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The complex surface impedance is a well-established tool to study the super- and normal-fluid responses
of superconductors. Fundamental properties of the superconductor, such as the pairing mechanism, Fermi
surface, and topological properties, also influence the surface impedance. We explore the microwave surface
impedance of spin-triplet UTe2 single crystals as a function of temperature using resonant cavity perturbation
measurements employing a multimodal analysis to gain insight into these properties. We determine a composite
surface impedance of the crystal for each mode using resonance data combined with the independently measured
normal state dc resistivity tensor. The normal state surface impedance reveals the weighting of current flow
directions in the crystal of each resonant mode. For UTe2, we find an isotropic �λ(T ) ∼ T α power-law
temperature dependence for the magnetic penetration depth for T � Tc/3 with α < 2, which is inconsistent
with a single pair of point nodes on the Fermi surface under weak scattering. We also find a similar power-law
temperature dependence for the low-temperature surface resistance Rs(T ) ∼ T αR with αR < 2. We observe a
strong anisotropy of the residual microwave loss across these modes, with some modes showing loss below the
universal line-nodal value, to those showing substantially more. We compare to predictions for topological Weyl
superconductivity in the context of the observed isotropic power laws and anisotropy of the residual loss.
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I. INTRODUCTION

UTe2 is a remarkable heavy Fermion superconductor near
the edge of ferromagnetism, which shows evidence of spin-
triplet pairing [1], including extraordinarily high critical fields
with multiple superconducting phases, as well as re-entrant
and orphan superconducting phases [2,3]. UTe2 has an or-
thorhombic crystal structure with D2h point group symmetry.
Early generation samples (CVT1, Tc ∼ 1.6 K), grown with a
chemical vapor transport (CVT) method [4], show evidence
of time-reversal invariance (TRI) breaking in the supercon-
ducting state. Two transitions in specific heat and a nonzero
polar Kerr effect which onsets near Tc have been observed [5].
Electrodynamic properties of CVT1 samples are consistent
with point nodal behavior of the superconducting gap [6–8].
Similarly, thermodynamic properties are also consistent with
nodal behavior in UTe2 [1,5,9].

The CVT growth method has been improved to produce
samples with higher transition temperatures (CVT2, Tc �
2 K). These samples show only one superconducting transi-
tion [10]. There is now a generation of molten salt flux (MSF)
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grown samples with high RRR ∼100 (MSF1, Tc ≈ 2.1 K),
which likewise, shows only one superconducting transition
[11,12]. Polar Kerr measurements have also been performed
on single transition samples grown with both CVT2 and
MSF1 methods, which do not show evidence of TRI breaking
in the superconducting state [13]. Muon spin relaxation (μSR)
measurements also show no evidence of TRI breaking for
MSF grown samples [14]. For these CVT2 and MSF1 crystals,
Tc increases with RRR but saturates for RRR �50 [10–12].
If UTe2 is a simple p-wave superconductor, then ordinary
disorder should suppress Tc; hence, higher-Tc crystals should
imply higher quality (less disordered) materials. In actuality,
this is not the case as samples of the same Tc can have a variety
of RRR values [10–12,15].

Numerous studies have been performed on the CVT2 and
MSF1 samples to determine the specific single component
order parameter of UTe2; however, there is no agreement.
Thermal conductivity has been measured vs temperature and
applied magnetic field for both CVT and MSF grown UTe2

samples [9,16]. Hayes et al. find that the extrapolated zero-
temperature thermal conductivity to temperature ratio shows
a rapid increase with magnetic field for very low fields, which
is indicative of nodal superconductivity. They conclude that
UTe2 is specifically a B1u (nodes along the kz direction) or
B2u (nodes along the ky direction) pairing symmetry. Suetsugu
et al., however, do not observe this behavior when perform-
ing the same measurements, concluding an Au (fully gapped)
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FIG. 1. Plot of the transmission magnitude |S21| through the cylindrical, hollow dielectric resonator as a function of frequency with no
sample present. Roughly 300 resonant modes appear above the noise floor (−80 dB) in the 2–12 GHz measurement. The inset shows a
schematic diagram (not to scale) of the rf magnetic field in a mode of the resonator as well as the screening current response of the sample.

pairing symmetry. A B1u pairing symmetry has also been
concluded from measurements of the Josephson coupling be-
tween UTe2 and an s-wave superconductor [17], and a B2u

pairing symmetry has also been concluded from ultrasound
measurements [18].

A multicomponent order parameter has also been proposed
to interpret some magnetic screening measurements [8,19].
Iguchi et al. determine the local superfluid response of CVT
grown UTe2 samples, which they compare to a theoretical
model of the possible single component order parameters
on three different Fermi surfaces [19]. They find the best
agreement with B3u (nodes along the kx directions) or Au or
a multicomponent combination of these for a single-sheet,
cylindrical Fermi surface along the kz direction. A two-sheet
cylindrical Fermi surface has been observed in quantum oscil-
lation measurements on MSF grown samples [20,21]. Broyles
et al. additionally observe a spherical pocket in this Fermi
surface [21]. Similarly, a B3u + iAu order parameter has been
proposed by Ishihara et al. for penetration depth measure-
ments of two CVT1 samples as well as a MSF1 sample [8].

In this paper, we measure electrodynamic properties of two
CVT2 UTe2 single crystals, including the complex surface
impedance and magnetic penetration depth. We study the low
energy excitations out of the ground state in the form of the
low-temperature power-law temperature dependence of the
penetration depth. Additionally, the large microwave residual
loss which we observe is also consistent with nodal supercon-
ductivity. We observe an isotropic, sub-T 2 power law for the
penetration depth temperature dependence, which is inconsis-
tent with a single pair of point nodes on the Fermi surface for
weak scattering. We discuss other possible interpretations of
these results.

A. Experiment

We have access to high-Tc UTe2 samples grown in the
Quantum Material Center of the University of Maryland by
Shanta Saha using the CVT2 technique [4,10]. These samples
have a Tc near 2 K as opposed to the CVT1 samples which
had Tc = 1.6−1.8 K.

The UTe2 samples used in this experiment are prepared in
a controlled atmosphere with a coarse and a fine polishing, as
discussed in Appendix A 1. The prepared UTe2 samples have
side lengths of roughly 0.5–1 mm.

We perform cavity perturbation experiments with these
samples in a cylindrical, hollow rutile dielectric resonator. A
microwave signal is sent through the cavity, and the trans-
mission is measured, which is shown in Fig. 1. The sample
perturbs the resonances of the cavity revealing the electrody-
namic properties through changes in the resonant frequency f0

and quality factor Q of the modes as functions of sample tem-
perature. Resonator perturbation experiments like this have
been used to study the electrodynamics of a diverse variety
of superconductors for many years [7,22–29]. An innovative
aspect of this work is that numerous modes in the spectrum
shown in Fig. 1 are utilized to make multiple independent
measurements of the sample surface impedance. Another in-
novation of this work is the use of the anisotropic normal state
resistivity tensor to determine the two parameters (G and X0)
that convert the raw data into the absolute surface impedance
and magnetic penetration depth. Both of these features are
discussed in detail in Appendix A and Appendix B.

B. Resonator

The sample is introduced into a hollow cylindrical, ru-
tile dielectric resonator [7] to perturb its resonances. The
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sample is attached to the end of a sapphire-rod “hot finger”
[23,24,27,28] using Apiezon N-grease, which holds it on the
symmetry axis in the middle of the resonator and allows heat
to be conducted from a heater outside the resonator cavity
directly to the sample over a range from 100 mK to 20 K,
while isolating it from the copper walls of the cavity and the
rutile, which are nominally held at 100 mK. The microwave
transmission through the resonator is measured for frequen-
cies between 2 and 12 GHz, and the resonant frequency f0 and
quality factor Q of many modes are determined by fitting [30].
The resonant properties are measured both with ( f0,tot., Qtot. )
and without ( f0,r, Qr ) the sample present in the cavity, which
allows us to isolate an effective � f0,sample and Qsample arising
from the sample alone [7,27], where � f0 denotes the change
in f0 from its value at the lowest measurement temperature
T0 ∼ 150 mK. See Appendix A 2 for further details.

II. DATA ANALYSIS (UTILIZING MINIMAL
ASSUMPTIONS)

The first electrodynamic property of interest is the complex
surface impedance Zs = Rs + iXs, made up of the surface
resistance Rs(T ) and surface reactance Xs(T ). Note that the
surface impedance which we measure is a composite of multi-
ple anisotropic responses, namely the three components of the
diagonal surface impedance tensor. Our model of this is shown
in Eq. (4) and will be discussed in detail in Sec. III B below.
We recover the real and imaginary components of the surface
impedance from the sample resonance data as functions of
temperature [7,27],

Zs = G

Qsample
+ i

[
−2G

� f0,sample

f0,tot.(T0)
+ X0

]
. (1)

Here X0 is the minimum-temperature surface reactance, which
sets the starting point for Xs since this measurement is only
directly sensitive to relative changes in Xs. The geometry
factor G [Eq. (A2)] has dimensions of resistance and relates
the field structure at the sample location to that of the rest of
the resonator for each mode. Here we assume that the sample
creates a predominantly magnetic perturbation to the resonant
modes considered. See Appendix A 2 for a discussion of the
perturbation due to the sample. To fully relate the measured
f0,sample and Qsample to Zs, we must determine G and X0, which
are unique to each mode of the resonator, as well as the sample
and its orientation.

Importantly, though, the overall temperature dependence
of Zs and several other key electrodynamic properties can still
be extracted directly from the data with G and X0 undeter-
mined. We proceed as follows. The minimum value of X0/G
is dictated by the data through the constraint that Xs � Rs for
all measured temperatures, which is a general property of the
normal state electrodynamics [31]. The maximum value of
X0 is constrained in the nonlocal limit by Xs �

√
3Rs [32].

See Appendix B 2 for further discussion of these constraints.
We will use the dimension-less quantity Zs(T )/G for various
X0/G to analyze the complex conductivity and magnetic pen-
etration depth as functions of X0/G.

In the local limit, the surface impedance is related to the

complex conductivity σ = σ1 − iσ2 by Zs =
√

iμ0ω

σ
, where

(b)

(a)

FIG. 2. Plots of reduced penetration depth λ/G vs an intermedi-
ate exponent of temperature from power-law fits (shown as dashed
lines) for T � Tc/3 for (a) sample B39 and (b) sample B40. The
different colors correspond to different values of X0/G over its al-
lowed range, from minimum (red) to maximum (purple), for which
the power law α slightly changes. The insets show the change in
penetration depth �λ/G = (λ − λ0 )/G with the same respective x
axes. These plots largely overlap for each value of X0/G.

ω = 2π f . We discuss our results for the complex conductivity
in Sec. III C below. When σ2 � σ1, the penetration depth
is given by λ = 1/

√
μ0ωσ2 [7,33]. Both σ and λ calculated

from composite Zs in this way are also composite quantities.
Figure 2 shows the temperature dependence well below the
microwave critical temperature, Tc, of the penetration depth,
for two UTe2 samples, using only the raw � f0,sample(T ) and
Qsample(T ) data for multiple possible values of X0/G. Im-
portantly, the �λ(T )/G data, shown in the insets of Fig. 2,
demonstrates an independence on X0/G in this temperature
range.

A power-law temperature dependence for the penetration
depth at low temperatures (T � Tc/3) can be indicative of
nodal superconductivity. The form,

λ(T ) − λ0

λ0
= η

(
T

Tc

)α

, (2)

014519-3



ARTHUR CARLTON-JONES et al. PHYSICAL REVIEW B 112, 014519 (2025)

TABLE I. A comparison of several composite and axis-resolved electrodynamic properties for various UTe2 samples.

Batch/citation Growth method Tc (K) α η λ0 (µm) αR R0/ω
2 (	 ps2)

B39 CVT2 1.96 1.70 ±0.08 0.58 ±0.23 0.64−2.01 1.70±0.20 0.10−5.41
B40 CVT2 1.96 1.82±0.25 0.70±0.28 1.00−2.42 1.86±0.20 0.14−22.4
[7] CVT1 1.57 2.11 0.791 3.0
[8] CVT1 1.65 (2.01,1.90,1.60)
[8] CVT1 1.75 (2.08,2.06,1.84)
[8] MSF1 2.1 (2.07,2.16,2.04) (1.42,0.710,2.75)

has theoretical predictions for the dimensionless parameters
α and η depending on the pairing symmetry, direction of
current flow, and scattering conditions present in the sample
[34,35]. For both UTe2 B39 and UTe2 B40, we estimate
Tc = 1.96 K. We used data from base temperature to Tc/3
to do the power-law fitting in Eq. (2) with λ0/G, α, and η

as the fitting parameters for the composite λ/G data. These
power-law fits are included in Fig. 2 as dashed lines. See
Appendix D 1 a for a detailed discussion of this fitting. We
also compare this low-temperature λ(T ) for UTe2 with that of
s-wave superconductors Nb and NbSe2 measured in the same
apparatus in Appendix D 1 c.

For the range of possible X0/G values we find α = 1.69 −
1.71 for sample B39 and α = 1.76 − 1.78 for sample B40 for
the modes in Fig. 2. Note that both X0 and G are different
for these different modes and samples. The behavior of α,
η, and λ0 with respect to X0/G is further discussed in Ap-
pendix D 1 a. Overall, we find no systematic variation of α

between modes, which is discussed further in Sec. IV below.
We therefore take the average and standard deviation among
all the modes to find α = 1.70 ± 0.08 for sample B39 and
α = 1.82 ± 0.25 for sample B40. These averages use a fit to
fix G and X0 for each mode, which is discussed in Sec. III B
below. The variation of α due to changing the value of X0/G
is then much smaller than its variation between modes, so
the particular choice of fitting method to determine G and X0

will not alter the conclusion. The aggregate results of these
power-law fittings are summarized in Table I.

We also observe a power-law temperature dependence for
the dimensionless surface resistance as

Rs(T ) − R0

R0
= ηR

(
T

Tc

)αR

, (3)

for T � Tc/3, which we use to determine the zero-temperature
surface resistance R0 for each mode. In fact, the determi-
nation of αR, ηR, and R0/G is explicitly independent of G
and X0. See Appendix D 2 for a detailed discussion of this
fitting. We plot �Rs/G data vs temperature along with these
power-law fits for two samples in Fig. 3. Similarly to the
penetration depth power-law exponents, the surface re-
sistance power-law exponents, αR, show no systematic
variation between modes. These give average results of
αR = 1.70 ± 0.20 for UTe2 B39 and αR = 1.86 ± 0.20 for
UTe2 B40, which are effectively the same as the pene-
tration depth power-law exponents considering the uncer-
tainties. Table I also includes a summary of αR and the
nominally frequency-independent residual loss R0/ω

2. The
significance of this power-law behavior is not straightfor-
ward to interpret; see Appendix D 2 for more discussion.

We note in passing that a power-law behavior of Rs(T )
with αR ≈ 1 independent of frequency was observed in
CeCoIn5 [29].

III. DATA ANALYSIS (REQUIRING MORE FITTINGS
AND ASSUMPTIONS)

In the normal state, we assume that σ is given by a single
Drude peak [36], which is consistent with THz spectroscopy
data on UTe2 [37], though a second, much weaker, Drude has
also been observed at THz frequencies, which should still be
weak at the GHz frequencies used in our experiment. The
main Drude peak is then given by σ = 1

ρdc(1+iωτ ) , where ρdc

is the dc resistivity and τ is the quasiparticle scattering time.
Here we assume a single, composite function for the scattering
time τ (T ) despite the anisotropic nature of the sample.

A. Scattering time

We consider multiple methods to determine ωτ for UTe2,
which are compared in Fig. 4(a). We estimate ωτ � 1 just be-
low Tc for all of our data from a minimum assumption analysis
of the reactance peak Xs(T ) for both UTe2 samples [36,38].
We discuss this analysis in Appendix C 1. In the normal state,
we obtain ωτ ∼ 0.1 from a minimal assumption analysis
of the variation of the data in the complex Zs plane [see
Appendix B 2 for a discussion of this geometry] [38].
We discuss this analysis in Appendix C 2. Both of these

FIG. 3. Plots of change in dimensionless surface resistance
�Rs/G = (Rs − R0)/G vs temperature and power-law fits for T �
Tc/3. UTe2 B39 is shown in blue and UTe2 B40 is shown in red.
Shown are examples of the power-law fits to Rs(T ) for a mode of
sample B39 ( f0 = 6.77 GHz) and sample B40 ( f0 = 5.64 GHz) for
T < Tc/3.
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FIG. 4. (a) Comparison of multiple independent determinations
of composite scattering time ωτ (T ) for the UTe2 crystals. The blue
and red curves show ωτ estimated from the Drude and two-fluid
model results, respectively; see Appendix C 3. The cyan points
show ωτ from the normal state impedance slope, �(T ) in the local
limit, see Appendix C 2. The magenta point is the mean value of
ωτeff (>ωτ ) from the reactance peak for all the measured B39 modes;
see Appendix C 1. The inset shows temperatures near Tc. (b) Log-log
plot of nonlocality parameter β vs ωτ . The region above (below) the
blue line (βc) is the nonlocal (local) limit. The estimated range of β

values for the UTe2 samples measured at the frequencies in this study
are shown in the red box.

analyses do not require knowledge of G or X0. Our
analysis with an isotropic Drude model gives ωτ (T ) =
(X 2

s (T ) − R2
s (T ))/2Rs(T )Xs(T ) in the normal state, which

requires only raw data and the determination X0/G. We
can extend this analysis to the superconducting state using
the two-fluid model, as discussed in Appendix C 3, which
requires determination of both X0/G and a composite
(reduced) London penetration depth λL/G. Near Tc, we find
good agreement of ωτ between the Drude and the two-fluid
models, as shown in Fig. 4(a).

We will now discuss determination of the degree of nonlo-
cality of the electrodynamics in our experiment to justify our
assumption of the local limit. We introduce the frequency-
dependent dimensionless nonlocality parameter β = vF

ωλL
=

�m f p/λL

ωτ
, where vF is the Fermi velocity and �m f p is the normal-

state carrier mean free path. For β < βc = (1 + 1
(ωτ )2 )3/2, the

sample can be considered to be in the local limit [38]. We
estimate the values of the nonlocality parameter β for UTe2
in the frequency range of our measurement as follows. The

Fermi velocity for UTe2 is estimated to be vF = 6 × 103 m/s
[6]. We take the London penetration depth to be λL = 1.5 µm,
which approximates the anisotropic values presented in this
paper. This gives values of β = 0.16 − 0.06 for the range
of frequencies (4–11 GHz) of our cavity perturbation data.
In Fig. 4(b), we plot β vs ωτ , with the local and nonlocal
regions indicated as well as our estimate of β values for the
UTe2 samples in this experiment. Considering this estimate
of the nonlocality parameter shown in Fig. 4(b) and our four
independent estimates of ωτ shown in Fig. 4(a), it is clear that
our samples are in the local limit as far as the electrodynamic
response is concerned. We discuss the nonlocality parameter
further in Appendix C 2.

B. Impedance fitting

In previous work [7], the assumption that Rs = Xs =√
μ0ωρdc/2 was used in the high-temperature limit (T � Tc)

of the normal state to determine G and X0; however, this
assumes that ωτ vanishes for the fitting regime. Assuming
only the local limit and Drude model in the normal state, we
can improve the determination of G and X0 by simply fitting to
the geometric mean

√
Rs(T )Xs(T ) = √

μ0ωρdc(T )/2, which
is valid for the entire normal state, and makes no assumption
about the value of ωτ , as well as the sample size, shape,
or demagnetization factor. This method treats ωτ and ρdc as
composite quantities rather than anisotropic tensors. We note
that in this previous work [7], a single composite ρdc function
was measured for the sample with a four-point contact tech-
nique.

However, it is now clear that the electrodynamic properties
of UTe2 are anisotropic, and this must be incorporated into our
data analysis to enable a more complete understanding of its
surface impedance, both above and below Tc. The measured
surface impedance for each resonant mode arises from a mix-
ture of surface currents induced along each crystallographic
axis direction. That is, that the measured surface impedance
is a composite. This mixture depends on the electromagnetic
structure of each particular resonant mode of the dielectric
resonator, as well as the sample location and orientation inside
the resonator. We assume that for each resonant mode the
measured surface impedance Zs is a weighted sum of the three
diagonal surface impedance tensor components Zs,i,

Zs = waZs,a + wbZs,b + wcZs,c, (4)

where the weights wi satisfy 0 � wi � 1 and �wi = 1 [39].
These weights represent the projections of the surface cur-
rents along the crystallographic axes. By studying a number
of diverse modes with different projection sets, a sampling
of wi is obtained, giving information about the full surface
impedance tensor. Other composite quantities, such as com-
plex conductivity σ and penetration depth λ would in general
have a more complicated dependence on their tensor compo-
nents. Certain simplifying limits are still possible; such as,
at low temperatures (T � Tc), λ would decompose linearly
with the same current induced weights wi as in Eq. (4) since
Xs ≈ μ0ωλ in this limit as discussed in Appendix D 4. This is
demonstrated for the zero-temperature penetration depth λ0 in
Appendix D 4.

There are, correspondingly, three independent scattering
times, which means that they cannot all be explicitly elimi-
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TABLE II. Polynomial fit parameters used to model Mont-
gomery geometry resistivity data ρ(T ) from Ref. [40] for UTe2

samples.

T0 (K ) 6
T1 (K ) 8

ρa ρb ρc

A (µ	 m) 0.126 0.550 0.621
B (µ	 m/K2) 7.60 × 10−3 2.36 × 10−2 6.49 × 10−2

C0 (µ	 m) 1.10 4.06 16.2
C1 (µ	 m/K) −0.495 −1.63 −7.65
C2 (µ	 m/K2) 0.100 0.290 1.48
C3 (µ	 m/K3) −7.76 × 10−3 −1.89 × 10−2 −0.120
C4 (µ	 m/K4) 2.89 × 10−4 5.61 × 10−4 4.41 × 10−3

C5 (µ	 m/K5) −4.18 × 10−6 −6.37 × 10−6 −6.13 × 10−5

nated from the normal state behavior without prior knowledge
of their functional forms. We can, however, employ a heuristic
argument that since Ri = √

μ0ωρi/2 is the ωτ → 0 limit of
the normal state surface resistance for currents flowing in
direction i = (a, b, c), these losses should add linearly in the
same way as Eq. (4). We then match this linear combination
to the geometric mean of the composite Rs and Xs,√

Rs(T )Xs(T ) = waRa(T ) + wbRb(T ) + wcRc(T ), (5)

which assumes a single composite scattering time τ (T ) in
contradiction to our use of an anisotropic resistivity tensor.
The approximation underlying the use of Eq. (5) is better
satisfied at high temperatures, in samples with higher RRR,
and when one of the weights is much larger than the other
two. See Appendix E 1 for a demonstration of the efficacy of
this approximation for synthetic data.

We use the measured anisotropic dc resistivity tensor of
similar UTe2 crystals measured with a Montgomery geometry
[40] to do this fitting. See Appendix B 1 for further discussion
of our treatment of this resistivity data, including a summary
of the parameters used in this treatment in Table II. The

FIG. 5. Example of the result of the fit for to determine compos-
ite surface resistance Rs(T ) shown in black and composite surface
reactance Xs(T ) shown in red for UTe2 sample B40 at 6.78 GHz.
The left-hand side of Eq. (5) is shown in orange, which is fitted to
the right-hand side of Eq. (5), shown in green. The upper inset shows
the cost minimization with respect to X0 for this mode. The lower
inset shows optimal values of wa, wb, wc, and G in red, green, blue,
and black, respectively, over the allowed range of X0 with the solution
for the optimal X0 indicated as dots.

normal-state surface impedance fitting is performed from 2
to 20 K for each mode, individually, which determines the
fitting parameters G, X0, and the wi for each mode. The
results of this fitting for a representative mode are shown
in Fig. 5. This fitting and its uncertainties are discussed in
detail in Appendix B 3, and summarized in Table III, along
with those of other fittings. For this mode, we obtain fit-
ting parameters G = 11.2 ± 0.5 k	, X0 = 96 ± 13 m	, wa =
0.35 ± 0.12, wb = 0.17 ± 0.10, and wc = 0.49 ± 0.02. Note
that the uncertainty of wb is comparable to the value of wb

TABLE III. A comparison of the range of values between different modes of several parameters and their uncertainties due to fitting for
two UTe2 samples.

Min. Max. Uncertainty Fractional uncertainty
(B39/B40) (B39/B40) (B39/B40) (B39/B40)

X0 (m	) 39/47 128/118 10/9 0.1/0.1
G (k	) 3.7/1.4 26.7/27.6 0.6/0.5 0.03/0.03
wa 0.33/0.18 1.00/1.00 0.07/0.09 0.17/0.35
wb 0.00/0.00 0.14/0.45 0.06/0.08 1.74/0.50
wc 0.00/0.00 0.63/0.51 0.02/0.01 0.04/0.27
α 1.57/1.61 1.90/2.61 0.02/0.05 0.01/0.02
η 0.37/0.46 1.04/1.43 0.03/0.12 0.05/0.10
λ0 (nm) 638/998 2012/2418 1/4 0.001/0.002
αR 1.49/1.64 2.42/2.40 0.09/0.18 0.05/0.10
ηR 1.61/1.01 143.78/123.21 0.44/1.16 0.07/0.20
R0 (m	) 0.23/0.54 13.5/30.2 0.07/0.18 0.03/0.04
TI/Tc 0.435/0.535 3.76/4.02 1.75/4.03 0.71/1.91
β 0.44/0.60 2.60/4.01 1.42/3.98 0.59/1.60
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(a)

(b)

µ
µ

FIG. 6. Complex conductivity σ = σ1 − iσ2 vs temperature for
(a) a typical mode and (b) an exceptional mode for UTe2 sample B40
at 5 GHz. Note that σ2 � σ1 is not satisfied in (b). The insets shows
σ1 normalized by its value at Tc.

itself, indicating that there may not be a significant response
of currents corresponding to the b axis for this mode.

C. Complex conductivity

We determine the complex conductivity σ = σ1 − iσ2

from the surface impedance using the expression valid in the
local limit σ = iμ0ω/Z2

s . The real part σ1 is a measure of
the loss. Below Tc, the imaginary part σ2 is a measure of the
superfluid response, which is used to determine the penetra-
tion depth λ = 1/

√
μ0ωσ2 and the superfluid density ρs =

(λ0/λ)2 = σ2/σ2,0, where λ0 and σ2,0 are the zero-temperature
values of λ and σ2, respectively. In conventional supercon-
ductors, σ2 � σ1 in the superconducting state at frequencies
well below the gap. In UTe2, this limit is not achieved. We
find that on average, σ2(T0)/σn is 3.2 ± 1.0 for sample B39
and 3.2 ± 0.6 for sample B40. Assuming a zero-temperature
gap �0 = 0.29 meV, Mattis-Bardeen theory predicts that for
a fully gapped superconductor at 10 GHz ( h̄ω

2�0
= 0.07), that

σ2(0)/σn = 22.7 [41], which is considerably larger than what
is observed in the data.

Figure 6 shows two examples of the different temperature
dependences observed for σ (T ). Figure 6(a) shows the typical
behavior we observe for most modes. Figure 6(b) shows the
exceptional behavior we observe for just a few modes. For
both of these, σ2 has roughly the same character of behaving

like an order parameter in the superconducting state. In the
normal state, the value of σ2 is larger for the typical case than
that of the exceptional case. For σ1, the exceptional case is
very much like that of the CVS1 sample studied earlier [7]
where σ reaches its maximum at zero temperature. The typical
case we observe is more consistent with the d-wave result
(e.g., CeCoIn5 in Fig. 2(b) in Ref. [7]), where σ1 decreases
below Tc but leaves a finite residual loss at zero temperature;
however, this could also be consistent with some other nodal
structure and additionally may depend on the quasiparticle
mean free path. The insets of Fig. 6 show σ1 normalized by its
value at Tc for easy comparison between modes and samples.
Though the residual loss we find is comparable to that of a
d-wave superconductor, our results are not consistent with the
d-wave universal residual loss. See Appendix D 3 for further
discussion.

We plot the maximum of σ1(T )/σn in the superconducting
state for each mode vs the induced-current weightings in
Fig. 7(a). Additionally, we plot the value of T/Tc for which
σ1 has its maximum in Fig. 7(b). These demonstrate that the
typical behavior of σ1 for most modes is to peak just below Tc

and to decrease as temperature decreases, and the exceptional
behavior is to increase into a maximum at zero temperature
which is greatly enhanced above the normal state value of
σ1. These exceptional modes occur for directions of current
flow corresponding to the directions of large residual loss,
which are described in Sec. IV. The residual loss can also be
interpreted using σ1,0, the zero-temperature residual value of
σ1, which we determine from the zero-temperature results λ0

and R0 of our power-law fits to λ and Rs, respectively. We plot
σ1,0 as a function of current-weighting direction in Fig. 7(c),
which shows peaks in the same locations discussed for R0/ω

2

in Sec. IV, but with different relative magnitudes. The inset
shows the frequency dependence of σ1,0, which does not ap-
pear to show a systematic frequency dependence for typical
(low loss) modes, similarly to R0/ω

2 as discussed in Appendix
D 3. We note that many of the modes have residual σ1,0 and
R0/ω

2 values below the universal d-wave (line-nodal) level.
This suggests that the residual losses for these modes may be
associated with point nodes. However, the other modes with
large loss compared to the universal line-nodal value imply the
existence of another loss mechanism, perhaps that associated
with Weyl nodes, and new possible absorption mechanisms,
as discussed in Sec. IV below.

D. Superfluid density

Related to the σ2(T ) and λ(T ), the superfluid density
ρs(T ) = σ2(T )/σ2(0) = (λ(0)/λ(T ))2 is a measure of exci-
tations out of the ground state and has theoretical predictions
for its temperature dependence [42]. The superfluid density
is plotted in Fig. 8 along with multiple theoretical forms.
For an axial nodal superconductor, a power-law temperature
dependence is predicted for ρs(T ) [34],

ρs(T ) = 1 − ηρ

(
T

Tc

)αρ

, (6)

where ηρ is related to the impurity scattering rate �imp and
maximum, zero-temperature superconducting gap �max. only
for αρ = 2, which would indicate currents parallel to the
nodes, or αρ = 4, which would indicate currents perpendic-
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FIG. 7. Plots of (a) the maximum of σ1 below Tc normalized by
its value at Tc and (b) the temperature at which this occurs normalized
by Tc, both vs the induced-current weightings. (c) The residual value
of σ1 at zero temperature; the inset shows the same quantity vs
frequency with our estimate of the universal d-wave loss σ00, shown
as the black dashed line. Samples B39 and B40 are shown in blue
and red, respectively. The star markers indicate the modes shown in
Fig. 6.

ular to the nodes. These predictions for ηρ are [34]

αρ = 2 (|| axial point nodes) :

ηρ =
(

1

1 − 3
(

π
2 ln 2 − 1

)
γ

)(
π2

1 − π
2 γ

)(
kBTc

�max.

)2

αρ = 4 (⊥ axial point nodes) :

ηρ =
(

1

1 − 3
(
1 − π

8 − π
4 ln 2

)
γ

)(
7π4/15(
1 − π

2 γ
)3

)(
kBTc

�max.

)4

,

(7)

FIG. 8. Plot of normalized superfluid density ρs(T ) vs T/Tc data
with error bars for just the first point. Power-law fits for Eq. (6) with
only ηρ free are shown in orange for αρ = 2 and green for αρ = 4. A
power-law fit with both ηρ and αρ free is shown in red.

where γ = �imp/�max.. In these expressions, γ < 2/π . Note
that given �max. and Tc, there is a minimum ηρ necessary to
have a solution for γ . We fit our superfluid density data to
Eq. (6) with ηρ as a fitting parameter for the cases of αρ = 2, 4
as well as with αρ as another fitting parameter. We assume a
maximum, zero-temperature gap �max. = 0.29 meV to deter-
mine �imp. We find that with αρ = 2, there is no solution for
�imp for either sample, but there is a solution for αρ = 4 for
both samples. We do not find any systematic dependence of
�imp on the induced-current weights, so we average among the
modes of each sample to obtain �imp = 0.054 ± 0.011 meV
for sample B39 and �imp = 0.057 ± 0.008 meV for sample
B40 for the αρ = 4 fits. These fits, however, are very poor
compared with the αρ = 2 and αρ as a free parameter fits.
For the fits with both ηρ and αρ as free parameters, we find
no systematic dependence of ηρ or αρ on the induced-current
weights. We find (αρ = 1.58 ± 0.07, ηρ = 0.87 ± 0.25) for
sample B39 and (αρ = 1.67 ± 0.20, ηρ = 1.02 ± 0.29) for
sample B40.

IV. DISCUSSION AND INTERPRETATION

We plot the power-law exponent α from Eq. (2) for com-
posite λ(T ) data after fitting for two UTe2 samples in Fig. 9(a).
The power-law coefficient η is similarly presented in Fig. 9(b).
Finally, the power-law exponent αR from Eq. (3) for compos-
ite Rs(T ) data is shown in Fig. 9(c). The error bars shown
in Fig. 9 represent the uncertainty in the determination of
the fit parameters, which is discussed in Appendix B 3 and
Appendix D 1. Typical values of these uncertainties are also
summarized in Table III. In addition to the α = 2, η = 1.3
prediction for currents parallel to point nodes shown as planes
in Figs. 9(a) and 9(b), Appendix D 4 shows the perpendicular-
to-nodes prediction of α = 4, η = 2.1 [35].

Our α and αR power-law exponent data show no system-
atic dependence on the crystallographic contributions, with
average values less than 2 for both samples. Likewise, η does
not show a systematic dependence on the induced-current
weights; however, λ0 does show a systematic dependence,
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FIG. 9. Plots of (a) penetration depth power-law exponent α and
(b) coefficient η, as well as (c) surface resistance power-law exponent
αR vs current-flow contribution of each crystallographic axis. UTe2

B39 and B40 are shown in blue and red, respectively. The simple
p-wave predictions for penetration depth with currents parallel to the
point nodes are indicated.

which is discussed in Appendix D 4. Note that there is one
mode with much larger α and η than the rest of the modes,
which we discuss further in Appendix D 4. Since our compos-
ite values of α, η, and αR show no systematic dependence on
our estimates of the axis weights, we present average values of
α, η, and αR for each sample as well as the standard deviation
of the modes as a measure of the uncertainty of these averages
in Table I. Considering these uncertainties, α and αR are
practically equivalent. The other quantities show a systematic
dependence on the crystallographic responses, so we present
the range of values observed for all modes measured. We
compare our results with that of other researchers in Table I.
In the previous measurements with this resonator, α ≈ 2 was

found for composite λ for the f0 = 11.26 GHz mode with a
CVT1 sample [7]. Axis-resolved α values have been deter-
mined using tunnel-diode oscillator screening measurements
[8], which find α � 2 for CVT1 samples and a MSF1 grown
sample. These measurements from [8] determine α for each
of the three crystallographic axes but are not sensitive to the
surface resistance or σ1.

The results for α and η shown in Figs. 9(a) and 9(b) are
inconsistent with a single pair of point nodes (simple p-wave)
in the weak scattering limit. We would expect the data to be
somewhere between the parallel (α = 2) and perpendicular
(α = 4) predictions with only a few modes close to the direc-
tion of the nodes matching the parallel-to-nodes results, while
many more modes would produce the perpendicular-to-nodes
results since the directions perpendicular to the nodes form a
line rather than a point in phase space. These results are also
inconsistent with a single line node in the weak scattering
limit, for which α = 1 and α = 3 are expected parallel and
perpendicular to the line node, respectively [35]. However,
our data could be consistent with either a line node or a pair
of point nodes in the case of unitary scattering. For both these
cases, α ≈ 2 is expected. Further, η ≈ 0.5 − 0.7 is expected
for point nodes with unitary scattering, and η ≈ 0.8 is ex-
pected for a line node with unitary scattering [35], both of
which are consistent with our data. The presence of multiple
pairs of point nodes slightly off of one or more of the high
symmetry axes could also be consistent with these results
[43], which is used to explain the results of Ref. [8]. We
note that a nearly isotropic �λ ∼ T 1.9−2 was observed in
PrOs4Sb12 and attributed to multidomain orientations of a
point nodal order parameter [44].

Note that we have also fit the penetration depth to the
“dirty d-wave” and nonlocal models (see Appendix D 1 b);
however, the quality of these fits are markedly inferior to the
power-law fits (see Table III). A similar situation was en-
countered in CeCoIn5, where �λ(T ) ∼ T α with α = 1.5 was
observed [45]. In that case it was proposed that Fermi liquid
renormalization took place below Tc, and the unusual power
law was attributed to an increase in quasiparticle effective
mass with decreasing temperature, and this conclusion was
strengthened by further experiments [46]. In the case of UTe2

there is no evidence for non-Fermi liquid behavior, and hence
this explanation for the power-law exponents seems unlikely.

Another possible explanation for the behavior seen in
Fig. 9(a) is the presence of Weyl nodes in a topological super-
conducting state. Although broken time-reversal invariance
is not observed in recent generation UTe2 samples, theory
suggests that different irreducible representations (e.g., B2u

and B3u) may be nearly degenerate, leading to a mixed order
parameter [47]. Alternatively, recent theory suggests that a
combined Kondo/spin-liquid model can show a single-step-
transition into a chiral topological superconducting state [48].
The theory for a topological Weyl superconductor predicts the
existence of a gapless 2D Majorana fermion surface fluid with
unique electrodynamic properties. First, a Weyl node super-
conductor is expected to show power-law exponent α = 2 for
the penetration depth for currents in all directions [49], which
is qualitatively consistent with our data and that of Refs. [7,8],
though some measured values of α are considerably less than
2. Second, a new absorption mechanism is predicted to exist
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FIG. 10. Plot of nominally frequency independent
zero-temperature loss R0/ω

2 vs current-flow contribution of
each crystallographic axis. UTe2 B39 and B40 are shown as circles
and squares, respectively. The colors indicate the value of R0/ω
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units of 	 ps2. The inset shows R0/ω

2 vs frequency with UTe2 B39
and B40 shown in blue and red, respectively. The estimate of the
universal d-wave loss is also included in the inset as the dashed line.

involving absorption of a photon from a surface state causing a
transition to an empty bulk state. This mechanism is predicted
to be active at zero temperature and to show a characteristic
anisotropy, being larger for electric fields polarized parallel
to the Weyl nodes compared to the perpendicular orientation.
This result is predicted to be robust to disorder as well [49].
Predictions of surface states in UTe2 due to Dirac Majorana
modes have also been put forward [43,50]. Finally, recent
STM measurements on UTe2 show evidence of zero-energy
Andreev conductance on the (01̄1) surface termination [51].

We use R0/ω
2 as a measure of the residual loss because

we expect it to be roughly frequency independent (as ob-
served in CeCoIn5 [29], for example), and its determination
requires minimal assumptions and data processing. See Ap-
pendix D 3 for more details. For multiple modes, the observed
losses are larger than the intrinsic residual loss predicted for
a line-nodal d-wave superconductor with the same maximum
energy gap (Rline-nodal

0 /ω2 ≈ 2.1 	 ps2), but for most modes,
the residual loss is less than the d-wave prediction, indi-
cating that our residual loss data is not consistent with line
nodes. See Appendix D 3 for further analysis. We also plot
R0/ω

2 (in color) in Fig. 10. This plot shows a systematic
dependence of residual loss on the induced-current weights
which peaks for current flow in between the b and c axes.
The maximum frequency-independent loss we measured oc-
curred for wi = (0.21, 0.28, 0.51) with UTe2 B40. This could
indicate the presence of Weyl nodes near this direction, con-
sidering the uncertainties. We also note that for UTe2 B39,
the maximum frequency-independent loss occurred at wi =
(0.89, 0.00, 0.11), but this peak is much smaller than that of
sample B40 and only consists of one mode. These results are
also included in the summary in Table I.

V. CONCLUSIONS

In conclusion, we have used resonant cavity perturbation
techniques to study the electrodynamic properties of two
CVT grown UTe2 single crystals with Tc near 2 K. We are
able to determine the composite surface impedance and mag-
netic penetration depth for a variety of microwave-frequency
modes using minimal analysis and assumptions. We find a
robust sub-T 2 power law in the low-temperature (T � Tc/3)
magnetic penetration depth and surface resistance, which is
mostly independent of mode and fitting parameters used to
determine the impedance. These results do not agree with a
single pair of point nodes under weak scattering. Our results
are more consistent topological Weyl superconductivity, espe-
cially considering the large resisdual loss we observe which
peaks between the b- and c directions with a relatively small
a-axis contribution.
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APPENDIX A: SAMPLES AND RESONATOR
MEASUREMENTS

Here we discuss sample preparation methods and the selec-
tion of resonant modes of the cavity that reveal the anisotropic
electrodynamic properties of the samples.

1. Sample preparation

The UTe2 samples used in this experiment are first shaped
using coarse polishing paper while exposed to air. For the
B40 sample, this was grit 1000, P2500, and for B39, it was
a similar grit. The goal of this procedure is to remove jagged
edges and craters, as well as to produce a roughly rectangular
shape but with no specific crystallographic orientation. The
six surfaces are then polished again using fine polishing paper
in a nitrogen-filled glove bag with �0.1% O2 by volume. For
the B40 sample, this was 3 µm, and for B39 it was a similar
grit. The purpose of this procedure is to remove any surface
oxides on the crystal. However, all uranium oxides are known
to be insulating [7], although it is not known if UTe2 oxides
share this property. Before removing it from the glove bag, the
sample is encased in N-grease, an electrically inert, viscous
material at room temperature, which solidifies at cryogenic
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temperatures. This protects the polished surfaces from ox-
idization. The prepared UTe2 samples have side lengths of
roughly 0.5–1 mm.

We also study a NbSe2 sample provided by 2D semicon-
ductors as a comparison with UTe2. This NbSe2 sample is
micaceous, allowing us to shape it by exfoliating layers with a
scalpel to expose smooth ab planes. The c direction is evident
from the mostly flat ab planes of the as-received samples.
A slight misalignment of our cut surfaces with the actual
ab plane could still be possible, though a precise alignment
of the crystal is not necessary for our analysis. The crystal
is also soft enough to cut planes in the perpendicular direc-
tion. The orientation of these cuts is arbitrary since NbSe2 is
isotropic in the ab plane. We do not perform any polishing for
this sample. The prepared NbSe2 sample has side lengths of
roughly 0.5 mm in the a and b directions and 0.25 mm in the
c direction.

Finally, we also compare with a Nb sample cut from a
larger piece of a heat-treated Nb cavity resonator [53] using
a hacksaw. This larger piece contains many grain boundaries,
which we try to avoid in the sample we cut from it. This
sample is first coarse polished with P1000 and P220 pol-
ishing paper to shape it and to remove the rough features
from cutting. We also remove any grain boundaries from the
single crystal portion we are trying to keep using this coarse
polishing. We then perform fine polishing on the six sides with
3-µm polishing paper. All of this polishing is done in air. The
prepared Nb sample has side lengths of roughly 1 mm.

2. Selection of perturbed resonant cavity modes

The sample is introduced into a hollow cylindrical, ru-
tile dielectric resonator [7] to perturb its resonances. The
sample is attached to the end of a sapphire-rod “hot finger”
[23,24,27,28] using Apiezon N-grease, which holds it on the
symmetry axis in the middle of the resonator and allows heat
to be conducted from a heater outside the resonator cavity
directly to the sample over a range from 100 mK to 20 K,
while isolating it from the copper walls of the cavity and
the rutile, which are nominally held at 100 mK. We inject a
microwave signal between 2 and 12 GHz with a small loop
on one side of the cavity which inductively couples to the
modes of the cavity. A hollow rutile dielectric cylinder is
present in the center of the cavity, which closely surrounds
the sample. This concentrates the electromagnetic fields near
the sample for some resonant modes, enhancing the sample
filling fraction. The transmitted signal is similarly received
by a second loop on the opposite side of the cavity. A Low
Noise Factory cryogenic low noise microwave amplifier LNF-
LNC6_20B s/n 413B at 4 K is used to amplify the output of
the transmitted signal. At 5 K, this amplifier has a reported
gain of roughly 35 dB and noise temperature of 5–12 K from
4–20 GHz. This two-port system can then be described by a
2 × 2 scattering matrix. The transmission component S21 of
the scattering matrix is measured, and the resonant frequency
f0 and quality factor Q are determined by fitting [30]. The
resonant properties are measured both with the sample present
in the cavity ( f0,tot., Qtot. ) and with only residual N-grease on
the sapphire hot finger after the sample has been removed
( f0,r, Qr ), which allows us to isolate an effective � f0,sample

and Qsample arising from the sample alone [7,27],

� f0,sample(T ) = � f0,tot.(T ) − � f0,r (T )

1/Qsample(T ) = 1/Qtot.(T ) − 1/Qr (T ), (A1)

where � denotes the change in a quantity from its value at the
lowest measurement temperature T0 ∼ 150 mK.

The geometry factor G has dimensions of resistance and
relates the field structure at the sample location to that of the
rest of the resonator for each mode. Specifically,

G = μ0ω

∫
cavity

|H(r)|2d3r/
∮

sample
|H(r)|2d2r, (A2)

where H is the magnetic field, the integral in the numerator is
over the cavity volume, and the integral in the denominator is
over the sample surface. Note that the value of G is unique to
each resonant cavity mode and each sample. Here we assume
that the sample creates a predominantly magnetic perturbation
to the resonant modes considered.

Our resonator is similar to a closed cylindrical cavity with
perfect electric conducting (PEC) boundaries, which has a
known, infinite sequence of resonant modes. Our cavity is not
empty but also contains a concentric, dielectric rutile cylinder,
sapphire “hot finger,” and sapphire substrate that supports
the rutile, which add to the electromagnetic volume of the
cavity. In the absence of a sample, the observed resonances are
perturbations of these due to copper walls rather than PEC, the
inductive coupling loops, and the loss in the dielectrics. We
additionally apply heat directly to the sapphire “hot finger” to
vary its temperature, though this heat radiates and diffuses into
other components of the system as well. These perturbations
can shift the resonant frequencies and add loss to the system,
changing the quality factors of the modes. These effects can
vary from mode to mode. The introduction of an inductive
coupling with the loops additionally selects a subset of these
eigenmodes which can be induced by this particular choice
of coupling. We observe ∼300 modes of the cavity in the
2–12 GHz range. The measured transmission spectrum tends
to break into clusters of several modes, which are typically
separated by 50–100 MHz. Within these clusters, modes are
typically separated by 5–20 MHz.

The Weyl estimate of the number of resonant modes up
to frequency f in a three-dimensional cavity with effective
volume V is given by N ( f ) = 8π

3 V ( f /c)3, where c is the
speed of light in vacuum [54]. We show the number of modes
vs frequency for our resonator in the absence of a sample
in Fig. 11. This estimate of about 300 modes at 12 GHz
is an underestimate as some modes are too weak or close
together in frequency to be recognized or distinguished in the
S21 measurement. The internal volume of the resonant cavity
in the absence of any dielectrics is 3.375 × 10−5 m3. The di-
electrics inside the cavity increase the effective volume of the
cavity, given in the asymptotic limit as VEM = ∑Nd

i=1
√

εr,i Vi,
where each of the Nd dielectrics of permittivity εr,i occu-
pies volume Vi. For the sapphire elements, we take εr =
10, Vsapphire substrate = 1.134 × 10−6 m3, and Vsapphire hot finger =
1.178 × 10−8 m3. For rutile, we take εr,eff = 157 [55] and
Vrutile = 7.147 × 10−7 m3. For vacuum, we take εr = 1 and
Vvacuum = 3.189 × 10−5 m3. This results in an effective elec-
tromagnetic volume of VEM = 4.446 × 10−5 m3. We plot the
Weyl estimate for the number of modes up to a given fre-
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FIG. 11. Plot of the number of measured resonant modes in the
cavity vs frequency in blue. The green dashed line is the naive Weyl
estimate of N ( f ) due to the cavity and dielectrics. The red dashed
line is a fit to a N ( f ) ∼ f 3 power law for high frequencies.

quency corresponding to this volume as the green dashed line
in Fig. 11.

We estimate the actual effective volume of the cavity to be
3.622 × 10−4 m3 by fitting the observed number of modes to
the Weyl estimate for frequencies above 7 GHz. We also plot
this estimate as the red dashed line in Fig. 11. The observed
asymptotic scaling of the number of modes, N ( f ) ∼ f 3, as-
sures us that we are coupling to a significant fraction of the
modes of the three-dimensional cavity.

The inclusion of a conductive sample will additionally
perturb these resonances due the exclusion of electromagnetic
fields from its bulk. The purpose of the dielectric rutile cylin-
der, which surrounds the sample and part of the sapphire “hot
finger,” is to concentrate fields near the sample to increase the
intensity of the fields which are excluded relative to those
of the rest of the cavity, known as its filling fraction. The
perturbed frequency ω due to this field-exclusion effect is
given by [56]

ω2 = ω2
a

(
1 +

∫
Vp

(
H2

a − E2
a

)
dV

)
, (A3)

where ωa, Ea, and Ha are the unperturbed frequency, electric
field, and magnetic field, and Vp is the volume of the pertur-
bation which excludes the electromagnetic fields. From this,
it can be seen that modes with a dominant magnetic field at
the sample location should experience a positive frequency
shift due to sample insertion, while a dominant electric field
would result in a negative frequency shift. If the electric and
magnetic fields are comparable, then the perturbation to the
resonant frequency could be very small. For each of the sam-
ples we have measured, we observe cases of both left (lower)
and right (higher) frequency shifts due to sample insertion,
including some comparatively, very small shifts. We observe
shifts due to sample insertion which are typically between
1 MHz to lower frequency and 2 MHz to higher frequency.
This indicates that the samples tend to have larger magnetic
perturbations than electric perturbations.

As the sample is heated, more of the fields should be
admitted back into the volume of the sample as the magnetic

FIG. 12. Plot of the different types of perturbations to the trans-
mission magnitude |S21| through the resonator. The blue curve shows
the resonator with no sample. The green and red curves shows the
resonator with the UTe2 B39 sample in the superconducting and
normal states, respectively. The upper left inset shows the first peak at
8.765 GHz, which has a conventional electric perturbation. The lower
inset shows the second peak at 8.770 GHz, which is not significantly
perturbed by the sample. The upper middle inset shows the third
peak at 8.781 GHz, which has an anomalous magnetic perturbation.
The upper right inset shows the last peak at 8.787 GHz, which has a
conventional magnetic perturbation.

penetration depth increases. This should be especially evident
for the magnetic perturbations as a superconductor is heated
above Tc, though electric fields also tend to be screened more
effectively at lower temperatures. For both the electric and
magnetic cases, the perturbation due to heating is then ex-
pected to oppose that of sample insertion. We observe shifts
due to sample heating from the superconducting state at base
temperature to the normal state at 4 K typically from 20 kHz
down to 40 kHz up in frequency, though shifts ∼100 kHz in
both directions have been observed. The increase in frequency
heating shifts (electric) tend to be larger than the down in
frequency heating shifts (magnetic), which is contrary to the
larger magnetic perturbations we observed due to sample in-
sertion. For most modes, the direction of the perturbation due
to heating opposes that of sample insertion; however, some
modes show the opposite behavior. This likely indicates a
weak coupling of the mode to the sample and the dominance
of the temperature dependence of the other materials in the
cavity, such as the sapphire “hot finger.” We classify electric
and magnetic modes by a down or up shift due to sample
insertion, respectively. If the shift due to heating the sample
is in the same direction, then we refer to this behavior as
anomalous.

Figure 12 shows some examples of the various resonant
mode perturbation types for UTe2 sample B39. The blue curve
shows the modes of the resonator when no sample is present.
The green and red curves shows the modes of the resonator
with the UTe2 B39 sample in the superconducting and normal
states, respectively. The first mode in this section is electri-
cally perturbed, which can be seen in the upper left inset. The
second mode is shown in the bottom inset, which has almost
no dependence on the sample insertion. Note that this shift due

014519-12



REVEALING ISOTROPIC ABUNDANT LOW-ENERGY … PHYSICAL REVIEW B 112, 014519 (2025)

to sample insertion is much smaller than that of the electric
perturbation compared with their corresponding temperature
dependences. The third mode has an anomalous magnetic per-
turbation. The upper middle inset shows the two sample cases,
for which heating causes an upward shift in frequency. There
are additionally two very fine resonances just off the right
side of the third peak which show no significant perturbation
due to the sample. The fourth mode of this selection has a
conventional magnetic perturbation. Note the substantial drop
in quality factor for the two magnetic perturbation cases, indi-
cating a strong coupling to the sample, as well as the clearly
visible perturbations due to sample insertion for these modes,
which are much larger than that of the electric perturbation.

We study a selection of modes in two parts. First we
measure the modes with the sample present (sample run) and
then remove the sample and measure again with just residual
N-grease on the sapphire “hot finger” (background run). Each
run constitutes a complete cycling of the cryostat to base tem-
perature and back to room temperature. Since the sample run
is first, we can only use the effect of sample heating to inform
us of each mode’s coupling strength to the sample. Only once
we do the background run, do we know the actual strength
of the sample perturbation and whether these are electrically
or magnetically dominated. To select the modes to measure,
we look for the largest downward frequency shifts and largest
quality factor drops, with increasing temperature. This method
is predisposed to select magnetically perturbed modes. Once
we perform the background run, we find that all modes we are
able to use for surface impedance studies do have magnetic
perturbations.

After measuring a background run with residual N-grease,
we performed two subsequent background runs without N-
grease on the sapphire “hot-finger” to see the effect of the
N-grease and the reproducibility of resonant frequency and
quality factor measurements after cycling the system. Be-
tween two runs without N-grease, we removed and reinserted
the sapphire “hot finger” as we would need to do when
changing samples. This case represents the minimum possible
disruption to the system between actual measurements. We
found a distribution of frequency shifts of the modes from the
first to the second clean sapphire “hot finger” cases, with a
mean of 3 MHz among all modes. We also found a corre-
sponding mean inverse quality factor shift of −7 × 10−7. We
average the frequency and inverse quality factor between the
two clean sapphire “hot finger” cases for each mode to get
an average behavior for the resonator without N-grease. The
residual N-grease caused a mean frequency shift of −2 MHz
from this average background without N-grease and a corre-
sponding mean inverse quality factor shift of 6 × 10−7. This
indicates that cycling the system can cause frequency shifts
comparable to those of sample insertion and that the N-grease
acts like a lossy electric perturbation on average.

APPENDIX B: DETERMINATION OF SURFACE
IMPEDANCE BY FITTING

Here we discuss the fitting used to determine the surface
impedance from resonance data and independently measured
dc resistivity data. The goal is to determine the values of
the parameters G and X0, unique to each resonant mode of

each sample. Another objective is to determine the current-
weighting directions for each unique mode and sample. These
parameters then determine the magnetic penetration depth
tensor for each sample.

1. UTe2 anisotropic resistivity data

Our objective is to create reliable fitting functions for the
normal-state resistivity tensor of orthorhombic UTe2 crystals.
This tensor will be used to determine the current-weighting
factors from measurements of the sample surface impedance
in the normal state between 2 K and 20 K, where the three
components of the resistivity tensor have distinctly different
temperature dependencies.

Montgomery geometry samples can be very accurately
oriented by cleaving, but the signal is very weak at low
temperatures, resulting in an unreliable determination of the
resistivity below a certain temperature, which is about 6 K
for this data. On the other hand, Hall (bar) geometry samples
have the potential for a small amount more misalignment but
can produce better signal at low temperatures, which allowed
Yun-Suk Eo to confirm a T 2 power law for the resistivity in
each crystallographic direction at low temperatures down to
Tc [40].

We fit each resistivity function ρi(T ) of the Mont-
gomery geometry data to a quadratic polynomial ρi,1(T ) =
A(i) + B(i)T 2 for 2 K � T < T0 and to a fifth-order poly-
nomial ρi,2(T ) = ∑5

n=0 C(i)
n T n for T0 < T < 20 K for some

crossover temperature T0. We model the resistivities as

ρi(T ) =

⎧⎪⎨
⎪⎩

ρi,1(T ), T � T0

θ (T )ρi,1(T ) + [1 − θ (T )]ρi,2(T ), T0 < T � T1

ρi,2(T ), T > T1,

(B1)
where θ (T ) = T1−T

T1−T0
is a weighting function to merge the two

different polynomial temperature dependences between the
temperatures T0 and T1. A summary of the parameters used
in this model are given in Table II.

2. Surface reactance constraints

In general, for a metal Xs(T ) � Rs(T ), assuming that the
surface impedance is determined by the complex conductiv-
ity alone [57]. (One exceptional case to the expectation that
Xs > Rs in the superconducting state has been noted for odd-
frequency pairing in a chiral p-wave superconductor [58].)
In the treatment of cavity perturbation data of superconduct-
ing samples, it is often assumed that Rs(T ) = Xs(T ) in the
normal state [7,57]; however, this assumption can result in
Xs(T ) < Rs(T ) or even Xs(T ) < 0 for some temperatures in
the superconducting state. This occurs when Xs(T ) changes
faster than Rs(T ) in the superconducting state. To avoid this,
Xs(T ) > Rs(T ) must instead be allowed in the normal state,
requiring a larger value of X0. We interpret this as being
due to a finite nonzero value of ωτ in the normal state. It
is additionally possible to have Xs(T ) > Rs(T ) if the normal
state screening length is greater than the relevant dimension
of the crystal [59]. Alternatively, the excessive change in the
reactance in the superconducting state could be attributed
to effects beyond the complex conductivity, such as surface
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(a)

(b)

FIG. 13. Complex geometry of the (a) surface impedance Zs =
Rs + iXs and (b) complex conductivity σ = σ1 − iσ2, where λL is
the London penetration depth and ω is angular frequency. The axes
are dimensionless versions of (a) Rs, Xs and (b) σ1, σ2. Curves of
constant superfluid fraction fs = 0, 0.2, 0.4, 0.6, and 0.8 are shown
in red and constant scattering time ωτ = 0.2, 0.4, 0.6, 0.8, and 1.0
are shown in blue. The lower dashed line in (a) shows the condition
Xs = Rs, and the upper dashed line shows Xs = √

3Rs. To find the
direction of increasing fs, follow any curve of constant ωτ towards
(0,1) and vice versa.

roughness or thermal expansion [57]. In the cuprate super-
conductors, surface roughness of the crystal on length scales
larger than λ(T ) at some temperatures between 0 and Tc would
cause a decrease in the reactance [57]. Thermal expansion is
known to have a significant effect on Xs(T ) [but not Rs(T )] in
the cuprates at T � 60 K requiring corrections [57].

Assuming a single Drude conductivity peak, it can be
seen from the expression for the normal state scattering time
in an isotropic superconductor, ωτ = (X 2

s − R2
s )/(2RsXs),

that Xs � Rs is required to maintain ωτ � 0. Assuming an
isotropic two-fluid model, in the normal state (with super-
fluid fraction fs = 0), Zs is constrained by the hyperbola
X 2

s − R2
s = (μ0ωλL )2 as shown in the rightmost red curve in

Fig. 13(a). Values of fs > 0 and the σ complex plane will be
discussed in Appendix C 3 below. Note that the London pene-
tration depth λL can be temperature dependent, in which case
the constraint still holds, but it is not a true hyperbola. For ex-
ample, it was observed that the effective mass of quasiparticles
in CeCoIn5 is temperature dependent in the superconducting

state [45,46]. Other temperature-dependent changes in carrier
density and/or effective mass include the development of
Kondo hybridization of bands in heavy-Fermion superconduc-
tors. In the superconducting state, Zs lies above this hyperbola
in the Rs + iXs complex plane. This analysis can be extended
to the anisotropic case using Eq. (4) to obtain a composite of
three hyperbolas which lies above the Rs = Xs line since each
component of the impedance tensor individually does. Like-
wise, the composite superconducting impedance lies above
this composite of three hyperbolas.

In the limit of nonlocal electrodynamics, it is predicted that
Xs(T ) = √

3Rs(T ) in the normal state [32]. Since we assume
our data is in the local limit, we constrain the value of X0

is such that Xs(T ) �
√

3Rs(T ) in the normal state. For some
modes, X0 reaches the upper limit of this constraint, which
could indicate the onset of nonlocal electrodynamics.

In the context of Fig. 13(a), the X0/G degree of freedom
corresponds to vertically shifting the data in this complex
plane. For all temperatures, the data must always lie above
the lower dashed line, but more strongly, it must always lie on
or above the outermost red curve (hyperbola). The upper limit
of X0 is shown as the upper dashed line. In the normal state,
the data would also need to lie below this slope

√
3 line.

a. A note on Tc

We determine Tc by eye from the temperature where
Rs(T )/G drops suddenly with decreasing temperature. At this
temperature, Xs(T )/G can begin to increase into a reactance
peak, as discussed in Appendix C 1 below. We have observed
the same critical temperature across different resonant modes
measured for a given sample, and we do not have a conclusive
indication of multiple superconducting transitions/phases for
the samples used in these experiments, so we will use a sin-
gle value for Tc. Alternatively, Tc could be determined from
Fig. 13 by finding the temperature (parametric variable of
these plots) at which the data departs from the outer-most
red curve ( fs = 0) into the region of fs > 0. This is also
demonstrated for data in Appendix C 3.

3. Impedance fitting

To determine G and X0 and estimate the response of surface
currents corresponding to each crystallographic axis for each
mode, we fit to√

Rs(T )Xs(T ) = waRa(T ) + wbRb(T ) + wcRc(T ), (B2)

for temperatures T above Tc. This analysis relies on knowl-
edge of the temperature dependences of the resistivity
tensor, as discussed in Appendix B 1, to determine Ri(T ) =√

μ0ωρi(T )/2. Note that the left-hand side of Eq. (B2)
assumes a single composite scattering time τ (T ) in con-
tradistinction to our use of an anisotropic resistivity tensor.
Equation (B2) has five parameters: X0 and G [used to deter-
mine Rs(T ) and Xs(T )] and wa, wb, and wc; however, there are
only four free parameters due to the normalization constraint
on wi (�wi = 1 [39]). This system of equations is nonlinear
in X0; however, for a fixed value of X0, it can be made linear
in the remaining three free parameters. To do this, we factor
out G and introduce un-normalized weight parameters vi =
wi/G and the dimensionless minimum temperature reactance
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x = X0/G. With this, the fit function becomes√
1

Qsample(T )

(−2� f0,sample(T )

f0,tot.(T0)
+ x

)
=

∑
i=a,b,c

viRi(T ).

(B3)
Once the three vi are determined, we can use the normal-
ization condition on wi to determine G = (

∑
i vi )−1, which

allows us to convert back to the original parameters. Each
measured temperature Ti gives an instance of Eq. (B3) with
the same four parameters x, va, vb, and vc to be determined.
Since the number of measured temperatures in the normal
state NT,N ∼ 200, this system is overdetermined. In matrix
form, this system becomes M	v = 	F (x), where Mi j = Rj (Ti )

and Fi(x) =
√

1
Qsample (Ti )

( −2� f0,sample (Ti )
f0,tot. (T0 ) + x). We make a grid of

x values within the constraints discussed in Appendix B 2 and
uniquely determine vi which best approximates Eq. (B3) in
the least-squares sense for each individual value of x. This
can result in one or more of vi having a negative value, which
is not allowed since they are proportional to current weighting
factors wi. In such a case, we must consider induced-current
weights due to a subset of the resistivity tensor components.
For the case of only one resistivity tensor component, the
corresponding wi = 1, so a valid solution is guaranteed. For
each value of x, we consider the results of all seven possible
combinations of one, two, and three allowed resistivity tensor
components. We then choose the valid solution which results
in the minimum least-squares difference between the left-
and right-hand sides of Eq. (B3). We finally minimize the
least-squares cost function with respect to x to determine the
full solution. The cost function and the parameters of the fit
are still continuous with respect to x even when the number of
allowed resistivity tensor components changes, though their
derivatives are discontinuous. See the insets of Fig. 5 for an
example of this optimization.

As the nonlinear parameter x = X0/G is varied above and
below the optimal value, the cost function increases as shown
in the upper inset of Fig. 5. To estimate the uncertainty in
X0, we use the maximum (of left and right) distance from its
optimal value for which the cost function increases by 3%.
In this range of variation in X0 for which the cost function
increases by less than 3%, we take the maximum departure
of G and wi from their optimal values as their respective
uncertainties. The lower inset of Fig. 5 shows an example
of how G and wi vary with the choice of X0. The range of
values of these fitting parameters between modes and samples
as well as their uncertainty estimates are given in Table III.
The fractional uncertainty for G is relatively small compared
with that of X0 indicating that the quality of the fit is less
sensitive to G than to X0. The uncertainties for wa and wb

are greater than that of wc, which is evident in the slopes of
these quantities vs X0 in the lower inset of Fig. 5. This occurs
because the distinctive temperature dependence of the surface
impedance corresponding to the c-axis resistivity is not as
strongly affected by X0.

To reiterate, this fitting to determine the surface impedance
from resonance data assumes the local limit, the Drude
model, a composite scattering time, and the linear addition of
impedances for each axis to form a composite microwave sur-
face impedance. The Drude model with a composite scattering

time also implies a composite resistivity ρdc, though we use
the anisotropic and temperature-dependent resistivity tensor
to determine the normal state surface resistance for each axis.
This analysis is performed on many resonant modes (a total of
17 for B39 and 14 for B40), giving a very complete picture of
the electrodynamics of UTe2.

APPENDIX C: DETERMINATION
OF SCATTERING TIME τ

Here we discuss multiple independent methods to estimate
the scattering time below and above Tc.

1. Analysis of reactance peak Xs(T ) below Tc

The peak in surface reactance as a function of temperature
just below Tc is a consequence of the competition between
the loss of normal screening, and the increase in superfluid
screening, which act in quadrature, and lead to a net minimum
in effective screening [29,31,36,60–62].

Quantitative analysis of the reactance peak can be car-
ried out, as suggested by Hein, Ormeno, and Gough [38].
By plotting the frequency shift of the microwave resonator
against the inverse quality factor, with temperature T < Tc as
a parameter, one obtains a parameter-free plot of reactance
change vs resistance change. In other words one plots ξ (T ) =
(Xs(T ) − Xs(T = 0))/Rs(Tc) vs Rs(T )/Rs(Tc), with tempera-
ture as a parameter. This quantity has a peak value above zero
at temperature T∗ < Tc. Such a plot utilizes only raw data and
makes no assumption about the geometry factor G, minimum
temperature reactance X0, weights wi, etc. Its interpretation
only assumes validity of a two-fluid behavior with a single
effective quasiparticle momentum-relaxation time τeff . Refer-
ence [38] argues that this effective scattering time accounts for
nonlocality and for the fact that it represents the quasiparticle
relaxation time rather than the Drude relaxation time τ . It is
argued that τeff > τ .

A peak in Xs(T ) below Tc is observed in all measured
modes of both UTe2 samples. An example of the reactance
peak vs temperature is shown in Fig. 14. The �Xs(T ) data is
smoothed to determine the temperature of the local maximum
T∗, width of the peak �T∗, height of the peak ξmax, and the
value of �Xs(Tc)/Rs(Tc). Figure 15(a) shows the temperature
T∗ < Tc at which the temperature-dependent reactance Xs(T )
reaches its maximum vs the mode frequency for all modes of
UTe2 B39 and B40, shown in blue and red, respectively. In the
two-fluid picture, the peak in Xs(T ) occurs at the point where
the superfluid fraction fs ∼ ωτ/2 [36].

Assuming that the scattering time increases with de-
creasing temperature in the superconducting state, the peak
temperature T∗ is expected to migrate to lower temperatures
as the measurement frequency is increased [29,36], consistent
with the data for T∗( f ) for UTe2 in Fig. 15(a). As this hap-
pens, the peak also becomes broader in temperature (see the
definition of �T∗ in Fig. 14), as shown in Fig. 15(b). We also
observe that �Xs(Tc)/Rs(Tc), the change in the dimensionless
surface reactance from base temperature to Tc, also generally
decreases as frequency increases, as shown in Fig. 15(d). We
include linear fits to these frequency dependences in Fig. 15
for the two UTe2 samples. Interestingly, we do not find a sys-
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FIG. 14. Reactance peak data plotted as �Xs(T )/Rs(Tc ) (utiliz-
ing only raw data) vs temperature is shown in blue. We define �Xs =
0 at the base temperature. The red curve shows a smoothing of this
data, which is used to determine the reactance peak parameters ξmax,
T∗, and �T∗, defined as shown based on the value of �Xs(Tc )/Rs(Tc ).

tematic frequency dependence for the dimensionless height,
ξmax, of the reactance peak. Note that the reactance peak can
be very close to Tc for superconductors with small ωτ [29,36].
Reactance peaks are not observed for our measurements of Nb
and NbSe2. The universal observation of a reactance peak for
UTe2 may be indicative of a larger value of ωτ than that of Nb
and NbSe2.

By examining the height of the reactance peak ξmax, as
shown in Fig. 15(c), one can determine the value of ωτeff >

ωτ at the temperature of the peak [38]. It is found that ξmax =
0.059 ± 0.007 for sample B39 and ξmax = 0.042 ± 0.017 for
sample B40. Based on the two-fluid model analysis pro-
posed in Ref. [38], one finds that the corresponding effective
scattering time in the superconducting state is ωτeff = 1.2 ±
0.2 for B39 and ωτeff = 1.9+1.2

−0.7 for B40 at T∗, placing upper
limits on ωτ below, but near, Tc. These results suggest that
ωτ � 1 in the normal state of UTe2.

2. Assumption-free determination of ωτ in the normal state

Here we outline a simple analysis of the normal state
raw data [� f0,sample(T ), Qsample(T ) for T > Tc] to determine
ωτ (T ) using only the assumption that an isotropic single-
Drude model describes the normal state electrodynamics. This
analysis does not assume anything about the geometric factor
G, the zero-temperature reactance X0, the weighting functions
wi, etc. Reference [38] notes that a plot of raw data in the form
of

�(T ) ≡ −[∂ (� fBW)/∂T )]/[∂ (2� f0)/∂T ], (C1)

where fBW(T ) is the 3-dB bandwidth (Qsample = f0,tot./ fBW)
of the sample and � f0,sample is the change in the resonant
frequency of the sample, both as functions of temperature.
Reference [38] shows that �(T ) has a unique dependence on
ωτ (T ) depending only on the frequency-dependent dimen-
sionless nonlocality parameter β = vF

ωλL
= �m f p/λL

ωτ
, where vF

is the Fermi velocity, λL is the London penetration depth, and
�m f p is the normal-state carrier mean free path. In other words,

once β is known for a given mode, we can then convert the raw
complex frequency shift data into an estimate of ωτ (T ) in the
normal state. In addition, if β < βc = (1 + 1

(ωτ )2 )3/2, then the
sample can be considered to be in the local limit [38]. For
an isotropic sample in the local limit, �(T ) = Xs(T )/Rs(T )
and ωτ (T ) = (�2(T ) − 1)/(2�(T )). In Fig. 16, we compare
�(T ) calculated from raw data using Eq. (C1) with the ratio
of Xs(T ) and Rs(T ) after the impedance fitting.

The conversion of �(T ) to ωτ (T ) is dependent upon the
value of the nonlocality parameter β [38]. In the local limit
(β � 1, well satisfied in our case), the relation is known
to be �local = 1/(

√
1 + (ωτ )2 − ωτ ). For larger values of β,

the relationship is nonmonotonic. We present this local limit
estimate of ωτ in Fig. 4(a).

3. Two-fluid model determintion of ωτ

The two-fluid model extends the Drude model and its scat-
tering time τ into the superconducting state by assuming that
the electrodynamics is a mixture of normal metal and super-
conductor properties. In terms of the complex conductivity σ ,
this can be expressed as

σ = 1

μ0λ
2
L

(
fs

iω
+ fnτ

1 + iωτ

)
, (C2)

where fn and fs are the normal- and superfluid fractions,
for which fn + fs = 1. For fs = 0, Eq. (C2) reduces to the
Drude model. The parameters of the two-fluid model can be
determined from σ if λL is known,

ωτ = x

1 − y
fn = (1 − y)2 + x2

1 − y
, (C3)

where x − iy = μ0ωλ2
Lσ = μ0ωλ2

L(σ1 − iσ2). Equation (C3)
informs the geometry of Fig. 13, specifically that the curve of
fs = 0 is a circle (the outermost circle) in the complex sigma
plane shown in Fig. 13(b) and a hyperbola in the complex
impedance plane shown in Fig. 13(a). We can fit our σ (or
alternatively Zs) data to this predicted behavior to determine
λL. An example of this process applied to experimental data is
shown in Fig. 17 which gives λL = 1.27 ± 0.07 µm. To ensure
that all points are on or within the dashed line indicating
fs = 0 in Fig. 17, it is necessary that μ0ωλ2

L � σ2

σ 2
1 +σ 2

2
. While

this ensures that the interpretation of ωτ and fn with Eq. (C3)
are physical, the quality of the fit of the normal state data
to the circle suffers. This isotropic two-fluid model is still a
reasonable analysis tool for our data which allows for an esti-
mate of the scattering time, shown in Fig. 4(a), as well as the
super- and normal-fluid fractions. The systematic departure of
the normal state data from the dashed circle likely indicates
that the treatment of the composite σ data using a single
temperature-independent composite λL is inappropriate. A
London penetration depth corresponding to each axis may
be necessary to describe the normal state data; additionally,
these lengths could be temperature dependent if there is some
renormalization of carrier density and/or effective mass.
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(a) (b)

(c) (d)

FIG. 15. Plots of the frequency dependence of the parameters describing the reactance peak in Xs(T ) for all modes studied for both UTe2

samples. UTe2 B39 and B40 are shown in blue and red, respectively. Linear fits to these datasets are also included in the corresponding colors
where trends are observed. (a) The temperature T∗ < Tc of the reactance peak in Xs(T ), normalized by Tc. (b) The temperature width �T∗ of the
reactance peak in Xs(T ), normalized by Tc. (c) ξmax, which is the height of the Xs(T ) reactance peak normalized by Rs(Tc ). (d) The total change
in Xs from base temperature to Tc normalized by Rs(Tc ). The determination of all of these quantities involve only the use of raw experimental
data.

APPENDIX D: LOW-TEMPERATURE �λ(T )
AND Rs(T ) FITS

Here we examine the low-temperature behaviors of the
magnetic penetration depth and surface resistance, discussing
various fits and residual values.

1. Penetration depth low-temperature fits

We present a generalized form which will be useful to do
multiple fittings in the sections below,

x(T ) − x0

x0
= ay(T ; c), (D1)

where x(T ) is any observed temperature-dependent data,
y(T, c) is any family of temperature-dependent functions

which depends nonlinearly on a single parameter c and for
which y(0, c) = 0, x0 is the nonzero value of x(T ) at zero-
temperature implied by y(T, c), and a is a positive prefactor
for y(T, c). By measuring x(T ) at NT � 3 discrete tempera-
tures, we obtain a linear system for a fixed value of c described
by the matrix form, M	b = 	y(c), where M = (1, 	x), xi = x(Ti ),
	b = ( −1/a

1/(ax0 )), and yi = y(Ti, c). The solution of this system

for a fixed value of c in the least-squares sense is 	b(c) =
(MT M )−1(MT 	y(c)). The nonlinear parameter c can then be
varied to achieve an optimal fit, such as by using 1 − R(c)2 as
a cost function, where R(c) is the linear correlation coefficient
between 	y(c) and 	x.

Similarly to Appendix B 3, the uncertainty in the nonlinear
parameter c can be estimated by observing how much it must
vary to produce a 3% increase in the cost function. The uncer-
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FIG. 16. Plot of different determinations of �(T ). The blue curve
shows �(T ) obtained from the numerical derivative of temperature-
dependent bandwidth (� fBW) vs frequency shift (� f0) raw data. The
red curve shows �(T ) obtained from the ratio of Rs and Xs, which
is only valid in the local limit. The curves should approach unity,
shown by the black dashed line, in the limit of small ωτ . The inset
shows the region near Tc.

tainties in the two linear parameters can then be estimated by
the maximum variation from their optimal values in the range
of c for which the increase in the cost function is still less than
3%. The range of parameters and their uncertainties for the
following fits are included in Table III.

a. Power-law penetration depth fits

The form

λ(T ) − λ0

λ0
= η

(
T

Tc

)α

(D2)

FIG. 17. Plot of complex σ data in the geometry of Fig. 13(b).
The curve of fs = 0 shown as a black dashed line is used to used to
fit the normal state portion of the data to obtain a composite London
penetration depth λL .

is ubiquitous for nodal superconductivity with predictions for
α and η depending on the nature of the nodes and the direction
of the current relative to the nodes [34,35]. Equation (D2) is
of the form of Eq. (D1) for x(T ) = λ(T ), x0 = λ0, a = η,
c = α, and y(T, c) = (T/Tc)c. We fit our penetration depth
data to this power-law form in Fig. 2 for various choices
of X0/G. In this case, we specifically have x(T ) = λ(T )/G,
x0 = λ0/G, a = η, c = α, and y(T, c) = (T/Tc)c. Though λ0

cannot be determine without G, α and η are explicitly in-
dependent of G. For the f0 = 6.77 GHz mode with UTe2

B39, the range of X0 used in Fig. 2 gives α = 1.69−1.71,
η = 0.432−0.991, and λ0/G = 0.194−0.417 nm/	. For the
f0 = 5.64 GHz mode with UTe2 B40, the range of X0 used in
Fig. 2 gives α = 1.76−1.78, η = 0.636−1.15, and λ0/G =
0.411−0.712 nm/	. Note that G is different for these differ-
ent modes and samples. For both these samples, the power-law
exponent α is nearly independent of X0 for the modes shown,
as well as the other modes we studied (a total of 17 for UTe2

B39 and 14 for UTe2 B40). In contrast, η does vary with X0.
Since λ0 is proportional to X0, η must decrease with increasing
X0 to keep �λ independent of X0.

Additionally, we find that, overall, there does not appear to
be any correlation of α with Qsample; however, the large outlier
for α corresponds to a relatively low Qsample, while the largest
Qsample mode has the smallest α. Furthermore, no apparent
systematic dependence (either overall or of the outlier) of α

on Qr was observed.

b. “Dirty d-wave” penetration depth fits

In addition to the three-parameter power-law fit in
Eq. (D2), we also tried fitting our low-temperature (T < Tc/3)
penetration depth data to the three-parameter “dirty d-wave”
temperature dependence [63],

λ(T ) − λ0

λ0
= β

(T/Tc)2

(T/Tc) + (TI/Tc)
, (D3)

where TI is an impurity-dependent temperature scale for the
crossover between �λ(T ) ∼ T (T � TI , clean d-wave) to
�λ(T ) ∼ T 2 (T � TI , dirty d-wave) behavior. If one finds
that TI > Tc, then it is unlikely that the “dirty d-wave” sce-
nario is correct (Ref. [64], p. 149).

An alternative physical origin for the penetration depth
temperature dependence in Eq. (D3) has been put forward.
Kosztin and Leggett have proposed that nonlocal electrody-
namic response will arise in d-wave superconductors due to
the presence of the node in the superconducting gap [65].
They predict a nonlocality crossover temperature of TNL =
ξ0

λ0
�max./kB [in place of TI in Eq. (D3)], well below which the

penetration depth should be quadratic in temperature. How-
ever, using estimates for the coherence length (ξ0 = 3−6 nm,
based on Hc2 data [66]), penetration depth (λ0 = 1.5 µm from
the present work) and maximum gap (�max. = 0.29 meV) [6]
gives an estimate that TNL ∼ 10−2Tc. This is roughly two or-
ders of magnitude lower than the observed values of TI shown
in Fig. 18(b), ruling out nonlocality in a d-wave supercon-
ductor as the microscopic origin of the observed power-law
behavior of the penetration depth at low temperatures.

Equation (D3) is of the form of Eq. (D1) for x(T ) = λ(T ),
x0 = λ0, a = β, c = TI/Tc, and y(T, c) = (T/Tc )2

(T/Tc )+c . These fits

014519-18



REVEALING ISOTROPIC ABUNDANT LOW-ENERGY … PHYSICAL REVIEW B 112, 014519 (2025)

(a)

(b)

FIG. 18. (a) Example of “dirty d-wave” fits to penetration depth
data. (b) Results of the impurity temperature TI from dirty d-wave
fits [Eq. (D3)] normalized by Tc for two UTe2 samples vs α from
power-law fits [Eq. (D2)] for the same modes and samples. UTe2

B39 is shown in blue and UTe2 B40 is shown in red. The results of
the dirty d-wave fit to perfect power-law data are shown as a green
dashed line.

appear to be roughly as viable in reproducing λ(T ) as Eq. (D2)
is, as shown in Fig. 18(a). The range of impurity temperatures,
TI , across modes and samples is plotted in Fig. 18(b) vs the
corresponding power-law fit value, α. Most values of TI range
from Tc/2 to Tc, which is reasonable for a “dirty d-wave”
interpretation. To understand whether Eq. (D2) and Eq. (D3)
are equivalent interpretations of our data, we attempt to fit
Eq. (D2) to Eq. (D3) and vice versa. With Tc = 1.96 K, these
forms are very similar for our range of measured tempera-
tures. For temperatures below roughly 100 mK, however, the
two models differ dramatically. We find that for Eq. (D2)
calculated with the grid of temperatures used in our measure-
ments, the value of α implies a value of TI in Eq. (D3). In a
similar manner, TI would imply a value for α for Eq. (D3). We
plot this relationship between α and TI as the green dashed
line in Fig. 18(b), which agrees well with our fittings to
data. For α = 1, TI = 0, and for α = 2, TI diverges. Equa-
tion (D3) is incompatible with α > 2. We find one instance
of a mode with α > 2 in our data. This result for this par-
ticular mode is then incompatible with the “dirty d-wave”
model; however, the uncertainty in α for that mode is large

FIG. 19. Plots of �λ/G vs T/Tc for two UTe2 samples and two
fully gapped superconductors. Power-law fits, given by Eq. (D2), to
the UTe2 data are shown as dashed lines of the corresponding colors.
Exponential fits, given by the expression for �λ from Refs. [67,68],
to the Nb and NbSe2 data are shown as dashed lines of the corre-
sponding colors.

enough that it is reasonable that it could actually be less than
two.

The power-law and “dirty d-wave” interpretations are ev-
idently equivalent and indistinguishable in our measurement
regime. However, we see from the column labeled “Fractional
uncertainty” in Table III that the determination of the param-
eters in the power-law fits (α, η) is significantly better than
the parameters for the “dirty d-wave” fits (TI/Tc, β). In fact
there are systematic deviations observed in the “dirty d-wave”
fits that are not present in the power-law fits. From this we
conclude that the power-law fits for the low-temperature pen-
etration depth are statistically favored over those of the “dirty
d-wave” temperature dependence.

c. Comparison with s-wave fits

The temperature dependence of the penetration depth for
the UTe2 samples is qualitatively very different from that of
fully gapped superconductors, as demonstrated in Fig. 19.
These data are from four different resonant modes with differ-
ent G, X0, and for the UTe2 samples, different contributions of
current flow along its crystallographic axes. For an s-wave su-
perconductor, the low-temperature penetration depth is given

by λ(T )−λ0
λ0

=
√

π�min.
2kBT e−�min./(kBT ) [67,68], where �min. is the

zero-temperature, minimum gap energy on the Fermi surface.
We determine λ0 and �min. by fitting our s-wave penetra-
tion depth data to this form. Since �min. also appears in the
prefactor of this expression, �min. depends on the selected
value of X0/G. Rather than the fitting method discussed in
Appendix B 3, we select X0/G so that the value of �min. from
this fit reproduces estimates of �min. for Nb and NbSe2 from
literature [69,70]. This exponential suppression of excitations
out of the ground state means that the penetration depth will
be nearly constant for these low temperatures, which can be
seen in Fig. 19; whereas, for the UTe2 samples, the penetra-
tion depth rises much more quickly out of the ground state,
consistent with nodal behavior.
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FIG. 20. Plots of power-law parameters for surface resistance
for two UTe2 samples vs contribution of each crystallographic axis.
UTe2 B39 is shown in blue and UTe2 B40 is shown in red. (a) The
surface resistance power-law exponent αR and the p-wave predictions
of α = 2 parallel and α = 4 perpendicular to the point nodes for the
penetration depth as a reference. (b) The surface resistance power-
law coefficient ηR. There are additionally ηR values of 144 and 123
(not shown) for UTe2 B39 and B40 respectively, which are near the
a direction (wa = 1).

2. Microwave surface resistance power-law
temperature dependence

We fit the surface resistance to the form of Eq. (3), for T <

Tc/3, where R0 is the zero-temperature surface resistance, and
αR and ηR are the dimensionless surface resistance power-
law exponent and coefficient, respectively. Equation (3) is
of the form of Eq. (D1) for x(T ) = Rs(T ), x0 = R0, a = ηR,
c = αR, and y(T, c) = (T/Tc)c. See Fig. 3 for examples of
this power-law fitting. In general, we find that this expression
fits the data very well for all measured modes. Figure 20(a)
shows the dependence of the surface resistance power-law
exponent αR vs the induced-current-direction weights. As
with the penetration depth power-law exponents, these do
not show a dependence on the induced-current weights. The
average results are αR = 1.65 ± 0.23 for UTe2 B39 and αR =
1.57 ± 0.55 for UTe2 B40. Figure 20(b) shows the depen-
dence of the surface resistance power-law coefficient ηR vs the
induced-current-direction weights. These do show a system-

atic dependence on the induced-current weights in contrast
with the penetration depth power-law coefficients. There is a
peak near wb = 0,wa = wc = 0.5 and a very large spike near
wa = 1 to 144 and 123 for UTe2 B39 and B40, respectively.
In these plots, UTe2 B39 is shown in blue and UTe2 B40 is
shown in red.

Similarly to α in Appendix D 1 a, αR shows no apparent
overall correlation with Qsample. The two large outliers for
αR correspond to the largest values of Qsample. Furthermore,
no apparent systematic dependence (either overall or of the
outlier) of αR on Qr was observed.

The interpretation of surface resistance data of supercon-
ductors is much more complicated than that of penetration
depth data [71,72]. Nevertheless, the relatively robust and
consistent behavior seen in the low temperature Rs(T ) sug-
gests that a simple mechanism may be responsible for this
behavior.

3. Residual microwave loss

R0 and σ1,0 are measures of the residual loss at zero
temperature. While σ1,0 is theoretically independent of mode
frequency, it is highly dependent on the value of X0. R0

requires much less data processing to calculate, but it is de-
pendent on the mode frequency; however, at a finite base
temperature T0, Rs(T0)/ω2 is expected to be frequency inde-
pendent for a BCS superconductor in the absence of a residual
loss mechanism, so we expect R0/ω

2 will be less frequency
dependent than R0. We observe that σ1,0 and R0/ω

2 do not
demonstrate a systematic frequency dependence for typical
(low loss) modes as shown in the insets of Figs. 7(c) and 10.

We note that there are several possible origins of residual
loss in nodal superconductors. For px ± ipy superconduc-
tors it has been shown that bound states will be present
at and near exposed surfaces at all energies inside the en-
ergy gap when averaged over all directions on the Fermi
surface [73]. Andreev bound states contributing to residual
loss are also predicted on rough surfaces of chiral p-wave
superconductors [58].

The temperature dependence of the surface resistance Rs

and real part of the complex conductivity σ1 depend on a
number of properties of the superconductor. First is the ques-
tion of what types of nodes exist in the superconducting
order parameter on the Fermi surface. For the case of line-
nodal superconductors, there is a predicted intrinsic value
for the residual loss σ00, as calculated by Hirshfeld, Putikka,
and Scalapino [72]. These authors also show that the low-
temperature behavior of the losses do not simply reflect the
number of quasiparticles excited but depend also on the quasi-
particle scattering rate, the scattering phase shift, and the
magnetic penetration depth. The case of point nodes in the
superconducting order parameter is less well studied, but it is
known that a universal value of residual σ cannot be estab-
lished.

Assuming line nodes on a cylindrical Fermi surface re-
sults in a residual loss of Rline-nodal

0 = 1
2ω2μ2

0λ
3
Lσ00, where

the intrinsic universal residual conductivity is σ00 = ne2 h̄
m�max.

=
h̄

μ0λ
2
L�max.

[72]. Assuming �max. = 0.29 meV and λL = 1.5 µm,

we find that σ00 = 0.80 µ	−1 m−1, and Rline-nodal
0 ≈ 8.4 m	
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(a)

(b)

µ(µ
m
)

FIG. 21. Plots of composite λ0 for two UTe2 samples vs (a) the
minimum temperature reactance and (b) the crystal induced-current
weightings. UTe2 B39 is shown in blue and UTe2 B40 is shown in
red. For (a), the dashed line indicates μ0ωλ0 = X0. For (b), planar
fits for each dataset are included in the corresponding colors.

at 10 GHz (corresponding to Rline-nodal
0 /ω2 = 2.1 	 ps2), a

considerable amount of residual loss. We use this value as
a known standard for comparison with the R0/ω

2 values for
UTe2.

4. Summary and comparison of λ(T ) fit parameters

The �λ(T )/G data demonstrates an independence on
X0/G for T < Tc/3, so the effect of X0 is then only to uni-
formly shift the value of λ at low temperatures. Assuming
σ2 � σ1, this would be expected since λ ≈ Xs/(μ0ω) at low
temperatures; however, we do not find σ2 � σn in general
for UTe2. Despite this, we find a very good correspondence
between μ0ωλ0 and X0 as shown in Fig. 21(a).

We estimate the axis-resolved minimum temperature pen-
etration depths using a planar fit to the composite penetration
depth data, shown in Fig. 21(b). This is justified by the fact
that μ0ωλ ≈ Xs for T � Tc assuming σ2 � σ1. We observe
that this relationship holds for the composite λ0 and X0, as
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FIG. 22. Plots of power-law fit parameters and residual loss for
two UTe2 samples vs contribution of current flow in each crystallo-
graphic axis. UTe2 B39 is shown in blue and UTe2 B40 is shown in
red. (a) The penetration depth power-law exponent α and the p-wave
predictions of α = 2 parallel and α = 4 perpendicular to the point
nodes as planes. (b) The penetration depth power-law coefficient η

and the p-wave predictions of η = 1.3 parallel and η = 2.1 perpen-
dicular to the point nodes as planes. (c) The minimum temperature
surface resistance divided by the square of the angular frequency,
and the inset shows the same quantity vs frequency with our estimate
of the universal d-wave loss Rline-nodal

0 /ω2 = 1
2 μ2

0λ
3
Lσ00 shown as the

black dashed line. Residual loss divided by frequency squared is
expected to be roughly frequency independent.

shown in Fig. 21(a). We find λ0,a = 1.2 (1.1) µm, λ0,b =
3.9 (3.3) µm, and λ0,c = 2.2 (2.2) µm for UTe2 B39 (B40).

Figure 22 repeats much of the same information that is
shown in Fig. 9 of the main text, but in a different format. In
addition to the α = 2, η = 1.3 prediction for currents parallel
to point nodes, Figs. 22(a) and 22(b) show the perpendicular-
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to-nodes prediction of α = 4, η = 2.1 [35]. The residual
loss values R0/ω

2 are shown in three-dimensional format in
Fig. 22(c), and the frequency dependence of the R0/ω

2 values
is shown as an inset. The inset also shows the estimated value
of R0/ω

2 (dashed line) for a line-nodal superconductor, as
estimated in Appendix D 3. Note that there is one mode (wa =
0.25, wb = 0.40, wa = 0.35) with α = 2.61 ± 0.16, which is
much larger than that of the other modes, even considering its
larger uncertainty. While this point is near the peak in R0/ω

2

shown in Fig. 22(c), the modes nearby in the induced-current
weights do not show increased values of α as they do R0/ω

2.
This mode similarly has a larger η = 1.43 ± 0.39.

APPENDIX E: TESTING THE ACCURACY OF DATA
ANALYSIS METHODS WITH SYNTHETIC DATA

Here we discuss a method with which we generate syn-
thetic data to test the validity of our data analysis and the
assumptions that we make about composite vs axis-resolved
electrodynamic properties.

1. Testing the data analysis method with synthesized data

Our objective is to generate synthetic frequency shift
� f (T ) and Q(T ) data that has the full physics of the elec-
trodynamic response of an anisotropic superconducting (and
normal metal) crystal and to use it to test the accuracy of our
data analysis techniques. More specifically, the goal of this ex-
ercise is to put the correct physics of anisotropic normal metal
and superconducting response into synthetic data, and see if
the data analysis methods correctly extract the anisotropic
properties (i.e., penetration depth and conductivity) that were
put into the calculation.

We rely on analytical models of the electrodynamics of
anisotropic metals. The first such model that we used was
developed by Trunin and collaborators [74], based on earlier
work by Gough and Exon [59]. Their complex frequency
shift of the cavity due to the presence of the sample at some
temperature T is given by [75]

�̃

(
1

Q(T )

)
− 2i

δ̃ f (T )

f (T )
= iμ0μ(T )vH2

0

2W
, (E1)

where μ(T ) is Trunin’s expression for the complex relative
permeability of the anisotropic sample [74], v is the volume
of the crystal, and W is the stored energy in the entire cavity on
resonance. Here H0 is the magnetic field at the surface of the
crystal, which is assumed to be not enhanced from the value
in the absence of the sample. In other words, this expression
ignores demagnetization effects which create enhancement of
fields at edges and corners created by geometrical blocking
and redirection of the fields that exist in the empty cavity. As
is, this expression is most appropriate for a long thin crystal
with the long axis parallel to the field. This is basically the ori-
entation shown in Fig. 23 with crystal side lengths b � a, c.

The definitions of �̃ and δ̃ are as follows. First, �̃ f is
the frequency shift of the cavity with sample minus that of
the empty cavity, �̃ f (T ) = fsample(T ) − fempty(T ), in other
words, the background-subtracted frequency shift due to the
sample alone. Likewise �̃( 1

Q ) is the difference of inverse Q
between the cavity with sample vs the empty cavity. In other

FIG. 23. Picture of a rectangular crystal sample with anisotropic
electrodynamic properties with respect to an rf magnetic field di-
rection, denoted as Hω. The arrows indicate the screening current
directions on the surfaces, and the letters denote the crystal di-
mensions in each of the three crystallographic directions in the
orthorhombic structure. Following Fig. 1 of Ref. [74].

words �̃( 1
Q ) = 1

Qsample
− 1

Qempty
is the background-subtracted

inverse Q of the sample. Now δ̃ f is the frequency shift of
the sample in the cavity minus the case of the sample hav-
ing perfect conductivity (zero penetration of the field). This
latter case is when the sample creates an excluded volume
inside the cavity defined by its geometrical boundaries. Trunin
assumes that there is a constant offset, foff , between �̃ f
and δ̃ f , namely foff = �̃ f (T ) − δ̃ f (T ). Hence we can write
δ̃ f (T ) = �̃ f (T ) − foff . In turn, we can write the imaginary
part of Eq. (E1) as δ̃ f (T )

f (T ) = �̃ f (T )
f (T ) − foff

f (T ) . The last term on the
right is related to our parameter X0.

The expression for the complex relative permeability μ(T )
presented by the sample depends on what type of anisotropy is
assumed. Trunin considered the case of a bianisotropic sample
with a-axis and b-axis properties being identical, and the c-
axis properties being different [74],

μ = 8

π2

∑
Odd n>0

1

n2

(
tan(αn)

αn
+ tan(βn)

βn

)
(E2)

with

α2
n = −a2

δ2
c

(
i

2
+ π2

4

δ2
ab

c2
n2

)

β2
n = − c2

δ2
ab

(
i

2
+ π2

4

δ2
c

a2
n2

)
, (E3)

where n is a positive integer, a is the length of the crystal in its
a direction, c is the length of the crystal in its c direction, and
δab is the skin depth for currents flowing in the ab plane, while
δc is the skin depth for currents flowing in the c direction. Note
that not all authors [59] agree on these definitions for a, c, δab,
and δc.

An important feature of Eq. (E2) is the fact that it explicitly
takes into account the finite size of the crystal, through the pa-
rameters (a, c). In other words, as the temperature approaches
Tc, and the skin depths approach the size of the crystal, this
expression correctly captures the resulting finite-size effects.

The temperature-dependent quantities here are the complex
skin depths δab, and δc, ignoring thermal expansion of the
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crystal dimensions. The skin depths are defined as

δab(T ) =
√

2

ωμ0σab(T )
δc(T ) =

√
2

ωμ0σc(T )
, (E4)

where σab and σc are the complex conductivities of the crystal
for currents flowing in the ab plane and c direction, respec-
tively.

Now one must create a model for the complex conduc-
tivities σab(T ) and σc(T ) of the crystal and their tempera-
ture dependence. The model assumes temperature-dependent
momentum-relaxation lifetimes (in the normal state) and
quasiparticle lifetimes (in the superconducting state) that are
continuous at Tc and given by

τab(T ) =
⎧⎨
⎩

μ0λ
2
Lab

ρab(T ) if T > Tc

μ0λ
2
Lab

ρab(Tc )
Tc+Tsat
T +Tsat

if T < Tc

τc(T ) =
⎧⎨
⎩

μ0λ
2
Lc

ρc (T ) if T > Tc

μ0λ
2
Lc

ρc (Tc )
Tc+Tsat
T +Tsat

if T < Tc

, (E5)

where the temperature-dependent normal-state resistivities
ρab(T ) and ρc(T ) are incorporated into the definitions of the
temperature-dependent momentum relaxation times above Tc.
Here λLab and λLc are the axis-dependent London penetration
depths of the crystal. The temperature Tsat > 0 represents the
(negative) temperature at which the quasiparticle lifetime di-
verges. The two-fluid model complex conductivity for each
axis is defined as

σab(T ) = 1

μ0λ
2
Lab

(
fn(T )τab(T )

1 + iωτab(T )
+ fs(T )

iω

)

σc(T ) = 1

μ0λ
2
Lc

(
fn(T )τc(T )

1 + iωτc(T )
+ fs(T )

iω

)
, (E6)

where fs(T ) and fn(T ) are the temperature-dependent dimen-
sionless superfluid and normal fluid fractions, 0 � fs, fn � 1.

One can then calculate the complex surface impedances
associated with currents flowing either in the ab plane, or the

c direction, as follows:

Zs,ab(T ) =
√

iμ0ω

σab(T )
, Zs,c(T ) =

√
iμ0ω

σc(T )
.

The two-fluid conductivities, Eq. (E6), can also be used to
calculate the complex skin depths in Eq. (E4). These are used
to calculate the coefficients in Eq. (E3), as well as the complex
relative permeability of the crystal in Eq. (E2). Finally, one
can calculate the complex frequency shift of the cavity due to
the crystal, using Eq. (E1). For our numerical calculations we
take v = (1 mm)3, W = 10−12 W, and H0 = 1 A/m.

Note that our data analysis approach operates under the
assumption that “impedances add” [i.e., as defined by Eq. (4)]
when analyzing the screening of anisotropic materials. A jus-
tification of this statement in the bianisotropic case is given in
Eq. (55) of Ref. [76], which includes the weighting depending
on the exposed area of each facet of the crystal. This is
basically the same as the assumption made by Kitano et al.
[39] in their Eq. (2), also showing the relative weighting. One
goal of this exercise is to test whether this “impedances add”
data analysis approach is valid in the parameter regime of our
experiments on UTe2 crystals.

a. Synthetic data analysis results

Synthetic data generated by the method outlined in
Appendix E 1 was analyzed by the same data analysis methods
applied to the measured UTe2 crystals. A set of five modes
with a variety of different scenarios were created, covering
a significant range of wa, wb, and wc values. The deduced
crystal weights wa, wb, and wc were recovered to within 2%
in all cases tested. The expected composite λ0 was recovered
to within 4% in all cases. The extracted London penetration
depths were within 2% of the assumed values, except the
b axis, which had an error of 10%. An isotropic superfluid
density temperature dependence of fs(T ) = 1 − (T/Tc)2 was
employed, and the resulting penetration depth temperature
dependence at low temperatures �λ/λ ∼ (T/Tc)α yielded an
axis average of α = 1.97 ± 0.01. These results are a rigorous
test of the basic assumptions of our data analysis approach and
give us confidence that our determinations of axis-resolved
weightings and screening length scales should be accurate.
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