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Metamaterials are artificial structures consisting of sub-wavelength ‘atoms’

with engineered electromagnetic properties that create exotic light-matter interac-

tions through the effective medium approximation. Since the early 2000s, super-

conductors have been incorporated into a variety of structures to achieve tunable,

low-loss, and nonlinear metamaterials, and have enabled applications such as neg-

ative index of refraction, near zero permittivity, and parametric amplification. We

have designed, fabricated and characterized two types of superconducting metama-

terials based on the quantum three-junction flux qubits and classical radio frequency

superconducting quantum interference devices (rf SQUIDs).

The coplanar waveguide resonators hosting the qubit meta-atoms exhibit anoma-

lous reduction in loss in microwave transmission measurements at low rf excitation

levels upon decreasing temperature below 40 mK. In contrast, the well-known stan-

dard tunneling model (STM) of the two-level system (TLS), believed to be the



dominant source of loss at low temperatures, predicts a loss increasing then sat-

urating with lowering temperatures. This anomalous loss reduction is attributed

to the discrete nature of an ensemble of TLSs in the resonator. As temperature

decreases, the individual TLS response bandwidth reduces with their coherence rate

Γ2 ∼ T , creating less overlap between neighboring TLSs in the energy spectrum.

This effective reduction in the density of states around the probe frequency is re-

sponsible for the observed lower loss at low rf excitation levels and low temperatures

as compared to the STM prediction. We also incorporate the discrete TLS ansatz

with the generalized tunneling model proposed by Faoro and Ioffe [PRL 2012, 109,

157005 and PRB 2015, 91, 014201] to fit the experimental data over a wide range of

temperatures and rf excitation powers. The resulting goodness of fit is better than

all common alternative explanations for the observed phenomenon.

Metamaterials made of large arrays of hysteretic (βrf = Lgeo/LJJ > 1) classical

rf SQUIDs are also designed and characterized in microwave transmission measure-

ments, where we observed the SQUID self-resonances tuning with applied dc and rf

magnetic flux, as well as temperature. The resonance features are tuned with dc flux

in integers of the flux quantum, as expected. Due to the phenomenon of multistabil-

ity present in the large system, the resonance bands can cross those from adjacent

dc flux periodicities resulting in hysteresis in dc flux sweeps, which is observed in

the experiment. Furthermore, we developed a new three-dimensional architecture of

rf SQUID metamaterials where the nearest-neighbor SQUID loops overlap. The re-

sulting capacitive coupling dramatically changes the response by introducing many

more resonance bands that spread over a broad range of frequencies, the upper limit



of which is much higher than the single-layer counterparts. A resistively and capac-

itively shunted junction (RCSJ) model with additional capacitive coupling between

SQUIDs is proposed and successfully attributes the high frequency bands to the

displacement current loops formed between the overlapping wiring of neighboring

SQUIDs. The capacitively-coupled rf SQUID metamaterial is relevant to the design

of single-flux-quantum-based superconducting digital electronic circuits, which has

adopted three-dimensional wiring to reduce the circuit footprint.
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Chapter 1

Introduction

1.1 Overview of superconducting metamaterials

Metamaterials are artificial structures consisting of ‘atoms’ with exotic electro-

magnetic properties that are designed to create new light-matter interactions. One

important tool for understanding and engineering the metamaterial is the effective

medium approximation (EMA), which can be dated back to Maxwell’s original work

on electromagnetic waves [1]. The concept behind EMA is quite intuitive and gen-

eral. The electromagnetic field amplitude cannot change on a scale much less than

its wavelength. Therefore, the details of any structures smaller than that length scale

could be omitted, and their effect on the electromagnetic wave could be generalized

as some phenomenological parameters (e.g. effective permittivity, permeability) that

describe the average response of the microscopic structures. Through careful engi-

neering, effective material properties that do not occur naturally can be achieved.

For example, a medium with a negative index of refraction [2, 3, 4] can be used

for cloaking, building a superlens with focusing power beyond the Rayleigh limit,

and achieving a negative phase velocity. Metamaterials with near zero permittivity

[5, 6, 7, 8, 9] possess near-infinite phase velocity and wavelength and can be applied

to create near-perfect displacement current shielding [10].

There are three hallmark properties of superconductors: zero dc resistance, the
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perfect diamagnetic response under applied magnetic field, known as the Meissner

effect, and coherent macroscopic quantum phenomena such as flux quantization

and Josephson effects. In the superconducting state, the electrons are bonded with

one another to form Cooper pairs with binding energy twice the superconducting

gap energy, 2∆ [11]. A macroscopic ensemble of Cooper pairs is described by a

coherent wave function: Ψ = Ψ0 exp(iϕ). The flux quantization condition, playing

an important role in this thesis, can be derived from this wave function as follows.

Consider a closed superconducting loop under an applied magnetic field. The

electric current in the loop is related to the probability current of the wave function:

J⃗p =
Ψ2

0

m
(ℏ∇⃗ϕ+ 2eA⃗) (1.1)

where m is the mass of an electron, ℏ = h/(2π) is the reduced Planck constant, and

e is the elementary charge. As a consequence of the Meissner effect, the magnetic

field is zero deep inside the superconductor and the induced current has to flow

in a thin layer near the surface and vanishes in the bulk. The current inside the

superconductor is therefore zero, which requires

− ℏ
2e
∇⃗ϕ = A⃗

Integrating the above equation over a closed loop deep inside the supercon-

ductor, we have:

− ℏ
2e

∮
∇⃗ϕ · d⃗l =

∮
A⃗ · d⃗l

The left hand side can be evaluated using
∫
∇⃗ϕ · d⃗l = 2nπ, which is a consequence

of the single-valued wave function, since the wave function Ψ is invariant under 2π
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changes in phase. The right hand side is just the definition of the total flux trapped

in the loop. We then have

n
h

2e
= Φ (1.2)

where n is an integer and Φ is the magnetic flux enclosed in the loop. Physically,

Eq.(1.2) states that the flux through a superconducting loop has to be quantized in

the unit of flux quantum, Φ0 = h/(2e).

Superconducting metamaterials take advantage of these three hallmark prop-

erties to achieve tunablity, low loss, and nonlinearity that are essential for many

applications.

1.2 Different realizations of superconducting metamaterials

The constituent meta-atoms of the superconducting metamaterials can come

in a variety of shapes and styles. Here we consider a number of designs relevant to

the thesis.

1.2.1 Split ring resonator

A simple split-ring resonator (SRR) consists of a metallic loop with inductance

L interrupted by a gap with capacitance C, whose self resonant frequency is dictated

by its geometry, ω0 = 1/
√
LC. Some typical realizations of the SRR are summarized

in Fig.1.1 .

The metamaterial is built from arranging a large one or two dimensional array

of identical SRRs on a planar surface, forming a metasurface (e.g. a lithographically

3



Figure 1.1: Different realizations of split ring resonator meta-atoms, where the black

lines represent the metallic structure. All designs feature inductive loops and gap

capacitors which give rise to the geometric resonance of the meta-atom, typically in

the microwave frequency range.

defined pattern on a chip). These surfaces can also be stacked in the third dimension

to achieve three dimensional metamaterials [12]. The metamaterial is operated in the

configuration where external rf magnetic field is perpendicular to the metasurface

to maximize the coupling between the applied field and the inductive loop in the

meta-atom. When an SRR is driven at frequency ω near their resonance ω0, the

real part of the relative permeability of the effective medium can become negative:

µr,eff = 1− fω2

ω2 − ω2
0 + iΓω

(1.3)

where f is the filling fraction of the meta-atoms, and Γ is the loss parameter [4].

The real part of the effective permeability attains negative real values for ω ≳ ω0.

To achieve simultaneous negative permittivity, one can construct an array of

metallic wires which posses a cut-off frequency analogous to the plasma frequency

ωp in a metal [13]. The effective permittivity of this system is given as [3]:
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ϵr,eff = 1−
ω2
p

ω2 + iγω
(1.4)

where γ is the dielectric loss parameter. The real part of the permittivity becomes

negative when the system is operated at ω < ωp. Therefore, a metamaterial with

negative index of refraction can be realized by combining the two systems: the SRR

array with resonance ω0 and the wire array with plasma frequency ωp, given that

ω0 < ωp [14]. The results depend only on the geometry of the meta-atom but not any

superconducting element. In fact, the early work on SRR metamaterials are based

on normal lossy metals [15, 16, 17]. However, the loss in the medium is the limiting

factor for achieving perfect negative index of refraction: n = −1 + i0. The loss

can be reduced significantly by building the metamaterial out of superconductors

[18, 19]. In addition, the magnetic field and temperature dependent penetration

depth λ of the superconductor gives rise to a kinetic inductance Lk that introduces

some tunability to the metamaterial [20, 19].

1.2.2 rf SQUID

Similar to the split-ring resonator, the radio frequency (rf) Superconducting

QUantum Interference Device (SQUID) is also a self resonant structure containing a

loop inductance Lgeo and a gap capacitance C. What sets them apart from the split

ring resonators is the inclusion of a Josephson junction, as illustrated in Fig. 1.2.
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Figure 1.2: Schematic of a Josephson junction between two superconductors, where

Cooper pairs can tunnel through the barrier to induce supercurrent even in the

absence of a potential difference across the barrier.

The Josephson junction is a barrier made of insulator, normal metal, or a

weakly superconducting material connecting two superconducting regions where the

Cooper pairs are in a coherent state described by the macroscopic quantum wave

function |ψ|eiϕ [21]. These pairs of electrons have finite probabilities of tunneling

through the barrier depending on the gauge-invariant phase difference δ across the

junction:

δ = ϕL − ϕR −
2π

Φ0

∫ R

L

A⃗(r⃗) · d⃗l, (1.5)

where A⃗ is the magnetic vector potential, Φ0 = h/(2e) ≈ 2.07 × 10−15Wb is the

flux quantum and the integral is taken from the left to the right edge of the barrier.

The tunneling of charge carriers can induce a current without an applied potential

difference between the two superconductors, as described by the dc Josephson effect:

I = Ic sin δ (1.6)
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where Ic is the critical current of the junction which is the maximum supercurrent

that the junction can support. Ic depends on the geometry of the junction as well

as the superconducting gap in each side, which reduces with increasing temperature

[21].

The voltage across the junction is related to the rate of change of the gauge-

invariant phase difference in the ac Josephson effect:

dδ

dt
=

2π

Φ0

V (1.7)

If one differentiates Eq.(1.6) in time, the expression for the junction inductance LJJ

is obtained:

dI

dt
= Ic cos δ

dδ

dt
=

2πIc cos δ

Φ0

V

V =
Φ0

2πIc cos δ

dI

dt
= LJJ

dI

dt
(1.8)

The dependence of the Josephson inductance on the gauge-invariant phase

difference δ is illustrated in Fig. 1.3.

Figure 1.3: Junction inductance LJJ as a function of the gauge-invariant phase

difference δ.

7



Figure 1.4: Schematic design of a Josephson junction made from two overlapping

electrodes separated by a tunnel barrier, and the corresponding resistively and ca-

pacitively shunted junction circuit model.

The junction can be modeled as a parallel RLC circuit as shown in Fig. 1.4,

where the supercurrent channel is represented by the junction inductance shown as

a ‘×’, the normal current channel by the resistance R, and the displacement current

channel by the capacitance C.

Using the circuit model where the junction inductance and the loop inductance

are in parallel, the self resonance frequency of the rf SQUID can be determined as

ω0 =

√(
1

Lgeo

+
1

LJJ(δ)

)
C−1 . (1.9)

Compared to an SRR, the rf SQUID resonance clearly has enhanced tunability

through the gauge-invariant phase difference dependence of LJJ, as illustrated in
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Fig. 1.3. A similar negative effective permeability is expected near the resonance of

the rf SQUID as in the SRR under the weak excitation limit where linear dynamics

of the junction is assumed [22, 23]. However, the key distinct feature of the rf SQUID

as a meta-atom is its nonlinearity, which has been thoroughly examined and demon-

strated by the two-tone intermodulation distortion (IMD) experimental results on

rf SQUID metamaterials [24, 25]. The intrinsic nonlinearity of the Josephson ef-

fect, along with the extreme tunability of rf SQUIDs, leads to bistability [26, 27]

and multistability [28, 29] in their response to rf and dc driving magnetic fields.

This in turn leads to complex and hysteretic behavior, including the phenomenon

of transparency [30]. Theory predicts that, under appropriate circumstances, driven

rf SQUIDs will display strange nonchaotic attractors [31] and chaos [32, 33]. The

rf SQUID metamaterials can also act as nonlinear gain media when immersed in

passing electromagnetic waves [34, 35, 36, 37, 38, 39, 40], which is based on the

nonlinear processes enabled by the Josephson effect that transfer energy to a signal

at frequency fs from a strong pump signal at frequency fp.

In early theoretical and experimental works on rf SQUID metamaterials, the

rf SQUIDs were packed together side-by-side in either one [41, 23, 42, 43] or two

dimensions,[44] with substantial long-range (dipole-dipole) mutual inductance of the

SQUID loops due to their close lateral proximity in the plane. Prior work examining

collections of Josephson-junction-based devices in two dimensions, not necessarily

metamaterials, include the following: superinductors made up of planar ladders of

superconducting wires/loops incorporating Josephson junctions [45], and Josephson

transmission lines utilizing SQUID arrays to create magneto-inductive waveguides
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[46, 47]. Another type of Josephson metamaterial recently realized utilizes a tun-

able plasma edge created by current-biased linear arrays of Josephson junctions

embedded in a three-dimensional waveguide [48], which interacts mainly with high

frequency electric fields, rather than magnetic fields.

1.2.3 Qubit

Except for the macroscopic quantum phenomena in the rf SQUIDs (i.e. Joseph-

son effect, and flux quantization), the treatment of these meta-atoms is mostly

classical, where the dynamics is governed by classical electromagnetism. However,

through careful engineering of the superconducting circuits, quantum mechanical

two level systems can be created from the discrete energy levels. These devices are

aptly named quantum bits (qubits), which form the building block for quantum

computing. There are three different realizations of superconducting qubits that

involve three different forms of tuning through an applied flux [49], voltage [50], and

bias current [51, 52] as illustrated in Fig.1.5.

The quantum metamaterial created from an ensemble of these qubit meta-

atoms is a rich platform for studying collective quantum phenomena, such as a

breathing mode with an oscillating band gap [53], and superradiance [54, 55, 56,

57]. More generally, a system of quantum meta-atoms can be naturally employed

for quantum simulation [58, 59] where a specific Hamiltonian that is analytically

unsolvable can be realized and analyzed experimentally.

The three-junction flux qubit embedded in a coplanar waveguide (CPW) res-
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Figure 1.5: Schematics of three different kinds of superconducting qubits: flux,

charge and phase qubits. a) A three junction flux qubit is made of a superconducting

loop interrupted by three Josephson junctions and is tuned with external flux Φ.

b) The Cooper-pair box, a type of charge qubit, is built by connecting a Josephson

junction and a capacitor in series, creating a superconducting island between them

as outlined by the dashed box. This qubit is controlled by the applied voltage V . c)

A phase qubit consists of a Josephson junction and is biased by applied current I.

onator in particular is a good candidate for building a quantum metamaterial since

the qubit presents a large anharmonicity, making the effective two level system ro-

bust to a large drive which could otherwise promote the system into higher excited

states, can be tuned in situ with an applied magnetic field, and has a small foot

print to enable uniform coupling of a large array to the cavity [42]. However, the

low coherence time of these meta-atoms has been a limitation in their application.

Although tremendous progress has been made in terms of design, fabrication and

measurement techniques, which has led to orders of magnitude increase in coherence

time [60, 61, 62], a comprehensive understanding of the responsible loss mechanisms

under all operating conditions (e.g. temperature, excitation power, etc.) is still
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missing. Therefore, an investigation of these losses in the superconducting circuit

remains relevant.

1.3 Outline of Thesis

This thesis is organized as follows. Chapter 2 discusses the work on design-

ing, fabricating, and characterizing the capacitively-coupled coplanar waveguide

resonator originally intended for housing the quantum metamaterial consisting of

three-junction flux qubits. The characterized loss of the resonator exhibits typical

power dependence from saturation of two-level systems. However, the temperature

dependence shows an anomalous reduction upon reducing temperature below TLS

saturation. This effect is modeled by combining a discrete ensemble of TLS and the

generalized tunneling model. This work has been published as [63].

Chapter 3 studies the conventional rf SQUID metamaterial with side-by-side

geometry made from individual hysteretic rf SQUIDs whose geometric inductance

is much larger than the junction inductance. The meta-atoms are modeled by the

resistively and capacitively shunted junction (RCSJ) model. The strong inductive

coupling among the SQUID meta-atoms combined with the multistability from the

hysteretic SQUIDs gives rise to interesting nonlinear dynamics. In particular, the rf

SQUID metamaterial is observed experimentally to undergo two flux quanta period-

icity when tuned under the applied dc magnetic flux, contrary to the conventional

one flux quantum periodicity.

Chapter 4 introduces the design of overlapping SQUID metamaterials and their
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theoretical treatment. We incorporated strong capacitive coupling due to the over-

lapping capacitors formed between the two overlapping wiring layers from the two

neighboring SQUIDs into the RCSJ model. We begin by modeling two overlapping

SQUIDs and studying the response in both the linear and nonlinear high-frequency

driving limits. By exploring a sequence of more and more complicated arrays, the

formalism is eventually extended to the N ×N × 2 overlapping metamaterial array,

where we develop an understanding of the many (8N2− 8N +3) resulting resonant

modes in terms of three classes of resonances. The capacitive coupling gives rise to

qualitatively new self-resonant responses of rf SQUID metamaterials, and is demon-

strated through analytical theory, numerical modeling, and experiment in the 10-30

GHz range on capacitively and inductively coupled rf SQUID metamaterials. This

work has been published as [64].

Chapter 5 serves as a summary of the thesis and outlines directions for future

research based on the results presented in this work.
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Chapter 2

Two Level Systems in the Superconducting Coplanar Waveguide

Resonator

Two-dimensional (2D) planar high internal quality factor (Qi) superconduct-

ing resonators have been widely fabricated and investigated in recent times for ap-

plications such as single photon detectors [65], kinetic inductance detectors [66],

and quantum buses in quantum computing technology [60]. A 2D superconducting

resonator to house a qubit metamaterial intended for both resonant and dispersive

readouts of the qubits, as done in Ref. [67], is designed and fabricated. This chap-

ter discuses the characterization of the 2D resonator and establishes a thorough

understanding of the relevant loss mechanisms.

In microwave measurements, although all qubits are operated at an excitation

frequency well below the superconducting gap energy, microwave photons can be

absorbed by quasiparticles, which in turn interact with the phonon bath, creating

non-equilibrium distributions of both quasiparticles and phonons [68, 69, 70, 71].

This process affects the population of quasiparticles, in addition to pair-breaking

processes induced by cosmic rays [72] higher order microwave harmonics, and stray

infrared radiation [73, 74, 75]. These non-equilibrium quasiparticles are one limiting

factor on superconducting resonator Qi and qubit coherence, which can reduce both

the qubit relaxation time (TQubit
1 ) and the coherence time (TQubit

2 ) [76].
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Another comparable loss mechanism ubiquitous in 2D superconducting res-

onators is the dissipation incurred by the interaction between the resonant electric

field and the two-level system (TLS) [77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89,

90, 27, 91]. Despite the elusive microscopic origin of the TLS (some recent works

suggesting hydrogen impurities in alumina as one candidate for the TLS [92, 93]),

TLSs can be simply modeled as electric dipoles that couple to the microwave electric

field. In general, TLSs are abundant in amorphous solids and can also exist in the

local defects of crystalline materials. They are found in three kinds of interfaces

in the superconducting resonators: the metal-vacuum interface due to surface ox-

ide or contaminants; the metal-dielectric substrate interface due to residual resist

chemicals and buried adsorbates; and the dielectric substrate-vacuum interface with

hydroxide dangling bonds, processing residuals, and adsorbates [94]. To address

these issues, different kinds of geometry of coplanar waveguide (CPW) structure

have been proposed and fabricated, with more care given to the surface treatment

to alleviate the TLS losses [95]. For example, a trenched structure in the CPW helps

to mitigate the metal-dielectric TLS interaction with the resonator fields [96, 97].

These efforts have improved the 2D resonator intrinsic quality factor to more than

1 million in recent realizations of high-Qi resonators [96, 98, 99, 100, 97]. Neverthe-

less, TLSs still exist even in extremely high Qi 3D superconducting radio frequency

cavities used in particle accelerator applications [101]. Recently, other sources of

the TLS loss have been proposed based on quasiparticles trapped near the surface

of a superconductor [102].
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Clearly the TLS loss is a universal issue in superconducting resonators. How-

ever, at microwave frequencies, this loss was long thought to be constant under low

microwave power and low temperature [78, 103, 104, 80, 79, 90]. Measurements in

this regime were limited due to the constraints of noise levels in both electronic

equipment and the thermal environment. Therefore, experimental investigation of

the TLS at low temperatures and microwave excitation are important, and would

assist the superconducting quantum information community to understand its effect

on operating quantum devices.

We have designed a 2D half wavelength resonator to host many three-junction

flux qubits for the study of the collective behavior of quantum meta-materials. Anal-

ogous to cavity quantum electrodynamics, qubits serve as artificial meta-atoms with

mutual coupling [105, 53, 106, 107, 108] and can be read out through the dispersive

frequency shift of the cavity[109, 42, 110]. Theoretical publications discussing the

physics of qubit arrays coupled to the harmonic cavities predict a number of novel

collective behaviors of these meta-atoms [111, 112, 113]. In this chapter, we report

our finding on the TLS loss in the low power and low temperature limit of this par-

ticular design of capacitively-coupled half-wavelength resonator, without the qubits.

The technique of very low power microwave measurement with low noise to enhance

the signal-to-noise ratio (SNR) is critical for measuring this behavior of TLSs.
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2.1 Design and fabrication of the resonator

The CPW resonator in this work is designed with a tapering geometry at the

center that gradually shrinks the signal line width w and the spacing between the

signal line and ground s as shown in Fig.2.1 (b). The smaller size enhances the

coupling to the qubit meta-atoms to be hosted in the center. The CPW resonator

chip was mounted on a printed circuit board bolted inside a copper box. Several

lumps of indium were pressed between the on-chip ground planes and the copper box

ground to achieve a continuous ground contact, which mitigates parasitic resonant

microwave modes due to uneven electrical grounding. The indium lumps also secured

the chip in the center of the printed circuit board. The on-chip transmission line is

wire-bonded to the center conductor of the transmission line on the printed circuit

board by gold wires. Finally, the copper box is capped by a copper lid to eliminate

stray light illumination. The schematics of the setup are shown in Fig.2.1

The resonator is designed with a center line width w = 50 µm and spac-

ing s = 30 µm (the distance between center conductor line and ground plane as

illustrated in Fig. 2.2(b)) to maintain the characteristic impedance near 50 Ω in

the meander part. At the center of the resonator a tapering structure narrows the

center line width down to w = 1 µm and spacing to s = 12 µm, which gradually

increases the characteristic impedance to 100 Ω at the resonator center. A model of

the CPW microwave resonator was constructed in a microwave simulation software,

CST (Computer Simulation Technology) Microwave Studio. The model structure

represents the entire CPW resonator and coupling capacitors, both of which repro-
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Figure 2.1: [Design and schematics of the CPW resonator sample. a) Model of

the CPW resonator sample with its packaging in CST. The design of the CPW

resonator chip and the printed circuit board for interfacing the chip and the coaxial

connectors in the measurement setup are shown in b) and c). The gray areas in

b) are superconductor while the white regions are exposed insulating substrate. d)

The simulated transmission through the entire setup determines the fundamental

resonance at 3.688 GHz. e) a picture of the sample in its package.
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duce the geometrical structure in our superconducting chip. The superconductor

is modeled as a perfect electric conductor. The simulation above is obtained from

the finite element frequency domain solver in CST and predicts the fundamental

resonance at 3.688 GHz.

2.1.1 Fabrication of coplanar waveguide resonator

The aluminum (Al) half-wavelength (λ/2) CPW resonator was fabricated using

standard photo-lithography procedures. First, a 70 nm thick Al film was deposited

on a 3-inch diameter sapphire wafer using thermal evaporation technology with a

background pressure of ∼ 3 × 10−7 mbar. Then a thin SHIPLEY1813 photo-resist

was coated on top of the film and exposed to UV through the designed photomask.

The UV exposed wafer was developed and then wet etched by commercial Transene

Aluminum Etchant. The remaining photoresist was stripped off by acetone and

the entire wafer was cleaned by methanol and isopropanol. Finally, the wafer was

coated in a protective photo-resist and then diced into many chips. After dicing,

the protective photo-resist was removed.
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Figure 2.2: Pictures of the CPW resonator. a) An SEM image of the aluminum CPW

resonator on a sapphire substrate. b) c) Zoom-in SEM images of the left and right

capacitive couplers. d) AFM image highlighting the tapered center conductor with

a 1 µm wide center trace near the center of the resonator, and e) AFM topography

image highlighting the 5 µm wide capacitive coupler from b) or c). Note that the

AFM probe scanning direction is 45 degrees with respect to the center-line direction

to reduce AFM scanning artefacts. f) Line scan profile of AFM image to show

thickness of the center line in d). g) Line scan profile of the capacitive coupler.

Both line scans show an Al film thickness of 70 nm.

The fabricated CPW resonator sample is shown in Fig. 2.2 (a). The entire

resonator is surrounded by many 10 µm by 10 µm vortex moats. The resonator is

symmetric and capacitively coupled through 5 µm gaps (Fig. 2.2 (b) and 2.2 (c)) in

the center conductor. A topographic image of the narrowed resonator center section

is shown in Fig. 2.2 (d) with a critical dimension around w = 1 µm in width. Line
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cuts shown in the atomic force microscopy (AFM) images in Fig. 2.2 (d), (e) show

that the Al film is 70 nm thick.

2.2 Transmission measurement on the coplanar waveguide resonator

2.2.1 Resonator transmission measurement setup

The device was placed in a closed Cryoperm cylinder in a BlueFors (BF-XLD

400) croygen-free dilution refrigerator (base temperature 10 mK) to minimize any

stray DC magnetic field, and the shield was thermally anchored to the mixing cham-

ber plate. The microwave excitation was attenuated by a series of attenuators in

the input line at different cooling stages in the dilution fridge before going into the

resonator to reduce the noise. The transmitted signal was amplified twice through

a cryogenic amplifier and a room temperature amplifier before being measured by

a Keysight N5242A vector network analyzer (VNA). The low power measurements

were performed using the smallest intermediate frequency bandwidth (1 Hz) of the

VNA, with a 400 kHz span across the resonance, following 5 averages to reduce the

random noise. A thru calibration of the setup was performed in a separate cool down

to determine the overall loss/gain in the transmission lines leading to the resonator.

The schematics of the setup is shown below in Fig.2.3
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Figure 2.3: Schematic of the microwave measurement setup for the study of the

aluminum λ/2 resonator. The VNA at room temperature sends a signal from port 1

to the cryostat. The signal is attenuated at each stage of the cryostat before passing

through the low-pass filter (LPF) and entering the device under test (DUT). The

DUT is surrounded by a Cryoperm magnetic shield. The output signal also passes

through a low-pass filter before going through 0-dB attenuators that thermalize

the coaxial cable center conductor. The signal passes through an isolator and is

amplified at the 4 K stage and at room temperature, before entering the VNA in

port 2.

A variety of attenuators (produced by XMA) are used on each cryogenic stage

to thermalize the center conductors of the coaxial cables. The total attenuation

in the input line is -66 dB. Both the input line and output line on either side of

22



the device are filtered by commercial microwave low-pass filters. The input line has

a Marki Microwave low pass filter (FLP-1460) with 3-dB cutoff frequency at 14.6

GHz and the output line has another Marki Microwave low pass filter (FLP-1250)

with 3-dB cutoff frequency at 12.5 GHz. The output line goes through the cryogenic

isolator (QUINSTAR Technology QCI-G0301201AM) with working frequency band 3-

12 GHz. The signal is amplified by 36 dB using a commercial high-electron mobility

transistor (HEMT) amplifier (Low Noise Factory LNF-LNC0.3 14A with typical noise

temperature 4.2 K) at the 4K stage, and then further amplified by 37 dB using

another room temperature HEMT amplifier (Low Noise Factory LNF-LNC2 6A with

typical noise temperature 50 K at ambient temperature).

2.2.2 Experimental Data

The measured transmitted signal (Ŝ21(f)) has a fundamental (λ/2) resonance

peak around f = 3.644 GHz at the fridge base temperature when sweeping the

frequency, f . The complex Ŝ21(f) signal is fitted to an equivalent circuit model of a

two-port resonator capacitively coupled to external microwave excitation [114, 71].

Ŝ21(f) = |S21,in||S21,out|

(
QL/Qc

1 + 2iQL(
f
f0
− 1)

eiϕ

)
+ C0 (2.1)

where |S21,in| and |S21,out| are the net loss or gain in the transmission of the input

and output line, respectively. QL is the loaded quality factor. Qc is the coupling

quality factor representing the dissipation to the external circuit, i =
√
−1, f0 is the

resonance frequency of the half-wavelength (λ/2) CPW resonator, ϕ is the phase
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and C0 is an offset in the complex S21 plane due to background contributions[114].

The measured transmission amplitude vs. frequency and the fit to the complex Ŝ21

are shown in Fig. 2.4.

Figure 2.4: Sample S21 signal measured at the fundamental mode of the resonator.

a) The measured magnitude of transmission S21(dB). b) Fit to the complex trans-

mission Ŝ21 shown as the the orange curve.

The internal quality factor, Qi, inversely proportional to the the internal loss,

δ = Q−1
i , is extracted from the identity 1/QL ≡ 1/Qi + 1/Qc. The absorbed power

Pab of the resonator is characterized by the average number of circulating microwave

photons in the cavity on resonance, which can be estimated using the approximation

[71, 115] ⟨n⟩ = 2Q2
LPin

Qcℏω2
0
for a two-port device, where ℏ is the reduced Planck constant,

and ω0 = 2πf0 is the angular frequency of the resonance.
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Figure 2.5: a) Temperature dependent first harmonic resonant frequency shift

∆f/f0(6mK), with ∆f = f0 − f0(6mK) of the λ/2 Aluminum co-planar waveguide

resonator on sapphire substrate measured at different excitation powers (average

photon numbers). Here f0(6mK) is the resonance frequency measured at the base

temperature for each excitation power . b) Temperature dependent loss (inverse

of intrinsic quality factor, Q−1
i ) at its first harmonic frequency of a Aluminum co-

planar waveguide resonator on sapphire substrate measured at different circulating

photon numbers ⟨n⟩. Some of the error bars are smaller than the data point such

as those for the high power and temperature measurements.

Figure 2.5(a) illustrates the temperature dependence of the fractional reso-

nant frequency shift from the resonance frequency at lowest temperature, (f0(T )−

f0(6mK))/f0(6mK), for different circulating microwave photon numbers inside the

CPW resonator, where 6 mK is the measured fridge base temperature. The reso-

nance frequencies start at their maxima at the fridge base temperature and then
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show local minima around 60 mK. This phenomenon seems to be independent of the

average circulating photon number and can be explained by the standard tunneling

model (STM) of TLSs [104]. Upon further increasing the temperature above 150

mK, the resonance frequencies quickly decrease due to the thermal quasiparticles,

which increases the real and imaginary parts of the surface impedance of the super-

conducting resonator. The inset focuses on the low temperature regime and shows

a very small power dependence that is qualitatively similar to the strong field cor-

rection to the frequency shift in the STM proposed by Gao, which predicts smaller

frequency shifts for higher power [116].

The temperature dependence of the measured internal loss is shown in Fig. 2.5(b).

For high power measurements (⟨n⟩ > 106), the loss is constant at low temperatures

(below 150 mK) which is expected for the typical non-interacting TLSs. At higher

temperatures, the loss increases due to thermal quasiparticles. For low power mea-

surements (⟨n⟩ < 106), starting from the minimum temperature, the loss has an

unusual increase at low temperatures, from the base temperature to a peak at 40

mK. The loss then drops with increasing temperature following the equilibrium

value of the population difference in TLSs [82, 117]. Similar to the high power

measurements, the loss rises again above 150 mK due to thermal quasiparticles.

The observed loss decrease with decreasing temperature from 40 mK to 10 mK has

not been explicitly acknowledged and discussed in prior work of microwave super-

conducting resonators until recently [118]. Indications of an upturn in Qi(T ) has

otherwise been attributed to poor SNR and therefore treated as not statistically

significant[117, 119].
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2.3 Model of the frequency shifts in the coplanar waveguide resonator

The power and temperature dependent frequency shifts are explained by the

TLS and the dynamics of quasiparticles. These two mechanisms could overlap and

become difficult to distinguish in the operation of many superconducting devices,

including resonators and qubits, [76]. A simple model that combines both quasipar-

ticles and TLSs contribution in one equation describes the resonance frequency ∆f

data in Fig. 2.5,[87, 95, 120]

f0(T )− f0(0)
f0(0)

=
δ0
π

(
Re

[
Ψ(

1

2
+

ℏω
2πikBT

)

]
− log( ℏω

2πkBT
)

)
− α

2

(
nqp

2N0∆S0

[
1 +

√
2∆S0

πkBT
exp(ζ)I0(ζ)

])
(2.2)

where ζ = hf0
2kBT

, f0 is the resonance frequency as a function of the temperature, δ0 is

the zero temperature and zero power loss tangent from the TLS, Ψ(·) is the digamma

function, α = Lkinetic/Ltotal is the kinetic inductance fraction of the CPW resonator,

N0 is the single spin density of states, ∆S0 is the aluminum superconducting gap

at zero temperature, and I0(·) is the 0th order modified Bessel function of the first

kind. The first term in Eq. 2.2 represents the frequency shift caused by the TLS

mechanism [82, 85] and the second term is the frequency shift due to quasiparticles

using the Bardeen-Cooper-Schrieffer (BCS) model for kBT, hf0 ≪ ∆S0, and written

explicitly in terms of quasiparticle number density nqp [120], including both thermal

and non-equilibrium quasiparticles. However, the model with only thermal quasi-

particle nth = 2N0

√
2πkBT∆S0 exp

(
−∆S0

kBT

)
(valid for T ≪ Tc) seems to match the

measurement sufficiently well, where N0 = 1047 J−1 m−3 ≈ 1.74 × 104µeV −1µm−3
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is the single spin electronic density of states at the Fermi level [69, 75].

Figure 2.6: Temperature dependent fundamental (λ/2) mode resonant frequency

f0(T ) of the Al CPW resonator on sapphire substrates at an external microwave

excitation creating around one circulating photon. The inset highlights the low

temperature regime where the frequency shift is dominated by the TLS mechanism.

The dots are experimental data and solid line is the model fit to Eq. (2.2).

The fit to the frequency shift data is shown in Fig.2.6, and the extracted fitting

parameters indicate that the aluminum superconducting gap at zero temperature is

∆S0 ∼170 µeV , a value close to the BCS gap approximation which is 1.76kBTc with

28



transition temperature Tc = 1.12K. The values of the other fitting parameters are

α ≈ 0.014, and δ0 = 9.6 × 10−6. The values of α and δ0 are consistent with other

results on a variety of similar superconducting resonators[85, 89, 121, 95].

2.4 Model for the internal loss in the coplanar waveguide resonator

Since the temperature dependent internal loss is dominated by the well-known

thermal quasiparticles above 150 mK, this analysis focuses only on the low tem-

perature data, which is well described by the two level systems model. We start

with a brief review of the conventional standard tunneling model (STM) of TLSs

[77, 79, 82] that was first developed to understand the specif heat and thermal

conductivity measurements in glassy materials [122].

2.4.1 Conventional model for two-level systems

The conventional STM is based on a simple model of quantum mechanical

double well potential which is described by the Hamiltonian, HTLS = 1
2

−∆ ∆0

∆0 ∆


where ∆ is the asymmetry of the double well potential and ∆0 is the tunneling barrier

energy between the potential wells [82]. The splitting between the two eigenenergies

of the TLS is thus ε =
√
∆2 +∆2

0. A typical resonator hosts an ensemble of TLS

with different values of ∆ and ∆0 with their (assumed continuous) distribution

function given as P (∆,∆0) = P0/∆0, where P0 ≈ 1044J−1m−3 is the density of

states for TLSs. The distribution function is uniform in ∆ in the conventional TLS

model, but could take on a very weak dependence ∝ ∆µ with µ ∼ 0.3 for a system
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of very strongly interacting TLSs, [123, 124, 125]. For simplicity and generality, the

following model uses the conventional distribution function, which is constant in ∆.

The fit with non-zero µ can be found in the Sec. 2.4.4.3.

The dynamics of a single TLS can be described by the linearized Bloch equa-

tions of the pseudospin S⃗(t) = S⃗0(t)+ S⃗1(t), where S⃗0 is the solution to the homoge-

neous system without the external field, and S⃗1 is the linear solution with frequency

ω of the driving field. Under the rotating wave approximation, the Bloch equations

become: [82, 116, 126]

i
d⟨S+⟩
dt

= Ω⟨S0
z ⟩ − (ω − ε/ℏ+ iΓ2)⟨S+⟩ (2.3)

d⟨S0
z ⟩

dt
= Ω Im⟨S+⟩ − Γ1

(
⟨S0

z ⟩ −m)
)

(2.4)

where S+ = S1
x+iS

1
y , Γ1 and Γ2 are the two phenomenological rates that describe the

longitudinal (Sz) and transverse (Sx,y) relaxations, and m = tanh(ε/(2kBT ))/2 is

the equilibrium value of the ⟨S0
z ⟩. The Rabi frequency Ω characterizing the absorbed

power, Ω ∝
√
Pab, is defined as

Ω =
2d0∆0

ℏε
|E⃗| (2.5)

where d0 is the maximum transition electric dipole moment of the TLS with energy

splitting ε, E⃗ is the applied microwave electric field on the TLS dipole.

In STM, the dielectric response of a single TLS can be obtained from the

stationary solution to ⟨S+⟩ [77, 79, 126]:

χres =
⟨S+⟩
Ω

=
m(ω − ε/ℏ− iΓ2)

(ω − ε/ℏ)2 + Γ2
2(1 + Ω2Γ−1

1 Γ−1
2 )

(2.6)
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The single TLS loss corresponds to the imaginary part of the response function in

Eq.(2.6) which is in the form of a Lorentzian in ε/ℏ centered at ω with a width:

w = Γ2

√
1 + κ (2.7)

where κ = Ω2Γ−1
1 Γ−1

2 . The total dielectric loss is simply the integral of the single

TLS contribution Eq.(2.6) over the distribution of TLSs Eq.(2.33) [79, 82, 116].

δTLS =
1

ϵrϵ0

∫∫∫
P (ε,∆0)

(
∆0d0
ε

)2
cos2 θ

ℏ
mΓ2

Γ2
2(1 + κ) + (ε/ℏ− ω)2

dεd∆0dθ (2.8)

where ϵrϵ0 is the permittivity of the host dielectric material, P (ε,∆0) is obtained

from Eq.(2.33) with a change of variable from ∆ to ε and θ is the angle between the

applied electric field and the TLS dipole moment.

For a typical TLS with ε/h ≈ 5 GHz and at reasonably low temperatures

and powers, the width of its response w ≈ Γ2 ∼ 1 MHz ≪ ω. Due to this sharp

Lorentzian response function, the total loss is dominated by the resonant TLS whose

energies ε ∼ ℏω. Before analytically evaluating the integral in Eq.(2.8), the expres-

sions for Γ1,2 need to be introduced.

The longitudinal relaxation rate (Γ1) of a single TLS is dominated by the

phonon process: [103, 104, 80, 116]

Γ1 =

(
∆0

ε

)2 [
γ2L
v5L

+
2γ2T
v5T

]
ε3

2πρℏ4
coth(

ε

2kBT
) =

(
∆0

ε

)2

Γmax
1 (2.9)

where γL and γT are the longitudinal and transverse deformation potentials, respec-

tively, vL and vT are the longitudinal and transverse sound velocities, ρ is the mass

density, and Γmax
1 is the maximum Γ1 for the TLS with energy splitting ε, when

∆0 = ε.
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The transverse relaxation rate (Γ2) is defined as

Γ2 = Γph
2 + Γds

where Γph
2 = Γ1/2 and Γds ∼10−3(kBT/εmax)

µkBT/ℏ [127, 124] (2.10)

Γds is the dephasing rate of the resonant TLS energy level ε, caused by its inter-

actions with thermally activated TLSs whose ε ≲ kBT , valid for low temperature

measurement (T < 1 K) [127], and is typically larger than the longitudinal relax-

ation rate Γ1. µ again comes from the ∆µ energy dependence in the distribution

function P (∆,∆0). µ = 0 for conventional model and µ ∼ 0.3 for an ensemble of

very strongly interacting TLSs.

After substituting the expressions for Γ1, Γ2 and Ω from Eqs. (2.9, 2.10, 2.5)

into the integral for the loss Eq.(2.8) and using µ = 0, the famous STM prediction

of the TLS loss is obtained, [104]

δTLS =
πP0d

2
0

3ϵrϵ0

tanh [ℏω/(2kBT )]√
1 + (Ω/Ωc)2

(2.11)

where Ωc ∝
√

Γmax
1 Γ2 is the critical Rabi frequency that characterizes the saturation

of the TLS. The loss is expected to have an inverse square root dependence on power

after the TLS saturation, δTLS ∼ Ω ∝ P−0.5
ab for Ω≫ Ωc.

To compare the STM with the experimental data, the power dependence of

the measured loss Q−1
i (T ) is shown below in Fig.2.7 at different temperatures below

the onset of thermal quasiparticle effects.
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Figure 2.7: Internal loss Q−1
i as a function of power (measured by photon number

⟨n⟩ on lower axis, and Rabi frequency Ω on upper axis) at different temperatures for

an Aluminum resonator on a sapphire substrate. The scatter plots are experimental

data points, and the dashed lines are the fitting curves from the STM given in Eq.

(2.11). There is a large deviation from STM power dependence at high power above

the TLS saturation power. The power dependence is more gradual than the STM

prediction, and the loss has very weak temperature dependence, which resemble the

logarithmic power dependence predicted by the generalized tunneling model (GTM).

The black dotted line is the power dependence at high excitation power from GTM.

A constant background loss is assumed for all the fits.

Clearly, the loss shows a gradual power dependence above the low-power sat-
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uration, similar to previous experimental observations[128, 89, 129, 98], and is not

consistent with STM from Eq.(2.11) shown as the dashed curves. The Rabi fre-

quency Ω on the upper axis, as given in Eq.(2.5), depends on the electric field

experienced by the TLS dipole, which is estimated from the electric field calculation

in the CST simulation as shown in Fig.2.8.

According to the simulation, on the resonance at 3.647 GHz, the electric field

can attain a maximum of 6 × 108 V/m on the substrate-vacuum interface at the

corner of the center strip that is part of the coupling capacitor on the input side.

This calculation was done under a 0.5 watt excitation level. An average electric field

of the adjacent area is estimated to be 1.16× 108 V/m. By scaling this power down

to that required to achieve one circulating photon in the resonator, we estimate the

average electric field of the region nearby the coupling capacitor of the resonator

to be 0.2 V/m. The Rabi frequency Ω on the x-axis in Fig. 2.7 and 2.10 is then

estimated from this electric field and a dipole moment d0 ∼ 8 × 10−30C m or 2.4

Debye based on [130, 131].

To account for the slower power dependence, many improvements on the STM

have been proposed, such as introducing more than one species of TLSs in the

dielectrics, [132, 133, 134, 135, 136] and accounting for the nonuniform field distri-

bution in the resonator [86]. In addition, there is another approach that generalizes

the STM to include a random telegraph noise on the TLS energy level due to strong

interactions between a few TLSs [137, 126, 124], resulting in the generalized tun-

neling model (GTM) that can produce the logarithmic power dependence shown as

the black dotted line in Fig. 2.7.
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Figure 2.8: CPW resonator model in CST microwave studio. a) The geometry of

the CPW resonator model in CST. The coupling capacitors and the entire resonator

structure reproduce those in the experiment. b) The top view of the E-field strength

on the substrate-vacuum interface at the fundamental resonance of 3.647 GHz, which

has a node in the center of the resonator, a typical standing wave pattern in a half

wavelength resonator. The E-field vector is mostly in-plane and perpendicular to

the center line. (c) The close-up top view of the E-field vector plot on the substrate-

vacuum interface near the coupling capacitor. The maximum E-field is found around

the corner of the center strip that is part of the coupling capacitor. The E-field that

contributes to the TLS model is estimated from the average of the field along the

resonator side of the coupler about 1.16×108 V m−1, highlighted in the yellow-orange

line. (d) The side view of the E-field vector plot on the cross section through the

coupler at the center strip corner. The maximum is at the corner of the center strip

on the substrate-vacuum interface.
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However, none of the existing models predicts a strong temperature dependence of

loss below the TLS saturation. To interpret this unusual loss reduction in our alu-

minum resonators at low power and low temperature, we go beyond the assumption

of a uniform distribution of TLSs and invoke the discrete TLS contribution to the

loss at low temperatures. A simple modification that sums over the discrete and

detuned responses of TLSs near the resonance as in Eq. (2.30) is proposed. When

combined with GTM, this model reproduces the full power and temperature depen-

dence of the loss data: the gradual power dependence at high power as well as the

observed anomalous temperature dependence of loss for ⟨n⟩ < 102 and T < 50 mK.

It should be emphasized that the discrete TLS assumption is independent of GTM.

Attempts to apply the discrete and detuned TLS formalism to the modified versions

of STM are summarized in Sec.2.4.4. To lay the foundations of the proposed model,

the following sections introduce key concepts of GTM and derive several expressions

used in the final model.

2.4.2 Effect of fluctuators on the TLS loss

The dephasing rate Γds introduced in Eq.(2.10) describes the spectral diffu-

sion resulting from an average of weak interactions among TLS [82, 124], which

cannot incorporate stochastic and discrete strong interactions following a Poisson

process, such as those from fluctuators [138, 139, 126, 137, 124, 140]. Fluctuators

can be modeled as incoherent TLS whose Γph
2 ≥ ε, as opposed to the coherent TLSs

introduced above in STM[124].
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The fluctuators can be modeled as following a thermally activated tunneling

process with rate γ = γ0 exp(
−Ea

kBT
), where Ea is the activation energy. For a uniform

distribution of Ea ∈ [Ea,min, Ea,max], the distribution of the fluctuator rates is thus

P (γ) = Pf0/γ in an exponentially wide range [γmin, γmax], with γmin = γ|Ea=Ea,max ∼

constant in T and γmax = γ|Ea=Ea,min
∝ exp(

−Ea,min

kBT
) [126, 124]. The random tele-

graphic noise with a slow jump rate γ happens infrequently during the measurement

time, and thus cannot be averaged over to contribute to the spectral diffusion as in

Eq. (2.10).

If strongly coupled with the coherent resonant TLSs, the fluctuators can move

the latter in and out of resonance with a jump rate γ and effectively create a random

telegraphic noise on the energy level ε→ ε+ξ(t), which modifies the Bloch equations

as follows [82, 116, 126]:

i
d⟨S+⟩
dt

= Ω⟨S0
z ⟩ − (ω − (ε+ ξ(t))/ℏ+ iΓ2)⟨S+⟩

d⟨S0
z ⟩

dt
= Ω Im⟨S+⟩ − Γ1

(
⟨S0

z ⟩ −m)
)

(2.12)

The exact solution to the Bloch equation will depend on the relationship be-

tween γ,Ω,Γmax
1 , and Γ2. Γmax

1 is abbreviated to Γ1 for clarity in the following

discussion, which mainly focuses on the interaction between fluctuators and one

resonant TLS. Thus, the distribution of values of Γ1 for an ensemble of TLSs is not

invoked until the last step of integration to calculate the loss, and is not relevant

to the fluctuators-induced effect. To systematically present the predictions from

the different solutions to the mater equations under different limits, this section is

37



structured according to the three regimes of the rate γ, namely high γ > Ω,Γ2,

intermediate γ ≈ Ω or Γ2, and low γ < Γ1.

2.4.2.1 Low γ fluctuators

For low γ fluctuators (γmin < γ < Γ1), the single TLS response is given by

the stationary solution to Eq.(2.3,2.4), since the TLS dynamics is much faster than

the jump rates γ. We can further separate the analysis for two different types: the

common weakly-coupled fluctuators which shift the energy level of TLSs by a small

energy ξ and result in a widening of the spectral width of the TLS, and the rare

strongly-coupled fluctuators whose ξ is large enough and produce large stochastic

jumps on the TLS energy level ε.

The weakly-coupled fluctuators induce detunings that follow a Lorentzian

distribution with width Γf ∝ (kBT/ℏ)(kBT/εmax)
µ ≲ Γ2 similar to the spectral

diffusion[124]:

P (ξ(t)) =
1

π

Γf

Γ2
f + ξ(t)2

(2.13)

The single TLS response under a single weak fluctuator can be obtained from Eq.(

2.6) by replacing ε with ε+ ξ(t) [124]:

χres =
⟨S+⟩
Ω

= m
ω − (ε+ ξ(t))/ℏ− iΓ2

(ω − (ε+ ξ(t))/ℏ)2 + Γ2
2(1 + κ)

(2.14)

where κ = Ω2/(Γ1Γ2). Integrating the imaginary part of Eq.(2.14) over the distri-

bution of detuning P (ξ(t)) and the distribution of the fluctuator rate P (γ) in the
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range γ ∈ [γmin,Γ1], one can obtain the single TLS loss:

δ(ε) = Pf0 ln

(
Γ1

γmin

)
m√
1 + κ

Γ2

√
1 + κ+ Γf

(Γ2

√
1 + κ+ Γf)2 + (ω − ε/ℏ)2

(2.15)

The second fraction is in the form of a Lorentzian with width Γ2

√
1 + κ+ Γf, and

the first term is the same as the STM formula. The STM loss is recovered if one sets

Γf = 0. For a continuous distribution of TLSs such as P (ε,∆0), the total internal

loss is calculated by integrating Eq.(2.15) over the distribution function P (ε,∆0):

δTLS =
Pf0

ϵrϵ0

∫∫∫
P (ε,∆0)

(
∆0d0
ε

)2
cos2 θ

ℏ
ln

(
Γ1

γmin

)
m√
1 + κ

(Γ2

√
1 + κ+ Γf)

(Γ2

√
1 + κ+ Γf)2 + (ε/ℏ− ω)2

dεd∆0dθ (2.16)

Clearly, the last fraction in the integral is a Lorentzian which evaluates to a

constant after integration over ε, resulting in the same prediction for internal loss

as the STM [124].

The distribution P (ξ(t)) may not apply to the strongly-coupled fluctuators

which completely shift the TLS in and out of resonance, since there are typically

only a few strong fluctuators in surface dielectrics [124]. They contribute to the

imaginary part of a single TLS response as a random telegraph noise (i.e. ξ(t) in

Eq.(2.14) ). The internal loss is still in the form of the STM loss Eq.(2.6), but could

be reduced by the strong fluctuators occasionally moving the coherent TLS in and

out resonance.

Three methods were used to estimate the average effect of the low γ fluctuators

on the internal loss. Intuitively, we could estimate the total loss by summing up the
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contribution from all the TLSs near the resonance. The key assumption is the low

density of the resonant TLSs which justifies the discrete treatment. An estimation

based on [141] yields ∼ 1 TLS in the bandwidth of the resonance for a volume of

TLS-inhabiting dielectrics around 30 µm3, which supports our assumption. The

first method is thus a summation of all the single TLS loss in the form of Eq.(2.15)

near the resonance with ε = ...ℏ(ω + ν)− 2∆ε, ℏ(ω + ν)−∆ε, ℏ(ω + ν), ℏ(ω + ν) +

∆ε, ℏ(ω + ν) + 2∆ε, ... , and is given in Eq.(2.30). A finite detuning less than the

average energy spacing in the TLS spectrum, ℏν < ∆ε, is included such that the

TLS closest to resonance will not give a diverging response as T → 0, and instead

contributes to the loss as mΓ2∆ε/(ℏν2) ∝ T at low temperature. This detuning is a

consequence of a sparse TLS distribution where ∆ε/ℏ ≳ Γ2. Thus, any given TLS is

rarely on resonance due to the low density of states. We should emphasize that this

treatment is independent from the master equation formalism for the fluctuators,

and can be applied to STM with low TLS density where the use of distribution

function P (ε,∆0) is inappropriate.

The second method assumes that the detuning ν is not much larger than

Γ2 so that the distribution P (ξ(t)) for the weakly-coupled fluctuators can still be

applied to the case ξ/ℏ ∼ ν ≲ Γ2. The probability of a TLS with a detuning ν to

be on resonance under the influence of the low γ fluctuators can be calculated by

integrating P (ξ(t)):

Pon resonance =
1

π
arctan(

ξ

ℏΓf

)

∣∣∣∣ℏ(ν+Γ2)

ℏ(ν−Γ2)

(2.17)

which also leads to a monotonic increasing temperature dependence below 50 mK
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as in the data.

The third method estimates the number of strongly-coupled fluctuators capa-

ble of moving the coherent TLS in and out of resonance. Since the energy drift

caused by fluctuators is directly related to the interaction energy, which is dipole-

dipole like, U(r) ∼ r−3, we could find a volume around the near-resonant TLS which

hosts fluctuators that interact strongly enough. For Γ2 < ν, the TLS is detuned,

and the criterion for being a strong fluctuator is that the induced energy shift can

bring the TLS in resonance such that ℏ(ν−Γ2) < U(r) < ℏ(ν+Γ2). This volume is a

spherical shell with inner and outer radius defined by the bounds on the interaction

energy U(r). For Γ2 > ν, the TLS is already in resonant, and the strong fluctuators

are those that move the TLS out of resonance, with U(r) > ℏ(Γ2− ν). This volume

is a sphere with radius defined by U(r) = ℏ(Γ2 − ν). The total number of strong

fluctuators can then be estimated as:

Nstrong fluctuators = P0Vstrong fluctuatorskBT ∝


2Γ2

2

ν2−Γ2
2

(Γ2 < ν)

Γ2

Γ2−ν
(Γ2 > ν)

(2.18)

where the density of states for TLSs from Eq.(2.33) is used, and the energy range

is set to the thermal energy kBT . The two expressions Eq.(2.17,2.18) are plotted

below as a function of Γ2.
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Figure 2.9: The blue curve is the probability for a TLS detuned with ν to be

resonant under the influence of weakly-coupled fluctuators. The yellow curve is the

normalized estimated number of strongly-coupled fluctuators. They are plotted as

a function of Γ2, which also represents their temperature dependence. It can be

concluded that for both the strong and weak fluctuators, as temperature decreases

(Γ2/ν → 0) the TLS are increasingly detuned.

The x axis of Fig. 2.9, Γ2 is normalized by the detuning ν. When Γ2 increases

to ν, the probability for TLSs to be resonant under the weak fluctuators (Blue

curve in Fig. 2.9) approaches a constant 2/π arctan(Γ2/Γf), which is denoted by

the horizontal line where Γf = 0.8Γ2. The interpretation of the number of strong

fluctuators (Yellow curve in Fig. 2.9) is more nuanced. When Γ2 < ν, the coherent

TLS itself is detuned, the strong fluctuators shift the TLS in resonance, and therefore

their number is positively correlated with the TLS response. However, for Γ2 > ν,

the strong fluctuators shift the already resonant TLS out of resonance, and thus

their number is negatively correlated with the TLS response. Consequently, as Γ2 or

temperature increases, the resonant response becomes stronger. The divergence near
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Γ2 ∼ ν represents the failure of this estimation in the range where any arbitrarily

small shift can move the TLS in and out of resonance, and the strong fluctuator

volume goes to infinity. In reality, this volume is bounded by the host material for

TLSs. For Γ2 ≫ ν, the case of the TLS exactly on resonance is recovered, and the

number of strong fluctuators is clearly independent of temperature. A numerical

estimate of Nstrong flucutators(Γ2/ν → ∞) gives ≲ 1 for typical weakly interacting

TLSs [124]. In both estimates, the detuned TLS becomes resonant more often as

Γ2 or temperature increases, which qualitatively explains the increase in loss in

temperature at low temperatures in the measurement.

It should be noted that if applied to the TLS exactly on resonance (Γ2/ν →

∞), the above arguments will lead to the conclusion that low γ fluctuators present

no temperature dependence for both the strong and weak low γ fluctuators, which

forms the basis of the claim that no anomalous temperature dependence on the loss

is expected in the original GTM work [124].

2.4.2.2 High γ fluctuators

For fluctuators that induce fast jump rates on the resonant TLS, γ ≳ Ω,Γ1,2,

their effects on the dynamics are described by the master equation [126]:

∂ρ

∂t
+

d

dS⃗
(
dS⃗

dt
ρ) = γ[δ(⟨S0

z ⟩ −m)δ(⟨S1
x⟩)δ(⟨S1

y⟩)− ρ] (2.19)

where S⃗ = (⟨S1
x⟩, ⟨S1

y⟩, ⟨S0
z ⟩) and ρ is the probability for a TLS to be in the state

S⃗. The case for high γ fluctuators is particularly simple, where the fast random

telegraph noise is averaged out. Thus, dS⃗/dt is solved from Eq.(2.3,2.4) with ξ(t) =
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0. The average y-component response of the single TLS with energy splitting ε can

then be solved from the master equation Eq.(2.19) as:

⟨S1
y⟩ =

∫
ρ⟨S1

y⟩dS⃗ =
mΩ√

1 + Ω2

(γ+Γ1)(γ+Γ2)

√
(γ + Γ2)2 + Ω2 γ+Γ2

γ+Γ1

(γ + Γ2)2 + Ω2 γ+Γ2

γ+Γ1
+ (ω − ε/ℏ)2

(2.20)

where again the second fraction is in the form of a Lorentzian with width w given

as

w =

√
(γ + Γ2)2 + Ω2

γ + Γ2

γ + Γ1

(2.21)

This width is guaranteed to be larger than ν for large γ. Therefore, we could still

proceed with integrating the Lorentzian (the second fraction) in Eq.(2.20) over ε,

which leads to a constant independent of temperature and power. After another

integration over the distribution P (γ), we can express the total internal loss as

δ = mδ0arcsinh
( γ
Ω

)∣∣∣∣∣
γmax

max(Ω,
√

Γ2
2+ν2)

γmax≫Ω≫Γ1,Γ2−−−−−−−−−→ mδ0 ln(
γmax

Ω
) (2.22)

This expression explains the high power limit of the data in Fig. 2.7 where the losses

from different temperatures converge to a linear trend in the linear-log plot. This

high γ fluctuator loss will saturate to a constant value ∼ m ln
(
γmax/

√
Γ2
2 + ν2

)
once Ω ≲ Γ2. Thus, it will not affect the low power behavior of the TLS loss. The

rate
√

Γ2
2 + ν2 is calculated from the characteristic rate of the TLS dynamics with

ξ(t) = 0 and characterizes the boundary between fast and intermediate jump rates

γ.
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2.4.2.3 Intermediate γ fluctuators

When γ is comparable to Ω and/or Γ1,2, several jumps could be expected

before the TLS relaxes to its ground state. Therefore, the interaction among the

fluctuators need to be accounted for, which complicates the modelling compared

to the low and high γ fluctuators. The dynamical effect is still described by a

similar master equation Eq.(2.19) for high γ fluctuators with ρ replaced by ρk for

each different state k of the fluctuators. Moreover, the fast random telegraph noise

is not averaged out, and we need to do the substitution ε → εk = ε + ξk. The

dynamics of the transverse component can be treated as stationary in a rotating

wave approximation (d⟨S+⟩/dt = 0). The resulting master equation to be solved is

then [126]

∂ρk
∂t

+
d

dz
[(Γ1(m− z)− Ξkz)ρk] = γknρn (2.23)

yk =
−ΩΓ2

Γ2
2 + (εk/ℏ− ω)2

zk (2.24)

where ⟨S0
z ⟩, ⟨S1

y⟩ are abbreviated as z and y, Ξk = Ω2Γ2/[(εk/ℏ − ω)2 + Γ2
2], and

γkn is the transition rate between the fluctuator state k and n. Γ1 and m are not

subscripted with k since their εk dependence contains a slowly varying function in

the form tanh[εk/(2kBT )] that should not vary much near the resonance. zk can be

solved from Eq.(2.23) and substituted in Eq.(2.24) to obtain yk

yk =
−ΩΓ2

Γ2
2 + (εk − ω)2

pk

1 + 1+pkγ/Γ1

γ+Γ1
Ξk

(2.25)

where pk is the probability for a TLS to have energy εk, and γ =
∑

n(γkn + γnk)

is the total effective jump rate for fluctuator state k. The single TLS y-component
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response with the energy level εk can then be calculated from integrating Eq.(2.25)

over the probability distribution P (γ) ∝ 1/γ

yk ∝
−mΩΓ2

Γ2
2 + (εk − ω)2

(
1

1 + κk
ln
γh
γl

+
κk(1− pk)

(1 + κk)(1 + pkκk)
ln

1 + κk + γh/Γ1(1 + pkκk)

1 + κk + γl/Γ1(1 + pkκk)

)
(2.26)

where κk = Ξk/Γ1 is reduced to κ = Ω2/(Γ1Γ2) when the TLS is on resonance

(εk = ℏω). The upper and lower bounds for the intermediate fluctuators are obtained

from the TLS dynamics as γh ≳ Ξk + Γ1,
√

Γ2
2 + (εk/ℏ− ω)2 ≳ γl.

The total loss can then be obtained from summing up the contribution from

all the different energy levels of TLSs just as in Eq.(2.30).

δ =
δ0
π

∑
k

mΓ2

Γ2
2 + (εk − ω)2(

1

1 + κk
ln
γh
γl

+
κk(1− pk)

(1 + κk)(1 + pkκk)
ln

1 + κk + γh/Γ1(1 + pkκk)

1 + κk + γl/Γ1(1 + pkκk)

)
(2.27)

If one assumes that the energy drift ξk induced by the individual fluctuator fol-

lows the same Lorentzian distribution P (ξ) as the weak fluctuators in Sec.2.4.2.1,

the total drift will follow a Lorentzian distribution with a wider width P (ξ) ∝

NΓf/((NΓf)
2 + ξ2) for N fluctuators affecting the TLSs in the case of intermediate

fluctuators. For a large enough ensemble of fluctuator, this width NΓf is compa-

rable to the detuning ν , then the broadening of the TLS energy levels will ensure

the existence of the resonant TLS. Therefore, the continuous distribution of TLSs

P (ε,∆0) can be applied. The final result of the internal loss is then converted into

an integral
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δ = δ0

∫
mΓ2

Γ2
2 + (ε− ω)2

(
1

1 + κ(ε)
ln
γh
γl

+
κ(ε)(1− p)

(1 + κ(ε))(1 + pκ(ε))
(2.28)

ln
1 + κ(ε) + γh/Γ1(1 + pκ(ε))

1 + κ(ε) + γl/Γ1(1 + pκ(ε))

)
dε

δ ∝ m

(
1

1 + κ
ln
γh
γl

+
κ(1− p)

(1 + κ)(1 + pκ)
ln

1 + κ+ γh/Γ1(1 + pκ)

1 + κ+ γl/Γ1(1 + pκ)

)
(2.29)

where we replace κk with a continuous variable κ(ε). It is also assumed that all the

states near the resonance shared the same probability: pk = p ∀k, and is typically

small for a system of many (∼ 10) fluctuators (see supplementary material for

[126]), and thus ignored in the final model. γh,l are the upper and lower bounds of

the jump rates and are defined previously. These limits translate to a range in power

Ω where the intermediate fluctuate model dominates the power dependence of the

loss: Γ2 ≳ Ω ≳
√
Γ1Γ2. Within this range, the loss from intermediate γ fluctuators

is approximately δ0 ln[(Ω
2+Γ2

2)/(2Ω
2)], a faster logarithmic power dependence than

Eq. (2.22). At higher powers, the loss becomes constant ∼ m ln(2). At lower power,

the loss saturates to another constant m ln(Γ2/Γ1).

In summary, the three different fluctuation rates correspond to three different power

ranges for the power dependence of the loss. In the high power limit Ω ≳ Γ2, the

effect of fluctuators that induce large γ dominates and leads to a logarithmic power

dependence; in the intermediate power regime Γ2 ≳ Ω ≳
√
Γ1Γ2, the fluctuators with

intermediate γ give rise to a faster logarithmic power dependence, but meanwhile

the saturation of TLSs just as in STM has a comparable or even stronger power

dependence and overlap in the same power regime; and finally in the low power limit

Ω <
√
Γ1Γ2, the typical TLS saturation in STM is recovered as the contributions
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from all three different types of fluctuators become constant in power. The above

description qualitatively matches our experimental observation in Fig. 2.7.

2.4.3 Fit to the internal loss measurements

Although the power dependence of our data as in Fig. 2.7 agrees with the

effect of fluctuators in the GTM, the original model does not reproduce the observed

temperature dependence. The GTM predicts the same temperature dependence of

the TLS loss in the low power limit as in STM [124] shown as the orange dashed

curve in Fig. 2.10 (b), which clearly deviates from the extracted low power loss of

TLSs. To reconcile this difference, we propose a simple modification to the TLS

model to account for the discrete coherent TLS near the resonance. Consider the

discrete form of the integral in the TLS loss for low γ fluctuators, Eq. (2.16),

δTLS =
P0d

2
0∆ε

3ℏϵrϵ0
ln

(
Γ1

γmin

)∑
n

tanh(
εn

2kBT
)

Γ2 + Γf/
√
1 + κ

(Γ2

√
1 + κ+ Γf)2 + (εn/ℏ− ω)2

(2.30)

where the index n denotes the coherent TLS near the resonance and ∆ε is the

average energy spacing in the TLS spectrum. We believe that Eq.(2.30) is justified

since the number of coherent TLSs inside the resonator bandwidth is ∼ 1 for a TLS-

inhabiting volume around 100µm3 [141], and many previous works have observed the

individual TLS in microwave resonators [142, 143, 130, 131]. For the TLS exactly

on resonance, ε = ℏω, its loss δTLS ∼ Γ−1
2 ∝ T−1 at low power, and is the classic

result for the single TLS model in STM[144]. However, this stands in clear contrast

to the observed reduction in loss at low temperature in Fig. 2.5 (b) and Fig. 2.10.
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It is thus required that the TLS is not always on resonance (ν = ε0/ℏ−ω ̸= 0

where ε0 stands for the energy level of the coherent TLS closest to resonance), a

reasonable assumption given the sparse TLS distribution in the frequency spectrum

for a small volume of TLS-inhabiting dielectrics. Mathematically, the width of the

Lorentzian in the summation w = Γ2

√
1 + κ+Γf dictates the transition from the low

temperature reduced loss to the high temperature equilibrium result. For small w,

a discrete sum will deviate from the integral since the Lorentzian is under-sampled.

While for a Lorentzian with large w, a discrete sum with the same sampling rate will

approximate the integral better. Specifically, at low powers (κ ≪ 1), w = Γ2 + Γf

increases with the temperature and w = Γ2 + Γf ∼ ν marks the transition tem-

perature between the two regimes. For low temperatures (w ≪ ν), the Lorentzian

term becomes roughly proportional to w = Γ2 + Γf which gives the almost linear

temperature dependence of loss. For higher power, w increases with κ, which pushes

the transition temperature lower and suppresses the low temperature reduction in

loss. And eventually at high powers (κ≫ 1) such that w > ν for all temperatures,

the equilibrium temperature dependence m = (1/2) tanh (ℏω/(2kBT )) in STM is

recovered in the entire temperature range. The same discrete summation can be

applied to Eq. (2.29) for intermediate γ fluctuators. On the other hand, Eq. (2.22)

for high γ fluctuators is only modified with the substitution Γ2 →
√

Γ2
2 + ν2 due

to the sparse TLSs assumption (See Sec.2.4.2.2). The final model that combines

all three contributions is able to reproduce the full temperature (T = 8− 110 mK)

and power (⟨n⟩ = 10−1 − 108) dependence of the loss shown as the solid curves in

Fig. 2.10 (a).
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Figure 2.10: a) The least squares fit of the discrete GTM, together with a constant

background loss, to the full power and temperature dependence of the measured

internal loss below 150 mK. b) Plot of δ0TLS(T ) extracted from the average of the

low power loss below the TLS saturation in Fig. 2.7. The orange dashed curve is the

temperature dependence of STM loss below saturation power ∝ tanh (ε/(2kBT )).

The purple dash-dotted (light blue densely dotted) curve is from the discrete sum-

mation of the individual TLS contributions for low (intermediate)-γ fluctuators at

zero applied power. The green dotted curve is the temperature dependent low power

limit of the TLS loss induced by high γ fluctuators. The blue solid curve is the sum

of contributions from the low, intermediate, and high γ fluctuators. c) Comparison

of the temperature dependent rates determined from the least squares fit.

The fit shows reasonable agreement with the data, with root mean squared

error RMSE = 0.0124. There are in total 10 fitting parameters, fewer degrees of
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freedom compared to fitting the data from different temperatures individually. The

different contributions to the loss below the TLS saturation power are plotted in

Fig. 2.10 (b) illustrating that the discrete TLSs coupled to low and intermediate γ

fluctuators are responsible for the loss reduction. The different rates in the model

determined from the fit are summarized in Fig. 2.10 (c). The numerical values for

Γ1,2 and γmax,min are typical for TLSs in amorphous materials [124]. The rates

also satisfy the following assumptions in the model: Γ2 ≳ Γf, and γmax ≫ Γ2. In

addition, the low temperature loss reduction occurs around 40 mK as expected,

when Γ2 + Γf < ν, the width of the response is smaller than the detuning between

the TLS and the resonance. The other quantities extracted from the fit are listed

below: the volume of TLS-inhabiting dielectrics, 10 µm3, the intrinsic TLS loss,

δTLS
0 = 3.85×10−6, the other loss, δother = 1.29×10−5, and the minimum fluctuator

rate γmin = 4.5× 10−2 Hz.

2.4.4 Alternative models for fitting the temperature and power de-

pendent loss

None of the existing models of TLSs shows a strong temperature dependence

of loss below the TLS saturation. Hence alternative models need to be combined

with the discrete TLS formalism to account for the loss reduction at low tempera-

tures. Here we examine two models commonly adopted to explain the slow power

dependence above the TLS saturation power, as well as an alternative version of the

discrete GTM fit used in Sec.2.4.3 in which an energy dependent density of states
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(µ ̸= 0) is assumed.

2.4.4.1 Two TLS model

The two TLSs or, by extension, multiple TLSs model is a popular alternative

in explaining the slower power dependence than STM. The multiple species of TLSs

could be attributed to nonuniform field distribution in the resonator [129], different

dipole moments of the TLS [136], and different microscopic origins of the TLS

[134]. The exact model for the TLS loss is simply a sum of two different STM loss

contributions:

δTLS =
∑
n

δTLS,1
0

mnΓ2

Γ2
2(1 + κ) + (εn/ℏ− ω)2

+ δTLS,2
0

mnΓ2

Γ2
2(1 + ηκ) + (εn/ℏ− ω)2

(2.31)

where mn = tanh(εn/(2kBT )) and its subscript explicitly denotes its dependence on

εn. The difference between the two species of the TLSs is encoded in their intrinsic

losses δTLS,1
0 , δTLS,2

0 which accounts for different participation ratios, and the factor

η which could be due to different field strength experienced by the TLS dipoles,

different dipole moments, or different relaxation rates of the two species of TLSs.

The resulting fit in Fig. 2.11 shows a systematic deviation between the data and the

fit, with RMSE = 0.021.
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Figure 2.11: The discrete two species of TLSs model fit to the loss data.

There are 9 fitting parameters in this model. The resulting relaxation rates

from the fit are Γ2 = 4.7×105 to 2×107Hz and Γ1 = 6.8×103 to 104Hz. The losses

from the different contributions are determined as δother = 1.29 × 10−5, δTLS,1
0 =

6.9× 10−6, and δTLS,2
0 = 6.8× 10−6. The other fitting parameters are volume of the

TLS-inhabiting dielectrics 2µm3, the asymmetry ratio η = 18, and the exponent of

the power dependent density of states of TLSs µ = 0.2. We should note that this fit

might be improved by including more species of TLSs. However, this multiple-TLS

model lacks a physical motivation and is not considered in this work.
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2.4.4.2 Power law fit

Another well-known phenomenological fitting method introduces a free power

law dependence to the saturation power term 1+κ [89]. The model when combined

with the discrete formalism becomes

δTLS = δ0
∑
n

mnΓ2

Γ2
2(1 + κ)β + (εn/ℏ− ω)2

(2.32)

where β is the exponent for the free power law dependence, and β = 1 corresponds

to the STM prediction.

Figure 2.12: The discrete power law fit to the loss data.

The discrete free power law fit has a large deviation from the data as shown in

Fig. 2.12, with RMSE = 0.036. The 8 fitting parameters are the power law exponent

β = 0.38, the exponent in the energy dependent density of states of TLSs µ = 0.2,

the volume of TLS-inhabiting dielectrics 2.6µm3, the loss from other mechanisms
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δother = 1.29 × 10−5, the intrinsic TLS loss δ0 = 8 × 10−6, and the two relaxation

rates are Γ1 = 700 to 103Hz and Γ2 = 3.3× 104 to 1.4× 106Hz.

Moreover, neither of the above alternative models provides a clear interpreta-

tion of the physics in the TLS loss, since the phenomenological fitting parameters

could have different microscopic origins, i.e. nonuniform field distribution, or dif-

ferent dipole moments or relaxation rates among several distinct ensembles of TLS.

Not only does the discrete form of GTM in this work generate better fits to the mea-

sured loss, but it also provides a clear physical explanation for the observed loss:

the low spectral density of coherent TLSs and their interactions with the fluctuators

are responsible for the observed temperature and power dependence.

2.4.4.3 Fit with energy dependent density of states

In Faoro and Ioffe’s original work on GTM, an energy dependent density of

states (DOS) for the TLSs is assumed [124],

P (∆,∆0) = (1 + µ)

(
∆

∆max

)µ
P0

∆0

(2.33)

where µ ∼ 0.3 and ∆max ∼ εmax ∼ kB(100K). The small exponent µ approximately

characterizes the logarithmic reduction of the density of states of TLSs at low en-

ergy in a system of interacting dipoles [123]. The energy dependent DOS will lead

to a small correction in the linear temperature dependence of the dephasing rate,

Γds ∼ 10−3(kBT/εmax)
µkBT/ℏ. The model with an energy dependent density of

states where µ is a free fitting parameter is used to fit to our data and is shown in

Fig. 2.13.
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Figure 2.13: a) The least squares fit of the discrete GTM, together with an energy

dependent density of state and a constant background loss, to the full power and

temperature dependence of the measured internal loss below 150 mK. b) Plot of

δ0TLS(T ) extracted from the average of the low power loss below the TLS satura-

tion in Fig. 2.7. The orange dashed curve is the temperature dependence of STM

loss below saturation power ∝ tanh (ε/(2kBT )). The purple dash-dotted (light blue

densely dotted) curve is from the discrete summation of the individual TLS con-

tributions for low (intermediate)-γ fluctuators at zero applied power. The green

dashed curve is the temperature dependent low power limit of the TLS loss induced

by high γ fluctuators. The blue solid curve is the sum of contributions from the low,

intermediate, and high γ fluctuators. c) Comparison of the temperature dependent

rates determined from the least squares fit.

The fit shows reasonable agreement with the data, with RMSE = 0.014,
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slightly larger than that of the µ = 0 fit in Sec.2.4.3. suggesting that the as-

sumption of energy dependent DOS is not necessary. There are in total 11 fitting

parameters. The different contributions to the loss below the TLS saturation power

are plotted in Fig. 2.13 (b). Similar to the fit in Sec.2.4.3, the discrete TLSs coupled

to low and intermediate γ fluctuators are responsible for the loss reduction. Differ-

ent rates in the fit are summarized in Fig. 2.13 (c), with typical numerical values

for TLS in amorphous materials [124]. The rates also satisfy Γ2 ≳ Γf, γmax ≫ Γ2.

In addition, the low temperature loss reduction occurs around 40 mK as expected,

when Γ2 + Γf < ν, the width of the response is smaller than the detuning between

the TLS and the resonance. The other quantities extracted from the fit are listed

below: the volume of TLS-inhabiting dielectrics, 18.5 µm3, the intrinsic TLS loss,

δTLS
0 = 5.5× 10−6, the other loss, δother = 1.29× 10−5, and the minimum fluctuator

rate γmin = 2.9 × 10−4 Hz, and the exponent for the energy dependent density of

states µ = 0.2.

2.5 Discussion

The discrete and detuned TLSs formalism will not affect the high γ-fluctuator

contribution to internal loss, since the width of Lorentzian in the calculation of loss

of high γ fluctuators w is widened by γ such that w ∼ γ > ∆ε/ℏ (See Sec.2.4.2.2),

which is indicated by the almost flat region in the green dotted curve at low tem-

perature in Fig. 2.10 (b). However, the loss from intermediate γ fluctuators could

be subject to the low coherent TLS density but to a lesser degree than that from
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the low γ fluctuators, since although the bandwidth of their response ∼ Γ2 is the

same (See Sec. 2.4.2.3), there are many intermediate-γ-fluctuator-induced sublevels

for one TLS in one Rabi cycle which effectively increases the density of the available

TLS energy levels. In order to avoid over fitting, this effect was not included in

the model where the same density of states for TLSs are assumed for those coupled

to intermediate γ fluctuators and the low γ fluctuators. Thus, the same ∆ε value

is shared for the two different contributions. This simplification could lead to an

underestimation of the loss in the intermediate power region, as illustrated by the

deviation between the fit and data from ⟨n⟩ = 102 to 106.

The discrete TLSs formalism only approximates the effect of a sparse spectral

density of TLSs where despite the spectral diffusion with a width Γ2, and the random

telegraph noise characterized by the rate γ, the coherent TLS spends most of its

time detuned from the resonance. The assumptions of even energy spacing between

TLSs, ∆ε, and constant energy levels, are convenient for numerical evaluation of the

model, but are not necessary to reproduce the loss reduction at low temperature.

Two other estimations of the probability of the TLS being on resonance, as well

as the number of strongly coupled fluctuators that can bring a detuned TLS into

resonance, are given in Sec.2.4.2.1. Both calculations show that for any TLS with a

spectral width Γ2 and a detuning to the resonance ν, the TLS becomes less likely to

be on resonance once Γ2(T ) < ν with decreasing temperature, qualitatively agreeing

with the experimentally observed loss reduction at low temperature.

The treatment above is largely classical where the TLSs are treated as dipoles

under classical field. A quantum mechanical approach that studies the Jaynes-
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Cummings model of a single TLS strongly coupled to a photon predicts a linear

temperature dependence of the loss similar to our observation [144]. However, it

should be noted that the photon frequency in our measurement (3.64 GHz) corre-

sponds to weak photon-TLS coupling, since the Rabi frequency from the effective

field of a single photon is much weaker than the relaxation rates Γ1,2. Additionally,

the loss from strongly coupled TLSs is predicted to show saturation in power at

⟨n⟩ ∼ 1, clearly lower than the observed saturation in the data at ⟨n⟩ ∼ 10 which

corresponds to the weak coupling regime and reproduces the classical result [144].

Although the fluctuators significantly affect the internal loss of TLSs, they

should have limited effect on the frequency shifts [124]. The proposed discrete

and detuned TLSs formalism would not modify the STM frequency shift prediction

either, because unlike the Lorentzian response function that governs the internal

loss, the response function for frequency shift does not have a resonant shape and

is not sensitive to the reduced sampling from the discrete TLSs.

Ever since the importance of the TLS interactions in amorphous solids was

recognized by Yu and Leggett [145], there have been numerous experimental works

demonstrating evidence of the TLS interactions,[138, 137, 146] and theoretical works

treating the interacting TLSs beyond STM [147, 148, 149], with a recent example

by Burin and Maksymov where they used a similar Master equation formalism [90].

However, the fluctuations in the energy levels are averaged over to form the spectral

diffusion, unlike the fluctuators introduced by Faoro and Ioffe [126, 124], and the

loss is predicted to have a power dependence faster than STM by a logarithmic

factor, contrary to our observation.
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2.5.1 Non-Equilibrium Quasiparticle Treatment and nqp and Qqp Es-

timates

At higher temperatures (above 150 mK), the quasiparticle effects become im-

portant, which corresponds to the upturn in loss in Fig. 2.5. The quasiparticles loss

is related to its density nqp as,

1

Qqp

=
2α

π

sinh(ζ)K0(ζ)nqp

N0

√
2πkBT∆S0

where nqp = nth + nnoneq = 2N0

√
2πkBT∆S0 exp

(
−∆S0

kBT

)
+ nnoneq (2.34)

where nnoneq is the non-equilibrium quasiparticle density. Similar to the fit for

frequency shift, the model with only nth matches our data with the same set of

fitting parameters ∆0 = 170 µeV and α = 0.014.

A calculation of the increased quasiparticle density including both thermal

and non-equilibrium quasiparticles at high photon numbers in the half wavelength

resonator based on Mattis-Bardeen equations [150, 151] is performed.

This model (scattering model) was established by considering the coupled

quasiparticle and phonon systems[68]. The details of this model are described in

[69, 70, 71] which employ numerical methods to discretize the distribution of quasi-

particles f(E) at energy E and the phonon distribution n(Ω) at energy Ω by solving

the kinetic equations in steady state for a given flux of microwave and higher-

frequency photons.

The calculation is performed by assuming the fridge base temperature Tb =

10mK, the resonator drive frequency 3.6442 GHz (ℏω = 23 µeV ), superconducting
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Name Symbol Value

Superconducting gap ∆S0 188µeV

RF photon energy ℏω 23µeV

Intrinsic quality factor Qi 105

Intrinsic quality factor Qc 1.5× 106

Quasiparticle-phonon time 438 ns[70]

Characteristic phonon time 0.26 ns[70]

Phonon escape time 0.17 ns[70]

Resonator volume 8.6× 10−14m3

Base temperature Tb 10 mK

Phonon effective temperature Teff 189 mK

Table 2.1: Parameters used for our non equilibrium quasi-particle calculation.

energy gap ∆S0 = 188 µeV , Qi = 105, Qc = 1.5× 106 which we obtain from fitting

the resonance, resonator center conductor volume 8.6 × 10−14 m3 and effective

temperature Teff = 189 mK due to stray light illumination and radiation which

creates enhanced phonon generation, as described by the Parker model [152]. Table

2.1 lists all of the parameter values used in this model.

Fig. 2.14 (a) and Fig. 2.14 (b) show the calculated quasiparticle distribution

and phonon distribution, respectively, for three selected circulated numbers of pho-

tons in the half wavelength resonator.

The black dashed line in Fig. 2.14(a) indicates the thermal distribution of
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Figure 2.14: The calculated quasiparticle distribution f(E) (a) and phonon distri-

bution n(Ω) (b) as a function of normalized energy for different circulating numbers

of photons in the half wavelength resonator. Note that in the plot of f(E), a double

y axis is used due to the different scales of thermal and non-equilibrium distribu-

tions.

quasiparticles without any microwave excitation at Tb = 10 mK. At low circulat-

ing photon numbers (⟨n⟩ = 1 or 325 ), the quasiparticle distribution is enhanced

significantly above the Tb thermal distribution, and the phonon distribution is also

enhanced. At high circulating photon numbers, jumps appear in the electron and

phonon distributions every ℏω because microwave drive at high power significantly

affects the distributions. Big step jumps at E = 3∆S0 and Ω = 2∆S0 are due to pair

breaking and recombination processes.

From the quasiparticle distribution f(E), one can calculate the quasiparticle

density, nqp, by numerical integration over all energy, with its density of states ρ(E)

nqp = 4N0

∫ ∞

∆S0

f(E)ρ(E)dE with ρ(E) =
E√

E2 −∆2
S0

(2.35)

The calculated nqp at different circulated photon numbers ⟨n⟩ are shown in
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Fig. 2.15(a). Because this calculation is performed at the 10 mK fridge base tem-

perature, we can set nqp = nnoneq, since the number of thermal quasiparticles is

extremely small. The calculated nqp is around 50 µm−3 when ⟨n⟩ < 106 . In ad-

dition, the calculated result of nqp as a function of fridge/bath temperature (Tb) at

⟨n⟩ = 1 is shown in Fig.2.15(b) as circle dots. When the bath temperature is below

150 mK, nqp remains constant. This is consistent to the assumptions made in the

frequency shift fit at low temperature where quasiparticle density is a constant. The

continuous line of Fig.2.15(b) is from Eq. (2.34).
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Figure 2.15: a) The calculated quasiparticle density as a function of circulating

photon numbers in the half wavelength resonator. Here Tb = 10 mK and Teff =

189mK. b) The calculated quasiparticle density as a function of fridge temperature

at ⟨n⟩ = 1. Note that the dots are calculated from the non-equilibrium model, and

the solid line is from Eq. (2.34) .

For the quality factor due to the quasiparticles, Qqp is defined as

1

Qqp

= α
σ1
σ2

(2.36)
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where the kinetic inductance ratio α = 0.0185 was obtained from the frequency shift

fit in Sec.2.3. The real and imaginary parts of the complex conductivity σ = σ1−iσ2

can be expressed respectively by the Mattis-Bardeen formula [150] given by

σ1
σN

(ω) =
2

ℏω

∫ ∞

∆S0

[f(E)− f(E + ℏω)] g1(E)dE (2.37)

σ2
σN

(ω) =
2

ℏω

∫ ∞

∆S0−ℏω
[f(E)− 2f(E + ℏω)] g2(E)dE (2.38)

where σN is the normal-state conductivity, g1(E) = h1(E,E + ℏω)ρ(E) and

g2(E) = h1(E,E + ℏω) E√
∆2

S0−E2
with h1(E,E

′) = (1 +
∆2

S0

E∗E′ )ρ(E
′). Here we use the

non-equilibrium distribution function f(E) discussed above.

The calculated result ofQqp as a function of average circulated photon numbers

is shown in Fig. 2.16. In the regime of low circulating photon numbers, Qqp remains

a constant and then gradually increases as the circulating photon numbers in the

half wavelength resonator increase. Overall, the Qqp is on the order of 107, and this

result verifies our assumption that Qqp > QTLS0 in the Qi(T ) fitting. In other words,

the loss in the half wave length resonator at low temperatures and low circulating

photon numbers is dominated by the TLS losses.
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Figure 2.16: The calculated quality factor of quasi-particle as a function of circu-

lating photon numbers ⟨n⟩ in the half wavelength resonator. Here Tb = 10mK and

Teff = 189mK, and other parameters are listed in Table 2.1.

However, the results lack any strong temperature or power dependence below

100 mK. Note that this calculation includes the dynamics of the finite lifetime of non-

equilibrium quasiparticles due to recombination and trapping [153, 152, 154, 155].
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Chapter 3

Hysteretic rf SQUID Metamaterials

The original proposal for a superconducting magnetometer was to use a hys-

teretic rf SQUID with the parameter βrf = Lgeo/LJJ > 1 [156, 21, 157], due to their

simple architecture. The hysteretic rf SQUID is subject to an external dc flux to

be determined while also inductively coupled to a tank LC circuit. This circuit is

driven by an rf current at its resonant frequency, where the inductor provides the

rf drive to the rf SQUID and the the capacitor reads the output voltage. There

are hysteretic jumps (which will be introduced later in this chapter) in the total

flux of the SQUID as a response to a sweep of the applied flux. These jumps are

the dominant contributions to the dissipation in the operation, which degrade the

quality factor of the tank circuit and change the read out voltage. and this forms

the basis of the operation of the hysteretic rf SQUID magnetometer. However, as

the fabrication process of Josephson junctions matured, reproducible dc SQUIDs

where the sizes of the two junctions can be well controlled, became the mainstream

of modern designs of high-resolution magnetometers due to their higher sensitivity.

Although hysteretic rf SQUIDs have since lost their popularity in magnetome-

ter applications, the multistability arising from the hysteresis could lead to inter-

esting nonlinear dynamics [158, 159, 160, 161, 162, 163, 164, 165, 166]. In addition,

the coupling among meta-atoms gives rise to remarkable collective behaviors of the
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metasurface, such as chimera states [167, 168, 169, 170, 171, 172, 173], disorder-

dominated states [26, 174, 175], and coherent modes of oscillation [176]. Such states

have been directly imaged by laser scanning microscopy in the superconducting state

under microwave magnetic flux [177, 178].

The single rf SQUID resonance frequency is tunable under applied dc mag-

netic flux, with a period of one flux quantum and the upper-frequency limit scaling

as
√
1 + βrf. Thus, hysteretic rf SQUIDs are expected to have enhanced ranges

of tunable self-resonant frequency. The previous experimental works in this area

[23, 41, 44, 28, 30, 24, 179] restricted the parameter βrf to remain below unity to

avoid hysteresis, thus simplifying the behavior and analysis of those meta-atoms.

In addition, prior work generally constrained the SQUID arrays to having small

mutual-inductive coupling among them, which resulted in behavior very similar to

that of single-SQUIDs. The small βrf value also limited the frequency tuning range,

and the rather sparse packing of the meta-atoms resulted in weak overall response

from the metamaterial. These issues are addressed with new generations of rf SQUID

metamaterials discussed in this chapter and the next.

3.1 Resistively and capacitively shunted junction model for a single

rf SQUID

First we shall review the consequences of flux quantization in a single rf SQUID

loop to establish our notation and approach to setting up and solving the equations

of motion for the gauge-invariant phase. The circuit diagram of an rf SQUID is illus-
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Figure 3.1: The circuit model of an rf SQUID with a magnetic flux Φ threading the

loop.

trated in Fig. 3.1 , where the resistively and capacitively shunted junction (RCSJ)

and the geometric inductance of the SQUID loop are both incorporated on the

circuit model.

The total flux Φ in the rf SQUID loop and gauge-invariant phase difference

δ across the junction are related through the statement of flux quantization in a

superconducting loop, which requires the order parameter to be single-valued upon

going on a continuous and closed loop c through the superconducting material.

Mathematically, this self-consistency condition results in [180, 181],

2πn = δ +
2e

ℏ
Φ, (3.1)

where n = 0,±1,±2, .... and Φ is the magnetic flux through any surface that ter-
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minates on the continuous circuit c. This can be re-written as, Φ = nΦ0 − Φ0

2π
δ,

where Φ0 = h
2e

is the flux quantum. Without loss of generality, taking n = 0 in

the SQUID loop, the expression is simplified to Φ = −Φ0

2π
δ. We shall assume that

the SQUID loop maintains quasi-static flux quantization from dc through the mi-

crowave frequency range so that Eq. (3.1) holds for both the rf and dc flux in a

single galvanically-connected rf SQUID loop. One would expect that Eq. (3.1) re-

mains valid for all situations in which the superconducting order parameter has a

well-defined phase throughout the material, which should extend to time scales as

short as the order parameter relaxation time, expected to be in the ps range, except

close to Tc [21, 182].

The total flux in the loop can be expressed as [180, 181, 183, 184],

Φ = −Φapp + Φind (3.2)

where Φapp stands for the applied flux and the induced flux is Φind = LgeoI for a single

isolated SQUID with a loop inductance Lgeo carrying current I. The sign convention

for Φapp is chosen to account for the diamagnetic response of the superconducting

loop, resulting in opposite signs for applied and induced fluxes.

The current I in the junction is expressed using the RCSJ model where the

junction is treated as a parallel combination of three branches: an ideal Josephson

junction, a capacitor C and a shunt resistor R [185]. The total current from the

three branches is thus:

I = IJJ + IR + IC = Ic sin δ +
V

R
+ C

dV

dt

Using the second Josephson equation, one can relate the voltage drop on the junction
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V to the time derivative of the gauge-invariant phase as V = Φ0

2π
δ̇, where the over-dot

denotes time derivative. In this case, the response current can be written as,

I = Ic sin δ +
Φ0

2π

δ̇

R
+ C

Φ0

2π
δ̈ (3.3)

The flux quantization condition, Eq. (3.2) can now be expressed as, [176]

Φdc + Φrf sin(ωt) =
Φ0

2π
δ + Lgeo(Ic sin δ +

Φ0

2π

δ̇

R
+ C

Φ0

2π
δ̈), (3.4)

whose normalized form reads

ϕdc + ϕrf sin(Ωτ) = δ + βrf sin δ + γ
dδ

dτ
+
d2δ

dτ 2
, (3.5)

where Φdc and Φrf are the dc and rf magnetic flux applied to the rf SQUID and we

assume time-harmonic rf flux at a single frequency ω. The over-dot □̇ represents

derivative with respect to time. The equation can be reduced into the dimensionless

form with the following substitutions: ϕdc,rf = 2πΦdc,rf/Φ0, βrf = 2πLgeoIc/Φ0 (also

referred to as βL in the literature), γ =
√
Lgeo/C/R, τ = ωgeot = t/

√
LgeoC, and

Ω = ω/ωgeo = ω
√
LgeoC. Note that we also introduce the geometric resonance

ωgeo = 1/
√
LgeoC, which is the self-resonant frequency of the rf SQUID meta-atom

in the absence of the Josephson effect.

Equation (3.5) is a driven second-order nonlinear differential equation for the

gauge-invariant phase as a function of time, δ(τ), which dictates the response of

the metamaterial to external electromagnetic fields. Solving for δ(τ) allows one to

calculate all observable properties of the system, including dissipation in the resistor

R.
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3.1.1 Linear-limit solution to the RCSJ model for a single rf SQUID

Before exploring the full numerical solution, an analytical solution can be ob-

tained under the weak applied rf flux approximation, where we only expect the linear

response for the rf SQUID. With a low driving amplitude, the rf response is vanish-

ingly small, |δrf| ≪ 1, so that any nonlinear rf response is negligible. Therefore, the

solution takes the following form δ = δdc + δrf exp(iΩτ) [24]. After substituting the

solution ansatz into the equation of motion, Eq.(3.5), the resulting equations can

be separated into dc and rf components:

ϕdc = δdc + βrf sin δdc (3.6)

ϕrf sin(Ωτ) = (1 + βrf cos δdc)δrf + γ
dδrf
dτ

+
d2δrf
dτ 2

(3.7)

The dc component is an algebraic equation in δdc which can be solved numerically.

The solutions to the dc equation are illustrated in Fig. 3.2 for different values of βrf.

For βrf > 1, the solution for δdc(Φdc/Φ0) becomes multi-valued leading to hysteresis

during a dc flux sweep, which gives rise to the definition of the hysteretic SQUID:

those with βrf greater than unity. Applying a Fourier transform to the right hand

side of Eq. (3.7), we can obtain the resonance condition when a nontrivial solution

exists for zero applied rf flux:

1 + βrf cos δdc + iγΩ− Ω2 = 0.

The resulting dimensionless resonant frequency is solved as

ΩR =
iγ

2
+

1

2

√
4(1 + βrf cos δdc)− γ2. (3.8)
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Figure 3.2: Illustration of solutions to the single SQUID dc equation: ϕdc = δdc +

βrf sin δdc for different βrf. The solution δdc(Φdc/Φ0) becomes multi-valued for βrf > 1.

where we only keep the solutions with positive real parts. For loss γ ≪ 1,

ΩR =
√

1 + βrf cos δdc. (3.9)

The resonance frequency can then be solved after substituting the dc component

solution δdc from Eq.(3.6). This resonance agrees with the result from the circuit

model in Eq.(1.9), which can be easily verified: ωgeoΩR = ω0. The solved resonance

frequencies as a function of dc flux for three different values of βrf are plotted in

Fig. 3.3.
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Figure 3.3: Single SQUID resonance frequency Ω = ω/ωgeo as a function of applied

dc flux from linear solution for βrf = 3.5, 1.7, 0.8. The resonant frequencies are

tuned by applied dc flux in periods of Φ0, and peak around integer values of Φ0, and

decreases as the dc flux approaches half integers of Φ0 as expected for rf SQUIDs.

For βrf > 1, the resonance curve for the SQUID crosses the curve from the adjacent

periods at half integers of Φ0. The region of overlap between the curves corresponds

to the multi-valued range in Fig. 3.2.

For βrf < 1, the resonance is tuned with applied dc flux between the frequencies

Ωmin =
√
1− βrf and Ωmax =

√
1 + βrf. There is no overlap between any curves

corresponding to the one-to-one mapping for βrf < 1 in their dc solution shown in

Fig. 3.2. As one increases βrf, the resonance frequency in Eq. 3.9 grows. In addition

to the increase in resonance frequency, the tuning curve also expands the range in

applied dc flux where the resonance can be continuously tuned without any jumps
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above half integers of Φ0, which corresponds to the higher peaks in the oscillation in

the dc solution curve in Fig. 3.2. If one initializes the phase δ at 0, the dc solution

curve can be traced out for a range of values for Φdc before reaching a peak Φdc0

(as highlighted by the dashed lines in Fig. 3.2), where upon further increasing Φdc,

δdc needs to make a discontinuous jump to another value. The location of this peak

can be determined by setting dΦdc/dδdc = 0:

d

dδdc
(δdc + βrf sin δdc)|δdc=δdc0 = 0,

1 + βrf cos δdc0 = 0,

δdc0 = arccos

(
− 1

βrf

)
.

Therefore, we can substitute the solution δdc0 to determine ϕdc0 = 2πΦdc0/Φ0,

ϕdc0 = δdc0 + βrf sin δdc0 = arccos

(
− 1

βrf

)
+

√
βrf

2 − 1 (3.10)

The parameter Φdc0 is plotted as a function of βrf in Fig. 3.4, which illustrates

the expansion of the tuning curve in width.
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Figure 3.4: The smallest positive dc flux value Φdc0 for a peak in the dc solution, as

shown in Fig. 3.2, as a function of βrf for βrf > 1. Φdc0, which also corresponds to

the half width of the dc flux tuning curve in Fig. 3.3, increases monotonically with

βrf.

When Φdc0 reaches Φ0, βrf = βrf,c1 ∼ 4.60, the width of the tuning curve can

span 2Φ0 in the applied dc flux, which could lead to potential period doubling in the

dc flux tuning, as illustrated in Sec. 3.4.4. In this case, upon changing the dc flux,

the dc solution can skip over the next period and land on the branch 2Φ0 away. The

next critical βrf value is βrf,c2 ∼ 7.79, where the SQUID can jump to the solution

branch 3Φ0 away and present potential period tripling in their dc flux tuning.

3.1.1.1 Multistability in hysteretic rf SQUIDs

To better understand the dynamics of the SQUID, we can extract the effective

potential energy Ueff (δ) from the dynamical equation, Eq.(3.5). The terms ϕdc +
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ϕrf sin(Ωτ) − δ − βrf sin δ can be regarded as an external force acting on a ‘phase

point’ particle in the effective (time-dependent) potential Ueff = δ2/2 − βrf cos δ −

(ϕdc + ϕrf sin(Ωτ))δ, plotted below.

Figure 3.5: Effective potential Ueff for a single SQUID as a function of δ at a) 0

applied dc flux and b) 0.5Φ0 applied dc flux. The SQUID becomes multi-stable for

large βrf, as indicated by the multiple minima in the potential. The multistability

begins for βrf ≳ 4.60 at 0 applied dc flux, and βrf > 1 at 0.5Φ0 applied dc flux.

The rf flux provides an oscillation in the offset of the parabola which changes the

locations of the local minima periodically. At large rf drive amplitudes, the barriers

between the potential minima can even disappear and enable the solutions to move

between them.

There exists more than one local minimum in the potential for large βrf. In

particular, at Φdc = 0.5Φ0, as one increases βrf > 1, a double well potential is

developed which has been employed in realizing flux qubits [186]. The two minima

around δ/(2π) = 0.5 correspond to the two stable solutions for the dc equation

shown in Fig. 3.2. There are in total three intersections between a horizontal line

at Φdc = 0.5Φ0 and the solution curve for βrf slightly larger than one, where the
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center one at (Φdc/Φ0, δdc/(2π)) = (0.5, 0.5) is the unstable equilibrium represented

by the local maximum at the center of the double well potential. Upon further

increasing βrf above βrf,c2 ∼ 7.79 whose Φdc0 = 1.5Φ0, two additional local minima

appeared in the potential landscape as illustrated in Fig. 3.5 (b). At Φdc = 0, the

potential evolves from having one local minimum to three when βrf is increased

across βrf,c1 ∼ 4.6, again corresponding to the three stable solutions found in the

Φdc = 0 intersection with the solution curve in Fig. 3.2. The other two unstable

solutions correspond to the two local maxima in the potential.

3.1.1.2 Analytical expression for the SQUID resonance

The expression for the SQUID resonance obtained so far, Eq.(3.9), still re-

quires a numerical solution to δdc. The equation of motion can be separated into

dc and rf components and solved separately (see Eqs.(3.6) and (3.7)). However, the

dc component equation contains a transcendental function. To obtain a closed-form

solution, we can further assume the applied dc flux is weak and expand the trigono-

metric terms up to the third order in δdc, i.e. sin δdc ∼ δdc−δ3dc/6, cos δdc ∼ 1−δ2dc/2.

The numerical accuracy of this expansion is illustrated in Fig. 3.6 for βrf = 5.83.

Again, consider the solution in the form δ(t) = δdc + δrf exp(iΩτ) valid in the low

applied rf flux limit, and substitute it into the equation of motion, Eq. 3.5,

ϕdc = δdc + βrf(δdc −
δ3dc
6
) (3.11)

ϕrf = (1 + βrf(1−
δ2dc
2
) + iγΩ− Ω2)δrf, (3.12)
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Figure 3.6: Illustration of the single SQUID dc equation: ϕdc = δdc + βrf sin δdc

and its power series approximation. The third order approximation has acceptable

accuracy in the range [−Φdc0, Φdc0], outlined by the purple horizontal dashed lines.

where the dc component is a depressed cubic equation (without a second order

term) in δdc in the form x3+ px+ q = 0, where p = −6(1+ βrf
−1), q = 6ϕdc/βrf. For

Φdc ∈ (−Φdc0,Φdc0), there are three distinct real roots given by by F. Viète [187] ,

xk = 2

√
−p
3
cos

[
1

3
arccos

(
3q

2p

√
−3

p

)
− 2kπ

3

]
for k = 0, 1, 2. (3.13)

The middle root where k = 1 corresponds to the solution branch from the zero

initial condition as shown in Fig. 3.6. Substituting the dc flux solution into the rf

component resonance condition, we obtained the resonance frequency:

ΩR =
iγ

2
+

1

2

√
4(1 + βrf(1− δ2dc0/2))− γ2.

For loss γ ≪ 1,

ΩR =
√

1 + βrf(1− δ2dc0/2)

=
√

1 + βrf

√
1− 4 cos2

[
1

3
arccos

(
−3ϕdc

√
βrf

(2 + 2βrf)1.5

)
− 2π

3

]
, (3.14)
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which is a closed-form formula for ΩR(ϕdc). The resonance curves obtained from the

above expression, Eq.(3.14), from the first dc-flux tuning period for different βrf are

shown in Fig. 3.7, which closely follow the numerical solutions in Fig. 3.3.

Figure 3.7: The resonance frequency inside the first dc-flux tuning period solved

from the weak dc and rf field approximation (Eq.(3.14)). The resonance frequency

shifts up for higher βrf, and the width of the Φdc tuning curve increases at the same

time.

3.1.2 Numerical solution to the RCSJ model for a single rf SQUID

To go beyond the weak rf field assumption imposed by the linear-limit solu-

tion, we used the differential equation solver LSODA from Python that is based on

ODEPACK in FORTRAN. The solver is designed to solve initial value problems.
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Therefore, the equation of motion, Eq.(3.5) is first converted into the following form:

dδ

dτ
=δ̇

dδ̇

dτ
=
d2δ

dτ 2
= ϕdc + ϕrf sin(Ωτ)− (δ + βrf sin δ + γδ̇) (3.15)

The equations now describe an initial value problem with two coupled variables δ

and δ̇. The numerical solution is obtained after solving the above system Eq.(3.15)

for hundreds of rf cycles to ensure that the rf SQUIDs have reached steady state

response. The typical experimental measurement for an rf SQUID varies several

parameters such as frequency of the rf drive, the value of the applied dc or rf flux,

to see their tuning pattern. In our numerical simulation, the parameter sweep is

achieved by solving the gauge-invariant phase evolution δ(τ) under one particular

set of parameters and then feeding the solutions to the next set of parameters as

the initial values.

3.1.2.1 Simulation of the microwave transmission through a waveg-

uide loaded with the rf SQUIDs

To compare with experimental results, one needs to convert the solutions for

δ(τ) into measurable quantities. Here, we assume that the only lossy element is

the resistive channel of the junction, and this dissipation leads to the change in

transmission magnitude through the metamaterial [30],

Pdissipation(f) =
∑
i

Vi(f)
2

R
=
∑
i

(
Φ0

ˆ̇δi(f)

2π

)2

/R (3.16)

S21(f) = 10 log10(1− Pdissipation(f)/Pincident(f)), (3.17)
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where the summation is over all the SQUIDs in the sample, ˆ̇δ(f) is the Fourier

transform of the time derivative of the gauge-invariant phase difference, V is the

voltage drop across the junction, the sub-gap resistance R is assumed to be 500 Ω for

all the SQUIDs studied here, Pincident is the total rf power incident on the waveguide

hosting the metamaterial (which provides the rf flux bias to the SQUIDs), and S21

is the transmission coefficient through the metamaterial. Since our measurement

is carried out in the frequency domain, all the quantities above are evaluated at a

given frequency f as explicitly stated in Eq.(3.17). The quantity Pincident is related

to the applied rf flux Φrf as follows. For the experimental setup in Fig. 3.8, the

sample lies in the center of a rectangular waveguide and is perpendicular to the rf

magnetic field of the propagating TE10 mode.
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Figure 3.8: Illustration of the geometry of the waveguide transmission measurement.

The directions of the Brf field for the TE10 mode at the center of the waveguide

is always perpendicular to the sample in the given configuration. The waveguide

interior dimensions are a and b.

The rf magnetic field, and thus the rf flux Φrf at the location of the SQUIDs,

can be calculated from the incident power Pincident, the waveguide dimensions, and

the frequency [44],

Brf =
√
4µ0βPincident/(2πfab) (3.18)

where the propagation constant β =
√
(2πf/c)2 − (π/a)2, c is the speed of light,

and a, b are the interior dimensions of the rectangular waveguide (see Fig. 3.8). One

can estimate the wavelength of the propagating microwave through the waveguide
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as 2π/β ∼ 21 mm at f = 20 GHz, 5 to 10 times larger than the typical sample

size. Thus the SQUID arrays are sub-wavelength structures in the metamaterial

limit. The applied rf flux can then be determined as Φrf = Brf × Aeff, where Aeff is

the effective flux trapping area and is not the same as the geometrical loop area,

because of the flux focusing produced by the superconducting wiring.

3.1.2.2 Flux focusing

Due to the Meissner effect, the magnetic field is expelled out of a super-

conductor and concentrates near the edges and surfaces. In a two dimensional

superconducting circuit subjected to a perpendicular magnetic field, the locally

enhanced field can lead to flux focusing where the flux trapped in a closed su-

perconducting loop is larger than the simple estimate given as the product of

the applied perpendicular field B0 and the open loop geometrical area ASQUID loop

[188, 189]. The factor of the increase for a single SQUID is given by [189] as

Φ/(B0ASQUID loop) ≈ aSQUID/(aSQUID − 2w) where aSQUID is the side length of the

SQUID and w is the width of the wiring as illustrated in Fig. 3.24. The effect

of flux focusing can be verified by the static magnetic field simulation in CST

as shown in Fig. 3.9. The superconductor is approximated as a perfect diamag-

net whose magnetic permeability µ ≈ 0. The flux in the loop is obtained by

integration of the normal component of B field which is 1.25 times larger than

the simple estimate from B0ASQUID loop, close to the single SQUID focusing factor

aSQUID/(aSQUID − 2w) ∼ 1.285 provided in Ref. [189].
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Figure 3.9: Simulation of the static magnetic field in the presence of a perfect

diamagnetic loop under an applied perpendicular field of B0 = 1 T . The quantity

plotted is the normal component of the magnetic field in the units of Tesla.
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3.1.2.3 Sample numerical solutions for the single rf SQUID

After Fourier transforming the numerical solution δ̇(t) to the frequency do-

main δ̇(f), and substituting it into Eq.(3.17) , we obtain the simulated transmission

through the metamaterial-loaded waveguide as a function of driving frequency and

applied dc flux, illustrated below in Fig. 3.10.

Figure 3.10: The magnitude of simulated transmission S21 (dB) for single SQUIDs

with βrf = 2, 4.7, 8 at applied rf flux Φrf = 2× 10−3Φ0 while under increasing and

decreasing dc flux sweep. There exists hysteresis in dc flux sweep for these SQUIDs

with βrf > 1 as shown by the change of the direction of the ‘tails’ in the tuning

curve. As discussed in Sec. 3.1.1, when βrf > βrf,c1 ∼ 4.6, the tuning curve spans a

range larger than 2Φ0, and only less than half of the full tuning curve is visible in

these sweeps.

Single SQUIDs with βrf = 2, 4.7, 8 and under increasing and decreasing dc

flux sweep are solved numerically, as shown in Fig. 3.10. We initialize the SQUIDs

in a stationary state at the applied dc flux, i.e. δ = ±2π for Φdc starting at ±Φ0.

85



The hysteresis in dc flux sweep has been illustrated by the difference between the

calculations with different flux sweeping directions. When the dc flux increases

monotonically, the solution evolves from the previous state with lower dc flux, which

leads to a tuning curve continuing the trend from the left and extending to the right

until the next flux jump Φdc0, and vice versa for the decreasing dc flux sweep. In

addition, for SQUIDs with βrf higher than βrf,c1, their tuning curve in dc flux can

span a range larger than 2Φ0. Thus, the flux jumps occur at higher Φdc0, well into

the next period of the tuning curve, leading to a short segment of the curve present

in the simulation, as demonstrated in Fig. 3.10 for βrf = 4.7, 8. The multistability

associated with high βrf can also lead to a sensitive dependence of the solution on

the step size in the dc flux sweep, as demonstrated in Fig. 3.11.
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Figure 3.11: The magnitude of simulated transmission S21 (dB) for single SQUID

with βrf = 8 at applied rf flux Φrf = 2× 10−3Φ0 and under decreasing dc flux sweep

from +1 Φ0 of 241 steps in a) and 201 steps in b). When the solution evolves with

a small step in dc flux sweep, the resonance jumps from the tuning curve centered

at Φdc = Φ0 to the curve centered at Φdc = 0, as in a). In contrast, the resonance

jumps to the tuning curve centered at Φdc = −Φ0 under a larger step in dc flux

sweep shown in b).

The SQUIDs are initialized at δ = 2π in both Fig. 3.11 a) and b). The

resonance follows through the tuning curve from +1 Φ0 to −0.5 Φ0 in both cases in

Fig. 3.11. However, under a finer dc flux step with 241 steps in the dc flux sweep,

the resonance jumps to the neighboring tuning curve in a). In contrast, with 201

steps in the same dc flux sweep and thus larger dc flux step, the resonance jumps to

the next nearest neighbor which shows up as 2Φ0 periodicity in the dc flux sweep.

The numerical solution allows us to study the SQUID response at rf drives

beyond the linear limit, where δrf ≲ 1. The results are summarized in Fig. 3.12
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for a single SQUID with βrf = 4.7 at eight different rf powers. The applied rf flux

amplitudes at a frequency of 20 GHz, according to Eq.(3.18), are (0.0019, 0.0613,

0.109, 0.194, 0.345 ,0.613, 1.938, 6.13) Φ0 for a) - h) in Fig. 3.12. The hysteresis

in dc flux sweep is prominent at low applied rf flux amplitudes a) - d) where the

tuning curves are asymmetric in one period of dc flux sweep.
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Figure 3.12: The magnitude of simulated transmission for single SQUID with βrf =

4.7 under decreasing dc flux sweep at different rf powers Pincident: (-80, -50, -45, -40,

-35, -30, -20, -10) dBm for a) - h).

At higher applied rf flux amplitudes e) - g), the hysteresis is suppressed, which

can be understood through the effective potential of the rf SQUID in Fig. 3.5). The
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rf drive effectively moves the potential left and right periodically in δ space. Under

large drives, the SQUID solutions can more easily overcome the potential barrier of

the local minima and reach the global minimum, which removes the multistability

and lifts the hysteresis in the dc flux sweep. The degree of tunability of SQUID

resonance frequency in dc flux also decreases with increasing rf flux amplitude,

and the resonance approaches the geometric resonance frequency, as expected for

rf SQUIDs [44]. In the limit of very high rf drive, δrf > 1, however sin δ is always

bounded in [−1, 1], and thus dominated over by δ. Therefore, the RCSJ equation

of motion Eq. 3.5 is approximated as

ϕdc + ϕrf sinΩτ = δ + γ
dδ

dτ
+
dδ2

dτ 2
(3.19)

which becomes a model for a driven damped harmonic oscillator described by linear

dynamics with a constant resonance at Ω = 1 (the geometric resonance). Hence the

equation of motion of the rf SQUID linearizes in both the weak and strong limit of

rf driving amplitude.

3.2 Model for a system of inductively coupled rf SQUIDs

So far we have only dealt with one single rf SQUID in isolation. For the

inductively coupled rf SQUID metamaterial, the currents in the rf SQUID loops

interact with each other via the magnetic fields that they generate. The single-

SQUID rf flux relation, Eq.(3.2), can be generalized to a system of many interacting

SQUIDs as Φ⃗ind =
←→
L I⃗, where the inductance matrix

←→
L contains self-inductances

on its diagonal and mutual inductances between SQUIDs in the off-diagonal elements
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[176]. The vector I⃗ are the currents in all the SQUID loops in the system. The flux

quantization condition, Eq. (3.4) can now be written for a system of inductively-

coupled identical rf SQUIDs as, [176]

Φ⃗dc + Φ⃗rf sin(ωt) =
Φ0

2π
δ⃗ +
←→
L (Ic sin δ⃗ +

Φ0

2π

˙⃗
δ

R
+ C

Φ0

2π
¨⃗
δ),

whose normalized form reads

ϕ⃗dc + ϕ⃗rf sin(Ωτ) = δ⃗ +←→κ (βrf sin δ⃗ + γ
dδ⃗

dτ
+
d2δ⃗

dτ 2
), (3.20)

where Φ⃗dc and Φ⃗rf are the vectors of dc and rf magnetic flux applied to each SQUID in

the array, respectively, and we assume time-harmonic rf flux at a single frequency ω.

Here δ⃗ is the array of gauge-invariant phase differences on the junctions in all of the rf

SQUIDs in the array, ←→κ =
←→
L /Lgeo is the dimensionless inductive coupling matrix.

Note that Eq. (3.20) assumes that every SQUID in the array has identical values

for critical current Ic, RCSJ parameters R and C, and Lgeo, hence also identical

values for βrf. The multistability resulting from the high βrf, combined with the

coupling among different rf SQUIDs, can lead to interesting nonlinear dynamics in

the system. We should first start with a simple case of just two inductively coupled

hysteretic rf SQUIDs.
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3.2.1 Two inductively coupled hysteretic rf SQUIDs

For two identical inductively-coupled rf SQUIDs (called 1 and 2), their equa-

tions of motion can be expressed explicitly as

ϕdc + ϕrf sin(Ωτ) = δ1 +

(
βrf sin δ1 + γ

dδ1
dτ

+
d2δ1
dτ 2

)
+ κ

(
βrf sin δ2 + γ

dδ2
dτ

+
d2δ2
dτ 2

)
,

ϕdc + ϕrf sin(Ωτ) = δ2 +

(
βrf sin δ2 + γ

dδ2
dτ

+
d2δ2
dτ 2

)
+ κ

(
βrf sin δ1 + γ

dδ1
dτ

+
d2δ1
dτ 2

)
(3.21)

where the dimensionless coupling constant κ = M/Lgeo accounts for the mutual

inductance between the two rf SQUIDs and its magnitude is typically ≲ 10−1. The

coupling is negative for SQUIDs in a co-planar geometry studied in this chapter,

but could become positive when the two SQUID loops start to overlap, which is

one of the topics addressed in Chapter 4. The two inductively-coupled rf SQUIDs

can be studied with the same linear-limit analytical treatment, and the nonlinear

numerical solution, as used for the single SQUID, as discussed previously in Sec. 3.1.

Under weak rf drive (|δrf| ≪ 1), the dc component for the equations of motion

are

ϕdc = f(δ1,dc, δ2,dc) = δ1,dc + βrf sin δ1,dc + κβrf sin δ2,dc

ϕdc = f(δ2,dc, δ1,dc) = δ2,dc + βrf sin δ2,dc + κβrf sin δ1,dc (3.22)

To simplify our notations, (δ1, δ2) will be used in the place of (δ1,dc, δ2,dc) for the rest

of this section. Their solutions are illustrated in Fig. 3.13 below as the intersections

of the three curves, f(δ1, δ2) = f(δ2, δ1), f(δ1, δ2) = ϕdc, and f(δ2, δ1) = ϕdc.

To better understand the dc equation solutions, let’s examine the condition
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that is independent of applied flux, f(δ1, δ2) = f(δ2, δ1):

δ1 + βrf sin δ1 + κβrf sin δ2 = δ2 + βrf sin δ2 + κβrf sin δ1.

For asymmetric solution where δ1 ̸= δ2, we have

sin δ1 − sin δ2
δ1 − δ2

=
1

(κ− 1)βrf
. (3.23)

This equation describes the portions of the blue curves outside the lines δ1 = δ2 in

Fig. 3.13. The blue line represents the trivial solution where the two SQUIDs are

synchronized. We can interpret the condition for existence of asymmetric solutions

Eq.(3.23) geometrically. The left hand side is the slope of the secant of the function

sinx. For βrf ≪ 1, the slope is almost vertical and Eq.(3.23) has no solution since |κ−

1|βrf < 1 which requires that |(sin δ1− sin δ2)/(δ1− δ2)| > 1. According to the mean

value theorem, it can be expressed as (sin δ1 − sin δ2)/(δ1 − δ2) = d(sin δ)/dδ|δ=δ3 =

cos δ3, where δ3 is in between δ1 and δ2. The trigonometric function cosx ≤ 1 for

all real x, and thus there are no asymmetric solutions in δ1,2 for |κ − 1|βrf < 1 as

shown in Fig. 3.13(a-c).

However, with large coupling strength, we can achieve |κ − 1|βrf > 1 where

asymmetric solutions are possible, even for βrf < 1, as illustrated in Fig. 3.14.

These additional solutions can lead to multistability and distinguish the two coupled

SQUIDs from the single SQUID where multistability is only expected for hysteretic

SQUIDs with βrf > 1.

For a fixed coupling κ, as |κ− 1|βrf increases above one, the magnitude of the

slope of the secant line decreases and the secant line intersects with the sine curve

at two points, δ1 close to δ2. These solutions are represented by the blue ‘ellipses’
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Figure 3.13: The dc solution curves for the two SQUIDs with βrf = 0.8, 3, 6 and

κ = −0.01,−0.08,−0.2, at zero dc flux in the (δ1, δ2) space. The solutions to the dc

equation are marked by the intersections of the three different-colored curves (blue,

green and orange). One can clearly observe that just as for the single SQUID, the

dc solution becomes multi-stable at high βrf.
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Figure 3.14: The dc solution curves for the two SQUIDs with βrf = 0.8 and κ =

−0.01,−0.2,−0.4, at dc flux Φdc = 0.5Φ0 in the (δ1, δ2) space. When |κ− 1|βrf > 1,

one should expect multi-stability at half flux quantum of applied dc flux, in contrast

to the multi-stability condition for a single SQUID, which requires βrf > 1.

near the diagonal line centered around the half flux quantum points as shown in

Fig. 3.13(d-i). The onset of the additional blue ‘circles’ off the diagonal in Fig. 3.13

at large βrf are closely related to the critical values, βrf,c1 and βrf,c2 introduced in

Sec. 3.1.1. When |κ− 1|βrf is further increased to βrf,c1, the magnitude of the slope

becomes shallower so that the secant line can intersect with the sine curve on points

one dc-flux period away from each other as shown by the orange line in Fig. 3.15.

These solutions correspond to the blue ‘circles’ next to the diagonal line where

|δ1 − δ2| > 2π. The next critical value βrf,c2 signifies the appearance of another set

of ‘circles’ where δ1 and δ2 can be more than 4π away, corresponding to the green

line in Fig. 3.15.
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Figure 3.15: Illustration of the solution to Eq. 3.23, where the left hand side cor-

responds to a secant line on the sine curve shown in blue here. At the critical βrf

values, the secant line can intersect with the sine curve at points more than one

period away which are responsible for the blue ‘circles’ off the diagonal in Fig. 3.13.

We can gain more insight to the dc flux dependence of the two coupled hys-

teretic SQUIDs with βrf = 6.26 and κ = −0.08 by following through the evolution

of the dc solutions as a function of changing applied dc flux.
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Figure 3.16: Evolution of the dc solution curves in dc flux for two coupled hysteretic

SQUIDs with βrf = 6.26 and κ = −0.08. The red dots track one potential path for

the solutions as dc flux increases from −1Φ0 to 0.3Φ0, where the solution jumps

from the symmetric states represented by the diagonal line to the asymmetric states

on the ‘circles’.

We can initialize the SQUIDs in the state δ1 = δ2 = −2π at Φdc = −Φ0, and

the dc solutions are tracked by the red circles in Fig. 3.16 as applied dc flux increases.

The two SQUIDs are in the coherent state where δ1 = δ2 until Φdc = 0.19. When the

solution on the symmetric branch disappeared between Φdc = 0.14 and Φdc = 0.19,

it has to jump to the next available solution, for which there are four candidates.

The closest solutions in the (δ1, δ2) phase space are the four intersections between

the ellipse and the green and yellow curves. The ones below the main diagonal

corresponding to an almost 2π change in δ1 and small change in δ2 are picked in

the illustration in Fig. 3.16. We can compare the dc flux dependence for different

couplings κ by plotting the critical dc flux fc,1(2) when the solution enters (leaves)
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the blue ‘circles’ as in Fig. 3.17.

Figure 3.17: The critical dc flux fc,1 (blue) and fc,2 (yellow) as functions of coupling

strength κ. When the coupling becomes stronger, the region where the solution stays

on the asymmetric states, represented by the ‘circles’ in Fig. 3.13, grows larger.

Clearly, the dc flux solutions from the SQUIDs with stronger coupling remain

asymmetric for a larger range of applied dc flux, as indicated by the large difference

between fc,1 and fc,2 in Fig. 3.17 for larger |κ|. The asymmetric solutions lead to

coexistence of two different SQUID states even though they are initialized under the

same conditions. For a larger system, the solutions with different δs give rise to mul-

tiple resonances observed under one applied dc flux as illustrated later numerically

in Fig. 3.23 and experimentally in Fig. 3.32.
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3.2.2 Larger systems of inductively coupled hysteretic rf SQUIDs

The methods outlined in Sec. 3.1.1 and 3.1.2 can be easily extended to larger

systems of coupled SQUIDs to obtain the linear-limit analytical and full numerical

solutions. The equations of motion under the weak rf flux approximation for a

system of inductively coupled SQUIDs are:

ϕ⃗dc = δ⃗dc + βrf
←→κ sin δ⃗dc (3.24)

ϕ⃗rf sin(Ωτ) = δ⃗rf +
←→κ

(
(βrfdiag(cos δ⃗dc))δ⃗rf + γ

dδ⃗rf
dτ

+
d2δ⃗rf
dτ 2

)
(3.25)

Again, the dc solutions are first obtained from the algebraic dc component in

Eq.(3.24). Applying a Fourier transform to the rf component in Eq. (3.25) turns it

into a linear system:

ϕ⃗rf sin(Ωτ) =
(←→
1 +←→κ (βrfdiag(cos δ⃗dc) + iγΩ− Ω2)

)
δ⃗rf (3.26)

The SQUIDs become resonant when the response matrix in the large parenthesis

become singular with zero determinant, corresponding to the existence of nontrivial

solutions under zero drive amplitude. The resonance condition is expressed as

det
(←→
1 +←→κ (βrfdiag(cos δ⃗dc) + iγΩ− Ω2)

)
= 0 (3.27)

The resonance frequencies are determined as the solutions to the above characteristic

equation in dimensionless frequency Ω and plotted below in Fig. 3.18 for weakly and

strongly coupled 5 × 5 arrays of SQUIDs with the same parameter βrf = 5.56 and

γ = 0.027. The coupling matrix ←→κ are determined from the mutual inductances

obtained from a FastHenry calculation for the entire array, where the SQUID loops

are discretized into rectangular filaments.
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Figure 3.18: Real parts of the dimensionless eigenfrequencies Ω solved from the

characteristic equation Eq.(3.27) for two 5 × 5 arrays of SQUIDs with the same

parameters βrf = 5.56 and γ = 0.027 and under increasing dc flux sweep. The left

panel has weak inductive coupling in the system where the coupling between the

nearest neighbor is κ0 = −0.015, and the right panel has strong inductive coupling

where κ0 = −0.076.

The eigenfrequencies from the weakly coupled system where the nearest neigh-

bor coupling κ0 = −0.015 in the left panel resemble the single SQUID resonance in

Fig. 3.3. However, the stronger coupling (κ0 = −0.076) lifts the degeneracy of the

eigenfrequencies, demonstrated in the right panel of Fig. 3.18. The multistability

from the strong coupling, as illustrated in Fig. 3.13 and 3.14 for a pair of SQUIDs,

is responsible for the spread of eigenfrequencies near the jumps between different

tuning curves in the right panel.

The value of the eigenfrequencies can be verified by the resonance frequency
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calculated from the circuit model for a single SQUID in Eq.(1.9). To extended this

model from a single SQUID to a large coupled system of N SQUIDs, we need to gen-

eralize the concept of the geometric inductance. In a SQUID loop carrying current

I, Lgeo = Φind/I, is the ratio between the induced flux and the loop current. For a

system of SQUIDs, the induced flux is now due to all the SQUIDs in the coupled

system. Consider a coherent system where all the SQUIDs share the same current

I, the induced flux on SQUID i is Φi,ind =
∑N

j=1 Li,jI. Its effective inductance is

then Li,eff = Φind/I =
∑N

j=1 Li,j. We can then express the resonance frequency for

SQUID i in the coherent mode in terms of the effective inductance:

ωi,0 =
√
(L−1

i,eff + L−1
JJ )C

−1

Ωi,0 =
ωi,0

ωgeo

=

√
Lgeo

Li,eff

+ βrf cos δdc =

√
1∑N

j=1 κi,j
+ βrf cos δdc (3.28)

Since all the SQUID loops are assumed to be in a co-planar geometry, the mu-

tual inductances are all negative which constitute an antiferromagnetically coupled

system. The term
∑N

j=1 κi,j is therefore less than 1, making the resonance of the

SQUIDs in this coupled system higher than an isolated single SQUID. Under zero

applied dc flux when all the SQUIDs are in the state δ = 0, we can determine the

resonance of the center SQUID in the 5 × 5 system as Ω0 = 2.58 for the left panel

of Fig. 3.18, and Ω0 = 2.67 for the right, agreeing with the eigenfrequencies solved

from Eq.(3.27). In fact, if we consider the coherent eigenmode, v⃗coh = (1, 1, ..., 1)T ,

the resonance condition is then(←→
1 + (βrf cos δdc + iγΩ− Ω2)←→κ

)
v⃗coh = 0 (3.29)

The solution for Ω in the ith row for γ ≪ 1 reproduces Ωi,0 given in the circuit

101



model, Eq.(3.28).

Note that the data points on the x-axes (Re[Ω] = 0) of Fig. 3.18 are the pure

imaginary solutions, which is a consequence of having βrf > 1. As a consequence, in

Eq.(3.29), the term βrf cos δdc can be less than −1, and this imposes pure imaginary

Ω solutions.

We should now examine the direct numerical solution for large arrays. Similar

to solving the single SQUID in Sec. 3.1.2, the model is formulated as a system of

initial value problems:

dδ⃗

dτ
=
˙⃗
δ

d
˙⃗
δ

dτ
=
d2δ⃗

dτ 2
=←→κ −1(ϕ⃗dc + ϕ⃗rf sin(Ωτ)− δ⃗)− βrf sin δ⃗ − γ

˙⃗
δ. (3.30)

The solutions to the 2n variables for n SQUIDs are obtained under varying applied

dc/rf flux and rf drive frequency, as described in Sec. 3.1.2. The simulated trans-

mission spectra of two systems of different size with the same parameter βrf = 5.56

are compared below in Fig. 3.19. The strongly coupled system contains more meta-

atoms contributing to the stronger response in the simulated transmission (note the

scales for S21 for the two plots). The resonance also occurs at higher frequency in

the strongly coupled system as predicted by Eq.(3.28), which gives Ω0 ∼ 2.70 for a

SQUID near the center of the strongly coupled system, and Ω0 ∼ 2.58 for the cor-

responding SQUID in the weakly coupled array. The coherence among the SQUIDs

can be quantified by the modified Kuramoto order parameter [190, 26]:

RK =

∣∣∣∣∣
∑

i δ̂i∑
i |δi|

∣∣∣∣∣ (3.31)
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Figure 3.19: The magnitude of simulated transmission for two systems of SQUIDs

with βrf = 5.56 under increasing dc flux sweep from −3 to 3Φ0, left: 18× 18 system

with weak coupling (κ0 = −0.015) and right: 24 × 24 system with strong coupling

(κ0 = −0.076). The hysteretic jumps during the dc flux sweep are expected from the

multistability. The resonances in the strongly coupled system are higher than the

weakly coupled system as expected from Eq.(3.28) where strong antiferromagnetic

coupling leads to smaller effective inductances.
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where we use □̂ to denote the complex value of the gauge-invariant phase differences

after the Fourier transform. Their phases are relative to the rf drive, which acts

as a global clock. When the system is completely asynchronized, the phase will

distribute uniformly between 0 and 2π and
∑

i δ̂i ≈ 0 leading to RK = 0. On the

other hand, when all the SQUIDs oscillate at the same frequency and phase, the

system is coherent, and RK = 1. The modified Kuramoto order parameters for the

two systems studied above are plotted in Fig. 3.20.

Figure 3.20: The modified Kuramoto order parameters RK for the weakly and

strongly coupled systems as studied in Fig. 3.19. The strongly coupled system is

more coherent near the intersections between the two neighboring tuning curves

as highlighted in white, obtained from an interpolation of the transmission dip in

Fig. 3.19.

The strongly coupled system is more coherent overall as represented by the

smaller dark blue region in Fig. 3.20, especially near the intersections between the

two neighboring tuning curves, which are colored white. We can gain more in-
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sight by investigating the solutions to individual SQUIDs. Several solutions to the

gauge invariant phase differences with tuning patterns deviating from the average

are selected and plotted in Fig. 3.21.

Figure 3.21: The amplitude of δrf for the selected individual SQUIDs in the strongly

coupled 24 × 24 array. These resonances differ from the average response where

the tuning is perfectly periodic with applied dc flux under periodicity of 1Φ0. The

tuning curves could skip the nearest neighbor curve, which leads to 2Φ0 periodicity

in dc flux tuning as in panels d), e). Panels a)-c), and f) show some combination of

both 2Φ0 and 1Φ0 tuning periodicities.

Panels d) and e) show 2Φ0 periodicity in flux tuning in Fig. 3.21, which has not

been observed in the conventional non-hysteretic rf SQUID metamaterials before.

The change in flux tuning periodicity is a consequence of the increased multistability

in the hysteretic rf SQUID. A similar dc flux dependence can be realized in a single
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hysteretic SQUID as illustrated in Fig. 3.11 b). However, these SQUIDs are in the

minority in the array where the average response is dominated by the Φ0 periodicity.

The SQUIDs with abnormal tuning behaviors as in Fig. 3.21 have been recorded

and labeled in Fig. 3.22 below.

Figure 3.22: The map of the ‘outlier’ SQUIDs in the 24×24 strongly coupled system

whose dc flux dependence deviates from the Φ0 periodicity . The row and column

indices of these SQUIDs are recorded and plotted as circles. The orange circles stand

for the two SQUIDs with complete 2Φ0 dc flux tuning periodicity as in Fig. 3.21 d)

and e).

Figure Fig. 3.22 shows that the SQUIDs with abnormal dc flux dependence

are more likely to reside on the boundary of the array, where the effective coupling

is weaker due to the lack of neighbors. The two SQUIDs with purely 2Φ0 periodicity

(orange circles) are on the opposite edges of the array. Other than this general trend,

the ‘outlier’ SQUIDs seem to distribute randomly throughout the array, which is

expected for a multistable system such as the hysteretic rf SQUID array.
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Figure 3.23: The magnitude of simulated transmission for a strongly coupled sys-

tem of 24 × 24 SQUIDs with κ0 = −0.076 and βrf = 6.26 under increasing and

decreasing dc flux sweeps. The hysteresis is clearly demonstrated in the contrast of

the resonances from different dc sweep directions.

Last but not least, the same hysteresis in dc flux sweep for the single SQUID

with βrf > 1 is expected in a large system of hysteretic SQUIDs and is illustrated

in the numerical solutions plotted below for a system of 24 × 24 strongly coupled

(κ0 = −0.076) and hysteretic (βrf = 6.26) SQUIDs in Fig. 3.23.

We can observe a similar hysteresis in the dc sweep to the single SQUID

studied in Sec. 3.1.2.3. In addition, the multistability of the large coupled system

leads to the coexistence of multiple resonances under one applied dc flux around

(0.75, 1.75, 2.75) Φ0 for the increasing dc flux and around (1.25, 2.25 3.25) Φ0 for

the decreasing sweep, as depicted in Fig. 3.23. The coherent branch is continuing

the main tuning curve towards lower frequencies and shows as a long ‘tail’ in the

direction of the dc flux sweep. The incoherent branches are the solutions whose δ

jumps to the next period or even two periods away and shows as an extension of

107



the tuning curves from the next or the second next periods. These tuning curves

also show an asymmetric shape around the integer flux quanta as a consequence of

the different branches visited before and after the integer flux quanta in the dc flux

sweep. However, the numerical solutions to the larger system are not sensitive to

the step size in the dc flux sweep, different from that of the single SQUID shown in

Fig. 3.11. The calculations have been carried out at both finer and coarser dc flux

steps and result in the same 1Φ0 periodicity behavior as illustrated in Fig. 3.23.

3.3 Experiment

A series of new-generation rf SQUID metamaterials with hysteretic meta-

atoms whose βrf > 1 was designed and fabricated. Their electromagnetic responses

at microwave frequency were also characterized in this work. The details of the

experiment is discussed in this section.

3.3.1 SQUID samples

The samples presented in this thesis are fabricated by the STAR Cryoelectron-

ics Selective Niobium Anodization Process (SNAP) and Selective Niobium Etching

Process (SNEP). The Nb films have a critical temperature of Tc = 9.2 K. A repre-

sentative rf SQUID meta-atom is shown in Fig. 3.24.

The SQUID arrays are lithographically defined on a Si substrate, and no

ground plane is present in our sample.
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Figure 3.24: Design of a single rf SQUID meta-atom in the metamaterial. Left: mi-

crograph of a single rf SQUID. The junction is formed in the direction perpendicular

to the plane, between the two different Nb wiring layers in beige and pink colors

respectively. A via is necessary to complete the circuit of the rf SQUID. Right: the

design file of the same rf SQUID
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3.3.1.1 SQUID design

There are several constraints in our hysteretic SQUID design due to the limi-

tations in the fabrication and measurement capability. First, the SQUID resonance

√
1 + βrf cos δdcfgeo should be in the measurable frequency band dictated by the mi-

crowave apparatus: the WR-42 waveguide has a frequency pass band from14 to 28

GHz. For hysteretic SQUIDs with βrf > 1, one needs large loop inductance Lgeo,

or large SQUID capacitance C, to maintain a low resonance frequency. Second, the

parameter βrf = Lgeo/LJJ should be kept reasonably small (≲ 10) to avoid extreme

hysteresis. Third, one also needs to reduce the SQUID wiring width to achieve

strong inductive coupling between the meta-atoms. In our design the line width is

16 µm, and this also limits the size of the capacitor. Lastly, the Josephson junction

cannot be smaller than the critical dimension of the fabrication process, which spec-

ifies the minimum junction geometry as a circle with 3µm diameter. Considering

all of the constraints in the design, we need large Lgeo since C is limited by the

relatively narrow wiring width, and thus a large LJJ to maintain a small βrf ≲ 10,

which translates to a low critical current density in the junction, an uncommon re-

quirement for Josephson junction foundries, since most superconducting electronics

applications prefer high Josephson energy (EJ = Φ0Ic/(2π)), and thus high critical

current of the junction. Consequently, the STAR Cryoelectronics Niobium process

with Josephson junction critical current density Jc = 1 µA/µm2 [191] is chosen to

fabricate the samples. The spread in critical currents of junctions across a 4 inch

wafer is roughly 10 to 20%, but could be within a few percent for a small area
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Figure 3.25: Simulation of flux focusing in a 5×5 SQUID array. A uniform field

of B0 = 1 T is applied to the array. And the wiring is assumed to be perfectly

diamagnetic.

of a 4 mm × 4 mm chip, according to the manufacturer, Robin Cantor of Star

Cryoelectronics.

As discussed in Sec. 3.1.2.2, the applied flux is focused into a single SQUID

loop in the presence of the superconducting circuits. A similar flux focusing is

expected in an array of SQUIDs, which we have simulated in the static magnetic

field solver in CST (see Fig. 3.25). The flux focusing factors are different depending

on the location of the SQUID in the array, giving rise to an intrinsic inhomogeneity

in the applied dc and rf flux. Intuitively, the SQUIDs in the center should experience

higher flux than the SQUIDs on the edges, since the flux screened by the Meissner

effect of the superconducting wires can leave the sample from the edges but the

screened flux have to go through the neighboring SQUID loops for a center SQUID.

The SQUID at the center of the 5 × 5 array experience a flux focusing of 1.36
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times the background, while the focusing factor for the corner SQUID is 1.24 times.

Therefore, a distribution of applied flux which peaks at the center and drop to 90%

at the corners is expected.

3.3.1.2 SNAP fabrication

SNAP fabrication starts by first depositing the Nb/Al-AlOx/Nb trilayer with

Jc = 1 µA/µm2 on a Si wafer with room temperature resistivity of 1 ∼ 100 Ω cm.

The penetration depth of the Nb film is specified to be λ = 90 nm by the man-

ufacturer. This trilayer is then patterned with a wet etch that defines the base

layer of the SQUID loop, the vias between the top and the base wiring layers of

the SQUID, as well as the anodization rails connecting all of the SQUIDs to the

edge of the wafer. The anodization rails are required to supply a voltage bias to the

Nb layers for the anodization process in the next step. The junctions, anodization

rails, and the area surrounding the vias1 are protected by photoresist, while the

remaining exposed Nb is anodized to form the 100 nm-thick insulating dielectric

layer of Nb2O5. Previous measurements of the dielectric constant of Nb2O5 made

1A via is required to electrically connect the top and base wiring layers of the SQUID to establish

a galvanically-connected loop. Therefore, in SNAP fabrication, one needs to etch through the

trilayer to expose the edge of the base Nb layer and to protect the etched area with photoresist

during the following anodization process. To ensure a good electrical contact and avoid introducing

unintended small junctions with low critical current and high junction inductance, a large area

(≈ 60 times the area of the junction) surrounding the via should be protected with photoresist to

form a very large-area junction. This large junction will act as a via, and will not otherwise affect

the operation of the rf SQUID, at least at low rf power.
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by this process yield ϵr = 29 [192, 193]. Next, the second Nb layer is deposited and

patterned to form the top wiring layer of the SQUID. After the SQUIDs are defined,

the anodization rails connecting the SQUIDs are finally removed with a wet etch.

Both the top and bottom Nb layers have thickness greater than, but comparable to,

2λ. Therefore, we can assume an approximately uniform current distribution in the

cross-section of the Nb wiring.

3.3.1.3 SNEP fabrication

The first generation of the SQUID samples was made with a slightly more

complicated process, the Selective Niobium Etch Process (SNEP) from STAR Cryo-

electronics. This process begins with the same Nb/Al-AlOx/Nb trilayer deposition.

However, instead of anodization, the junctions are defined by a reactive ion etch

(RIE) on the top Nb layer of the trilayer. The entire trilayer is then patterned and

etched to form the base wiring layer. A layer of SiO2 with a thickness of 300 nm is

then deposited with plasma enhanced chemical vapor deposition (PECVD), and this

serves as the insulating dielectric between the top and base layers. The dielectric

deposition is then followed by another etch to open contact vias through the SiO2

layer. Next, the top Nb wiring layer is deposited and patterned. The process con-

cludes with a final passivation of the wafer by depositing a layer of SiO2. In addition

to its complexity, the unit area capacitance from the dielectric SiO2 in SNEP is very

low, ≈ 0.15 fF/µm2, compared to that for the Nb2O5 dielectric in SNAP, which

is ≈ 2.5 fF/µm2. Therefore, to maintain a low self-resonance frequency for the rf
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SQUID, a larger capacitor pad is needed for samples made by the SNEP process,

which further constrains the design.

3.3.2 Experimental Setup

The rf SQUID metamaterial is embedded in the center of a brass WR-42

waveguide, which has a cut-off frequency of approximately 14.1 GHz, and provides

good transmission above 15 GHz. The sample is oriented along the direction of the

wave propagation and its planar surface is perpendicular to the rf magnetic field in

the first propagating TE mode of the waveguide, which both bias the the rf SQUID

metamaterial and is used to measure the response of the sample. The dc magnetic

flux is provided by a superconducting Helmholtz coil mounted on the outside of

the waveguide and oriented to apply a nominally uniform field perpendicular to the

SQUID array surface. The microwave transmission S21 through the sample-loaded

waveguide is measured by a microwave vector network analyzer (VNA), as shown

in Fig. 3.26. The amplitude of the incident signal is reduced by input attenuators

to carefully control the rf flux ϕrf witnessed by the sample. The transmitted signal

is amplified by a cryogenic amplifier and by a room temperature amplifier, before

being measured by the VNA. Note that no wires are connected to the rf SQUIDs,

and there are no galvanic contacts between different SQUIDs, hence all changes to

the properties of the metamaterial occur by strictly ‘wireless’ means.
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Figure 3.26: Schematic of the rf SQUID metamaterial transmission measurement,

showing the waveguide which hosts the metamaterial, the rf and dc field compo-

nents, the microwave network analyzer, as well as attenuators and amplifiers. Inset:

optical image of the SQUID array sample made with the SNAP process. The blue

shaded links between SQUIDs are the remnants of the anodization rails after wet

etch. Variables that can be controlled in the experiment include Φrf, Φdc, rf driving

frequency f , and sample temperature T .

Pictures of the physical setup are shown below in Fig. 3.27. In a) and b), the

setup is mounted in a cryostat for cooling down below the Tc of the Nb film to a
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base temperature around 4.6 K measured on the exterior of the waveguide adapter.

The entire system is enclosed in a mu-metal shield to reduce the background dc

magnetic field. The temperature and dc flux control are realized by a heater shown

in c), and a Helmholtz coil pair shown in d). The sample needs to be oriented to

be perpendicular to the rf magnetic field. A Rohacell block with a slit open in the

center to hold the SQUID array sample is inserted into the waveguide as shown in

e) and f). Rohacell is a structural foam whose dielectric properties are very close

to those of air and thus does not affect the transmission through the waveguide.

The sample is not thermally grounded to the waveguide wall, and the measurement

was performed several hours after the system cooled down to base temperature to

ensure that the SQUIDs reach thermal equilibrium.
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Figure 3.27: Pictures of the measurement setup for SQUID metamaterials. a) The

entire setup is enclosed in a magnetic shielding can to reduce background dc mag-

netic field. b) The waveguide housing the SQUID metamaterial is attached to the

C-shaped holder which is mounted on the cryostat. c) The magnetic coil supplying

the dc bias field and the heater for changing the temperature are both attached

to the C-shaped holder. d) The close-up picture of the magnetic coil with a wire

connecting the two coils forming a Helmholtz coil configuration. e) The SQUID

sample mounted in a Rohacell holder. f) The SQUID and the holder inserted into

the waveguide to maintain the desired configuration where the SQUID sample is

perpendicular to the rf magnetic field, as shown in Fig. 3.26.

The coil in this measurement setup is not an ideal Helmholtz coil, since the

separation between the two coils is much larger than the radius of the coil and the

wiring density of the coil is low, as illustrated in Fig. 3.27 d). In addition, the radius

of the coil, 4.9 mm, is very close to the size of the sample arrays: 2 mm × 2 mm

to 4 mm × 4 mm. Therefore, the applied magnetic field should be expected to be
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nonuniform on the sample plane. The field distribution of the coil under a constant

applied current is simulated in the static magnetic solver in CST and plotted in

Fig. 3.28.

Figure 3.28: Static magnetic field simulation of the dc magnetic flux coil in our

setup. There is a constant current of 1 A along the wire shown as red in a). Panel

b) plots the resulting z component of the magnetic field on the cross-section at the

sample plane shaded in green in a). The x-component of the current in the wire

connecting the two parts of the Helmholtz coil is responsible for the significant z-

component magnetic field gradient shown in b).

The geometry of the coil is reproduced in the simulation in Fig. 3.28 a). The

resulting field distribution in the sample plane shows a gradient of flux which peaks

around the wire connecting the two parts of the coil. The black frame in Fig. 3.28

b) outlines the boundary of a 4 mm × 4 mm chip. Evidently, the field throughout

this sample shows a gradient where the bottom edge is experiencing only 80% of the

field on the top edge of the sample. The design of the coil can be improved to reduce

the gradient. For instance, the wire connecting the two parts can be arranged to
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be parallel to z direction and also moved further away from the sample in the y-

direction. On the other hand, it has been shown theoretically that a larger gradient

in applied dc flux throughout the sample from 0 to more than 0.2 Φ0 can lead to

formation of a chimera states in a SQUID metamaterial [173].

3.4 Measurement results on inductively coupled hysteretic SQUID

metamaterials

3.4.1 Data processing to recover the metamaterial resonances in the

transmission measurement

As expected from the small volume fraction of the SQUID array in the waveg-

uide, the microwave response of the metamaterial is very weak. A direct transmis-

sion measurement S21 through the waveguide cannot resolve the SQUID resonance

modes, as shown in Fig. 3.29.
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Figure 3.29: A typical measured transmission on the rf SQUID array. The ex-

pected resonance is marked in the spectrum, which cannot be distinguished from

the parasitic modes from the standing wave in the apparatus due to imperfect cable

connections in the microwave transmission line.

The highlighted data point is the resonance predicted at this condition. How-

ever, there is not any feature near this frequency standing out from the background.

To extract the SQUID response, the background transmission that is independent

of the applied dc flux is removed by first averaging over the transmission spectra

S21 at different dc fluxes, and then subtracting it from the individual frequency

spectrum as described. The difference in transmission ∆S21 is further processed

with a moving average filter over 50 data points to smooth out the frequency de-

pendence. At last, a linear background in the frequency dependent transmission

∆S21,background(f) = Af + b is removed to level the response so that the background

is at zero in a broad frequency band. The signal in Fig. 3.29 after this processing is

plotted in Fig. 3.30, where the rf SQUID metamaterial response is manifested.
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Figure 3.30: The transmission after the signal processing described in the text. The

SQUID resonance is now clearly visible in the spectrum.

3.4.2 Hysteretic SQUID array (SNAP 161D)

We discuss first the sample SNAP 161D (shown in Fig. 3.31) with conventional

response periodic in 1Φ0 in applied dc flux sweep. The SQUID meta-atom making

up this array has the following parameters listed in Table 3.1.
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Figure 3.31: Micrograph of the sample SNAP 161D, a 12 × 12 rf SQUID array

with βrf = 5.48 and nearest neighbor coupling κ0 = −0.069. The sample is ∼

2 mm× 2 mm in size.

The transmission response is measured and processed as described previously

in Secs. 3.3.2 and 3.4.1. The resulting ∆S21 in a range of frequency of the rf drive

and applied dc flux is plotted below in Fig. 3.32.
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Parameter Symbol Value

SQUID hysteresis parameter βrf 5.483

Geometric inductance Lgeo 255.3pH

SQUID Capacitance C 1.42pF

Geometric resonance fgeo 8.36GHz

Nearest neighbor coupling M0/Lgeo κ0 −0.069

Side length of the SQUID meta-atom aSQUID 132µm

Wiring width of the SQUID loop w 16µm

Gap between the nearest neighboring SQUID wirings d 4µm

Effective area of the SQUID due to flux focusing Aeff 13600µm2

Table 3.1: Parameters for the individual meta-atoms making up sample SNAP 161D,

as well as their coupling.
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Figure 3.32: The magnitude of measured transmission for the 12 × 12 strongly

coupled SQUID array (SNAP 161D) as a function of normalized frequency (Ω =

f/fgeo) and applied dc flux swept in increasing (left) and decreasing (right) sweep

direction at 1.8 × 10−4 Φ0 applied rf flux, and 4.65 K. Note that flux focusing has

been included in the determination of Φdc presented here.

The SQUID resonances are tunable under dc flux with 0.9Φ0 periodicity,

slightly less than one, which could be caused by an overestimation of the applied dc

flux if the sample is not aligned perfectly to the axis of the dc magnetic coil. The

flux experienced by a sample whose normal direction at angle θ from the axis of the

dc magnetic coil is decreased by cos θ. A 90% reduction corresponds to an angle

θ = 25◦, an acceptable offset in our setup.

More importantly, the hysteresis in dc flux sweep is observed from the compar-

ison between the increasing and decreasing dc flux sweep in Fig. 3.32. As expected

for hysteretic SQUIDs βrf > 1, only segments of one tuning curve is realized and the

jumps from one curve to the next lead to a hysteretic response in dc flux sweep (see

the discussion in Sec. 3.1.2.3). The asymmetric shapes of the tuning curved and

the coexistence of multiple resonances under one applied dc flux can be attributed
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to the multistability of the system, as predicted for a strongly coupled system of

hysteretic SQUIDs in Fig. 3.23.

3.4.3 Large weakly coupled hysteretic SQUID array (SNAP 174)

In contrast to the clean dc flux dependence of the resonances in SNAP 161D,

the larger SQUID arrays with higher βrf = 6.26 have shown more complex response.

The sample SNAP 174, an 18× 18 SQUID array, is shown below in Fig. 3.33 with

the design parameters given in Table 3.2.

Figure 3.33: Micrograph of the sample SNAP 174, a 18 × 18 rf SQUID array with

βrf = 6.26 and nearest neighbor coupling κ0 = −0.015. The sample is ∼ 4 mm ×

4 mm in size.

The spacing between the neighboring SQUIDs is set at 64µm, half of the size of

the SQUID, aSQUID−w. The distance between the SQUIDs gives rise to a low mutual

inductance coupling constant, with the nearest neighbor coupling κ0 = −0.015. The

frequency and dc flux dependent microwave transmissions through this array are
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Parameter Symbol Value

SQUID hysteresis parameter βrf 6.26

Geometric inductance Lgeo 291.4pH

SQUID Capacitance C 1.42pF

Geometric resonance fgeo 7.80GHz

Nearest neighbor coupling M0/Lgeo κ0 −0.015

Side length of the SQUID meta-atom aSQUID 144µm

Wiring width of the SQUID loop w 16µm

Gap between the nearest neighboring SQUID wirings d 64µm

Effective area of the SQUID due to flux focusing Aeff 13600µm2

Table 3.2: Parameters for the individual meta-atoms making up sample SNAP 174,

as well as their coupling.
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plotted in Fig. 3.34.

Figure 3.34: The magnitude of measured transmission for the 18×18 weakly coupled

SQUID array (SNAP174) as a function of frequency and applied dc flux swept in

increasing (top) and decreasing (bottom) directions at 3 × 10−4 Φ0 applied rf flux,

and 4.85 K.

The measurements are performed with increasing applied dc flux sweep in the

top panel and decreasing in the bottom. A strong hysteresis in the dc flux sweep is

demonstrated after comparing the transmission from the two measurements. When

the dc flux increases (decreases), the right (left) halves of the tuning curves are

visible. The hysteresis is a consequence of large βrf, as discussed previously. The dc

flux tuning pattern is periodic in 1Φ0, but a spread of tuning curves centered around
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different applied dc flux are observed, which is similar to the response in a one-

dimensional array of non-hysteretic SQUIDs observed in [194]. Jung attributed the

range of dc flux biases to trapped Abrikosov vortices. With an imperfect magnetic

shielding, an inhomogeneous background dc bias field is present. Magnetic vortices

can form in the superconducting film when cooled down below Tc under an applied

dc magnetic field, which leads to locally enhanced field in the sample and exacerbates

the inhomogeneity in the dc flux bias on the array.

The large spread of tuning curves is only observed in SNAP174 and could

be caused by the dc flux inhomogeneity due to its larger size compared to SNAP

161D. Nevertheless, as discussed in the next section, Sec. 3.4.4, a sample of the same

size but stronger coupling thus denser packing has shown a very coherent response

under dc flux tuning with no spread in dc flux of the tuning curves. Therefore, the

weak coupling together with the multistability from the high βrf SQUIDs is likely

responsible for the spread in the tuning curves.

To better resolve the tuning curves from SNAP174, we sweep the dc flux

around a set point first decreasing and then increasing the applied dc flux. The

full tuning is reconstructed by combing two different sweeps, one starting at the set

point and decreasing, the other starting at the set point but increasing.
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Figure 3.35: The magnitude of measured transmission for the 18×18 weakly coupled

SQUID array (SNAP174) as a function of frequency and applied dc flux swept

around four different set points: [0.5, 0.4, 0.2, 0.9]Φ0 for a) - d). The applied flux

first decreases from the set points and then is swept back up above the set points.

The transmission plots combine the regions of decreasing flux sweep and the region

of increasing flux sweep above the set points to resolve the full tuning curves of the

hysteretic SQUIDs. The measurements were performed at 3 × 10−4 Φ0 applied rf

flux, and 4.85 K.

There are three distinct branches visible inside each dc flux tuning period as

outlined by the dashed curves as in Fig. 3.35. The response is enhanced at the

intersections between the different branches. The three branches are about 0.2Φ0
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Figure 3.36: Micrograph of the sample SNAP 175, a 24 × 24 rf SQUID array with

βrf = 6.26 and nearest neighbor coupling κ0 = −0.078. The sample is ∼ 4 mm ×

4 mm in size.

apart, such a large spread of constant offsets in applied dc flux cannot be simply

explained by the gradient of the applied flux due to the coil geometry (see Sec. 3.3.2)

or the flux focusing (see Sec. 3.3.1.1).

3.4.4 Large strongly coupled hysteretic SQUID array (SNAP 175)

The sample SNAP 175 is an array of similar SQUIDs with the same βrf = 6.26,

but stronger inductive couplings (κ0 = −0.076) thus denser packing of the SQUIDs

(d = 5 µm, Aeff = 17060µm2), as shown in Fig. 3.36. The capacitance of the SQUID

is also increased in the design to C = 1.64 pF to reduce the geometric resonance to

fgeo = 7.28 GHz, which compensates the increased SQUID resonance frequency due

to the strong coupling, according to Eq.(3.28).

The transmission of the SQUID array is measured under various dc flux and
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frequencies of the rf drive, and two sample responses are plotted in Fig. 3.37.

Figure 3.37: The magnitude of measured transmission of the 24×24 strongly coupled

SQUID array (SNAP175) as a function of frequency and applied dc flux at 3×10−5 Φ0

applied rf flux, and 4.82 K. The resonance tuning curve is periodic in 2Φ0 as opposed

to Φ0 for single SQUIDs and previously investigated non-hysteretic SQUID arrays

Again, a clean dc flux tuning pattern with hysteresis in different dc flux sweep

directions has been observed, similar to the sample SNAP161D in Sec. 3.4.2. How-

ever, the tuning pattern is now periodic in 2Φ0 as opposed to our previous ex-

perimental and theoretical results, which show 1Φ0 periodicity. Although period

doubling in dc flux tuning is observed in the numerical solution for a single SQUID

(see Fig. 3.11), and some SQUIDs in a large coupled system (see Fig. 3.21), the large

majority of the responses still follow the canonical 1Φ0 periodicity in their dc flux

tuned resonances, as seen in Fig. 3.19 and 3.22. We should also note that the flux

gradient present in the system due to the coil geometry cannot explain the abnormal

response, just as in Sec. 3.4.3 for the weakly coupled system.

Fig. 3.38 shows a numerical calculation on the SNAP 175 sample with a dc
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Figure 3.38: The magnitude of simulated transmission of SNAP 175 with a gradient

of applied dc flux where one edge only experiences 80% of the field at the other

edge. The tuning pattern is still 1Φ0 periodic in the applied dc flux.
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flux gradient of 80% from one edge of the array to the other. The responses in

Fig. 3.38 are still periodic in 1Φ0, while the tuning curves present larger spreads

for higher dc flux bias, agreeing with the observation in a previous work [176]. The

strongly coupled multistable system together with a spread of dc flux bias might be

able to reproduce the experimentally observed period doubling, as discussed later

in Sec. 3.5. In addition to the dc flux dependence, the rf power dependence of the

transmission is also characterized and summarized in Fig. 3.39 below.
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Figure 3.39: The magnitude of measured transmission of the the 24 × 24 strongly

coupled SQUID array (SNAP175) as a function of frequency and decreasing applied

dc flux at 4.82 K and six different incident powers Pincident (-62, -57, -51, -49, -47,

-42) dBm for a) - f).

The transmission for SNAP 175 is measured at six different applied rf flux
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amplitudes: (0.022, 0.04, 0.08, 0.1, 0.13, 0.23) Φ0, where the rf flux is calculated at

20 GHz. As the rf flux increases, the 2Φ0 periodicity in dc flux tuning is preserved.

Moreover, the tuning curves become more symmetric around integer flux quanta

as predicted for a single hysteretic SQUID in Fig. 3.12, where the strong rf flux

can drive the solutions out of the local minima in the potential landscape and thus

effectively reduce the multistability of the system.

3.5 Discussion

We have so far observed the expected hysteresis in dc flux sweeps in all three

samples with high βrf. The asymmetric shapes of the tuning curves in Fig. 3.32

for a small strongly coupled system (SNAP161D) can also be explained by the

multistability in the numerical solution, Fig. 3.23. However, as one increases the

size of the system, more exotic behaviors present in the measurement have not yet

been reproduced by our model of coupled hysteretic SQUIDs. It should be mentioned

that the 4 mm×4 mm chip is almost touching the side wall of the WR-42 waveguide

whose smallest dimension is 4.32 mm. This relatively large sample size also creates

significant dc and rf flux gradients in the sample.

Despite the lack of a thorough understanding, an empirical model combining

the dc flux bias spread observed in SNAP 174 and an artificial tuning patterns with

2Φ0 periodicity in applied dc flux is proposed and bears some resemblance to the

measurements in Fig. 3.37. We start with the single SQUID tuning pattern in the

linear limit obtained from Eq.(3.14). A spread of dc bias from -0.3 to +0.3 Φ0 is
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then imposed to the copies of the single SQUID responses leading to the spread of

the tuning curve centred around Φdc = 0. We then enforce the dc flux tuning period

of 2Φ0 by skipping the next period in the tuning pattern to the one after, according

to the dc flux sweep direction. The results are shown in Fig. 3.40

Figure 3.40: Density plot of the SQUID resonances from a system with a spread of

dc flux bias from -0.3 to +0.3 Φ0. The coupling in the system is ignored and the

individual SQUID responses are treated as copies of the single SQUID resonance.

The tuning curve with 2Φ0 periodicity is achieved by skipping the next period of

the tuning curve in the direction of the dc flux sweep.

The tuning curve near the even integer flux quanta in Fig. 3.40 are symmetric

in shape and shows no hysteresis in dc flux sweep, as a result of overlapping responses

from many SQUIDs under the spread of dc biases centered around Φdc = 0. On the

other hand, near the jumps between the different flux tuning periods, the tails

in Fig. 3.37 are reproduced. The enhanced response at the intersections between

the spreads of tuning curves from different periods also mimics the measurement.
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Therefore, a strongly coupled system that strictly follows 2Φ0 periodicity under

dc flux tuning and subject to a spread of dc flux bias should be able to produce

the measured transmission in Sec. 3.4.4. However, further theoretical works are

required to justify the period doubling and the large spread of the constant offsets

to the applied dc flux.
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Chapter 4

Overlapping rf SQUID Metamaterials

There have been proposals for three-dimensional (3D) versions of metama-

terials consisting of superconducting qubits [195] and rf SQUIDs [33], as well as

an experimental realization of a 3D superconducting metamaterial based on spiral

resonators [12]. In this work, we built three dimensional arrays of rf SQUIDs and

employed them as metamaterials for the first time. By stacking the SQUIDs ver-

tically, we introduce positive mutual inductive coupling for nearest neighbors, very

different from the co-planar geometry and, more importantly, add the qualitatively

new aspect of strong capacitive coupling that permits high frequency currents to

flow between SQUID loops. To the best of our knowledge, such coupling has not

been considered in the past in any aspect of SQUID physics or technology, and can

lead to dramatic new properties of coupled SQUIDs. Our three-dimensional (3D)

SQUID metamaterials have flux-quantized loops mixed with non-flux-quantized

loops. These latter loops are enabled by the capacitors that host displacement

currents between SQUIDs. Faraday’s law is applied to all of the non-SQUID loops,

in addition to the flux quantization condition in the appropriate loops.

Parasitic capacitive coupling can also occur in superconducting digital elec-

tronics (SCDE) that are based on the propagation of ps-duration single-flux quan-

tum voltage pulses between logic circuit elements [196]. The pulses are processed by
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means of inductive loops, typically based on superconducting wires including Joseph-

son junctions, essentially acting as non-resonant SQUIDs. It is well-established that

state-of-the-art SCDE suffers from an inefficient use of space on chip in many practi-

cal computing and signal processing applications. This is due to the fact that SCDE

is based on magnetic flux, as opposed to the monopole electric charge utilized in

CMOS electronics, and the resulting need to create and control dipole sources, such

as current loops, transformers, inductors, etc. [197]. One way to mitigate this prob-

lem is to create three-dimensional circuit layouts in which logic and wiring layers

are distributed in the third dimension, separated by ground planes [198]. However,

this three-dimensional geometry can introduce new and unexpected coupling effects

between circuits. Our inductively and capacitively coupled rf SQUID metamaterials

can act as a surrogate test-bed to study coupling effects in future highly-integrated

SCDE circuits.

Quantum computers utilize large arrays of qubits with controlled interactions

(typically either inductive or capacitive) between many pairs of qubits [199, 200,

201, 202]. For charge and phase qubits, the nearest-neighbour interactions are en-

abled by capacitors, rather than inductors [203, 204, 205, 206, 201]. Of recent

interest is the design of a tunable coupler transmon that is capacitively coupled to

a pair of qubits to achieve high-fidelity two-qubit gates [207, 208, 209, 210]. Our

rf SQUID metamaterials differ in that multiple coupling capacitors are included,

creating a highly integrated network of both capacitive and inductive coupling be-

tween all of the SQUIDs. We note that the effects of both capacitive and inductive

coupling between rf SQUIDs has been considered as a step in deriving the quan-
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tum Hamiltonian of arrays of interacting qubits [211, 212]. For the flux qubits, the

nearest-neighbor inductive coupling can be adjusted by introducing an intermediary

SQUID between the qubits to be coupled, whose properties are tuned by a local

magnetic flux [213, 214, 215, 216]. Another approach is to have two qubits share

a common wiring loop bond. This bond may have a variable kinetic inductance,

or Josephson inductance, that depends on the sum of the currents flowing in the

two qubit loops through that bond [217, 218, 219]. Our coupling design is uniquely

different in that it introduces interactions through a combination of inductive and

high-frequency capacitive coupling. The possibility exists to tune the capacitive

coupling through external manipulation of the dielectric material in the capacitor.

4.1 Overlapping SQUID array design

Since the fabrication processes only allow for a single trilayer for the junc-

tion definition, one cannot simply stack two independently-defined layers of 2D rf

SQUID arrays in the third dimension. One of the layers must be shifted in-plane so

that its junction pad avoids that of the other layer of SQUIDs, and this constraint

creates the peculiar overlapping geometry studied here shown in Fig.4.1. To achieve

the most symmetric configuration, the overlapping area between the SQUIDs from

the two layers is designed to be roughly a quarter of the single-SQUID loop area.

The shifted stack between the two 2D rf SQUID arrays results in the many over-

lapping capacitors Cov between SQUID loops from different layers. The overlapping

SQUID geometry is better illustrated in the three dimensional reconstruction below
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Figure 4.1: Design file of the overlapping SQUID sample SNAP161A

where the separation between the top and bottom wiring layers is exaggerated. The

junctions and vias connecting the two layers are also shown in the schematics The

design parameters for the overlapping SQUID metamaterial sample SNAP 161A is

summarized in Table.4.1
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Figure 4.2: Three dimensional reconstruction of the overlapping SQUID sample with

a large separation between the top and bottom layers for easy visualization.

Parameters Symbols Values

Gap between nearest SQUID wiring d 4 µm

Wiring width w 16 µm

SQUID loop side length aSQUID 132 µm

SQUID self capacitance (RCSJ) C 1.42 pF

Overlapping capacitance Cov 0.657 pF

Junction critical current (4.2K) Ic 7 µA

Geometric Inductance Lgeo 255.2 pH

SQUID parameter Lgeo/LJJ βrf 5.483

Mutual inductance between

the overlapping neighbors

M1 8.56 pH

Mutual inductance between

the in-plane nearest neighbors

M2 −17.4 pH

Table 4.1: Design parameters for the overlapping SQUID metamaterial sample

SNAP 161A. See Fig. 4.3(b) for definitions of d, w, and aSQUID.
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The mutual inductances in the last two rows of the Table 4.1 represent the

inductive coupling in the absence of the overlapping capacitors. However, under the

strong capacitive coupling studied in this work, the rf currents can leave the SQUID

loop through the capacitor nodes, breaking the uniformity of the current within one

SQUID loop. The mutual inductance alone is thus no longer sufficient to correctly

treat the coupling between SQUIDs.

4.2 Model for overlapping SQUIDs

4.2.1 Two corner-coupled SQUIDs

The simplest model for overlapping SQUIDs is a pair of rf SQUID loops having

wiring layers overlapping each other at the corner, and the overlapping portions are

separated by a thin dielectric layer, which forms two capacitors whose capacitance

Cov is comparable to that of the junction, C (see Fig. 4.3 (b)). It should be

noted that these overlapping capacitors do not include Josephson coupling between

the superconducting wires, but do create a route for high-frequency displacement

currents to flow between the wiring loops of neighboring SQUIDs. The capacitors

shunt the SQUID loop, breaking the uniformity of high-frequency currents in the

loops, which leads to different currents in the non-junction branches Ia1(b1) from the

currents in the junction branches Ia0(b0) as illustrated in Fig. 4.3 (a). Note that

the overlapping capacitors have no direct influence on the dc currents, which are

constrained to flow only through individual SQUID loops.
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Figure 4.3: a) Schematic diagram of a pair of corner-coupled rf SQUIDs with over-

lapping wiring layers, creating capacitors labeled 1 and 2, along with the two nom-

inally identical Josephson junctions a and b represented with an “×”. Junction

currents Ia0 and Ib0 differ from the corresponding non-junction currents Ia1 and Ib1,

in general. b) Micrograph of a small section of a 7× 7× 2 metamaterial made up of

corner-coupled SQUIDs (fabricated by the SNEP process), where one representative

pair of the capacitively-coupled SQUIDs is highlighted. The different colors of the

wiring correspond to different lithographic layers of the device.
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4.2.1.1 Loops in the two corner-coupled SQUIDs

Following the same flux-to-current approach in Sec. 3.1, one can write down

the flux quantization conditions for the two corner-coupled SQUIDs (called a and

b) as follows: Φapp
a

Φapp
b

 =
Φ0

2π

δa
δb

+

Φind
a

Φind
b



with

Φind
a

Φind
b

 =

La,a0 Ma,b0 La,a1 Ma,b1

Mb,a0 Lb,b0 Mb,a1 Lb,b1





Ia0

Ib0

Ia1

Ib1


(4.1)

where the induced flux is expressed as contributions from different segments of the

two SQUID loops on the second line. The elements of the first (second) row in the

inductance matrix are determined as the partial inductance between the individual

segments denoted by the subscript, and the galvanically connected SQUID loop a

(b) [220, 221]. Partial inductance is a concept that generalizes the inductance of a

closed loop to that of segments in the loop. Consider a segment 1 in a closed loop

c that is experiencing a time-varying magnetic field due to the current in segment

2 in a closed loop d. The total flux in the closed loop is simply Φ =
∫∫

B⃗ · dS⃗ =∮
c
A⃗ · d⃗l where the magnetic field and the vector potential are due to the current

in segment 2. We can assign the flux contribution from individual segments as

follows: Φ =
∮
c
A⃗ · d⃗l =

∑
i

∫
si∈c A⃗ · d⃗l. The partial inductance between segments

1 and 2 is then defined as the ratio, M1,2 =
∫
1
A⃗ · d⃗l/I2. Consequently, it follows
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that for a closed loop c, Mc,2 =
∑

si∈cMsi,2, and between two closed loops c and d,

Mc,d =
∑

sj∈dMc,sj .

Although Eq. (4.1) relates the flux to the currents, the non-junction currents

Ia1,b1 are not yet expressed as functions of the gauge-invariant phase differences δa,b

and their time derivatives. To obtain the equations of motion in δ⃗, one needs to

invoke Faraday’s law on the center overlapping loop from capacitor 1 to 2 to junction

b and back to capacitor 1 in Fig. 4.3 (a), as well as current conservation on the

capacitor nodes. This will allow us to solve for Ia1,b1 in terms of the gauge-invariant

phases.

4.2.1.2 Faraday’s law applied to the center overlapping loop

There is no need to consider Faraday’s law in the formulation of the equations

for the non-overlapping SQUIDs, since it is implicitly incorporated in the flux quan-

tization condition Eq. (3.20). In fact, applying Faraday’s law to a single SQUID

loop will result in the time derivative of Eq. (3.20). On the other hand, its appli-

cation is necessary for a superconducting loop interrupted by capacitors, such as

the small center loop carrying currents Ib0 and Ia1 formed by the two overlapping

corner-coupled SQUIDs in Fig. 4.3 (a). By applying Faraday’s law to this center

loop (denoted cen), one finds:

Vb − V1 + V2 = Φ̇app
cen − Φ̇ind

cen (4.2)

Φind
cen =Mcen,a0Ia0 + Lcen,b0Ib0 + Lcen,a1Ia1 +Mcen,b1Ib1
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where V1, V2 are the voltages across the capacitors at nodes 1 and 2, Vb is the

voltage across the junction of SQUID loop b, and the currents Ia0,b0,a1,b1 are labeled

in Fig. 4.3 (a). Again, the partial inductances Mcen,a0, Lcen,b0, Lcen,a1,Mcen,b1 from

each segment to the center overlapping loop (cen) are involved in the second line of

the expression.

4.2.1.3 Conservation of current through the overlapping capacitors

The effect of capacitive coupling on the corner-coupled SQUIDs are understood

through the conservation of currents applied to the overlapping capacitors:

Ia0 = Ia1 + CovV̇1 (4.3a)

Ib0 = Ib1 − CovV̇1 (4.3b)

Ia0 = Ia1 − CovV̇2 (4.3c)

Ib0 = Ib1 + CovV̇2, (4.3d)

where nodes 1 and 2 have identical capacitance Cov based on our design. The current

conservation statements, Eqs. (4.3), reduce to the following relations:

Ia0 + Ib0 = Ia1 + Ib1 (4.4)

V̇1 = −V̇2 (4.5)

The flux equation Eq. (4.1) allows us to express the non-junction currents Ia1 and

Ib1 in terms of the junction currents and the gauge-invariant phases, in other words
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Ia1(Ia0, Ib0, δa, δb), Ib1(Ia0, Ib0, δa, δb) as;

Ia1 = CD−1

(Lb,b1 Ma,b1

) Φapp
a − Φ0

2π
δa

−Φapp
b + Φ0

2π
δb

−

det

La,a0 Ma,b1

Mb,a0 Lb,b1

 Ia0 − det

Ma,b0 Ma,b1

Lb,b0 Lb,b1

 Ib0

 (4.6)

Ib1 = CD−1

(Mb,a1 La,a1

)−Φapp
a + Φ0

2π
δa

Φapp
b − Φ0

2π
δb

−

det

La,a1 La,a0

Mb,a1 Mb,a0

 Ia0 − det

La,a1 Ma,b0

Mb,a1 Lb,b0

 Ib0

 (4.7)

The definition of CD is given in Appendix A. The current conservation statement

Eq.(4.4) now becomes a constraint on δa, δb, Ia0, Ib0 after substituting Ia1,b1 from Eqs.

(4.6, 4.7):

(
κa κb

)Ia0
Ib0

 =

(
L−1
δa L−1

δb

)Φapp
a − Φ0

2π
δa

Φapp
b − Φ0

2π
δb

 , (4.8)

where κa,b and Lδa,δb are defined in Appendix A. The time derivatives of junction

voltages in Eq. (4.5), V̇1 = −V̇2, are solved from Faraday’s law, Eq. (4.2) with Ia1,b1

given by Eqs. (4.6, 4.7):

V̇1 = [(1 + κvb)V̇b + κvaV̇a + LIbÏb0 + LIaÏa0

−Φ̈app
cen − κvaΦ̈app

a − κvbΦ̈app
b ]/2 (4.9)

The parameters κva, κvb, LIa, LIb are defined in Appendix A. One can see that

Eq. (4.9) is a 4th-order differential equation in δa,b, by noting that Ia0,b0 given in
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the RCSJ model Eq. (3.3) brings two more time derivatives into the equation. The

expression for V̇1 Eq. (4.9) can then be substituted into the current laws Eq. (4.3)

to obtain solutions for the non-junction currents Ia1,b1(Ia0,b0, Ïa0,b0, δ̈a,b):

Ia1 = Ia0 − CovV̇1 (4.10)

Ib1 = Ib0 + CovV̇1 (4.11)

4.2.1.4 Equation of motion for gauge invariant phase differences

The flux equations for the two SQUID loops can now be set up after obtaining

the non-junction currents in Eqs. (4.10, 4.11). Assuming that the applied dc and rf

flux amplitudes are the same in both SQUID loops, and that the rf flux is sinusoidal

at a single frequency ω with amplitude Φrf, the flux equation, Eq. (4.1), becomes:Φdc + Φrf sin(ωt)

Φdc + Φrf sin(ωt)

 =
Φ0

2π

δa
δb

+

Lgeo M

M Lgeo


Ia0
Ib0

+ Cov

−LδaV̇1

LδbV̇1

 , (4.12)

where the induced flux (last two terms on the right hand side of Eq. (4.12)) is sep-

arated into two contributions: the first is that for conventional inductively-coupled

SQUIDs with mutual inductance M , and the second is a correction due to the over-

lapping capacitors. The term with the inductance matrix can be regarded as the

limit without capacitive coupling, when Cov = 0. Consequently, the current becomes

uniform inside the SQUID loops such that Ia0 = Ia1, Ib0 = Ib1. The 2×4 inductance

matrix in Eq. (4.1) is then reduced to the 2×2 matrix above with self inductance of
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the SQUID loop determined as Lgeo = La,a0 + La,a1 = Lb,b0 + Lb,b1, and the mutual

inductance between the two SQUID loopsM =Mb,a0+Mb,a1 =Ma,b0+Ma,b1, which

can be positive, zero, or negative depending on the overlapping area between the

two SQUID loops. The last term in Eq. (4.12) involving Cov brings in qualitatively

new phenomena in the high frequency response of coupled rf SQUIDs.

4.2.1.5 Linear-limit solutions

To analytically understand the two corner-coupled SQUID system, one can

start by simplifying the equations in the low-driving-amplitude linear limit when

|ϕrf| ≪ 1, similar to Sec.3.1.1. The full solution to δ(t) of any individual SQUID

can be separated into its dc and rf components: δ = δrf exp(iωt) + δdc [24]. The

junction current from the RCSJ model under the weak rf flux approximation is

I = Idc+Irf(t) = Ic sin(δdc)+Ic cos(δdc)δrf(t)+ iωΦ0/(2πR)δrf(t)−ω2Φ0C/(2π)δrf(t),

where the terms with second or higher order in δrf are dropped. After substituting

the expressions for Ia0 and Ib0 in the equation of motion Eq. (4.12), and converting
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to the non-dimensional vector format, one obtains a system of algebraic equations:

ϕ⃗dc = δ⃗dc + βrf
←→κ sin δ⃗dc

ϕ⃗rf =
←→χ δ⃗rf, (4.13)

with ←→χ = (
←→
1 − αΩ2λcov

←→κ loop)
−1

[(
←→
1 +←→κ βrfdiag(cos δ⃗dc) + iγ←→κ Ω−(←→κ + λcov

←→κ loop(
←→κ δ +

←→κ Iβrfdiag(cos δ⃗dc))
)
Ω2

+λcov
←→κ loop

←→κ I(−iγΩ3 + Ω4)] (4.14)

where ←→κ , ←→κ loop,
←→κ δ, and

←→κ I are defined in Appendix A. Here ←→κ is the 2 ×

2 conventional inductive coupling matrix for the two SQUIDs without capacitive

coupling, as in the middle term on the right hand side of Eq. (4.12). The resonance

occurs when the determinant of the response tensor is zero, det(←→χ ) = 0 . The real

part of the solutions to this characteristic equation in Ω = ω/ωgeo are the resonance

frequencies, plotted in Fig. 4.4 as a function of dc flux applied to the SQUIDs, for

the particular rf SQUID design used in our experiments (parameters are given in

Appendix A and Table.4.1).

The characteristic equation is only sixth order in Ω, since the matrix ←→κ I

in front of the (−iγΩ3 + Ω4) term in Eq. (4.14) is singular. There are thus six

roots, and only the three positive ones are shown in Fig. 4.4. The tuning curves of

eigenfrequencies are periodic in applied dc flux with a periodicity of Φ0, with each

curve centered at an integer multiple of Φ0. However, each resonant solution curve

extends beyond the domain of ±1Φ0 and overlaps the adjacent curves due to the

hysteresis from the SQUID loop, since βrf > 1.
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Figure 4.4: Real part of eigenfrequency solutions Re(Ω) from the characteristic

equation det(←→χ ) = 0 in the linear limit for the two corner-coupled SQUIDs, as a

function of dc magnetic flux Φdc in units of Φ0. The solid curves with three different

colors correspond to the three positive solutions to the characteristic equation, while

the black dotted curve is the eigenfrequency for a single SQUID with the same

parameters. Due to the hysteretic response of the SQUIDs (βrf > 1), multiple dc

flux tuning curves overlap each other in the same range of applied dc flux.
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The three resonances cover a much broader frequency range compared to that

of a single SQUID, which is shown as a black dotted curve on top of the yellow

curve in Fig. 4.4. The second mode (yellow curve) out of the three resonances

closely follows the dc-flux tunability of a single SQUID loop resonance.

a) c)

b) d)

Figure 4.5: a), b) Real and imaginary parts of the solved dimensionless currents

ι = 2πLgeoI/Φ0 between Ω = 2.1 and 2.7, for the linearized case of two corner-

coupled SQUIDs at zero dc flux. c), d) Real and imaginary parts of the solved

currents between Ω = 4.8 and 5. The solid curves are the solutions to the junction

currents ιa0,b0, while the dashed curves are the non-junction currents, ιa1,b1. Blue

curves are for the currents in loop a, and red for loop b.

153



Figure 4.6: The dominant rf (not dc) current distribution for the three linearized

eigenmodes from low to high frequencies at zero dc flux. The dominating junction

and the “loop” in the mode are shaded in red. The capacitor nodes are shaded red

when the rf current passes through the capacitors in the corresponding mode.

To better understand the nature of the other two modes, one can examine

the solutions δ⃗rf to the linearized equations, Eqs. (4.13, 4.14) at the corresponding

eigenfrequencies. In particular, the current values (Ia0,b0,a1,b1) in the SQUID loops

as a function of frequency at zero dc flux are shown in Fig. 4.5, expressed as the

dimensionless currents ι = 2πLgeoI/Φ0. The currents indeed undergo resonances

near the three eigenfrequencies Ω ∼ 2.3, 2.55, 4.88 in Fig. 4.4 for zero dc flux. After

comparing the current values from the three different eigenmodes, the dominant

current distribution for each mode can be summarized in the schematics in Fig. 4.6,

where the branches with strong currents are highlighted in red. The second mode

at Ω ∼ 2.55 clearly stands out as the only mode where the current remains uniform

inside one SQUID loop, just as in side-by-side pairs of inductively-coupled SQUIDs,

which explains the match between the single SQUID eigenfrequency and the second

mode in Fig. 4.4.
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The frequencies for the modes can also be estimated quantitatively from the

current distribution in the circuit. For a single SQUID loop, the resonance can

be predicted from the lumped element model, Ωres = ωres/ωgeo = (LC)−0.5/ωgeo =√
(L−1

geo + L−1
JJ )C

−1/ωgeo =
√
1 + βrf cos δ. This circuit model can be generalized to

one SQUID loop a in a large coupled system discussed in Sec.3.2.2:

Ωres =
√

(L−1
a,eff + L−1

JJ )C
−1/ωgeo

=

√
Lgeo

La,eff

+ βrf cos δ (4.15)

where the loop inductance has changed from the geometric inductance Lgeo to the

effective inductance La,eff(ω) = Φind
a (ω)/Ia0(ω), accounting for the coupling from

other SQUID loops in the large system. For instance, in the low power linear

limit, a planar inductively coupled system has antiferromagnetic couplings among

the SQUIDs. Thus, Leff is always lower than Lgeo, resulting in a slightly higher Ωres

than expected for the single SQUID design parameter. This property no longer holds

true in an overlapping system. In particular, for the two corner-coupled SQUIDs

model, Φind
a is given in Eq. (4.1). The resulting Leff and Ωres calculated for the loop

a and b at the three resonance modes are listed in Table 4.2. As a consequence

of the nonuniform current distribution in one SQUID loop, the real part of the

effective inductance can take on much wider range of values from higher than Lgeo

to large negative values. The corresponding resonant frequencies agree with the

eigenfrequencies Ωeig solved from the linearized characteristic equation shown in

Fig. 4.4.

The inductance of a circuit generally scales with its size. Therefore, the longer
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Mode 1 2 3

La,eff/Lgeo −5.35 + 1.09i 1.01 + 0.006i 0.054− 0.001i

Lb,eff/Lgeo −5.15 + 2.04i 1.15− 0.16i 0.054 + 0.001i

Re(Ωa,res(δ = 0)) 2.30 2.54 4.91

Re(Ωb,res(δ = 0)) 2.31 2.52 4.90

Re(Ωeig(δ = 0)) 2.31 2.54 4.89

Table 4.2: Effective inductance values of SQUID loops a and b, La(b),eff, in the three

resonant modes of the corner-coupled rf SQUIDs. Comparison between the real parts

of the resonant frequencies Re(Ωa(b),res) calculated from the effective inductance for

the SQUID loop a(b) in the three eigenmodes (1-3), and the real part of their

corresponding eigenfrequencies Re(Ωeig) deduced from solutions to Eqs. (4.13) at

zero applied dc flux.
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dominant current branches in the left two modes in Fig. 4.6 contribute to a larger

effective inductance magnitude compared to the third mode, where the short seg-

ments dominate the current distribution. A larger effective inductance in magnitude

corresponds to a smaller correction to the resonance frequency as in Eq. (4.15) for

βrf > 1. In contrast, the smaller effective inductance in the third mode in Fig.

4.6 leads to a much higher resonance than predicted for a single SQUID. The ap-

parent difference in dc flux tunability between the highest frequency mode and the

other modes can also be explained by the magnitude of effective inductance. The

small effective inductance leads to a large Lgeo/Leff that renders the dc tuning term

represented by βrf cos δ less effective in Eq. (4.15).

4.2.1.6 Full nonlinear numerical solutions

Although analytical solution to the system of equations at rf flux driving levels

beyond the linear limit is difficult, we can obtain the full nonlinear solution numer-

ically. For the convenience of the numerical solver, the equations are first converted

into dimensionless form as in Eq. (3.20) with the additional introduction of dimen-

sionless currents: ι = 2πLgeoI/Φ0. In the general practice of numerically solving

a system of differential equations, the equations are first reformulated as a system

of first order initial value problems. The equations of motion Eq. (4.12) consist of

two flux equations, each a 4th-order differential equation for δ. However, due to the

constraint in Eq. (4.8) relating δa,b and Ia0,b0, there are only six degrees of freedom,

two less than otherwise expected. This can be illustrated by manipulating the above
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matrix expression (Eq. (4.12)) as follows: L−1
δa Row 1 + L−1

δb Row 2, which is equiva-

lent to the constraint in Eq. (4.8). Therefore, instead of solving the overdetermined

system in Eq. (4.12) directly with eight variables, one should reduce the system to

one equation of motion for one of the SQUIDs, along with the constraint Eq. (4.8),

and establish the initial value problems with six variables: δa,b, δ̇a,b, ιa0, ι̇a0, as

follows.

dδa
dτ

= δ̇a (4.16a)

dδb
dτ

= δ̇b (4.16b)

dδ̇a
dτ

= δ̈a = ιa0 − βrf sin δa − γδ̇a (4.16c)

dδ̇b
dτ

= δ̈b = ιb0 − βrf sin δb − γδ̇b =

κ−1
b

κ−1
δa

κ−1
δb

 · (ϕ⃗app − δ⃗)− κa
κb
ιa0 − βrf sin δb − γδ̇b (4.16d)

dιa0
dτ

= ι̇a0 (4.16e)

dι̇a0
dτ

= ϊa0 =
1

λcovκδa(κaκIb − κbκIa)
κb − κ1/κδa
−κ1/κδb

 · (ϕ⃗app − δ⃗)

− (κb − κaκ1)ιa0

+λcovκδa(

 κvaκb − κIb/κδa

κb + κvbκb − κIb/κδb

 · ¨⃗δ − αϕ̈app)

 (4.16f)
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where ϕapp = ϕdc + ϕrf sin(Ωτ) is the dimensionless applied flux. The second time

derivatives in δ in Eqs. (4.16 c, d) are related to the currents using the RCSJ model,

Eq. (3.3). The constraint Eq. (4.8) is invoked to express ιb0 in Eq. (4.16 d). The

second time derivative of current (ϊa0) in Eq. (4.16 f) is obtained from the equation

of motion Eq. (4.12). All other parameters are defined in Appendix A. The resulting

system of initial value problems was solved with the LSODA function from SciPy

based on the FORTRAN library ODEPACK. The transmission through the system

is then calculated from the solutions to δs as described in Sec.3.1.2.1.

The resulting transmission at low applied rf flux amplitude (Φrf ∼ 10−3Φ0),

near the linear limit, as a function of dimensionless driving frequency Ω and dc

flux is plotted in Fig. 4.7. The dark bands represent the resonances in the rf

SQUID system, where the amplitudes of the rf currents in the SQUID loops, and

thus the dissipated powers in the junctions, are maximized. Unlike the case for a

pair of side-by-side rf SQUIDs, which have two resonant modes, there are now three

distinct modes tuned by the applied dc magnetic flux. The red lines in Fig. 4.7 show

the dispersion of the linearized solutions from Eq. (4.13), and show good agreement

with the solutions to the full nonlinear equations, Eqs. (4.16), in the weak-driving

limit.

4.2.1.7 Nonlinear Properties of the Corner-Coupled SQUIDs

Here we examine the evolution of the three corner-coupled modes as the am-

plitude of the rf driving flux is increased. Figure 4.8 shows the evolution of the
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Figure 4.7: Nonlinear solutions to the two corner-coupled SQUIDs at Φrf ∼ 10−3Φ0.

The quantity plotted is the magnitude of transmission S21(dB) on a logarithmic color

scale, as a function of dimensionless frequency Ω = ω/ωgeo and applied dc magnetic

flux in units of the flux quantum Φ0. The white dashed curve corresponds to the

eigenfrequency for a single SQUID with the same parameters, and the red curves

are the eigenfrequencies from the linear limit solutions for the two corner-coupled

SQUIDs as in Sec.4.2.1.5.
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Figure 4.8: Nonlinear solutions to the two corner-coupled SQUIDs for Φdc = 0.

The quantity plotted is the magnitude of transmission S21(dB) on a logarithmic

color scale, as a function of applied rf magnetic flux amplitude in units of the flux

quantum Φ0 and dimensionless frequency Ω = ω/ωgeo. The linear limit discussed

in Sec. 4.2.1.5 is reproduced at low applied power on the left of the plot. Upon

increasing Φrf above Φ0, the high-power linear limit is achieved where the SQUID

loop resonance is suppressed to the geometric frequency (Ω = 1).
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resonant modes from the linear limit Φrf/Φ0 ∼ 10−3 at zero dc flux to higher rf

flux amplitudes. All three modes show a suppression of their resonant frequencies

in a manner similar to that observed for single rf SQUIDs [44]. Note that the

two lower frequency modes show substantial tuning with rf flux amplitude, but the

high-frequency mode is only weakly affected since they are dominated by currents

in non-junction branches which is less sensitive to the applied magnetic flux. Also

note that all three modes achieve linear response again at high driving amplitudes,

in the sense that the resonant frequencies are independent of rf flux amplitude when

Φrf ≳ Φ0. This behavior was observed before [44] and can be attributed to the δ⃗

term in Eq. 3.20. At large rf driving amplitudes the sin δ⃗ term averages to zero,

leaving just a leading-order δ⃗ term that reduces the equation of motion to the form

of a harmonic oscillator. Further examination of the nonlinear properties of these

hysteretic SQUID metamaterials will the subject of future work.

4.2.2 Two edge-coupled SQUIDs

Edge-coupled SQUIDs refer to those with entire left or right side of the rect-

angular SQUID overlapping with another SQUID. Two edge-coupled SQUIDs form

the minimal model for the 1D overlapping chain of SQUIDs as shown in the Fig.

4.9. The designed properties for a single SQUID in this overlapping chain is listed

in the table below.

The same analysis, namely using Faraday’s law on the overlapping loop and

Kirchhoff’s current law on the overlapping capacitors, can be applied. However,

162



Figure 4.9: Left: Schematics of two edge-coupled SQUIDs model. The red lines

highlight the overlapping capacitors formed between the two SQUID loops. Right:

picture of an overlapping SQUID chain sample.

there is one key difference worth to note here that the overlapping capacitors have

lengths about half of the SQUID size and is no longer suitable to be treated as a

node as in the previous corner-coupled case. In fact, these two parallel planes form

an approximately loss-less transmission line where the voltage and current along the

line I(x, t), V (x, t) follow telegrapher equations with the wavelength given as

λ =
2π

k
=

2π

ω
√
lc

=
2πdov

ω
√
LovCov

(4.17)

where l and c are the inductance and capacitance per unit length. For typical

microwave frequencies, ω ∈ [2ω0, 4ω0], the wavelength λ ∈ [14dov, 27dov] calculated

based on the design parameter of our 1D overlapping chain sample where Cov =

1.88 pF, Lov = 1.52 pH. Therefore, I(x, t), V (x, t) are only changing slowly along

the overlapping capacitor. Instead of dealing with the spatially dependent currents

and voltages, we can simplify the problem by discretizing the transmission line, i.e.

using the distributed element model where each overlapping part is separated into

segments of inductances and overlapping capacitors as in Fig.4.10.

The current I(x, t) in the telegrapher equation is the difference between the
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Parameter Symbol Numerical value

Junction inductance LJJ 46.54 pH

Geometric inductance Lgeo 142.3 pH

SQUID self capacitance (RCSJ) C 1.54 pF

Junction resistance R 500 Ω

Geometric resonance fgeo 10.75 GHz

SQUID hysteresis parameter βrf 3.06

Damping parameter γ 0.0192

Table 4.3: Designed properties for a single SQUID in the overlapping 1D chain

sample

currents from the top and bottom conductor in the transmission line. The sum of

these currents is in fact constant in space. Thus, Icomm = Ia + Ib = Ia1 + Ib1 =

Ia2 + Ib2 = Ia3 + Ib3 = Ia4 + Ib4. Since the gap between the top and bottom layer

is very small compared to the planar structure in our SQUID design, the top and

bottom conductors in the transmission line share the same mutual inductance to

other planar loops. Consequently, the current difference I(x, t) does not contribute

to flux to the planar loops.

Our objective is the same as previously, to express Iai, Ibi in terms of δs

and their time derivatives. It should be first noted that due to symmetry of the

geometry, the currents through the upper and lower overalpping capacitors are the

same, while the voltages across them are of opposite signs. We can attack this
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Figure 4.10: Schematics of the distributed element model of the overlapping part,

where the capacitor is discretized in to three segments and four nodes.

problem systematically by applying Faraday’s laws to the known current loops to

find the voltages, and then solve for the currents next to the voltage node in the

transmission line. Specifically, we start by applying Faraday’s law to the loop formed

by the two junctions where we can solve for V4, and then express Ia4, Ib4. We then

apply Faraday’s law to the side loop formed by Ia4, Ib4, V4, V3 and solve for V3.

Repeating the same procedure on the subsequent side loops, the expressions for all

the currents and voltages are then obtained. This method implicitly assumes that

the net flux on any planar loop due to the transmission line in differential mode (e.g.

Iai = I/2, Ibi = −I/2) is approximately zero. Similar to the two corner-coupled

SQUIDs, there is an additional constraint after solving for Ia1 and Ib1 from the

flux quantization conditions of the two SQUID loops, since we need to impose the

current conservation Ia + Ib = Ia1 + Ib1.
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4.2.2.1 One branch for the overlapping capacitors in the two edge-

coupled SQUIDs model

Let’s study the simplest case with only one branch for the transmission line.

Thus, the transmission line is formed by two inductors carrying currents Ia2, Ib2 and

two capacitors with voltages V1, V2. There are in total four loops to apply Faraday’s

laws and flux quantization conditions. We can express the induced fluxes for these

loops in the following reduced inductance matrix.



Φa

Φb

Φab

Φa1b1


=



La Mb La1 Mb1 Lcomm

Ma Lb Ma1 Lb1 L′
comm

L′
a L′

b M ′
a1 M ′

b1 Mcomm

M ′′
a M ′′

b L′′
a1 L′′

b1 M ′
comm





Ia

Ib

Ia1

Ib1

Icomm


, (4.18)

where the numerical values of the inductance matrix for our SQUID design are given

as

La Mb La1 Mb1 Lcomm

Ma Lb Ma1 Lb1 L′
comm

L′
a L′

b M ′
a1 M ′

b1 Mcomm

M ′′
a M ′′

b L′′
a1 L′′

b1 M ′
comm


=



80.4 −5.78 36.37 14.28 25.53

14.35 33.18 −5.84 83.59 25.53

70.97 −29.69 9.26 4.92 5.94

4.92 9.26 −32.95 74.23 5.94


pH.

Since the small difference in the wiring thickness from different layers has a negligible

effect on the inductances, we would use Lcomm = L′
comm and Mcomm = M ′

comm in all

the following discussion. It should also be noted that Lgeo = La + La1 + Lcomm =

Lb+Lb1+Lcomm, M =Mb+Mb1+Lcomm =Ma+Ma1+Lcomm. The top two rows in
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Eq.(4.18) are the fluxes on the SQUID loops and are used in the flux quantization

conditions. The bottom two rows are used in Faraday’s law. The Faraday’s loops’

subscripts are chosen based on the currents in the respective loop. For example,

Φab is the induced flux on the loop formed by the segments with currents Ia and Ib

(see Fig.4.9). The two flux quantization conditions and the two Faraday’s laws are

listed below:

Φapp
a =

Φ0

2π
δa + Φa (4.19)

Φapp
b =

Φ0

2π
δb + Φb (4.20)

Va − 2V2 − Vb = Φ̇app
ab − Φ̇ab (4.21)

−2V1 = Φ̇app
a1b1 − Φ̇a1b1 (4.22)

We can use the flux quantization conditions to express Ia1, Ib1,

Ia1 =

∣∣∣∣∣∣∣∣
La1 Ma1

Mb1 Lb1

∣∣∣∣∣∣∣∣
−1 (

Lb1Φ
a1,b1
a −Mb1Φ

a1,b1
b

)
(4.23a)

Ib1 =

∣∣∣∣∣∣∣∣
La1 Ma1

Mb1 Lb1

∣∣∣∣∣∣∣∣
−1 (

La1Φ
a1,b1
b −Ma1Φ

a1,b1
a

)
, (4.23b)

and substitute them into the two Faraday’s laws to solve for V1, V2:

V1 =
1

2

(
−Φ̇app

a1b1 +M ′′
a İa +M ′′

b İb +Mcomm(İa + İb) + Φ̇a1,b1
a1b1

)
(4.24a)

V2 =
1

2

(
−Φ̇app

ab + L′
aİa + L′

bİb +Mcomm(İa + İb) + Va − Vb + Φ̇a1,b1
ab

)
, (4.24b)
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where

Φa1,b1
a = Φapp

a − (La + Lcomm)Ia − (Mb + Lcomm)Ib −
Φ0

2π
δa

Φa1,b1
b = Φapp

b − (Lb + Lcomm)Ib − (Ma + Lcomm)Ia −
Φ0

2π
δb

Φa1,b1
a1b1 = L′′

b1Ib1 + L′′
a1Ia1

=

∣∣∣∣∣∣∣∣
La1 Ma1

Mb1 Lb1

∣∣∣∣∣∣∣∣
−1 (

L′′
b1(La1Φ

a1,b1
b −Ma1Φ

a1,b1
a ) + L′′

a1(Lb1Φ
a1,b1
a −Mb1Φ

a1,b1
b )

)

Φa1,b1
ab =M ′

b1Ib1 +M ′
a1Ia1

=

∣∣∣∣∣∣∣∣
La1 Ma1

Mb1 Lb1

∣∣∣∣∣∣∣∣
−1 (

M ′
b1(La1Φ

a1,b1
b −Ma1Φ

a1,b1
a ) +M ′

a1(Lb1Φ
a1,b1
a −Mb1Φ

a1,b1
b )

)
.

The constraint Ia + Ib = Ia1 + Ib1 is then expressed as

Ia + Ib =

∣∣∣∣∣∣∣∣
La1 Ma1

Mb1 Lb1

∣∣∣∣∣∣∣∣
−1 (

(Lb1 −Ma1)Φ
a1,b1
a + (La1 −Mb1)Φ

a1,b1
b

)
,

with its dimensionless form given as

ιa + ιb =

∣∣∣∣∣∣∣∣
La1 Ma1

M¬b1 Lb1

∣∣∣∣∣∣∣∣
−1

((Lb1 −Ma1) (Lgeoϕ
app
a − (La + Lcomm)ιa − (Mb + Lcomm)ιb − Lgeoδa)

+(La1 −Mb1) (Lgeoϕ
app
b − (Lb + Lcomm)ιb − (Ma + Lcomm)ιa − Lgeoδb))

κιaιa + κιbιb = κδa(ϕ
app − δa) + κδb(ϕ

app − δb), (4.25)

where ϕapp = ϕdc + ϕrf sin(Ωτ) = ϕapp
a = ϕapp

b , κιa = 4.31, κιb = 1.98, κδa =

4.07,κδb = 1.01.

We then use the current conservation to express Ia1, Ib1 with the solutions for
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V1, V2 given in Eq.(4.24a,4.24b):

Ia1 = Ia +
Cov

2
V̇1 +

Cov

2
V̇2

= Ia +
Cov

4

(
−Φ̈app

a1b1 − Φ̈app
ab + (L′

a +M ′′
a + 2Mcomm)Ïa

+(L′
b +M ′′

b + 2Mcomm)Ïb + V̇a − V̇b + Φ̈a1,b1
a1b1 + Φ̈a1,b1

ab

)
(4.26a)

Ib1 = Ib −
Cov

2
V̇1 −

Cov

2
V̇2

= Ib −
Cov

4

(
−Φ̈app

a1b1 − Φ̈app
ab + (L′

a +M ′′
a + 2Mcomm)Ïa

+(L′
b +M ′′

b + 2Mcomm)Ïb + V̇a − V̇b + Φ̈a1,b1
a1b1 + Φ̈a1,b1

ab

)
. (4.26b)

The final equations of motions can then be obtained by substituting Eq.(4.26) into

the flux quantization conditions Eq.(4.19,4.20):

Φdc + Φrf sin(ωt) =
Φ0

2π
δa + LaIa +MbIb + La1Ia1 +Mb1Ib1 + Lcomm(Ia + Ib)

=
Φ0

2π
δa + (La + La1 + Lcomm)Ia + (Mb +Mb1 + Lcomm)Ib

+
(La1 −Mb1)Cov

4
Φ̈ov (4.27)

Φdc + Φrf sin(ωt) =
Φ0

2π
δb +MaIa + LbIb +Ma1Ia1 + Lb1Ib1 + Lcomm(Ia + Ib)

=
Φ0

2π
δb + (Ma +Ma1 + Lcomm)Ia + (Lb + Lb1 + Lcomm)Ib

+
(Ma1 − Lb1)Cov

4
Φ̈ov, (4.28)
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where

Φ̈ov = −Φ̈app
a1b1 − Φ̈app

ab + (L′
a +M ′′

a + 2Mcomm)Ïa + (L′
b +M ′′

b + 2Mcomm)Ïb

+
Φ0

2π
(δ̈a − δ̈b) +

∣∣∣∣∣∣∣∣
La1 Ma1

Mb1 Lb1

∣∣∣∣∣∣∣∣
−1 [

(L′′
b1La1 − L′′

a1Mb1 +M ′
b1La1 −M ′

a1Mb1)

(Φ̈app
b − (Lb + Lcomm)Ïb − (Ma + Lcomm)Ïa −

Φ0

2π
δ̈b)

+ (L′′
a1Lb1 − L′′

b1Ma1 +M ′
a1Lb1 −M ′

b1Ma1)(Φ̈
app
a − (La + Lcomm)Ïa

− (Mb + Lcomm)Ïb −
Φ0

2π
δ̈a)
]

The dimensionless forms of Eq.(4.27,4.28) are

ϕ⃗dc + ϕ⃗rf sin(Ωτ) = δ⃗ +←→κ ι⃗+

κcla
κclb

[−κϕϕ̈app + κiaϊa + κibϊb + δ̈a − δ̈b

+κb

(
ϕ̈app − κbbϊb − κab ϊa − δ̈b

)
+ κa

(
ϕ̈app − κbaϊb − κaaϊa − δ̈a

)]
(4.29)
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where

←→κ =

 1 κ1

κ1 1


κ1 =M/Lgeo = 0.239

κcla = (La1 −Mb1)Cov/(4LgeoC) = 0.047

κclb = (Ma1 − Lb1)Cov/(4LgeoC) = −0.19

κϕ = (Aa1b1 + Aab)/ASQUID = 1.27 (ratio of the areas in the corresponding loops)

κia = (L′
a +M ′′

a + 2Mcomm)/Lgeo = 0.617

κib = (L′
b +M ′′

b + 2Mcomm)/Lgeo = −0.06

κb =

∣∣∣∣∣∣∣∣
La1 Ma1

Mb1 Lb1

∣∣∣∣∣∣∣∣
−1

(L′′
b1La1 − L′′

a1Mb1 +M ′
b1La1 −M ′

a1Mb1) = 1.03

κbb = (Lb + Lcomm)/Lgeo = 0.413

κab = (Ma + Lcomm)/Lgeo = 0.28

κa =

∣∣∣∣∣∣∣∣
La1 Ma1

Mb1 Lb1

∣∣∣∣∣∣∣∣
−1

(L′′
a1Lb1 − L′′

b1Ma1 +M ′
a1Lb1 −M ′

b1Ma1) = −0.49

κba = (Mb + Lcomm)/Lgeo = 0.139

κaa = (La + Lcomm)/Lgeo = 0.744.

We should note that the first three terms of the right hand side of the equation

is the same as the equation for two side-by-side SQUIDs. In a similar manner to

Sec.4.2.1.6 for the two corner-coupled SQUIDs, the solutions can be obtained from

Eq.(4.29) for one SQUID and the constraint, Eq.(4.25), relating ιa, ιb and reducing
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the degrees of freedom to 6.

Linear-limit solutions

Following the same treatment as in Sec.4.2.1.5, we can apply the weak rf field

approximation and arrive at the linear system below

φ⃗app = (
←→
1 + Ω2←→κ clδ)δ⃗ + (←→κ + Ω2←→κ clι)⃗ι, (4.30)

where

←→κ clδ =

κcla(κa − 1) κcla(κb − 1)

κclb(κa − 1) κclb(κb − 1)


←→κ clι =

κcla(κbκbb + κaκ
b
a − κia) κcla(κaκ

a
a + κbκ

a
b − κib)

κclb(κbκ
b
b + κaκ

b
a − κia) κclb(κaκ

a
a + κbκ

a
b − κib)



φ⃗app =

1 + κϕκclaω
2

1 + κϕκclbω
2

ϕapp

The linear limit solution is obtained from the rf component with ι⃗rf = (βrf diag(cos δ⃗dc)+

iΩγ − Ω2)δ⃗rf,

φ⃗app
rf =←→χ δ⃗rf, (4.31)

where←→χ =
←→
1 + Ω2←→κ clδ + (←→κ + Ω2←→κ clι)(βrf diag(cos δ⃗dc) + iΩγ − Ω2) (4.32)

Similar to Sec.4.2.1.5, the resonance condition corresponds to det(←→χ ) = 0, and the

resulting eigenfrequencis are plotted in Fig.4.11. As expected from the six degrees

of freedom, there are three positive eigenfrequency solutions just as in Sec.4.2.1.5.
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Figure 4.11: Real part of eigenfrequency solutions Re(Ω) from the characteristic

equation det(←→χ ) = 0 in the linear limit for the one-branch model of the two edge-

coupled SQUIDs, as a function of dc magnetic flux Φdc in units of Φ0.

However, due to the large overlapping loop in the center contributing to a larger

inductance than the corner-coupled case, the highest frequency mode occurs at a

lower frequency Ω ∼ 3 in the edge-coupled geometry.

Full nonlinear numerical solutions

The solution to the nonlinear system can be obtained numerically as in Sec.4.2.1.6,

where the six variables for the equation of motions are δa, δb, δ̇a, δ̇b, ιa, ι̇a. The
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system of first-order initial value problems for the numerical solver is listed below:

dδa
dτ

= δ̇a (4.33a)

dδb
dτ

= δ̇b (4.33b)

dδ̇a
dτ

= δ̈a = ιa − βrf sin δa − γδ̇a (4.33c)

dδ̇b
dτ

= δ̈b = (κδa(ϕ
app − δa) + κδb(ϕ

app − δb)− κιaιa)/κιb − βrf sin δb − γδ̇b (4.33d)

dιa
dτ

= ι̇a (4.33e)

dι̇a
dτ

= ϊa(δa, δb, δ̇a, δ̇b, ιa, ϕ̈
app, ϕapp), (4.33f)

where the last line is the solution of ϊa from the constraint Eq.(4.25) and the flux

quantization for loop a, Eq.(4.27) whose numerical form is given as

ϊa(δa, δb, δ̇a, δ̇b, ιa, ϕ̈
app, ϕapp) =

− 9.09δa + 1.04δb + 4.49 sin δa − 3.47 sin δb + 0.028δ̇a − 0.022δ̇b − 10.3ιa + 1.12ϕ̈app + 8.05ϕapp.

The transmission at low rf power from the numerical solution with the applied dc

flux swept from 1Φ0 to 0 is plotted in Fig. 4.12 which follows the predicted frequency

tuning from the linear-limit calculation.

4.2.2.2 Two branches for the overlapping capacitors in the two edge-

coupled SQUIDs model

A more complex model where the transmission line consists of three capacitor

nodes, and two inductance segments for each side of the transmission line is consid-

ered in this section. There are now five independent loops to apply Faradays’ law
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Figure 4.12: The magnitude of transmission calculated from the nonlinear solution

to the one-branch model for the two edge-coupled SQUIDs at Φrf ∼ 10−3Φ0, as a

function of applied dc flux Φdc from 1Φ0 to 0.

and the flux quantization. The resulting induced flux linkage for each segment is

summarized blow.



Φa

Φb

Φab

Φa1b1

Φa2b2


=



La Mb La1 Mb1 Lcomm 0

Ma Lb Ma1 Lb1 Lcomm 0

L′
a L′

b M ′
a1 M ′

b1 Mcomm 0

M ′′
a M ′′

b L′′
a1 L′′

b1 Mcomm 0

0 0 0 0 0 La2b2





Ia

Ib

Ia1

Ib1

Icomm

Idiff2



(4.34)

where the current Idiff2 is the difference between the currents on loop a and loop

b for segment a2, b2. For the same SQUID loops geometry as in Sec. 4.2.2.1, the
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inductances associated with the new side loop a2 − b2 are calculated as La2b2 =

0.176 pH. And as discussed previously, the mutual inductance between the side

loops and

Similar to the one-branch overlapping capacitors model in Sec. 4.2.2.1, the

non-junction branch currents and voltages are obtained from the flux relations.

There are two flux equations for the two SQUID loops, Eq. 4.35a and 4.35b, and

another two equations from Faraday’s law of the non-continuous loops a−b, Eq.4.35c

and a1 − b1, Eq.4.35d. In addition, since there are three nodes and two segments

for the transmission line, two side loops a2− b2 and a3− b3 are formed. Therefore,

one additional equation from the Faraday’s law on one of the side loop (loop a2− b2

is chosen here without loss of generality) is needed, Eq.4.35e.

Φapp
a =

Φ0

2π
δa + Φa (4.35a)

Φapp
b =

Φ0

2π
δb + Φb (4.35b)

Va − 2V3 − Vb = Φ̇app
ab − Φ̇ab (4.35c)

−2V1 = Φ̇app
a1b1 − Φ̇a1b1 (4.35d)

V1 − V2 = −Φ̇a2b2 (4.35e)

Additionally from the current conservation laws applied to the three nodes,

the currents can be expressed as

Idiff2 = Ib2 − Ia2 = Ib1 + cV̇1 − (Ia1 − cV̇1) = Ib1 − Ia1 + 2cV̇1 (4.36a)

Ia1 = Ia + c(V̇1 + V̇2 + V̇3) (4.36b)

Ib1 = Ib − c(V̇1 + V̇2 + V̇3) (4.36c)

176



where c = Cov/3 is the capacitance on each node.

The same expressions for Ia1(Ia, Ib, δa, δb), Ib1(Ia, Ib, δa, δb), V1(İa, İb, δ̇a, δ̇b),

V3(İa, İb, δ̇a, δ̇b) as in Eq.( 4.23,4.24) are obtained, where V3 corresponds to V2 in

Sec.4.2.2.1. Consequently, Idiff2 can be expressed in terms of δa,b, Ia,b and their time

derivatives. With all the other quantities known, V2 can be solved as

V2 = V1 + La2b2İdiff2(İa, İb, δ̇a, δ̇b,
...
I a,

...
I b,

...
δ a,

...
δ b) (4.37)

This expression can then be substituted in Eq. 4.36c to solve for Ia1, which contains

a term of
....
I , or d6δ/dτ 6. Therefore, the equation of motions for the SQUIDs are

6th-order differential equations in time.

Full nonlinear numerical solutions

As in the previous cases, the constraint on Ia, Ib, δa, δb gives the expression

Ib(Ia, δa, δb). With Ib, İb, Ïb,
...
I b known, the degree of freedom is reduced from 12

(sixth-order equation of motions for two SQUIDs) to 8 (sixth order equation of

motion for SQUID a and only two independent degrees of freedom: δb, δ̇b in loop

b). In addition, we should reduce the equations to dimensionless forms for the

convenience of the numerical solver by introducing the dimensionless voltage u2 =

2πV2/(Φ0ωgeo). The final equation of motions for the numerical solver can then be
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expressed by eight variables : δa, δ̇a, δb, δ̇b, ιa, ι̇a, ϊa, u2 as follows

dδa
dτ

= δ̇a (4.38a)

dδb
dτ

= δ̇b (4.38b)

dδ̇a
dτ

= δ̈a = ιa − βrf sin δa − γδ̇a (4.38c)

dδ̇b
dτ

= δ̈b = (κδa(ϕ
app − δa) + κδb(ϕ

app − δb)− κιaιa)/κιb − βrf sin δb − γδ̇b (4.38d)

dιa
dτ

= ι̇a (4.38e)

dι̇a
dτ

= ϊa (4.38f)

dϊa
dτ

=
...
ι a = (u2 − κ3dδa

...
δ a − κ3dδb

...
δ b − κdδaδ̇a − κdδbδ̇b−

κdιaι̇a − κ3dϕapp
...
ϕ

app − κdϕappϕ̇app)/κ3dιa (4.38g)

du2
dτ

= κ−1
cov(ιa1 − ιa − κcov(u̇1 + u̇3)) (4.38h)

where
...
δ a,b can be obtained from taking another time derivative on Eq. 4.38c, 4.38d.

The numerical values for the factors are as follows κ3dδa = 5.9×10−4, κ3dδb = −4.5×

10−4 , κdδa = 0.592 , κdδb = −0.457, κdιa = 0.403, κ3dϕapp = −4.5 × 10−4, κdϕapp =

−0.453, κ3dιa = 4.0 × 10−4, κcov = 0.407. The resulting transmission from the nu-

merical solution done with applied dc flux swept from 1Φ0 to 0 is plotted in Fig.4.13.

The resonance in the calculated transmission coincide with those in Fig.4.12 for the

one-branch model, which is expected since the transmission lines formed by the

overlapping capacitors are very short compared to the wavelength.

We should note that instead of using
...
ι a, the equations of motion are expressed

in u2 using Eq.(4.37) to simplify the calculation. This substitution motivates us to

consider nodal voltages as the variables for the equations of motion. In fact, it is
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Figure 4.13: The magnitude of transmission calculated from the nonlinear solution

to the two-branch model for the two edge-coupled SQUIDs at Φrf ∼ 10−3Φ0, as a

function of applied dc flux Φdc from 1Φ0 to 0.

179



discussed in the later section (Sec.4.2.3) that formulating the problem with only

gauge-invariant phase differences and the voltages is a more general approach to

solve any sized overlapping SQUID system compared to the formalism with the

junction currents outlined so far.

Linear-limit solutions

Inspired by the previous discussion, we will now attempt to find the linear-limit

solution for the two-branch model of two edge-coupled SQUIDs using voltages as

the variables. The voltages needed for expressing the non-junction branch currents

are V = V1 + V2 + V3 and v = V2 + V3, since Ia1 = Ia + c(V̇1 + V̇2 + V̇3), Ib1 =

Ib − c(V̇1 + V̇2 + V̇3), and Idiff2 = Ib − Ia − 2c(V̇2 + V̇3). We can rearrange the three

Faraday’s laws in Eq.(4.35e) as follows:

Va − Vb − 2v = Φ̇app
ab + Φ̇app

a1b1 − Φ̇ab − Φ̇a1b1 − Φ̇a2b2

Va − Vb − 2V = 2Φ̇app
a1b1 + Φ̇app

ab − 2Φ̇a1b1 − Φ̇ab − 2Φ̇a2b2

Combined with the flux quantization equations in Eq.(4.35e), we have obtained a

4× 4 system in the dimensionless form:

ϕapp

ϕapp

ϕ̇app
ab + ϕ̇app

a1b1

2ϕ̇app
a1b1 + ϕ̇app

ab


=



δa + ϕa(δa, δb, U)

δb + ϕb(δa, δb, U)

ϕ̇ab(δa, δb, U) + ϕ̇a1b1(δa, tδb, U) + ϕ̇a2b2(δa, δb, u) + δ̇a − δ̇b − 2u

ϕ̇ab(δa, δb, U) + 2ϕ̇a1b1(δa, δb, U) + 2ϕ̇a2b2(δa, δb, u) + δ̇a − δ̇b − 2U


,

(4.39)

where u = 2πv/(Φ0ωgeo) and U = 2πv/(Φ0ωgeo) are the dimensionless voltages.

After applying the weak rf field approximation and Fourier transform, the linear
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Figure 4.14: Real part of eigenfrequency solutions Re(Ω) from the characteris-

tic equation in the linear limit for the two-branch model of the two edge-coupled

SQUIDs, as a function of dc magnetic flux Φdc in units of Φ0.

form of the system becomes

ϕapp

ϕapp

ϕ̇app
ab + ϕ̇app

a1b1

2ϕ̇app
a1b1 + ϕ̇app

ab


=



1 + ι̂a,rf κ1ι̂b,rf iκaUΩ 0

κ1ι̂a,rf 1 + ι̂b,rf iκbUΩ 0

iΩ + iκuaΩι̂a,rf −iΩ + iκubΩι̂b,rf κuUΩ
2 −2 + κuuΩ

2

iΩ + iκUaι̂a,rf −iΩ + iκUbι̂b,rf −2 + κUUΩ
2 κUuΩ

2





δa

δb

U

u


,

(4.40)

where ι̂a,rf = iγΩ−Ω2+βrf cos δa,dc, ι̂b,rf = iγΩ−Ω2+βrf cos δb,dc, κaU = 0.0631, κbU =

−0.256, κua = 0.449, κub = 0.49, κuU = 0.294, κuu = 0.001, κUa = 0.293, κUb =

1.11, κUU = 0.6, κUu = 0.002. Again imposing the resonant condition that re-

quires a singular response matrix, we can solve the characteristic equation for the

eigenfrequencies Ω whose real parts are shown in Fig.4.14. As a consequence of
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the short transmission lines formed by the overlapping capacitors, the two-branch

model gives the same eigenfrequency values as the one-branch model except for the

purely imaginary eigenfrequency shown in red in the eigenfrequency plot, Fig.4.14

. Therefore, the one branch-model would be sufficient to model the edge-coupled

SQUIDs.

4.2.3 A more general formalism for larger systems of overlapping

SQUIDs

Building upon the formalism developed for the two corner-coupled SQUIDs in

sections 4.2.1-4.2.1.7, we now consider the larger systems of overlapping SQUIDs as

exemplified in Fig. 4.15. One major difference in the larger systems compared to

two corner-coupled SQUIDs is the introduction of a new kind of circuit loop enclos-

ing an area outside any galvanically connected SQUID loop. To better distinguish

the different loop circuits in the large systems, and to streamline the discussion,

some common vocabulary should be established. Highlighted in blue in Fig. 4.15

(a) is a new loop, named the “extra-SQUID” loop, while the loop formed at the

corners of two overlapping SQUIDs, as studied in the two-SQUID case, is referred

to as a “partial loop”, colored red in Fig. 4.15 (a). Together with the conven-

tional galvanically-connected SQUID loops, these three types of loop circuits dictate

the dynamics of the gauge-invariant phases through either Faraday’s law (e.g. Eq.

(4.2)), or the flux quantization condition in the SQUID loop (e.g. Eq. (3.20)).
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Figure 4.15: Schematics for larger overlapping SQUID systems. For any corner-

coupled overlapping system, there are three different types of loops involved in the

dynamics of the gauge-invariant phases: the galvanically-connected SQUID loops

(black lines), the partial loops (highlighted in red), and the extra-SQUID loops

(highlighted in blue). a) The minimal system that contains all three different types

of circuits is the four corner-coupled SQUIDs. b) represents a typical square array

of N × N × 2 SQUIDs (here with N = 2)). An array with N = 12 has been

characterized experimentally in this work.

Another challenge in modelling the larger system is the fact that each SQUID

loop is broken into many segments by the additional capacitive nodes formed by

the overlap with wiring of several neighboring SQUIDs. For instance, each SQUID

in Fig. 4.15 (a) has 4 capacitor nodes and thus 4 segments. There are in total 16

segments, each with a different current. Attempting to follow a similar treatment

to that used for the two corner-coupled SQUIDs in Sec.4.2.1, one would need to ex-
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press the 12 non-junction currents in terms of 4 junction currents, 4 gauge-invariant

phase differences and their time derivatives. The number of unknown currents can

be further reduced by invoking current conservation laws on the SQUID loops re-

quiring zero net current into any SQUID. The constraints need to be applied to

all SQUID loops but one, since the net current into the last SQUID is equal to

the net current leaving the rest of the SQUID loops which is already zero due to

the current conservation laws. The number of independent non-junction currents is

thus 12 − (4 − 1) = 9, which still could not be completely determined from 4 flux

quantization conditions (Eq. (3.20)) from the 4 SQUID loops. We should note that

applying Faraday’s laws to the 5 non-SQUID loops only relates the time derivatives

of the currents, not the currents themselves.

To circumvent this problem, the model should be reformulated in terms of

the voltages across the capacitor nodes as the variables instead of the junction

currents as done in Sec.4.2.1. This choice of variables is natural considering the

Lagrangian of a circuit where flux and voltage substitute for position and velocity

in the formalism. The junction currents are expressed using the RCSJ model in

Eq. (3.3) in terms of the set of δ⃗, and their time derivatives. The non-junction

currents are obtained from current conservation laws on the capacitor nodes (e.g.

Eq. 4.3). For the four corner-coupled SQUIDs in Fig. 4.15 (a), there are in total 8

capacitor nodes. Due to the current conservation laws mentioned above, the number

of independent voltages is reduced to 5, corresponding to the number of non-SQUID

loops. This system can then be set up and solved analytically as demonstrated in

Sec. 4.2.6. This voltage formalism turns out to be a more general approach for
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modeling overlapping SQUIDs compared to the current formalism followed in Sec.

4.2.1 for the two corner-coupled SQUIDs. The following section 4.2.4 illustrates the

application of the voltage formalism to the two corner-coupled SQUIDs, and arrives

at the same eigenfrequency solutions as found in Sec. 4.2.1.

4.2.4 Voltage formalism for two corner-coupled SQUIDs

Due to its simple geometry, the model for two corner-coupled SQUIDs can be

completely expressed through the currents in each wiring segment, as discussed in

Sec. 4.2.1. Here we present the alternative method to set up and solve the equations

of motion using the more general voltage formalism. This approach is convenient

for modelling larger arrays of capacitively coupled rf SQUIDs.

The junction currents Ia0,b0 can be expressed in terms of δa,b and V̇1 from the

equation of motion, Eq. (4.12):

Ia0
Ib0

 =
←→
L −1

 CovLδaV̇1 − Φ0δa/(2π) + Φapp

−CovLδbV̇1 − Φ0δb/(2π) + Φapp

 (4.41)

ιa0
ιb0

 =←→κ −1

 2λcovκδau̇1 − δa + ϕapp

−2λcovκδbu̇1 − δb + ϕapp


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where the second equation is the dimensionless form, with u1 = 2πV1/(Φ0ωgeo),

and
←→
L = Lgeo

←→κ =

Lgeo M

M Lgeo

. We can then substitute the time derivative of

Eq. (4.41) into Faraday’s laws, Eq. (4.2) and obtain the expression for ü1(δ̇a, δ̇b, u1):

ü1 = [ϕ̇app
cen − ϕ̇app(Mcen,a +Mcen,b)/(L+M)

+δ̇a(LMcen,a −MMcen,b)/(L
2 −M2) +

δ̇b((LMcen,b −MMcen,a)/(L
2 −M2)− 1) + 2u1]

(2λcov/L[(Mcen,b1 − Lcen,a1) +

((LMcen,b −MMcen,a)(Mb,a1 − Lb,b1)

+(LMcen,a −MMcen,b)(La,a1 −Ma,b1))/(L
2 −M2)])−1

where Mcen,a = Lcen,a1 +Mcen,a0, Mcen,b = Lcen,b0 +Mcen,b1, and Lgeo is abbreviated

as L. Consequently, the equation of motion can be fully expressed in terms of a new

set of six variables, δa,b, δ̇a,b, u1, and u̇1. One can therefore set up the six first-order

initial value problems for the numerical solver in the following manner:

dδa
dτ

= δ̇a (4.42a)

dδb
dτ

= δ̇b (4.42b)

dδ̇a
dτ

= ιa0(δa, δb, u̇1)− βrf sin δa − γδ̇a (4.42c)

dδ̇b
dτ

= ιb0(δa, δb, u̇1)− βrf sin δb − γδ̇b (4.42d)

du1
dτ

= u̇1 (4.42e)

du̇1
dτ

= ü1(δ̇a, δ̇b, u1) (4.42f)
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We can appreciate immediately the simplicity of the voltage formalism. By in-

troducing the nodal voltage V1 as a variable, we eliminate the need for the constraint

on the currents, and the symmetry between the two loops a and b is restored.

Let’s now examine the linear limit approximation for this problem. Consider

the solutions in the following form δ⃗ = δ⃗rf(t)+ δ⃗dc, δ⃗rf(t) =
ˆ⃗
δrf exp(iΩτ), and u1(t) =

û1 exp(iΩτ), where
ˆ⃗
δrf = (δ̂a, δ̂b). Substituting these expressions in the equation of

motion Eq. (4.8) and Faraday’s law, Eq. (4.2), and rearranging the excitation to

the left hand side of the equations, one can obtain a linear system in (δ̂a, δ̂b, û1) :

ϕ⃗dc = δ⃗dc + βrf
←→κ sin δ⃗dc

ϕrf

ϕrf

ϕ̇rf,cen

 =←→χ ·


δ̂a

δ̂b

û1

 (4.43)

where

←→χ =
1 + ι̂rf,a0 κ1ι̂rf,a0 iΩMcen,a0+Lcen,a1

Lgeo
ι̂rf,a0

κ1ι̂rf,b0 1 + ι̂rf,a0 iΩ(
Lcen,b0+Mcen,b1

Lgeo
ι̂rf,b0 + 1)

−2iλcovκδaΩ 2iλcovκδbΩ −2 + 2λcov
Lcen,a1−Mcen,b1

Lgeo
Ω2



T

and ˆ⃗ιrf = βrf cos δ⃗dc + iγΩ − Ω2. The resonance condition for the system is

det(←→χ = 0), which can be solved for Ω to obtain the eigen solutions to the two

corner-coupled SQUIDs.
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4.2.5 The general strategy for modelling a system of overlapping

SQUIDs

As discussed in Sec. 4.2.3, the voltage formalism can be applied to any size of

corner-coupled overlapping SQUIDs array. Here, we outline the procedure for setting

up the equations of motion for a system of corner-coupled SQUIDs in any general

geometry. The first step in studying the dynamics is to identify the independent

variables, which are δ⃗ from the junctions, V⃗ from the overlapping capacitors, and

their time derivatives. We can then express the induced fluxes in the system as Φ⃗ind
SQUID

Φ⃗ind
non-SQUID

 =
←→
L
←→
I con

I⃗JJ
c
˙⃗
V

 (4.44)

where
←→
L is the inductance matrix whose i, j the element describes the flux on the

loop i induced by the segment j, and
←→
I con is the matrix that expresses the currents

in each branch in terms of junction currents I⃗JJ and the displacement currents

through the capacitor nodes c
˙⃗
V . Next, the same flux relations in the conventional

RCSJ model (Sec. 3.1) are invoked here for each SQUID

Φ⃗app
SQUID − Φ⃗ind

SQUID =
Φ0

2π
δ⃗ (4.45)

which can be solved for junction currents I⃗JJ(δ⃗,
˙⃗
V ). The non-SQUID loops, on the

other hand, are described by Faraday’s law in the following form

˙⃗
Φapp

non-SQUID −
˙⃗
Φind

non-SQUID =
←→
V con

Φ0/(2π)
˙⃗
δ

V⃗

 (4.46)
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where
←→
V con is the matrix that associates the junction voltages Φ0/(2π)

˙⃗
δ and volt-

ages across the capacitor nodes V⃗ to each Faraday loop. After substituting the

expression for I⃗JJ(δ⃗,
˙⃗
V ) into Eq. (4.46), the second time derivatives of the capacitor

voltages,
¨⃗
V (

˙⃗
δ, V⃗ ) are obtained. Consequently, we can formulate the final dimension-

less equations of motion in terms of (δ⃗,
˙⃗
δ, V⃗ ,

˙⃗
V ):

dδ⃗

dτ
=

˙⃗
δ (4.47a)

d
˙⃗
δ

dτ
=

¨⃗
δ = ι⃗JJ(δ⃗, ˙⃗u)− βrf sin(δ⃗)− γ

˙⃗
δ (4.47b)

du⃗

dτ
= ˙⃗u (4.47c)

d ˙⃗u

dτ
= ¨⃗u(

˙⃗
δ, u⃗) (4.47d)

4.2.6 Four corner-coupled SQUIDs

With reference to the system shown in Fig. 4.15 (a), the dynamics of the

system is now described by the 4 gauge-invariant phase differences δa,b,c,d and their

time derivatives, as well as 5 independent capacitor nodal voltages V1,2,3,4,5 and

their time derivatives. The voltages across the rest of the capacitor nodes can be

expressed in terms of V1,2,3,4,5 through the current conservation laws inside each

continuous SQUID loop. Applying Faraday’s law to the non-SQUID loops and flux

quantization conditions to the SQUID loops, we obtain the following system of
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equations of motion.

Φapp
a

Φapp
b

Φapp
c

Φapp
d

Φ̇app
ac

Φ̇app
ad

Φ̇app
bc

Φ̇app
bd

Φ̇app
abcd



=



Φ0δa/(2π) + Φind
a (I⃗ ,

˙⃗
V )

Φ0δb/(2π) + Φind
b (I⃗ ,

˙⃗
V )

Φ0δc/(2π) + Φind
c (I⃗ ,

˙⃗
V )

Φ0δd/(2π) + Φind
d (I⃗ ,

˙⃗
V )

−V1 + V2 + Φ̇ind
ac (

˙⃗
I,

¨⃗
V )

Vd − V3 − (V1 + V2 + V3) + Φ̇ind
ad (

˙⃗
I,

¨⃗
V )

Vb − (V1 + V2 + V5)− V5 + Φ̇ind
bc (

˙⃗
I,

¨⃗
V )

(V1 + V2 − V4)− V4 + Φ̇ind
bd (

˙⃗
I,

¨⃗
V )

V5 − V2 − (V1 + V2 − V4) + V3 + Φ̇ind
abcd(

˙⃗
I,

¨⃗
V )



(4.48)

where I⃗ = (Ia, Ib, Ic, Id) and V⃗ = (V1, V2, V3, V4, V5). The top 4 rows are from the

flux quantization conditions on the 4 SQUID loops, and the bottom 5 rows from

application of Faraday’s law to the non-SQUID loops. The non-SQUID loops are
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labeled by the SQUID loops involved in forming their circuit. For example, the top

left partial loop in Fig. 4.15 (a) is labelled as ac. The voltages in the parentheses,

e.g. (V1 + V2 + V3) in the sixth row, are dependent nodal voltages obtained from

applying current conservation laws to the continuous SQUID loops. The induced

flux Φind
xx is calculated from the partial inductances from the individual branches

just as in Sec.4.2.1, which is a function of junction currents I⃗ and node voltages V⃗ .

The low rf flux amplitude linear limit solution can then be obtained by ex-

pressing Ia,b,c,d in terms of δa,b,c,d and their time derivatives using the RCSJ model

in Eq. (3.3), and replacing time derivatives with iΩ under Fourier transform. The

resulting system has a size 9×9 with the 9 variables: δa,b,c,d and V1,2,3,4,5. The eigen-

frequencies for this linear system can be calculated and are plotted in Fig. 4.16 as

a function of dc flux. As discussed in section 4.2.1.5, and illustrated in Figs. 4.4

and 4.6, the high frequency modes are dominated by the smaller loops, which con-

tribute to smaller effective inductances, explaining their higher resonance frequency

and weaker tunability, as explained through Eq. (4.15). The same loop-resonance

correspondence can be established for the system of four corner-coupled SQUIDs

containing 4 SQUID loops, 4 partial loops and 1 extra-SQUID loop, as labeled in

Fig. 4.16. As expected, the much smaller extra-SQUID loop brings about a very

high resonance at Ω ≈ 12, as shown in Fig. 4.16.

Similar to the two corner-coupled SQUIDs discussed in Sec.4.2.1.6, the full

nonlinear solution is obtained numerically. The details for setting up the numerical

solver can be found in Sec 4.2.5. Fig. 4.17 shows the resulting transmission S21 as a

function of driving frequency Ω and applied dc flux Φdc in the low rf flux amplitude
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Figure 4.16: Real part of eigenfrequency solutions Re(Ω) from the characteristic

equation det(←→χ ) = 0 in the linear limit for the four corner-coupled SQUIDs shown

in Fig. 4.15 (a), as a function of dc magnetic flux Φdc in units of Φ0. In this case

9 distinct resonance modes can be resolved. The two black horizontal dashed lines

delineate the three types of resonant modes, as labeled.
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linear limit, Φrf ∼ 10−3Φ0. The numerical solution has good agreement with the

linear limit solutions, as illustrated with the coincidence of the dark (absorbing)

features with the red dotted curves. A separate calculation is performed around

Ω = 12 which resolves the extra-SQUID loop modes that can not be captured in

the frequency range in Fig.4.17.

4.2.7 2× 2× 2 corner-coupled overlapping SQUIDs

A full numerical solution, or even an analytical solution in the linear limit, is

very computationally expensive to obtain for the large N × N × 2 system studied

experimentally. However, the case of N = 2 (Fig. 4.15 (b)) can be tackled easily

and should illustrate the general properties of the model. For the 2× 2× 2 system,

there are 8 SQUID loops, 9 partial loops, and 2 extra-SQUID loops. In the absence

of any symmetries, we would thus expect a total of 19 resonant modes, comprised of

8 lower frequency modes near the single SQUID resonance, 9 partial loop modes at

about twice the single-SQUID resonance frequency, and 2 extra-SQUID loop modes

near Ω = 12.

Following the same treatment as in Sec. 4.2.6, the eigenfrequencies in the

low rf flux amplitude linear limit, and the full nonlinear numerical solution, can be

obtained, and are shown in Figs. 4.18 and 4.19, respectively. Indeed, 19 eigenfre-

quencies fall in the expected range for their corresponding loop modes as depicted

in Fig. 4.18. We note once again that the lowest-frequency (2 < Ω < 3) SQUID-like

modes with large effective inductance |Leff| ≳ Lgeo show strong tuning with dc flux,
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Figure 4.17: Nonlinear solutions to the four corner-coupled SQUIDs shown in Fig.

4.15(a) at Φrf ∼ 10−3Φ0. The quantity plotted is the magnitude of transmission

S21(dB) on a logarithmic color scale, as a function of dimensionless frequency Ω =

ω/ωgeo and applied dc magnetic flux in units of the flux quantum Φ0. The red

dotted curves are the eigenfrequencies from the linear limit solution, and are closely

matching to the resonances from the numerical solution. The dashed white curve

is the eigenfrequency of the single SQUID with the same design parameter. The

calculation cuts off at Ω = 6 below the extra-SQUID loop modes.
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Figure 4.18: Real part of eigenfrequency solutions Re(Ω) from the characteristic

equation det(←→χ ) = 0 in the linear limit for the 2 × 2 × 2 corner-coupled SQUIDs

shown in Fig. 4.15(b), as a function of dc magnetic flux Φdc in units of Φ0. A total

of 19 distinct resonance modes can be resolved. The two black horizontal dashed

lines delineate the three types of resonant modes, as labeled.

as expected for individual hysteretic (βrf > 1) rf SQUIDs. The intermediate fre-

quency (3 < Ω < 6) partial loop modes have much more modest dc flux tunability.

The highest frequency modes (11 < Ω < 12) arising from the two extra-SQUID

loops are almost entirely insensitive to dc flux. One can note a general increasing

insensitivity to dc flux with increasing frequency of the modes.

The full numerical solution in the low rf flux amplitude limit in Fig. 4.19

shows resonances coincident with the eigenfrequencies obtained from the linear-limit

solution.
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Figure 4.19: Nonlinear solutions to the 2 × 2 × 2 system shown in Fig. 4.15(b) at

Φrf ∼ 10−3Φ0. The quantity plotted is the magnitude of transmission S21(dB) on

a logarithmic color scale, as a function of dimensionless frequency Ω = ω/ωgeo and

applied dc magnetic flux in units of the flux quantum Φ0. The red dotted curves

are the eigenfrequencies from the linear-limit solution matching the resonances from

the numerical solution. The dashed white curve is the eigenfrequency of the single

SQUID with the same design parameter.
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4.2.8 N ×N × 2 corner-coupled overlapping SQUIDs

Equipped with the loop-mode correspondence established in the analysis for

the model systems discussed in section 4.2, we can extrapolate to the prediction for

a larger system, where many partial loop modes should be visible between Ω = 3

and 6, with very weak dc flux tunability, while the SQUID loop modes occur at

lower frequency range with high dc flux tunability. The extra-SQUID loop modes

around Ω = 12 is almost invariant in dc flux and is beyond the frequency range of

our measurement capability.

In the general case of an N×N×2 SQUID array, there are 2N2 SQUID loops,

(2N−1)2 partial loops, and 2(N−1)2 extra-SQUID loops, resulting in a total number

of 8N2 − 8N + 3 distinct loops. As illustrated above, each loop corresponds to an

equation of motion in the voltage formalism. Thus, one would expect 8N2− 8N +3

equations for an N ×N × 2 SQUID array. There are two capacitor nodes for each

partial loop. However, the current conservation law from the SQUID loops will

constrain the number of independent nodal voltages to 2 × # of partial loops −

(# of SQUID loops − 1) = 6N2 − 8N + 3. Together with the 2N2 gauge-invariant

phase differences δ for each SQUID, the dynamics is described by a total of 8N2 −

8N+3 variables. The resulting (8N2−8N+3)×(8N2−8N+3) system can be solved

exactly and will generate 8N2 − 8N + 3 modes in the absence of any symmetry.
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4.3 Measurement results on the overlapping hysteretic SQUID meta-

materials

The measurement was performed in the same setup as in Sec.3.3.2, with only

the sample replaced by the overlapping SQUID array. The details of the experiment

will not be reproduced here.

4.3.1 Frequency and dc flux dependence of the transmission

The rf SQUID response is typically very small in the transmission measurement

due to its weak coupling to the waveguide mode. To better resolve the SQUID

resonances, the data has been processed through a series of techniques as described

in Sec.3.4. The resulting ∆S21 as a function of applied dc flux Φdc and microwave

frequency f is plotted in Fig. 4.20 for eight different values of the rf flux amplitude

Φrf.

The yellow color represents nearly complete transmission of the microwaves

(i.e. ∆S21 ≲ 0 dB), while the darker green features show conditions where the

metamaterial interacts strongly with the passing electromagnetic fields and dissi-

pates power. The green features trace out the resonant response as a function of

applied dc magnetic flux with a typical 1Φ0 periodicity. The red dashed curves mark

the single-SQUID resonance and roughly corresponds to the expected boundary be-

tween the low-frequency and highly-tunable SQUID modes, and the high-frequency

partial loop modes with lower-tunability introduced in Sec. 4.2.6. It should be

noted that the third kind of mode, the extra-SQUID loops modes, with frequencies
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Figure 4.20: The measured magnitude of transmission ∆S21 (blue to yellow

color) of the 12 × 12 × 2 overlapping corner-coupled SQUID array as a func-

tion of dc flux swept from −2 to +2 Φ0, and as a function of rf driving fre-

quency f from 15 to 30 GHz (Ω = f
fgeo

= 1.8 − 3.6), at a temperature

of 4.6 K. Results are presented at eight different applied rf flux amplitudes:

[0.033, 0.023, 0.013, 0.01, 0.007, 0.006, 0.005, 0.0006] Φ0 in panels a) through

h). The red dashed curves denote the single-SQUID eigenfrequency.
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around 12fgeo ≈ 100 GHz, are beyond the measurement range of our apparatus.

Figure 4.21: The measured magnitude of transmission ∆S21 (blue to yellow color)

of the 12×12×1 single-layer SQUID array as a function of dc flux swept from −2 to

+2 Φ0, and as a function of rf driving frequency f from 15 to 30 GHz (Ω = 1.8−3.6),

at a temperature of 4.6 K. Results are presented at eight different applied rf flux

amplitudes: [0.042, 0.03, 0.026, 0.017, 0.015, 0.011, 0.009, 0.0003] Φ0 in panels a)

through h). The red dashed curves denote the single-SQUID eigenfrequency.

The response from the overlapping SQUID array SNAP161A is in clear con-

trast to the measurement on a single layer 12×12×1 SQUID array (SNAP161D) with

the same design parameters shown in Fig. 4.21. The SNAP161A sample is identical
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to this 12×12×1 array after removing the top overlapping layer of SQUIDs. Unlike

the overlapping corner-coupled SQUID array, the single layer SQUID array has only

one resonance band tuned with the applied dc flux Φdc, which is consistent with the

coherent response seen in earlier measurements of single-layer SQUID metamaterials

[44, 176, 178, 25] as well as shown in Chapter 3. The resonant frequency is close to

that of a single-SQUID resonance shown as the red dashed curves. At low applied rf

flux amplitude, the resonance is above that of the single SQUID since the collective

antiferromagnetic coupling reduces the induced flux on each SQUID and thus the

effective inductance. According to Eq. 4.15, a low Leff < Lgeo corresponds to a

resonance higher than that of the single SQUID as observed experimentally in Fig.

4.21. As expected for the SQUID modes, their tunability in Φdc also diminishes with

increasing Φrf, again observed in earlier work on single-layer SQUID metamaterials

[44, 176, 178, 25].

There are several other interesting features of Fig. 4.21 worth mentioning.

First, note that green blobs appear around the turning points where the resonance

tuning curves in applied dc flux from the two adjacent periods meet. These can be

attributed to the fact that the meta-atom SQUID is strongly hysteretic (βrf > 1),

resulting in multiple stable solutions. At points where multiple solutions cross in

the frequency-dc-flux space, there can be enhanced resonant responses over a range

of frequencies, accounting for these blobs. We also note that the tuning curves

are noticeably asymmetric as a function of dc flux at low rf flux amplitudes, and

become increasingly symmetric as the rf flux amplitude increases. The asymmetry

in the dc tuning curve is related to the hysteresis in dc flux sweep of the rf SQUID
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metamaterial. For a measurement with decreasing dc flux, the asymmetric tilt of

the tuning curve points to the opposite direction. This hysteresis is suppressed at

higher applied rf flux amplitude because the strong oscillatory drive can overcome

the barriers between local potential minima, preventing the system from becoming

stuck in metastable states that are responsible for the hysteresis.
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4.3.2 Frequency and rf flux dependence of the transmission

Figure 4.22: The measured magnitude of transmission ∆S21 (green to yellow color)

of the 12× 12× 2 overlapping corner-coupled SQUID array as a function of applied

rf magnetic flux amplitude from 2× 10−4Φ0 to 5× 10−2Φ0 (and the corresponding

microwave power incident on the sample in dBm), and rf driving frequency f from

15 to 26.5 GHz (Ω = 1.8 to 3.2), at a temperature of 4.6 K. The measurement was

taken at Φdc = −0.3Φ0 with two separate power sweeps due to the limited 40 dB

dynamic range in the VNA power sweep function. The two vertical lines around -62

and -42 dBm are the artifacts from stitching the two sweeps together.

Figure 4.22 shows the effects of increasing the driving rf flux amplitude beyond

linear response on the spectrum of modes in the overlapping 12 × 12 × 2 sample.

The measurement was performed at zero current in the magnet but Φdc = −0.3Φ0

on the SQUIDs, based on their dc flux tunability curves. The result in Fig. 4.22 is

203



obtained from two separate power sweeps on the VNA due to its limited dynamic

range. The first power sweep was performed from -82 to -42 dBm, while the second

from -62 to -35 dBm. In the range where both power sweeps overlap, the average

response is shown in Fig. 4.22 leading to the two vertical lines at the limits of the

two power sweeps.

One notes strong tuning of the modes below Ω = 2.5 and relatively small

tuning for the higher frequency modes. This behavior is in qualitative agreement

with that shown in Fig. 4.8 for the two corner-coupled SQUIDs. The low-frequency

SQUID loop modes are strongly tuned, whereas the partial-loop modes only show

modest tuning with rf flux. The experiment appears to just reach the high-power

linear limit that is clearly seen in the model results in Fig. 4.8. However, these

large rf flux amplitudes bring about the dangers of sample heating and amplifier

saturation.

4.4 Discussion

We have so far explored the capacitively and inductively coupled overlapping

SQUIDs in four different geometries so far: two edge-coupled SQUIDs, two and four

corner-coupled SQUIDs and the two by two by two array of overlapping SQUIDs.

More generally, for a system of many overlapping corner-coupled SQUIDs, the total

number of elementary loops can be determined as follows. If we treat the SQUID

loops as vertices and partial loops as edges connecting the corresponding vertices, we

can represent the geometry of overlapping SQUIDs as a planar graph, as illustrated
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in Fig.4.23. The most general system could be represented by a disconnected graph

Figure 4.23: The correspondence between a general system of overlapping SQUIDs

and its graph representation. The SQUID loops are represented by the vertices,

and the partial loops connecting the neighboring SQUIDs by the bonds. The sim-

ple cycles in the graph correspond to extra-SQUID loops in the SQUID array, as

highlighted by green and blue arrows in the graph, and corresponding closed loops

in the SQUID array.

as shown in Fig.4.23 where a single SQUID in the lower right corner does not

overlap with any other SQUIDs. Without loss of generality, we can examine each

connected sub-graph individually and sum up the number of elementary loops. For

each connected planar sub-graph with n vertices (SQUID loops) andm edges (partial

loops), the extra-SQUID loops are just the simple cycles of the graph, the number

of which is given by m − n + 1, bringing the total number of elementary loops to

m+n+m−n+1 = 2m+1 in the sub-graph. The number of unknowns in the voltage

formalism for the sub-graph can be obtained as in Sec. 4.2.8, where 2m − n + 1

unknown voltages and the n phase differences from n junctions, give rise to 2m+ 1
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unknowns, equal to the number of elementary loops. Tallying up all the sub-graphs,

we have shown that for any general system of overlapping SQUIDs, the voltage

formalism can result in an exactly determined system that describes the dynamics

of the SQUIDs. For example, a single SQUID by itself is a planar connected graph

with 1 vertex and 0 edges. The dynamics are described by 1 unknown, the phase

difference, and 1 equation of motion, the flux quantization condition for a single

SQUID (Eq. (3.5)). The N ×N × 2 system in Sec. 4.2.8 is another special case of

a system consisting of one planar connected graph.

Although, the extra-SQUID loops studied in the examples above are the small-

est circuits corresponding to the very high frequency modes 12fgeo ≈ 100 GHz, they

can take on larger sizes in a more general geometry as shown in Fig.4.23. In fact,

the extra-SQUID loop highlighted in blue in Fig.4.15 is the smallest realization

permitted in our overlapping SQUID design.

The frequency and the tunability in applied dc magnetic flux of the resonance

modes can be obtained from Eq.(4.15), where the effective inductance depends on

the current distribution in the corresponding resonance modes. The modes with very

small |Leff| ≪ Lgeo will have a high resonant frequency Ωres ≈
√
Lgeo/La,eff, and be

largely independent of dc flux applied to the metamaterial. On the other hand,

the modes with large effective inductance |Leff| ≫ Lgeo will have a low resonant

frequency Ωres ≈
√
βrf cos δ, even lower than the single SQUID resonance, and will

be strongly tunable with dc flux (through δdc). The experimental data on dc-flux

tuning of the 12× 12× 2 metamaterial is consistent with these expectations.

It should be noted that the only source of loss treated in this work arises from
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quasiparticle tunneling, which appears as the resistance R in the RCSJ model, and

is incorporated into the fully nonlinear equations of motion through the parameter

γ. An extension of this treatment would be inclusion of other sources of loss. One

candidate source of loss arises from dielectric losses in the Josephson junction tunnel

barrier, the coupling capacitors between SQUIDs, as well as dielectrics surrounding

the superconducting wiring. These dielectrics are known hosts for electric-dipole

two-level systems [77, 78].

The treatment presented here assumes that all of the rf SQUIDs making up

the metamaterial are nominally identical, having the same values of geometrical

inductance, shunt capacitance, overlap capacitance, critical current, and junction

resistance. We also assume that every SQUID experiences the same values of the

externally-applied dc and rf flux, and that the driving rf flux is at a single frequency.

It would be interesting to see how the results of this work depend on variations in

these quantities due to either statistical or systematic variation in space.

In our treatment, we assume that the SQUIDs respond to external fields with

a combination of dc currents and rf currents. However, the response rf currents are

assumed to flow only at the same frequency as the driving flux. The latter assump-

tion is expected to break down as the rf flux amplitude increases and activates the

sin δrf nonlinearity. This response is included in the solutions to the full nonlinear

equations of motion, of course. Because of the broad frequency range over which

the overlapping SQUID metamaterial responds, one can employ them for broadband

parametric amplification or intermodulation generation.

Now that capacitive coupling between flux-based superconducting meta-atoms
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has been established, one can ask whether the capacitive coupling can be varied?

For example, there exist many nonlinear dielectric materials whose dielectric prop-

erties can be tuned with dc electric field, rf electric field, or with temperature at

cryogenic temperatures [222, 223]. In addition, charge qubits can enjoy variable

capacitive coupling through a small Josephson junction [205]. Thus a certain degree

of tunability of capacitive coupling should be possible.

208



Chapter 5

Conclusions and future directions

This work started with the goal of building quantum metamaterials utilizing

flux qubits as meta-atoms. The first generation of the quantum metamaterial with

three-junction flux qubits embedded in a coplanar waveguide (CPW) resonator was

designed and fabricated as shown in Fig.5.1. However, due to the lack of control

in the junction tunneling currents in the fabrication, the ratios of the three junc-

tions cannot be maintained to produce the double well potential required in these

persistent current flux qubits. With a more mature fabrication recipe, we hope to

finally realize a large array of similar qubits, approaching the limit of a quantum

metamaterial in the future.

On the other hand, the rf SQUID metamaterials are fabricated by reliable

commercial Niobium processes for relatively large Josephson junctions. In addition,

the simple architecture of the rf SQUID, requiring only one junction in a meta-

atom, imposes a much more relaxed constraint on the reproducibility of the process.

The rf SQUID arrays are characterized by measuring the transmission through a

rectangular waveguide loaded with the rf SQUID metamaterials. Although many

multistability-induced features can be observed from the transmission signal, the

measured response still effectively averages over all of the SQUID meta-atoms and

lacks single-SQUID resolution. To address this limitation, laser scanning microscopy,
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Figure 5.1: Scanning electron microscopy of the three junction flux qubit at the

center of a CPW resonator.

able to spatially resolve the current distribution in a resonant superconducting meta-

atom or device, has been employed to study non-hysteretic SQUID metamaterials

[178]. We expect that the interesting nonlinear dynamics in the strongly coupled

hysteretic SQUID arrays, as well as the overlapping SQUID arrays, can be better

understood through this technique.

A brief summary of the key results from the works presented in the the-

sis is presented here. In chapter 2, we have discussed our work on characteriz-

ing a coplanar waveguide resonator intended for housing quantum metamaterials.

The capacitively-coupled half wavelength superconducting aluminum microwave res-

onators is designed and fabricated with minimum critical dimension of 1 µm in the

center conducting line of the CPW. The temperature and power dependence of

the resonator Qi deviate from the classical standard tunneling model for two level

systems (TLS). At high applied powers, the internal loss shows logarithmic power
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dependence, a signature of the generalized tunneling model with fluctuators. At

powers below TLS saturation, the internal loss decreases from 50 mK down to the

fridge base temperature. We attribute this behavior to the detuning between TLS

and the CPW resonance frequency in a discrete TLS ensemble. Upon cooling, the

single TLS response bandwidth, proportional to Γ2 ∝ T 1.3, decreases. When the

bandwidth drops below the detuning between TLS and the resonance frequency de-

fined by the CPW resonator, the resonant TLS response decreases and contributes

less to the internal loss. The generalized tunneling model is revisited and modified

with the discrete TLS formalism resulting in a comprehensive fit to the measured

loss in the entire low temperature and low power range, with a reasonable set of

parameters.

The work on hysteretic rf SQUID metamaterials is summarized in chapter

3. A series of rf SQUID metamaterials with high βrf = Lgeo/LJJ values has been

designed, fabricated and characterized. The multistability in the meta-atoms has

been demonstrated analytically and numerically in the RCSJ model. Combined with

the strong inductive coupling among the SQUIDs, the system presents a spread of

resonance frequencies around the single SQUID resonance in our calculation. The

multistable response is observed experimentally in the forms of hysteresis in dc flux

sweep and coexistence of multiple resonances at one given applied dc flux. A large

strongly-coupled hysteretic SQUID array also possess 2Φ0 dc flux tuning period, as

opposed to the common Φ0 periodicity. This change in dc flux tuning pattern can be

phenomenologically explained. In a strongly coupled system of hysteretic SQUIDs,

the curve of resonance tuning with applied dc flux can skip one period to the next
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curve centered 2Φ0 away. The sample is under a large range of different dc flux

biases, which leads to a spread of the tuning curves in applied dc flux creating the

experimentally observed transmission spectrum.

Chapter 4 discusses the work on overlapping SQUID metamaterials, where we

consider three-dimensional rf SQUID metamaterials with strong capacitive coupling

between rf SQUID loops for the first time. Strong displacement currents can flow

through the capacitors created by the overlap of the SQUID loops, creating new

closed paths for the rf current through the rf SQUID network. The RCSJ model is

extended to incorporate the capacitive coupling and the new current paths, leading

to the prediction of a large range of resonances from frequencies below the single

SQUID resonance to more than ten times of the single SQUID resonance. The

number of distinct resonating loops in our three-dimensional N ×N × 2 rf SQUID

metamaterial design scales as 8N2 − 8N + 3. A large N = 12 three-dimensional rf

SQUID metamaterial is measured, and is found to behave in a qualitatively different

manner from the corresponding single-layer 12×12×1 metamaterial. The observed

multiplicity of resonances are in good agreement with our theory of capacitively-

coupled overlapping SQUIDs.
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Appendix A

Parameters for the two corner-coupled SQUIDs

To simplify the discussion in the main text, the definitions and numerical

values of the parameters used in Sec.4.2.1 are summarized below.

κ1 =M/Lgeo = 0.0335

←→κ =

 1 κ1

κ1 1


Lδa = La,a1 −Ma,b1 = 39.21pH

Lδb = Lb,b1 −Mb,a1 = 207.39pH

κδa = Lδa/Lgeo = 0.154

κδb = Lδb/Lgeo = 0.813

κa =
Lgeo

Lδa

+
M

Lδb

= 6.55

κb =
M

Lδa

+
Lgeo

Lδb

= 1.45

CD = det

La,a1 Ma,b1

Mb,a1 Lb,b1



κva = det

Mcen,b1 Lcen,a1

Lb,b1 Mb,a1

/CD = −0.714
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κvb = det

 Ma,b1 La,a1

Mcen,b1 Lcen,a1

/CD = −0.0085

LIa = det


Mcen,a0 Lcen,a1 Mcen,b1

La,a0 La,a1 Ma,b1

Mb,a0 Mb,a1 Lb,b1

/CD = −134.4pH

LIb = det


Lcen,b0 Lcen,a1 Mcen,b1

Ma,b0 La,a1 Ma,b1

Lb,b0 Mb,a1 Lb,b1

/CD = 39.5pH

κIa = LIa/Lgeo = −0.527

κIb = LIb/Lgeo = 0.155

←→κ I =

κIa κIb

κIa κIb


λcov = Cov/(2C) = 0.23

←→κ δ =

κva 1 + κvb

κva 1 + κvb


←→κ loop =

−κδa 0

0 κδb


α = κbΦ

app
cen /Φ

app + κbκva −
LIb

Lδa

+ κbκvb −
LIb

Lδb

= −2.00
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The partial inductance matrix for the 2 corner-coupled SQUIDs (as shown in Fig.

4.3(a)) has the following numerical values
La,a0 Ma,b0 La,a1 Ma,b1

Mb,a0 Lb,b0 Mb,a1 Lb,b1

Mcen,a0 Lcen,a1 Lcen,b0 Mcen,b1

 =


203.27 −4.12 51.89 12.68

12.68 51.89 −4.12 203.27

10.77 37 37 10.77

 pH (A.1)
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Vincent. A Metamaterial for Directive Emission. Physical Review Letters,

89(21):213902, November 2002. Publisher: American Physical Society.

[6] N. Garcia, E. V. Ponizovskaya, and John Q. Xiao. Zero permittivity materials:

Band gaps at the visible. Applied Physics Letters, 80(7):1120–1122, February

2002.

216



[7] Brian T. Schwartz and Rafael Piestun. Total external reflection from metama-

terials with ultralow refractive index. JOSA B, 20(12):2448–2453, December

2003. Publisher: Optica Publishing Group.

[8] Richard W. Ziolkowski. Propagation in and scattering from a matched meta-

material having a zero index of refraction. Physical Review E, 70(4):046608,

October 2004. Publisher: American Physical Society.

[9] Mário Silveirinha and Nader Engheta. Tunneling of Electromagnetic Energy

through Subwavelength Channels and Bends using $\ensuremath{\epsilon}$-

Near-Zero Materials. Physical Review Letters, 97(15):157403, October 2006.

Publisher: American Physical Society.

[10] Nader Engheta. Pursuing Near-Zero Response. Science, 340(6130):286–287,

April 2013.

[11] J. Bardeen, L. N. Cooper, and J. R. Schrieffer. Theory of Superconductivity.

Phys. Rev., 108(5):1175–1204, December 1957.

[12] C. Kurter, T. Lan, L. Sarytchev, and Steven M. Anlage. Tunable negative

permeability in a three-dimensional superconducting metamaterial. Physical

Review Applied, 3(5), 2015.

[13] W. Rotman. Plasma simulation by artificial dielectrics and parallel-plate me-

dia. IRE Transactions on Antennas and Propagation, 10(1):82–95, January

1962. Conference Name: IRE Transactions on Antennas and Propagation.

217



[14] M. Ricci, N. Orloff, and S. M. Anlage. Superconducting metamaterials. Ap-

plied Physics Letters, 87(3):034102, 2005.

[15] R. A. Shelby, D. R. Smith, and S. Schultz. Experimental Verification of a

Negative Index of Refraction. Science, 292(5514):77–79, April 2001. Publisher:

American Association for the Advancement of Science.

[16] Mehmet Bayindir, K. Aydin, E. Ozbay, P. Markoš, and C. M. Soukoulis.
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