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The statistical properties of wave chaotic systems of varying dimensionalities and realizations have been
studied extensively. These systems are commonly characterized by the statistics of the eigenmode spacings and
the statistics of the eigenfunctions. Here, we propose photonic crystal (PC) defect waveguide graphs as a physical
setting for chaotic graph studies. Photonic crystal waveguides possess a dispersion relation for the propagating
modes, which is engineerable. Graphs constructed by joining these waveguides possess junctions and bends
with distinct scattering properties. We present numerically determined statistical properties of an ensemble of
such PC graphs including both eigenfunction amplitude and eigenmode-spacing studies. Our proposed system
is compatible with silicon nanophotonic technology and opens chaotic graph studies to a new community of
researchers.
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I. INTRODUCTION

Wave-chaotic phenomena have been studied in various
complex scattering systems, ranging from one-dimensional
(1D) graphs [1–5], 2D billiards [6–12], to 3D enclosures
[13–18]. The statistical properties of many system quanti-
ties, such as the closed system eigenvalues and the open
system scattering or impedance matrices, exhibit universal
characteristics, which only depend on general symmetries
(e.g., time-reversal, symplectic) and the degree of system
loss. Random matrix theory (RMT) has enjoyed great suc-
cess in describing the energy level spacing statistics of large
nuclei [19,20]. The statistics of complex systems that show
time-reversal invariance (TRI) are described by the Gaus-
sian orthogonal ensemble (GOE) of random matrices, and
the statistics of systems showing broken time-reversal invari-
ance are described by the Gaussian unitary ensemble (GUE),
and the statistics of systems with TRI and antiunitary sym-
metry show Gaussian symplectic ensemble (GSE) statistics
[9,16,21]. It was later conjectured by Bohigas, Giannoni,
and Schmit that any system with chaotic dynamics in the
classical limit would also have semiclassical wave properties
whose statistics are governed by RMT associated with one
of these three ensembles [22]. In practice, identifying RMT
statistical properties in experimental data is difficult due to the
presence of nonuniversal features that obscure the universal
fluctuations. The random coupling model (RCM) has found
great success in characterizing the statistical properties of a
variety of experimental systems by removing the nonuniver-
sal effects induced by port coupling and short-orbit effects
[9,13,14,16,17,23–28].

Chaotic microwave graphs support complex scattering phe-
nomena despite their relatively simple structure [1–5,29]. We
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refer loosely to a chaotic graph as one in which there are
multiple paths of differing lengths from one node to another,
such that waves traveling along these paths interfere when
arriving at nodes. A microwave graph structure can be realized
with coaxial cables as graph bonds connected at T junctions.
The graph architecture allows for various useful circuit com-
ponents (such as variable phase shifters and attenuators, as
well as microwave circulators) to be incorporated into the
structure [3–5]. Recent studies show that nonuniversal statis-
tical features exist in chaotic graph systems, and these are
hypothesized to be caused by the nonzero reflection at the
graph vertices. These reflections create trapped modes that
impact the spectral statistics of the graph [4,30–32].

Here, we introduce an alternative type of chaotic graph
built with photonic crystal (PC) waveguides. Photonic crys-
tals find extensive use in semiconductor-based nanophotonic
technology, where they act as low-loss waveguides for visible
and infrared light [33]. The PC graph bonds are realized with
defect waveguides, and the nodes are formed by the waveg-
uide junctions. As TRI is preserved and spin-1/2 behavior
is absent, chaotic PC-graph systems are expected to fall into
the GOE universality class of RMT. With numerical simula-
tion tools, we conduct a series of statistical tests of chaotic
photonic crystal graph systems including both eigenvalue and
eigenfunction studies of closed graphs.

The unique properties of PC structures for quantum chaos
studies are as follows. First, the bond lengths of PC graphs can
be altered by means of lithographic fabrication [33]. Second,
the scattering properties of PC-graph nodes can be engineered
by changing the rod properties and geometry. Moreover,
PC defect waveguides and cavities are technologies that are
widely used in the field of integrated nanophotonics. To our
knowledge, PC waveguide graphs have not been previously
utilized for quantum graph studies.

The paper is organized as follows. In Sec. II, we intro-
duce the design details of the proposed PC graph structure
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FIG. 1. (a) The open-plate view of the photonic crystal lattice with an L-shaped defect waveguide region. (b) The side view of the PC
unit cell. A dielectric rod is sandwiched between two perfect electric conductor (PEC) surfaces. The quantities h0 and d0 are the height and
diameter of the rod. (c) The photonic band structure from a supercell defect waveguide simulation. The waveguide modes appear in the bulk
band-gap region (delineated by the blue dashed lines). (d) The E-field profile of one of the waveguide mode solutions [the red circle in (c)].
The black dashed line marks the center of the waveguide.

as well as its numerical implementation methods. We present
the chaotic closed-graph mode-spacing study in Sec. III, and
focus on the discussion of closed-graph eigenfunction studies
in Sec. IV. Different methods of conducting eigenfunction
statistical studies are also discussed. We summarize the paper
and discuss the future applications of the proposed PC graphs
in Sec. V.

II. PHOTONIC CRYSTAL GRAPH

A photonic crystal system consists of a regular lattice of
artificial atoms (or scatterers) whose spacing is comparable
to the operating wavelength [34,35]. The material properties
and the geometrical details of the atoms are carefully designed
in order to achieve a specific functionality. A PC system is
usually constructed as a 2D planar structure, which makes
it especially good for lithographic fabrication and photonics
applications. Importantly, a 2D PC can show a complete bulk
band gap in its electromagnetic excitation spectrum [34,35].
In PC-based devices, waveguides and cavities can be con-
structed, for example, by making air defects (removing a
certain number of the atoms) in the original lattice. This cre-
ates guided propagating modes in the bulk band gap, which
ensures that the modes are confined to the defect region. A
variety of defect waveguides can be realized by changing the
atom properties [34]. Recent photonic topological insulator
(PTI) studies present an alternative form of PC waveguide
using the interface between two different topological domains
[36–40]. Such PTI-based waveguides can also be utilized as
the bonds for realizing graphs. The interesting properties of
the topologically protected modes may further enhance the
quantum graph studies. Here, we will utilize the defect waveg-
uide modes to build chaotic graph structures. Note that these
PC defect waveguide graphs are distinctly different from pho-
tonic crystal slabs and billiards [12,41,42], and from coupled
resonant dielectric cylinders [3,43] studied previously.

The construction of the chaotic PC graph starts by building
a square lattice with identical dielectric rods [the blue lattice in
Fig. 1(a)]. The lattice constant is a0 = 36.8 mm. The dielec-
tric rod lattice is located between two metallic surfaces and
installed in a vacuum background. The defect waveguide is
created by simply removing one row or column of the dielec-
tric rods. The detailed shape of the dielectric rod is shown in
Fig. 1(b). The diameter of the dielectric rod is d0 = 0.36a0 =
13.2 mm and the height is h0 = 0.1a0 = 3.68 mm. Because
the PC lattice is thin in the vertical direction (z direction),
the waveguide modes considered here are polarized such that
Ez �= 0, Ex,y = 0, Hz = 0, and Hx,y �= 0 (TM with respect to
z), and these are the only modes that propagate for frequen-
cies f < 12 GHz, well above the band gap of interest here.
The relative permittivity and permeability of the dielectric
rods are εr = 11.56 and μr = 1. We realize the proposed PC
structure numerically with COMSOL MULTIPHYSICS software.
The presence of the waveguide mode is clearly demonstrated
by the supercell photonic band structure (PBS) simulation
[Fig. 1(c)]. The supercell simulation model consists of a single
column of PC lattice with Floquet periodic boundaries on
the two long sides. That is, fields on opposite long sides
differ by a phase factor θ = kxa0. Fields on the opposite short
sides are assigned totally absorbing boundary conditions. We
remove the center rod to create the defect waveguide region.
The PBS simulation is conducted by computing the system
eigenmodes while varying the wave number kx in the range
[−π/a0, π/a0]. As shown in Fig. 1(c), the defect waveguide
modes have emerged inside of the bulk band-gap region from
2.5 ∼ 3.6 GHz. The eigenfrequencies in the band-gap region
are essentially real, as the absorbing boundaries are well sep-
arated from the defect creating the waveguide.

We see from Fig. 1(c) that the waveguide modes in the
PC have a distinct dispersion relation (frequency versus kx)
that differs from that of a transmission line, ω = kxc. The
dispersion relation is parabolic at the lower band edge, as in
a metallic waveguide. However, the group velocity vanishes
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FIG. 2. (a) The simulated S parameters of the PC-graph right-angle junction (solid), as well as the S parameter from a 3.5 mm uniform
coaxial cable two-port right-angle connector (dashed), which serves as a reference. Inset: the schematics of the PC right-angle junction and the
two-port coaxial cable junction. (b) The simulated S parameters of the PC-graph T junction (solid) and the S parameters from a coaxial cable
three-port T connector (dashed). Inset: schematics of the PC T junction and the three-port coaxial cable junction. All PC-junction S parameters
are frequency averaged with a 500 MHz window to remove the effect of spurious reflections.

at the upper band edge, in contrast with that of a metallic
waveguide for which there is no upper band edge, rather just
a boundary where new propagating modes are possible [29].
In Fig. 1(d), the |Ez| profile of the entire simulation domain
shows clearly that the mode solution is indeed a guided wave
because its amplitude is highly localized in the defect region.

In addition to the propagation on the graph bonds, it is also
important to characterize the scattering properties of graph
nodes [44]. The PC graph structure is realized by connect-
ing multiple straight defect waveguides with both right-angle
and T-shaped junctions. We have characterized the scatter-
ing matrix of both types of junctions with COMSOL and CST

MICROWAVE STUDIO. For the right-angle junctions, nonzero
transmission is found only in the bulk band-gap region. As
shown in Fig. 2(a), the transmission |S21| and the reflection
|S11| for right-angle bends vary systematically as functions of
frequency. Thus, right-angle bends are vertices with a nontriv-
ial scattering matrix in a graph. The PC-graph T junction also
presents a complex scattering profile over the entire band-gap
region. As shown in Fig. 2(b), the magnitude of the reflection
(transmission) coefficient deviates systematically from 1/3
(2/3) as a function of frequency.

It should be noted that for the PC graph junctions the
sum of the squares of the displayed scattering coefficients is
close to unity. This implies that at the frequencies of interest
the photonic waveguides are operating in a single transverse
mode. For an ideal transmission line there is no reflection at
a bend. Also, at an ideal T junction the reflection coefficient
|S11| = | − 1/3|, and the transmission coefficient is |S12| =
|2/3|. The ideal scattering parameters apply to transmission
lines whose transverse dimensions are much smaller than an
axial wavelength (equivalently the frequency is well below
the first cutoff frequency of non-TEM modes.). The calcu-
lated scattering properties of an air-filled coaxial (ro = 2 mm,
ri = 0.86 mm) cable bend and T junction are shown as well
in Fig. 2, and, by contrast, they show minimal variation in the
frequency range of interest. The cutoff frequency of the T E11

mode in this cable is 33.34 GHz, well above the operating

frequency. Consequently, the scattering parameters are close
to the ideal values. Graphs constructed of metallic waveg-
uides, as opposed to transmission lines, can be expected to
have scattering parameters with characteristics similar to PC
graphs for frequencies between the first- and second-lowest
cutoff frequencies where single-mode operation is possible
[29]. These nontrivial junction scattering parameters are a
second unique feature of PC graphs, and can be expected
to influence the properties of the graph eigenmodes. We
note that alternative methods of making waveguide bends,
or connecting waveguides, can be applied, for example, by
removing or adding dielectric rods at the right-angle turn,
in order to tune the transmission property of the waveguide
joints [45]. One may adjust the degree of wave localization
of graph nodes by engineering the scattering properties of the
PC waveguide junctions. The engineering of the node reflec-
tion and transmission properties is beyond the scope of this
paper.

We simulate the closed PC graphs with the COMSOL

eigenvalue solver. The graph topology is that of a flattened
tetrahedral graph having 14 straight segments and 13 junc-
tions (including both three-way junctions and right-angle
junctions). The four exterior faces of the parallel-plate PC
structure [see Fig. 3(a)] are assigned totally absorbing bound-
ary conditions. The total length of the simulated graph is on
the scale of ∼9 m, which hosts about 80 eigenmodes (within
the bulk PC band gap) in a typical realization. We note that
one is able to decrease the mode spacing by enlarging the size
of the PC graph, and we choose the current system scale due
to limited computational power. We have created a statistical
ensemble of chaotic PC graphs by changing the length of the
bonds for a given graph topology.

A particular eigenmode solution of a graph [shown in
Fig. 3(a)] is shown in Fig. 3(b). It is clear that the graph
mode is localized to the defect waveguide region and displays
a longitudinal sinusoidal standing wave pattern. The mode
amplitude on a single bond is uniform but varies between
different bonds (shown by the color differences), where bonds
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FIG. 3. (a) Schematic diagram of the PC waveguide graph system. The graph bonds are shown as clear gray channels, and the rectangular
lattice is shown as a lattice of dielectric rods (black circles). (b) The simulated |Ez| profile of the graph system eigenmode at 2.8 GHz. (c) shows
the statistics of the normalized mode spacing from graph simulation (histogram). The theoretical predictions for the GOE and GUE systems
are shown in red and yellow curves. (d) shows the spectral rigidity �3(L) of the normalized spectrum from graph simulation (blue circles).
The theoretical predictions for the GOE, GUE, and the Poisson systems are shown in red, yellow, and black curves. (e) shows the statistics of
the consecutive mode-spacing ratio r (histogram) and the theoretical predictions for the GOE and GUE systems.

are defined as straight waveguide regions between three-way
junctions and right-angle bends.

III. EIGENMODE SPACING STATISTICAL ANALYSIS

In order to characterize the statistical properties of PC
defect waveguide graphs, we start by conducting the nearest-
neighbor mode-spacing analysis of the proposed PC graphs.
An ensemble of ten different graph realizations is studied
numerically, and we obtained ∼800 eigenfrequency values
from the ensemble. The graph topology ranges from 13 ∼ 16
straight segments and 11 ∼ 14 junctions. We note that this en-
semble of graphs is conducted with the eigenvalue simulation
in COMSOL. The simulation results are used for mode-spacing
studies here, as well as the eigenfunction statistics in Sec. IV.
The model is composed of lossless dielectric structures. How-
ever, the presence of radiating boundary conditions on the
perimeter of the finite-size structure shown in Fig. 3(a) will
give rise to a finite loss. The quality factors of the simulated

graph modes are on the order of 105–107, allowing for clear
identification of all eigenfrequencies. The graph topology is
kept fixed in the eigenfunction studies discussed below. Be-
cause the topology and the total length Ltot of each graph
realization are different, we normalized the system eigenmode
solutions using the following method. We considered ten dif-
ferent graphs. For each graph, we calculated eigenfrequencies
in the range 2.8–3.6 GHz and placed the eigenfrequencies in
ascending order. The eigenfrequencies were then converted to
eigenwave numbers (ki, i is the mode index) using the disper-
sion relation for the PC-waveguide PBS shown in Fig. 1(c).
This results in a tabulation of consecutive wave numbers.
We then fit the mode-number index to the wave number us-
ing a quadratic fitting function n(k) = c2k2 + c1k + c0, where
c0,1,2 are fitting parameters and n(k) is the total number of
modes below k [46]. For a typical graph we found c2 =
0.0054m2, c1 = 2.21m, and c0 = −55.28. The small value of
c2 indicates the n(k) is nearly linear in k as expected for
quasi-one-dimensional structures. We then evaluate the fitting
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functions at the calculated k values for each graph, creating
a list of normalized eigenvalues ei = n f it (ki ). The nearest-
neighbor spacings are finally computed as si = ei+1 − ei.

The distribution of the normalized nearest-neighbor mode-
spacing values of the entire ensemble is shown as the
histogram in Fig. 3(c). We have included the approximate the-
oretical predictions of the mode-spacing statistics for the GOE
and GUE systems in the figure. These theoretical predictions
are based on RMT [47–49], which are methods of under-
standing the universal statistical properties of wave-chaotic
systems [22,50]. As shown in Fig. 3(c), the distribution of the
normalized mode-spacing matches reasonably well with the
theoretical prediction for the GOE universality class. Good
agreement between the graph nearest-neighbor mode-spacing
statistics and the RMT theoretical prediction is also reported
in various works on graphs, although long-range statistical
quantities tend to show nonuniversal behavior due to the
trapped-mode issue mentioned above [4,30–32].

To test the long-range statistical properties of the eigen-
modes, we compute the spectral rigidity of the graph spectrum
�3(L), where L measures the length of a segment in the nor-
malized spectrum. Our procedure is as follows. The quantity
�3(e, L) representing the deviation of the spectral staircase
from a straight line, is evaluated for each value of L by

�3(e, L) = 1

L
mina,b

∫ e+L

e
[N (x) − ax − b]2dx, (1)

where N (e) = n(k) and e is chosen at random. We use 100
values of e for each graph. Then we average the values of
e over ten graph realizations [51]. The resulting values of
�3(e, L) are then plotted in Fig. 3(d) along with theoretical
predictions based on GOE, and GUE random matrices [32],
and the predictions of Poisson statistics [52] (appropriate for
classically integrable systems).

The �3(L) curve in Fig. 3(d) is linear in L for small values
of L. As shown, systems of all symmetries (Poisson, GOE,
GUE) show a linear-in-L dependence for L < 1 [52], and the
data is consistent with this trend. Chaotic systems are then
expected to show a logarithmic increase in �3(L) [52], and
this is evident in the data up to approximately L = 5. It is
also predicted that �3(L) will saturate due to the presence of
short orbits in any experimental realization of a wave-chaotic
system [52], and this is also seen in the data. Previous studies
find that the long-range statistics of quantum graphs usually
show some degree of agreement with the GOE prediction in
the range of roughly L ∈ [2, 5], along with deviations beyond
this range [1,30,31]. We observe in Fig. 3(d) a deviation from
the GOE RMT predictions, especially for larger L, similar to
cable graph studies in Ref. [1]. Because the operating band-
width of the proposed PC-graph system is relatively narrow
[Fig. 1(c)], we believe the long-range statistics may also be
affected by finite-size effects because the number of available
eigenmodes is bounded above and below by the edge of the
PC band gap. The solution is to increase the graph size sub-
stantially, but this is beyond our computational resources. In
summary, the �3(L) behavior is very similar to that observed
in wave-chaotic systems of higher dimensionality.

In addition to the mode-spacing distribution test, we note
that the method of consecutive mode-spacing ratios ri = si

si−1

TABLE I. The summarized consecutive mode-spacing ratios of
the photonic crystal graph (PC-graph) system, and the theoretical
predictions for the GOE, GUE, and GSE systems [53].

PC-Graph GOE GUE GSE

〈r〉 1.89 1.75 1.37 1.18
〈r̃〉 0.51 0.54 0.60 0.68

and r̃i = min(ri,
1
ri

) can also be adopted [53]. Here the ratio
statistic has the feature that it is a measure of the correla-
tion between adjacent spacings. One advantage of this type
of statistical study is that it does not require unfolding the
spectrum [53]. However, here we use the unfolded spectrum si

to compute the spacing ratios. For the PC graphs, the averaged
values of 〈r〉 = 1.89 and 〈r̃〉 = 0.51, are closer to the GOE
theoretical predictions than the GUE prediction (Table I). We
note that the high value of 〈r〉 in the PC graph is related to
the correlation between consecutive level-spacings. We fur-
ther present the distribution of mode-spacing ratios r of the
PC graphs and corresponding theoretical predictions of the
GOE and GUE systems in Fig. 3(e). The statistics of r match
reasonably well with the GOE prediction.

IV. EIGENFUNCTION ANALYSIS

We next study the statistics of the closed PC graph eigen-
functions. The eigenfunction statistics have been studied
experimentally in 2D chaotic systems by probing the electro-
magnetic (EM) standing wave field inside a microwave cavity
[6,54–58]. In those studies, the experimental probability am-
plitude distribution and two-point correlation function agree
well with the random plane wave conjecture. Here, the wave
properties of the entire closed PC graph (nodes and bonds)
can be faithfully simulated. We employ the same eigenvalue
simulation model used in the mode-spacing studies above.
For a graph system, the telegrapher’s equation is formally
equivalent to the 1D Schrödinger equation, where the wave
function ψ is represented by the wave voltage. For thin par-
allel plate waveguides, the wave voltage difference between
the top and bottom metallic plates is represented by the Ez

value at the middle cutting plane (at the height of z = h0/2).
Because the PC graph bonds have a finite width, the bond
eigenfunction will be evaluated along a 1D line at the center of
the waveguide [shown as the black dashed line in Fig. 1(d)].
We next examine two PC-graph eigenfunction characteriza-
tion methods.

Method I: Gridwise representation. For each eigenmode
of each graph realization, we will use the entire set of the
graph bond |Ez|2 vs. longitudinal position along the center line
of the waveguide data points to represent the eigenfunction.
The name “gridwise” comes from the granular nature of this
method, where the total number of eigenfunction data points
is inversely proportional to the computational grid size. We
study the wave-function statistics of the PC graph by comput-
ing the distribution of the normalized probability density v,
which is defined as the square of the eigenfunction values

v j = |ψ (r j )|2 = |Ez(r j )|2 · Ltot∑
j |Ez(r j )|2 · �Lj

, (2)
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FIG. 4. (a) Probability amplitude distribution of photonic crystal defect waveguide graph eigenmodes values (v) obtained from the gridwise
method (symbols connected by blue line). The theoretical prediction for systems with GOE statistics is in red. (b) shows the statistics of
the normalized bond amplitude value |a| (symbols connected by blue line) and the Gaussian distribution (red dashed). The inset shows the
distribution of the quantity |a|2 and the Porter-Thomas theoretical prediction for the GOE system.

where Ltot is the total length of the graph, r j and �Lj are the
location and the grid size of the j′th grid point, |Ez(r j )| is
the z-directed electric field magnitude at the j′th grid point,
and the summation in the denominator runs over every graph
grid point. In our simulation, the grid size �Lj ∼ 0.05λop

where λop = 10 cm is the operating wavelength at 3 GHz.
The distribution of the probability density values is computed
using the data from all simulated eigenmode solutions (48 to
be specific) from a single realization, and the results are shown
in Fig. 4(a), and discussed below.

Method II: Bond-value representation. For each graph re-
alization, the eigenfunction of a mode is represented by a
set of bond values Ez(bm), which is defined as the amplitude
of the standing-wave wave function on the graph bond bm.
The quantity m is the index of the bond and runs from 1–14.
The standing wave on the bond is made up of two counter
propagation waves ψ (x) = am eikx + a∗

m e−ikx, where am is the
wave-function amplitude at bond bm and x is the distance from
a vertex along the bond. We first conduct a sine fit of the
raw Ez(x) values on each bond, which yields the amplitude,
and the value of |am| is obtained as 1/2 of the amplitude
value. The normalization process follows the same method
as in Ref. [59], which ensures that

∑
m L(bm)|am|2 = Ltot

where L(bm) is the length of bond bm. Here the distribution
of the probability density values is computed over 14 × 78
data points, where 14 is the number of the bonds and 78 is the
number of eigenmode solutions from one graph configuration,
and the results for P(|a|) are shown in Fig. 4(b).

The random plane wave hypothesis underlying chaotic
eigenfunction treatments asserts that the eigenfunctions in a
2D or 3D cavity can be thought of as superpositions of plane
waves with random directions and random phases. Conse-
quently, the value of an eigenfunction at any point is a sum of
many random waves and is thus a zero mean Gaussian random
variable [47]. For systems with TRS the plane waves come
in counterpropagating pairs, and the wave function is real.
For systems with TRS broken, wave directions are completely
random, and the wave function is complex with independent
real and imaginary parts. For the PC graph the situation is
changed in that at any point in the graph there are only two

counterpropagating waves of equal amplitude. The amplitudes
of these waves, |am| will be different on the different bonds
leading to statistical variations.

We first discuss the eigenfunction statistics obtained using
the gridwise method in Fig. 4(a). For waves in a 2D or 3D cav-
ity the distribution of values of v based on the random plane
wave hypothesis is P(v) = (2πv)−1/2e−v/2. This is shown as a
solid red line in Fig. 4(a). We find that the simulated PC-graph
result matches to some degree the GOE prediction in that for
v > 1 the curve approaches a straight line on a log-linear plot,
and for v small there is an indication of square root singularity.
We notice that the mismatch between the graph data and
the GOE prediction exists at the small and large probability
density values, indicating an absence of both very small and
very large v values. One possibility is that this method tends to
overcount the appearance of medium-sized eigenfunction val-
ues (similar to the systematic errors experienced in Ref. [6]). It
may also indicate that the data simply does not match the GOE
prediction. In addition to the discrete eigenfunction imaging
method, we note that the eigenfunction statistics may also be
tested through resonance width distributions in transmission
measurements (Porter-Thomas statistics) [8,60].

Here we now use Method II to study the distribution of nor-
malized bond values, |a| that are displayed in Fig. 4(b). Also
plotted in Fig. 4(b) is a Gaussian distribution, which would be
characteristic of an eigenfunction of a GOE random matrix.
However, a clear deviation from Gaussian statistics is seen
for low amplitudes, similar to the deviation observed with
Method I. The inset to Fig. 4(b) shows a plot of P(|a|2) com-
pared to the Porter-Thomas distribution expected for GOE
systems. There is an agreement between the two except for
deviations between data and the model distribution at small
values of |a|2, similar to that seen in Fig. 4(a). Together, these
results suggest that the wave-function statistics of this simple
graph are not fully consistent with the random plane wave
hypothesis.

We next present the inverse participation ratio (IPR) com-
putation based on the bond-value method (Method II) in
Fig. 5. IPR is a measure of the degree of localization for a
wave function [59,61], and can be used to quantify the degree
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FIG. 5. (a) The inverse participation ratio (IPR) of graph eigenmodes obtained from the bond-value method, computed based on Method
IIa. The simulated |Ez| profile of the red (black) circled mode in (a) is shown in (c) [(d)]. (b) The inverse participation ratio (IPR) of graph
eigenmodes is computed based on Method IIb. The simulated |Ez| profile of the red (black) circled mode in (b) is shown in (e) [(f)].

of deviation of wave-function statistics from the random plane
wave hypothesis. Based on its IPR value, the eigenfunction
behavior varies between two limits, namely the maximum
ergodic limit where the wave function occupies each graph
bond with equal chance, and the maximum localization limit
where the eigenmode is confined to only one bond. RMT
predicts an IPR value by assuming Gaussian random fluctu-
ation of the eigenfunctions. Two different IPR definitions are
tested here. Method IIa follows the definition in Ref. [59],
where the IPR value for each graph mode is evaluated using
the formula IPRIIa = 〈|am|4〉. As shown in Fig. 5(a), the IPR
values of the photonic crystal graph modes vary erratically
but lie between the maximum ergodic limit (IPRIIa = 1) and
the RMT prediction limit (IPRIIa = 2) [59]. In the maximum
localization limit the IPRIIa = B, where B = 14 is the num-
ber of graph bonds, and the results are far from this limit.
Method IIb follows the definition in Ref. [61] where IPRIIb =∑

m |ãm|4/[
∑

m |ãm|2]2. The quantity ãm is the unnormalized
bond wave-function amplitude. Here, the graph IPR values
also vary erratically from mode to mode [Fig. 5(b)], but lie
well below the maximum localization limit (IPRIIb = 1) and
closer to the RMT prediction limit (IPRIIb = 1/B = 0.07)
[61].

The conclusions we draw from the above two methods
are not exactly the same. For Method IIa, two exemplary
eigenfunction profiles are shown in Figs. 5(c) and 5(d), which
correspond to the RMT and ergodic limits, respectively. One
may directly spot the different nature of these two modes
based on their eigenfunction patterns, which is a convenient
feature of the photonic crystal graph system. For Method IIb,
we present the eigenfunction profile of two neighboring graph
modes in Figs. 5(e) and 5(f). The eigenmode in Fig. 5(e)
has a larger value of IPRIIb and shows a strongly localized
distribution. That in Fig. 5(f) has a small value of IPRIIb and
is more evenly distributed over the bonds. The average value

of IPR over all the modes is more meaningful in this case,
and we have 〈IPRIIa〉 = 1.39 and 〈IPRIIb〉 = 0.10, which are
closer to the ergodic and RMT limits, respectively, than to the
localization limit. Previous work [1,59] on IPR on quantum
graphs shows the surprising results that larger graphs, with
the number of vertices >10, tend to show strong deviations
from RMT predictions, while smaller graphs show better
agreement. We note that by computing the IPRIIa on single
loops rather than the entire graph, one may identify the modes
trapped inside these loops from IPRIIa ∼ Bsl , where Bsl is the
total bond number of the single loop. This study is discussed
in the Appendix.

Taking into account the eigenfunction and IPR statistics, it
would appear that PC graphs are close to the random plane
wave condition for tetrahedral-like graphs, but clear system-
atic differences from RMT predictions remain. The complex
vertex scattering properties of right-angle bends and T junc-
tions, along with the ω(k) dispersion relation of PC defect
waveguide modes, suggest that PC defect graphs may be very
effective for future wave chaotic studies.

V. CONCLUSION

To conclude, we have designed and simulated an alter-
native chaotic graph system with photonic crystal defect
waveguides that show a dispersion relation that is different
from that utilized in coaxial cable microwave graphs. We
show that a series of statistical studies can be carried out
on an ensemble of closed graphs, including nearest-neighbor
spacing statistics and eigenfunction statistics studies. Because
both the graph bonds and nodes can be probed, one may
better analyze the nonuniversal features of chaotic graphs
using a PC system. It is possible to adjust the degree of
wave localization by engineering the scattering properties of
the PC waveguide junctions. This property of PC waveguides
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FIG. 6. (a) The inverse participation ratio (IPR) of the left side of the graph, computed based on Method IIa. The simulated |Ez| profile of
the circled modes in (a) is shown in (c) [(d)]. (b) The IPR of the right side of the graph is computed based on Method IIa. The solid and dashed
lines in (a) and (b) refer to the RMT and the maximum ergodic limits, respectively.

may facilitate further studies of localization phenomena in
graphs, for example, the emergence or suppression of trapped
modes.
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APPENDIX: SUBGRAPH IPR ANALYSIS

Here we give a brief discussion on applying the inverse
participation ratio (IPR) analysis to only a subregion of the
graph structure. Although the original definition of IPR is
for the entire graph, we may apply the same computation
in the context of subgraphs. Here we conduct subgraph IPR

studies with bonds that only belong to the left half (one single
loop) or the right half (two loops) of the PC graph shown in
Fig. 6. The left half-loop IPR is shown in Fig. 6(a), computed
based on Method IIa. The IPRs computed with Method IIb
are not shown here. The majority of the eigenmodes have IPRs
between the RMT (IPR = 2) and the maximum ergodic limits
(IPR = 1). In the left half-loop IPR test, we find three modes
that have IPR values that reach the maximum localization
limit (IPR = B, B = 7 for the left single loop). We show the
eigenfunction profile of the two circled modes in Figs. 6(c)
and 6(d). These two modes indeed show a high degree of
localization behavior, where the eigenfunction amplitude is
mainly concentrated on one short bond. Figure 6(b) shows the
IPR analysis of the right half graph. Here the modes with a
higher degree of localization do not stand out in this subgraph
IPR analysis. Thus we note that applying the IPR analysis to
single loops can bring out the modes with a higher degree of
localization.
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