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We show that by using a unitary transformation to k space and the special-k-point method for
evaluating Brillouin-zone sums, the recursion method can be very effectively applied to translation-
ally invariant systems. We use this approach to perform recursion calculations for realistic tight-
binding Hamiltonians which describe diamond- and zinc-blende-structure semiconductors. Project-
ed densities of states for these Hamiltonians have band gaps and internal van Hove singularities.
We calculate coefficients for 63 recursion levels exactly and for about 200 recursion levels to a good
approximation. Comparisons are made for materials with different magnitude band gaps (diamond,
Si, @-Sn). Comparison is also made between materials with one (e.g., diamond) and two (e.g., GaAs)
band gaps. The asymptotic behavior of the recursion coefficients is studied by Fourier analysis.
Band gaps in the projected density of states dominate the asymptotic behavior. Perturbation
analysis describes the asymptotic behavior rather well. Projected densities of states are calculated
using a very simple termination scheme. These densities of states compare favorably with the re-
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sults of Gilat-Raubenheimer integration.

I. INTRODUCTION

The recursion method!? is a general numerical tech-
nique for calculating projected densities of states of one-
electron Hamiltonians expressed in a local orbital basis
set. Because it is not based on symmetry properties, the
recursion method is often used in the description of sys-
tems without translational symmetry such as disordered
materials and defect structures. It can also be used to
describe translationally invariant systems. In this case,
the large number of matrix inversions necessary to calcu-
late a projected density of states by Brillouin-zone integra-
tion techniques are avoided by using the recursion
method. For materials which can be described with a
small number of local orbitals in the basis set of each unit
cell, the Brillouin-zone integration techniques are quite ef-
ficient. However, for more complex materials in which a
large number of local orbitals in the basis set of each unit
cell are required, Brillouin-zone integration can take a
great deal of computer time. For these systems the recur-
sion method can be advantageous.

In the recursion method,}’? an initial-state vector, on
whose projection one wishes to calculate a density of
states, is selected. Starting with this state, a new basis set
is constructed by a three-term recursion relation. A series
of recursion coefficients is also generated. The new basis
set is of interest because the Hamiltonian is tridiagonal in
this basis and its matrix elements are the recursion coeffi-
cients. From these matrix elements, the projected density
of states is generated as a continued fraction. For an in-
finite system, the new basis set will, in general, have an in-
finite number of elements. In practice, of course, only a
finite number of recursion levels can be calculated. Typi-
cally, the initially chosen state is localized in space and as
the recursion proceeds, the generated state functions

34

spread out in space. The number of recursion levels cal-
culated is limited by the size of a cluster of atoms that can
be treated. In a typical calculation with a realistic model
Hamiltonian, a cluster of a few thousand atoms may be
considered, which allows about 10—20 recursion levels to
be exactly calculated. Various approaches have been sug-
gested to construct the projected density of states from
these finite sets of recursion coefficients.>~® In many
cases, these approaches rely on a knowledge of the asymp-
totic behavior of the recursion coefficients. For calcula-
tions based on realistic model Hamiltonians, the asymp-
totic region is not usually reached.®

This paper has two purposes. First, we show that by
using a unitary transformation to k space and the
special-k-point method’~° for evaluating Brillouin-zone
sums of smooth functions, the recursion method can be
very effectively applied to translationally invariant sys-
tems. A large number of recursion coefficients can be cal-
culated and the asymptotic region of behavior can be
reached. Second, using this approach we numerically in-
vestigate the asymptotic behavior of the recursion coeffi-
cients for realistic model Hamiltonians. We explicitly
consider the tight-binding Hamiltonians of the diamond-
and zinc-blende-structure semiconductors proposed by
Vogl et al.'® For these Hamiltonians, we calculate coeffi-
cients for 63 recursion levels exactly. For a position space
cluster, it would require more than 250000 atoms for the
calculation. Based on an extrapolation of calculated re-
sults using a smaller number of special k points in our k-
space sums (the feature which limits the number of recur-
sion coefficients that can be exactly calculated in this ap-
proach) we believe that the first ~100 recursion coeffi-
cients are numerically precise (better than 1%) and the
next ~ 100 recursion coefficients are rather close. The
asymptotic region of behavior sets in after about 30—40
recursion levels. The asymptotic region is investigated by
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Fourier transformation. The projected densities of states
are constructed from the recursion coefficients using a
very simple interpolation procedure and the results are
compared with those obtained using Gilat-Raubenheimer
integration.!!

The paper is organized in the following way: in Sec. II
we describe our approach for evaluating the recursion
coefficients of a translationally invariant material, in Sec.
IIT we apply this approach to Hamiltonians describing di-
amond and zinc-blende semiconductors, and in Sec. IV we
summarize our conclusions. Some details for constructing
symmetric k-space functions are included in an appendix.

II. THE RECURSION METHOD IN k SPACE

In the recursion method,"? one selects a particular state
function, U,. The object of the calculation is to find the
U, diagonal matrix element of the Green’s function,

Go(E)=(Uy | (E—H)"'|Uy) , (1)

where H is the Hamiltonian and E is an energy. Such
matrix elements can be related to quantities of physical
interest. For example, the projected density of states is
given by

no(E)=3, [{Uy| ;) |28(E —¢;)
J

- iImGo(E—H'S) , 2)

where ; is an eigenstate of H with eigenvalue ¢;. Start-
ing with U,, normalized to unity, one generates a series of
state functions U, and recursion coefficients a, and b,
by

Uy, 1=(H—a,)U,—-b,U,_,, (3a)

a,={U, |H|U,) , (3b)

b,=((U, | TU,N"?, (3c)

U,= Y (3d)
"=,

with the initial condition

U,,I:O. (36)

Within the orthonormal basis {U,} the Hamiltonian is
tridiagonal with matrix elements given by Eq. (3b) and

(Un’H]Un+l>:<Un+1|H|Un>:bn+1' 4)

The U, diagonal matrix element of the Green’s function
can be expressed as a continued fraction involving the re-
cursion coefficients':2

GolE)= L T

E-—ao-—

b2
E—al— .2

E—a;_,—b{t(E)

2337

For an infinite system, the basis set { U,} contains an in-
finite number of terms and the continued fraction of Eq.
(5) has an infinite number of levels. In practice, of course,
only a finite number of levels can be calculated. Thus the
continued fraction must be terminated in some way. The
function #(E) in Eq. (5) represents this termination.
Several approaches for selecting this terminating function
have been proposed.’—¢

As the recursion method is usually applied, the Hamil-
tonian and state functions, U, are described in terms of a
localized basis set. We consider a crystal and take an
orthonormal'? local basis {¢;(r)} where R; labels lattice
points and b labels orbitals in the unit cell (both orbital
site and type of orbital on a given site). The orbitals are
taken to be real. The Hamiltonian and state functions
{ U, } in this basis are labeled by

(i | H | ¢jp') =Hpp, jyy=Hpp(R; —R;) (6a)
and

(Biv | Un ) =Upp . (6b)

In this basis, the recursion equations are

Upirip=3, (Hip; jir— a8 8pp')
it

X Upjpr—bpUp_1,i 6 » (7a)
ap=3 UmpHpp.jpUpjp (7b)
ib,j.b'
R
bn = 2 U:ib Um'b s (7¢)
ib
1 ~
Unib=b_Um'b . (7d)
n

For crystalline materials, it is possible to construct
orthonormal basis functions {¢,,} with Bloch symmetry

_ 1 ik-(R;+V,)
¢kb— \/J—V_ ;e ¢1b ’ (8)
where V,, is the displacement of the bth orbital site from
the lattice point and N is the number of unit cells in the
crystal. In this basis, the Hamiltonian and state functions

{U,} are given by
(buo | H | pup) =i Hpp (k)

ik(Vp,—V,) ik-R;
=8kk' e b b ze ]be'(Rj)
J

(9a)
and
1 —ik(R;+V,)
(b | Up) =Upp(k) =3 —=-¢ T (9b)
n < ‘/}-V' nj
Note that the Hamiltonian is block diagonal. In this

basis, the recursion equations are
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Uy +16(K) =3 [Hpp(k) —a, 855 ]Uppr(k)
<

—b, U, _1p(k), (10a)
=233 Upn(k)Hpp(k)Upp(k) , (10b)
k b,b’
_ _ 172
by= |33 UnkUyuk) | (10¢)
k b
U,,,,(k):bi T (K) . (10d)

The recursion equations in the R-space basis [Eq. (7)]
and in the k-space basis [Eq. (10)] are exactly equivalent.
They are related by a unitary transformation. However,
the procedure for solving these two sets of equations and
the necessary approximations will be quite different. In
the R-space basis, a finite cluster of atoms must first be
chosen so that the state vectors U, will be of finite length.
For the usual case of interest, the initial-state vector, U,
is localized in R space on one, or at most a modest num-
ber, of orbitals ¢;,. The Hamiltonian connects orbitals on
nearby spatial sites. As the recursion number grows, the
state vectors U, spread out in space. After some number
of recursion levels, the state vector U, is no longer entire-
ly contained in the cluster. The recursion calculation will
no longer be exact for levels past this critical one. Various
approximations have been suggested to continue the calcu-
lation past the critical recursion level.! In the k-space
basis, an infinite system can be considered. However, only
a finite number of k points can be used. The Hamiltonian
does not mix different k components. Thus, if the
initial-state vector U, contained a finite (tractable) num-
ber of k components, the recursion calculation could be
exactly performed. This case has been considered in Ref.
13. However, in the usual case of interest, U, is localized
in R space and thus includes k points throughout the
Brillouin zone. Since only a finite number of k points can
be included, the question becomes one of the accuracy of
the Brillouin-zone sums in Egs. (10b) and (10c). A major
point of this paper is that by using the special-k-point
method to perform these sums, a large number of recur-
sion levels can be exactly calculated and many more can
be calculated to a good approximation.

To proceed with the analysis of the k-space recursion
equations, first notice that both of the k-space sums can
be written in the form

ik-R

¥R
> N g(Ry) |,

(11a)

>gk)=3
k K

J

where for the sum in Eq. (10b),

gR;)=3 EU:1R,.+Rj)bHRib;R,.,b' Unr, b’ > (11b)

ii' b,b’
and for the sum in Eq. (10c)

gR)=3 (7:(11,.+Rj>bﬁnn,.b . (11c)
ib

(Of course only the R; =0 term will contribute in the k-
space sum. But the individual R; contributions are not
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known, only the sum on j, g(k), is known.) From Egs.
(11b) and (11c), we see that for both sums g(R;) has the
form of a vector [HR;r,' Unr,s in Eq. (11b) and f/,,Rib
in Eq. (11c)], which is spatially centered with a second
vector [U"(Rﬁ Rj)b]’ which is also spatially centered but

has been displaced from the first vector by R;. Therefore,
as | R; | becomes large, g(R;) will become small. Indeed,
at any given recursion level, g(R;) will vanish for |R; |
greater than some value which depends on the recursion
level. (We are assuming that the initial state is localized
in space and that the Hamiltonian has a limited range.)

The special-k-point method is effective at performing
Brillouin zone sums for functions g(k) with the properties
described above.®>® In this approach, one first constructs
a symmetric function:

f=—— 3 g(Tik), (12)
nr i

where T; are the symmetry operators of the lattice point
group and nr are the number of such operators. Clearly
the sums on f(k) and g(k) are equal and f(k) has the
symmetry of the Brillouin zone. The function f(k) can be
written as

f=[g0)+ 3 frnAn(KI/N, (13a)
=1
Ank)=S ™% (13b)
JjEmM
fmz"l_zg(TiRm) , (13¢)

nTi

where m labels shells of lattice points, the sum on j in Eq.
(13b) is over the lattice points on a given shell and g(0) is
g(R;) at R;=0. To perform the k-space sums one selects
a set of k;’s and weights a; such that

S a; Ay (k)=0, (14)

for all m <M. Algorithms to select these special k points
and weights are given in Refs. 8 and 9. Note that finding
these points and weights is a purely geometrical problem.
The k-space sum is then approximated by

>elk)=g(0)
k
22 a,‘f(k,')

=20+ 3 fum [za,.A,,,(k,.> . (15)

m>M

If f,, is zero for m > M, the integration scheme is exact.
If f,, is small for m > M, the integration scheme is valid.
The accuracy of a recursion calculation in the k-space
basis is limited by the accuracy of the k-space integration
scheme. For initial states Uy which are localized in space
and Hamiltonians with a limited range, the coefficients
fm,» which appear in the k-space integrals, vanish when m
exceeds a critical value, L,, which depends on the level of
recursion n. As the recursion level increases, L, in-
creases. For L, <M, the nth level of recursion is calcu-
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lated exactly. The value of M is determined by the num-
ber of special k points chosen. Thus, increasing the num-
ber of special k points increases the number of recursion
levels that can be exactly calculated.

The symmetric functions f(k) must be constructed
from the functions g(k) which are actually calculated. In
principle, these functions can be constructed by simply
performing the sums indicated in Eq. (12). However, it is
almost always possible to use symmetry to simplify these
sums. In the Appendix, we describe ways in which these
sums can be simplified.

III. CALCULATIONS FOR DIAMOND
AND ZINC-BLENDE SEMICONDUCTORS

We consider the Hamiltonians proposed by Vogl
et al.' to describe the diamond and zinc-blende crystal
structure semiconductors. These Hamiltonians describe a
nearest-neighbor tight-binding model with five orbitals, an
s, three p, and an “excited s-state” s*, on each of the two
atoms in the unit cell. These Hamiltonians describe the
valence bands and lowest conduction band reasonably
well. Densities of states calculated using these Hamiltoni-
ans have band gaps and van Hove singularities. We calcu-
late recursion coefficients starting with each of the orbi-
tals of the basis set. For the diamond structure, the two
atoms in the unit cell are the same and there is no differ-
ence between a calculation starting with an orbital cen-
tered on one of the atoms and a calculation starting with
the corresponding orbital centered on the other atom. The
s and s* orbitals form one-dimensional representations of
the T, point group.'* Thus, as discussed in the Appen-
dix, the symmetrizing sum in Eq. (12) is automatically ac-
complished [i.e., f(k)=g(k), in this case]. The p orbitals
form a three-dimensional representation of the T, point
group. Thus, as discussed in the Appendix, the sym-
metrizing sum in Eq. (12) is accomplished by starting
each of the three p orbitals in the recursion scheme and
summing over the states generated in this way [i.e.,
flk)=+ ,87(k), where J stands for p,, Py, and p,. See
Eq. (A17) of the Appendix]. Clearly, the results for the
recursion coefficient must be the same for each of the
three p orbitals and a calculation for the p orbitals takes
about 3 times as long as for the s orbitals.

We use the algorithm derived in Ref. 8 to generate the
special k points and weights. For this algorithm, the first
breakdown in the condition of Eq. (14) occurs for shells
corresponding to the lattice points a, (2N¥,0,0). The gen-
eral failures are for shells corresponding to the lattice
points aq (2NI1,,2N1,,2Nl,), where [; are integers. Most
of the calculations we report are for N=16, which re-
quires 2992 special k points. For this case, the recursion
calculation is exact; that is, the correction term in Eq. (15)
is zero, through 63 levels of recursion. The first correc-
tion occurs at n,=64. We also report a calculation with
N =8, which requires 408 special k points and has the
first correction at n, =32 for comparison.

Although the k-space integration is not exact for
n >n., we might expect that the results continue to be
rather close for n /n, less than some number. By compar-
ing results with N=8 with those for N=16 we conclude
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that the results continue to be numerically precise (in the
sense that corrections to a, and b, are less than 1% of
the amplitude of the variation of a, and b, with n in the
asymptotic region) for n/n, <1.5 and rather close (loosely
defined) for n/n, <3.

In Fig. 1, we show calculated results for the recursion
coefficients a, and b, as a function of n starting the re-
cursion with the s orbital in Si. The coefficients are
pointwise defined but a continuous curve is plotted for
each of view. Results are shown for n <198. As dis-
cussed above, the results are exact for n <63, numerically
precise for 64<n <100, and “rather close” for
100<n <198. As seen from the figure, both @, and b,
have relatively large amplitude structure at small » which
decays to an approximately constant amplitude oscillation
in the asymptotic region. The asymptotic region sets in at
n > 30.

As has been discussed previously, internal van
Hove singularities in the projected density of states result
in damped oscillations in the recursion coefficients and
band gaps result in undamped oscillations. A perturba-
tion analysis'®!” suggests that in the asymptotic region
the recursion coefficients should take the form

15—17

a,=a+ 3 8a; cos(6;n —w;) (16a)
i
and
b,=b+ 3 8b; cos(¢;n—v,), (16b)
i
5 orbital Si
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FIG. 1. The calculated recursion coefficients a, (upper panel)
and b, (lower panel) as a function of recursion level n starting
the recursion with the s orbital of Si.
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where the sum is over the gaps in the projected density of
states, 8a; and 8b; are related to the magnitude of the
gaps, ; and ¢; are related to the energy position of the
gaps, a is the energy center of the projected density of
states, and b is one-fourth of the bandwidth. The fre-
quencies (6; and ¢;), phase angles (w; and ¥;), and ampli-
tudes (8a; and 8b;) are related to each other by the pertur-
bation analysis, but for comparison we will take them as
independent.

For the model used here, Si has two band gaps: the
main gap of 1.16 eV centered at 0.58 eV (the valence-band
maximum defines the energy zero for these Hamiltonians)
and a small gap (an artifact of the model Hamiltonian) of
0.17 eV centered at 6.58 eV. The main gap dominates the
asymptotic region. There is a single dominant undamped
sinusoidal oscillation. The apparent modulation is due to
the fact that the recursion coefficients are only pointwise
defined and the frequencies ¢ and 6 are close to 7.

In Fig. 2, we show calculated results for the recursion
coefficients, a, and b,, as a function of n starting the re-
cursion with the As s orbital of GaAs. For the model
used here, GaAs has two band gaps: the valence- to
conduction-band gap of 1.55 eV centered at 0.77 eV and a
valence-band gap of 2.47 eV centered at —8.73 eV. The
valence-band gap occurs in the zinc-blende-structure ma-
terials, like GaAs, but not in the diamond-structure semi-
conductors. The two gaps of comparable size cause the
asymptotic behavior for GaAs to be quite diffeent than

s orbital on As in GaAs

4][ T T T T T T T T T

S ”!f 'TTT:V,YT..

— Y 3 TN 4

S / ot

::: | &

© i

e}

O

S

Q -4 4

[%2]

2 |

3

X -6 1
_8__ .
7.5H s orbitalon As in GaAs

~

o0
5

Recursion Coefficient by,
()]

020 40 60 80 100 20 40 160 80 200

Recursion Level (n)

FIG. 2. The calculated recursion coefficients a, (upper panel)
and b, (lower panel) as a function of recursion level n starting

the recursion with the As s orbital of GaAs.

that of Si which has a single dominant gap. For GaAs,
there are two principal undamped frequency components
corresponding to the two principal gaps.

In Figs. 3 and 4, we show calculated results for the re-
cursion coefficients, a, and b, as a function of » starting
the recursion with the s orbitals in diamond and a-Sn,
respectively. Diamond has a single valence- to
conduction-band gap of 5.33 eV centered at 2.66 eV. a-Sn
is a semimetal and does not have a band gap.'® It does,
however, have two cusps (zeros) in the density of states at
0.0 and —8.46 eV. The asymptotic region of the recur-
sion coefficients for diamond is similar to that of Si ex-
cept that the amplitude of the undamped oscillations is
much larger in diamond than in Si. The increased ampli-
tude in diamond reflects its much larger band gap. In a-
Sn, which does not have a band gap, oscillations in the re-
cursion coefficients are damped. The damping is quite
slow, however, owing to the cusps in the density of states.

The calculations shown in Figs. 1—4 used 2992 special
k points and the results are exact through n=63. The re-
cursion coefficients shown in these figures appear to have
reached asymptotic behavior for n>30. From simply
viewing these figures, there is no obvious breakdown in
the calculation for n < 198. In order to estimate the accu-
racy of the results for n > n,.=64, we compare the above
results with those of calculations using 408 special k
points which have n,=32. Here, we specifically describe
the case of s orbitals in Si, but the behavior for the other

s orbital diamond

3t

ol
1

]

Recursion Coefficient a,

5 0 o
.

O = ™

Recursion Coefficient b,
ol

Q0

0 20 40 60 80 100 120 140 160 180 200

Recursion Level (n)
FIG. 3. The calculated recursion coefficients a, (upper panel)

and b, (lower panel) as a function of recursion level n starting
the recursion with the s orbital of diamond.
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FIG. 4. The calculated recursion coefficients a, (upper panel)
and b, (lower panel) as a function of recursion level n starting
the recursion with the s orbital of a-Sn.

systems is essentially the same. For n < 32, both calcula-
tions are exact and the results are the same. Writing out
the calculated results to six significant figures, the first
observed difference between the two calculations occurred
at n=40. At n=>50, the difference between the calcula-
tions first exceed 1% of the asymptotic oscillation ampli-
tude. In Fig. 5, we compare the results of the two calcula-
tions for 50<n <100. For these values of n, the results
are rather close. The correspondence between the two re-
sults is lost for larger values of n and the calculation us-
ing 408 special k points loses its periodic behavior. On
the basis of this comparison, and very similar results for
the other cases, we suggest that the results are numerically
precise for n/n, < 1.5 and rather close for n/n, <3.

Both the oscillatory behavior of the recursion coeffi-
cients in the asymptotic region that is apparent in Figs.
1—3 and the perturbation analysis,'!” which leads to
Eqgs. (16), suggests the utility of a Fourier analysis of the
recursion coefficients. We perform a discrete Fourier
transform of the region 30 <n <198. For this purpose,
we define

84
a,=Aog+ 3, Ajcos | | ——j|(n—30)
g = 169
84
B;si —j|(n=30)| .
+j§l jsin | | S o) |(n ) (17)
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FIG. 5. Comparison of the recursion coefficients a, (upper
panel) and b, (lower panel) for n between 50 and 100, calculated
using 2992 special k points (solid circles) with those calculated
using 408 special k points (crosses).

An analogous transform is performed on the b, coeffi-
cients. Equation (17) is inverted to find 4,, 4;, and B;.
In Fig. 6, we show the coefficients 4; and B; which result
from the transform of the a, recursion coefficients for the
s orbital in Si.!” There is a dominant feature in both 4;
and B; at j=79. Smaller features appear at j=>50 and 47.
Similar features occur at these channel numbers in the
transform of b,. The feature at j=79 corresponds to the
main band gap in Si, the feature at j=50 corresponds to
the small gap in the conduction band in this model, and
the feature at j=47 corresponds to the cusp that occurs in
in the Si valence band.

In Fig. 7, we show the Fourier transform coefficients
A; and B; for the a, recursion coefficients for the As s
orbital in° GaAs.!"” There are two dominate features at
j=81 and 43. Similar strong features occur at these chan-
nel numbers in the transform of b,. The feature at j=281
corresponds to the main valence to conduction-band gaps
of GaAs and the feature at j=43 corresponds to the large
valence to valence-band gap of GaAs.

Comparing Eq. (17) with the perturbation Eq. (16), one
can extract the perturbation parameters characterizing the
band gaps. The perturbation analysis'®!” predicts rela-
tions between the perturbation parameters and the band
gaps:

6i=0;, (18a)
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FIG. 7. The Fourier coefficients A; (upper panel) and B;

(lower panel) which results from the transformation of the a,

recursion coefficient starting the recursion with the As s orbital
of GaAs.

AE;=26a;=45b; , (18b)
gi=at2bcos(¢;/2), (18¢)
0;=Y;+¢;/2 (—m), (18d)
B=4b , (18e)
C=a, (18)

where AE; is the size of the band gap, g; is the midpoint
energy of the band gap, the (—7) in Eq. (18d) and minus
sign in Eq. (18c) are included for gaps in the lower-energy
half of the spectrum and not in the upper-energy half, B
is the width of the energy spectrum, and C is the energy
midpoint of the spectrum. In Tables I and II, we compare
these relations for the two gaps in Si and GaAs, respec-
tively. The perturbation analysis parameters in these
tables are from the Fourier analysis shown in Figs. 6 and
7 and analogous results for the b, coefficients. The
band-gap parameters in the tables are from diagonalizing
the Hamiltonian.

Major features in the Fourier analysis of the a, and b,
coefficients occur in the same channel. Thus Eq. (18a) is
satisfied to the accuracy of the analysis. From the com-
parison in the tables, one sees that the perturbation theory
predictions are reasonably well satisfied in these cases.
The largest discrepancies occur for the size of the small
conduction to conduction-band gap in Si. The s orbitals
of Si are very weakly weighted in this energy region, as
will be seen when this projected density of states is shown.
In particular the edges of the band gap in the s orbital
projected density of states are very soft. Thus it may not
be surprising that the perturbation analysis gives some-
what too large of a value for this gap.

The band gaps and band edges for the various projected
densities of states in a given material are the same. One
would thus expect that the Fourier analysis of the asymp-
totic region for different orbitals in a given material
would yield similar results. This is indeed the case. For
example, s, s*, and p-orbital recursion coefficients in Si
all show a dominant feature at j=79 and secondary
features at j=>50 and (valence-band cusp) in their Fourier

TABLE 1. Comparison of band-gap and perturbation param-
eters, s orbital in Si.

Channel j=79 j=50
28a; (eV) 1.06 0.36
46b; (eV) 1.04 0.33
AE; (eV) 1.16 0.17
a+2bcos(6;/2) (eV) 0.64 6.55
gi (V) 0.58 6.58
w; /T 0.70 0.71
(yi+6,/2)/m 0.72 0.65

4b (eV) 23.81

B (eV) 23.84

a (eV) —0.58

c (eV) —0.58
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TABLE II. Comparison of band-gap and perturbation pa-

rameters; As s-orbital in GaAs.

Channel j=28l j=43
28a; (V) 1.40 242
458b; (eV) 1.38 2.37
AE; (eV) 1.55 2.47
a+2bcos(6;/2) (eV) 0.63 —8.67
g (V) 0.77 —8.73
w; /T 0.50 0.77
(yi+6:/2) /7 0.49 0.77

4b (eV) 24.40

B (eV) 24.60

a (eV) -0.17

¢ (eV) —0.25
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transforms. Very small features, such as the small peak at
channel 63 in Fig. 6, are different in the various cases.
Comparison of the perturbation results for the different
orbitals gives results similar to those shown in the tables.
The results for the size of the small conduction to
conduction-band gap in Si is a little better for the s* and
p orbitals than for the s orbitals shown in Table I.

Several approaches to construct a projected density of
states from a finite set of recursion coefficients have been
suggested.’~® Here we use a very simple termination
scheme. The termination function in Eq. (5) is taken to
have the form of the continued fraction for constant re-
cursion coefficients a and b,

(E—a)—[(E—a)*—4b?]'?

PYE: (19)

HE)=

The values of a and b are determined by the Fourier
analysis. The calculated recursion coefficients do not ap-
proach a constant asymptotically. We linearly interpolate
between the calculated coefficients @, and the constant
value a implied by Eq. (19),

an) n<n1 (203)
a,= {a,(n,—n)+aln—n;)
» mp<n<ny, (20b)
n;—n,

where g, is the value of the recursion coefficient used in
the projected density-of-states calculation. The recursion
coefficients b, used in the projected density-of-states cal-
culation are found in an analogous way. Here, n, is the
start of the interpolation and n, is the end. Recursion
coefficients with n > n, are taken as constants and are in-
cluded by the use of the terminating function. The values
n,=>50 and n,=140 were used.?’ From this set of recur-
sion coefficients and this terminating function the project-
ed densities of states are calculated using standard
methods.*

In Figs. 8 and 9, we compare projected densities of
states calculated using the recursion method and the ter-
mination scheme described above with those calculated
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FIG. 8. s orbital projected density of states in Si calculated
with the recursion method (lower panel) and by Gilat-
Raubenheimer integration (upper panel).
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2344

using Gilat-Raubenheimer integration'! for the s and p
orbitals of Si, respectively. Even using this simple ter-
minating scheme, which can surely be improved upon, the
recursion calculation yields a rather good density of
states.

IV. SUMMARY AND CONCLUSION

We have shown that by using a unitary transformation
to k space and the special-k-point method for evaluating
Brillouin-zone sums, the recursion method can be very ef-
fectively applied to translationally invariant systems. We
have used this approach to perform recursion calculations
for tight-binding Hamiltonians of diamond- and zinc-
blende-structure semiconductors.!® For these Hamiltoni-
ans, we calculate 63 exact levels of recursion. The asymp-
totic behavior of the recursion coefficients was studied by
Fourier analysis. The band gaps in the projected density
of states dominate the asymptotic behavior. Perturbation
results'®!” describe the asymptotic behavior rather well.
Projected densities of states were calculated using a very
simple termination scheme. These densities of states com-
pare favorably with the results of Gilat-Raubenheimer in-
tegration.
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APPENDIX: CONSTRUCTION
OF THE SYMMETRIC k-SPACE FUNCTIONS

In this appendix, we describe how symmetry can be
used to construct the symmetric functions defined in Eq.
(12) where g(k) is either the function summed in Eq.
(10b) or in Eq. (10c). We use spatial symmetry and time-
reversal symmetry. We first consider the case that the
Hamiltonian commutes with time reversal and U, is a
time-reversal eigenstate. In that case, one verifies that U,
is a time-reversal eigenstate, for all n, with the same
eigenvalue as Uy. One then finds that

gk)=g(—k), (A1)
for both of the g functions.

The point group of operators {T;} (call it G) contains
the inversion operator because it is the point group of a
lattice. Let the group, L, contain the operators {/;} and
have the property that

G=LXC; . (A2)
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Finally, let the group Q, containing the n; operators {S;},
be the point group whose symmetry we will use. Q must
be a subgroup of the crystal- (lattice plus basis) point
group. It should equal the crystal-point group if this
group lacks the inversion operator and be a subgroup in
which inversion is excluded if the crystal-point group con-
tains inversion. The group L is chosen [Eq. (A2) does not
provide a unique definition] so that Q is a subgroup of L.
[These seemingly roundabout definitions are convenient
because it allows one to use time reversal, rather than spa-
tial inversion, to relate g(k) and g( —k). Restrictions on
the state U, are thus reduced.]

Using Eq. (A1), we can reduce the expression for f(k)
to

K== S gk, (A3)
[

where n;=ny/2 is the number of elements in L. If Qisa
proper subgroup of L, we define the set of k points

(k) =(S;k(S; Lk, }, (A4)

where .7, etc., are specific elements of L. This separa-
tion is just a resolution of L in right cosets with respect to
Q. Unless symmetry has deliberately been neglected in
the choice of @, there will be at most two elements .,
(the identity and one other). The expression for f(k) may
be written as

f(k):fiz[izg[sjw,.k)] . (AS)
np s

The sum on i must be done without help from symmetry,
the sum on j can be reduced using spatial symmetry.

Starting with the state function Uj,, we construct the
set { U} } where,

Uh=S;U, . (A6)

One verifies that if U} is started through the recursion
scheme, the same set of recursion coefficients {a,,b,} are
found as when Uj is started through. The state functions
U; generated in this way are related to those generated by
starting with U, by

Uj=S;U, . (A7)

If the set of functions {U}} is linearly dependent, the
sum in Eq. (AS) can be simplified using symmetry. In
this case, we can write

Uy=3 a, U} (A8)
J

where {U}} is a linearly independent subset of (UL}
One verifies that

Ui=3 a,U, . (A9)
J

One also shows that for both of the g functions con-
sidered

g/(S;k)=g(k), (A10)



where g/(k) is the function calculated starting with U?.
Therefore,

3 g(Sik)=3 glk) . (A11)

j j
Using Eq. (A9), we have
3 S U Sk U (Sik)
il

=3 3 (@) ey |3 U KU k)
j I b
(A12)

and an analogous equation for the other g function.
The set { U} forms basis functions for a representation
of the group Q,

S; U= U§Dy,(j) . (A13)
<

The representation matrices are related to the expansion
coefficients a;; by

Dy,(j)=ay , (Al4a)
where
Si=SjSJ . (A14b)

34 RECURSION METHOD IN THE k-SPACE REPRESENTATION 2345

Therefore, we can write

Sta;)*a; =23 DJ y()Dy ) , (A15)
J

J

for any J"”. If the representation is irreducible and uni-
tary,

nS
zD,f,.,(j)DJ,J,,(j)zn—su,, (A16)
J J

where n; is the dimension of the irreducible representa-
tion. In this case we have

1 1
n—zg(Sjk)=Zzg’(k) . (A17)
s J

This is our main result. The calculation can be greatly
simplified if U, transforms according to a column of an
irreducible representation. This is the usual case of in-
terest because the Green’s operator (E —H)~! does not
mix functions which transform according to different ir-
reducible representations or different columns of the same
irreducible representation. Thus, in general, one can just
break Uj into pieces which transform according to the
various irreducible representations. Equivalently, one can

reduce the representation in Eq. (A13) if it is not irreduci-
ble.
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