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We treat the problem of a single electron interacting only with the lattice vibrations of
its host crystal with and without the application of a weak electric field. A Markovian
solution which applies in the limit of a large number of collisions is given to the exact
integro-differential equation for the electron’s density matrix. This equation was derived
earlier from the path-integral representation of Feynman et al. for a polaron. The solu-
tion, which corresponds to the observed phenomenological description, averages out
memory effects. The Einstein diffusion relation is found to hold closely, and realistic re-
sults are obtained for the temperature dependence of the mobility and for the
deformation-potential coupling constants of silicon and germanium.

I. INTRODUCTION

We treat the problem of a single electron in-
teracting only with the lattice vibrations of the
crystal under the influence of a weak electric field
E (linear mobility, effective-mass approximation,
nondegenerate semiconductor). The desire to place
electron transport in crystals on a first-principles
basis has existed for a long time.> For weak elec-
tric fields there is the Kubo formula,? with the
work, for example, by Baumann and Ranninger
summing ladder diagrams to obtain the standard
Boltzmann result.* The Boltzmann or rate-
equation approach is tied to a model of electron
collisions with phonons, with total energy con-
served. However, the collisions may be too fre-
quent for conservation. The question of which di-
agrams to retain is a difficult one.

Perhaps, one ought to recall that in a typical
semiconductor at room temperature the electron’s
thermal velocity is ~2 % 10’ cm/sec whereas with
E~100 V/m its drift velocity may be 2000
cm/sec. Accordingly, we are suggesting trying to
represent the strongly interacting electron in a dif-
ferent way, more closely related to the conduction
phenomena as they are observed, rather than using
perturbation schemes always actually based on a
noninteracting situation.

In a previous publication with Heinekamp® we
were influenced by the early experiments of
Haynes and Westphal,® where a temporal square-
wave distribution in the density of carriers injected
at one end of the sample diffuses as a well-defined
Gaussian, the Einstein diffusion relation
(D =kTu) being rather closely satisfied.” We
remarked that the electron-phonon collisions are
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averaged over in a way which we find reminiscent
of the averaging of individual collisions between
the colloid particle and impinging molecules in
studies of Brownian motion.® We showed that the
bivariate solutions in velocity U, coordinate T as
given for Brownian motion by Chandrasekhar can
be taken over into a quantum-mechanical formula-
tion by drawing on Wigner distribution functions.’

We note that in the experiments evidence of in-
dividual collisions with phonons is neither sought
nor observed. It thus is in harmony with the prin-
ciples of quantum mechanics to try to base the
problem on continuous distribution functions
without probing individual collisions with phonons.
After all, interaction takes place at all times with
all modes. From our numerical results, however,
we shall be able to infer that the “collisions” hap-
pen so often that the total energy is not well de-
fined between them. The present treatment, unlike
the eariier one,’ no longer limits the phonon wave
vectors to being small in any way except for their
actual confinement to a single Brillouin zone, and
is truly physical.

We start with the double path-integral expres-
sion for the density matrix p(R,R"’,#) for a single
electron developed by Feynman, Hellwarth, Id-
dings, and Platzman, in which the phonons appear
only implicitly as harmonic modes, homogeneous
and driven by the electron.!® It follows that dielec-
tric screening by the lattice is automatic and no ex-
plicit equivalent of renormalization procedures is
called for. However, to unravel the results we will
obtain in terms of those obtained with diagram-
matic procedures is apt to be difficult, and beyond
our aims here. Different approaches to calculating
polaron mobility using the Feynman formula and a
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Boltzmann and/or variational techniques'~!3 have
been carried out in the past. Our approach is sug-
gested by classical Brownian motion studies. Al-
though the previous calculations were generally for
polar coupling (the polaron), we are for the present
interested in comparing with the experiments of
Haynes and Westphal,® and the Bell Telephone
Labs Transistor Summer School,’ that is for
deformation-potential coupling to the acoustic
modes of silicon and germanium.

- Just as the Feynman path-integral formulation
of quantum mechanics can be reduced back to the
Schrodinger equation, so too, as we showed earlier,
can the double path-integral formula of Feynman,
Hellwarth, Iddings, and Platzman be reduced to an
integro-differential (id) equation, which we give
below as Eq. (4).!* We then convert this equation
to Wigner’s variables T and U, with the density
matrix becoming a Wigner function. It will be re-
called that the Wigner function resembles a classi-
cal distribution function as nearly as is possible for
a quantum-mechanical entity. We attempt a solu-
tion of this id equation with an ansatz which is
formally only a slight generalization of
Chandrasekhar’s solution in classical variables T
and U to Brownian motion. The program is to
find from this microscopic analysis values for the
parameters that characterize the ansatz, that is,
mobility and diffusion constants. These will be
functions of temperature and semiconductor prop-
erties, notably the deformation-potential coupling
constants.

The main approximation is that the ansatz is, as
is well known from Brownian motion studies, Mar-
kovian.? As we shall see, it splits naturally and
uniquely into short-time propagators for any as-
signed division of time into discrete intervals. This
feature allows us to substitute the ansatz into our
id equation. The id equation, being exact, is non-
Markovian. Nevertheless, we shall see that the an-
satz is a solution to Eq. (4), exact to order 1/n,
with n the number of “elapsed collisions.” [Our
interest here is in “steady-state,” or, perhaps, one
may say macroscopic experiments, where as for
Haynes and Westphal, # is typically of the order of
108 nis given by Bt’, where B, while defined as
an unknown parameter in the ansatz, will turn out
to be related to the electrical mobility p as
pn=e/(mp). One thus knows from experiment
that B~ '~5%107!3 sec. In the experiments, ¢,
the time between injection and observation, was of
the order of 10~* sec.]

Although we have a solution, this does not mean
that we have the steady-state solution to the equa-

tion of motion, but only the solution in a Markovi-
an subspace—the best Markovian solution. Since
it is a solution, attempts to find Markovian correc-
tions within the stated accuracy lead to no correc-
tions.

We base the significance of this paper on its
close relationship to observation. The ansatz corre-
sponds precisely to the situation of a diffusing
electron as first observed and measured by Haynes
and Westphal.

Further, the Einstein diffusion relation, which is
observed to hold closely in the experiments is a
hallmark of Markovian propagation. Inspection of
the actual calculation will show that the influence
on the “potential” (i.e., on the Feynman influence
function) of fluctuations in the velocity U owing to
interactions with phonons results from a very-
short-time interval before the time of observation t.
In typical semiconductors this interval is of order
1072B~! sec or less (~107! sec). (It is during
this short-time interval that conservation of virtual
energy does not hold.) This interval is too short
for the lattice to respond. Since it is the condition
of the lattice which constitutes the memory, we do
not foresee much recording (or screening) of the
fluctuations. Thus, we do not expect that the
behavior of the distribution function which is not
subject to direct observation will upset the observed
Markovian character of the propagation. A self-
consistent Markovian distribution becomes a
reasonable solution. We note that the stronger the
coupling, that is, the shorter 87!, the less impor-
tant memory effects become, and the more suitable
becomes the Markovian distribution function ap-
proach. Further discussion of these matters is best
left to when we can show the nature of any non-
Markovian modifications. One of the points of
this calculation is that in any case it provides a
representation or zero-order scheme to build on.
We see it as occupying roughly the same role as an
effective-field theory in the many-body problem.
Correlations (memory effects) are being averaged
out.

In as much as comparison with experiment is
possible without very elaborate calculation, that is,
without explicit attention to anisotropy, umklapp
and possible departure from deformation-potential
coupling, we have done so. We find in Sec. III
that the results are encouraging. They agree
surprisingly well with the general results of the
early experiments on silicon and germanium. We
feel that more detailed calculations on specific ma-
terials are best postponed until the limitations of
the method suggested here can be clarified by look-
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ing at non-Markovian modifications. In the next
section we show how the macroscopic nature of
the steady state simplified the mathematics to
where we can easily get to the solution.

II. CALCULATIONS

We start with the well-known classical problem
of Brownian motion on which we wish to model
our quantum-mechanical approach to electrical
conductivity. The Fokker-Planck equation describ-
ing Brownian motion has with a distribution func-

tion W’ the well-known form?®
1

-2

BW'(?',ﬁ',t sTo,Up

)
3 +49’"-vV,.w

=BV, (W'T")+qVEW', (la)

where g and 3 are here mechanical constants
measuring, respectively, velocity flucutations and
viscous friction. The normalized bivariate solution
W'(T',u";To,Ug) in velocity coordinates U ', Wy
and position coordinates ¥',T given by Chan-
drasekhar can be written as

W(T", 1T h, Uy) = (8mA32)~lexp[ — (a'Q"2+2h'Q P’ +b'P?) /2A]

with
Q'=u"—tpe?, (1c)
P'=7'4+8'/B—To—1o/B, (1d)
a'=Q2q/Bt", (le)
b'=(g/B)(1—e~ %), (1)
h'=—(2q/B)(1—e=P"), (1g)
A=a'b’'—h". (1h)

This solution corresponds to a & function initial
condition defining the variables ', d;. For
Fourier representation we shall associate with 6 "a
wave vector E’, with P’ a wave vector w'. It is
very convenient to go to dimensionless quantities,
47,4, %,k:

t=pt', (2a)
F= F”(q/ﬁ3)“ 172 , (2b)
i=d'(g/B)~'"?, (2¢)
w=w'(g/B)?, | 2d)
k=K'(¢g/B)". (2e)

Here time is measured in units of the “relaxation
time” B! and lengths in terms of the Einstein dif-
fusion length (¢/8°)'/>=(D /B)"/?, where D is the
diffusion constant.

In terms of these dimensionless quantities

W(f:ﬁ,t;?O’ﬁO)_:'_W,(?’,ﬁlst,;?é’ﬁb)

has a simple Fourier representation. We have

(1b)
[
W(E G, T )= [ [ dkdiwe *C
xe! ¥ P WEK, W0,

(3a)
W(K,%,0)=(8/¢)*(2m) %", (3b)
F=—-(bk2—2hK-W +aw?) , (3¢)
a=2t, (3d)
b=1—e"%, (3e)
h=—21—e"") . (3f)

We may note that as — oo and starting conditions
are damped out one finds that W becomes the sim-
ple product of a spatial Einstein diffusion with dif-
fusion constant D =q /3% and a Maxwell velocity
distribution providing (¢ /kT)=(f3/m), m mass of
diffusion particle,® i.e.,

W — exp[ —BHT' —T)* /4qt']
Xexp(—Bu?/2q) . (3g)

As mentioned in the Introduction, Feynman
et al. carry out a calculation in which they elim-
inate from the problem the phonon system. The
latter is assumed to be in thermal equilibrium at
time ¢t =0 when the electron is introduced. No
further information about the phonons becomes
evident beyond this initial time. (With only one
electron in the crystal, we, presumably, need not be
concerned with the fact that the system is closed,
and no heat dissipation to surroundings is provided
for.) Feynman et al. replace the ordered operators
which appear in their expression, thereby obtaining
the density matrix p in the form of a double path-
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integral. This new form is certainly easier to work “opened” at time 5,14 i.e., the integrals over the
with. We shall find convenient the following ab- coordinates R,R; in the path integral which yields
breviations: p(t,0) have not been taken. Thus
p(1,0)=p(B,R",1;R,,R}) p(t;00= [ [ plt;5;0)d°Rd’R; . (4b)
4
Ll (4a) The work of Feynman et al. gives explicit expres-
p(1,5,0)=p(R,R",t;R,,R;,s;R,Ry) . sion for p opened everywhere, that is for the kernel
of the path-integral, which, therefore, is defined.
Here R,R ’;ﬁs,ﬁ; ,ﬁo,ﬁé are the coordinate param- The integro-differential equation for p derived ear-
eters at times t,5,0, respectively. p(z;s;0) is p(z;0) lier reads™!*:

ap(l_i,ﬁ ’,t;ﬁo,ﬁb)
at

+#/(2mi)(Vi —Va)p(R,R",1;R,, Rp)

—1 © ©
=—J | Swiplt;s;00d°Ra*R; — [ [7 Sypp(t;5,0d°Rd’R; . (4c)

S1,S, are, respectively,

2 t (2)¢ Ok
S,S,=— | ds Ck | ? |sin—(t —s),Excos—(t —
b= 55 Jy s S| i |? |sin=p-t —s),Excos— (1 —s) (4d)
and
-K«R-K)) iK«R'-K) iK«R-R!))_ iK«K'-R’
Viy=e s —e' Sye' ’);el ( s) (4e)

Ex =20k + 1, i is the thermal number of phonons in longitudinal mode K, and wg is the mode frequency.
The sums over K and the integral over s in S1,S, extend to all relevant quantities on their right.

As stated in the Introduction we are proposing to use Wigner functions and Wigner variables T and U in
our treatment. We define p,,(T,U,#; T, Ug) and these variables in Eq. (5) below. We recall that the Wigner
scheme is close to classical statistics in that integrating p,, (7, d) over u will give the true quantum-
mechanical spatial distribution,”!” the procedure we follow. Likewise, integrating p,,(T,U) over ¥ would
give the true momentum distribution.

The Wigner variables are defined by first letting

r=(R+R")/2, (5a)
y=@R-R"). (5b)
We then have
PulT,0,t5T0,B)=(m /h)* [ [ exp[ —im /AT~ o))
XP(F+Y/2,T—Y /2,t;To+Fo/2,To—Yo/2)dy d’y, . (5¢)

If we need to close at an intermediate time s <¢, it can be done in the Wigner representation (using u, rather
than y). We insert the operator

d’u . (5d)

©  —im(T, AT =)

0, =8y '~V )=(m/h) [ e
This gives, omitting the T arguments, for p expressed in variables ¥,
S P50 Vod = [ p(3,510,p(Ts, Yol pdy’ (5¢)

= [ pl¥,0p(T,Tod, . 5
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With these definitions we change Eqs. (4) to Wigner variables by transforming both sides of Eq. (4c). The

change from ¥ to © of the factor e’ X (X =R

(m/hy [ e

iK(7P-7,) i[K-7/2-mT-F/Ei-K-7,/2]
e P

on the right of Eq. (4¢c), for example, involves the integral

(F+Y/2,7—5/2)d% . (6a)

The factor expiK-¥ /2 thereby has the effect of attaching a recoil of —hK/2m to @ in p,(F,@). Similar
recoils attach to U at intermediate times s. For example, using Eq. (5d),

—ik-¥,2 .,

I SAAL P(VoYolde= [ pl§,¥,)e

imT (Y. V") —iRF. /2,
ST e p(¥ ', Yo)d y,d u,dy’

= f _: (¥, 1, —#K /2m)p(,, To)d uy . (6b)

In this sense instantaneous electron-phonon col-
lisions are being represented on the right-hand side
of Eq. (4¢).

As explained in the Introduction we are propos-
ing to use a slightly generalized form of Eq. (1b) as
a trial solution for our quantum-mechanical prob-
lem of an electron interacting with lattice vibra-
tions, by altering Egs. (3d) and (3f) to read

a=ay2t, (7a)
h=—2hy(1—e™"), (7b)

all other features of Egs. (3) remaining the same.
As we shall see ag,h which are dimensionless,
will, for our materials, not depart much from uni-
ty. We shall see that their actual values are of
physical significance. It might be thought that
Egs. (3) are encumbered with complications need-
less for our purposes. We show in Appendix A,
then, in fact, they are necessary either for ex-
pediency or for physical consistency.

Also, as noted, the actual problem is not Marko-
vian, the deformable lattice acts as a memory stor-
ing the effects of the motion (path) of the electron.
That this is the case is evident from the form of
Eq. (4c), where p(2,0) is obtained in terms of
p(1,5,0), i.e., p opened at time s, and, similarly, one
can derive an equation for p opened at one place in
terms of p opened at two places, and so on. This
situation is very similar to the electron-gas problem
as discussed, for example, in the well-known paper
of Martin and Schwinger.!® This memory effect is
averaged out in the Brownian motion problem
where the random medium is assumed unaffected
by the particle. As already stated, our Markovian
ansatz contains the corresponding limitation.

We now draw attention to the factor
exp( —aw?/2) or exp(—w?t) in F of Eq. (3). This
is the Fourier representation of exp— (¥ — 1) /4,
simple diffusion in dimensionless variables. Recal-
ling from the Introduction that we want ¢ ~ 10° we

see that w, confined to be of the order of ¢ ~172,
will be small. At the same time we are only in-
terested in the electron’s mobility, i.e., its spatial
distribution, which means we finally integrate our
distribution function over u.

This gives k=—W, so that we may restrict our-
selves to small values of k throughout the calcula-
tion. [We note from Eq. (3b) that the wave vector
associated with U is (k+W). In the usual bare
electron-phonon representation, barring umklapp,
quasimomentum is conserved in collisions, and the
electron wave vector changes by +K, the phonon
wave vector. In the Wigner variable scheme
(k + W) is conserved, the recoil attaching itself to
U, as we have seen in connection with Egs. (6).]
These are the underlying reasons that W and Kk will
be vanishingly small, and one can find a Markovi-
an solution accurate to within factors of order 1/:.

The small modification in Egs. (7a) and (7b) is
the only change we need make to Egs. (3) to define
the trial ansatz p,, (T,U,#; T, Up) and its Fourier
transform P, ( K, w,1).

In Wigner variables the left-hand side of Eq. (4¢)
is just® 3py,q /31 + -V ,pue. Substitution of Egs.
(3a)—(3d) and Egs. (7a) and (7b) for p,,, yields for
the left-hand side of Eq. (4c) (see Appendix B):

i)};—':a—i—ﬁ-ﬁrpwa: f Ak dPwe ¥ QpivF
% Pua(K,W,0q(K, W) ,

(8a)

q(K,%)=[K-W +wX—ag+2hy)] . (8b)

The right-hand side of Eq. (4c) is first trans-
formed to Wigner variables, as shown for the first
term by Egs. (6a) and (6b). The ansatz of Egs. (1)
has the properties of a Markovian propagator as
can be best seen from its Fourier tranform.
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Pua(t,5,0) is the product of p,,(t,s) and p,,(s,0).
Since Fourier representations for p,,(%,5),0,,(s,0)
are available from Egs. (3) it is a straightforward
matter to integrate over Ty and U, now replacing
R and R at intermediate time s, giving the usual
conservation of wave vectors there. In Appendix B
we exhibit this calculation. We now expand the
right side in a Taylor series in K, W to second or-
der. No constants appear in the expansion, and re-
flection symmetry in phonon wave-vector space el-
iminates odd-order terms. From what we have
said about the confinement of W and K to values
~1/V't, higher-order even terms in the Taylor ex-
pansion can be expected to lead to. corrections in
pw of at most order ¢ ~!. Straightforward but
somewhat tedious calculation now yields a result
having exactly the same form as the right-hand
side of Eq. (8a). However, in the resulting qua-
dratic form g in k?, K W,w?, the coefficient of k?
does not formally vanish. Since this result and the
right-hand side of Eq. (8a) are supposed to
represent the same function, i.e., have equal
Fourier components, we equate coefficients in the
two forms g. This yields Egs. (9a)—(9c¢):

ho=(14a4)/2, (9a)
—LGexp(—T)
Fo= {Gy[1—exp(—D)1} ’ ©b)
=(2L /B)[2a,G,(T)+LG,], (9c¢)
G =(S;sinA —S,cosA)K?/3)exp(—R) , (9d)
=(S cosA+S,sinA)(K?/3)exp(—R) , (9e)
R=aoK[exp(—T)—1+T]
~agY?/2, (99)
A=LK[1—exp(—T)]~LKY , 9g)
L =#B/(2kpT,), Y=KT, T=t—s, (9h)

where T, is temperature, and Y rather than T is
the natural variable of integration.

Before going on to discuss numerical results, we
take up the seemingly arbitrary choice of the func-
tions a(2),b (2),h (¢). If we had left a(2),b(2),h(t)
as undetermined functions, the three algebraic
equations leading to (9a) —(9¢) would be replaced
by three coupled integro-differential equations with
independent variable ¢, closely related to Volterra’s
equation of the second type. Like that equation
they would have unique solutions'’—the same as
we took from the Brownian motion problem.

III. RESULTS

One can show that the inclusion of an electric
field 1 E in Eq. (4¢c) will shift ¥ by exactly
—(eEt'/mp) (see Appendix C). The spatial distri-
bution of p,, upon integrating Eq. (1) over u, will
thus assume the form

— BT’ —Ty—eEt' /mB)>
(4qt'ao)

exp

As we discuss in the next paragraph, ultimately we
must set g/ equal to kg T, /m, kp being
Boltzmann’s constant. It follows that the Einstein
diffusion relation,

D=qay/B*=pkpT,/e=kpT,/(mB),

where u is the mobility, is satisfied providing
a,=1. Somewhat closer examination of Eq. (9b)
shows that a, will generally be close to unity, and
computer calculations yield a self-consistent solu-
tion [ag also appears on the right in Eq. (9)] of
1.02 for m =m, Ge electrons, and 1.03 for heavy-
mass silicon electrons, the latter in exact agreement
with measurement.'!

Equation (9c¢) is insufficient to determine both ¢
and B. We believe that our assumption that a
steady-state evolution for the density matrix is oc-
curing brings about the necessity of an ad hoc in-
troduction of the constant lattice temperature, al-
ready contained in the parameters ¢ [see Eq. (4)].
To avoid this procedure one would have to study
the actual relaxation process of an electron to ther-
mal equilibrium. Integration of Eq. (1) over T
yields the Maxwell velocity distribution for elec-
trons, or alternatively, the fluctuation-dissipation
theorem, providing we set g/ equal to kg T, /m.
The latter theorem is an exact result for small elec-
tric fields'® which limits our treatment to the
small-E (or linear) problem. (Possible extension to
hot electrons suggests itself here, but this leads to
many questions which we cannot answer at this
point.) We can now use Eq. (9¢c) to determine the
temperature dependence for 3, and, using experi-
mental room-temperature mobilities,! find the de-
formation potentials E as a measure of electron-
phonon coupling.?® Performing our Y and K in-
tegrations on a computer, we find that the values
of B follow a Tp3 /2 dependence to within 5% be-
tween 150 and 450 K for both semiconductors, and
virtually no dependence of this result on m. We
find values of 1.91 (m /m,)~3/* eV for Eg, and
2.32 (m/m,)~%* eV for Eg;, m, being the free-
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electron mass, assuming isotropic masses.

A ubiquitous factor K’exp(—K?2L?/2) appears
upon integrating over Y if one uses the closely ap-
proximate forms for R and A in Egs. (9). [See Ap-
pendix D. As we show there this factor as in-
tegrand in Eq. (9¢) yields a Tp3 /2 dependence for 8
when the B zone is extended to infinity.] As a re-
sult the greatest contributions to integrals defining
G, and G, come at K~V'3/L and drop off rapid-
ly thereafter, or at about 100 for Si and 300 for Ge
at room temperature, and in the Y integrals at
Y =KT~1. Remembering that T is measured in
units of (1/3), we have an interaction time T
which is only a small fraction of the relaxation
time. We are not at all dealing with semiclassical
collisions, and are far from energy conservation
[recoil energy (hK)?/2m ~0.2 eV]. In viewing the
experimental Tp'l'“, Tp'z‘6 temperature variations
for germanium and silicon electrons, respectively,
we note that at room temperature V3 /L for Ge
extends over - of the Brillouin zone for m =1
whereas V3 /L for Si extends over <, both ratios
increasing as m ~!/? for smaller masses Thus, the
complicated energy-band topology, umklapp, and
any departure from deformation-potential coupling
with increasing K may become very serious only
for silicon. We believe it will be worthwhile and
possible to extend this calculation to include these
complications, as well as to use the method in oth-
er transport calculations.
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APPENDIX A: PHYSICAL CONSISTENCY
OF TRIAL SOLUTION

We have pointed out that a solution to the equa-
tion of motion which satisfies initial and boundary
conditions must be unique, and commented on the
unique character of the functions a (¢),b (¢),h (¢).
The physical grouping of variables as (i) Ge? and
(ii) T4 /B helps to give the solution a simple
form. By virtue of the choice (i), i.e., the oc-
currence of the difference e®(i —ge ~7), we get
ready thermalizing of initial velocity transients,
and by virtue of (ii) we are assured of correct
bivariate boundary conditions as # — oo. Finally,
for internal physical consistency, we check the con-
tinuity equation.

3p®R,R",1)/3t+V-S=0, (A1)
S =#/(2im)[ Vgp(R,R",1)
—VrpRR'D] | g_5 - (A2

In Wigner variables Egs. (A1) and (A2) assume the
physically satisfying form®:

1% wa(?,ﬁ,t)d3u+ fﬁ'ﬁ,pw(?,fi,t)d:’u =0.

(A3)

The left-hand side of Eq. (4c) in Wigner variables,
i.e., the left-hand side of Eq. (8a), averaged over U
must vanish. We have already noted that integrat-
ing over U requires that ?exptz —w. We then
see from Eq. (8b) that Eq. (A3) is satisfied provid-
ing

ao+1-—2h0=0 . (A4)

This gives a physical meaning to Eq. (9a), which is
the same as Eq. (A4).

APPENDIX B: DERIVATION

Some details of the calculations in Sec. II are given below. The right-hand side of Eq. (8b) is obtained by

observing in the notation of Eq. (3¢) that

—>

UV, (T, 870, 80) =T [ [ dkd’we® el ¥ Pp(K,%,0).

Further, focusing on the right-hand side above,

[ [k dwe® eV Pivip, = [ [ d%dwe®Cei¥ F(F el T) (K, W,0e ¥}
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Straightforward differentiation under the integral sign f d*k d*w yields dp,, /3(Bt). Dropping transients,

i.e., terms multiplied by extra factors e 7", we arrive at Egs. (8).
The term on the right-hand side of Eq. (4¢c), T", is given by

T =—-2/(#B) f ds Y, |CK| sin(wg /BNt —s)Tig

TIK'—ffelK(R R) od’R,d°R!
Transforming to variables T and ¥, Egs. (5a) and (5b), we get

iR (77, iR /2(Y=7,)
Tix= f fe stad rsd’ys

since the relevant Jacobian is 1. Using Eqgs. (5¢)—(5f) to transform to Wigner variables, we have

T1K=(m/h)3f fe—i(mm(y'u—yo'uo)Tin3yd3,VO

= [ [T o(mu K /2m s E, W, — K /2m)p(F,, Uy T, UohdPred s,

Using the Fourier representation, Egs. (3a) and (3b) give
Tix=B/9fem) 2 [ [ [ [ [ [ d*ud’rd*k"d*wd*k'dw’

X expi[ KA(F—T,)+ W '*(F—T, + 8 — 1)
+W(F, + 8y —Ty—o)+k -
+K (U, —Toe )]

X expl — 3 (bsk> =2k K "W '+ a0
+byok "2 —2hgok" W +agw?)]

where
ao=a=2agt, ay=2ay(t—s), bo=b, by=(1—e~2"~9) etc.,

Cy e =#K/(2m)(1—e—1—9)) .

Integration on r; leads to

and on ug to
Ke "9 4§ '=%+k"”
or
kK=k'4+%'—w=K'-K.
We get, leaving out transient terms in %, and r,
Tix=[B*/(2mg)]® f f Ak dw !V T+ T T K+ )Ty
Xexp-%[a,owz—Zh,of'Vv +b,ok?lexp[—(R +R () /2],
R=b,K*f*+b,K>+2h,K*+a,K?,
=2K-Kfbyoe ==+ 2K-Kbys — 2h oKW f +2h, K-K —2h,, WK ,
f="=9_1),
Cis =#K/2m)(1—e~¢=9)
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The other seven terms on the right-hand side of
Eq. (4c) are evaluated in the same way, and, then,
as stated in Sec. 11, a systematic Taylor expansion
of the result in k and % is carried out.

APPENDIX C: INFLUENCE OF
THE ELECTRIC FIELD
We discuss the influence of the electric field. A
serm (i#i)~'eE-(R—R’} on the left-hand side of
Eq. (4c) becomes in Wxgner variables
(eE/m)" 57J DOua- ‘th an electric field we change

the exponentiais e KRQ W F

[exp{iK "-[T'eP —(eE/mB)eP —1)])
Xexp{iw [T’ +U’/B—(eE/mB)t T,

all else remaining unchanged. The differentiation
9pyy, /3t" now brings down an extra term
(ieE/m): (k expBt’'+w) to cancel the effect of

{e E/ m): u P

APPENDIX D: T,;” DEPENDENCE
FOR B

In this appendix we indicate how the TI,3 /2
dependence for 3 comes about. The most impor-
tant and a typical contribution to the right-hand
side of Eq. (9¢) is

(
I= [2 2408, (sinA)(K2/3)[exp(—R)]T

“+15

f ) ‘"“Kﬁg,{z,gdx )

where we have | Cg | 2 proportionai to K’
{deformation-potential coupling), and have convert-
ed all vectors X' to dimensionless form, including
those in X'%dK’, the density of states. We have

= | D°° cospK T (sinA)T exp(—R)dT

with p given by sV'3/q, s the speed of the acoustic
waves. We write

Ti~K™? fo‘”sinLKY eV’ 2y gy
=L /KV'7/2e —L%K*2

We note that £x ~(LpK)~! and that the peak in
the K integrand occurs at only a fraction of the
Brillouin-zone radius so that we need
fwKBe -—L2K2/2dK =2/L4 .
0

If we now set I equal to unity, Eq. (9¢c), we have
indeed B T,"%.
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