

Presented by: Ernie Jackson

© Agilent Technologies, Inc. 2009

The Noise Presentation

- Review of Basics, Some Advanced & Newer Approaches
- Noise in Signal Measurements-Summary
- Basic Noise Reduction Approaches
- New Technologies
- Examples
- Resources, More Information

Noise is the Enemy (Almost Always)

Communications, RADAR or other Imaging, Metrology, Science

- Creates Uncertainty in Time, Frequency, Power, Modulation
- Converts Deterministic Values to Statistical Distributions
- Imposes Cost Tradeoffs: Accuracy, Speed, Repeatability, Yield, €/£/¥/\$, "False Alarms"
- Financial Impacts: Circuit Cost, Size, Complexity, Development Time, Mfg.

Noise is the Enemy (cont)

- Phase Noise
 - Increases noise floor close-in
 - Creates same problems as broadband noise
 - Imposes similar tradeoffs, costs
- Solutions for Analysis are Similar
 - Optimize measurement technique
 - Choose a higher performance analyzer
 - Use special techniques, processing

Use "Moore's Law" where it does not normally apply

Exceptions: Desirable Noise

- Noise Figure Measurements
- Accurately Generate to Test for Margins, Real World Performance

- Generate known signal/noise, phase noise

- Broadband/Narrowband Noise as Stimulus Signal, with Different Statistics
- Add to Simulations to Avoid Non-Representative Behavior
- Noise Floor Appearance as a Clue or Hint

Noise Can Frequently be Ignored But it is Important to be Alert

- Good Signal/Noise Ratio
- Measurement BW Wider than Signal
- Alert for Clues
 - Measurement variance large compared to desired accuracy
 - Measurements change with analyzer settings
 - Decreasing SNR
 - Comparing signals with different statistics

Optimize Noise vs. Other Measurement Priorities

- Attenuation = 0 dB Optimal for Sensitivity
- Attenuation = 10+ dB for Optimal Accuracy
- Attenuation = 4-6 dB a Compromise
- Problems with Impedance Match
- Problems with Distortion, Compression
- Chance of Analyzer Input Damage

Trade Away Extra Noise Performance for other Benefits

- Better Overload Performance
- Lower Distortion Measurements
- Faster Measurements

Bad Measurements are Easy to Make

Spur appears 3 dB above noise level

© Agilent Technologies, Inc. 2009

Error in Noise Level Measurements, Measured Near Analyzer Noise floor

Actual Noise Ratio	Measurement Error
0 dB	3.01 dB
1 dB	2.54 dB
3 dB	1.76 dB
5 dB	1.19 dB
10 dB	0.41 dB
15 dB	0.14 dB
20 dB	0.04 dB

Note that error is always positive

Multiple Tones Example

© Agilent Technologies, Inc. 2009

Noise Converts ~Deterministic Value to Statistical Distribution

* CCDF varies significantly with span at low SNRs

© Agilent Technologies, Inc. 2009

× 1

Clues to Two Meas Problems Signal Close to Noise, Wider than RBW

Narrower RBW Improves S/N

- Residual FM, signal is wider than RBW filter
- Amplitude measured low in error

© Agilent Technologies, Inc. 2009

Band Power Marker, Averaging

- Band power marker compensates for signal spread
- Longer sweep, average detector reduce variance

© Agilent Technologies, Inc. 2009

Detector Types, Averaging Scales Understanding Enough

- Processing, Data Reduction Always Done
- Signal Characteristics Affect Results
- Basic Settings (RBW, Span, Sweep Time) Affect Results, Even With Same Detector
- Know Enough To:
 - Use your knowledge of your signal
 - Understand results, know what you are getting
 - Make good measurements
 - Identify signal problems, measurement errors

The IF Envelope Detector

- Input is the IF Signal (RBW), Output is Baseband
- Output Voltage is Proportional to Input Envelope
- Response is Different for CW Signals and Noise

Display Detectors Peak, Negative Peak, Sample

- Input is the IF Envelope Detector Output (log or linear scaled)
- Peak and Neg Peak Detectors Bias the Output Value, Perform Some Data Reduction

Averaging Detectors

- Each Output Represents 2 or More IF Envelope Values
- Reduces Variance Faster Than Single-Value Detectors; Reduce Variance Further by Increasing Sweep Time
- Good Choice for Channel Power or ACP Measurements

- Better Represent Combination of Signals and Noise
- Show Distribution of Noise and Noise-Like Signals
- Show Discrete Signals as a Single Value
- More Intuitive, but not Required for Accurate Measurements

Biased & Unbiased Detectors

- Sample Detector-Unbiased
 - Data discarded, not good at reducing variance
- Average Detector-Unbiased
 - Efficient for reducing variance
- Peak, Negative Peak Detectors-Biased
 - Bias is desirable, special-purpose use
- "Normal" Detector
 - Bias depending on signals, implementation
 - Designed for combined signals and noise

Effects of Slower Sweep Speed

- Normal Detector: Wider band of results
- Average Detector: Narrower band of results
 - Variance decreases with square root of number of independent samples in average
- Sample Detector: Results band unchanged
- Peak Detector: Band is narrower, higher
- Neg Peak Detector: Band is narrower, lower

Averaging Error Example Averaging Power

Average of the log of the power = 3 dBm (0 dBm + 6 dBm)/2 Log of the signal's average power = 3.98 dBr (1 mW + 4 mW)/2 = 2.5 mW

- Average of the Log is Not Equal to a Log of the Average
- Narrow VBW or Trace Averaging Performs an Average of the Log, an Error in Measuring Time-Varying Signals
- Instead, Average the Power or Report the RMS Value of the Voltage of the Signal

Log Scale Bias for CW Meas.

Log scale better for single CW signal near noise

Default: normal detector, log-power averaging

© Agilent Technologies, Inc. 2009

Normal detector, log-power avg. longer sweep

© Agilent Technologies, Inc. 2009

				Avg Type: Pwr(RMS) Trig: Free Run			TRACE 123456 TYPE WWWWWW		Irace/Det				
			In	PUT: RF P	NO: Far 🖵 Gain:Low	Atten: 6 d	3B			DE		Se	lect Trace
													Trace 1
10 dE Log _l	B/div	Re	f -20.00	dBm									
													Detector
-30.0	<u> </u>											Auto	Average ► <u>Man</u>
40.0													
-40.0													Preset
-50.0													Detectors
-60.0	\vdash												
-70.0													clear Trace
10.0													
-80.0							\ \						
				1		.						Clea	r All Traces
-90.0	AL LULI		r Milesterheit		ահերկություն	a labar at hi	والأدار الطور ورا	il mi l it hak	l'advarda du		han an a		
-100					I YAN TUNKA			MUUUU					Preset
	IN UUTII	шų,	int walt up	n hander ha ha	i I Mirihanh In	h allahr all	140 B. W. P.	i (1d h ul mhl hu	a aita ah atini dia	ul lu chiki	udh dh an a ma h		All Traces
-110	<u> </u>												
													More
Center 20.000000 GHz Span 10.00 MHz											2 of 3		
Res BW 91 kHz VBW #Sweep 100 ms (1001 pts)													

• Average detector, RMS power

© Agilent Technologies, Inc. 2009

Average detector, RMS power, longer sweep

© Agilent Technologies, Inc. 2009

Reducing Measurement Noise

- Filtering
 - RBW (not VBW or averaging)
 - Preselection
 - External
- Time or Synchronous Averaging
- Subtraction
- Best Practices

Costs of Sensitivity

- Time
 - Sweep time (narrower RBW, VBW)
 - Averaging
- Money
 - Better instruments
 - Better cables, connectors
 - Preamplifiers
 - External filtering

Traditional Approaches

- Narrower RBW
 - Reduces noise floor (ENBW)
 - May reduce measurement variance
- Video Filtering, Trace Averaging
 - Does not reduce noise floor
 - Reduces measurement variance
 - Average of log of meas, may distort results
 - Effect varies with signal statistics
- Detector Choices
 - Select for accuracy, fast reduction of variance

Traditional Approaches (cont)

- Improve Measurement Noise Figure
 - Better connection to DUT
 - Preamplification internal
 - Preamplification-external
 - Preselector (internal YIG-tuned filter)
 - External filtering
- Intelligent Operator Filtering
 "If it looks good it is good" (?)
- Define Results, Objectives Better

Account correctly for noise effects

Cables, Connectors, Adapters Importance Increases with Frequency

- Shortest, Best Connection to Circuit
 - Shorter cable, move analyzer or DUT
 - Choose best cable
 - Minimize adapters
 - Cable/connector hygiene
 - Periodically check cable assemblies
 - Visual inspection is not enough
- 1 dB Gained/Lost = 1 dB Noise Figure

Example: Different Cables

- 0.9 m and 1.6 m cables
- Clue in signal/noise ratios

Preamplifiers

- NF of Preamp must be Less than NF of Analyzer
- Benefits
 - Improved sensitivity
 - May be built-in, internally switchable
 - Gain may be included in analyzer calibration
- Drawbacks
 - Best when input is small signals only
 - May limit TOI, increase distortion
 - May have limited bandwidth
 - Calibration less convenient if external

Less-Common Approaches

- Measure and Subtract the Noise Power
- Vector Average to Remove Noise
 Coherent (time-triggered) averaging
 - Requires repeated signal, triggering

Vector average of repeated, synchronized measurements converges to the noiseless value

CW Signal Measured Near Analyzer Noise Floor

Amplitude & Frequency Axes Expanded

© Agilent Technologies, Inc. 2009

Noise Floor Subtraction

$$P_{obsS+N} = P_{obsN} + P_S$$

$$\mathbf{P}_{\mathrm{S}} = \mathbf{P}_{\mathrm{obsS+N}} - \mathbf{P}_{\mathrm{obsN}}$$

- Analyzer noise adds incoherently to any signal to be measured
- Power calculations are performed on a linear power scale (watts, not dBm) and results typically are shown in dBm

Noise-Like Signal and Noise

- 1 MSymbol/sec QPSK, 1.9 GHz
- Signal accurately measured, but noise biased higher by analyzer noise power (no NFE)
- Average detector, slower sweep to measure signal & noise, reduce variance

Result from Noise Subtraction

Implemented in the Agilent PXA Signal Analyzer

- Blue trace shows more accurate measurement due to removal of analyzer noise power
- Note increased variance of result

Analyzer Noise Floor without NFE

- Source switched off, pink trace shows analyzer noise level, no NFE
- Other measurement conditions unchanged
- PXA DANL (pink) adds to source power (blue) for first meas. result (yellow)
- Note that noise level variance (pink trace) is smaller without NFE

Analyzer Noise Floor with NFE

- Source still off, green trace shows analyzer noise level with NFE
- Other measurement conditions unchanged
- Note high variance result from subtraction of small, noisy numbers
- Analyzer DANL now far enough below source for minimal (0.2 - 0.4 dB) error

A Closer Look

- Pink trace adds to blue trace; result is yellow trace (NFE not used)
- Green trace is included in blue trace but resulting error very small

Noise Power Subtraction vs. Noise Cancellation or Removal

- Power Subtraction Useful for Spectrum & Power (channel power, ACPR) Meas.
- Noise Power from Phase Noise can be Removed
- Improving Demodulation (EVM, RCE, MER, all vector errors) Requires Lowering Inherent Noise or Vector Subtraction

Conditions and Requirements for Effective Noise Subtraction

- Signal and Analyzer Noise Uncorrelated
- RMS Detection (calculations simpler, more accurate)
- Extensive Averaging (to reduce signal variance)
- Averaging on Power Scale (even if results displayed on a log scale)
- Need
 - Method to remove input signal & measure noise
 -or-
 - Prior knowledge of analyzer noise floor under all measurement conditions

Signal Analyzer Low-Band

 Noise Contribution of Analyzer Elements must be Measured and/or Accurately Modeled for all Operating Settings

- Amplitude envelope vs. time
- Best RBW is one matched to signal
- Best ability to separate analyzer noise from signal

Noise Floor Enhancement CW Example

- 95% confidence interval, ±2 dB tolerance
- 3.5 dB improvement for CW signal

Noise Floor Enhancement Noise-Like Signal Example

- 95% confidence interval, ±1 dB tolerance
- 9.1 dB improvement for noise-like signal

Noise Floor Enhancement Pulsed RF Example

- 95% confidence interval, ±3 dB tolerance
- 10.8 dB improvement for pulsed-RF signal

Subtracting Broadband Noise in a Phase Noise Measurement

Subtracting Analyzer Phase Noise

Using Very Clean Source as Phase Noise Power Reference

Noise Subtraction Calculations Increase Variance of the Result

© Agilent Technologies, Inc. 2009

Better Reference Oscillator and/or Higher Performance Analyzer

Microwave or High Band Architecture Tradeoffs

- Microwave or High Band Section
 - Path switching for low band
 - Path switching for microwave preamplifier
 - Other switching or path losses
- Alternate "Low Noise Path"
 - Optimized for high band
 - No microwave preamplifier

Low Noise Path

Alternate "Low Noise Path"

Combining Noise Floor Extension and Low Noise Path

- 3.6 26.5 GHz, preamplifier off
- Low noise path incompatible with preamp

Resources

- "Noise Floor Extension: Improving the Dynamic Range of Spectrum Analysis" Joe Gorin (to be published soon)
- "Improving the Dynamic Range of Spectrum Measurements by Compensating for the Effects
 of Phase Noise and Thermal Noise" Wing Mar & Ben Zarlingo, EuMW 2001
- "Spectrum Analyzer Detectors & Averaging for Wireless Measurements" Joe Gorin & Ben Zarlingo <u>http://www.agilent.com/cm/wireless/pdf/detector_averaging.pdf</u>
- "Spectrum Analyzer Measurements and Noise" Joe Gorin, Agilent Technologies Application Note 1303, literature number 5966-4008E
- "Spectrum & Network Measurements" Robert Witte, Noble Publishing 2001 ISBN 978-1884932168
- "Optimizing RF and Microwave Spectrum Analyzer Dynamic Range" Agilent application note AN-1315 literature number 5968-4545E
- "Electronic Test Instruments: Analog and Digital Measurements" Robert Witte, 2002
 Prentice Hall ISBN 978-0130668301
- "The Art of Measurement: Theory and Practice" Ronald Potter, 1999 Prentice Hall ISBN 978-0130261748
- "Spectrum Analysis Basics" Agilent application note AN-150 literature number 5952-0292EN
- "Accurate Measurement of Signals Close to the Noise Floor of a Spectrum Analyzer" Andrew Mouthrup and Michael Muha, IEEE Transactions on Microwave Theory and Techniques, Vol. 39, No. 11, November 1991, pg. 1882 – 1885.

