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The scattering matrix S linearly relates the vector of incoming waves to outgoing wave excitations, and
contains an enormous amount of information about the scattering system and its connections to the
scattering channels. Time delay is one way to extract information from S, and the transmission time delay
τT is a complex (even for Hermitian systems with unitary scattering matrices) measure of how long a wave
excitation lingers before being transmitted. The real part of τT is a well-studied quantity, but the imaginary
part of τT has not been systematically examined experimentally, and theoretical predictions for its behavior
have not been tested. Here we experimentally test the predictions of Asano et al. [Nat. Commun. 7, 13488
(2016)] for the imaginary part of transmission time delay in a nonunitary scattering system. We utilize
Gaussian time-domain pulses scattering from a two-port microwave graph supporting a series of well-
isolated absorptive modes to show that the carrier frequency of the pulses is changed in the scattering
process by an amount in agreement with the imaginary part of the independently determined complex
transmission time delay, Im½τT �, from frequency-domain measurements of the subunitary S matrix. Our
results also generalize and extend those of Asano et al., establishing a means to predict pulse propagation
properties of non-Hermitian systems over a broad range of conditions.

DOI: 10.1103/nnk7-xy4v

Introduction—In linear scattering systems, the scattering
matrix S is used to relate incoming waves jψ ini to outgoing
waves jψoutiwhere jψouti ¼ Sjψ ini. The scattering matrix S
is a complex function of energy (or frequency) and is a
square M ×M matrix where M is the number of channels
coupling the system to the outside world. This formulation
of scattering as well as its statistical treatment using random
matrix theory [1–9] can be applied to a wide array of
complex systems. A nonexhaustive list includes microwave
and sound scattering experiments [10–16], nuclear and
atomic scattering [5], and scattering in quantummany-body
systems [17]. The scattering matrix encapsulates a vast
amount of information regarding the scattering system
[5,18–20]. It can be used to determine how long a wave
stays in the scattering system before leaving, which is
referred to as time delay.
In the same way that the scattering matrix can be used to

describe a broad range of scattering phenomena, time
delay is just as widely applicable. In quantum mechanics,
time delay is directly related to the phase evolution of
quantum waves [21,22]. It can also be related to the
density of states of open scattering systems [23,24]. In

photonics, time delay can be used to determine group
delay in optical fibers and manipulate the shape of
wavefronts [25–29]. The time delay operator can also
be utilized to optimize light storage within disordered
media [30], and to characterize scattering of narrow-band
acoustic pulses [31]. In electromagnetics, time delay can
be used to determine group delay in wave guides [32–34]
and to control the level of energy focused within a
microwave enclosure [35]. It can also be used to determine
the locations of poles and zeros of the scattering matrix in
the complex frequency plane [7,36–40].
Time delay in unitary scattering systems—Time delay

was first described by Eisenbud [41] and Wigner [42] in
the context of elastic nuclear scattering. This concept was
later generalized by Smith [43] to include inelastic
scattering and systems with many channels. In the case
of classical electromagnetic waves, the setting for the
experimental results in this Letter, time delay is related to
the derivative of the classical wave’s scattering phase shift
with respect to frequency [10,24,44]. Written in terms of
the frequency dependent scattering matrix, the Wigner-
Smith time delay for electromagnetic waves is τWðωÞ ¼
−ði=MÞ½d=dω�ln½detSðωÞ� where ω is angular frequency.
The statistical properties of time delay in highly over-

moded unitary scattering systems have been investigated in
detail [7,45–58], including its use in quantum transport
theory [59]. We note that furtive attempts to define a
complex generalization of time delay in the context of
tunneling [60,61] have proven to be of limited physical
utility [62].
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Time delay in subunitary scattering systems—In this
Letter, we will focus on the time delay associated with the
transmission components of the scatteringmatrix referred to
as transmission timedelay (τT). This is in contrast toWigner-
Smith time delay which utilizes the entire scattering matrix.
Sincewe study a two-port ring graph, the scatteringmatrix is

rank 2: S ¼
�
R T 0

T R0

�
where T and T 0 are the transmission

coefficients and R and R0 are the reflection coefficients.
Transmission time delay τT ¼ τTðω; αÞ is defined generally
as [40]

τT ¼ −i
∂

∂ω
ln½ detTðωþ iαÞ� ¼ Re½τT � þ i Im½τT � ð1Þ

where T ¼ jS21jeiϕ, and α quantifies the uniform loss in the
system. Transmission time delay can be analogously defined
for T 0.
The transmission submatrix T is subunitary, hence τT is

complex valued, and its real and imaginary parts can be
either positive or negative. This naturally leads to the
question of how to physically interpret this quantity.
Negative real time delay was examined theoretically by

Garrett and McCumber [63] and experimentally demon-
strated by Chu and Wong for light pulses interacting with a
single isolated absorptive mode [64]. Negative time delay
occurs when the group velocity (vg) of the pulse surpasses
the speed of light c, or becomes negative. This can occur in
regions of large anomalous dispersion (e.g., the system is
excited near one or more narrow resonances) [65]. In the
vg > c case the peak of the pulse traveling through an
anomalously dispersive medium arrives before an equiv-
alent pulse traveling through vacuum [66]. In the vg < 0

case the peak of the pulse leaves the medium before the
peak of the incident pulse enters [67]. This unintuitive
phenomenon is the result of inhomogeneous distortion of
the Fourier components of the pulse as it travels through the
medium, causing shifts in the center of the pulse and its
leading edge. The overall pulse character is maintained as
long as the frequency bandwidth of the pulse is smaller than
the width of the resonance being excited in the medium
[63,65]. Remarkably, a negative real part of complex time
delay is also observed in media with gain [68], as well as
loss, and in systems with nonlinear wave mixing [69].
Recently, in a purely quantum mechanical measurement of
single photons traveling through a cloud of resonantly
absorbing atoms a negative real part of time delay
was observed [70], and its value is equal to the group
delay [i.e., the real part of Eq. (1)], suggesting a deep
connection between complex time delay and quantumweak
measurements.
Imaginary time delay was first interpreted by Asano

et al. [71] as a center-frequency shift in the pulse rather than
a time shift. They note that this relationship is similar to
that between frequency shifts and angular Goos-Hänchen

shifts [72–76], as well as frequency shifts and the imagi-
nary part of quantum weak measurement values [77–82].
Asano et al. make the theoretical connection between
imaginary time delay and pulse center frequency shift
but do not present corresponding experimental results. In
this Letter, we extend their work by presenting the
corresponding experimental results directly demonstrating
the relationship between imaginary time delay and pulse
center-frequency shift.
This Letter is structured as follows. First, we briefly review

the theoretical model describing pulse propagation through
dispersive media. We then present the experimental setup,
data, and results. These experimental results are directly
compared to thepredictionsmadebyAsano et al. [71], andwe
discuss how our results generalize theirs.
Transmission time delay and Gaussian pulse properties—

To derive the predicted results one can combine methods
used in Asano et al. [71] and Cao et al. [83]. The
calculation details are presented in Sec. III of Supplemental
Material [84]. Here we summarize the highlights. The main
assumptions needed are: (1) The frequency bandwidth of
the pulse Δ̃ω is much smaller than the 3-dB linewidth of the
resonant mode being studied γ3-dB, and (2) the system is
linear and dispersive.
The predicted shift in transmission time (Dt) and center

frequency (Dω) of a transmitted Gaussian pulse is

Dt ¼ Re½τT �; ð2Þ

FIG. 1. (a) Time-domain experiment setup. (b) Frequency-
domain experiment setup.
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Dω ¼ −Δ̃2 Im½τT �; ð3Þ

where Δ̃ ¼ ðΔ̃ω=2
ffiffiffiffiffiffiffiffiffiffiffi
2 ln 2

p Þ and Δ̃ω is the full width at
half maximum (FWHM) of the pulse Gaussian distribution
in the frequency domain. See Sec. V in Supplemental
Material [84] for more details.
Experiment—The experiments were performed using a

two-port microwave ring graph as the scattering system.
The ring graph is composed of two coaxial cables of
different lengths (27.9 and 30.5 cm long) and two
T-junctions, and is depicted in both panels of Fig. 1.
There are multiple reasons why we found it advantageous
to use a ring graph for this experiment. One is that the ring
graph has widely spaced and isolated absorptive modes [see
Fig. 2(a)], allowing for straightforward analysis and inter-
pretation. Another reason is because the S matrix and
complex time delay of the ring graph have already been
thoroughly characterized [40,85,86]. We note in passing
that prior work has demonstrated that time delay of short
pulses in microwave graphs contains useful information
about the structure of the graph [87,88].
Transmission time delay measurements—To find the

transmission time delay, we used the frequency domain
experiment setup depicted in Fig. 1(b). Port 1 (P1) of a
Keysight N5242A network analyzer (PNA-X) is attached to

one end of the ring graph, the other end of the ring graph is
attached to port 2 (P2). The PNA-X is calibrated up to the
connection points to the ring graph with a Keysight N4691-
60001 Electronic Calibration kit over the 10 MHz to
18 GHz frequency range with a frequency step size of
179.9 kHz.
Representative frequency domain results are summarized

in Fig. 2, where both the measured scattering parameters
and the corresponding calculated transmission time delay
[using Eq. (1)] are depicted as a function of frequency. We
see in Fig. 2(a) that the modes are widely spaced without
any overlap as characterized experimentally in Ref. [40],
and assumed theoretically [63,71].
In Fig. 2(b) we see that both the real and imaginary parts

of the transmission time delay evolve through positive and
negative values that can be described in terms of
Lorentzian-based functions of frequency [39,40]. We also
see that the transmission time delay extrema coincide with
the scattering resonances.
Time domain Gaussian pulse measurements—The time

domain measurements were performed using the setup
depicted in Fig. 1(a). Channel 1 of a 50 GS=s Tektronix
model AWG70001B arbitrary waveform generator (AWG)
is attached to one end of the ring graph through a coaxial
cable. The other end of the ring graph is attached, using
another coaxial cable, to channel 1 of a Keysight Infiniium

FIG. 2. (a) Measured scattering matrix elements for the ring
graph depicted in Fig. 1(b). The transmission parameters are in
orange and yellow (overlapping), the reflection parameters are in
blue and purple. The inset is an enlarged graph of S21 for the
indicated boxed region (5.23–5.3 GHz). The 3-dB bandwidth of
this resonance is γ3-dB ¼ 11.15 MHz. (b) The transmission time
delay is calculated using S21 data in (a). The real part is plotted in
red and the imaginary part of the transmission time delay is
plotted in light purple.

FIG. 3. (a) Example of normalized time domain data for the
pulse transmission experiments. The dark blue trace is the pulse
that is sent into the ring graph. This pulse has a center frequency
of 5.2721 GHz and a frequency bandwidth of 5 MHz. The green
trace is the output pulse from the ring graph. Their respective
transmission times tc are plotted as vertical dashed lines. (b) The
Fourier transform of the time domain pulse data shown in (a),
illustrating the center frequency shift.
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model UXR0104A 10-GHz bandwidth real-time digital
sampling oscilloscope (DSO). The marker channel (M1þ)
of the AWG is attached to channel 2 of the DSO to trigger
the oscilloscope and thus ensure measurements are all taken
with the same zero time point. Please see Sec. V in Ref. [84]
for details on how the Gaussian pulses were constructed
and how the external delay from the cables was taken into
account.
In Fig. 3(a) raw time domain data are shown for both the

input and output pulses as well as the measured shifts in
time and frequency. Note that the oscilloscope measures the
detailed carrier-frequency oscillations of the pulse and not
just its envelope. The input pulse shown here has a center
frequency of 5.2721 GHz which situates it near the center
of a resonance of the ring. The frequency bandwidth of the
pulse is 5 MHz which is reasonably smaller than the 3-dB
bandwidth of this resonance which is about 11.15 MHz.
Since we are working in the small bandwidth limit, we
calculate the transmission times (tc) and center frequencies
(ωc) using the first temporal moment of the pulse [89,90],
defined as

tc ¼
R jVðtÞj2t dtR jVðtÞj2 dt ; ð4Þ

ωc ¼
R jFðωÞj2ω dωR jFðωÞj2 dω ; ð5Þ

where V is the voltage, t is time, F is the magnitude of the
Fourier transform of the time domain signal, and ω is
angular frequency. The deduced transmission times and
center frequencies are shown in Fig. 3 as vertical lines,
demonstrating a negative real time delay of Dt ¼ −7.95 ns
and a positive center frequency shift of Dω ¼ 3.03 Rad=μs
or 0.00048 GHz.
Discussion—A full comparison of the Gaussian pulse

measurements in the time domain with the predictions is
summarized in Fig. 4. The data collected are over 4.9 GHz
to 6.05 GHz, including four Feshbach modes, with 480 data
points in total taken over the entire frequency range. [Also
see Fig. 5 in Supplemental Material [84] for these results
over a broader frequency range (10 MHz to 18 GHz), and
Fig. 3 where we explore different pulse frequency band-
widths on a low transmission overlapping mode.]
We see from Fig. 4, that the measured center frequency

shifts Dω, as well as the measured time shift Dt, are in
excellent agreement with the predictions of Asano et al.
[Eqs. (2) and (3)] [71]. These results are also reproduced by
simulations of the ring graph (see Sec. I of Ref. [84]). Note
the difference in scales for the frequency shifts in Figs. 4(c)
and 4(d), which shows that the frequency shift of the time-
domain pulses increases with the predicted Δ̃2 scaling. Also
note that Figs. 4(a) and 4(b) are nearly identical (i.e.,
independent of pulse bandwidth), as predicted. In all cases
there are systematic deviations between the time-domain
results and the predicted values from frequency-domain

FIG. 4. Results for transmission time and center frequency shifts for an input pulse with a frequency bandwidth of 1 MHz [(a) and (c)]
and 5 MHz [(b) and (d)]. In (a) and (b) the red curve corresponds to the right side of Eq. (2). Similarly in (c) and (d) the purple curve
corresponds to the right side of Eq. (3). The green diamonds in plots in the top row (bottom row) are time domain experimental data
where Dt ¼ toutputc − tinputc (Dω ¼ ωoutput

c − ωinput
c ) is the difference in the calculated tc (ωc) between the input and the output pulses.

These correspond to the left-hand side of Eqs. (2) and (3), respectively.
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complex time delay in the range between the Feshbach
modes. These deviations are attributed to standing waves
on the input and output coaxial cables used in the time-
domain measurements (see Ref. [84] Secs. I, II, and VI for
more details).
One interesting observation is that the imaginary part of

complex time delay produces changes in the carrier
frequency so as to decrease the amount of absorption of
the transmitted pulse [63,90]. Related to this, Ref. [91]
shows a clear deviation from exponential decrease of laser
intensity with propagation distance in a dispersive absorb-
ing medium, showing that the light is less attenuated at
greater distances than one would expect. In the case of a
scattering system with gain, it has also been noted that the
center frequency shift will be towards (rather than away
from) the gain mode [63,90]. It is also worth pointing out
that there is a clear correspondence between where negative
time delay occurs and where the pulse center-frequency
shifts are present. The physical mechanism behind these
frequency shifts is the same as that giving rise to negative
time delays, where they are a result of nonuniform
distortion of the Fourier components of the pulse as it
travels through a dispersive medium [63,65,67].
Asano et al. also make predictions for the maximum

time and frequency shifts that can be created by a given
scattering system in the critical coupling limit. These
upper bounds are analogous to those for expectation
values in quantum weak measurements, [71] and super-
oscillatory functions [92,93]. The bounds on time and
frequency shifts are given by Dt;max ¼ �ð1= ffiffiffi

2
p

Δ̃Þ and
Dω;max ¼ �ðΔ̃= ffiffiffi

2
p Þ, respectively. In our case, for the

pulses with a 1 MHz bandwidth, this would result in
Dt;max ≈ 265 ns and Dω;max ≈ 12 Rad=μs, while for the
5 MHz bandwidth pulse case one has Dt;max ≈ 53 ns and
Dω;max ≈ 59 Rad=μs. Our data for both of these cases,
presented in Fig. 4 (as well as Fig. 5 in Sec. IV of
Ref. [84]), are clearly well within these bounds, which is
expected because the graph measurement is in the strong-
coupling limit.
Our Letter generalizes that of Asano et al. [71] in the sense

that our results for Dt and Dω are not tied to any particular
model of transmission near a resonant mode.We have shown
instead that complex time delay derived from frequency-
domain data provides model-free predictions for the pulse
modifications due to scattering. We have shown that this
includes frequencies that are far from resonant modes, where
the analytical approximations are no longer valid.
Conclusions—In this Letter we experimentally demon-

strate the connection between complex transmission time
delay and Gaussian pulse properties; verifying the predic-
tions first laid out in Ref. [71]. The most novel contribution
is the direct connection between the imaginary component
of the transmission time delay and the center frequency
shift of the scattered Gaussian pulse. This helps bring
physical meaning to an abstract but practically useful
quantity that makes up the complex time delay.

This Letter establishes the detailed equivalence of com-
plex scattering information derived from frequency-domain
and time-domain approaches, providing insights that
inform and simplify measurements over the entire electro-
magnetic spectrum.
In terms of future work, it would be interesting to

generalize these predictions to arbitrary pulse shapes. It
would also be interesting to see how this relation would
hold for more complex scattering systems with overlapping
modes, as well as for gain modes, or systems with strong
nonlinearities. Additionally, we can now make predictions
for reflection time delays, along with reflection time-delay
differences [37,38], as well as transmission time-delay
differences in nonreciprocal scattering systems [94]. The
connection of this Letter to extreme time delays associated
with scattering singularities [94,95] is also of interest.
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