
ABSTRACT

Title of dissertation: WAVE SCATTERING PROPERTIES IN
COMPLEX SCATTERING SYSTEMS:
ZEROS AND POLES OF THE SCATTERING MATRIX

Lei Chen
Doctor of Philosophy, 2022

Dissertation directed by: Professor Steven M. Anlage
Department of Physics

Wave scattering properties in complex scattering systems have been of great interest to

both the physics and engineering communities because of their useful characterizations of such

systems and significant value for applications. The most common tool for studying such prop-

erties – the scattering (S)-matrix, can be fully represented by its zeros and poles in the complex

energy/frequency plane. There has been substantial effort to understand the scattering proper-

ties and wave phenomena inside complex systems in the past, both theoretical and experimental,

which in turn has led to significant advancement in many applications: wavefront shaping (WFS),

coherent perfect absorption (CPA), wireless power transfer, electromagnetic interference (EMI),

etc.

In this dissertation, I will summarize the recent progress and interest regarding an intrigu-

ing wave phenomenon – coherent perfect absorption (CPA) in complex scattering systems. We

have successfully implemented CPA protocols in generic complex scattering systems without

any geometric or hidden symmetries, which greatly extends CPA beyond its initial concept as the

time-reversal of a laser cavity. Under such efforts, we have also established a convenient approach



for control of the local losses inside the network system, which helped us to uncover the mystery

of matching the imaginary part of the S-matrix zero to the uniform loss of the system. We thus

developed the theoretical representation of the S-matrix by its zeros and poles, and generalized

the traditional Wigner time delay to a complex quantity in sub-unitary scattering systems. We

have revealed the inherent connection between the complex Wigner time delay and coherent per-

fect absorption, and can utilize the new complex Wigner time delay idea for extracting S-matrix

zeros and poles in a practical system. We have also studied the statistical properties of the com-

plex generalization of Wigner time delay for subunitary wave-chaotic scattering systems, and

demonstrated excellent agreement between theory and experiments. Finally, we have extended

this scheme to a comprehensive time delay analysis framework, including Wigner, transmission,

and reflection time delays. This approach offers us the capability to systematically analyze the

poles and zeros of the scattering matrix of any complex scattering system. We then apply the new

transmission time delay method on a two-channel microwave graph realization of the Aharonov–

Bohm ring from mesoscopic physics, and demonstrate the dependence of non-reciprocal transport

behavior on the de-phasing rate.

The ultimate goal is to completely control the scattering properties of complex systems by

manipulating the zeros and poles of the S-matrix, for example by adding losses in the system

or changing the coupling of the scattering channels, etc. Such a capability will be extremely

useful for understanding the wave properties of complex scattering systems, and for controlling

the wave behavior in optics, electromagnetics, acoustics, quantum transport in condensed matter

systems, etc.
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Chapter 1: Introduction

1.1 Chaos and Complex Scattering Systems

Chaos is a very interesting and complex phenomenon in both theory and in the real world. A

slight difference in the initial conditions would lead to surprisingly different long-term behaviors

in such dynamical systems. Such unpredictable patterns and randomness have inspired people to

develop the chaos theory in many areas: weather and climate, complex scattering, and even the

stock market. In this dissertation I am focusing on the wave chaos aspect of this broad subject,

and studying the wave scattering properties in a complex reverberant cavity. Such a system must

be large enough compared to the wavelength, have multiple paths across or through it that result

in wave interference, and be reverberant in character. The system should be complex (having

many interfering paths for the waves) and not too simple. Fig. 1.1 demonstrates in a chaotic

cavity how a slightly different initial condition for a ray would result in a vastly different ray

trajectory after a few bounces. In the case of finite-wavelength waves, it is no longer possible

to study their trajectory, but their propagation can be quite complex, filling the enclosed space

very quickly [7]. There are many different kinds of chaotic cavities: a three-dimensional metallic

GigaBox [8,9], a two-dimensional quarter bow-tie billiard [10,11], and one-dimensional graphs,

etc. These cavities/billiards demonstrate wave chaotic behaviors, and produce universal statistical

properties which can be well described by the Random Matrix Theory (RMT) [12–14]. However,
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most practical systems also show deviations from universal chaotic behavior due to non-ideal

coupling between the waves and the enclosure, short orbits [15], mixed chaotic and regular phase

space [16] (perhaps arising from parallel walls or soft boundaries), inhomogeneous loss, etc.

Thus it is far more important to develop and implement new semi-classical theory, for better

characterization of such complex scattering systems in the real world.

Scattering

channels

Figure 1.1: Schematic of a ray-chaotic enclosure connected to the outside world by a number of
scattering channels. Shown are two chaotic ray trajectories in an irregular cavity due to different
incident angles, but starting from the same location.

In order to study chaos and many complex scattering systems, the Wave Chaos Group at

the University of Maryland has developed a powerful theory called the Random Coupling Model

(RCM). The theory has worked out quite beautifully with experimental data and applies to many

generic chaotic cavities [7, 17–26].

In the RCM, the fluctuating impedance matrix Ẑcav of a chaotic cavity can be formulated

as:

Ẑcav = iIm[Ẑrad] + Re[Ẑrad]
1/2 ẑ Re[Ẑrad]

1/2, (1.1)
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where Ẑrad is the radiation impedance matrix which describes the system-specific features related

to the coupling ports (scattering channels), and ẑ the normalized impedance matrix is an universal

fluctuation quantity predicted by the random matrix theory (RMT). The normalized impedance

matrix ẑ can be modelled as:

ẑ(k0) = − i

π

∑
n

wnw
T
n

k20−k2n
∆k2

+ iα
, (1.2)

where wn describes the coupling coefficient of each mode n to the ports, k0 is the wavenumber of

interest, kn is the wave number of mode n, ∆k2 is the mean mode spacing of the closed system,

and α is the loss parameter defined to describe the uniform loss strength of the system (α =
k20

∆k2Q
,

Q is the qualify factor of the closed system). In the RCM, the statistical fluctuating properties of

the normalized impedance matrix ẑ is only dependent on the single loss parameter α.

1.2 Microwave Networks and Quantum Graphs

Complex over-moded networks have been used to model mesoscopic quantum transport

[27], electromagnetic energy propagation through multiply-connected arrays of compartments,

and chains of coupled electromagnetic cavities [26]. In wave chaos studies [28–31], they have

been proposed as a simple, yet powerful platform (Quantum Graph) which under specific con-

ditions [32–34] demonstrates all generic wave phenomena of systems with underlying classical

chaotic dynamics. Their main advantage is that they allow for an exact semiclassical expansion

while their wave scattering description is particularly transparent, inspiring the development and

implementation of semiclassical [28–30,35] and super-symmetric [31–34,36] tools. Specifically,

fully connected networks with incommensurate bond-lengths, under specific conditions [32–34],
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display universal statistical properties of various observables which are hypothesized to be de-

scribed by random matrix theory (RMT) [12, 13]. In the case of fully connected networks with

a small number of bonds [37], these deviations from RMT universality have already been iden-

tified in Ref. [28] (see also [35, 38]) using semiclassics and their origin has been traced back

to the presence of short periodic orbits that are trapped along individual bonds of the graph.

Subsequent theoretical studies [30–34,36] have further established conditions under which RMT

universality can be restored, while experimental implementations of graphs in the microwave

realm [39–43] have provided additional evidence of the origin of these deviations [37, 44, 45].

Thus this microwave networks platform, being a typical complex scattering system without any

geometric symmetries and with controlled time-reversal symmetries, and demonstrating both the

extreme sensitivity to perturbations and typical deviations from universal statistical behavior [45]

– due to system-specific features – is an ideal surrogate for studying wave scattering properties

in real-world scattering systems.

1.3 Coherent Perfect Absorption

Coherent perfect absorption (CPA) has been appealing to physicists and engineers for

both its fundamental and technological relevance. On the technological level its implementa-

tion promises the realization of a family of wave-based devices performing highly-selective and

tunable absorption in a manner that goes beyond the traditional concept of impedance matching.

On the fundamental level, CPA has initially been associated with the concept of time-reversal

symmetry, one of the most fundamental symmetries in nature. In its original conception CPA

was proposed as the time-reversal of a laser cavity [46, 47]: Specifically, it is a lossy cavity that
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acts as a perfect interferometric trap for incident radiation, provided that its spatial distribution

matches the one that would be emitted from the same cavity if the loss mechanism is substituted

by a corresponding gain mechanism i.e. if the cavity turns into a laser. Practically speaking,

the CPA process works by injecting waves of particular amplitude and phase (coherent illumina-

tion) [47] from a number of input channels and causing them to interfere and to be completely

absorbed by losses in the system. Remarkably, even an arbitrarily small amount of loss can be

used to completely absorb the incident radiation if the system is sufficiently reverberant [48].

1.4 Time Delays: Wigner, Transmission, and Reflection

Wigner time delay [49] is an extremely important physical quantity when considering the

general problem of scattering from a complex system by means of excitations coupled through

one or more scattering channels. The scattering matrix S describes the transformation of a set of

input excitations on M channels into the set of outputs |ψout⟩ as |ψout⟩ = S |ψin⟩.

A measure of how long the excitation resides in the interaction region is provided by the

time delay, related to the energy derivative of the scattering phase(s) of the system. This quantity

and its variation with energy and other parameters can provide useful insights into the properties

of the scattering region and has attracted research attention since the seminal works by Wigner

[49] and Smith [50]. A review on theoretical aspects of time delays with emphasis to solid state

applications can be found in [51]. Various aspects of time delay have recently been shown to be

of direct experimental relevance for manipulating wave fronts in complex media [52–54]. Time

delays are also long known to be directly related to the density of states of the open scattering

system, see discussions in [51] and more recently in [55, 56].
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In analogy to the Wigner time delay, people are also very interested in the transmis-

sion/reflection time delays [57–60]. Unlike Wigner time delay, the transmission and reflec-

tion time delays are always complex due to the fact that they are computed from sub-matrices

of the full S-matrix, which are non-unitary even in the flux-conserving limit. The transmis-

sion/reflection time delays also have their own zeros and poles, which have direct impacts on the

transmission/reflection property with many promising engineering applications [61–63].

1.5 Zeros and Poles of the S-matrix

The scattering (S)-matrix has been an extremely useful tool for characterizing the scattering

properties of nearly any kind of scattering system. It can be modelled by the distribution of

poles and associated zeros in the complex energy plane, which are most clearly seen when one

addresses its determinant. In the unitary (zero loss) limit, the poles and zeros of the determinant

form complex conjugate pairs across the real axis in the energy plane. In the presence of any

loss, the poles and zeros are no longer complex conjugates, but if the loss is spatially-uniform

their positions are still simply related by a uniform shift. This is no longer the case for spatially-

localized losses, with poles and zeros migrating in a complicated way to new locations, subject

to certain constraints. For a passive lossy system the poles always remain in the lower half of the

complex energy plane, while the zeros can freely move between the two sides of the real axis.

Among other things, rising recent interest in characterizing S-matrix complex zeros, as well as

their manifestation in physical observables, is strongly motivated by the phenomenon of coherent

perfect absorption [48], see [2, 57, 58, 64, 65] and references therein. In history, the poles of the

S-matrix has been viewed as the excitation modes/resonances of the system, and now the zeros
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of the S-matrix can be seen as the absorption modes/resonances of the system.

Lately, there has been renewed interest in the properties of the scattering matrix in the

complex frequency plane [66]. This landscape is decorated with the poles and zeros of the

scattering matrix, most of which lie off of the real frequency axis. Identifying the locations

of these features gives tremendous insight into the scattering properties of the system, and the

movement of these features in the complex plane as the system is perturbed is also of great in-

terest. Knowledge of pole/zero information has practical application in the design of microwave

circuits [67], microwave bandpass filters [61], (where uniformity of transmission time delay is

critical [68]), transmission through mesoscopic structures [69], and the creation of embedded

eigenstates [66, 70, 71], among many other examples. Knowledge of the S-matrix singularities

in the complex plane allows one to create coherent virtual absorption through excitation of an

off-the-real-axis zero [72], or virtual gain through the excitation of an off-the-real-axis pole [73],

or resonant enhancement of the spontaneous-decay rate of quantum emitters in the vicinity of

single plasmonic nanoparticles [74]. There is also interest in finding the non-trivial zeros of the

Riemann zeta function by mapping them onto the zeros of the scattering amplitude of a quantum

scattering system [75]. Perturbing a given system and bringing a scattering zero to the real axis

enables coherent perfect absorption of all excitations incident on the scattering system [1,46,48].

Engineering the collision of zeros and poles to create new types of scattering singularities is also

of interest for applications such as sensing [59, 60, 63, 66, 76].
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1.6 Generalized Wigner-Smith Operator

The traditional Wigner-Smith time-delay operator Q is constructed from the S-matrix by

way of a frequency derivative: Q = −iS−1dS/dω. This matrix operator has been widely used to

study the time delays, or “proper delay times”, which describe the time dependence of a scattering

process in the scattering channels [77–80]. People have used it to create particle-like scattering

state [52,81,82], spatiotemporal control of light transmission [83], wavefront shaping in complex

media [84, 85], and other applications. A more general class of Wigner–Smith operators was re-

cently introduced [86] by generalizing Q to feature a derivative of S with respect to an arbitrary

parameter x, rather than to just frequency ω. These generalized Wigner–Smith (GWS) operators

can be written as Qx = −iS−1dS/dx, where the parameter x can be any meaningful parameter

in the system which affects the scattering process. A couple of examples of x could be the rota-

tion angle of the target which yields the angular momentum transferred to it; the target position

which provides the momentum transfer; the radius of a circular target which gives control over

the radiation pressure exerted on it; or the dielectric constant value which determines the wave

intensity inside the target [54]. Other choices of x can be quite interesting as well, e.g. the mag-

netic flux, the control voltage of a meta-surface, the coupling strength of a port or channel, and

etc. These parameters provide another degree of freedom for manipulating the zeros and poles of

the S-matrix, thus offering more capability in engineering the scattering matrix/process [87].
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1.7 Outline of the Dissertation

In Chapter 2, I will talk in more detail about Coherent Perfect Absorption (CPA), and

some deficiencies associated with the previous efforts to measure CPA. Then we experimentally

demonstrate the concept of coherent perfect absorption in a microwave graph constructed from

coaxial cables connected by Tee-junctions. By adding a simple variable lossy attenuator into the

system, we can effectively identify the CPA frequencies as the complex zeros of the scattering

matrix which crosses the real axis and achieve perfect absorption in this chaotic setup. Most

importantly, our experimental set-up allows us to demonstrate that the concept of CPA can be

extended beyond the case where time-reversal (TR) symmetry holds, by introducing a circulator

into the microwave graph. The contents discussed in this chapter is based on my published paper:

Lei Chen, Tsampikos Kottos, and Steven M. Anlage, “Perfect Absorption in Complex Scattering

Systems with or without Hidden Symmetries,” Nature Communications 11, 5826 (2020). [1]

In Chapter 3, more background material and previous research about the Wigner time delay

will be introduced. The statistics of Wigner time delay in the lossless limit has been well studied

by theorists, but relatively little research has been done for the case when loss or decoherence is

present. In this chapter we will introduce a complex generalization of Wigner time delay by care-

fully considering the effects of introducing loss into the system. Through a series of experiments

on microwave analogs of quantum graphs in which we have precision control of the loss strength

inside the system, we demonstrate the evolution of the complex Wigner time delay spectrum

along with the migration of the scattering matrix zeros and poles. This work further establishes

a bridge between time delay and Coherent Perfect Absorption (CPA), offering new opportunities

for achieving CPA at arbitrary energy/frequency in complex scattering systems. The analysis and
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results in this study would be of great interest to researchers in wave/quantum chaotic scattering,

mesoscopic physics, wavefront-shaping, perfect absorption, tunable metasurfaces, etc. The con-

tents discussed in this chapter is based on my published paper: Lei Chen, Steven M. Anlage, and

Yan V. Fyodorov, “Generalization of Wigner Time Delay to Sub-Unitary Scattering Systems,”

Phys. Rev. E 103, L050203 (2021). [2]

In Chapter 4, after successful generalization of Wigner time delay to the sub-unitary scat-

tering systems, more efforts about new statistics of the complex Wigner time delay will be shown.

We study the statistical properties of the complex generalization of Wigner time delay τW for sub-

unitary wave chaotic scattering systems. We first demonstrate theoretically that the mean value

of the Re[τW] distribution function for a system with uniform absorption strength η is equal to

the fraction of scattering matrix poles with imaginary parts exceeding η. The theory is tested ex-

perimentally with an ensemble of microwave graphs with either one or two scattering channels,

and showing broken time-reversal invariance and variable uniform attenuation. The experimental

results are in excellent agreement with the developed theory. The tails of the distributions of

both real and imaginary time delay are measured and are also found to agree with theory. The

results are applicable to any practical realization of a wave chaotic scattering system in the short-

wavelength limit, including quantum wires and dots, acoustic and electromagnetic resonators,

and quantum graphs. The contents discussed in this chapter is based on my published paper:

Lei Chen, Steven M. Anlage, Yan V. Fyodorov, “Statistics of Complex Wigner Time Delays as a

counter of S-matrix poles: Theory and Experiment,” Phys. Rev. Lett. 127, 204101 (2021). [3]

In Chapter 5, we will develop a more comprehensive time delay analysis framework as an

extension to the complex Wigner time delay analysis method. We identify the poles and zeros

of the scattering matrix of a simple quantum graph by means of systematic measurement and
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analysis of Wigner, transmission, and reflection complex time delays. We examine the ring graph

because it displays both shape and Feshbach resonances, the latter of which arises from an em-

bedded eigenstate on the real frequency axis. Our analysis provides a unified understanding of the

so-called shape, Feshbach, electromagnetically-induced transparency, and Fano resonances, on

the basis of the distribution of poles and zeros of the scattering matrix in the complex frequency

plane. It also provides a first-principles understanding of sharp resonant scattering features, and

associated large time delay, in a variety of practical devices, including photonic microring res-

onators, microwave ring resonators, and mesoscopic ring-shaped conductor devices. Our analysis

is the first use of reflection time difference, as well as the first comprehensive use of complex time

delay, to analyze experimental scattering data. The contents discussed in this chapter is based

on my published paper: Lei Chen and Steven M. Anlage, “Use of Transmission and Reflection

Complex Time Delays to Reveal Scattering Matrix Poles and Zeros: Example of the Ring Graph,”

Phys. Rev. E 105, 054210 (2022). [4]

In Chapter 6, I will demonstrate a two-channel microwave graph realization of the Aharonov–

Bohm ring, and study its scattering properties in both the frequency domain and the time domain.

We mimic the non-reciprocal mesoscopic transport behavior with a microwave gyrator, made up

of circulators and open/short circuits. The objective is to demonstrate anisotropic transport in

the presence of finite de-phasing, in the intermediate regime between purely quantum and purely

classical transport. We study the time delay properties of the Aharonov–Bohm ring graph through

simulation and experiment, both in the frequency domain and the time domain. We demonstrate

the non-reciprocal transport properties with the Aharonov–Bohm ring graph as a function of

attenuation, and show the 3:1 ratio of the transmission time delays in both directions. This es-

tablishes the analogy between mesoscopic and microwave Aharonov–Bohm rings, and offers the
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capability of simulating a non-trivial mesoscopic conductor with a microwave graph.

In the end, Chapter 7 will conclude all previous work and results in this dissertation. I

will talk about the future work and other potential interests related to this work. The importance

of this dissertation research and how it can lead to various interesting applications will also be

discussed.
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Chapter 2: Perfect Absorption in Complex Scattering Systems

2.1 Overview

CPA phenomena have been theoretically proposed in a number of contributions [46, 64,

65, 88–92], but only a few experimental works have reported a realization of CPA. At first it

was demonstrated with free-space counter-propagating waves impinging on lossy slabs in the

form of semiconductors [47], metasurfaces [93], graphene-based structures [94], Parity-Time

(PT ) symmetric electronic circuits [95] and PT -symmetric quantum well waveguides that act

as both a laser and CPA absorber [96], and acoustic systems [97, 98]. Multi-port CPA was also

achieved using a diffraction grating and lossy plasmonic modes (this work employed a pair of

non-reciprocal scattering channels, but did not break time-reversal invariance) [99]. Most of

these experimental demonstrations of CPA have generally been performed in open systems with

freely counter-propagating waves arriving on a loss center at normal incidence. Such a con-

figuration puts a strong constraint on the loss required to achieve CPA (e.g. 50% single-beam

absorption [100]), and this is a significant limitation of such free space optical approaches. In

summary, these early demonstrations used highly symmetric structures and excitation conditions

to achieve CPA. Now the challenge is to considerably generalize the phenomenon and realize

CPA in complex wave settings without special geometrical or hidden symmetries. It is clear

that reverberations, hypersensitive complex interference, and system specific characteristics (e.g.
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bouncing orbits in stadium billiards, coexistence of islands of regular dynamics in a chaotic sea

of phase space of the underlying ray settings, mixed symmetries etc) blended with losses present

in complex wave systems constitute a challenge for achieving CPA. Recently a demonstration of

CPA was achieved in a multiple scattering environment with many input and output channels,

implementing effectively a time-reversal of a random laser [101]. This demonstration, how-

ever, utilized the conventional anti-laser concept, and is limited to a mechanically-tunable loss

element. It is desirable to expand the range of CPA to include complex and chaotic scattering

environments of all kinds. Importantly, one has to investigate the applicability of CPA under

controllable time-reversal symmetry violation conditions.

In more precise terms, there are a number of deficiencies associated with the previous

efforts to measure CPA. Some of these schemes failed to directly measure the outgoing waves

from the system, but deduced the CPA condition by calculating the output signals based upon

combinations of data (usually the scattering matrix) taken under other (non-CPA) conditions.

Obviously, a CPA platform that will allow for a direct measurement of the output signal will

open-up many technological opportunities, as proposed in the photonic context [48]. Secondly,

the degree to which the CPA condition is achieved has only been quantitatively demonstrated to

a limited extent, typically 1 part in 102, not at all close to the expected ideal outcome. Third,

the previous experimental efforts have implemented loss in a way that is difficult to control and

systematically vary, such as the thickness of a slab, or the temperature variation of conductivity.

Finally, all previous works have been limited to systems that display time-reversal invariance

(TRI) for the wave propagation (beyond the trivial TRI-breaking effects of dissipation).

Here we experimentally demonstrate the concept of coherent perfect absorption in a gener-

alized setting where the weakly lossy cavity is a complex scattering system without any spe-
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cial geometric symmetries. We implement this scenario using a fully connected microwave

network constructed from coaxial cables connected by Tee-junctions. By adding a convenient

electronically-tuned lossy attenuator, we can continuously and precisely control the nearly ideal

CPA conditions, thus clearly identifying the CPA frequencies as the complex zeros of the scatter-

ing matrix which cross the real frequency axis and achieving perfect absorption in this complex

scattering setting. Most importantly, our experimental set-up allows us to demonstrate that the

concept of CPA can be extended beyond the case where time-reversal (TR) symmetry holds,

greatly expanding the impact and utility of the CPA phenomenon. The latter can be achieved by

introducing a circulator into the microwave graph [40]. Such analysis proves that the concept of

CPA goes far beyond its initial conception as a “time-reversed laser”. Our experimental platform,

due to its elegant simplicity, provides a convenient tool for the study of CPA in generic complex

scattering systems having neither geometric nor dynamical symmetries. Importantly, it can be

employed for the development of semiclassical schemes that utilize system-specific character-

istics [55, 102, 103] aiming to the optimization of CPA traps. Finally, we have also confirmed

the viability of CPAs in a two-dimensional quarter bow-tie chaotic billiard demonstrating beyond

doubt that their formation occurs irrespective of the degree of complexity of the scattering pro-

cess. Our results are general and apply to a variety of complex (i.e. without geometric or hidden

symmetries) wave settings, ranging from optics and microwaves to acoustics and matter waves.

2.2 Experimental Setup for S-matrix Measurement

Our experiment utilizes a tetrahedral microwave graph formed by coaxial cables and Tee-

junctions [37, 104]. A variable attenuator is attached to one internal node of the graph (see Fig.
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2.1). The system is coupled to external transmission lines attached to N specific nodes of the

graph. In our specific set-up we utilize N = 2. Each coupling transmission line (red solid lines

in Fig. 2.1) is a coaxial cable supporting a single propagating mode connecting to one port of the

Vector Network Analyzer (VNA). The plane of calibration of the VNA is at the point where the

transmission line attaches to the port of the graph (see red dashed line in Fig. 2.1). The S-matrix

of the experimental setup is measured under many settings of the variable attenuator.
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Port 1 Port 2
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Figure 2.1: Schematic experimental setup of the S-matrix measurement. The tetrahedral graph
is formed by coaxial cables connected with Tee-junctions. One node of the graph is loaded with
a voltage variable attenuator to provide parametric variation of the scattering system. One other
node (blue dashed box) is made from either a Tee-junction (TRI) or a 3-port circulator (BTRI) to
create a TRI system or a broken-TRI system, respectively.

The tetrahedral microwave graph used in this work is constructed from six coaxial cables

connected by coaxial Tee-junctions. The cables are semi-flexible SF-141 coaxial cables, each

of different length, with SMA male connectors on both ends (Model SCA49141) obtained from

Fairview Microwave, Inc. The dielectric material of the cable is solid polytetrafluoroethylene

(PTFE), which has a relative dielectric constant of 2.1. The inner conductor of the cable is silver

plated copper clad steel (SPCW), and has a diameter of 0.036 inch (0.92 mm); while the outer

shield is a copper-tin composite which has an inner diameter of 0.117 inch (2.98 mm). The di-
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electric loss tangent of the medium is tan δ = 0.00028 at 3 GHz, and the resistivity of the metals

in the cable is ρ = 4.4 × 10−8 Ω · m at 20 ◦C. Both of these contribute to the uniform loss of

the coaxial cables. The lengths of the six cables are 13, 14, 15, 16, 18 and 20 inch. The total

length of the graph is then approximately 2.44 m, giving rise to a mean spacing between modes of

42.4 MHz, which is constant as a function of frequency. On one node of the graph (see Fig. 2.1),

two Tee-junctions form a four-way adapter where a voltage variable attenuator (HMC346ALC3B

from Analog Devices, Inc.) is connected to one connector. A short circuit termination is con-

nected to the other end of the attenuator. Using a Keithley power supply (2231A-30-3), the

attenuation of the variable attenuator is continuously swept by varying the supplied voltage from

4.00 V to 7.00 V. To find the appropriate CPA condition of the setup, we perform the S-matrix

measurement of the graph (using the PNA-X N5242A from Agilent Technologies, Inc.) in the

frequency range from 10 MHz to 18.01 GHz (at 96,001 equidistant frequency points) which in-

cludes about 420 modes of the closed graph, with varying attenuation from about 2 dB to 12 dB

(which includes the insertion loss of the variable attenuator). The attenuation is swept with a

step size of roughly 0.1 dB. In the case of a BTRI microwave graph, a ferrite circulator (Model

CT-3042-O from UTE Microwave Inc.) is added to one node of the graph (see Fig. 2.1). The

circulator has an operational frequency range from 2 GHz to 4 GHz, which constrains the fre-

quency range of measurement accordingly. By connecting the microwave graph to a two-port

VNA, with a coupling strength of about 0.68, we can obtain the S-matrix of the system under

different attenuation configurations.
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2.3 Results

2.3.1 Analysis of the CPA State

The wave transport properties of the microwave network are succinctly summarized by

the N × N complex scattering matrix S. The latter connects the incoming and outgoing waves

through theseN channels as ϕout = Sϕin, where ϕout (ϕin) is anN -component vector of outgoing

(incoming) wave amplitudes and phases that defines the scattered outgoing (incoming) field in

the channel-mode space. In the case of coherent perfect absorption all input energy is absorbed

by the system, thus requiring ϕout to be zero. This physical condition is mathematically formu-

lated by the requirement that Sϕin = 0 for non-zero ϕin. The latter condition is equivalent to the

requirement that the S-matrix is not invertible i.e. it has a zero eigenvalue λS = 0. The asso-

ciated eigenvector provides the incident waveform configuration that leads to a CPA. Note that

this requirement does not violate any constraints of the S-matrix, which in the case of CPAs is

sub-unitary due to the presence of an absorbing center inside the scattering domain. Let us finally

point out that both the scattering matrix S = S(ω) and consequently its eigenvalues λS = λS(ω)

are functions of the frequency ω of the incident waveform. From the mathematical perspective,

one cannot exclude the possibility to have complex ω’s as roots of the CPA condition λS(ω) = 0.

These complex zeros, however, are unphysical since they do not correspond to incident propagat-

ing plane waves and therefore have to be excluded from the set of acceptable CPA solutions. Of

course, the reality of ω is not an issue in the experimental analysis since the measured S-matrix is

always evaluated at real frequencies. From the above discussion, we deduce that a specific cavity

(corresponding to a fixed connectivity, lengths of the cables of the graph, and loss strength) might
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support multiple CPAs i.e. different frequencies ω ̸= ω′ for which the corresponding sub-unitary

scattering matrices S(ω) ̸= S(ω′) have a zero eigenvalue in their spectrum. We speculate that

such multiple CPA scenarios will have higher probability to occur when the scattering matrices

S(ω) and S(ω′) are uncorrelated – a property that can be quantified by the rate with which the

autocorrelation function C(χ) ≡ Re
{
⟨Sα,β(ω)S

∗
α′,β′(ω + χ)⟩

}
goes to zero (⟨· · · ⟩ indicates a

spectral averaging). An interesting future research effort would be to identify rigorous conditions

under which such multiple CPAs can occur. We point out that a related analysis for the density of

complex zeros of the S-matrix of a chaotic system has been recently carried out in [65] (see also

Ref. [58]).

A straightforward way to determine experimentally the CPA conditions is via a direct eval-

uation of the eigenvalues {λ} of the measured S matrix and subsequent identification of the fre-

quency ω for which the spectrum contains a zero. Such a direct process, however, is tedious and

in many occasions it turns out to be ineffective in our search for a true zero eigenvalue of the scat-

tering matrix. Instead, we have utilized the parametric dependence of the S-matrix on the local

attenuation strength in order to establish the zero eigenvalue condition. Specifically, we exploit

simultaneously the frequency (wavelength) and local losses (attenuation) as two free parameters

which allow us to exploit a larger parameter space for the identification of true S-matrix zeros.

Once the CPA condition is satisfied, the required local loss and stimulus frequency are identified,

and the corresponding S-matrix eigenvector which defines the CPA incoming stimulus wave am-

plitudes and phases (i.e. coherent excitation) is evaluated. The corresponding injected coherent

monochromatic waveform results in a zero outgoing signal from all N scattering channels of the

system. It should be noted that this procedure is entirely general and doesn’t depend on the nature

of the wave physics setting or on the degree of chaoticity that characterize the wave scattering
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process in the system.
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Figure 2.2: Plot of selected S-matrix eigenvalues as a function of attenuator setting in the tetra-
hedral graph showing examples of near-zero-crossing trajectories. Selected eigenvalues of the
S-matrix are plotted in the complex λS plane, where the red dashed circle represents the unit
circle. The panel a shows experimental data, while panel b shows data from the simulation. Each
trajectory represents one frequency (color coded), and the corresponding frequency for each trace
is labelled in the figure. The black circle at the start of every trajectory indicates the initial eigen-
value at minimum attenuation, and as attenuation increases, the eigenvalue goes nearly through
the origin in the complex plane. This figure is taken from Ref. [1].

Following this approach, the 2 × 2 scattering matrix of the graph is acquired using the

setup of Fig. 2.1. The measurement is taken from 10 MHz to 18 GHz which includes about 420

modes of the closed graph. The calibrated S-matrix of the 2-port graph is then measured under

different attenuation settings ranging from 2 dB to 12 dB (which includes the insertion loss of the

variable attenuator). Implementing a matrix diagonalization technique, the complex eigenvalues

λS of the S-matrix are found for each frequency and attenuator setting. A limited number of

these eigenvalues are found to approach the origin in the complex λS plane (see Fig. 2.2). These

near-zero crossings are then examined in detail. Through this method, the specific frequencies
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and attenuation values at the zero-crossing CPA state, as well as the required excitation relative

magnitude and phase at the two ports (S-matrix eigenvector) are then determined.

To compare with the experimental results, we set up a comparable simulation model in CST

(Computer Simulation Technology) Studio. CST is commercial software specifically designed

for electromagnetic field simulation, and we use the Circuits & Systems module to simulate

the microwave graph. All individual components in the graph experiment, e.g. coaxial cables

and Tee-junctions, are modeled by their measured S-matrix data at the exact same frequency

points used in the experiment. The S-matrix data for the variable attenuator are measured at the

designated supply voltages from 4.00 V to 7.00 V. The S-matrix data are imported as TOUCH-

STONE file blocks in the simulation model, and correctly capture the electrical characteristics of

all components. The imported S-matrices are then combined in the same topology as the graph

of interest. Therefore, following the same procedure as in the experiment, we can verify the CPA

phenomena in the simulation as well.

2.3.2 Verification of the CPA State

Using the information obtained from the S-matrix measurement, the CPA conditions are

identified, and we can directly test them experimentally. In order to create the coherent stimulus

signals, we use a two-source VNA (PNA-X N5242A from Agilent Technologies, Inc.) to serve as

the RF signal source and measure the incoming and outgoing wave energies as well. The PNA-X

has two built-in RF sources which provides great convenience for us to individually adjust the

amplitudes of the two input excitation signals. The relative phase difference of the two input

signals is controlled by adding a manual coaxial phase shifter (Model 3753B from L3Harris

21



2 2.5 3 3.5 4
-50

-40

-30

-20

-10

0

Short Circuit
Termination

Variable
Attenuator

CirculatorTwo Tee-junctions
Phase Shifter

Port 1 Port 2

VNA

Figure 2.3: Experimental setup of the CPA state measurement. A PNA-X (network analyzer
with two internal sources) is used to generate microwaves with well-defined frequency and rel-
ative amplitudes at the two ports as the CPA state excitation signals. Coherent phase control
between the two excitation signals is realized by placing a phase shifter between port 2 of the
network analyzer and the graph. The outgoing and returning waves are directly measured by
the PNA-X. On the right side of the figure is the tetrahedral microwave graph formed by coaxial
cables and Tee-junctions. The four-way adapter shown in the figure is realized by connecting two
Tee-junctions together in the real experiment. One node of the graph is loaded with a variable
attenuator to provide parametric variation of the scattering system. One other node is made from
either a Tee-junction (TRI) or a 3-port circulator (BTRI) to create a TRI system or a broken-TRI
system, respectively. This figure is taken from Ref. [1].

Narda-MITEQ) between the VNA and port 2 of the graph (see Fig. 2.3). When signals are

sent from both ports of the network analyzer simultaneously, it should be possible to observe the

coherent perfect absorption, namely no microwave signals should emerge from the graph through

either of the ports. The VNA measures both the outgoing and incoming waves at the plane of

calibration, hence the CPA condition can be directly confirmed with this setup.
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2.3.3 Observation of the CPA State in the TRI System

Under the CPA condition, a nearly perfect absorption is achieved, and it has been veri-

fied using four independent parametric sweep measurements (see Fig. 2.4). Both experimental

and numerical data are plotted in the same figure. Parameters swept include the microwave fre-

quency (wavelength), attenuation of the variable attenuator embedded in the graph, amplitude of

excitation signal at port 1, and phase of excitation signal at port 2, while keeping other settings

unchanged at the CPA condition. The input wave power and outgoing wave power are directly

measured while changing the system configuration or the input stimulus setting. The ratio of

outgoing signal power over input signal power (Pout/Pin) acquires values as low as 10−5 at the

CPA condition, and both experiment and simulation show similar behavior upon deviation from

the CPA conditions. Fig. 2.4 demonstrates that the minimum outgoing power is measured at

precisely the CPA condition, and rapidly increases in a cusp-like manner as any of the parameters

deviate from that condition.

To emphasize the importance of having a reverberant cavity instead of a bare attenuator

only, we measure the power ratio of the bare attenuator (see Fig. 2.4(b) inset) under the same

settings as in the complex networks. From the inset, we can see that in the absence of the graph,

the attenuator can only absorb a small fraction of the incident power (Pout/Pin > 10−1). This

illustrates the importance of having the complex network as the cavity to create the CPA condi-

tion.

Due to the extreme sensitivity to perturbations and internal system details, it is naturally

difficult to create a numerical model of a complex scattering system that reproduces all of its prop-

erties in detail. The numerical simulations in Figs. 2.2, 2.4 and 2.7 are based on S-parameter mea-
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Figure 2.4: Evidence of CPA in the complex network under four independent parametric sweeps.
Plots are normalized so that CPA conditions are in the center of the parameter variation range.
The closest frequency CPA condition for the simulation is plotted along with the experimental
data. a | Measured ratio of output power Pout to input power Pin as the microwave frequency sent
into both ports of the graph is simultaneously swept near the CPA frequency (∆f = f − fCPA).
Inset shows the output-to-input power ratio response for a larger frequency range around the
resonance, and the dashed box corresponds to the frequency range shown in a. The output-to-
input power ratio shows a sharp dip close to 10−5 at the CPA frequency (fCPA) in both experiment
and simulation. The scale bar of the mean mode spacing ∆ is shown in the plot for reference. b
| Output to input power ratio obtained by varying the attenuation of the variable attenuator in the
graph, while the other waveform characteristics (CPA frequency and waveform) are equal to the
ones set in a. ∆Att is the attenuation normalized by AttCPA from the CPA condition. Inset shows
the absorption difference between the attenuator only and the attenuator embedded in the graph.
c,d | Output to input power ratio obtained by changing the amplitude A (c) and phase difference
∆ϕ (d) separately of the two excitation signals required for the CPA state. The absorption of
power reaches its maximum at the CPA configuration, and quickly deteriorates for even small
offset from the CPA condition. All experimental results are obtained by direct measurement of
the input and output RF powers. This figure is taken from Ref. [1].
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surements of each individual component of the graph (Tee-junctions and coaxial cables) which

are then combined with the same topology as the full graph to yield high-fidelity descriptions of

the data. It should be noted that a numerical model of the graph employing idealized components

(e.g. without taking into account the frequency dependence of their impedance) also shows the

CPA conditions, although at different frequencies and attenuator settings. The models demon-

strate that the CPA results are generic to complex scattering systems, establishing the breadth and

generality of our results.

2.3.4 Simulation of the CPA & “Anti-CPA” State

Both the variable attenuator and the microwave graph cavity play important roles in the

formation of CPAs. At the same time, in realistic settings there are other elements that might

also contribute to the total absorption. To rule out their influence in the CPA protocol we have

evaluated their contribution to the total power absorption using the idealized simulation model

shown in Fig. 2.5(a). In order to better understand the power distribution inside the system

under CPA conditions, we adapt an idealized simulation model in CST. In this model, nodes

constructed from Tee-junctions are set to be ideal (no loss), and the attenuator is set to have no

frequency-dependent characteristics, and the coaxial cables have uniform attenuation properties.

Fig. 2.5(b) shows that the voltage amplitudes at the four nodes in the graph under CPA condition

are roughly equal. As shown in Fig. 2.5(c), most of the power (i.e. more than 80%) is absorbed

by the variable attenuator, and the rest is absorbed by the coaxial cables, which contribute to a

spatially-uniform absorption inside the system. There is very little reactive power in the graph

under the CPA condition, as opposed to the “Anti-CPA” state where a large amount of reactive
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Figure 2.5: Voltage profile and power distribution of CPA state in idealized simulation. a |
Schematic of the microwave graph with labelled ports under CPA condition at 2.2999 GHz in
simulation. b | Voltage profiles of four nodes in the graph under CPA condition. c | Power
distribution among the graph components under the CPA condition. Left plot shows that about
80% of the power are being dissipated on the attenuator, while the remainder is dissipated in the
uniformly attenuated cables. Right plot shows reactive power on the cables and short circuit.
Compare with the “Anti-CPA” condition in 2.6. This figure is taken from Ref. [1].

power circulates in the system (see Fig. 2.6(c)). Therefore, Fig. 2.5 exactly demonstrates what

the theory predicts: the coherent perfect absorption is the combined effect of localized loss and

intricate wave interferences, providing a perfect destructive interferometric trap for the incident

radiation. The importance of these specific interferences that are induced via the above CPA

protocol, and its dominance over other (non-universal) effects is even more appreciated in the case

of our tetrahedral graph. Here, short periodic orbits associated with an enhanced backscattering at

the vertices promote a trapping of the electromagnetic field in individual cables of the graph (i.e.

a scarring effect [33–35, 45]) which might not include the lossy element (attenuator). Therefore,
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one could argue that their presence poses fundamental difficulties for the realization of CPAs due

to a localized lossy center which is placed somewhere else inside the cavity. Our experimental

results demonstrate beyond doubt that the interference imposed via the CPA protocol prevail

over all these non-universal features, leading to a (almost) perfect absorption of the coherent

incident radiation. Since the existence of non-universal features of various origin are typical in

any realistic complex system, we expect that the development of a semiclassical theory of CPA

(which utilize non-universal features), will lead to a better design of optimal traps. Complex

networks can offer a fertile platform for developing and testing such theories.

We then introduce a new operator – the Absorption Matrix A ≡ 1 − S†S to analyze the

“Anti-CPA” state [64]. We point out that A is a Hermitian, positive semi-definite operator. The

magnitude of its eigenvalues α span the interval [0,1] and the corresponding eigenvectors |α⟩

are orthogonal. It is easy to show that the eigenvector associated with the eigenvalue αmax = 1

is the CPA waveform that we have identified previously from the analysis of the zeroes of the

S-matrix. It follows that the components of the eigenvector which is associated with the mini-

mum eigenvalue αmin provides the shape of the incident waveform which will lead to minimal

absorption. We refer to such a scattering field as the “Anti-CPA” state. The extreme case of

α = 0 is associated with a scattering field that avoids completely the vertex where the attenuator

is located. We verify this effect by observing the voltage profile and energy distribution in the

system under “Anti-CPA” stimulus at the same frequency in the simulation (see Fig. 2.6(a)). In

Fig. 2.6(b), the voltage on each node is much smaller than the voltage at CPA state (compare with

Fig. 2.5(b)), and the voltage on node 4 where the attenuator is attached is particularly small. Un-

der this condition, the total power absorption ratio is only 0.13, and nearly no power is absorbed

by the attenuator (see Fig. 2.6(c)), which characterizes the “Anti-CPA” state. Nevertheless, there
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Figure 2.6: Voltage profile and power distribution of the “Anti-CPA” state in idealized simulation.
a | Schematic of the microwave graph with labeled ports under CPA condition at 2.2999 GHz in
simulation. b | Voltage profiles of four nodes in the graph under the “Anti-CPA” condition. The
voltage amplitude on Node 4, where the absorbing attenuator is attached, is much less than the
voltage amplitude on other nodes. c | Power distribution among the graph components under the
“Anti-CPA” condition. Left plot shows that very little power (less than 15%) are absorbed by the
graph, and almost no power is dissipated by the attenuator. Right plot shows reactive power on
the cables. This figure is taken from Ref. [1].

is a great deal of reactive power present in the system (compare with Fig. 2.5(c)).

2.3.5 Extending CPA beyond Time-Reversal Invariance

After exploring the formation of a CPA in a TRI tetrahedral microwave graph, we turned

our focus to a graph with BTRI (Broken-Time Reversal Invariance). CPA associated with vi-

olated time-reversal symmetry is unconventional, and challenges the idea that CPA is simply a

time-reversed laser action [46, 47]. Driven by such motivation, we introduced a circulator [40]
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Figure 2.7: Evidence of CPA in the complex network with BTRI under four independent para-
metric sweeps. Plots are normalized so that CPA conditions are in the center of the parameter
variation range. The closest CPA frequency condition for the simulation is plotted along with the
experimental data. a | Measured ratio of output power Pout to input power Pin as the microwave
frequency sent into both ports of the graph is simultaneously swept near the CPA frequency
(∆f = f − fCPA). Inset shows the output-to-input power ratio response for a larger frequency
range around the resonance, and the dashed box corresponds to the frequency range shown in
a. The output-to-input power ratio shows a sharp dip below 10−5 at the CPA frequency (fCPA)
in both experiment and simulation. The scale bar of the mean mode spacing ∆ is shown in the
plot for reference. b | Output to input power ratio obtained by varying the attenuation of the
variable attenuator in the graph, while the other waveform characteristics (CPA frequency and
waveform) are equal to the ones set in a. ∆Att is the attenuation normalized by AttCPA from the
CPA condition. c,d | Output to input power ratio obtained by changing the amplitude A (c) and
phase difference ∆ϕ (d) separately of the two excitation signals required for the CPA state. All
experimental results are obtained by direct measurement of the input and output RF powers. This
figure is taken from Ref. [1].
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(2−4 GHz) at one internal node of the tetrahedral graph (see Fig. 2.1), which allows us to violate

the TRI in a controllable manner. Previous work demonstrated that the statistics of the microwave

graph impedance (or reaction matrix) changed from that characterized by the Gaussian orthogo-

nal ensemble of random matrices (appropriate for TRI systems) to the Gaussian unitary ensemble

(appropriate for BTRI systems) with the addition of this circulator [40, 105, 106].

Following the same procedure as for the TRI graph experiment, the CPA conditions are

found by evaluating the eigenvalues of the S-matrix. After that, similar sweep measurements

are done as in the TRI case to directly verify the formation of a CPA in the BTRI graph. Our

experimental measurements are reported in Fig. 2.7 and confirm the formation of a CPA despite

the naive expectation that the presence of a non-reciprocal element (circulator) in the system

should weaken the coherence between incident waves, as seen in the eigenfunctions of BTRI

wave chaotic systems [107]. The simulations from our modeling are reported in the same figure

and show the same behavior as the experimental data. The formed CPAs show the same charac-

teristic features (e.g. sharp resonance, sensitivity to various parameters, abrupt drop of outgoing

signal) as the ones reported in the TRI case. We therefore conclude that the CPA protocol applies

even to BTRI systems.

2.3.6 CPA in 2D Chaotic Quarter Bow-Tie Billiard

To further challenge the robustness of the CPA protocols we have also implement them

using a two-dimensional quarter bow-tie cavity, shown in the inset of Fig. 2.8. Such cavities

are known to demonstrate chaotic dynamics in the classical (ray) limit and have been used in the

past as an archetype system for wave chaos studies [10, 17–19]. The quarter bow-tie billiard has
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Figure 2.8: Demonstration of two CPA states in the quarter bow-tie billiard. A two-dimensional
quarter bow-tie billiard (see inset) is used to test the CPA protocols. The red dot on the bow-tie
represents the location of a point-like variable loss in the cavity. Through analysis of the S-
matrix, two CPA states are found at the same system configuration. By injecting two different
CPA waveforms, the measured ratios of output power Pout to input power Pin as a function of
the microwave frequency are plotted together. The different incoming waveforms support two
different CPA states with different CPA frequencies. The scale bar of the mean mode spacing ∆
is shown in the plot as well. This figure is taken from Ref. [1].

an area of A = 0.115m2. The brass cavity has a horizontal length of 17.0 inch (43.2 cm), and

a vertical length of 8.5 inch (21.6 cm). The upper arc radius is 42.0 inch (106.68 cm), and the

right arc has a radius of 25.5 inch (64.8 cm). The height of the cavity is d = 0.3125 inch (7.9

mm), which makes it a quasi-2D billiard below the cutoff frequency of fmax = c/(2d) = 18.9

GHz. The local losses have been incorporated via the same voltage variable attenuator which is

attached to the top plate of the billiard by means of a coaxial port at the red dot position in the

schematic (see inset of Fig. 2.8). A stub tuner (1819D from Maury Microwave Corporation) is
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Figure 2.9: Evidence of CPA in the quarter bow-tie billiard under two independent parametric
sweeps. Measurements are performed for the CPA state at f = 14.2888 GHz in the quarter bow-
tie billiard. Output to input power ratio obtained by changing the amplitude A at port 1 (a) and
phase difference ∆ϕ at port 2 (b) separately of the two excitation signals required for the CPA
state. All experimental results are obtained by direct measurement of the input and output RF
powers. This figure is taken from Ref. [1].

used to tune the coupling between the variable attenuator and the cavity. There are two addi-

tional coupling ports on the top plate of the bow-tie billiard for measurements. Following the

same experimental procedure as previously discussed, we have identified the CPA conditions and

injected the corresponding CPA waveform into the cavity. Due to the higher mode density in two-

dimensional billiards, an interesting feature is the appearance of two zeros λ(ω1) = λ(ω2) = 0

at the same attenuation strength but two different frequencies. At these frequencies (keeping the

attenuation parameter fixed), the system supports two different CPA waveforms identified by two

different eigenvectors of the S-matrix. We have confirmed this statement via a direct injection of

these specific waveforms into the cavity and measuring the corresponding output power versus

frequency for a fixed attenuation (see Fig. 2.8). At the CPA frequencies we find that the output

power associated with these two distinct waveforms drops sharply as one expects from a CPA.
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Therefore a CPA set-up can be utilized as a fast tunable switch where incident monochromatic

radiation from one port of the cavity is interferometrically suppressed by a control signal that is

injected from the other port.

For the CPA state at f = 14.2888 GHz (see the blue line in Fig. 2.8) in the quarter bow-tie

billiard, we perform the other two independent parametric sweep measurements, following the

same procedure as used in Figs. 2.4 and 2.7. The amplitude sweep and phase sweep measure-

ments shown in Fig. 2.9 demonstrate similar characteristic features, which demonstrate a CPA

state in the two-dimensional quarter bow-tie billiard.

2.4 Discussion and Conclusions

The implementation of CPA in generic complex scattering systems opens up a number

of interesting applications beyond the ones that we have already discussed (e.g. reconfigurable

switching). The first is long-range wireless electromagnetic power transfer technologies that

seek to deliver significant electromagnetic power to a single designated object located inside

a complex scattering enclosure many wavelengths away from the source. Current approaches

utilize multiple scattering and interfering wave trajectories connecting power source and target

through either time-reversal [108, 109] or phase conjugation of microwave signals [110] that

involve either large bandwidth or a large numbers of channels. These methods suffer from low

efficiency as well as radiation safety concerns. A CPA-based method would require only that

the target employs a tunable loss, or other tunable scattering property [111–113], and that the

source employs only a small number of channels to measure the S-matrix of the enclosure to

find the CPA condition. Once CPA is established, the source would output a coherent energetic
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signal that would be maximally absorbed at the desired target, with minimal loss elsewhere in

the environment. As an added benefit other users can utilize the same bandwidth to perform

other tasks (e.g. information transfer) utilizing the “Anti-CPA” condition, alleviating frequency

crowding concerns.

A second application concerns sensing of minute changes in a scattering environment.

There will be a sensitive change in absorbed energy, or output power from a complex scatter-

ing structure, due to any perturbation of the system from the CPA condition, as illustrated by the

cusp-like features in Figs. 2.4, 2.7 and 2.8. This arises from the shift of the scattering matrix

zero off of the real-frequency-axis, and the dramatic alteration of the scattering matrix is a very

direct and easy to measure property. This sensing protocol is simpler than the frequency splitting

of degenerate modes created by a perturbation to an optical resonator tuned to an exceptional

point [114], for example. Our CPA approach, which relies on the natural complexity of the cav-

ity, is generic and will work in any wavelength regime (or for any wave phenomenon) as long as

it is performed in a complex scattering environment.

A third example application is a CPA protocol for secure communications. Consider that

the absorber is a target receiver embedded at an unknown location in a complex environment.

Due to the complexity of the environment (multipaths with sensitive interference), transfer of

information from an outside source occurs only if the emitter prepares and injects a very specific

waveform. The waveform has to be determined by the absorber property as well as the envi-

ronment information, and is rapidly altered as soon as the absorber changes its property. The

CPA conditions (absorption and frequency) could be utilized to create a unique key to encrypt

the communication and secure the transmission process. Through this method one can establish

a secure communication protocol between the emitter and the absorber. A related application is
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to utilize CPA as a switch for an arbitrary incident signal at one frequency. For a given waveform

incident through the ports of the system one can arrange the relative amplitude/phase of a control

wave injected into the CPA cavity to create complete absorption of an incident signal at the same

frequency. Switching back and forth between the CPA and anti-CPA control waves will toggle

the incident signal to a maximum extent.

In summary we demonstrate the implementation of CPA protocols in generic complex scat-

tering systems without any geometric or hidden symmetries. The primary platform that has been

used in our investigations was a microwave realization of a quantum graph consisting of a com-

plex network of coaxial cables where time-reversal symmetry can be preserved or violated in a

controllable manner. Irrespective of the symmetry, the CPA condition has been realized through

continuous tuning of a localized lossy component and its efficiency has been tested by means of

direct measurement of RF power coming out of the graph. As much as 99.999% of the injected

power are absorbed by the system. To get additional confirmation of the efficacy of our exper-

imental CPA protocols in complex systems, we have also tested them successfully in a chaotic

microwave bow-tie cavity. Our work demonstrates that CPA can indeed be achieved even in the

case of complex (or chaotic) scattering set-ups where small variations in the form of the incoming

waves or of the scattering system might lead to dramatic changes in the scattering fields. These

findings establish the validity of CPA protocols, independent of the degree of complexity of the

wave transport phenomena, originating either from the influence of system-specific features in

the scattering process or from the presence or the absence of an underlying classical chaotic dy-

namics. Importantly, our work generalizes the operations and settings for CPA beyond its initial

assumptions of time-reversal symmetry and is expected to motivate practical applications, includ-

ing designing efficient absorbers, sensitive reconfigurable switches, enabling practical long-range
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wireless power transfer, and associated high-efficiency energy conversion systems. The extreme

sensitivity of absorption to parametric variation away from the CPA condition can be utilized

for ultra-sensitive detectors and secure communication links. These ideas translate to all forms

of complex wave scattering, including audio acoustics and solid-body vibro-acoustics. For fu-

ture work, the CPA phenomenon can be extended to the nonlinear regime [115] by introducing

nonlinear elements into the system.
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Chapter 3: Generalization of Wigner Time Delay to Sub-Unitary Scattering

Systems

3.1 Overview

Wigner time delay has been traditionally studied for the unitary scattering systems. For

the case of flux-conserving scattering in systems with no losses, the S-matrix is unitary and its

eigenvalues are phases eiθa , a = 1, 2, ...,M . These phases are functions of the excitation energy

E and one can then define several different measures of time delay, see e.g. [51, 77], such as

partial time delays associated with each channel τa = dθa/dE, the proper time delays which are

the eigenvalues of the Wigner-Smith matrix Q̂ = iℏdS†

dE
S, and the Wigner delay time which is the

average of all the partial time delays (τW = 1
M

∑M
a=1 τa =

1
M
Tr[Q̂]).

A rich class of systems in which properties of various time delays enjoyed thorough the-

oretical attention is scattering of short-wavelength waves from classically chaotic systems, e.g.

billiards with ray-chaotic dynamics or particles on graphs, e.g. such as considered in [116]. Var-

ious examples of chaotic wave scattering (quantum or classical) have been observed in nuclei,

atoms, molecules, ballistic two-dimensional electron gas billiards, and most extensively in mi-

crowave experiments [14, 22, 41, 117–119]. In such systems time delays have been measured

starting from the pioneering work [120], followed over the last three decades by measurement
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of the statistical properties of time delay through random media [121, 122] and microwave bil-

liards [123]. Wigner time delay for an isolated resonance described by an S-matrix pole at com-

plex energy E0 − iΓ has a value of Q = 2ℏ/Γ on resonance, hence studies of the imaginary part

of the S-matrix poles probe one aspect of time delay [124–129]. In the meantime, the Wigner-

Smith operator (WSO) was utilized to identify minimally-dispersive principal modes in coupled

multi-mode systems [83, 130]. A similar idea was used to create particle-like scattering states as

eigenstates of the WSO [52, 81, 82]. A generalization of the WSO allowed maximal focus on, or

maximal avoidance of, a specific target inside a multiple scattering medium [54, 86].

Time delays in wave-chaotic scattering are expected to be extremely sensitive to variations

of excitation energy and scattering system parameters, and will display universal fluctuations

when considering an ensemble of scattering systems with the same general symmetry. Univer-

sality of fluctuations allows them to be efficiently described using the theory of random matri-

ces [77, 131–139]. Alternative theoretical treatments of time delay in chaotic scattering systems

successfully adopted a semi-classical approach, see [55] and references therein.

Despite the fact that standard theory of wave-chaotic scattering deals with perfectly flux-

preserving systems, in any actual realisation such systems are inevitably imperfect, hence ab-

sorbing, and theory needs to take this aspect into account [140]. Interestingly, studying scattering

characteristics in a system with weak uniform (i.e. spatially homogeneous) losses may even pro-

vide a possibility to extract time delays characterizing idealized system without losses. This idea

has been experimentally realized already in [120] which treated the effect of sub-unitary scatter-

ing by means of the unitary deficit of the S-matrix. In this case consider the Q-matrix defined

through the relation S†S = 1−(γ∆/2π)QUD, where γ is the dimensionless ‘absorption rate’ and

∆ is the mean spacing between modes of the closed system. In the limit of vanishing absorption
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rate γ → 0 such QUD can be shown to coincide with the Wigner-Smith time delay matrix for a

lossless system, but formally one can extend this as a definition of Q for any γ > 0. Note that

this version of time delay is always real and positive. Various statistical aspects of time delays in

such and related settings were addressed theoretically in [79, 141–143].

Experimental data is often taken on sub-unitary scattering systems and a straightforward

use of the Wigner time delay definition yields a complex quantity. In addition, both the real

and imaginary parts acquire both negative and positive values, and they show a systematic evo-

lution with energy/frequency and other parameters of the scattering system. This clearly calls

for a detailed theoretical understanding of this complex generalization of the Wigner time de-

lay. It is necessary to stress that many possible definitions of time delays which are equiva-

lent or directly related to each other in the case of a lossless flux-conserving systems can sig-

nificantly differ in the presence of flux losses, either uniform or spatially localized. In the

present chapter we focus on a definition that can be directly linked to the fundamental char-

acteristics of the scattering matrix - its poles and zeros in the complex energy plane, making

it useful for fully characterizing an arbitrary scattering system. Note that S-matrix poles have

been objects of long-standing theoretical [144–152] and experimental [124–126, 128] interest in

chaotic wave scattering, whereas S-matrix zeroes started to attract research attention only re-

cently [1, 57, 58, 64, 65, 72, 101, 129, 153, 154].
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3.2 Complex Wigner Time Delay

3.2.1 Definition

In our exposition we use the framework of the so-called “Heidelberg Approach” to wave-

chaotic scattering reviewed from different perspectives in [155, 156] and [157]. Let H be the

N × N Hamiltonian which is used to model the closed system with ray-chaotic dynamics, W

denoting theN×M matrix of coupling elements between theN modes ofH and theM scattering

channels, and by A the N × L matrix of coupling elements between the modes of H and the L

localized absorbers, modelled as L absorbing channels. 1 The total unitary S-matrix, of size

(M + L) × (M + L) describing both the scattering and absorption on equal footing, has the

following block form, see e.g. [65]:

S(E) =

1M − 2πiW †D−1(E)W −2πiW †D−1(E)A

−2πiA†D−1(E)W 1L − 2πiA†D−1(E)A

 , (3.1)

where we defined D(E) = E −H + i(ΓW + ΓA) with ΓW = πWW † and ΓA = πAA†.

The upper left diagonalM×M block of S(E) is the experimentally-accessible sub-unitary

scattering matrix and is denoted as S(E). The presence of uniform-in-space absorption with

strength η can be taken into account by evaluating the S-matrix entries at complex energy: S(E+

1This way of modelling the localized absorbers as additional scattering channels is close in spirit to the so-called
dephasing lead model of decoherence introduced in: M. Büttiker, Role of quantum coherence in series resistors,
Phys. Rev. B 33, 3020 (1986) and further developed in P. W. Brouwer and C. W. J. Beenakker, Voltage-probe and
imaginary-potential models for dephasing in a chaotic quantum dot, Phys. Rev. B 55, 4695 (1997).
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iη) := Sη(E). The determinant of such a sub-unitary scattering matrix Sη(E) is then given by:

detSη(E) := detS(E + iη) (3.2)

=
det[E −H + i(η + ΓA − ΓW )]

det[E −H + i(η + ΓA + ΓW )]
(3.3)

=
N∏

n=1

E + iη − zn
E + iη − En

, (3.4)

In the above expression we have used that the S-matrix zeros zn are complex eigenvalues of

the non-self-adjoint/non-Hermitian matrixH+i(ΓW−ΓA), whereas the poles En = En−iΓn with

Γn > 0 are complex eigenvalues of yet another non-Hermitian matrixH−i(ΓW+ΓA), frequently

called in the literature “the effective non-Hermitian Hamiltonian” [77, 144, 152, 156–158]. Note

that when localized absorption is absent, i.e. ΓA = 0, the zeros zn and poles En are complex

conjugates of each other, as a consequence of S-matrix unitarity for real E and no uniform

absorption η = 0. Extending to locally absorbing systems the standard definition of the Wigner

delay time as the energy derivative of the total phase shift we now deal with a complex quantity:

τW (E;A, η) :=
−i
M

∂

∂E
log detSη(E) (3.5)

= Re τW (E;A, η) + iIm τW (E;A, η), (3.6)

Re τW (E;A, η) =
1

M

N∑
n=1

[
Im zn − η

(E − Re zn)2 + (Im zn − η)2
+

Γn + η

(E − En)2 + (Γn + η)2

]
, (3.7)

Im τW (E;A, η) = − 1

M

N∑
n=1

[
E − Re zn

(E − Re zn)2 + (Im zn − η)2
− E − En

(E − En)2 + (Γn + η)2

]
(3.8)

Equation (3.7) for the real part is formed by two Lorentzians for each mode of the closed

41



system, potentially with different signs. This is a striking difference from the case of the flux-

preserving system in which the conventional Wigner time delay is expressed as a single Lorentzian

for each resonance mode [159]. Namely, the first Lorentzian is associated with the nth zero while

the second is associated with the corresponding pole of the scattering matrix. The widths of the

two Lorentzians are controlled by system scattering properties, and when Im zn → η± 0 the first

Lorentzian in Eq. (3.7) acquires the divergent, delta-functional peak shape, of either positive or

negative sign, centered at E = Re zn. Note that the first term in Eq. (3.8) changes its sign at

the same energy value. These properties are indicative of the “perfect resonance” condition, with

divergence in the real part of the Wigner time delay signalling the wave/particle being perpetually

trapped in the scattering environment. In different words, the energy of the incident wave/particle

is perfectly absorbed by the system due to the finite losses.

The pair of equations (3.7, 3.8) forms the main basis for our consideration. In particular,

we demonstrate in Appendix A.1 that in the regime of well-resolved resonances Eqs. (3.7) and

(3.8) can be used for extracting the positions of both poles and zeros in the complex plane from

experimental measurements, provided the rate of uniform absorption η is independently known.

We would like to stress that in general the two Lorentzians in (3.7) are centered at different

energies because generically the pole position En does not coincide with the real part of the

complex zero Re zn.

From a different angle it is worth noting that there is a close relation between the objects

of our study and the phenomenon of the so called Coherent Perfect Absorption (CPA) discussed

in Chapter 2 which attracted considerable attention in recent years, both theoretically and experi-

mentally [1,46,48,101,160]. Namely, the above-discussed match between the uniform absorption

strength and the imaginary part of scattering matrix zero η = Im zn simultaneously ensures the
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determinant of the scattering matrix to vanish, see Eq. (3.4). This is only possible when |ψout⟩ = 0

despite the fact that |ψin⟩ ≠ 0, which is a manifestation of CPA, see e.g. [64, 65].

3.2.2 Experimental Setup

          
   

   

   

   

   

 

Network Analyzer

𝝀

Coaxial Cable

Tee-Junction

Short Circuit

Termination

Variable

Attenuator

Port 1 Port 2

Calibration Plane

Circulator

Figure 3.1: Schematic of the graph experimental setup. The lumped loss ΓA is varied by changing
the applied voltage to the variable attenuator. The nodes involving connections of the graph to
the network analyzer, and the graph to the lumped loss, are made up of a pair of Tee-junctions.
This figure is taken from Ref. [2].

We focus on experiments involving microwave graphs [1, 39, 41, 161] for a number of

reasons. First, they provide for complex scattering scenarios with well-isolated modes amenable

to detailed analysis. We thus avoid the complications of interacting poles and related interference

effects [162]. Graphs also allow for convenient parametric control such as variable lumped lossy

elements, variable global loss, and breaking of time-reversal invariance. We utilize an irregular

tetrahedral microwave graph formed by coaxial cables and Tee-junctions, having M = 2 single-

mode ports, and broken time-reversal invariance. A voltage-controlled variable attenuator is

attached to one internal node of the graph (see Fig. 3.1), providing for a variable lumped loss

(L = 1, the control variable ΓA). The coaxial cables and tee-junctions have a roughly uniform
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and constant attenuation produced by dielectric loss and conductor loss, which is parameterized

by the uniform loss parameter η. The 2-port graph has a total electrical length of Le = 3.89 m, a

mean mode spacing of ∆ = c/2Le = 38.5 MHz, and a Heisenberg time τH = 2π/∆ = 163 ns.

The graph has equal coupling on both ports, characterized by a nominal value of Ta = 0.9450 at

a frequency of 2.6556 GHz. 2

It should be noted that there are two widely-used conventions for the evolution of the phase

of the complex S-matrix elements with increasing frequency. Microwave network analyzers uti-

lize a convention in which the phase of the scattering matrix elements decreases with increasing

frequency. Here we adopt the convention used in the theoretical literature that the phase of S-

matrix elements increases with increasing frequency.

3.2.3 Comparison of Theory and Experiments

After obtaining the 2 × 2 S-matrix data of tetrahedral graph under different attenuation

settings, we follow Eqs. (3.5) and (3.6) to calculate the complex Wigner time delay in this setup.

Figure 3.2 shows the evolution of complex time delay for a single isolated mode of the M = 2

port tetrahedral microwave graph as ΓA is varied. The complex time delay is evaluated as in Eq.

(3.5) based on the experimental S(f) data, where f is the microwave frequency, a surrogate for

energy E. Note that the (calibrated) measured S-parameter data is directly used for calculation of

the complex time delay without any data pre-processing. The resulting real and imaginary parts

of the time delay vary systematically with frequency, adopting both positive and negative values,

depending on frequency and lumped loss in the graph. These variations are well-described by the

2The coupling strength Ta is determined by the value of the radiation S-matrix (Ta = 1− |Srad|2). The radiation
S is measured when the graph is replaced by 50 Ω loads connected to the three output connectors of each node
attached to the network analyzer test cables.
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Attenuation 

Setting

(a)

(b)

Figure 3.2: Experimental data of both real and imaginary parts of Wigner time delay Re[τW ]
and Im[τW ] (normalized by the Heisenberg time τH) as a function of frequency under different
attenuation settings for a single isolated mode. For each attenuation setting, the data is plotted
from 2.645 GHz to 2.665 GHz. For clarity, plots with higher attenuation setting are shifted 0.01
GHz from the previous one. Inset shows the entire range of Re[τW ] for attenuation setting of 2.35
dB. This figure is taken from Ref. [2].

theory given above.

Figure 3.3 clearly demonstrates that two Lorentzians are required to correctly describe the
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(a)

(b)

Figure 3.3: Demonstration of the two-Lorentzian nature of the real and imaginary parts of the
Wigner time delay as a function of frequency. The fitting parameters in these two plots are:
Re zn = 2.6556 GHz,En = 2.6544 GHz, Im zn−η = −7.1065×10−4 GHz, and Γn+η = 0.0110
GHz. The constants used in the Re[τW ] and Im[τW ] fits are CR = 0.26 and CI = −0.0018 in units
of τH. This figure is taken from Ref. [2].

frequency dependence of the real part of the time delay. The two Lorentzians have different

widths in general, given by the values of Im zn − η and Γn + η, and in this case the Lorentzians

also have opposite sign. The frequency dependence of the imaginary part of the time delay also

requires two terms, with the same parameters as for the real part, to be correctly described. The

data in Fig. 3.2(a) also reveals that Re[τ ] goes to very large positive values and suddenly changes
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sign to large negative values at a critical amount of local loss. For another attenuation setting of

the same mode it was found that the maximum delay time was 337 times the Heisenberg time,

showing that the signal resides in the scattering system for a substantial time.

3.2.4 Extracting Zero and Pole of S-matrix from Data

The measured complex time delay as a function of frequency can be fit to Eqs. (3.7) and

(3.8) to extract the corresponding pole and zero location for the S-matrix. The fitting parameters

are Re zn and Im zn − η for the zero, and En and Γn + η for the pole. Note that the Re[τW (f)]

and Im[τW (f)] data are fit simultaneously, and constant offsets CR and CI are added to each fit.

Figure 3.4: Complex time delay experimental data for the neighboring resonances at an attenua-
tion setting of 2.53 dB. The resonance mode in the middle is the one being analyzed in this study.
This figure is taken from Ref. [2].

In this study we used an isolated mode for data fitting and analysis. A good definition of
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‘isolated resonance’ is that the separation is much larger than the width of the resonance. Fig. 3.4

shows the separation between the mode fit in the text and its neighboring resonances, where the

nearest-neighbor distance for the middle resonance is ∆f = 0.0393 GHz (with the resonance on

the right). Under this attenuation setting, the resonance widths of the two Lorentzians from the

zero and pole for the middle resonance are |Im zn−η| = 7.1065×10−4 GHz and Γn+η = 0.0110

GHz, which give rise to dimensionless separation estimates of ∆f
|Im zn−η| = 55.3 and ∆f

Γn+η
= 3.6,

respectively.

In situations where the isolation between neighboring resonances is not large, the nearby

resonances may have some contributions to the complex time delay at the resonance of interest.

Here we evaluate this effect by using Eqs. (3.7) and (3.8) for three hypothetical modes. We utilize

three similar pairs of zero and pole with adjustable mode spacing between them (see Fig. 3.5).

The middle resonance has the same zero and pole from the experimental data, and the neighboring

two resonances have the same information except for the variable frequency separation between

them. Fig. 3.5 clearly demonstrates that the neighboring resonances can have strong background

contributions to Re[τW ], which may lead to a non-negligible constant CR in the fitting process

(see Figs. 3.3 and 3.10). The contribution to Im[τW ], on the other hand, is quite small because

Im[τW ](f) changes sign through the resonance, hence for a low density of modes the ‘tails’ of

the Im[τW ] contributions cancel out to good approximation. Fig. 3.5(d) shows the background

contribution τBkd to Re[τW ] and Im[τW ] at the resonance of interest as a function of the mode

separation. Clearly Re[τW ] is more sensitive to the presence of nearby modes and requires larger

fit values for CR, as compared to CI, consistent with the results in Fig. 3.3.

Figure 3.6 summarizes the parameters required to fit the experimental complex time delay

vs. frequency (shown in Fig. 3.2) as the localized loss due to the variable attenuator in the graph
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Figure 3.5: Simulations based on Eqs. (3.7) and (3.8) of the effect of neighboring resonances on
the background values τBkd of Re[τW ] and Im[τW ] at the location of the center resonance. (a) – (c)
show the complex time delay for three constructed neighboring resonances with variable mode
spacing. A scale bar of 5 MHz is added for reference. Here τH =163 ns is the Heisenberg time
from the experiment. The parameters used for the center resonance are: Re zn = 2.6556 GHz,
En = 2.6544 GHz, Im zn − η = −7.1065 × 10−4 GHz, and Γn + η = 0.0110 GHz. (d) shows
the background contributions τBkd of both the real and imaginary parts of complex time delay
from the neighboring two resonances at the center frequency of 2.6556 GHz. Here ∆ = 38.5
MHz is the mean mode spacing of the experimental graph, and is simply used as a characteristic
frequency scale for normalization. The corresponding data points from (a) – (c) are labelled in the
plot. The background contributions decrease dramatically as the mode spacing increases, and the
background contribution to Im[τW ] is much smaller compared with the contribution to Re[τW ].
Inset in (d) shows a zoom-in view of the two contributions for small mode spacing. This figure
is taken from Ref. [2].

is increased. The significant feature here is the zero-crossing of Im zn−η at frequency f = fCPA,

which corresponds to the point at which Re[τW (f)] changes sign. As shown in Fig. 3.6 this

coincides with the point at which | det(S(f))| achieves its minimum value at the CPA frequency

fCPA. This demonstrates that one or more eigenvalues of the S-matrix go through a complex zero

value precisely as the condition Im zn − η = 0 and f − Re zn = 0 is satisfied. Associated with
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det 𝑆
Re 𝓏𝑛

𝐸𝑛
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Figure 3.6: Fitted parameters Im zn−η and Γn+η for the complex Wigner time delay from graph
experimental data. Also shown is the evolution of | det(S)| at the specific frequency of interest,
fCPA, which reaches its minimum at the zero-crossing point. Inset shows the evolution of Re zn
and En = Re En with attenuation. This figure is taken from Ref. [2].

this condition |Re[τW (fCPA)]| diverges, with corresponding large positive and negative values of

Im[τW (f)] occurring just below and just above f = fCPA. Similar behavior of Re[τW (f)] was

recently observed in a complex scattering system containing re-configurable metasurfaces, as the

pixels were toggled [160].

Next we wish to estimate the value of uniform attenuation η for the microwave graph.

Using the unitary deficit of the S-matrix (see Appendix B.1) in a setup in which the attenuator is

removed [120], we evaluate the uniform loss strength η to be 3.73× 10−3 GHz.

Figure 3.7 summarizes the locations of the S-matrix pole En and zero zn of the single

isolated mode of the microwave graph in the complex frequency plane as the localized loss is

varied. When the S-matrix zero crosses the Im zn = η value, one has the traditional signature of

CPA. Note from Fig. 3.7 that the real parts of the zero and pole do not coincide and in fact move
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𝜂Zero

Pole

Figure 3.7: Evolution of complex zero and pole of a single mode of the graph in the complex
frequency plane as a function of ΓA. The black crosses are the initial state of the zero and pole at
the minimum attenuation setting. Insets show the details of the complex zero and pole migrations.
This figure is taken from Ref. [2].

away from each other as localized loss is increased.

3.2.5 Simulations of Graph with Varying Uniform Loss η

Figure 3.8: Schematic of the
graph simulation setup.

We have simulated the microwave graphs using CST Mi-

crowave Studio utilizing an idealized simulation model. In this

model, an irregular tetrahedral graph similar to that used in the

experiment is considered. The graph nodes are represented by

Tee-junctions which are set to be ideal (point-like with an ideal

scattering matrix), and the only source of loss in the setup comes

from uniform dielectric loss of the coaxial cables which can be
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Figure 3.9: Complex Wigner time delay from graph simulation with varying uniform loss η.
Figure shows simulation data of both real and imaginary parts of Wigner time delay Re[τW ]
and Im[τW ] (normalized by the Heisenberg time τH), as a function of frequency under different
uniform loss settings for a single isolated mode near 6.1526 GHz. Inset in (a) shows the entire
range of Re[τW ] for tanδ = 7.5 × 10−6, and inset in (b) shows the zoom-in view of Im[τW ] for
tanδ = 10−7. This figure is taken from Ref. [2].

conveniently varied by changing the dielectric loss parameter tanδ. The 2-port graph simulation

model has a total electrical length of 8.69 m, Heisenberg time τH = 364 ns, equal coupling on
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Figure 3.10: Demonstration of the two-Lorentzian nature of the real and imaginary parts of the
Wigner time delay (normalized by the Heisenberg time τH) as a function of frequency. The fitting
parameters in these two plots are: Re zn = 6.1527 GHz, En = 6.1527 GHz, Im zn − η =
−6.5057× 10−6 GHz, and Γn + η = 5.3547× 10−5 GHz. The constants used in the Re[τW ] and
Im[τW ] fits are CR = 0.097 and CI = 0.00016 in units of τH. This figure is taken from Ref. [2].

both ports, characterized by a nominal value of Ta = 0.75, and no lumped loss (i.e. ΓA = 0).

Note that in contrast to the experiment discussed above, here we consider a time-reversal invari-

ant microwave graph. This is done, in part, to demonstrate that the complex time delay theory

applies to all classes of complex scattering systems.

The new insight created by the simulation comes from the ability to systematically vary the
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Figure 3.11: Evolution of scattering matrix zero and pole for a single mode in the graph simula-
tion with varying uniform loss η. Plot shows the fitted parameters Im zn and Γn for the complex
Wigner time delay from graph simulation data. Also shown is the evolution of | det(S)| at the
specific frequency of interest, fCPA, which reaches its minimum at the crossover point where
Im zn − η = 0. Inset (a) shows the zoom-in details of the crossover when Im zn matches with η,
and inset (b) shows the evolution of Re zn and En = Re En with varying tanδ. In this case, the
real part of zero and pole are equal. This figure is taken from Ref. [2].

uniform loss η while keeping all other parameters fixed. In this way we can show how CPA can

be accomplished by simply changing the uniform loss. Results are shown in Figs. 3.9 – 3.11,

which are similar to the experimental results shown in Figs. 3.2, 3.3, and 3.6. The CPA condition

is achieved for a single isolated mode at fCPA = 6.15265 GHz when the uniform loss tangent

value is tuned through a value of tanδ = 7.8× 10−6.

3.3 Discussion and Conclusions

In the past, the concept of a complex transmission delay was developed in the context of

principal modes in multi-mode waveguides [130], and a similar quantity was later used in the
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experimental realization of particle-like scattering states [82]. Complex dwell time was defined

for a multiple scattering medium with lossy resonant absorbers [163].

It should be noted that the occurrence of a negative real part of the time delay is an in-

evitable consequence of sub-unitary scattering, and is also expected for particles interacting with

attractive potentials [164].

An early study of Gaussian pulse propagation through an anomalously dispersive medium

predicted negative delay [165], and later measurements confirmed the theory [166]. The observed

negative delay of the pulse was attributed to the fact that the leading edge of the pulse is attenuated

less than the later parts, and the Gaussian shape is approximately preserved, under appropriate

circumstances. Negative real parts of reflection delay time have been measured experimentally in

a one-dimensional Levy-flight system but were dismissed as an artefact due to prompt reflections

[167].

The imaginary part of time delay was in the past discussed in relation to changes in scat-

tering unitary deficit with frequency [82]. Another approach to defining complex time delay has

been recently suggested to be based on essentially calculating the time delay of the signal which

comes out of the system without being absorbed [160]. It should be noted that this ad hoc defini-

tion of time delay is not simply related to the poles and zeros of the S-matrix. Moreover, a closer

inspection shows that such a definition of complex time delay tacitly assumes that the real parts

of the pole and zero are identical. According to our theory such an assumption is incompatible

with a proper treatment of localized loss.

Our findings show that in general the real part of the delay as a function of frequency is not

symmetric about the resonance as a consequence of the differences in the real parts of zn and En,

and that it has a distinctive two-Lorentzian character that had not been appreciated until now.
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We emphasize that the correct knowledge of the locations of the poles and zeros is essential

for reconstructing the scattering matrix over the entire complex energy plane through Weierstrass

factorization [168]. Through graph simulations presented above, we demonstrate that the com-

plex time delay theory presented here also works for time-reversal invariant systems, and for

systems with variable uniform absorption strength η. Our results therefore establish a systematic

procedure to find the S-matrix zeros and poles of isolated modes of a complex scattering system

with an arbitrary number of coupling channels, symmetry class, and arbitrary degrees of both

global and localized loss.

Recent work has demonstrated CPA in disordered and complex scattering systems [1,101].

It has been discovered that one can systematically perturb such systems to induce CPA at an arbi-

trary frequency [9, 160], and this enables a remarkably sensitive detector paradigm [160]. These

ideas can also be applied to optical scattering systems where measurement of the transmission

matrix is possible [169]. Here we have uncovered a general formalism in which to understand

how CPA can be created in an arbitrary scattering system. In particular this work shows that both

the global loss (η), localized loss centers, or changes to the spectrum can be independently tuned

to achieve the CPA condition.

We note that at CPA both the peak in |Re τW | and the point at which Im τW changes its sign

coincide in energy, but away from CPA these features may occur at different energies. Note that

the real and imaginary parts share the same forms in the denominator of the Lorentzians. This

leads to a synchronous evolution of their shapes with energy and scattering characteristics.

We also note that CPA can be achieved by tuning either localized loss ΓA, or uniform loss

η, as demonstrated in Fig. 3.6 from experiment and Fig. 3.11 from simulation, respectively.

Next step includes treating the case of overlapping modes, and the development of theoret-
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ical predictions for the statistical properties of both the real and imaginary parts of the complex

time delay in chaotic and multiple scattering sub-unitary systems.

In conclusion, we have introduced a complex generalization of Wigner time delay which

holds for arbitrary uniform/global and localized loss, and directly relates to poles and zeros of the

scattering matrix in the complex energy/frequency plane. Based on that we developed theoretical

expressions for complex time delay as a function of energy, and found very good agreement with

experimental data on a sub-unitary complex scattering system. Time delay and det(S) share a

common feature that CPA and the divergence of Re[τW ] and Im[τW ] coincide. This work opens

a new window on time delay in lossy systems, enabling extraction of complex zeros and poles of

the S-matrix from data.
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Chapter 4: Statistics of Complex Wigner Time Delay in Sub-Unitary Scattering

Systems

4.1 Overview

In prior chapter we examined the relationship between the generalized complex time delay

and the locations of the S-matrix poles En and zeros zn in the complex energy plane for isolated

modes. In this chapter we are concerned with the statistical properties of complex time delay for

large ensembles of scattering systems. It is clear that the statistics of locations of the S-matrix

poles and zeros will influence the statistics of the complex time delay.

The subject of interest is the general scattering properties of complex systems, namely

finite-size wave systems with one or more channels connected to asymptotic states outside of

the scattering domain. The scattering system is complex in the sense that classical ray trajec-

tories will undergo chaotic scattering when propagating inside the closed system. We focus on

the properties of the energy-dependent scattering matrix of the system, defined via the linear re-

lationship between the outgoing |ψout⟩ and incoming wave amplitudes |ψin⟩ on the M coupled

channels as |ψout⟩ = S |ψin⟩. In the short wavelength limit the complex M ×M scattering matrix

S(E) is a strongly fluctuating function of energy E (or, equivalently, the frequency ω) of the

incoming waves, as well as specific system details. Those parts of the fluctuations which reflect
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long-time behavior are controlled by the high density of S-matrix poles, or resonances, having

their origin at eigenfrequencies (modes) of closed counterparts of the scattering systems. At

energy scales comparable to the mean separation ∆ between the neighboring eigenfrequencies,

the properties of the scattering matrix are largely universal, and depend on very few system-

specific parameters. The ensuing statistical characteristics of the S-matrix have been very suc-

cessfully studied theoretically over the last 3 decades using methods of Random Matrix Theory

(RMT) [77, 140, 144, 155–157, 170–172].

One quantity which is closely related to resonances is known to be the Wigner time delay

τW. In its traditional definition [49,50] for unitary, flux conserving scattering systems the Wigner

time delay τW is a real positive quantity measuring how long an excitation lingers in the scattering

region before leaving through one of the M channels. Fluctuations of τW and related quantities

was the subject of a large number of theoretical works in the RMT context [78, 79, 111, 131–

135, 173, 174], and more recently [51, 136, 139, 143, 175], as well in a semiclassical context

in [55,138,164,176] and references therein. In particular, for the one and two channel cases most

relevant to this dissertation the distribution of τW is known explicitly for all symmetry classes,

β = 1, 2 and 4 [135].

Experimental work on time delays in wave chaotic billiard systems was pioneered by

Doron, Smilansky and Frenkel in microwave billiards with uniform absorption [120], where the

relation between the Wigner time delays and the unitary deficit of the S-matrix has been explored.

Later experiments on time delay statistics were made by Genack and co-workers, who studied

microwave pulse delay times through randomized dielectric scatterers [121, 122]. The quantity

studied in that case is a type of partial time delay associated with the complex transmission am-

plitude between channels [177], somewhat different from the Wigner time delay. In particular,
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contributions to the transmission time delay due to poles and zeros of the off-diagonal S-matrix

entries have been identified [59].

Despite strong interest in the standard Wigner time delay over the years, its use for charac-

terising statistics of S-matrix poles and zeros beyond the regime of well-resolved (isolated) res-

onances have been always problematic. In our recent paper [2] we noticed that in the presence of

losses one may propose a complex-valued generalization of the Wigner time delay τW (CWTD)

which reflects the phase and amplitude variation of the scattering matrix with energy. Subse-

quently, we developed a method, both experimentally and theoretically, for exploiting CWTD

for identifying the locations of individual S-matrix poles En and zeros zn in the complex energy

plane. The method has been implemented in the regime of well-resolved, isolated resonances,

for systems with both localized and uniform sources of absorption. However, no statistical char-

acterization of CWTD for large numbers of modes has been attempted.

To this end it is worth mentioning that one of the oldest yet useful facts about the standard

Wigner time delay is that the mean of the τW distribution is simply related to the Heisenberg time

τH of the system, ⟨τW⟩ = 2πℏ/M∆ := τH/M [159]. As such it is absolutely insensitive to the

type of dynamics, chaotic versus integrable. More recently this property was put in a much wider

context and tested experimentally [178].

In this chapter we reveal that the mean value of Re[τW] of CWTD is, in striking contrast to

the flux-conserving case, a much richer object and can be used to obtain nontrivial information

about the distribution of the imaginary part of the poles of the S-matrix. For this we develop the

corresponding theory for the mean values and compare to the experimentally observed evolution

of distributions of real and imaginary parts of CWTD with uniform loss variation.
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4.2 Complex Wigner Time Delay

The appropriate theoretical framework for our analysis is the so called effective Hamil-

tonian formalism for wave-chaotic scattering [77, 118, 144, 156, 157]. It starts with defining an

N × N self-adjoint matrix Hamiltonian H whose real eigenvalues are associated with eigen-

frequencies of the closed system. Further defining W to be an N × M matrix of coupling

elements between the N modes of H and the M scattering channels, one can in the standard

way build the unitary M × M scattering matrix S(E). In this approach the S-matrix poles

En = En − iΓn (with Γn > 0) are complex eigenvalues of the non-Hermitian effective Hamil-

tonian matrix Heff = H − iΓW ̸= H†
eff, where we defined ΓW = πWW †. A standard way of

incorporating the uniform absorption with strength η is to replace E → E + iη making S-matrix

subunitary, such that its determinant detS(E + iη) is given by the ratio

det[E −H + i(η − ΓW )]

det[E −H + i(η + ΓW )]
=

N∏
n=1

E + iη − E∗
n

E + iη − En
, (4.1)

Using the above the expression, the Wigner time delay can be very naturally extended to

scattering systems with uniform absorption as suggested in [2] by defining:

τW(E; η) :=
−i
M

∂

∂E
log detS(E + iη) = Re τW(E; η) + iIm τW(E; η), (4.2)

Re τW(E; η) =
1

M

N∑
n=1

[
Γn + η

(E − En)2 + (Γn + η)2
− η − Γn

(E − En)2 + (Γn − η)2

]
, (4.3)

Im τW(E; η) = − 1

M

N∑
n=1

[
4ηΓn(E − En)

[(E − En)2 + (Γn − η)2][(E − En)2 + (Γn + η)2]

]
(4.4)

For a wave-chaotic system the set of parameters Γn, En (known as the resonance widths
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and positions, respectively) is generically random. Namely, even minute changes in microscopic

shape characteristics of the system will drastically change the particular arrangement of S-matrix

poles in the complex plane in systems which are otherwise macroscopically indistinguishable. To

study the associated statistics of CWTD most efficiently one may invoke the notion of an ensem-

ble of such systems. As a result, both Re[τW] and Im[τW] at a given energy will be distributed over

a wide range of values. Alternatively, even in a single wave-chaotic system the CWTD will dis-

play considerable statistical fluctuations when sampled over an ensemble of different mesoscopic

energy intervals. Invoking the notion of spectral ergodicity one expects that in wave-chaotic sys-

tems the two types of ensembles (i.e. those produced by perturbations to the system at fixed

energy vs. those created by considering various energy windows) should be equivalent.

Consider the mean value of the CWTD in systems with uniform absorption η > 0. In

contrast to the case of flux-conserving systems the mean of Re[τW] becomes highly nontrivial

as it counts the number of S-matrix poles whose widths exceed the uniform absorption strength

value. In other words,

⟨Re[τW(E; η)]⟩E
τH/M

=
#[Γn > η such that En is inside IE]

total # resonances inside IE
(4.5)

where IE is a mesoscopic energy interval that is much larger than the mean mode spacing ∆,

absorption η and the widths Γn, but small enough so that the interval has a roughly constant
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mode density. To prove this, perform an energy average of Eq. (4.3):

⟨Re[τW(E; η)]⟩E ≈

π/2

M |I|

N∑
n=1

{[
sign

(
ER − En

η + Γn

)
− sign

(
EL − En

η + Γn

)]

−
[

sign
(
ER − En

η − Γn

)
− sign

(
EL − En

η − Γn

)]}
=

2π

M |I|

N∑
n=1

θ(Γn − η) (4.6)

where |I| := |ER − EL| is the mesoscopic energy interval, and the step function θ(x) = 1 for

x > 0 and θ(x) = 0 otherwise. Under the assumption that #(En ∈ I) ≈ |I|/∆ we arrive at the

statement Eq. (4.5) above. Alternatively, invoking ergodicity, one may use the RMT for analysing

the mean CWTD, which independently confirms Eq. (4.5). Such analysis also predicts that

⟨Im[τW(E, η)⟩E = 0, independent of η. Details of these calculations are presented in Appendix

A.2. The distribution of imaginary parts Γn of the S-matrix poles relevant for Eq. (4.5) have

been examined theoretically in the RMT framework [145–148] and experimentally [124–129] by

a number of groups.

4.3 Experiment

We test our theory by using an ensemble of tetrahedral microwave graphs with either

M = 1 or M = 2 channels coupled to the outside world. We focus on experiments involv-

ing microwave graphs [1,39,41,161] for a number of reasons: one can precisely vary the uniform

loss and the lumped loss over a wide range; one can work in either the time-reversal invari-

ant (TRI) or broken-TRI regimes; one can gather very good statistics with a large ensemble of
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graphs; one can vary both the (energy-independent) mode density and loss to go from the limit of

isolated modes to strongly overlapping modes. The disadvantages of graphs for statistical studies

include significant reflections at nodes, which can create trapped modes on the bonds [179], and

the appearance of short periodic orbits in cyclic graphs [45].

4.3.1 Experimental Setup

The microwave graphs are constructed with coaxial cables with center conductors of diam-

eter 0.036 in. (0.92 mm) made with silver plated copper clad steel, and outer shield of diameter

0.117 in. (2.98 mm) made with a copper-tin composite. An ensemble of microwave graphs is cre-

ated by choosing 6 out of 9 cables with different incommensurate lengths (for a total of
(
9
6

)
= 84

realizations) and creating uniquely different tetrahedral graphs. The scattering matrix of the 1

and 2-port graphs are measured with a calibrated Agilent PNA-X N5242A Network Analyzer

(see insets of Fig. 4.3) over the frequency range from 1 to 12.4 GHz, which includes about 250

modes in a typical realization of the ensemble. The graphs are measured with a finite coupling

strength ga, which varies from 1.06 to 1.80 as a function of frequency, where ga = 2
Ta

− 1 and

Ta = 1 − |Srad|2 is the transparency of the graph to the scattering channel a determined by the

value of the radiation S-matrix.1 The effects of the coupling are then removed through application

of the Random Coupling Model (RCM) normalization process [17, 20–22] (see more details in

Appendix D.3). This is equivalent to creating an ensemble of data with perfect coupling, ga = 1

and Ta = 1 for all frequencies, ports, and realizations.

Time-reversal invariance was broken in the graph by means of one of 4 different microwave

1The radiation Srad is measured when the graph is replaced by 50 Ω loads connected to the three output connectors
of each node attached to the network analyzer test cables.
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circulators [40] operating in partially overlapping frequency ranges going from 1 to 12.4 GHz (see

Appendix D.2). The CWTD τW is calculated using the RCM-normalized scattering matrix S as in

Eq. (4.2), and the statistics of the real and imaginary parts are compiled based on realization av-

eraging and frequency averaging in a given frequency band. The overall level of attenuation was

varied by adding identical fixed microwave attenuators to each of the 6 bonds of the tetrahedral

graphs [180]. The attenuator values chosen were 0.5, 1 and 2 dB.

4.3.2 Comparison of Theory and Experiments

(a)

(b)

Figure 4.1: Evolution of the PDF of measured Re[τW] with increasing uniform attenuation (η̃)
from an ensemble of two-port (M = 2) tetrahedral microwave graphs with broken-TRI. Main
figure and inset (a) show the distributions of the positive and negative Re[τW] on a log-log scale
for three values of uniform attenuation, respectively. Reference lines characterizing power-law
behavior are added to the tails. Inset (b) shows the distributions of Re[τW] on a linear scale for
the same measured data. This figure is taken from Ref. [3].

Our prior work showed that CWTD varied systematically as a function of energy/frequency
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for an isolated mode of a microwave graph [2]. The real and imaginary parts of τW take on both

positive and negative values. We now consider an ensemble of graphs and examine the distribu-

tion of these values taken over many realizations and modes. We first examine the evolution of the

PDF of Re[τW] (Fig. 4.1(b)) and Im[τW] (inset of Fig. 4.2) with increasing uniform (normalized)

attenuation η̃. The uniform attenuation is quantified from the experiment as η̃ = 2π
∆
η = 4πα,

where α = δf3dB/∆f , δf3dB is the typical 3-dB bandwidth of the modes and ∆f is the mean

frequency spacing of the modes [18].

Im 𝜏𝑊 / 𝜏H

P
D
F

Figure 4.2: Evolution of the PDF of measured Im[τW] with increasing uniform attenuation (η̃)
from an ensemble of two-port (M = 2) tetrahedral microwave graph data with broken-TRI. The
main figure shows a log-log plot of the PDF versus |Im[τW]| for three values of uniform attenua-
tion. A reference line is added to characterize the power-law tail. Inset shows the distributions of
Im[τW] on a linear scale for the same measured data. This figure is taken from Ref. [3].

Fig. 4.1 shows that as the uniform attenuation (η̃) of the graphs increases, the peak of the

Re[τW] distribution shifts to lower values. Furthermore, Fig. 4.1(a) shows that Re[τW] acquires

more negative values as the attenuation increases. Fig. 4.1 demonstrates that the PDF of Re[τW]
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exhibits power-law tails on both the negative and positive sides, respectively. The positive-side

PDFs shown in Fig. 4.1 have different power-law behaviors for different ranges of Re[τW], which

is further explained theoretically in Appendix A.3. Fig. 4.2 shows the PDF of |Im[τW]| on both

linear and log-log scales for the same values of uniform attenuation. We find that the Im[τW] dis-

tribution is symmetric about zero to very good approximation. Once again a power-law behavior

of the tails of the distribution is evident.

Figure 4.3 shows a plot of the Mean(Re[τW]) vs. uniform attenuation (η̃) in ensembles of

microwave graphs for both (a) M = 1 and (b) M = 2 ports. The black circles represent the

data taken on an ensemble of microwave graphs with constant η̃. The red line is an evaluation

of the relation Eq. (4.5) above, based on the analytical prediction for the P (Γn) distribution for

the a) M = 1 and b) M = 2 cases, both with perfect coupling (g = 1) [77, 146]. Note that

the distribution of Γn for M = 1 is very different from the multi-ports cases (see Fig. 4.6).

Nevertheless there is excellent agreement between data and theory over the entire experimentally

accessible range of uniform attenuation values for both 1-port and 2-port graphs. We can con-

clude that the theoretical prediction put forward in Eq. (4.5) is in agreement with experimental

data. A more detailed comparison with random matrix based computations over a broad range of

uniform attenuation is presented in section 4.4.

We have also examined the experimentally obtained statistics of Im[τW]. As seen in the

insets of Fig. 4.3 (a) and (b), we find that the mean of Im[τW] is consistent with theoretically

predicted zero value for all levels of uniform attenuation in the graphs.

We now turn out attention back to the power-law tails for the distributions of Re[τW] and

Im[τW] presented in Figs. 4.1 and 4.2. By examining the statistics of large values of Re[τW] that

appear in Eq. (4.3), one finds that the tails of the PDFs will behave as P(Re[τW]) ∝ 1/Re[τW]3,
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Figure 4.3: Mean of Re[τW] as a function of uniform attenuation η̃ evaluated using tetrahedral
microwave graph data with broken-TRI for both one- and two-port configurations. (a) shows
the one-port experimental data (black circles) compared with theory (red line). (b) shows the
two-port experimental data (black circles) compared with theory (red line). A detailed discussion
about the estimated error bars (blue) can be found in Appendix B.2. Insets show the mean of the
Im[τW] (green circles) as a function of uniform attenuation η̃ evaluated using the same datasets
for the one- and two-port configurations, respectively. Other insets show the experimental con-
figurations. This figure is taken from Ref. [3].
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on both the positive and negative sides, as long as MRe[τW]/τH ≫ 1/η̃ (details discussed in

Appendix A.3). This behavior is clearly observed on the negative side of the PDF, as shown in

Fig. 4.1(a). The tail on the positive side is more complicated due to a second power-law expected

in the intermediate range: P(Re[τW]) ∝ 1/Re[τW]4 when 1 ≪ MRe[τW]/τH ≪ 1/η̃. Unfortu-

nately we were not able to obtain such data within this range (requiring very low attenuation η̃)

experimentally, but a narrow range of Re[τW]/τH between approximately 0.3 and 1 in Fig. 4.1

shows a steeper power-law behavior, consistent with P(Re[τW]) ∝ 1/Re[τW]4, giving way to a

more shallow slope at larger values of Re[τW]/τH, consistent with the theory. As seen in Fig.

4.2, the distribution of the imaginary part of the time delay has a wide range with a power law

P(|Im[τW]|) ∝ 1/|Im[τW]|3, consistent with our theoretical prediction.

4.4 Random Matrix Theory Simulation

We utilize numerical data from the Random Matrix Theory (RMT) simulation to further

examine the theory presented in this chapter, and provide more insights for discussion. The RMT

data is generated using Random Matrix Monte Carlo simulation [7]. Here we adopt the Gaussian

Unitary Ensemble (GUE) setting in the Random Matrix calculation.

4.4.1 PDFs of Complex Time Delay in Sub-Unitary Scattering Systems

Figs. 4.4 and 4.5 show the evolution of the PDF of simulated complex time delay Re[τW ]

and Im[τW ] with increasing uniform attenuation η̃ from an ensemble of GUE RMT data, respec-

tively. The upper figure in Fig. 4.4 is the lin-lin plot of the PDF, while the lower figure shows

the log-log plot of the PDF. The zoom-in view in Fig. 4.4(a) shows the detailed evolution of PDF
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(a)

0.0081

෤𝜂 = 125.66

(c)

Figure 4.4: Evolution of the PDF of simulated Re[τW ] with increasing uniform attenuation η̃
from an ensemble of two-port (M = 2) GUE RMT data. The upper figure is the lin-lin plot,
while the lower one is the log-log plot. Inset (a) and (b) show the zoom-in view of the PDFs for
different loss setting, and 0.0081 is the mean value of Re[τW ] at η̃ = 125.66. Inset (c) shows the
whole PDF of positive Re[τW ] in log-log scale for η̃ = 125.66. The reference lines are added in
the log-log plot to characterize the power-law tail feature of the PDF. This figure is taken from
Ref. [3].

of Re[τW ] as the uniform loss increases, while Fig. 4.4(b) shows the distribution of Re[τW ] will

concentrate around its mean value (0.0081) at a very large η̃ setting (strong uniform attenuation

in the system). Figure 4.4 shows that the peak of the PDF shifts to lower Re[τW ] values as the

uniform loss increases, and Re[τW ] starts to acquire negative values – the same behavior we have
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(a) (b)

Figure 4.5: Evolution of the PDF of simulated Im[τW ] with increasing uniform attenuation η̃
from an ensemble of two-port (M = 2) GUE RMT data. (a) shows the PDFs of Im[τW ] in log-lin
scale, while (b) shows the PDFs of |Im[τW ]| in log-log scale. The reference lines are added in
the log-log plot to characterize the power-law tail feature of the PDF. This figure is taken from
Ref. [3].

seen earlier from the experiment. Both positive and negative sides of the PDF have a power-law

tail in the log-log view of Fig. 4.4. Fig. 4.5(a) shows the log-lin plot of the PDFs of Im[τW ],

while Fig. 4.5(b) shows the log-log plot of the PDFs of |Im[τW ]| (the distributions of Im[τW ] are

symmetrical in positive and negative sides). In Fig. 4.5(a), the PDF starts from a δ-function in

the lossless case, and it gradually expands and then shrinks as η̃ increases. Fig. 4.5(b) shows the

power-law tail feature of the PDF, and reference lines are added.

4.4.2 Counting Resonance Widths via Complex Time Delay

We also demonstrate the correctness of the theory for variable coupling settings using the

RMT simulation. Fig. 4.6 shows the probability distributions of the resonance width Γn for

different numbers of scattering channels (M ) and variable coupling strength (g) in the GUE

lossless setting, where y = πΓn/∆ is the scaled resonance width [77]. (a) – (c) demonstrates that
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(a) (b)

(c) (d)

Figure 4.6: Probability distributions of scaled resonance width y (y = πΓn/∆) for different num-
bers of scattering channels (M ) and variable coupling strength (g) in the GUE lossless setting.
(a)–(c) show the probability distributions of the scaled resonance width with different coupling
settings (g = 1, 2, 3 and 4) forM = 1, 2, and 3, respectively. (d) shows the comparison between
the probability distributions for different numbers of scattering channels (M = 1, 2, and 3) at
perfect coupling setting (g = 1). This figure is taken from Ref. [3].

the peak of ρ(y) shifts to lower values as g goes up, which indicates that the majority of poles of

S-matrix are closer to the real axis in the lossless case when the coupling gets weaker. Fig. 4.6(d)

clearly shows that the one-port (M = 1) case is very different from the other multi-port cases.

Figs. 4.7 and 4.8 examine the theory further using ensembles of one-port (M = 1) and two-port

(M = 2) GUE RMT data of variable uniform attenuation (η̃) with different coupling settings (g),

respectively. The RMT data results are directly compared to the theory predictions calculated

using the probability distribution functions shown in Fig. 4.6, and they agree quite well.
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Figure 4.7: Mean of simulated Re[τW ] as a function of uniform attenuation η̃ with variable cou-
pling strength (g) evaluated using ensembles of one-port (M = 1) GUE RMT data. The markers
are RMT data, while the red lines are theoretical predictions. Inset (a) shows the zoom-in details
of the plot at small attenuation values. Inset (b) and (c) are the lin-log scale and log-log scale of
the plot, respectively. This figure is taken from Ref. [3].

4.4.3 Mean of |Im[τW ]| vs Uniform Attenuation

Similar analysis are being done for Im[τW ] using the same ensembles of one-port (M = 1)

and two-port (M = 2) GUE RMT data of variable uniform attenuation (η̃) with different coupling

settings (g) in Fig. 4.9. Both one-port (M = 1) and two-port (M = 2) plots in Fig. 4.9 exhibit

interesting and similar power-law tails, with reference lines added.

4.5 Discussion and Conclusions

We demonstrated that the CWTD is an experimentally accessible object sensitive to the

statistics of S-matrix poles in the complex energy/frequency plane. In addition to the experimen-
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Figure 4.8: Mean of simulated Re[τW ] as a function of uniform attenuation η̃ with variable cou-
pling strength (g) evaluated using ensembles of two-port (M = 2) GUE RMT data. The markers
are RMT data, while the red lines are theoretical predictions. Inset (a) shows the zoom-in details
of the plot at small attenuation values. Inset (b) and (c) are the lin-log scale and log-log scale of
the plot, respectively. This figure is taken from Ref. [3].

tal results discussed above, we have also employed Random Matrix Theory, as well as associated

numerical simulations, for studying the distribution of the CWTD. Through these simulations we

can explore much smaller, and much larger, values of uniform attenuation than can be achieved in

the experiment. These simulations show agreement with all major predictions of the RMT-based

theory, including the existence of an intermediate power-law on the positive side of the P(Re[τW])

distribution for low-loss systems. Finally we note that all results in Eqs. (4.1) – (4.5) are insensi-

tive to the presence or absence of TRI. The power-law tail predictions are also insensitive to TRI,

as shown in Appendix A.3.

We have experimentally verified the theoretical prediction that the mean value of the Re[τW]

for a system with uniform absorption strength η counts the fraction of scattering matrix poles with
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Figure 4.9: Mean of simulated Im[τW ] as a function of uniform attenuation η̃ with variable cou-
pling strength (g) evaluated using ensembles of one-port (M = 1) and two-port (M = 2) GUE
RMT data. Left side shows the one-port (M = 1) log-log plot, while the right side shows the
two-port (M = 2) log-log plot. References lines are added to both plots to feature the power-law
tails.

imaginary parts exceeding η. This opens a conceptually new opportunity to address resonance

distributions experimentally, as we convincingly demonstrated with an ensemble of microwave

graphs with either one or two scattering channels, and showing broken time-reversal invariance

and variable uniform attenuation. The tails of the distributions of both real and imaginary time

delay are found to agree with theory.
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Chapter 5: Complex Time Delay Analysis of the Ring Graph

5.1 Overview

In this chapter, we are concerned with the general scattering properties of complex sys-

tems connected to the outside world through a finite number of ports or channels. The systems

of interest have a closed counterpart, described by a Hamiltonian H , that has a spectrum of

modes. Excitations can be introduced to, or removed from, the interaction zone of the scatter-

ing system by means of the M ports or channels. The scattering matrix S relates a vector of

incoming (complex) waves |ψin⟩ on the channels to the outgoing waves |ψout⟩ on the same chan-

nels as |ψout⟩ = S |ψin⟩. The scattering matrix is a complex function of energy (or equivalently

frequency) of the waves, and contains all the information about the scattering properties of the

system [155, 156, 181, 182].

In unitary (flux conserving) scattering systems, time delay is a real quantity measuring

the time an injected excitation resides in the interaction zone before escaping through the ports

[49,50]. This is a well-studied quantity in the chaotic wave scattering literature, and it’s statistical

properties have been extensively investigated [51, 77,111,120, 121,131, 133–135,143, 164,176].

Recently, a complex generalization of time delay that applies to sub-unitary scattering systems

was introduced, and this quantity turns out to be much richer than its lossless counterpart [2, 3,

160]. It has been demonstrated that complex Wigner-Smith time delay is sensitive to the locations
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and statistics of the poles and zeros of the full scattering matrix. One of the goals of this work

is to extend the use of complex Wigner-Smith time delay (τW , the sum of all partial time delays)

to the transmission (τT ), reflection (τ (1)R , τ
(2)
R , ...), and reflection time differences (τ (1)R − τ

(2)
R ,

etc.) [57, 58] of arbitrary multiport scattering systems. (Note that τT and τR are complex, even

for unitary scattering systems.) This in turn yields new information about the poles and zeros of

the reflection and transmission sub-matrices of S. One additional novelty of our approach is the

explicit inclusion of uniform attenuation in the description of the scattering system, a feature that

is neglected in many other treatments of time delay, as well as treatments of scattering matrix

poles and zeros.

Port 1 Port 2

Coaxial Cable

Phase Shifter

         
   

   

   

   

   

 

Coaxial 

Cable

Phase 

Shifter

Port 1

Port 2

𝐿1

𝐿2

(a)

(b)

(c)

Figure 5.1: (a) Schematic diagram of a generic ring graph connected to two infinite leads. The
two bonds have length L1 and L2. (b) shows the picture of the experimental microwave ring
graph, where a coaxial cable and a coaxial microwave phase shifter are used as the two bonds.
(c) shows a schematic of the experimental setup with the microwave network analyzer included.
The two dashed red lines indicate the calibration plane for the 2× 2 S-matrix measurement. This
figure is taken from Ref. [4].

Here our attention is fixed on a simple, but remarkably important, scattering system, namely

the quantum ring graph. In this context, a graph is a network of one-dimensional bonds (trans-
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mission lines) that meet at nodes. One can solve the Schrodinger equation for waves propagating

on the bonds of metric graphs, and enforce boundary conditions at the nodes [183–185]. The re-

sult is a closed system in which complicated interference of waves propagating on the bonds and

meeting at the nodes gives rise to a discrete set of eigenmodes. Connecting this graph to M ports

(infinitely long leads) creates the scattering system of interest to us here [39, 40, 161, 186–188].

The ring graph, consisting of just two bonds connecting the same two nodes, which in turn are

connected to M = 2 ports (see Fig. 5.1(a)), is a ubiquitous and important scattering system. It

appears in many guises in different fields, but there is no unified treatment of its scattering prop-

erties, particularly with regard to time delay, to our knowledge. Among other things, it forms

the basis of non-reciprocal Aharonov-Bohm mesoscopic devices, as well as various types of su-

perconducting quantum interference devices. The scattering properties of ring graphs have been

studied theoretically by a number of groups for their embedded eigenstates [189, 190], and for

conditions of perfect transmission [191, 192].

Ring graphs with circumference Σ that are on the order of the wavelength or longer, are

utilized as resonators in several areas of research and applications. Such resonators can display

very narrow spectral features, which are accompanied by large time delays. Ring resonators

very elegantly and simply illustrate several different types of resonances which are known by a

variety of names, including: shape modes, Feshbach modes [190, 193, 194], Fano modes [195],

electromagnetically-induced transparency (EIT) modes [196], topological resonances [197–199],

bound states in the continuum [70, 200–203], quasinormal modes [204, 205], etc. Here we use

the shape/Feshbach terminology to discuss the modes, but our results apply to ring graphs in all

contexts. To illustrate the ubiquity and importance of the ring graph, we next discuss some of the

diverse manifestations and properties of this simple graph.
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Fano resonances have been studied by many authors in the context of quantum transport

through graph-like structures [69, 206, 207]. The Fano resonance arises from the constructive

and destructive interference of a narrow discrete resonance (typically a bound state of the closed

system) with a broad spectral line or continuum excitation, thus creating two scattering channels

[208, 209]. The interference of these two channels gives rise to the celebrated Fano resonance

profile [195, 206].

EIT is a quantum phenomenon that arises from interference between transitions taking

place between multiple states [196]. It has a classical analog that can be realized in a wide variety

of coupled oscillator scenarios [210]. For example, an EIT/Fano resonance feature was proposed

for a generic resonator coupled to an optical transmission line [211]. EIT phenomena have also

been created through metamaterial realizations in which a strongly coupled (bright resonator)

and weakly coupled (dark resonator) oscillator are brought into interference to completely cancel

transmission, and at the same time create ‘slow light’ (enhanced transmission time delay), all at

one wavelength [212–214].

In terms of applications, ring resonators have been employed in microwave circuit devices

for many years [215, 216]. It was recognized that pairs of nearly degenerate modes exist in this

structure and their interference could be used to advantage [216,217]. Microstrip ring resonators

are routinely created with intentional defects or stubs in one arm, or are coupled asymmetrically,

to create interference of the nearly degenerate modes [216].

EIT-like resonant features have been created in optical microring resonators coupled to

transmission lines by a number of groups. A classical analog of EIT was demonstrated with

two photonic ring resonators coupled to optical fibers [218]. A set of two coupled microspheres,

acting as ring resonators, showed the classical analog of EIT for light, and demonstrated large
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transmission time delay [219]. An integrated optical waveguide realization of the ring graph, with

one arm hosting a variable delay element, has been used to create “EIT dips” with associated large

transmission delay [220]. Other work has used a pair of Silicon microring photonic resonators

to create a non-reciprocal diode effect for light (1630 nm) by exploiting a Fano resonance and

nonlinearity [221].

Mesoscopic ring graph structures made of metals and semiconductors have been studied

extensively for evidence of electron interference in their transport properties [222–224]. Much

of this work is focused on rings immersed in a magnetic field and showing quantum interference

properties arising from the Aharonov-Bohm (AB) effect [225, 226]. Aharonov-Bohm rings with

a localized trapping site in one arm have been proposed to generate non-reciprocal transmission

time delay [227], and asymmetric transport [6].

Finally, superconducting quantum interference devices (SQUIDs) are based on a loop graph

structure that supports a complex superconducting order parameter. The closed loop structure cre-

ates a quantization condition for the magnetic fluxoid, and the addition of one or more Josephson

junctions to the ring bonds, along with the addition of two leads, creates a sensitive magnetic flux

to voltage transducer known as a dc SQUID [228–230].

The purpose of this work is to apply the complex time delay approach to experimental data

on a microwave realization of the ring graph with the goal of identifying the complete set of

scattering poles, as well as scattering, transmission and reflection zeros, of the graph. With this

information we are able to thoroughly characterize the scattering properties of this system, and

at the same time establish a basis that unifies the many disparate approaches to describing the

scattering properties of this remarkable graph.

The outline of this chapter is as follows. In Section 5.2, we present expressions for the
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complex times delays in terms of singularities of the scattering matrix. In Section 5.3, we discuss

the properties of the ring graph, including the predicted locations of its poles and zeros in the

complex plane. Section 5.4 presents our experiment on the microwave realization of the ring

graph and measurements of the scattering matrix, and Section 5.5 presents the complex time

delays extracted from the measured S-matrix as a function of frequency, as well as fits to reveal

the locations of the scattering singularities. Section 5.6 uses the results from Section 5.5 to

reconstruct det[S] over the entire complex frequency plane. This is followed by discussion of all

the results in Section 5.7, and then conclusions in Section 5.8.

5.2 Complex Time Delays and Scattering Poles and Zeros

A useful theoretical framework for the complex time delay analysis is the so called effec-

tive Hamiltonian formalism for wave-chaotic scattering [77, 118, 144, 156, 157]. It starts with

defining anN×N self-adjoint matrix Hamiltonian H whose real eigenvalues are associated with

eigenfrequencies of the closed system. Further defining W to be an N ×M matrix of coupling

elements between the N modes of H and the M scattering channels, one can build the unitary

M ×M scattering matrix S(E) in the form:

S(E) = 1M − 2πiW † 1

E −H + iΓW

W, (5.1)

where we defined ΓW = πWW †. Note that in this approach the S-matrix poles En = En − iΓn

(with Γn > 0) are complex eigenvalues of the non-Hermitian effective Hamiltonian matrix Heff =

H − iΓW ̸= H†
eff.

A standard way of incorporating the uniform absorption with strength η is to replace E →
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E + iη in the S matrix definition. Such an S-matrix becomes subunitary and we denote S(E +

iη) := Sη(E). The determinant of Sη(E) is then given by

detSη(E) := detS(E + iη) (5.2)

=
det[E −H + i(η − ΓW )]

det[E −H + i(η + ΓW )]
(5.3)

=
N∏

n=1

E + iη − zn
E + iη − En

, (5.4)

where Eq. (5.3) follows from Eq. (5.1), and Eq. (5.4) expresses the determinants in terms of

the eigenvalues of the non-Hermitian matrices involved. Here the S-matrix zeros zn are complex

eigenvalues of the non-Hermitian matrix H†
eff = H + iΓW , i.e. zn = E∗

n.

5.2.1 Complex Wigner Time Delay

Using the above expression, the Wigner-Smith (which we shall abbreviate as Wigner) time

delay can be very naturally extended to scattering systems with uniform absorption as suggested

in [2] by defining:

τW (E; η) :=
−i
M

∂

∂E
log detS(E + iη) (5.5)

= Re τW (E; η) + iIm τW (E; η), (5.6)

Re τW (E; η) =
1

M

N∑
n=1

[
Γn − η

(E − En)2 + (Γn − η)2
+

Γn + η

(E − En)2 + (Γn + η)2

]
, (5.7)

Im τW (E; η) = − 1

M

N∑
n=1

[
E − En

(E − En)2 + (Γn − η)2
− E − En

(E − En)2 + (Γn + η)2

]
. (5.8)

We note that the complex Wigner time delay is a sum of Lorentzians whose properties de-
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pend on the poles and zeros of the full scattering matrix, as well as the uniform absorption. Prior

work has shown that Eqs. (5.7) and (5.8) provide an excellent description of the experimental

complex time delay for isolated modes of a lossy tetrahedral microwave graph [2]. The statistical

properties of complex time delay in an ensemble of tetrahedral graphs are also in agreement with

those based on Eqs. (5.7) and (5.8) and the random matrix theory predictions for the distribution

of Γn [3].

5.2.2 Complex Transmission Time Delay

We can define the scattering matrix as S =

R T ′

T R′

 in terms of the reflection sub-matrix

R and transmission sub-matrix T [59, 60, 80, 231]. For a system with uniform absorption, the

determinant of the transmission sub-matrix can be written as:

detTη(E) = (−2πi)M
det(E −H + iη) det

(
W †

2
1

E−H+iη
W1

)
det[E −H + i(η + ΓW )]

, (5.9)
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where the coupling matrix W = [W1 W2], is decomposed into its port-specific N ×M coupling

matrices W1/2. We can extend the transmission time delay [59] into a complex quantity:

τT (E; η) := −i ∂
∂E

log detT (E + iη) (5.10)

= Re τT (E; η) + iIm τT (E; η), (5.11)

Re τT (E; η) =
N−M∑
n=1

Im tn − η

(E − Re tn)2 + (Im tn − η)2
+

N∑
n=1

Γn + η

(E − En)2 + (Γn + η)2
, (5.12)

Im τT (E; η) = −

{
N−M∑
n=1

E − Re tn
(E − Re tn)2 + (Im tn − η)2

−
N∑

n=1

E − En

(E − En)2 + (Γn + η)2

}
.

(5.13)

Here tn = Re tn+ iIm tn denote the complex zeros of det(T ), while En = En− iΓn are the

same poles defined in Eq. (5.4). Note in Eqs. (5.12) and (5.13) that the number of zero-related

terms is smaller than the number of pole-related terms [59].

5.2.3 Complex Reflection Time Delay and Difference

Recent interest in the zeros of the S-matrix in the complex energy plane has motivated

the use of the Heidelberg model to introduce the concept of reflection time delays [57, 58]. To

begin with, consider the special case of a two-channel (M = 2) flux-conserving scattering system

which can be described by the 2× 2 unitary scattering matrix:

S(E) =

R1(E) t12(E)

t21(E) R2(E)

 . (5.14)
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The two reflection elements R1,2(E) at both channels may have zeros rn in the complex energy

plane.

In the presence of uniform absorption strength η, the full scattering matrix S becomes

sub-unitary, and |R1(E + iη)| ̸= |R2(E + iη)| in general. In that case, the reflection element

R1(E + iη) at channel 1 can be written in a similar form to the detSη and detTη formalism:

R1(E + iη) =
det
[
E −H + i(η − Γ

(1)
W + Γ

(2)
W )
]

det[E −H + i(η + ΓW )]
(5.15)

=
N∏

n=1

E + iη − rn
E + iη − En

, (5.16)

where ΓW = Γ
(1)
W + Γ

(2)
W , and rn = un + ivn are the positions of reflection zeros, which are

the complex eigenvalues of H + i(Γ
(1)
W − Γ

(2)
W ). Similarly, the reflection element R2(E + iη) at

channel 2 can be written as

R2(E + iη) =
det
[
E −H + i(η − Γ

(2)
W + Γ

(1)
W )
]

det[E −H + i(η + ΓW )]
(5.17)

=
N∏

n=1

E + iη − r∗n
E + iη − En

. (5.18)

Thus, the reflection time delays in uniformly absorbing systems are introduced as

τ
(1)
R (E; η) := −i ∂

∂E
logR1(E + iη) (5.19)

and

τ
(2)
R (E; η) := −i ∂

∂E
logR2(E + iη). (5.20)
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In full analogy with the complex Wigner time delay model, the complex reflection time

delay for channel 1, τ (1)R (E; η), is given by

Re τ (1)R (E; η) =
N∑

n=1

[
vn − η

(E − un)2 + (vn − η)2
+

Γn + η

(E − En)2 + (Γn + η)2

]
, (5.21)

Im τ
(1)
R (E; η) = −

N∑
n=1

[
E − un

(E − un)2 + (vn − η)2
− E − En

(E − En)2 + (Γn + η)2

]
. (5.22)

Similarly, we also have the complex reflection time delay for channel 2, τ (2)R (E; η):

Re τ (2)R (E; η) =
N∑

n=1

[
−vn − η

(E − un)2 + (vn + η)2
+

Γn + η

(E − En)2 + (Γn + η)2

]
, (5.23)

Im τ
(2)
R (E; η) = −

N∑
n=1

[
E − un

(E − un)2 + (vn + η)2
− E − En

(E − En)2 + (Γn + η)2

]
. (5.24)

Notice that the two reflection time delays share the same terms arising from the S-matrix

poles, thus another useful quantity, the complex reflection time difference, can be defined as

δTR(E; η) := τ
(1)
R (E; η)− τ

(2)
R (E; η) [57, 58]:

Re δTR(E; η) = Re τ (1)R (E; η)− Re τ (2)R (E; η) (5.25)

=
N∑

n=1

[
vn − η

(E − un)2 + (vn − η)2
+

vn + η

(E − un)2 + (vn + η)2

]
, (5.26)

Im δTR(E; η) = Im τ
(1)
R (E; η)− Im τ

(2)
R (E; η) (5.27)

= −
N∑

n=1

[
E − un

(E − un)2 + (vn − η)2
− E − un

(E − un)2 + (vn + η)2

]
. (5.28)

The reflection time difference is determined solely by the position of the reflection zeros, and has

no contribution from the poles.
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Our approach to defining and utilizing multiple types of complex time delay overcomes

a number of issues with prior treatments. First, we treat poles and zeros on an equal footing,

as both contribute significantly to the complex time delay. Secondly, the imaginary part of the

time delay provides redundant, but nevertheless useful, information about the pole/zero locations.

The imaginary part has one advantage over the real part in terms of fitting to find pole and zero

locations: the imaginary part changes sign at each singularity, leading to smaller tails at the lo-

cations of nearby singularities. This is particularly useful for systems with a dense set of modes.

In all examples below, we fit both quantities simultaneously using a single set of fitting param-

eters. Finally, our approach directly includes the effect of uniform loss, frequently ignored in

most prior treatments of time delay. Note that we have previously examined the effects of vary-

ing lumped loss on the complex Wigner time delay [2], and observed the resulting independent

motion of the poles and zeros in the complex plane (i.e. violating the condition that zn = E∗
n, for

example) [57, 58, 64, 65].

We note in passing that the use of complex time delay will enhance the study of scattering

phenomena governed by pole/zero distributions. We have demonstrated this in the context of CPA

[2,9], and the generation of “cold spots”, in complex scattering systems [9]. Further opportunities

await for the generalized Wigner-Smith operator [54], and for the generation of “slow light”.

Finally, we note that although the Wigner-Smith time delay is purely real for unitary scat-

tering systems, the reflection and transmission time delays are always complex, due to the fact

that they are derived from sub-unitary parts of the full S-matrix. Thus a proper treatment of these

delays must take into account their complex nature, even in the flux-conserving limit.
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5.3 The Ring Graph

Ring graph structures have appeared in quantum graph studies, mesoscopic devices, mi-

crowave ring resonators, optical micro-ring resonators, and superconducting quantum interfer-

ence devices. It is a generic and important structure for wave systems because it is a simple way

to introduce wave interference phenomena in a controlled manner.

As shown in the schematic diagram in Fig. 5.1(a), the ring graph has two bonds, of lengths

L1 and L2, connecting two nodes. We assume that the bonds of the graph support travelling

waves in both directions, with identical propagation and loss characteristics. The nodes are also

connected to infinite leads (ports). Coupling between the leads and ring graph is provided by

means of a 3-way tee junction with ideal scattering matrix

Stee =


−1/3 2/3 2/3

2/3 −1/3 2/3

2/3 2/3 −1/3

 .

We shall investigate the M = 2 scattering matrix S between the left lead and the right lead in

Fig. 5.1(a). Two cases are of interest to us here: i) rationally-related bond lengths L1 and L2,

including the case L1 = L2, and ii) irrationally-related lengths L1 and L2.

A metric ring graph with L1 = L2 can support two distinct eigenmodes. Each involves

spanning the circumference of the graph Σ = L1 + L2 with an integer number of wavelengths

of the wave excitation. One mode, which we call the shape resonance, has a maximum of the

standing wave pattern at the nodes of the graph [189]. The second mode has a standing wave
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Ring graph with equal length bonds

Feshbach mode 

(zero coupling)

Shape resonance 

(strong coupling)

Lead 1 Lead 2

Ring graph with un-equal length bonds

Feshbach mode 

(small coupling)

Shape resonance 

(strong coupling)

Lead 1 Lead 2

Figure 5.2: Standing wave patterns of Shape and Feshbach modes. Left plot shows a ring graph
with equal length bonds, while right plot shows a ring graph with slightly unequal length bonds.
The leads in the right plot have been offset vertically to simulate the effect of unequal lengths of
the two bonds.

pattern that is rotated one quarter of a wavelength relative to the first and has zero amplitude at

the nodes. An intuitive demonstration is shown in Fig. 5.2, where the slight imbalance between

the bond lengths gives the Feshbach mode a small (non-zero) coupling effect to the leads. Such

an embedded eigenstate on a ring graph with rationally-related bond lengths can have a compact

eigenfunction even though the graph extends to infinity. In other words, the eigenmode is nonzero

over most of the ring graph, but has zero amplitude at the locations of the leads, preventing the

mode from extending into the leads. This means that the the eigenvalue can be in a continuum

of states, but the eigenstate can have no amplitude on the leads of the graph. Small perturbations

to the length(s) of the bond will move the pole off of the real axis and produce a narrow high-Q

resonance, along with a nearby complex zero. This is known as a Feshbach mode.

Waltner and Smilansky [190] have made predictions for the S-matrix zeros and poles for

both shape and Feshbach resonances of the ring graph. In the case of a symmetrical graph (i.e.

L1 = L2), or for graphs with rationally related lengths, the scattering properties of the graph
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show shape resonances only. The S-matrix poles of the shape resonances are given by

ES,symm
n = nc/Σ− i c ln 3/(πΣ), (5.29)

where Σ = L1 + L2 is the total electrical length of the ring graph, c is the speed of light in

vacuum (here we specialize to the case of microwave ring graphs), and n is the mode index

(n = 1, 2, 3, ...). The S-matrix zeros are simply the complex conjugates of the poles:

zS,symm
n = nc/Σ + i c ln 3/(πΣ). (5.30)

The Feshbach modes are not visible in this case.

In the case of a non-symmetrical graph (i.e. δ = L1 − L2 ̸= 0 and L1/L2 is not rational,

the graph has both shape and Feshbach resonances. In the limit of nδ ≪ Σ, the S-matrix poles

of the Feshbach resonances are given by

EF,asymm
n ≈ nc/Σ− i (c/2π)[(2πnδ)2/(8Σ3)], (5.31)

while the poles of the shape resonances become ES,asymm
n ≈ (nc/Σ + α) − i [c ln 3/(πΣ) + β],

where α = ncδ2 ln 3/(2Σ3) and β = (c/2π)[(2 ln 3)2 − (2πn)2]δ2/(8Σ3) are small changes

compared to the original pole locations, Eq. (5.29). Again the S-matrix zeros are complex

conjugates of the pole locations: zF,asymm
n = [EF,asymm

n ]∗ and zS,asymm
n = [ES,asymm

n ]∗. These

predictions will be tested in our analysis of complex time delay data below.

We note that the imaginary part of the Feshbach pole (and zero) in Eq. (5.31) increases in

magnitude as (nδ)2. The Warsaw group has studied the length asymmetry (δ) dependence of the
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lowest frequency (n = 1) pole of the ring graph [199]. A cold atom collision experiment has

observed the flow of the shape and Feshbach resonance poles as the system is perturbed [194].

In contrast with earlier work, we study the dependence of the poles and zeros at two fixed bond

lengths upon the mode index n, among other things.

5.4 Experiment

A picture of the ring graph experimental setup is shown in Fig. 5.1(b). A 15-inch (38.1

cm) long coaxial cable is used as the fixed length bond L1, while a mechanically-variable coaxial

phase shifter is used as the variable length bond L2. The coaxial cable has a center conductor

that is 0.036 in (0.92 mm) in diameter, a Teflon dielectric layer (with ϵr = 2.1 and µr = 1), and

an outer conductor that is 0.117 in (2.98 mm) in diameter. The center conductor is silver-plated

copper-clad steel, while the outer conductor is copper-tin composite. The electrical length of the

cable is given by the product of the geometrical length and the index of refraction,
√
ϵrµr. The

phase shifter is a Model 3753B coaxial phase shifter from L3Harris Narda-MITEQ that provides

up to 60 degrees of phase shift per GHz. The measurement cables (leads) are connected to the

ring graph through two Tee junctions, acting as the nodes. When the graph is symmetrical (i.e.

L1 = L2), the total electrical length of the graph is Σsymm = 1.0993 m. The graph shows a

mean spacing between shape modes of ∆f = 0.2729 GHz, giving rise to a Heisenberg time

τH = 2π/∆f of 23.02 ns. We measure the scattering response from all the modes spanning the

frequency range from 0 to 10 GHz, encompassing modes n = 1 to n = 37.

To make the graph asymmetric (L1 ̸= L2) we set the phase shifter to produce δ = 0.577

cm. Thus we maintain the condition nδ ≪ Σ up to n = 37.
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𝐿1 = 𝐿2

𝐿1 ≠ 𝐿2

Figure 5.3: Transmission spectrum |S21|2 vs. frequency measured for the first 18 modes of a
microwave ring graph. Main figure shows the transmission of non-equal lengths (L1 ̸= L2)
between the phase shifter and the coaxial cable, while the inset shows the case of equal lengths
(L1 = L2). The sinusoidal wiggles come from the shape resonances, while the narrow dips come
from the Feshbach resonances. Note that the data in the inset shows no narrow resonances. This
figure is taken from Ref. [4].

The time delay analysis involves taking frequency derivatives of the measured S-matrix

phase and amplitude data, and this demands fine frequency resolution and careful measurement.

In order to obtain high-quality data, we first conducted a careful calibration of the Agilent model

N5242A microwave vector network analyzer (VNA), utilizing an intermediate frequency (IF)

bandwidth of 100 Hz and a frequency step size of 84.375 kHz (about 3 × 10−4 of the mean

spacing between shape resonances). The calibration process creates boundary conditions for the

microwaves that are equivalent to the presence of the two infinite leads connected to the nodes of

the ring graph. In other words, waves exiting the system will never return. In addition, the scat-

tering matrix is evaluated at the plane of calibration as the ratio of ingoing and outgoing complex
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waves measured at that point. The plane of calibration is at the two nodes labelled by red dashed

lines in Fig. 5.1(c). We then measured the 2 × 2 S-matrix of the graphs with the same settings

of the VNA. By doing so, we minimize the measurement noise and acquire high resolution data.

The phase of the S-matrix data was unwound into a continuous variation to eliminate artificial

discontinuities in time delay due to 2π phase jumps. We also developed an algorithm for taking

numerical derivatives of the experimental data utilizing variable frequency window smoothing

settings. Given the number of data points in a smoothing window, we obtained the overall slope

through a line fitting of all the data samples. The size of the smoothing window can be dynam-

ically adjusted based on the variability of the phase and amplitude with frequency. All of these

steps are required to generate high-quality time delay data for further analysis (see more details

in Appendix C). Note that the numerical derivatives are taken on the raw S-matrix data without

any normalization step or background subtraction, etc. There is no need to augment or modify

the raw S-matrix data, as it contains all the information about the graph, including coupling, loss,

and scattering singularities.

The two types of modes present in the ring graph, namely shape resonances and Feshbach

resonances, are illustrated in the measured transmission |S21|2 vs. frequency plot shown in Fig.

5.3. The inset in Fig. 5.3 shows the transmission spectrum when the two bond lengths are equal

(L1 = L2). In this case only the shape resonances appear in the scattering data. For the main plot

in Fig. 5.3, we tuned the electrical length of the phase shifter so that the two bonds lengths are

not equal (L1 ̸= L2) and not rationally related. The narrow Feshbach resonances occur at lower

frequencies than the shape resonances and their separation from the shape resonances grows with

mode number n, as predicted by Eq. (5.31), and demonstrated in the following analysis.
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5.5 Complex Time Delay Analysis on Ring Graph Data

Figure 5.4: Comparisons between the experimental data and the modelling for the complex
Wigner time delay (upper plot) and for the complex transmission time delay (lower plot), both
normalized by the Heisenberg time τH , as a function of frequency for a symmetric (L1 = L2)
microwave ring graph. The modelling data are plotted on top of the experimental data, and are in
good agreement. This figure is taken from Ref. [4].

In the case of a symmetrical graph, we analyze the complex Wigner time delay and trans-

mission time delay properties of the shape resonances alone. Figure 5.4 shows the complex

Wigner (τW ) and transmission (τT ) time delay as a function of frequency over 18 modes of the

ring graph. The two time delays are calculated from the measured S-matrix based on Eqs. (5.5)
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(Wigner) and (5.10) (Transmission), respectively. Note that in all comparisons of data and the-

ory we treat frequency f and energy E as equivalent. We also reconstruct the two time delays

based on the models from Eqs. (5.7) & (5.8) (Wigner) and Eqs. (5.12) & (5.13) (Transmission),

using the scattering matrix poles prediction from Eq. (5.29) and the zeros from Eq. (5.30). The

poles are calculated based on the measured dimension (electrical length) of the ring graph, and

the zeros are assumed to be the complex conjugates of the poles. The modelled complex time

delays are plotted with the experimental data in Fig. 5.4, and are in good agreement. (Due to

uncertainties in the lengths of the components, we adjusted Σ slightly to precisely match the τW

frequency dependence in Fig. 5.4.) Note that in the complex transmission time delay modelling

we use only the pole information (there are no transmission zeros in this case due the absence of

an interfering mode [208]), while in the complex Wigner time delay modelling we use both the

pole and zero information.

We note that although the model is in very good agreement with the data in Fig. 5.4

there are a number of sharp vertical features in the data that are not reproduced by the model.

Theoretical treatments of a delta function scatterer in the ring graph shows that imperfections in

a symmetric graph (L1 = L2) can give rise to Feshbach resonances [190, 232]. We interpret the

spikes seen in τW and τT as arising from impedance discontinuities in the phase shifter and its

coaxial connectors, acting effectively as delta-function scatterers. To verify this, we measured a

symmetric graph made up of two identical fixed-length (15 inch) coaxial cables and found that

there are no sharp vertical features in the time delays in that case.

Then we present the complex Wigner-Smith (τW ) (Fig. 5.5), transmission (τT ) (Fig. 5.6),

and reflection (τR) (Fig. 5.7) time delays over the full measurement frequency range (0 – 10

GHz), including all 37 modes of the asymmetrical (L1 ̸= L2) microwave ring graph. Examining
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(a) (b)

Figure 5.5: Complex Wigner time delay τW (normalized by the Heisenberg time τH) determined
from measured S-matrix data for 37 modes (0 − 10 GHz) in an asymmetrical (L1 ̸= L2) mi-
crowave ring graph. The extreme values of τW are dominated by Feshbach resonances. Note
the sign change of the Re[τW ] extreme values near 7 GHz, which corresponds to the crossover
between Γn and η in Fig. 5.8. Insets (a) and (b) show zoom-in details of the complex Wigner
time delay for individual modes on either side of the crossover. This figure is taken from Ref. [4].

the complex time delays over a broad range of frequency brings out new aspects of the data.

Figure 5.5 shows the complex Wigner time delay extracted from the experiment over the

entire measurement frequency range. We have already noted in Section 5.5 the change in sign of

Re[τW ] as a function of frequency due to the crossover of the imaginary part of the Feshbach pole

Γn and the uniform attenuation η. Another feature to note is that the shape resonances produce a

relatively small variation in τW compared to the sharp features arising from the Feshbach modes.
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(a)

(b)

Figure 5.6: Complex transmission time delay τT determined from measured S-matrix data for
37 modes (0− 10 GHz) in an asymmetrical (L1 ̸= L2) microwave ring graph normalized by the
Heisenberg time τH . The extreme values of τT are dominated by Feshbach resonances. The nearly
sinusoidal variations of Re[τT ] and Im[τT ] with frequency are due to the shape resonances. Insets
(a) and (b) show the zoom-in details of the complex transmission time delay for two individual
modes. This figure is taken from Ref. [4].

Both features together create time delays on the scale of at most 10’s of Heisenberg times in this

particular experimental realization and frequency range.

Figure 5.6 shows the complex transmission time delay extracted from the experiment over

the entire measurement frequency range. We note that the magnitude of the transmission time

delays are limited in magnitude to approximately 2 times the Heisenberg time in this case. The

reason for such small variations is that the transmission time delays have contributions from both
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Figure 5.7: Complex reflection time delays τ (1)R , τ (2)R and their difference δTR = τ
(1)
R − τ

(2)
R

determined from measured S-matrix data for 37 modes (0− 10 GHz) in an asymmetrical (L1 ̸=
L2) microwave ring graph, normalized by the Heisenberg time τH . Insets show the zoom-in
details of the complex reflection time delay/difference for individual sets of shape and Feshbach
modes. This figure is taken from Ref. [4].

the zeros and the poles, and the two contributions have similar magnitudes but opposite signs.

Thus the resulting transmission time delays are rather small compared to τW and τR.

The reflection time delays shown in Fig. 5.7 show significantly larger range of variation

as compared to the Wigner and transmission time delays. To see why this is the case, we can
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examine Eqs. (5.21) – (5.24), which model the behavior of the reflection time delays. One can

see that the width and the extreme value of the first Lorentzian term is determined by |vn ± η|.

The reflection zeros rn = un + ivn are the complex eigenvalues of H + i(Γ
(1)
W − Γ

(2)
W ). In our

experimental setup, we have very similar coupling properties for ports 1 and 2, i.e. Γ(1)
W ≈ Γ

(2)
W .

Thus, the imaginary part of the reflection zeros vn should be fairly small. At low frequencies,

the uniform attenuation η is also very small, and is comparable to vn. This leads to a very

small width of the Lorentzian resonance, which in turn produces very large extreme values of the

reflection time delay, on the order of 100’s of Heisenberg times, at low frequencies. At larger

frequencies, however, the uniform attenuation η becomes fairly large, and dominates the width

of the Lorentzian resonance. Therefore, the reflection time delays change back to the order of a

few Heisenberg times.

Next we analyze the complex Wigner time delay and transmission time delay properties

for the Feshbach resonances of the ring graph. We tuned the electrical length of the phase shifter

so that the two bonds lengths are not equal or rationally related (with δ ≈ 0.577 cm), and a set

of Feshbach resonances appear, as in Fig. 5.3. We followed the same procedure to calculate the

complex Wigner and transmission time delay from the newly measured S-matrix. Note that the

shape resonances are always present in the system. We first removed the effects of the shape

resonances from the overall time delay data by subtracting their contributions to the time delay

data. The contributions from the shape resonances are modelled in the same way as demonstrated

in Fig. 5.4. (Σ has been slightly adjusted to accommodate the length change of the ring graph

system.) We then fit the remaining complex time delay data with the model Eqs. (5.7) & (5.8)

(Wigner) and Eqs. (5.12) & (5.13) (Transmission), for each individual Feshbach mode. Both the

zero and pole locations, as well as the uniform absorption strength η, are used as fitting parameters
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in this process. Note that the real and imaginary parts of each time delay are fit simultaneously

with a single set of parameters. We also constrain the zeros to be complex conjugates of the poles

during the Wigner time delay fitting. One fitting example is shown in Figs. 5.8(b) (Wigner) and

5.9(b) (Transmission), respectively. The fitting process was repeated for all 37 modes measured,

and all fits were very successful. The fit parameters for the complex zeros and poles, as well as

the uniform attenuation, are plotted in Figs. 5.8 (Wigner) and 5.9 (Transmission), respectively.

(a)

(b)

Figure 5.8: Comparison between fitted pole location parameters (En = En− iΓn) and predictions
for multiple Feshbach modes of the asymmetric microwave ring graph (L1 ̸= L2). Inset (a) shows
the comparison between fitted real parts of the zeros and the poles, along with the prediction by
Eq. (5.31) shown as a straight purple line. Inset (b) shows such a representative fit to τW (f) for
a single Feshbach mode (n = 7). This figure is taken from Ref. [4].

We note that Eq. (5.31) predicts that the resonance width Γn (imaginary part of the pole)

increases as (c/2π)[(2πnδ)2/(8Σ3)]. Putting the measured values of Σ and δ into this expression

gives the red solid curve in Fig. 5.8, which demonstrates very good agreement between the
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data and the prediction in Eq. (5.31). Figure 5.8 also shows the uniform absorption strength

η increases with frequency. A more detailed discussion of uniform loss, with comparisons to

independent measurements and modeling, can be found in Appendix B.3.

There is an interesting competition between Γn and η with regards to the complex Wigner

time delay in this graph. Figure 5.8 shows that Γn crosses over the value of η at approximately

mode 27. Equation (5.7) shows that this will give rise to a change in sign of the nearly-resonant

contribution to Re[τW ]. This crossover-related sign change is clearly evident in the full plot of

Re[τW ] vs. frequency in Fig. 5.5. Further, Fig. 5.8(a) shows the fitted real parts of the zeros and

poles from the complex Wigner time delay, and they both increase in proportion to n, as predicted

in Eqs. (5.29) and (5.30) [190]. The solid red line in Fig. 5.8(a) shows the prediction based on

the measured value of Σ.

In Fig. 5.9, we plot the fitted imaginary location of the poles (in the form of Γn+η) from the

complex transmission time delay data together with the previously extracted Wigner poles data

from Fig. 5.8, and they agree very well. This validates the hypothesis that the two time delays

(τW and τT ) share the same pole information. Fig. 5.9 also shows the fitted imaginary parts of

the zeros (in the form of Im tn − η) from the complex transmission time delay for the Feshbach

modes, together with the previously extracted uniform attenuation value (−η) from Fig. 5.8, and

they match very well. This implies the transmission zeros are purely real (i.e. Im tn = 0), and the

data is consistent with this interpretation. Further detailed discussion on the transmission zeros

can be found below.

In the transmission zeros analysis for the Feshbach resonances, we fit the experimental data

to Eqs. (5.12) and (5.13), after removing the contributions from the shape resonances. We may

rewrite the complex transmission time delay as τT = τZT + τPT [59], where τZT and τPT are the
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(a)

Figure 5.9: Comparison between fitted pole location parameters (En = En − iΓn) obtained
from the complex Wigner time delay (blue circles) and the complex transmission time delay (red
triangles) for Feshbach modes of the asymmetric ring graph. The lower part of the figure shows
the comparison between fitted uniform attenuation (−η) obtained from the complex Wigner time
delay (yellow stars) in Fig. 5.8 and fitted imaginary parts of the transmission zeros (Im tn − η)
obtained from the complex transmission time delay (green triangles) on all measured Feshbach
modes. Inset (a) shows a representative fit to τT (f) for a single Feshbach mode (n = 7). This
figure is taken from Ref. [4].

contributions from zeros and poles, respectively. Then Eqs. (5.12) and (5.13) can be rewritten as

Re τZT (E; η) =
N−M∑
n=1

Im tn − η

(E − Re tn)2 + (Im tn − η)2
, (5.32)

Im τZT (E; η) = −
N−M∑
n=1

E − Re tn
(E − Re tn)2 + (Im tn − η)2

, (5.33)

Re τPT (E; η) =
N∑

n=1

Γn + η

(E − En)2 + (Γn + η)2
, (5.34)

Im τPT (E; η) =
N∑

n=1

E − En

(E − En)2 + (Γn + η)2
. (5.35)
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(a) (b)

(c)

Frequency (GHz)

Figure 5.10: Complex transmission time delay data for a single Feshbach mode (n = 1) and its
contributions from zeros and poles. (a) shows the total complex transmission time delay data
(τT ), while (b) and (c) show the contribution from the zero (τZT ) and the pole (τPT ), respectively.
Here τT is from experimental data, while τPT is calculated based on Eqs. (5.34) & (5.35) with the
pole information extracted from the complex Wigner time delay analysis (see Fig. 5.8). τZT is
obtained by τZT = τT − τPT . This figure is taken from Ref. [4].

We plot τZT and τPT for a single Feshbach mode (n = 1) in Fig. 5.10. Here τPT is calculated

using the pole information extracted from the complex Wigner time delay analysis (see Fig. 5.8),

since all three time delays share the same poles. τZT can then be obtained through τZT = τT − τPT ,

where τT is the experimental data. Fig. 5.10 shows that τZT and τPT are approximately equal in

magnitude, both much larger than τT , but have opposite signs. From [59, 60] we learned that the

transmission zeros tn will be on the real axis, i.e. Im[tn] = 0, such that Im[tn]− η = −η. For this

(n = 1) Feshbach mode, the imaginary part of the pole Γn is very small compared to the uniform

attenuation η (see Fig. 5.8), thus we have Γn + η ≈ η. Under such conditions, Eqs. (5.32) –

(5.35) can be written as Re[τZT ]n=1 = −η/[(E−Re tn)2+η2], Re[τPT ]n=1 ≈ +η/[(E−En)
2+η2],
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Im[τZT ]n=1 = −(E −Re tn)/[(E −Re tn)2 + η2], and Im[τPT ]n=1 ≈ (E −En)/[(E −En)
2 + η2].

Since Re tn ≈ En, we then arrive at [τZT ]n=1 ≈ −[τPT ]n=1, which is consistent with what is shown

in Fig. 5.10. This also explains why τT = τZT + τPT is so small for this Feshbach mode (n = 1)

(see Fig. 5.10(a)).

Figure 5.11: Comparison between the peak value of Re[τZT ] and −η−1 for all 37 modes of the
microwave ring graph. Blue circles show the peak value of Re[τZT ] from experimental data, while
red triangles show −η−1 calculated from the data in Fig. 5.8. Both quantities are presented
normalized by the Heisenberg time τH of the loop graph. This figure is taken from Ref. [4].

When analyzing the transmission time delay data, one may assume either a single zero or a

conjugate pair of zeros in the modelling [59,60]. We tried using a conjugate pair of zeros to fit the

data, but were unable to achieve reasonable fitting results. A pair of zeros would contribute to the

real part of transmission time delay with a local extremum at E = Re tn of Re[τZT ] =
2η

(Im tn)2−η2
.

Unfortunately this expression demands negative values for (Im tn)
2 for our data, therefore the

pair of zeros assumption is inconsistent with the data. On the other hand, the contribution of a
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single zero to Re[τT ] is Re[τZT ] =
−η

(E−Im tn)2−η2
, with peak value −η−1. We plot the comparison

between the peak value of Re[τZT ] (from data) vs −η−1 (from Fig. 5.8) for all 37 modes in Fig.

5.11, and they agree extremely well, justifying our single-zero hypothesis. In summary, placing

all of the transmission zeros on the real axis is consistent with the data.

(a)

(b)

(c)

Frequency (GHz)

Figure 5.12: Fitting example of reflection time difference/delay for a single pair of shape and
Feshbach resonances for a ring graph with L1 ̸= L2. (a) shows an example of fitting complex
reflection time difference (δTR = τ

(1)
R − τ

(2)
R ) experiment data for mode n = 7. The left feature is

due to the Feshbach resonance, while the right one is due to the shape resonance. Parts (b) and (c)
demonstrate the reconstruction of the individual reflection time delays on both ports, compared
to the data, using the fitted reflection zeros and Wigner poles (see Fig. 5.8) information. All time
delays are presented normalized by the Heisenberg time τH of the loop graph. This figure is taken
from Ref. [4].

For the reflection time delay analysis, there are two sets of zeros and poles, one each from

the shape and Feshbach resonances. One can use the reflection time difference quantity to sim-

plify the analysis, as it contains only the contribution from the zeros. Figure 5.12 illustrates the

reflection time delay/difference analysis process. Figure 5.12(a) is an example of fitting the com-
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Figure 5.13: Summary of all zeros and poles in the complex frequency plane for shape and
Feshbach resonances extracted from Wigner/Transmission/Reflection time delay analysis for the
first 37 modes of the microwave ring graph. The Wigner zeros zSn (blue squares) and poles ES

n (red
squares) of the shape resonances are located far from the real axis. The Wigner zeros zFn (blue
circles) and poles EF

n (red circles) of the Feshbach resonances are close to, and symmetrically
arrayed about, the real axis. The transmission zeros tFn (blue crosses) of the Feshbach resonances
lie on the real axis. The reflection zeros rFn&r

S
n of the Feshbach resonances (dark red triangles)

and the shape resonances (green squares) are symmetrically arrayed about the real axis. This
figure is taken from Ref. [4].

plex reflection time difference to Eqs. (5.26) and (5.28) for a single pair of shape and Feshbach

resonances. The fitting process was repeated for all 37× 2 modes utilizing two sets of the reflec-

tion zeros (rFn = uFn + ivFn & rSn = uSn + ivSn ) as fitting parameters (along with a single value

for η for each pair), and all fits were very successful. We then examined the complex reflection

time delay data for the individual channels, by putting the extracted two sets of reflection zeros

(rFn & rSn ) and the previously extracted Wigner poles (EF
n & ES

n ) into the modelling formula Eqs.

(5.21) – (5.24). The modelling prediction (with no further fitting adjustments) are plotted with the
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experimental data in Figs. 5.12(b) and 5.12(c), and they agree remarkably well. This indicates

that the individual reflection time delays also share the same pole information with the other time

delays.

Finally, we present a summary of all zeros and poles extracted from the time delays analysis

for the first 37 modes of the microwave ring graph in Fig. 5.13.

5.6 S-matrix Reconstruction over the Complex Plane

Now that we have all the zeros and poles information for the scattering system, we would

like to examine the modelling for detS on the real frequency axis utilizing Eq. (5.4). We re-

constructed detS based on Eq. (5.4) and the extracted Wigner zeros and poles information

summarized in Fig. 5.13. Figure 5.14 shows the comparison between the modelling of detS

and the experimental data for a symmetric graph that has the shape resonances only, while Fig.

5.15 shows a similar plot with both the Shape and Feshbach resonances present in the scattering

system. The modelling agrees very well with the experiment for both the magnitude and phase of

detS. Note that a small delay (0.08 ns) had to be added to the model to show detailed agreement

with the data. We attribute this to about 2.4 cm of un-calibrated transmission line outside of the

loop graph, occurring in the third port of each of the tee junctions.

Reconstructing the S-matrix over the entire complex frequency plane is generally difficult

to accomplish experimentally. Here we construct complex detS on the complex frequency plane

(E or f being complex) by continuation of Eq. (5.4), along with the extracted Wigner zeros and

poles information. Fig. 5.16 (and Fig. 5.17) shows a 3D reconstruction of the complex detS for

an asymmetric ring graph evaluated over the complex frequency plane with both the shape and
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Figure 5.14: Comparison of modelling (red line) and experimental data (blue line) for detS with
shape resonances only in a symmetrical (L1 = L2) ring graph. The modelling data is calculated
from Eq. (5.4) using the Wigner zeros and poles for the shape resonances (see the blue and red
squares in Fig. 5.13). Upper plot shows the magnitude of detS, while the lower plot shows the
phase of detS. This figure is taken from Ref. [4].

Feshbach resonances present. We can see a series of dips and peaks, which reveal the zero and

pole locations in the complex frequency domain. We also show in Fig. 5.17 the reconstruction of

complex det[S] over the complex frequency plane from a different perspective compared to Fig.

5.16, highlighting the phase variation in the region between the shape and Feshbach resonances.

Other methods exist for S-matrix reconstruction. One approach is to use harmonic inver-

sion, in which frequency domain data is transformed into the time domain and fit to a time-decay
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Figure 5.15: Comparison of modelling (red dashed line) and experimental data (blue line) for
detS with both shape and Feshbach resonances in an asymmetrical (L1 ̸= L2) ring graph. The
modelling data is calculated from Eq. (5.4) using the Wigner zeros and poles for the shape
resonances (see the blue and red squares in Fig. 5.13) and the Wigner zeros and poles for the
Feshbach resonances (see the blue and red circles in Fig. 5.13). Upper plot shows the magnitude
of detS, while the lower plot shows the phase of detS. This figure is taken from Ref. [4].

made up of a sum of many poles [124, 233, 234]. This technique is quite successful for finding

poles, but does not directly determine the zeros of the S-matrix. Note that complex time delay can

be used to augment a harmonic inversion search for S-matrix poles. Another approach to finding

scattering poles is to use numerical methods to find outgoing-only solutions to wave equations

in terms of quasinormal modes, and therefore identify the complex pole positions [204, 205].
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Figure 5.16: Complex representation of detS evaluated over the complex frequency plane for
several modes of an asymmetric (L1 ̸= L2) ring graph. detS is calculated from Eq. (5.4) using
complex frequency and the Wigner zeros and poles for the shape resonances (see the blue and
red squares in Fig. 5.13) and the Wigner zeros and poles for the Feshbach resonances (see the
blue and red circles in Fig. 5.13). The 3D plot represents | detS| on a log scale and reveals the
zeros (dips) and poles (peaks) at different locations in complex frequency. The base plane shows
contour lines of the magnitude of | detS| in the complex frequency plane. The colorbar on the
right shows the phase of the constructed detS. The inset shows a 2D top view of Arg[detS] for
a single pair of shape and Feshbach zeros and poles. This figure is taken from Ref. [4].

A more complete approach is to use Weierstrass factorization of the S-matrix, and to also in-

clude solutions to the wave equations that involve ingoing-only solutions to identify the zeros of

S [168,235]. This approach allows one to re-expresses the scattering matrix in terms of a sum of

Lorentzians due to the poles, with residues that depend on both the zeros and the poles. Note that

here we retrieve only det[S], but the full S matrix can also be reconstructed [168, 235].
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Figure 5.17: Complex representation of detS evaluated over the complex frequency plane for
several modes of an asymmetric (L1 ̸= L2) microwave ring graph. This 3D plot shows another
perspective of Fig. 5.16. This figure is taken from Ref. [4].

If a passive zero loss system hosts an embedded eigenstate, i.e., a mode with zero-decay

rate, the corresponding S-matrix pole will lie on the real frequency axis. In a passive system

with finite loss, this is only possible if there is also a degenerate S-matrix zero occurring at

the same real frequency, where they merge and cancel each other [66, 71, 76]. This seems to

describe the Feshbach poles and zeros of the ring graph in the limit as n → 0. To measure the

degree of coincidence of the pole and zero, we can evaluate the residue of the Feshbach poles as

a function of mode number. The residue of det[S] due to a single (assumed simple) Feshbach

pole is given by ρFn = det[S(E)](E − EF,asymm
n )|E→EF,asymm

n
. This in turn can be written as
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Figure 5.18: Plot of residue ρFn and the ‘quality factor’ of the Feshbach poles, versus mode index
n, for an asymmetric microwave loop graph. The blue filled circles show the absolute magnitude
of the residue |ρFn | as a function of mode index based on the extracted Feshbach poles and zeros,
while the red open diamonds show the associated ratio of EF

n /Γ
F
n of the Feshbach poles. This

figure is taken from Ref. [4].

ρFn ∝ E−zF,asymm
n

E−EF,asymm
n

(E − EF,asymm
n )|E→EF,asymm

n
= EF,asymm

n − zF,asymm
n , which is just the distance

between the Feshbach pole and zero. Figure 5.18 shows the absolute magnitude of ρFn as a

function of mode number based on the extracted Feshbach poles and zeros. It is clear that in

the limit of index going to zero that the pole and zero approach each other, consistent with the

development of an embedded eigenstate. Also shown in Fig. 5.18 is the associated ‘Q’ value of

the pole in terms of the ratio EF
n /Γ

F
n of the modes.

5.7 Discussion

Our comprehensive discussion of Wigner, transmission, and the reflection complex time

delays in section 5.2 gives us the opportunity to address the question: what is the general strategy
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to maximize the real part of all the complex time delays? From Eq. (5.7) we see that the real

part of τW is maximized when the imaginary part of a scattering pole Γn is equal to the uniform

attenuation rate η. This divergence of the Wigner time delay has been previously demonstrated

in the context of coherent perfect absorption by several groups [2, 160]. Also, for the microwave

ring graph studied here, we see from the plot of τW vs. frequency in Fig. 5.5 that this condition

is nearly met somewhere around 7 GHz. With tuning of either δ and/or η we could achieve the

divergence of Re[τW ] for one or more modes.

From Eq. (5.12) we see that the real part of τT is maximized when the imaginary part of a

transmission zero Im[tn] is equal to the uniform attenuation rate η. In our data on the microwave

ring graph, the imaginary part of the transmission zero is always negative and much smaller in

magnitude than the uniform attenuation, so the associated divergence is not visible here. The

data for complex τT vs. frequency for all 37 modes is shown in Fig. 5.6. The transmission time

delay shows nearly sinusoidal oscillations arising from the shape modes, and a series of spikes

arising from the Feshbach modes. As expected, the transmission time delays are generally small

in magnitude and show no irregular variations associated with a near degeneracy of Im[tn] and η.

Finally, from Eqs. (5.21), (5.23), and (5.26) we see that the real part of either τ (1)R or τ (2)R ,

and the magnitude of δTR = τ
(1)
R − τ

(2)
R , is maximized when the imaginary part of a reflection

zero vn is equal to either plus or minus the uniform attenuation rate, ±η. For our microwave ring

graph, we see from the plots of complex τR vs. frequency in Fig. 5.7 that this condition is nearly

met for a number of modes, including modes 1 and 14. The extreme values of reflection time

delay, on the order of hundreds of Heisenberg times, dwarfs those of the Wigner and transmission

times. In this case we have vF1 = −8.65×10−5 GHz, vS1 = 1.05×10−4 GHz and η = 3.79×10−5

GHz for mode 1, and vF14 = 0.0010 GHz, vS14 = 0.0045 GHz and η = 0.0044 GHz for mode 14,
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resulting in large values for the real and imaginary parts of τR.

To summarize, we note that divergences in all time delays can be tuned into existence

through variation of uniform attenuation η, or perturbations that systematically vary En, Γn, tn,

or rn.

What is the practical limit for the maximum value of time delay? Constructing time delay

from experimental S-parameter data requires two nearby data points with which we calculate a

finite difference approximation to the derivative of ln(det[S]). However, the singularity is at a

single point in frequency, hence we can never achieve the true divergence this way, although we

can get arbitrarily close by taking finer steps in parameter space. On the other hand, one can tune

to the CPA condition of a physical system containing a non-zero loss and create an unbounded

time delay at one frequency, as demonstrated with CPA experiments in microwave graphs [2].

The introduction of complex time delay analysis now offers the opportunity to study the

detailed evolution of poles and zeros in the complex plane when scattering systems are subjected

to a variety of perturbations. A number of methods to controllably drive poles and zeros around

the complex plane have been developed in different contexts. As an example in the case of the ring

graph, several authors have examined the question of what trajectory an embedded eigenvalue

pole leaves the real axis as the ring graph is perturbed [189,199,236]. Another opportunity is the

manipulation of reflection zeros in the complex frequency plane for multi-port scattering systems

to create what are known as reflectionless scattering modes (RSM) [62, 63]. Reflection (τR) and

reflection difference (δTR) complex time delays will enable monitoring of reflection zeros so that

they can be tuned to the real axis to establish RSMs.

Wave chaotic systems have scattering properties that are very sensitive to changes in bound-

ary conditions. This makes such systems well suited to act as sensors of perturbation, such as
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motion or displacement of objects located in the scattering domain, through the concept of scat-

tering fidelity [237–241]. In addition, there exists a class of sensors that are based on the coales-

cence of two or more eigenmodes [242, 243]. In all cases, the longer the dwell time of a wave in

a monitored space, the greater its sensitivity to small perturbations [160, 244].

Finally, we discuss a number of important issues associated with our approach to modeling

the complex time delays. In this chapter we have taken two distinctly different approaches to

modeling the measured time delay. In the case of the shape resonances, the poles and zeros are

relatively far removed from the real axis; the ratio of imaginary part of the pole (and zero) to the

mean spacing is approximately ΓS
n/∆E

S
n ∼ 0.35. In this case, many poles and zeros contribute

to the Wigner time delay (as an example) at any given point on the real frequency axis. For this

reason, we fit all of the pole and zero locations at once for the data in Fig. 5.4. In addition,

the product over modes in Eq. (5.4) extends over ±200 modes in order to properly reproduce

detS in Figs. 5.14 and 5.15. On the other hand, when poles and zeros are close to the real

axis, it is possible to treat each pole/zero pair individually. This is the case for the Feshbach

resonances where we find the ratio of imaginary part of the pole to the mean spacing is roughly

ΓF
n /∆E

F
n ∼ 0.01. In this case the contribution to the time delay in a given narrow frequency

window is dominated by the nearest pole and zero. This is the case for the fits shown in the insets

of Figs. 5.8 and 5.9, and the fits shown in Fig. 5.12. We have checked this assumption by a

number of methods. First, our correct recovery of the measured detS on the real axis, as shown

in Fig. 5.15, is a clear test of the assumption that the fitting of individual Feshbach poles and

zeros is adequate to model the global scattering matrix at arbitrary real frequencies. Secondly,

we have checked that adding terms to the complex time delay arising from neighboring poles and

zeros has no effect on our fitting of individual mode data, such as those shown in the insets of

115



Figs. 5.8 and 5.9.

There is one additional potential limitation of the above description of complex time delay.

Assuming a single uniform value of the loss parameter η at a given frequency is an approxi-

mation, especially for our ring graph. The graph has a variable phase shifter in it that is not a

homogeneous transmission line. There may be point-like loss centers that exist in this microwave

graph, which we are not modelling properly with just a uniform attenuation. Also, in the fitting

of complex time delay vs. frequency, we assume that the value of η is constant in the narrow fre-

quency range around each pair of shape/Feshbach modes (as in Fig. 5.12), although we believe

that this is a good approximation for the data and analysis presented here.

5.8 Conclusions

We provide a comprehensive analysis of the ring graph scattering response in terms of

poles and zeros of the S-matrix, and the reflection and transmission submatrices. We have treated

the complex Wigner-Smith, reflection and transmission time delays on equal footing, all in one

experimental setting. We also create a faithful reconstruction of the complex determinant of the

S-matrix over the complex frequency plane from the experimentally extracted poles and zeros.

More generally, we provide the first comprehensive treatment of complex Wigner, transmission,

reflection, and reflection difference time delays. We also provide a prescription for maximizing

the real part of all complex time delays in terms of the poles and zeros of the scattering matrix,

and the uniform attenuation in the system.
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Chapter 6: Aharonov–Bohm Ring Graph

6.1 Overview

The Aharonov–Bohm (AB) effect is a quantum mechanical phenomenon, where an elec-

tron or an electrically charged particle is affected by an electromagnetic potential (A) even in the

absence of a magnetic or electric field at the location of the particle [245]. This gives rise to a

kind of “action at a distance” in which a particle can be affected by electromagnetic fields even

if it does not experience them directly. In [5], the authors propose a two-port Aharonov–Bohm

ring in a mesoscopic sample and demonstrate a number of interesting results. Specifically, they

consider a 2-channel AB ring in a perpendicular magnetic field. They treat electron wavepackets

travelling through the ring in opposite directions. The ring is engineered to treat the left-going

and right-going wavepackets differently. Fig. 6.1 shows the schematic of the proposed meso-

scopic Aharonov–Bohm ring, along with a schematic of the equivalent microwave graph. The

key feature is to create a constant phase difference of π in the quantum wavepacket between the

forward and backward travelling paths by means of a magnetic flux through the ring. As a re-

sult, the electrons emitted from one source into the ring would experience a three times greater

transmission time as the electrons injected from the other source. Furthermore, it has been pro-

posed that a finite degree of quantum dephasing can enable non-reciprocal transport through the

Aharonov–Bohm ring structure. This is possible due to the non-reciprocal dwell times in the ring
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and the selective action of a de-phasing center on the long-lingering wave packets.

1 2

Short Circuit

Open Circuit

Coaxial Cable

(a)

(b)

Gyrator

Figure 6.1: The schematic layout of an Aharonov–Bohm ring and its corresponding microwave
graph design. (a) shows the device layout of a two-port Aharonov–Bohm ring made of semicon-
ductor. The penetrating magnetic flux Φ causes a shift of π phase difference between the electron
wave packets travelling along two arms of the ring. The red dot S marks an inelastic scattering
center. (b) shows the equivalent microwave graph realization of the Aharonov–Bohm ring. The
two circulators together with the open/short circuits and a pair of phase trimmers in the dashed
box make up a gyrator (see Fig. 6.2), which creates the π phase difference for waves travelling in
different directions. The variable attenuator acts as a lossy/de-phasing center. Panel (a) is taken
from Ref. [5].

In this chapter, my objective is to explore the physics of mesoscopic transport and demon-

strate anisotropic transport in the presence of finite de-phasing, in the regime between purely

quantum and fully classical physics, through a microwave analog of the Aharonov–Bohm ring.

We introduce a two-channel microwave graph realization of the Aharonov–Bohm ring, and study
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its scattering properties in both the frequency domain and the time domain. In the frequency

domain, we measure the scattering (S)-matrix and calculate the complex transmission time de-

lay for both directions. We demonstrate that the forward transmission time delay and backward

transmission time delay has a 3:1 ratio in a broad range of frequency, which agrees with the

Aharonov–Bohm ring expectations. We also introduce a localized loss (dephasing center) in the

ring graph (simulation), and adjust the transmission coefficients by varying the attenuation. We

demonstrate the dependence of non-reciprocal transport on the de-phasing (loss) rate through the

attenuation variation. In the time domain, we measure the transmission time delays of short pulse

excitations, approximating the behavior of electron wave packets, and verify the 3:1 ratio of the

transmission time delays in both directions. This establishes the analogy between mesoscopic

and microwave Aharonov–Bohm rings, and leads to the surprising result that a net transport of

wave excitations can be created by means of partial de-phasing.

6.2 Experiment

The Aharonov–Bohm ring uses magnetic flux to produce a π phase shift between waves

travelling on the two arms of a simple electron interferometer. In order to mimic that effect,

we use a gyrator to create the π phase difference in microwave networks. Fig. 6.2 shows the

schematic design and the actual picture of the microwave gyrator setup. The open/short circuits

are designed to provide a π phase difference for waves travelling in different directions, but due to

the finite electrical length inside the circuits, the phase difference is not exactly π. Thus, we use a

pair of phase trimmers in the design to compensate for the difference in electrical lengths through

fine-tuning. (This basic idea of creating 0 and π phase shifts for left and right-going waves was
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Open Circuit

Short Circuit

Phase Trimmer

Circulator

Port 1
Port 2

Figure 6.2: The schematic design and the actual picture of a microwave gyrator offering non-
reciprocal π phase difference between the left-going waves and right-going waves traveling be-
tween ports 1 and 2. Two identical circulators are used to guide the wave propagation directions,
and a pair of the open/short circuits are used to create the π phase difference for waves travelling
in different directions. Between the open/short circuits and the circulators, there are a pair of
phase trimmers for fine-tuning of the phase difference.

inspired by the Gaussian Symplectic Ensemble graph developed by [43]) The measured phase

difference between S12 and S21 is shown in Fig. 6.3. The circulators used in the experiment have

a working frequency range of 7− 12.4 GHz, and we measure the S-matrix of the gyrator in that

frequency range. After doing some fine-tuning of the two phase trimmers, we are able to get the

phase difference from the gyrator to be close to π. There are some wiggles in the plot, which is

due to the imperfection of the circulators and standing waves inside the circuit.

Next, we construct the Aharonov–Bohm ring graph (see Fig. 6.4) using the gyrator design.
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Figure 6.3: Measured phase difference between S12 and S21 for the gyrator shown in Fig. 6.2.
The red line shows a reference phase difference of π.

The key is to add an upper branch that has the same electrical length of the gyrator, so that

waves travelling in both branches would go through the same distance. This also has the effect of

eliminating the Feshbach modes, leaving on the shape resonances of the ring graph (see Chapter

5). We measure the electrical length of the gyrator and a series of single coaxial cables, and

selected a 12-inch-long coaxial cable as the upper branch. We then perform some fine-tuning on

both phase trimmers to achieve the electrical length as close as possible to the 12-inch cable. The

12-inch coaxial cable has a electrical length of 0.4386 m, and we manage to adjust the electrical

length of the gyrator to be 0.4385 m while maintaining a near π phase difference for left/right

transmission. The resulting microwave analog of the AB graph is shown in Fig. 6.4.

121



Open Circuit

Short Circuit

Phase Trimmer

Circulator

Port 1 Port 2
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Coaxial Cable

Tee-junction Tee-junction

Male-to-male 

Adapter

Figure 6.4: Picture of the Aharonov–Bohm ring graph constructed from the gyrator from Fig.
6.2. The upper branch is a single coaxial cable matching the electrical length of the lower branch.
This is the experimental realization of the schematic shown in Fig. 6.1(b).

6.3 Frequency-domain Results

6.3.1 S-matrix Measurements

We measure the 2×2 S-matrix of the Aharonov–Bohm ring graph from 7 to 12.4 GHz, and

plot the results in Fig. 6.5. The wiggles in the plot come from the Shape resonances of the graph,

which has been thoroughly studied in Chapter 5. The periodicity of the shape resonances depends

on the total length of the graph Σ = 0.8771 m, which corresponds to a repetition frequency of

0.342 GHz. This accounts for much of the periodic structure in the S-parameters. One can
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also notice a rough doubling of the repetition frequency scale, which arises from differences

in the locations of the S-matrix poles and zeros for even and odd shape modes, which shall be

discussed below. The inset shows a clear comparison between |S21| and |S12|, where it can be

seen that |S21| > |S12| for all frequencies. This qualitatively agrees with the prediction, where

waves travelling from port 2 to port 1 are experiencing three times of the time delay as the waves

travelling from port 1 to port 2, thus resulting in a larger attenuation on the magnitude.

𝑆21 > 𝑆12

Δ

Figure 6.5: Measured S-matrix data for the Aharonov–Bohm ring graph in Fig. 6.4. Inset shows
a zoom-in comparison of the two transmission coefficients |S21| and |S12|. The scale bar in the
inset gives the expected periodicity frequency scale (0.342 GHz) for the shape resonances.

6.3.2 Transmission Time Delays

The transmission time delays for both directions (S21 and S12) can be calculated from data

using Eq. (5.10). The results of both (from S21 and S12) transmission time delays τ 21T , τ 12T

123



are shown in Fig. 6.6. The wiggles from the transmission time delay plot come from the shape

resonances of the ring graph, but we are more interested in the ratio between the two transmission

time delays. In the inset we plot Re[τ 12T ]/3 against Re[τ 21T ], so that they are relatively on the same

vertical position. This proves the 3:1 ratio for the two transmission time delays in the Aharonov–

Bohm ring graph, at least for single-frequency excitations.

Figure 6.6: Comparison between the transmission time delays for both directions in the
Aharonov–Bohm ring graph. Blue line shows the real part of the transmission time delay cal-
culated from measured S12, while the red line shows the real part of the transmission time delay
calculated from measured S21. Inset shows a direct comparison for the 3:1 ratio between the two
transmission time delays.

6.3.3 Non-reciprocal Transport

One important result from [5] is the non-reciprocal transport through the Aharonov–Bohm

ring structure due to de-phasing. In the microwave regime, we utilize loss/attenuation as an anal-
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Attenuator

Coaxial cable
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Port 1
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Figure 6.7: Simulation schematic of the Aharonov–Bohm ring graph in CST. A variable attenua-
tor is added to the lower branch of the graph. The transmission line blocks represent the coaxial
cables used in the experiment, which has an inner diameter of 0.036 inch, an outer diameter of
0.1175 inch, and a relative dielectric constant of 2.1. The coaxial cables are set to be lossless,
i.e. the dielectric loss tangent of the medium tan δ = 0, and the resistivity of the metals in the
cable ρ = 0. The open and short circuit blocks have a finite length of 0.005 inch with the same
relative dielectric constant of 2.1. The two circulator blocks are imported from TOUCHSTONE
files with ideal circulation. The only loss mechanism in this model comes from the attenuator
with variable attenution setting.

ogy to de-phasing [18]. In Ref. [18] it was shown that microwave loss in a two-dimensional

billiard was exactly analogous to the rate of de-phasing for electrons in a corresponding meso-

scopic quantum dot. We now extend this analogy to transport through a mesoscopic AB device.

Here we simulate the non-reciprocal transport effect in CST Microwave Studio. In particular we

use the circuit modeling package to create a faithful model of the microwave quantum graph. Fig.

6.7 shows the simulation schematic of the Aharonov–Bohm ring graph as a CST circuit model.

We introduce a lumped loss (variable attenuator) to the graph, and eliminate all other loss mech-

anisms for simplicity. Fig. 6.8 shows the simulation comparison between |S12| and |S21| under
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different attenuation settings. When attenuation is 0 dB, i.e. no loss, the two transmission paths

have the same transmission magnitude. As the attenuation increases, some differences begin to

show up between the two transmission amplitudes. When the attenuation reaches 7.5 dB, there

are periodic resonance frequencies which have zero transmission in one direction (in this case,

S12). The periodic wiggles in the transmission spectrum come from the shape resonances, and

the plot implies there are two distinct sets of shape resonances (even and odd) in this ring graph.

M
ag

n
it
u
d
e

Figure 6.8: Comparison between transmission magnitudes of both directions in the Aharonov–
Bohm microwave ring graph under different attenuation settings on the lower bond. Blue curve
shows the magnitude of S21, while red curve shows the magnitude of S12.

The non-reciprocal transport behavior can be quantified as: σA = ||S21|2−|S12|2|
|S21|2+|S12|2 . Note that

126



σA is bounded between 0 and 1. If there is no non-reciprocal transport then σA is equal to 0,

while a non-zero value implies some degree of non-reciprocal transport. Fig. 6.9(a) shows σA

as a function of attenuation. Due to the wiggles of the shape resonances, we need to do an

average calculation of σA over a range of frequencies corresponding to one period of the shape

resonances. It is clear that in Fig. 6.8 σA will reach a value of 1 at certain resonance frequencies

as |S12| goes to 0 at those points. On an average basis, σA shows a non-monotonic bell shape

behavior as the attenuation increases, which agrees with expectations from mesoscopic theory

(see Fig. 6.9(b)), where they calculate a non-monotonic dependence of non-reciprocal transport

as a function of de-phasing rate in the mesoscopic version of the AB graph [6, 227]. They find it

advantageous to create a finite amount of decoherence to create asymmetric transport, suggesting

that working in the regime between purely quantum and purely classical physics may be optimal.

6.4 Time-domain Results

After getting the 3:1 ratio between the two transmission time delays from the frequency-

domain data, we now demonstrate the non-reciprocity directly in the time domain. The reason for

this is the fact that electrons travel as wave-packets, and do not have a single energy, as implied

by our time-delay results obtain from S-matrix data, presented above. Therefore it is imperative

that we examine the transport properties of our microwave graph with microwave wavepackets

that are analogous to electron wavepackets in mesoscopic transport. These measurements were

done by my colleague Isabella L. Giovannelli. Figure 6.10 shows the time-domain results of

transmitted pulses at each port when sending in the pulse from the other port. Here, AWG stands

for the Model AWG70001B arbitrary waveform generator from Tektronix, Inc., which generates
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Figure 6.9: (a) shows the non-reciprocal transport factor σA of an Aharonov–Bohm microwave
ring graph simulation in Fig. 6.7 averaged over a period of the shape resonances as a function
of attenuation. The frequency period selected in this plot is 12.19 − 13.54 GHz. (b) shows
the calculated non-reciprocal transmission of an asymmetric Aharonov–Bohm mesoscopic ring
device as obtained with the Monte Carlo wave function method from mesoscopic theory. Panel
(b) is taken from Ref. [6].

the gaussian pulse used in the time-domain measurements. The pulse is a 1-ns wide Gaussian

amplitude modulation of a 8.4-GHz carrier signal. Such a pulse includes approximately 1 GHz

bandwidth, which is well within the bandwidth of our gyrator-based AB microwave graph. This

will have the effect of averaging the non-reciprocal properties of the graph over a finite band-

width. Here DUT is the device under test (which is the AB microwave ring graph), and DSO is

the Model UXR0104A oscilloscope from Keysight Technologies, Inc. to record the transmitted

signal. We measured the pulse transmission from both directions, and plot them on the same time
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Figure 6.10: Time-domain measurements for the Aharonov–Bohm ring graph (the DUT here)
shown in Fig. 6.4. Inset shows the schematic of the time-domain setup. The green pulse is
a measurement of the pulse (a 1-ns wide Gaussian amplitude modulation of a 8.4-GHz carrier
signal) from the AWG to the DSO in the absence of the DUT, which sets the zero-delay point
on the time axis. The blue pulse shows the transmitted pulse from port 2 to port 1, while red
pulse shows the transmitted pulse from port 1 to port 2. Note that the DUT device orientation is
reversed from that shown in the inset for the port 2 to port 1 measurement.

axis. Shown for reference (green pulse in Figure 6.10) is the case where the DUT is absent, and

this sets the zero of time for the pulse measurements, as well as illustrating the relatively modest

effects of pulse dispersion in the experiment. Figure 6.10 demonstrates directly a 3:1 ratio of

the transmission time delays for pulses propagating through the AB graph in opposite directions.

From the plot, the transmitted pulse from port 2 to port 1 has smaller amplitude compared to the

transmitted pulse from port 1 to port 2. That is because the transmitted pulse from port 2 to port

1 gets a larger attenuation by lingering in the AB graph for a much longer time.

Fig. 6.11 shows a plot of the two transmission times and amplitudes, as a function of
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Figure 6.11: The two transmission times and amplitudes as a function of center frequency of
the 1-ns wide pulse over the bandwidth of the device. The left axis (magenta) shows the two
transmission time delays, while the right axis (cyan) shows the two amplitudes of the transmitted
pulses. The diamond points represent the measured data from port 1 to port 2, while the plus-sign
points represents the measured data from port 2 to port 1.

center frequency of the 1-ns wide pulse, over the bandwidth of the device. The left axis (magenta)

demonstrates a consistent 3:1 ratio of the transmission time delays for pulses propagating through

the AB graph in opposite directions. The right axis (cyan) shows that the transmitted pulse from

port 2 to port 1 always has smaller amplitude compared to the transmitted pulse from port 1 to

port 2. As the pulse center frequency increases, both amplitudes go down since the microwave

graph is more lossy at higher frequency. These data were taken by by my colleague Isabella L.

Giovannelli.
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6.5 Discussion and Conclusions

In this chapter, I present a microwave network structure to mimic the mesoscopic electron

transport in an Aharonov–Bohm ring, and demonstrate a 3:1 ratio of the transmission time delays

from different directions. The 3:1 ratio of the time delay has been illustrated in both frequency-

domain and time-domain experiments. I also demonstrate the non-reciprocal transport through

the microwave Aharonov–Bohm ring and show that it agrees with expectations from mesoscopic

theory.
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Chapter 7: Conclusions and Future Work

7.1 Conclusions

In this dissertation, I demonstrate the success of applying CPA protocols in generic complex

scattering systems without any geometric or hidden symmetries. Importantly, this general scheme

allows for much broader opportunities in multiple applications, including designing efficient ab-

sorbers, sensitive reconfigurable switches, enabling practical long-range wireless power transfer,

wavefront shaping, highly-efficient energy deposition systems, and next-generation telecommu-

nications.

Furthermore, I develop the theoretical representation of the S-matrix by its zeros and poles,

and generalized the traditional Wigner time delay to a complex quantity in sub-unitary scattering

systems. Through the inherent connection between the complex Wigner time delay and coherent

perfect absorption, I have established an effective approach for control of the zeros and poles of

S-matrix in the complex scattering systems, by tuning either localized loss or uniform loss inside

the system. Such a capability will be extremely useful for understanding the wave properties in

the complex scattering systems, and for controlling the wave behavior in optics, electromagnetics,

acoustics, quantum transport in condensed matter systems, etc.

I also show some interesting statistics of the new complex Wigner time delay in sub-unitary

scattering systems, and demonstrate that it can be used as a practical counter of the resonance
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widths of the scattering systems.

I take one step further, and look over the broad time delay community, and treat Wigner,

transmission, and reflection time delays on equal footing. I am able to develop a comprehensive

time delay analysis framework to include all these three time delays, and analyze their zeros and

poles from the S-matrix. This tool provides us with great benefits in analyzing the complete

scattering properties of any kinds of scattering system, which deepens our understanding of the

physics behind complex scattering systems.

Based on our understandings of the ring graph and its time delays, I built a microwave

realization of the Aharonov–Bohm ring, and demonstrated promising results for non-reciprocal

transport that agree with the mesoscopic predictions. This allows us to explore the transmis-

sion time delay further to the non-reciprocal regime, and shows the possibility of simulating a

mesoscopic device with a microwave graph.

The significance of this dissertation is the following: it reveals new capabilities to engineer

the locations of zeros and poles of the scattering matrix through various manipulations of the

scattering system, which will inevitably lead to many interesting applications. Various examples

include: finding the coherent perfect absorption (CPA) state by looking for a peak/divergence of

complex Wigner time delay [1, 2]; creating exceptional points where two poles come together,

or where two zeros come together [246]; identifying degenerate modes through the sweeping of

uniform attenuation in complex time delay [247]; resonance trapping by varying the coupling

strengths of the ports to change the zero and pole locations [162,248–251]; excitation of off-axis

poles and zeros [72, 73]; changing the length imbalance of the ring graph to achieve extremely

high-Q Feshbach mode [4]; and manipulating zeros and poles of transmission and reflection time

delay to get perfect or no transmission/reflection [57–63].
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7.2 Future Work

One interesting direction would be the study of complex transmission time delay and differ-

ence in a broken time-reversal invariance system. In Chapter 6 of this dissertation, I demonstrate

the non-reciprocal transport behavior of an Aharonov–Bohm ring graph, and it would be a great

candidate for carrying out the study on complex transmission time delay in a non-reciprocal scat-

tering system. Once we deepen our understandings on the Wigner, transmission, reflection time

delays and their zeros & poles, we will have more control over the S-matrix.

In addition to the time delay analysis, the generalized Wigner-Smith operator looks very

useful and can be a promising tool in various applications, including wavefront shaping and

scattering property engineering. It would be interesting to introduce that operator to the 2D

billiard or 3D cavity case, and vary all degrees of freedom in order to manipulate the S-matrix.

In terms of the S-matrix engineering, one interesting idea would be to create a S-matrix

that eliminates all transmission from the interior port in a complex system to the outside world.

This means that one would create shielding of an internal signal and create a “cone of silence”.

Another idea would be to have two ports inside the system that communicate with each other, but

none of their signals escape through the other M − 2 ports of the system.

For the applications presented in this dissertation, one important type of future work is

to broaden the bandwidth of features like CPA, impedance matching, zero-reflection, long-lived

transmission or reflection time delay, etc. The nonlinearity might be able to help with this.

There are still some puzzles about CPA: are there any limits on how many CPA events can

be created in a given system with a given set of coupling coefficients? If many of the ports are

poorly coupled, does this restrict the number of CPAs that one can create by means of varying
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other parameters, such as lumped loss, or the settings on a metasurface array inside the enclosure?

Those are the valuable questions that hopefully can be resolved in the future research.

In this dissertation, I have utilized mainly two methods in terms of zeros and poles en-

gineering/movements, including a point-like attenuator/perturber in Chapter 2 and 3, and the

spatially uniform loss/attenuation in Chapter 4. There are also other interesting ways to move

zeros and poles effectively: reconfigurable metasurfaces [9, 160, 252], nonlinear elements [253],

and port/channel coupling variations [162, 248]. Exploration of these methods as well as finding

new perturbation approaches will be a great addition to this dissertation.
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Appendix A: Theoretical Supplements for Complex Wigner Time Delay

This appendix provides additional details for some of the calculations described in the

text of the dissertation. Appendix A.1 presents the mathematical foundation for extracting the

positions of both poles and zeros in the complex plane from experimental measurements in the

regime of well-resolved resonances. Appendix A.2 shows the detailed calculation for Eq. (4.5) on

counting resonance widths via complex time delays. Appendix A.3 gives the theoretical deriva-

tions of the tails distribution of the complex Wigner time delay in the presence of uniform loss.

I acknowledge Prof. Yan V. Fyodorov for providing the detailed proof and derivations in this

appendix.

A.1 Extracting Poles and Zeros from Experimental Data

Here we shall assume that there is a single isolated mode in the spectrum of a scattering

system. Consider a pair of single terms in the sum over n in Eqs. (3.7–3.8)

Re τn(f) =
[

Imzn − η

(f − Rezn)2 + (Imzn − η)2
+

Γn + η

(f − En)2 + (Γn + η)2

]
, (A.1)

−Im τn(f) =

[
f − Rezn

(f − Rezn)2 + (Imzn − η)2
− f − En

(f − En)2 + (Γn + η)2

]
(A.2)

where we ‘relabeled’ the energy parameter E as ‘frequency’ f .
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Extracting the parameters Rezn, Imzn, En,Γn and the uniform absorption strength η from

the experimentally measured curves Im τn(f) and Re τn(f) is possible by the following proce-

dure.

1. Let us define the “resonance frequency” value f = f ∗ by the condition

Im τn(f
∗) = 0 (A.3)

2. Measure from the two above curves the following 3 parameters:

s = − d

df
Im τn(f)|f=f∗ , m = Re τn(f ∗), δ = −1

2

d

df
ln [Re τn(f)]|f=f∗ (A.4)

and use them to build combinations:

α− =
1

2

(
− s

m
+m

)
, α+ =

1

2

( s
m

+m
)

(A.5)

The following relations then can be derived for the positions of resonance poles and zeros.

For the real parts:

En = f ∗ − δ

δ2 + α2
−
, Re zn = f ∗ − δ

δ2 + α2
+

(A.6)

For the imaginary parts:

Γn = −η + α−

δ2 + α2
−
, Im zn = η +

α+

δ2 + α2
+

(A.7)
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Derivation of relations (A.6) – (A.7)

Define for brevity xn := f ∗ − Rezn, rn := Imzn − η, ϵn := f ∗ − En and pn := Γn + η.

Then condition (A.3) implies

xn
x2n + r2n

=
ϵn

ϵ2n + p2n
(A.8)

Also we have by the definition

m = Re τn(f)|f=f∗ =
rn

x2n + r2n
+

pn
ϵ2n + p2n

(A.9)

On the other hand differentiating (A.2) gives with this notation:

s = − d

df
Im τn(f)|f=f∗ =

r2n − x2n
(x2n + r2n)

2
− p2n − ϵ2n

(p2n + ϵ2n)
2

(A.10)

Now using the condition (A.8) the above equation simplifies to

s =
r2n

(x2n + r2n)
2
− p2n

(p2n + ϵ2n)
2
=

[
rn

(x2n + r2n)
− pn

(p2n + ϵ2n)

] [
rn

(x2n + r2n)
+

pn
(p2n + ϵ2n)

]
(A.11)

which after using (A.9) gives

s/m =

[
rn

(x2n + r2n)
− pn

(p2n + ϵ2n)

]
(A.12)

Now the pair (A.9)–(A.12) implies

α+ :=
1

2

( s
m

+m
)
=

rn
x2n + r2n

, α− :=
1

2

(
− s

m
+m

)
=

pn
p2n + ϵ2n

(A.13)
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Finally, let us consider

−1

2

d

df
Re τn(f)|f=f∗ =

rnxn
(x2n + r2n)

2
+

pnϵn
(p2n + ϵ2n)

2
(A.14)

which after first using (A.8) and then (A.9) can be further rewritten as

=
ϵn

p2n + ϵ2n

[
rn

x2n + r2n
+

pn
p2n + ϵ2n

]
=

ϵn
p2n + ϵ2n

Re τn(f)|f=f∗

implying finally

δ := −1

2

d

df
ln [Re τn(f)]|f=f∗ =

ϵn
p2n + ϵ2n

=
rn

x2n + r2n
(A.15)

The pair of equations (A.13) and (A.15) can be easily solved and gives (A.6) – (A.7).

So the only parameter which remains to be found from independent measurement is the

uniform absorption η.

Note: Note that generically both s = − d
df

Im τn(f)|f=f∗ ̸= 0 and m = Re τn(f)|f=f∗ ̸= 0

so |α+| ≠ |α−|. We then see from Eq. (A.6) that to have En = Re zn is only possible if

δ = 0, which in turn is only possible if d
df
[Re τn(f)] |f=f∗ = 0. The latter condition would

mean that the maximum or minimum on the curve Re τn(f) happens exactly at the same

frequency f ∗ where the imaginary part vanishes. Generically this never happens due to the

two-Lorentzian nature of Re τn(f).
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A.2 Counting Resonance Widths via Complex Time Delays

Using complex Wigner time delay, one can obtain non-trivial information about the distri-

bution of the imaginary part of the poles (resonance width) of the S-matrix. Denote by H the

N×N Hamiltonian of the closed system, byW theN×M matrix of coupling elements between

the N modes of H and the M scattering channels. The total S matrix has the form:

S(E) = 1M − 2πiW † 1

E −H + iΓW

W where ΓW = πWW † (A.16)

Note that the S-matrix poles En = En − iΓn (with Γn > 0) are eigenvalues of H − iΓW .

In the presence of uniform absorption with strength η, the S matrix is evaluated at complex

energy S(E + iη) := Sη(E). The determinant of Sη(E) is then:

detSη(E) := detS(E + iη) (A.17)

=
det[E −H + i(η − ΓW )]

det[E −H + i(η + ΓW )]
(A.18)

=
N∏

n=1

E + iη − E∗
n

E + iη − En
, (A.19)

Extending the definition of the Wigner time delay to uniformly absorbing systems as

τW(E; η) :=
−i
M

∂

∂E
log detSη(E) (A.20)
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we now have a complex quantity

τW(E; η) = − i

M

N∑
n=1

(
1

E + iη − En − iΓn

− 1

E + iη − En + iΓn

)
(A.21)

whose real and imaginary part is given by:

Re τW(E; η) =
1

M

N∑
n=1

[
Γn + η

(E − En)2 + (Γn + η)2
− η − Γn

(E − En)2 + (Γn − η)2

]
, (A.22)

Im τW(E; η) = − 1

M

N∑
n=1

[
4ηΓn(E − En)

[(E − En)2 + (Γn − η)2][(E − En)2 + (Γn + η)2]

]
(A.23)

When the S-matrix is unitary, i.e. η = 0, the time delay is purely real and reduces to

conventional Wigner time delay:

τW(E; 0) =
1

M

N∑
n=1

2Γn

(E − En)2 + Γ2
n

:= τW(E) (A.24)

All the equations above are valid for arbitrary η. There are two characteristic energy scales

in the system for energies around a value E. First is the microscopic one, the mean spacing

between En in the ‘closed’ counterpart of our scattering system ∆ = 1/(Nν(E)) where ν(E) =

1
N
⟨
∑N

n=1 δ(E − En)⟩ is the mean density of resonance positions (in the case of Random Matrix

Theory (RMT) the latter is the Wigner semicircle ν(E) = 1
2π

√
4− E2). A second scale J is

macroscopic and reflects a characteristic scale on which the mean density substantially changes

(in RMT it is simply the width of the semicircle, J ∼ 1). We will also introduce a useful notion

of mesoscopic energy intervals IE defined by EL < E < ER. Those are intervals with the length

|I| := |ER − EL| satisfying ∆ ≪ |I| ≪ J . In other words, they contain a lot of resonances
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inside, but the density of those resonances along the real axis can be assumed to be constant.

Correspondingly, we will introduce the notion of the mesoscopic energy average, defined for any

energy-dependent function f(E) as

⟨f(E)⟩E =
1

|I|

∫ ER

EL

f(E) dE (A.25)

We will be interested in situations when both the typical resonance widths Γn and the

absorption parameter η are of the order of the microscopic scale ∆ (which does not necessarily

mean that the resonances are isolated: some Γn can be several times larger than ∆, but they

are considered to be always smaller than any mesoscopic scale). The above situation is always

typical as long as the number of open channels M is of the order of unity (M = 1 and M = 2

for example). In such a situation no more than M (out of N ) resonances can violate the above

condition.

Our main statement is the following: under the above assumptions the mesoscopic energy

average of Re[τW(E; η)] is given by

⟨Re[τW(E; η)]⟩E =
2π

M∆
× Prob(resonance widths > η) (A.26)

where we defined

Prob(resonance widths > η) :=
#[Γn > η such that En is inside IE]

total # resonances inside IE

142



To verify the above statement we consider the integral:

∫ ER

EL

δn
(E − En)2 + δ2n

dE = sign(δn)
∫ (ER−En)/|δn|

(EL−En)/|δn|

dx

x2 + 1
(A.27)

= sign(δn)
{
arctan

(
ER − En

|δn|

)
− arctan

(
EL − En

|δn|

)}

We need to apply it to the right-hand side of Eq. (A.22) where δn = η±Γn. We see that for

the overwhelming majority of the summation index n = 1, 2, . . . , N there simultaneously holds

two strong inequalities

|ER − En|
|δn|

≫ 1 and
|EL − En|

|δn|
≫ 1.

Indeed, those inequalities can be violated only in the vicinity of the ends of the mesosocopic in-

terval, i.e. when |ER, L−En| ∼ ∆. The number of such terms is clearly of the order ∆/|I| which

is a small parameter in the mesoscopic case. Neglecting those cases, we always can consider the

arguments of arctan to be large in absolute value, hence to use arctan(a) ≈ π
2
sign(a)− 1

a
+ . . . .

The contribution of subleading terms can be estimated separately (and indeed shown to be small,

this time as ∆/J), and the leading terms give:

⟨Re[τW(E; η)]⟩E ≈ π/2

M |I|

N∑
n=1

{[
sign

(
ER − En

η + Γn

)
− sign

(
EL − En

η + Γn

)]

−
[

sign
(
ER − En

η − Γn

)
− sign

(
EL − En

η − Γn

)]}
(A.28)

It is now evident that if En is outside of the mesoscopic interval (that is En < EL < ER or

En > ER > EL) the corresponding terms in the sum (A.28) vanish, whereas inside the interval
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(for EL < En < ER) remembering η + Γn > 0 we see the corresponding terms in the summand

are equal to 2(1− sign(η − Γn)) = 4θ(Γn − η) where we introduced the step function θ(x) = 1

for x > 0 and θ(x) = 0 otherwise.

⟨Re[τW(E; η)]⟩E ≈ 2π

M |I|

N∑
n=1

θ(Γn − η) (A.29)

Finally, remembering that under our assumptions #(En ∈ I) ≈ |I|/∆ we arrive at the statement

Eq. (5) in the main text.

Remarks: The mesoscopic energy average is defined in a given system and does not in-

volve any ensemble average. Actually, we separately proved that if one employs the RMT en-

semble average (which we denote with the bar below) instead of the mesoscopic energy average

the relation Eq. (5) holds even if we use τW(E; η) rather than Re[τW(E; η)], namely:

τW(E; η) =
2π

M∆

∫ ∞

η̃

ρ
(M)
β (y) dy (A.30)

where η̃ = 2πη/∆ and ρ
(M)
β (y) is the probability density of scaled resonance widths yn =

2π|Γn|/∆. We see that is exactly equivalent to mesoscopic energy averaging. This means that

the mesoscopic average of Im[τW(E; η)] should be parametrically smaller than for Re[τW(E; η)],

and tend to zero when the length of the mesoscopic interval formally tends to infinity.

Thus, one can compare the result to known RMT expressions. In particular, for β = 2 and

general two-port system one has [77, 146, 147]:

ρ
(M=2)
β=2 (y) =

e−yg1 − e−yg2

g1 − g2

(
g1g2ϕ(y)− (g1 + g2)

dϕ

dy
+
d2ϕ

dy2

)
(A.31)
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where we denoted ϕ(y) = sinh y
y

and introduced coupling constants g1 ⩾ 1, g2 ⩾ 1 are determined

from the mean (ensemble-averaged) scattering matrix which is in that model diagonal Sab =

δabSaa. Namely:

|Sab|2 =
ga − 1

ga + 1
(A.32)

Closed channel a corresponds to ga → ∞, perfect coupling to ga = 1. If two channels are

equivalent: g1 = g2 = g we have a more compact formula:

ρ
(M=2)
β=2 (y) = y

d2

dy2
(
e−ygϕ(y)

)
(A.33)

Similar, but more complicated (still explicit, but in terms of 3-fold integrals) expressions

are available for β = 1, see [148]. For a single-channel GOE system a much simpler explicit

formula for the resonance density has been recently derived [254], with only one-fold integrals

involved.

A.3 Statistical Distribution of complex Wigner time delays: Tails

Using the standard resonance representation for the unitary time delay (A.24) one can de-

scribes mechanisms [77] responsible for the formation of various regimes in the far tail of the

probability density for normalized Wigner time delays tw = ∆
2π
τW. Here we provide a similar

consideration for the normalized real part: t̃w = M ∆
2π

Re[τW] in the presence of a uniform ab-

sorption η > 0. Inspection of the representation Eq. (A.22) makes it clear that anomalously high

values of the time delays happen when (i) the observation energy value E is anomalously close to
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En and simultaneously (ii) the resonance widths Γn comes anomalously close to the absorption

value η, that is Γn − η ≪ η. In such an event the second term in Eq. (A.22) is dominant, and

therefore a faithful model for the tail formation can be obtained by considering the following

approximation:

t̃w ≈ ∆

2π

Γn − η

(E − En)2 + (Γn − η)2
≡ y − η̃

x2 + (y − η̃)2
(A.34)

where the scaled resonance widths y = 2π
∆
Γn is distributed with the probability density ρ(M)

β (y)

and the variable x = 2π
∆
(E − En) can be considered for our purposes as uniformly distributed

in the interval [−a, a] where a is any constant of the order of unity. We will take a = 1 for

simplicity. Using the symmetry x → −x and introducing w = x2 one can write the probability

density P(t̃w) in this approximation as

P(t̃w) =

∫ ∞

0

ρ
(M)
β (y) dy

∫ 1

0

δ

(
t̃w − y − η̃

w + (y − η̃)2

)
dw√
w

(A.35)

Solving the δ-constraint we find that w = (y − η̃)
(

1
t̃w

− (y − η̃)
)

. Due to the constraint w > 0

we see that this implies that the integral over x is nonzero only for y in the range η̃ < y < η̃+ 1
t̃w

for the right tail values t̃w > 0, whereas for the left tail t̃w < −η̃−1 we have η̃ + 1
t̃w
< y < η̃.

On the other hand it is easy to see that the upper limit constraint w < 1 is immaterial if we are

interested in the tail t̃w ≫ 1, and can be replaced with w < ∞. Performing the integration over

w gives

P(t̃w) =
1

t̃2w

∫ η̃+ 1
t̃w

η̃

ρ
(M)
β (y)

y − η̃√
(y − η̃)( 1

t̃w
− (y − η̃))

dy (A.36)
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and introducing v = (y − η̃)t̃w we finally get the right tail

≡ 1

t̃3w

∫ 1

0

ρ
(M)
β

(
v

t̃w
+ η̃

)√
v

1− v
dv (A.37)

We see that the following two situations are possible. First (using
∫ 1

0

√
v

1−v
dv = π

2
) we see that

for any η̃ > 0 the most distant right tail has a universal exponent (for any β) given by

P(t̃w) ≈
π

2

ρ
(M)
β (η̃)

t̃3w
, t̃w ≫ 1

η̃
(A.38)

However, if absorption is small: η̃ ≪ 1 then there exists another tail regime: 1 ≪ t̃w ≪ 1
η̃

where

P(t̃w) ≈
1

t̃3w

∫ 1

0

ρ
(M)
β

(
v

t̃w

)√
v

1− v
dv, (A.39)

and finally using that for small argument ρ(M)
β (y ≪ 1) ∼ const y

Mβ
2

−1 we arrive at the interme-

diate tail:

P(t̃w) ≈ const t̃
−Mβ

2
−2

w , 1 ≪ t̃w ≪ 1

η̃
(A.40)

In fact this tail is exactly the same as that derived in [77,133] for η̃ = 0. Note that for the M = 2

port, β = 2 data shown in Fig. 1 of the main text, the power-law of the intermediate tail is

expected to be P(t̃w) ∝ t̃−4
w .

Finally, for negative time delay it is easy to show that the far tail for t̃w < −η̃−1 is given

by the same result (A.38), with t̃w → |t̃w|, and this is the only asymptotic regime on the left

(t̃w < 0).
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Now we study the far tails of the Jw = −M Im[τW]/τH which in the same approximation

can be extracted from (A.23) as

Jw ≈ 4η̃yx

[x2 + (y − η̃)2][x2 + 4η̃2]
≈ yx

η̃[x2 + (y − η̃)2]
(A.41)

where we used that the far tail values |Jw| ≫ 1/η̃ come when x ≪ η̃. Hence we also can safely

consider −∞ < x <∞ and write the probability density P(t̃w) in this approximation as

P
(
|Jw| ≫ η̃−1

)
=

∫ ∞

0

ρ
(M)
β (y) dy

∫ ∞

−∞
δ

(
Jw − 1

η̃

yx

x2 + (y − η̃)2

)
dx (A.42)

Note that such a density is symmetric: P (Jw) = P (−Jw), so we consider Jw > 0. Solving the

delta-functional constraint for x, we find two values of x contributing:

x1,2 =
1

2

(
y

Jwη̃
∓

√(
4− 1

J2
wη̃

2

)
(y − y+)(y− − y)

)
(A.43)

as long as y+ < y < y− where we defined

y± =
η̃

1± 1
2Jw η̃

(A.44)

This gives

P
(
|Jw| ≫ η̃−1

)
=

1

2

∫ y−

y+

ρ
(M)
β (y)

(
1

|ϕ′(x1)|
+

1

|ϕ′(x2)|

)
dy, ϕ(x) :=

1

η̃

yx

x2 + (y − η̃)2

(A.45)
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Note that for Jwη̃ ≫ 1 the width of the integration domain over y is much smaller than the typical

values y ∼ η̃ as y− − y+ ≈ 1
Jw

≪ η̃. Using this and exploiting the relation J = ϕ(x1,2) we can

approximate

1

|ϕ′(x1,2)|
≈ 1

J2
w

x21,2∣∣(y − η̃)2 − x21,2
∣∣

and in this way arrive to:

P
(
Jw ≫ η̃−1

)
≈
ρ
(M)
β (η̃)

2J2
w

(I1 + I2) , I1,2 =

∫ y−

y+

x21,2∣∣(y − η̃)2 − x21,2
∣∣ dy (A.46)

where x1,2 ≈ y
2Jw η̃

±
√

(y − y+)(y− − y). Evaluation of the two integrals goes in a similar way,

so we consider only

I1 =

∫ y−

y+

(
y

2Jw η̃
+
√

(y − y+)(y− − y)
)2∣∣∣(y − η̃ − y

2Jw η̃
−
√

(y − y+)(y− − y)
)(

y − η̃ + y
2Jw η̃

+
√

(y − y+)(y− − y)
)∣∣∣ dy

We first change variables as y = y+ + (y− − y+)t, 0 < t < 1 and use that for Jwη̃ ≫ 1 we can

write

y+
2Jwη̃

≈ 1

2Jw
, y+ − η̃ − y

2Jwη̃
≈ 0, y+ − η̃ +

y

2Jwη̃
≈ 1

Jw
, y− − y+ ≈ 1

Jw

Applying the above systematically and keeping only the leading order one finds after further

algebraic manipulations that

I1 ≈
1

Jw

∫ 1

0

(
1
2
+
√
t(1− t)

)2
√
t(1− t

(√
t+

√
1− t

)2 dt
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The integral is well-defined and convergent and yields some positive constant whose value is

however immaterial for us (in fact, substituting t = sin2 α, α ∈ (0, π/2) brings it to a nice form).

We therefore conclude that asymptotiucally both I1 and I2 are proportional to the factor J−1
w

which finally implies the tail formula:

P
(
|Jw| ≫ η̃−1

)
≈ const ×

ρ
(M)
β (η̃)

2J3
w

(A.47)
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Appendix B: Evaluation of System Uniform Loss

This appendix provides additional details for the methods being used in this dissertation to

evaluate the system uniform loss strength, which is denoted as η throughout the dissertation.

B.1 Evaluation of Uniform Attenuation η using Unitary Deficit of the S-matrix

The value of η is estimated in a situation in which the uniform attenuation of the coaxial

cables dominates the overall loss of the system. These losses arise from metallic and dielectric

loss in the cables and are quite homogeneously distributed in the system. Here we estimate

the value of uniform attenuation η for the microwave graph using the unitary deficit of the S-

matrix [120]. We measured the graph with the variable attenuator removed (see Fig. 3.1), and

measured the 2 × 2 S-matrix under this no-attenuator condition. The unitary deficit of the S-

matrix is expected to be ln | detS| ≈ −MηRe[τW ] in the limit of low loss [120], where M is the

number of channels (M = 2 in this setup). Fig. B.1 shows the detS and Re[τW ] versus frequency

experimental data for the resonance of interest when no attenuator is present. The linear fitting

function in Fig. B.1(b) determines the uniform loss strength to be η = 3.73 × 10−3 GHz. It

should be noted that this method only works in the limit of very low uniform loss.
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𝜂 = 3.7266 𝜇𝑠−1

= 3.7266 × 10−3 GHz

No Attenuator

(a) (b)

−Re 𝜏𝑊 𝜇𝑠

−Re 𝜏𝑊 𝜇𝑠

Figure B.1: (a) Measurement of ln | detS| and −Re[τW ] as a function of frequency for the res-
onance of interest in a no-attenuator tetrahedral graph. (b) Plot of ln | detS| vs. −Re[τW ] (with
frequency as a parameter) and a linear fit between these two quantities to evaluate the uniform
loss strength η.

B.2 Estimation of Loss Parameter α and Error Bars

In the experiment presented in Chapter 4, each frequency band is chosen to have a large

number of modes (approximately 40) but small enough so that the uniform attenuation value is

approximately constant. A total of 84 realizations of the graphs were created, and the data was

broken into 7 frequency bands of approximately equal attenuation.

In Fig. 4.3, we plot the data points for the mean of the Re[τW] vs loss with error bars.

The vertical error bars are determined by the statistical binning error σ ∼ 1√
Nensemble×Nmode

, where

Nensemble is the number of realizations in one ensemble, and Nmode is the number of resonant

modes in one realization, such that Nensemble ×Nmode is the total number of modes studied in one

ensemble data set. The horizontal error bar is estimated from the fitting process in calculation

of the system loss parameter α. The loss parameter α is defined as the ratio of the typical 3-dB

152



1.05 ∗ min

min

(a) (b)

𝜏− 𝜏+

ln
iF
F
T
d
et
𝑆

Figure B.2: (a) shows the fitting process of the inverse Fourier transformed det[S] data to the time
domain. Multi-color lines show the data from each realization, and the black line is the average
of all realizations. The red line shows the linear fit. (b) shows the error bar estimation for the
decay time τ . Blue dotted line shows the error function ϵ(τ) vs the decay time τ . The lower red
dashed line shows the minimum level of the error function, and the upper red dashed line shows
the 1.05 × minimum level. The cross points of the upper red dashed line with the blue line give
the error bar [τ−, τ+] for the decay time τ .

bandwidth of the resonant modes to the mean mode-spacing, and it can be written as α = Le

2πcτ

in the case of graph systems, where Le is the total electrical length of the graph, c is the speed

of light in vacuum, and τ is the energy decay time for the system. The energy decay time τ

is obtained from the power decay profile (see Fig. B.2(a)) by inverse Fourier transforming the

RCM-normalized measured data for det[S] to the time domain. By fitting to the linear portion

of the ensemble average power decay profile (black line), one can get the slope and the decay

time τ can be computed by τ = −1/(2 ∗ slope). Fig. B.2(b) shows the estimation of error

bars for the decay time τ . The fitting process in Fig. B.2(a) gives the sample dataset (xi, yi),

i = 1, 2, ..., N and linear function y = kx + b for extracting the decay time τ . Here we define

an error function ϵ(k) = min
{∑

i (yi − (kxi + b))2
}

. It is easy to prove that ϵ(k) =
∑

i(yi −

kxi)
2 − 1

N
(
∑

i(yi − kxi))
2. By varying the decay time τ , we can get different values of the
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slope k and plot the error function ϵ(τ) as a function of the decay time τ (see Fig. B.2(b)). The

minimum error function determines the best decay time τ and we use an error level of 1.05 to

estimate the error bar [τ−, τ+] of decay time τ . The error bars of the decay time τ will then be

transferred to the attenuation parameter η̃ = 4πα = 2Le

cτ
, and plotted as the horizontal error bars

in Fig. 4.3.

B.3 Uniform Attenuation Estimation for Coaxial Cable

We estimate the uniform attenuation η in the ring graph system both theoretically and

experimentally. From [255], we derived the corresponding expression for the uniform attenuation

(Γ) of a homogeneous coaxial cable, expressed in terms of an angular frequency:

Γ =
1

2

[
2πf tan δ +

√
2πfρ

2µ0

1
√
ϵr

1

ln (b/a)
(
1

a
+

1

b
)

]
, (B.1)

where f is the linear frequency, tan δ = 0.00028 and ϵr = 2.1 are the dielectric loss tangent the

relative dielectric constant of the Teflon dielectric, ρ = 4.4 × 10−8 Ω ·m is the resistivity of the

metals in the cable, µ0 = 4π × 10−7 H/m is the permeability of vacuum, and a = 0.46× 10−3 m

and b = 1.49× 10−3 m are the radii of the inner and outer conductors, respectively. These values

are typical for the coaxial cables used in our experiments.

We also performed a direct measurement of the uniform attenuation for the components

making up the ring graph. We connected the coaxial cable and the phase shifter from Fig. 5.1(b)

in series and measured the transmission S21 insertion loss as a function of frequency. The com-

parison of uniform attenuation between direct measurement (from S21), fitting results (η) and the

modelling (Γ) is plotted in Fig. B.3. The agreement between these three independent estimates
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Figure B.3: Comparison of three different ways to determine the uniform attenuation of the loop
graph: by means of direct measurement of insertion loss through S21, fitting results to complex
time delays (η), and direct modelling (Γ). The blue line shows the data obtained by measuring
the S21 insertion loss of a serial connection of the coaxial cable and the phase shifter shown in
Fig. 5.1(b). The yellow stars show the fitting results for η from the complex Wigner time delay
analysis in Fig. 5.8. The red line shows the theoretical modelling (Eq. (B.1)) of Γ/2π in a coaxial
cable.

is reasonably good. Note that the coaxial phase shifter is not a uniform coaxial structure, and

evidence of internal resonances are visible in Fig. B.3 above 7 GHz. Note that the fit η values are

slightly higher than the direct loss measurement below 7 GHz, but then are slightly lower above

that frequency. This comparison gives us confidence that the values of η extracted from complex

time delay analysis are quite reasonable.

155



Appendix C: High-Precision Measurements and Numerical Calculation for Com-

plex Time Delays

Time delay calculations (Eqs. (5.5), (5.10), (5.19), and (5.20)) require extremely high pre-

cision on the data. Both phase and amplitude information of the S-matrix are involved in the

numerical derivative calculations. In order to acquire high-quality time delay data for zeros and

poles extraction or statistical analysis, one must ensure that the raw data obtained from experi-

ment are “clean”.

25 × 10−4 6 × 10−4 2 × 10−4

IF Bandwidth = 100 kHz IF Bandwidth = 10 kHz IF Bandwidth = 100 Hz

Figure C.1: Measured data for S11 under different settings of IF Bandwidth. Blue dots show the
measured amplitude of S11, while red dots show the measured phase of S11. From left to right, IF
Bandwidth decreases from 100 kHz to 10 kHz to 100 Hz, and the data quality has been greatly
improved. An estimated fluctuation of the amplitude data is shown in each plot.

A typical workflow of the S-matrix measurement is to perform a calibration first, then do

the actual measurement. The calibration process in the time delay experiments are very important,

as it sets the upper limit for the quality of the measured data. In this scenario, the most significant
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parameter in the setting is the “IF Bandwidth”, where IF stands for intermediate frequency. When

measuring S-matrix data for time delay calculations, one must reduce the IF Bandwidth setting

for to improve data quality, and keep that IF Bandwidth setting through the whole process includ-

ing calibration and measurement. Fig. C.1 shows the effects of different IF Bandwidth settings

on the data quality of measured S11, both phase and amplitude. The data is much “cleaner” as the

IF Bandwidth decreases. However, there is a trade-off between IF Bandwidth and measurement

time consumption. The calibration time and measurement time would increases significantly as

we decrease the IF Bandwidth, especially when measuring a large number of data points. In the

graph measurements, I found the sweet spot for the IF Bandwidth setting to be 100 Hz. One may

use other IF Bandwidth setting as long as it offers enough precision for the time delay derivative

calculations.

After getting high-quality S-matrix data from measurements, the next step is to do the nu-

merical calculation. The straightforward way would be τ = diff(data)
diff(freq) , with possible data smoothing

techniques combined (e.g. the movmean function in MATLAB). A more sophisticated method is

to select a window which contains a few frequency points, and solve for the linear slope fitting of

these data points. The former method is usually faster, while the latter one should in principal be

more accurate. For most cases with very high-quality data, the two methods usually produce sim-

ilar results. Another important parameter to consider is the smoothing window size. Increasing

the window size would make the data smoother, but may lose some extreme time delay informa-

tion, especially if the resonance is approaching a time delay divergence (CPA) state. This also

emphasizes the importance of having high-quality raw data in the first place.
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Appendix D: Quantum Graphs Measurements

D.1 Microwave Networks

Through this dissertation, I have studied quantum graphs extensively. The experimental

realization of quantum graph in my dissertation is to use microwave coaxial cables constructed

as microwave networks.

Figure D.1: S-matrix meausurement for a Tee junction. Inset shows the picture of a Tee junction
with all three female ports.

In Chapter 2 and 3, I use a tetrahedral graph with a point-like attenuator (see Fig. 2.1) as the
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experimental object. The tetrahedral graph is constructed from six coaxial cables and several Tee

junctions. The lengths of the six coaxial cables should be incommensurate, to avoid degenerate

modes in the graph. The coaxial cables used in the experiment can be flexible to form any shape

of graph, but they should be kept stationary during the measurement to avoid any perturbation

to the resonances. The cables have certain loss which is uniform among the whole graph, but

is frequency-dependent which has been well characterized in Appendix B.3. The Tee junction

(see Fig. D.1) is a three-port adapter that has finite size. It may trap waves of certain wavelength

which will increase the effective loss for those frequencies. The point-like attenuator is a voltage-

variable attenuator which can be easily controlled using a programmable power supply, and its

attenuation can be changed continuously by sweeping the applied voltage. The attenuation from

the voltage-variable attenuator is also dependent on frequency, and it has variable phase shift

among different frequencies. Therefore, it does a very good job acting as a point-like perturber

which offers enough perturbation to the zeros and poles. All these components have the SMA

connector, and have a working frequency range of near DC to 18 GHz. Depending on whether

we would like to preserve the time-reversal invariance or break it, we could put in a ordinary Tee

junction or a circulator into one node of the graph. The circulator is a three-port device which has

certain frequency limits. Due to the nature of the circulator design, it can be very lossy and has a

large electrical length inside. As the frequency range of the circulator decreases, the size can be

quite bulky. The typical workflow of measuring such a graph is to sweep the applied voltage and

measure the S-matrix automatically. All procedures can be integrated to the MATLAB code and

done very nicely.

In Chapter 4, I use a tetrahedral graph with fixed attenuators on each bond (see the insets of

Fig. 4.3) as the experimental object. Unlike the point-like attenuator, the fixed attenuators have
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a fixed value of attenuation (0.5 dB, 1 dB, 2 dB, and etc.), and offer almost constant attenuation

for the whole frequency range. These fixed attenuators also have a constant phase shift (i.e.

electrical length) for all frequencies. The inconvenience of these fixed attenuators is that we have

to manually swap all six attenuators at once to vary the attenuation. This can be improved with

motorized variable attenuators. In order to create high-quality ensemble data, we need to change

the cable length every time. For now, I choose six cables out of nine ones every time, and swap

the cables every time manually. In total, I get
(
9
6

)
= 84 combinations. The process is very time-

consuming and can take up to a whole day easily. This can be much improved with motorized

variable phase shifters. The typical workflow of measuring an ensemble of graph is to manually

swap the coaxial cables and attenuators then measure the S-matrix. The whole process can be

significantly optimized using motorized phase shifters and attenuators.

In Chapter 5 and 6, I use a ring graph structure as the experimental object. The lengths

of the coaxial cables are carefully chosen for the phase-matching condition, and the S-matrix

measurement is very straightforward.

D.2 Time-Reversal Invariance Breaking in Graphs by a Microwave Circulator

The issue of time-reversal invariance breaking (TRIB) is a bit subtle. It is widely believed

that attenuation and dissipation in a wave propagation medium serves to break TRI. However, if

one could manage to reverse all the microscopic degrees of freedom involved in dissipation, one

could restore the full time-reversed propagation of the waves. In a scattering experiment time-

reversal can be effectively accomplished simply by interchanging ports of the system [256]. In

other words, showing that Sab ̸= Sba is direct proof that TRI is broken in the scattering system.
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Figure D.2: Figure shows differences between S12 (yellow line) and S21 (purple line) vs fre-
quency in a tetrahedral microwave graph containing a circulator on one internal node of the graph.
In the working frequency range (1 − 2 GHz) of the microwave circulator, the two transmission
parameters do not agree, neither in amplitude (upper plot) nor in phase (lower plot).

A scattering system that suffers from dissipation/loss alone will still have a symmetric scattering

matrix (Sab = Sba), in general. The property of non-reciprocal wave propagation is precisely what

the microwave circulator in our graph delivers, and the degree of non-reciprocity is quantified

below. The microwave circulator (which contains a ferrite material biased by a dc magnetic field)

creates a situation for the microwave signals that is directly analogous to the application of a

magnetic field to the motion of a charged particle [257]. If we consider reversing the direction of

time for wave propagation, but the magnetic field direction is not reversed, the waves will follow

different trajectories when propagating through the system upon reversal of time. This effect puts

the system into the unitary universality class.

We introduce microwave circulators to the graph experiments to break the time-reversal
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invariance of the system [40]. From the schematic insets of Fig. 4.3, we have one internal

node of the graph being replaced by a microwave circulator. This non-reciprocal device brings

differences to the two transmission (S12 & S21) parameters of the system, which is demonstrated

in Fig. D.2. In order to quantitatively evaluate the degree of time-reversal invariance breaking, we

use the definition of time-forward and time-reversed transmission asymmetry [256] to perform

the analysis:

ã =
S12 − S21

|S12|+ |S21|
(D.1)

Figure D.3: Figure shows the time-reversal transmission asymmetry function ã vs frequency in a
microwave graph with circulator (1−2 GHz). Upper plot shows the magnitude of ã vs frequency,
and lower plot shows the phase of ã vs frequency.

This function has an absolute value from 0 (no symmetry breaking) to 1 (maximum sym-
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metry breaking). Fig. D.3 shows an example of the asymmetry function analysis on experimental

data from a realization of the tetrahedral microwave graph (M = 2) with circulator. The asym-

metry ã shows strong fluctuations as a function of frequency, but the magnitude of ã is close

to 1 for many of the frequencies. The asymmetry plot in other frequency ranges shows similar

behaviors. It is then well demonstrated that one circulator in such a graph setup has a satisfactory

time-reversal invariance breaking effect.

D.3 Quantifying Coupling Effects

The measured S-matrix contains not only the system-specific information, but also the

coupling effects from the scattering channels (ports). The coupling channels connect the closed

system to the outside world, enabling the excitation waves/energies travelling into and out of

the closed system. In Chapter 4, the theoretical predictions are calculated in the limit of perfect

coupling. In this dissertation, I use Random Coupling Model (RCM) [22] to remove the finite

coupling effects from the experiment data, and prepare the data to be “perfectly coupled” for

comparison with theory.

Figs. D.4 and D.5 show the coupling effects on the experiment data. In both plots, the

radiation impedance data in yellow line is a slow-varying curve which represents the specific

port property. The single realization data in blue shows strong fluctuations around the yellow line

which are the resonances. The averaged impedance data in red is very close to the radiation curve

with additional contributions from the short orbits. I use Eq. (1.1) to remove the finite coupling

effects from measured Ẑcav impedance matrix, and obtain the “perfectly coupled” impedance

matrix ẑ (see examples in section 4.3). Note that sometimes one can use the averaged impedance
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𝑍11cav = single realization
𝑍11avg = average over all 84 realizations

Figure D.4: Impedance experimental data Re[Z11] for tetrahedral graphs. Blue line is the data for
a single realization. Red line shows the averaged data over all 84 realizations in this ensemble.
Yellow line shows the measured radiation impedance data of port 1.

matrix Ẑavg as the radiation impedance Ẑrad in the formula, if the radiation data is hard to get.

In Figs. 4.7 and 4.8, I also utilize the formula to add the effects of coupling back into the

RMT numerical data. One can calculate the corresponding radiation impedance matrix from the

coupling strength g, and use that to generate impedance data with arbitrary coupling effects. The

coupling strength g is defined as ga = 2
Ta

− 1, where Ta = 1 − |Srad|2 is the transparency of

the system to the scattering channel a determined by the value of the radiation S-matrix. Given

any coupling strength g, one can get its corresponding radiation S-matrix (Srad), and put that

information back into Eq. (1.1) to add the finite coupling effects to the data. This approach

should be very useful for the poles study, as the imaginary parts of the poles are directly related

to the coupling effects.
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Figure D.5: Impedance experimental data Im[Z11] for tetrahedral graphs. The blue line is the
data for a single realization. The red line shows the averaged data over all 84 realizations in this
ensemble. The yellow line shows the measured radiation impedance data of port 1.
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Sirko. Are Scattering Properties of Graphs Uniquely Connected to Their Shapes? Physical
Review Letters, 109(4):040402, Jul 2012.

[42] Małgorzata Białous, Vitalii Yunko, Szymon Bauch, Michał Ławniczak, Barbara Dietz,
and Leszek Sirko. Power spectrum analysis and missing level statistics of microwave
graphs with violated time reversal invariance. Physical Review Letters, 117(14):144101,
Sep 2016.

[43] A. Rehemanjiang, M. Allgaier, C. H. Joyner, S. Müller, M. Sieber, U. Kuhl, and H.-J.
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Stefan Rotter. Invariance property of wave scattering through disordered media. Proceed-
ings of the National Academy of Sciences, 111(50):17765–17770, Dec 2014.

[179] Z. Fu, T. Koch, T. M. Antonsen, E. Ott, and S. M. Anlage. Experimental study of quantum
graphs with simple microwave networks: Non-universal features. Acta Physica Polonica
A, 132(6):1655–1660, 2017.

[180] Michał Ławniczak and Leszek Sirko. Investigation of the diagonal elements of the
wigner’s reaction matrix for networks with violated time reversal invariance. Scientific
Reports, 9(1):5630, 2019.

[181] D. Agassi, H. A. Weidenmüller, and G. Mantzouranis. The statistical theory of nuclear
reactions for strongly overlapping resonances as a theory of transport phenomena. Physics
Reports, 22(3):145–179, 1975.

[182] Hans A Weidenmüller. Stochastic scattering theory random-matrix models for fluctuations
in microscopic and mesoscopic systems. In Chaos and Quantum Chaos, pages 121–166.
Springer Berlin Heidelberg, 1992.

[183] Tsampikos Kottos and Uzy Smilansky. Quantum chaos on graphs. Phys. Rev. Lett.,
79:4794–4797, Dec 1997.

[184] Tsampikos Kottos and Uzy Smilansky. Periodic orbit theory and spectral statistics for
quantum graphs. Annals of Physics, 274(1):76–124, 1999.

[185] S. Gnutzmann and U. Smilansky. Quantum graphs: Applications to quantum chaos and
universal spectral statistics. Advances in Physics, 55(5-6):527–625, 2006.

179



[186] Tsampikos Kottos and Uzy Smilansky. Chaotic scattering on graphs. Phys. Rev. Lett.,
85:968–971, Jul 2000.

[187] Tsampikos Kottos and Uzy Smilansky. Quantum graphs: a simple model for chaotic
scattering. Journal of Physics A: Mathematical and General, 36(12):3501–3524, Mar
2003.

[188] O. Hul, O. Tymoshchuk, S. Bauch, P. M. Koch, and L. Sirko. Experimental investigation
of wigner’s reaction matrix for irregular graphs with absorption. Journal of Physics a-
Mathematical and General, 38(49):10489–10496, 2005.
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[222] M. Büttiker, Y. Imry, and M. Ya. Azbel. Quantum oscillations in one-dimensional normal-
metal rings. Phys. Rev. A, 30:1982–1989, Oct 1984.

[223] D. Kowal, U. Sivan, O. Entin-Wohlman, and Y. Imry. Transmission through multiply-
connected wire systems. Physical Review B, 42(14):9009–9018, 1990.

[224] Supriyo Datta. Electronic transport in mesoscopic systems. Cambridge studies in semi-
conductor physics and microelectronic engineering ; 3. Cambridge University Press, Cam-
bridge ;, 1995.

[225] Y. Aharonov and D. Bohm. Significance of electromagnetic potentials in the quantum
theory. Physical Review, 115(3):485–491, 1959.

[226] R. A. Webb, S. Washburn, C. P. Umbach, and R. B. Laibowitz. Observation of h
e

aharonov-
bohm oscillations in normal-metal rings. Physical Review Letters, 54(25):2696–2699,
1985.

[227] J. Mannhart, H. Boschker, and P. Bredol. Non-unitary quantum electronics: Novel func-
tions from the edge of the quantum world. Nano Express, 2(1):014008, 2021.

[228] R. C. Jaklevic, John Lambe, A. H. Silver, and J. E. Mercereau. Quantum interference
effects in josephson tunneling. Physical Review Letters, 12(7):159–160, 1964.

[229] A. H. Silver and J. E. Zimmerman. Quantum states and transitions in weakly connected
superconducting rings. Physical Review, 157:317–341, 1967.

[230] M. Tinkham. Introduction to Superconductivity. McGraw-Hill, New York, 2nd edition,
1996.

182



[231] Daniel S. Fisher and Patrick A. Lee. Relation between conductivity and transmission
matrix. Physical Review B, 23(12):6851–6854, 1981.

[232] Daniel Waltner and Uzy Smilansky. Transmission through a noisy network. Journal of
Physics A: Mathematical and Theoretical, 47(35):355101, 2014.

[233] Vladimir A. Mandelshtam and Howard S. Taylor. Harmonic inversion of time signals and
its applications. The Journal of Chemical Physics, 107(17):6756–6769, 1997.

[234] Jan Wiersig and Jörg Main. Fractal weyl law for chaotic microcavities: Fresnel’s laws
imply multifractal scattering. Physical Review E, 77(3):036205, 2008.

[235] V. Grigoriev, S. Varault, G. Boudarham, B. Stout, J. Wenger, and N. Bonod. Singular anal-
ysis of fano resonances in plasmonic nanostructures. Physical Review A, 88(6):063805,
2013.

[236] Minjae Lee and Maciej Zworski. A fermi golden rule for quantum graphs. Journal of
Mathematical Physics, 57(9):092101, 2016.
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