Conquering Noise for Accurate RF and Microwave Signal Measurements

Presented by: Ernie Jackson
The Noise Presentation

• Review of Basics, Some Advanced & Newer Approaches
• Noise in Signal Measurements-Summary
• Basic Noise Reduction Approaches
• New Technologies
• Examples
• Resources, More Information
Noise is the Enemy
(Almost Always)

Communications, RADAR or other Imaging, Metrology, Science

• Creates Uncertainty in Time, Frequency, Power, Modulation
• Converts Deterministic Values to Statistical Distributions
• Imposes Cost Tradeoffs: Accuracy, Speed, Repeatability, Yield, €/£/¥/$, “False Alarms”
• Financial Impacts: Circuit Cost, Size, Complexity, Development Time, Mfg.
Noise is the Enemy (cont)

• Phase Noise
 – Increases noise floor close-in
 – Creates same problems as broadband noise
 – Imposes similar tradeoffs, costs

• Solutions for Analysis are Similar
 – Optimize measurement technique
 – Choose a higher performance analyzer
 – Use special techniques, processing

Use “Moore’s Law” where it does not normally apply
Exceptions: Desirable Noise

• Noise Figure Measurements
• Accurately Generate to Test for Margins, Real World Performance
 – Generate known signal/noise, phase noise
• Broadband/Narrowband Noise as Stimulus Signal, with Different Statistics
• Add to Simulations to Avoid Non-Representative Behavior
• Noise Floor Appearance as a Clue or Hint
Noise Can Frequently be Ignored
But it is Important to be Alert

• Good Signal/Noise Ratio
• Measurement BW Wider than Signal
• Alert for Clues
 – Measurement variance large compared to desired accuracy
 – Measurements change with analyzer settings
 – Decreasing SNR
 – Comparing signals with different statistics
Optimize Noise vs. Other Measurement Priorities

- Attenuation = 0 dB Optimal for Sensitivity
- Attenuation = 10+ dB for Optimal Accuracy
- Attenuation = 4-6 dB a Compromise
- Problems with Impedance Match
- Problems with Distortion, Compression
- Chance of Analyzer Input Damage
Trade Away Extra Noise Performance for other Benefits

- Better Overload Performance
- Lower Distortion Measurements
- Faster Measurements
Bad Measurements are Easy to Make

Spur appears 3 dB above noise level
Error in Noise Level Measurements, Measured Near Analyzer Noise floor

<table>
<thead>
<tr>
<th>Actual Noise Ratio</th>
<th>Measurement Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 dB</td>
<td>3.01 dB</td>
</tr>
<tr>
<td>1 dB</td>
<td>2.54 dB</td>
</tr>
<tr>
<td>3 dB</td>
<td>1.76 dB</td>
</tr>
<tr>
<td>5 dB</td>
<td>1.19 dB</td>
</tr>
<tr>
<td>10 dB</td>
<td>0.41 dB</td>
</tr>
<tr>
<td>15 dB</td>
<td>0.14 dB</td>
</tr>
<tr>
<td>20 dB</td>
<td>0.04 dB</td>
</tr>
</tbody>
</table>

Note that error is always positive
“No” error for best S/N, 3 dB for signal at analyzer DANL
Noise Converts ~Deterministic Value to Statistical Distribution

GSM (MSK) SNR 60+ dB

CCDF 1 dB/div 1 MHz Span*

SNR 20 dB
SNR 10 dB

AWGN Ref

* CCDF varies significantly with span at low SNRs

© Agilent Technologies, Inc. 2009
Clues to Two Meas Problems

Signal Close to Noise, Wider than RBW
Narrower RBW Improves S/N

- Residual FM, signal is wider than RBW filter
- Amplitude measured low in error
Band Power Marker, Averaging

- Band power marker compensates for signal spread
- Longer sweep, average detector reduce variance
Detector Types, Averaging Scales

Understanding Enough

• Processing, Data Reduction Always Done
• Signal Characteristics Affect Results
• Basic Settings (RBW, Span, Sweep Time) Affect Results, Even With Same Detector
• Know Enough To:
 – Use your knowledge of your signal
 – Understand results, know what you are getting
 – Make good measurements
 – Identify signal problems, measurement errors
The IF Envelope Detector

- Input is the IF Signal (RBW), Output is Baseband
- Output Voltage is Proportional to Input Envelope
- Response is Different for CW Signals and Noise
Display Detectors
Peak, Negative Peak, Sample

- Input is the IF Envelope Detector Output (log or linear scaled)
- Peak and Neg Peak Detectors Bias the Output Value, Perform Some Data Reduction
Averaging Detectors

- Each Output Represents 2 or More IF Envelope Values
- Reduces Variance Faster Than Single-Value Detectors; Reduce Variance Further by Increasing Sweep Time
- Good Choice for Channel Power or ACP Measurements
Signal-and-Noise Detectors

- Better Represent Combination of Signals and Noise
- Show Distribution of Noise and Noise-Like Signals
- Show Discrete Signals as a Single Value
- More Intuitive, but not Required for Accurate Measurements
Biased & Unbiased Detectors

• Sample Detector-Unbiased
 – Data discarded, not good at reducing variance

• Average Detector-Unbiased
 – Efficient for reducing variance

• Peak, Negative Peak Detectors-Biased
 – Bias is desirable, special-purpose use

• “Normal” Detector
 – Bias depending on signals, implementation
 – Designed for combined signals and noise
Effects of Slower Sweep Speed

• Normal Detector: Wider band of results
• Average Detector: Narrower band of results
 – Variance decreases with square root of number of independent samples in average
• Sample Detector: Results band unchanged
• Peak Detector: Band is narrower, higher
• Neg Peak Detector: Band is narrower, lower
Averaging Error Example

Averaging Power

Average of the log of the power = 3 dBm
\[(0 \text{ dBm} + 6 \text{ dBm})/2\]

Log of the signal’s average power = 3.98 dBm
\[(1 \text{ mW} + 4 \text{ mW})/2 = 2.5 \text{ mW}\]

- Average of the Log is Not Equal to a Log of the Average
- Narrow VBW or Trace Averaging Performs an Average of the Log, an Error in Measuring Time-Varying Signals
- Instead, Average the Power or Report the RMS Value of the Voltage of the Signal
Log Scale Bias for CW Meas.

Log scale better for single CW signal near noise

Video BW filtering or averaging dB

See Agilent AN1303
Detectors/Averaging Example

- **Default:** normal detector, log-power averaging
Detectors/Averaging Example

- Normal detector, log-power avg. longer sweep
Detectors/Averaging Example

- **Average** detector, RMS power
• Average detector, RMS power, longer sweep
Reducing Measurement Noise

• Filtering
 – RBW (not VBW or averaging)
 – Preselection
 – External
• Time or Synchronous Averaging
• Subtraction
• Best Practices
Costs of Sensitivity

• Time
 – Sweep time (narrower RBW, VBW)
 – Averaging

• Money
 – Better instruments
 – Better cables, connectors
 – Preamplifiers
 – External filtering
Traditional Approaches

• Narrower RBW
 – Reduces noise floor (ENBW)
 – May reduce measurement variance

• Video Filtering, Trace Averaging
 – Does not reduce noise floor
 – Reduces measurement variance
 – Average of log of meas, may distort results
 – Effect varies with signal statistics

• Detector Choices
 – Select for accuracy, fast reduction of variance
Traditional Approaches (cont)

• Improve Measurement Noise Figure
 – Better connection to DUT
 – Preamplification - internal
 – Preamplification-external
 – Preselector (internal YIG-tuned filter)
 – External filtering

• Intelligent Operator Filtering
 – “If it looks good it is good” (?)

• Define Results, Objectives Better
 – Account correctly for noise effects
Cables, Connectors, Adapters

Importance Increases with Frequency

• Shortest, Best Connection to Circuit
 – Shorter cable, move analyzer or DUT
 – Choose best cable
 – Minimize adapters
 – Cable/connector hygiene
 – Periodically check cable assemblies
 • Visual inspection is not enough

• 1 dB Gained/Lost = 1 dB Noise Figure
Example: Different Cables

- 0.9 m and 1.6 m cables
- Clue in signal/noise ratios
Preamplifiers

- NF of Preamp must be Less than NF of Analyzer
- Benefits
 - Improved sensitivity
 - May be built-in, internally switchable
 - Gain may be included in analyzer calibration
- Drawbacks
 - Best when input is small signals only
 - May limit TOI, increase distortion
 - May have limited bandwidth
 - Calibration less convenient if external
Less-Common Approaches

• Measure and Subtract the Noise Power
• Vector Average to Remove Noise
 – Coherent (time-triggered) averaging
 – Requires repeated signal, triggering

Vector average of repeated, synchronized measurements converges to the noiseless value
CW Signal Measured Near Analyzer Noise Floor

Amplitude & Frequency Axes Expanded

- Actual S/N
- Displayed S/N
- Apparent Signal
- CW Signal
Noise Floor Subtraction

\[P_{\text{obsS+N}} = P_{\text{obsN}} + P_S \]

\[P_S = P_{\text{obsS+N}} - P_{\text{obsN}} \]

• Analyzer noise adds incoherently to any signal to be measured
• Power calculations are performed on a linear power scale (watts, not dBm) and results typically are shown in dBm
Plotting P_s on a dB Scale

P_s [dBm]

P_{obsN}

P_{obsS+N}

Variance highly multiplied as observed signal approaches noise level
Noise-Like Signal and Noise

- 1 MSymbol/sec QPSK, 1.9 GHz
- Signal accurately measured, but noise biased higher by analyzer noise power (no NFE)
- Average detector, slower sweep to measure signal & noise, reduce variance
Result from Noise Subtraction

Implemented in the Agilent PXA Signal Analyzer

- Blue trace shows more accurate measurement due to removal of analyzer noise power
- Note increased variance of result
Analyzer Noise Floor without NFE

- Source switched off, pink trace shows analyzer noise level, no NFE
- Other measurement conditions unchanged
- PXA DANL (pink) adds to source power (blue) for first meas. result (yellow)
- Note that noise level variance (pink trace) is smaller without NFE
Analyzer Noise Floor with NFE

- Source still off, green trace shows analyzer noise level with NFE
- Other measurement conditions unchanged
- Note high variance result from subtraction of small, noisy numbers
- Analyzer DANL now far enough below source for minimal (0.2 - 0.4 dB) error
A Closer Look

- Pink trace adds to blue trace; result is yellow trace (NFE not used)
- Green trace is included in blue trace but resulting error very small
Noise Power Subtraction vs. Noise Cancellation or Removal

• Power Subtraction Useful for Spectrum & Power (channel power, ACPR) Meas.
• Noise Power from Phase Noise can be Removed
• Improving Demodulation (EVM, RCE, MER, all vector errors) Requires Lowering Inherent Noise or Vector Subtraction
Conditions and Requirements for Effective Noise Subtraction

• Signal and Analyzer Noise Uncorrelated
• RMS Detection (calculations simpler, more accurate)
• Extensive Averaging (to reduce signal variance)
• Averaging on Power Scale (even if results displayed on a log scale)
• Need
 – Method to remove input signal & measure noise
 -or-
 – Prior knowledge of analyzer noise floor under all measurement conditions
Signal Analyzer Low-Band

- Noise Contribution of Analyzer Elements must be Measured and/or Accurately Modeled for all Operating Settings
Signal Type vs. Effectiveness

Signal/Noise Variation with RBW

- Amplitude envelope vs. time
- Best RBW is one matched to signal
- Best ability to separate analyzer noise from signal

Real signals can be one type or combination

© Agilent Technologies, Inc. 2009
Noise Floor Enhancement
CW Example

• 95% confidence interval, ±2 dB tolerance
• 3.5 dB improvement for CW signal
Noise Floor Enhancement
Noise-Like Signal Example

- 95% confidence interval, ±1 dB tolerance
- 9.1 dB improvement for noise-like signal
Noise Floor Enhancement
Pulsed RF Example

- 95% confidence interval, ±3 dB tolerance
- 10.8 dB improvement for pulsed-RF signal
Subtracting Broadband Noise in a Phase Noise Measurement

A Marker
4 430 590.381 Hz
-123.6 dBm/Hz

B Marker
4 430 590.381 Hz
-135.775 dBm/Hz

Center: 4.420777881 MHz
Span: 50 kHz

© Agilent Technologies, Inc. 2009
Subtracting Analyzer Phase Noise

Using Very Clean Source as Phase Noise Power Reference

Noise Subtraction Calculations Increase Variance of the Result
Better Reference Oscillator and/or Higher Performance Analyzer

$F_c = 1.8 \text{ GHz}$

Mkr1 10.0 kHz
-131.2 dBc/Hz

© Agilent Technologies, Inc. 2009
Microwave or High Band Architecture Tradeoffs

• Microwave or High Band Section
 – Path switching for low band
 – Path switching for microwave preamplifier
 – Other switching or path losses

• Alternate “Low Noise Path”
 – Optimized for high band
 – No microwave preamplifier
Low Noise Path

Low band

High band

Low noise path

YIG filter with bypass relay

To μW

Converters

To Low Band
Alternate “Low Noise Path”
Combining Noise Floor Extension and Low Noise Path

- 3.6 - 26.5 GHz, preamplifier off
- Low noise path incompatible with preamp
Resources

- “Noise Floor Extension: Improving the Dynamic Range of Spectrum Analysis” Joe Gorin (to be published soon)
- “Spectrum Analyzer Measurements and Noise” Joe Gorin, Agilent Technologies Application Note 1303, literature number 5966-4008E
- “Optimizing RF and Microwave Spectrum Analyzer Dynamic Range” Agilent application note AN-1315 literature number 5968-4545E
- “Spectrum Analysis Basics” Agilent application note AN-150 literature number 5952-0292EN