cooling system with heatsink and fan for

PN: RFLUPA0218G5, power at +24 VDC)

• RF-Lambda directional coupler RFDC2G18G20 (labelled No. 2, 7 in Fig.

C.1) [123], 50W 20dB Directional Coupler 2-18 GHz

• Keithley 2231A-30-3 195W Triple Channel DC Power Supply [124], 30V/3A

(2x) and 5V/3A. It is used to supply two channels of 24 V dc power to the

two amplifiers.

• Mini-Circuits Attenuators (labelled No. 3, 4, 8, 9 in Fig. C.1)
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– BW-S6-2W263+ [125], 50 Ω, 2 W, 6 dB, DC-26 GHz

– BW-S10-2W263+ [126], 50 Ω, 2 W, 10 dB, DC-26 GHz

• Fairview Microwave isolators (labelled No. 5, 10 in Fig. C.1)

– SFI0418 [127] (Isolator SMA Female With 15 dB Isolation From 4 GHz

to 18 GHz Rated to 10 Watts)

– SFI0206S [128] (Isolator SMA Female With 13 dB Isolation From 2 GHz

to 6 GHz Rated to 20 Watts)

The highest output power of the system is +35 dBm, and the frequency range

is 2-18 GHz, both limited by the high power amplifier. Depending on the isolator

used, measurements can either be done in the 4-18 GHz range or the 2-6 GHz

range. Table C.1 shows the power levels at several components of the PNA, when

operating at low power (-5 dBm), high power (+35 dBm) and maximum power

(+43 dBm, which can’t be achieved using current components). The high power

attenutor and RCVR attenuator can be decreased to improve the accuracy for low

power measurements, for example 6 dB for the high power attenutor and 12 dB for

the RCVR attenuator.
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Table C.1: Operating power levels of different components of the PNA, operating
for 12 dB high power attenuator and 16 dB RCVR attenuator. Typical power levels
are shown for 3.2-20 GHz. All in dBm units.

Component typical damage op. low op. high op. max

RCVR A IN -2∼-2.5 15 -36 4 12

RCVR R1 IN -2∼-6 15 -37 3 11

Source Out 10∼14 30 -40 0 8

CPLR THRU -1.25∼-2.2 43 -5 35 43

CPLR ARM -2 30 -20 20 28

TEST PORT -2 43 -5 35 43

C.3 Making High Power Measurements

The details and procedures to make high power measurements are described

in [6]. A simplified version for making 2-port two-way high power measurement

under our configuration is as follows:

• Connect the DC power supply to the high power amplifier and the integrated

air coolng system. Both of them are powered at +24 VDC, so they can be

connected to the same power supply. The current of amplifier is 1.9 A max.

Setting the output current of the power supply to make sure there is enough

current to the fan, normally 2A is enough. Turn the power supply off until

the PNA is set-up.

• Connect the high power amplifier, directional coupler, isolators and attenua-
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tors as shown in Fig. C.1 and C.2.

• Enable User Preset as directed in Fig. 14 of ref. [6]. We can create customized

preset settings where the PNA will return when the preset button is pressed.

Otherwise, the PNA will be back the factory default settings (including power

levels, interal attenuator settings, etc.), where some components may get dam-

aged under high power conditions.

• Set up a User Preset configuration. Set source output power level as -40 dBm

(the lowest power we’ll use), receiver attenuators 10 dB (this is a setting for the

our highest power 0 dBm), change hardware setup so that the port 1 reference

mixer is switched to be external, see procedures 15-18 in Page 26-28 [6]. Save

this setting as the User Preset.

• Perform a mechanical calibration using the Maury Microwave 8050S 3.5mm

Calibration Kit [129]. The reason to use mechanical calibration is that the Ecal

can only calibrate up to 10 dBm. Press “Preset” to above User Preset settings,

turn on the power for the high power amplifiers, and set the appropriate

receiver attenuators. For example, if a 12 dB high power attenuator and 16

dB RCVR attenuator are used, the receiver attenuators can be set to 0 dB

for source input powers up to -10 dBm, 5 dB for -5 dBm input and 10 dB for

0 dBm input. Go to “Cal” − > “start Cal”, and choose “2 PortSolt”, select

“8050S boardband 3.5 mm” calibration Kit to start the mechanical calibration.

Proceed to attach the corresponding calibration standards to finish and save

the calibration. For different input power, the internal attenuator settings will
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change accordingly, hence calibration at one power may not be applicable for

other power settings. It is recommended to do the calibration at each power

setting, respectively.

Figure C.2: Experimental setup of the high power 2-port two-way measurement
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C.4 Noise Analysis

Figure C.3: Comparing |S21| for different output power levels, the signal-to-noise
(SNR) for low power measurement is small. The DUT is a Pb-coated cut-circle
microwave cavity in a dilution refrigerator at T=740 mK where there is around 20
dB around-trip attenuation along the transmission lines.

As given in the PNA N5242A datasheet, table 1 in ref. [130], the test port

(A/B) noise floor is around -110 dBm. For the operating setting as shown in Table.

C.1, at low source input power -40 dBm, receiver A in is operating at -36 dBm max

when the test ports are connected directly in a through configuration. This means

that the dynamic range for the measurement has been decreased to 110-36=74 dB.

When the PNA is connect to the crygenic system, there are long transmission lines

going from the top to the bottom of the fridge where the device is located. For a

typical 20 dB attenuation because of the transmission lines, it further decreases the

dynamic range to around 50 dB. For the chaotic cavity we study, its S-parameters

have a relatively wide dynamic range. We observe the S-parameters in the low power
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settings are affected by the noise floor, see Fig. C.3. As the output power increases,

the SNR of the measurement is improved. Hence, with the advantage that option

H85 allows for high power measurements, it sacrifices the dynamic range or accuracy.

In addition, by removing the bias tee, it can not make DC-bias measurements.

157



Bibliography

[1] Edward Ott. Chaos in Dynamical Systems. Cambridge University Press, 2
edition, 2002.

[2] Min Zhou, Edward Ott, Thomas M. Antonsen, and Steven M. Anlage. Non-
linear wave chaos: statistics of second harmonic fields. Chaos, 27(10):103114,
2017.

[3] Jen-Hao Yeh and Steven M. Anlage. In situ broadband cryogenic calibra-
tion for two-port superconducting microwave resonators. Rev. Sci. Instrum.,
84(3):034706, 2013.

[4] M. Dressel and G. Gruner. Electrodynamics of Solids: Optical Properties of
Electrons in Matter. Cambridge University Press, 2002.

[5] X-parameters in ADS. Available at https: // www. keysight. com/ upload/
cmc_ upload/ All/ 1_ NVNA_ and_ X-parameters_ in_ ADS. pdf .

[6] Agilent Technologies N5242A Option H85 Users and Service Guide,
2008. Available at http: // literature. cdn. keysight. com/ litweb/

pdf/ N5242-90008. pdf .

[7] Y. Alhassid. The statistical theory of quantum dots. Rev. Mod. Phys.,
72(4):895–968, 2000.

[8] P. W. Brouwer and C. W. J. Beenakker. Voltage-probe and imaginary-
potential models for dephasing in a chaotic quantum dot. Phys. Rev. B,
55(7):4695–4702, 1997.

[9] R. U. Haq, A. Pandey, and O. Bohigas. Fluctuation properties of nuclear
energy levels: Do theory and experiment agree? Phys. Rev. Lett., 48(16):1086–
1089, 1982.

[10] Roger G. Newton. Scattering Theory of Waves and Particles. McGraw-Hill,
1966.

158

https://www.keysight.com/upload/cmc_upload/All/1_NVNA_and_X-parameters_in_ADS.pdf
https://www.keysight.com/upload/cmc_upload/All/1_NVNA_and_X-parameters_in_ADS.pdf
http://literature.cdn.keysight.com/litweb/pdf/N5242-90008.pdf
http://literature.cdn.keysight.com/litweb/pdf/N5242-90008.pdf


[11] E. Doron, U. Smilansky, and A. Frenkel. Experimental demonstration of
chaotic scattering of microwaves. Phys. Rev. Lett., 65(25):3072–3075, 1990.

[12] Paul So, Steven M. Anlage, Edward Ott, and Robert N. Oerter. Wave chaos
experiments with and without time reversal symmetry: GUE and GOE statis-
tics. Phys. Rev. Lett., 74(14):2662–2665, 1995.

[13] U. Kuhl, M. Mart́ınez-Mares, R. A. Méndez-Sánchez, and H.-J. Stöckmann.
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