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Asymmetric transmission through a classical analogue of the Aharonov-Bohm ring
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It has been predicted that new physics and technology are enabled for quantum systems that suffer from partial
decoherence, in the intermediate range between coherent quantum evolution and incoherent classical physics. We
explore the asymmetric transmission through a classical analogue of the Aharonov-Bohm (AB) mesoscopic ring
that supports a 3:1 asymmetry in transmission times, augmented with lossy features that act preferentially on the
longer-lingering waves. Such a device is realized as a linear microwave graph utilizing a gyrator to create the 3:1
transmission time delay asymmetry, along with both homogeneous and localized losses, to produce an imbalance
in wave transmission through the device. We demonstrate asymmetric transmission through the microwave-ring
graph as a function of loss in both simulation and experiment, and in both the frequency- and time-domain. The
microwave ring-graph results are compared to a numerical simulation representative of a class of recent models
proposing dephasing-induced transport asymmetry in few-channel quantum systems, and parallels are noted.
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I. INTRODUCTION

There is a deep disparity between the quantum and clas-
sical perspectives on physical laws. Our experience with the
classical world is dominated by equations of motion that
include loss, dissipation, and friction, explicitly breaking
time-reversal invariance, and describing phenomena involving
large numbers of interacting particles, creating a perception
of the “arrow of time” [1,2]. At the microscopic scale we
know that the laws of quantum mechanics are time-reversal
invariant, and isolated systems are described by unitary time
evolution of the quantum state. This poses the question: how
do the laws of quantum mechanics segue into those of classi-
cal mechanics as one admits stronger interactions with other
degrees of freedom? Such questions have been addressed in
the fields of fundamental quantum mechanics [3–8], quantum
chaos [9], quantum statistical mechanics [1] and thermody-
namics [10], and mesoscopic physics [11,12], among others.

A related question is whether or not there is new physics
to explore in the regime between pure quantum evolution
and classical physics? Can systems described by a mixture
of quantum and classical properties show qualitatively new
phenomena that are not anticipated by the properties of sys-
tems in either limit? More specifically, can a finite degree of
quantum “dephasing” be harnessed to perform a new task that
is not possible in the fully quantum or fully classical limits?
The answers to these questions are relevant to a wide vari-
ety of phenomena and applications. For example, coupling a
quantum system to additional degrees of freedom can be used
for quantum state preparation [13], as a resource for universal
quantum computation [14], to simulate open quantum systems
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[15–17], to enable environment-assisted quantum transport
(ENAQT) [18–22], to accomplish fast reset of qubits [23], and
for advanced quantum sensing [24]. However, it is interesting
to see if other qualitatively new phenomena can be discovered
and exploited in this regime.

There has been long-sustained interest in preparing mate-
rials and devices that explicitly break time-reversal invariance
(TRI) to create nonreciprocal transport for electrons between
equivalent contacts [11,12], for example. Many proposals
to create nonreciprocal transport are inspired by Maxwell
demons [25,26], thermally driven ratchets [27], noncen-
trosymmetric materials [28], and efforts to violate detailed
balance in thermal radiation [29,30]. Systems with nonlinear-
ity have been utilized to demonstrate asymmetric transport
[31,32]. One approach to selectively transferring electrons
is to create wave-function interferometers that preferentially
pass matter waves moving in one direction but not the other,
and such devices require breaking of time-reversal invari-
ance [33,34]. In particular, the Aharonov-Bohm matter-wave
interferometer, augmented with decoherence to induce nonre-
ciprocity [35], has been proposed as one possible setting for
this type of device.

The Aharonov–Bohm (AB) effect is a quantum mechani-
cal phenomenon in which an electrically charged particle of
charge q is affected by an electromagnetic potential (through
the vector potential �A) in the absence of a magnetic or electric
field at the location of the particle [36]. This effect gives rise
to a type of “action at a distance” in which a particle can be
affected by electromagnetic fields even if it does not experi-
ence them directly. The traditional setting for the AB effect
is a finite region of space containing nonzero magnetic flux �

surrounded by a field-free region. A beam of charged particles
is sent through the field-free region in a ring geometry that
fully incorporates the region of finite flux within the ring.
The charges show interferometric properties arising from a
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FIG. 1. Schematic layout of an Aharonov–Bohm ring and a cor-
responding classical microwave graph analogue. Panel (a) shows the
device layout of a two-port Aharonov–Bohm ring made of clean
metal. The penetrating magnetic flux � creates nonreciprocal trans-
mission times for electron wave packets transiting the ring. The red
dot marks an inelastic scattering center. Panel (b) shows the classical
analogue microwave graph realization. A microwave gyrator (see
Fig. 9) creates the π phase difference for waves traveling in opposite
directions on the lower bond. The variable attenuators of strength
�A/2 act as a localized loss center. Panel (a) after Ref. [38].

quantum phase shift e
iq
h̄

∫ �A·d �� upon traversing each branch of
the ring. Upon recombination, parts of the wave packet that
pass through different branches of the ring create interference
that depends on �/�0, where �0 = h/q is the flux quantum
for the charges, and h is Planck’s constant.

In Refs. [33,34,37,38], the authors consider an Aharonov-
Bohm (AB) ring in a mesoscopic conducting sample that
suffers from a certain degree of “dephasing” in electron
transport. Specifically, they consider a single-channel, two-
terminal AB ring enclosing a DC magnetic flux (as described
above). Figure 1(a) shows the schematic of the proposed
mesoscopic Aharonov–Bohm ring. This device has two key
features that are proposed to bring about new behavior. First,
this device has nonreciprocal transmission times as a result of
the direction-dependent phase shift that the electron picks up
as it traverses the ring. An electron wave packet propagating
through the device from left to right, say, will split into two
parts at the left combiner. Along each of these paths, the
respective wave will accumulate a phase. For the waves to
constructively recombine at the other end, they must be in
phase with each other, hence the net phase difference accumu-
lated must be 2πn, n ∈ Z. The phase difference accumulated
as the electron traverses the ring is given by [34] �φ =
k�l ± 2π �

�0
where �l is the difference in length between

the two arms and k is the wave number of the electron. In
Ref. [34], the author considers the case where k�l = π

2 and
2π �

�0
= π

2 , leading to �φ1→2 = 0 and �φ2→1 = π . Thus,
electrons traveling from port 1 to port 2 would suffer no
relative phase shift and immediately exit the ring. However,

electrons traveling from port 2 to port 1 will suffer destructive
interference, due to the π phase difference, causing the wave
packet to reflect back around the ring. Hence an electron
starting at port 2 will need to traverse the ring three times to
accumulate a net phase difference of 2πn, n ∈ Z, allowing it
to coherently recombine and exit the ring. This consequently
leads to a nonreciprocal 3-to-1 ratio of transmission times, as
further discussed in Ref. [38].

The second key feature arises when a finite degree of
quantum dephasing is added in the form of a defect or “deep
trap” in the semiconducting ring [12,35,37], denoted as the
red dot in Fig. 1(a). This defect works as a “dephasing site”
by taking a passing electron wave packet out of the conduction
band with some probability. When an electron is captured,
the state is projected onto an eigenstate of the trap and it
loses all memory of its prior state, including its phase and
the direction that it was traveling. The electron is eventually
released back into the conduction band with equal probability
of traveling to the left or right. A more detailed description of
this process is given in Ref. [12]. It is argued in Refs. [12,38]
that this dephasing site, combined with the engineered 3-to-1
transmission time ratio, leads to a net asymmetry in transmis-
sion probability. The argument is that since electrons traveling
from port 2 to port 1 need to make three times as many passes
as electrons traveling from port 1 to port 2, they then have
three times as many chances of interacting with the dephasing
site. Hence, electrons traveling in that direction have a lower
chance of being transmitted. Supporting simulation results are
discussed in Ref. [12] where they show that not only is this
asymmetry in transmission probability present, but it has a
nonmonotonic dependence on the modelled dephasing rate.

In addition to the explicit proposals made in
Refs. [33,37,38], a few other works have hinted at this
asymmetric transmission probability effect. The work of
Entin-Wohlman et al. essentially considers a quantum ring
subjected to an external magnetic field and suffering partial
dephasing in electron transport around the graph. They
calculate that this results in a loss of detailed balance in
equilibrium, and the creation of a net current between
two points in the ring [39]. A cold atom version of a
dissipative AB-ring in momentum space, roughly similar to
the quantum models cited above [12,35,37], has demonstrated
nonreciprocal quantum transport [40]. This approach utilizes
a synthetic magnetic flux and laser-induced loss of atoms in a
Bose-Einstein condensate to break inversion and time-reversal
symmetries, and demonstrates directional atom flow.

In this paper, our objective is to examine the properties
of a classical analogue of the mesoscopic AB-ring proposed
in Refs. [33,37,38]. In particular, we are motivated by their
proposition that quantum wave interference, combined with
finite dephasing can lead to asymmetric transmission. Our
goal is to see if parallel behavior can be observed in a purely
classical setting. Specifically, we want to understand if classi-
cal wave interference effects, combined with dissipation, give
rise to asymmetric wave propagation.

The outline of the paper is as follows. We begin by dis-
cussing the background for the experiment, where we provide
a brief overview of the parasitic channel phenomenology
that provides an organizing principle for understanding the
effects of loss on our experimental results. We then present
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simulations of the microwave-ring graph and demonstrate the
properties required to achieve asymmetric transmission. A
number of complications are added to the simulations to rep-
resent the experimental situation, and the key properties are
shown to survive. Next we present the experimental realiza-
tion of the microwave ring-graph, and discuss measurements
of the scattering matrix and time delays in both the fre-
quency and time domains, and find good consistency with
the simulations. Finally we present results on the transmission
asymmetry through the graph in experiment, and compare to
expectations based on simulations.

II. BACKGROUND

There is a long history of using microwave circuits and
resonant microwave billiards to emulate the wave interference
properties of quantum systems [41,42]. Quantum billiards
are simulated using microwave resonators, where the analogy
between the Schrödinger equation for the wave function ψ

and the electromagnetic Helmholtz equation for one compo-
nent of electric field �E is particularly clear in two-dimensions
[43–52]. For example, it was shown that there is an analogy
between the Poynting vector for energy flow in the quasi-
two-dimensional electromagnetic cavity and the probability
current in the corresponding quantum system [53]. Similarly,
the analogy between solutions to the Schrodinger equation on
multiconnected molecules [54] and the wave equation on net-
works of microwave graphs has been noted [55].

In this paper we will be adopting the Heidelberg picture
of wave scattering [56–64] to describe scattering in non-
Hermitian systems. A Hamiltonian H0 with real eigenvalues
describes the closed system in the absence of losses. We
include N eigenmodes of H0 in the scattering description of
the system. The localized losses are treated as L absorbing
channels, and the couplings of the N modes to the L ab-
sorbing channels are collected in a matrix A [65]. One can
define an associated matrix �A = AA† of dimension N×N
that evaluates the overlap of the N resonant eigenmodes of
the closed system at the location of loss in the system. The
M×M scattering matrix between the M observable channels
is given by S(E ) = 1M−iKA

1M+iKA
, where the Wigner reaction ma-

trix KA (related to electromagnetic impedance [60,66–70]) is
given by KA = πW † 1

E−Heff
W [60,66,71]. Here W is the N×M

matrix of couplings of the N eigenmodes to the M scattering
channels, and Heff = H0 − i�A is the non-Hermitian (H†

eff �=
Heff ) effective Hamiltonian of the lossy system. Note that
the scattering matrix S(E ) is the upper left block of a larger
(M + L)×(M + L)-dimensional Hermitian scattering matrix
S (E ) that describes both the observable and hidden (lossy or
parasitic) scattering channels (we assume that M + L � N)
[65]. As such, the M×M scattering matrix S(E ) is subunitary
because some of the flux injected through the M observable
scattering channels is lost to the L hidden parasitic chan-
nels. In addition, one can model uniform attenuation η on
the scattering matrix by evaluating the energy (or equiva-
lently frequency of the microwaves) with an imaginary offset
E → E + iη, as S(E + iη).

We note that the Heidelberg picture is a simple phe-
nomenological approach to describing loss (both lumped and
uniform) that is quite generic, and therefore applies to all

sorts of classical wave scattering systems (electromagnetic,
acoustic, mechanical, etc.). However, it is not a microscopic
theory, and in the case of quantum systems suffering from
decoherence, it altogether fails to capture the quantum degrees
of freedom, and their associated quantum interactions with the
scattering system. As such, the Heidelberg picture has no mi-
croscopic justification in describing the scattering properties
of quantum systems suffering from decoherence.

In Ref. [72] it was experimentally demonstrated that the
statistical properties of the scattering matrix of a microwave
cavity with variable uniform loss were described by a simple
dephasing-lead model borrowed from a treatment that uti-
lized the parasitic channel (Heidelberg) model of dephasing
in mesoscopic transport [73–75]. The uniform attenuation of
the quasi two-dimensional microwave cavity (parameterized
as the dimensionless quantity α = k2A/4πQ, where k = ω/c,
ω is angular frequency, A is the area of the billiard, and Q is the
typical quality factor of the resonant modes) was found to be
directly proportional to the dimensionless phenomenological
dephasing rate γ that governs the statistics of the scattering
(S) matrix and conductance in the corresponding mesoscopic
billiard [74,75], as γ = 4πα over a wide range of microwave
loss. (It can be shown that α is related to the uniform at-
tenuation as α = η

2�
, where � is the mean spacing between

modes of the closed system described by H0 [72,76].) This
work demonstrated that the statistical fluctuations of the wave
interference properties of both the classical microwave ex-
periment, and the model quantum system, have the same
dependence on a single parameter. We refer to this single-
parameter dependence of the scattering matrix statistical
properties as the “parasitic channel phenomenology” (PCP).
We shall explore the PCP further in this paper through a study
of wave interference effects in a classical analogue of the
AB-ring graph.

Here we consider quasi-one-dimensional microwave net-
work analogues of quantum graphs that emulate correspond-
ing few-channel mesoscopic conducting quantum systems.
Quantum graphs are one-dimensional metric graphs with
complex topology that support excitations described by the
Schrodinger operator [77,78] that can be used to describe
quantum transport through a variety of structures, includ-
ing molecules [54,79], quantum wires [80,81], disordered
two-dimensional quantum dots [81–83], etc. In general, mi-
crowave graphs consist of vertices connected by bonds, and
we consider the propagation of microwave signals on the
bonds and the resulting interference that occurs when multiple
bonds meet at a vertex. Microwave graphs have been used
to investigate many aspects of wave scattering theory, in-
cluding statistics of the Wigner reaction matrix (analogous to
electromagnetic impedance) [55], topological edge invariants
[84], deviations from the predictions of random matrix theory
[85], etc. The PCP has also be used to quantify the effects
of dissipation on the scattering matrix statistics of microwave
graphs [68,86].

We introduce a linear two-terminal, single-channel mi-
crowave graph to emulate the wave interference properties
of a mesoscopic Aharonov–Bohm ring, and study its scat-
tering properties in both the frequency domain and the time
domain. In particular, our objective is to demonstrate asym-
metric transmission by utilizing a specific combination of
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FIG. 2. Simulated properties of the microwave AB-ring graph with uniform attenuation η = 0. (a) Real part of transmission time delays
of the Aharonov-Bohm microwave ring graph simulation for the case of localized attenuation �A/2 = 0.18 Np. Blue curve shows Re[τ21]
and red curve shows Re[τ12], and the dashed lines show the mean values, demonstrating a 3:1 ratio. (b) Linear transmission magnitudes
in both directions for the case of �A/2 = 0 Np attenuation and �A/2 = 0.18 Np local attenuation. Blue corresponds to |S21| while red
corresponds to |S12|. With no attenuation the transmission magnitudes are identical. The scale bar gives the expected periodicity frequency scale
(� = 0.5 GHz) for the shape resonances of a simple ring graph. (c) The asymmetric transmission P21 − P12 as a function of frequency for the
case of �A/2 = 0.18 Np local attenuation.

wave interference and attenuation. The microwave graph
in Fig. 1(b) satisfies all of the conditions for displaying
asymmetric transmission, including broken time-reversal in-
variance, a subunitary scattering matrix, and a gyrator which
produces a broadband constant π -phase shift for waves going
in one direction [37]. We note that the gyrator effectively
performs the function of a Faraday rotator, as originally uti-
lized by Rayleigh to create nonreciprocal transmission of
light [12,87,88]. We demonstrate that the real part of forward
and backward transmission time delays have a 3:1 ratio in a
broad range of frequency, which establishes the first condition
for asymmetric transmission. We also introduce a localized
loss �A (exploiting the PCP to phenomenologically treat dis-
sipation [72]) in the ring graph, and adjust the left/right
transmission coefficients by varying the attenuation �A/2 of
two objects, in a balanced manner. We demonstrate the de-
pendence of asymmetric transmission on the loss rate through
the attenuation variation.

III. SIMULATIONS

We first simulate the nonreciprocal transmission effect of
the microwave ring-graph in CST Microwave Studio. In par-
ticular we use a circuit modeling package to create a faithful
model of the microwave graph (see Appendix A and Fig. S1 in

the Supplemental Material [89]). We implement the complete
circuit shown in Fig. 1(b) with equal electrical lengths (i.e.,
propagation phase shifts) for the upper and lower bonds. In
the remainder of the paper we utilize the formalism of Sec. II
treating energy and frequency of the microwaves as equivalent
quantities.

A. Frequency domain simulations

The complex transmission time delays (see Appendix C)
for both directions (S21 and S12) can be calculated from the
complex scattering matrix data as τ 12,21

T = −i d
df log(S12,21)

[34,90–95]. Figure 2(a) shows the simulation comparison be-
tween the real part of the transmission time delay for the
two directions, demonstrating the required 3:1 ratio, modulo
small oscillations associated with the shape resonances of the
microwave graph [95]. Figure 2(b) shows the transmission
magnitudes |S12| and |S21| through the microwave graph under
several different attenuation settings. When the lumped atten-
uation �A/2 is 0 Nepers and there are no uniform losses, i.e.,
no loss in the entire system and a unitary S-matrix, the two
transmission paths have identical transmission magnitude as a
function of frequency. As the lumped attenuation increases,
significant differences begin to show up between the two
transmission amplitudes.
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FIG. 3. Asymmetric transmission through microwave AB-ring
graph and a model mesoscopic electron device. (a) Summary of the
frequency domain results. In the upper right is a schematic of how
these measurements work. For frequency domain measurements, a
wave with a single frequency is sent through the device, this is done
multiple times over a frequency range. For all curves, the quan-
tity P21 − P12 is averaged over the frequency range 8.25–8.75 GHz,
which is denoted as 〈P21 − P12〉. The solid line is from simulation
where only the localized attenuation from the attenuators is con-
sidered. The dashed line is also from the same simulation but with
finite uniform attenuation added. The discrete diamond points are
from experimental data. (b) Summary of the time domain results
expressed in terms of σV = (|V21|2 − |V12|2)/|Vin|2. For these time
domain measurements, a 1 ns wide Gaussian pulse with a carrier
frequency of 8.5 GHz is sent into the device. The legend has the same
meaning as in panel (a). (c) Noise source input experimental results.
This data was taken in the frequency domain with a microwave noise
source input as a function of total attenuation in the graph. It is plot-
ted as frequency-averaged transmitted power difference, normalized
by the measured incident power, (P̄21 − P̄12)/P̄in. (d) Tight-binding
model of triangle-shaped mesoscopic device with a dephasing center,
as a function of the average number of inelastic scattering events
per electron passage through the structure. From Refs. [12,35]. Data
provided courtesy of Dr. Jochen Mannhart, Max Planck Institute for
Solid State Research, Stuttgart, Germany.

The asymmetric transmission behavior of the ring graph at
each frequency can be quantified as the transmission probabil-
ity difference: P21 − P12 = |S21|2 − |S12|2. Note that P21 − P12

is bounded between 0 and 1, and is frequency-dependent in
general. If there is no asymmetric transmission then P21 −
P12 = 0, while a nonzero value implies some degree of asym-
metric transmission. Figure 2(c) shows P21 − P12 as a function
of frequency for the �A/2 = 0.18 Np attenuation case, re-
vealing a frequency-averaged value (dashed green line) of
〈P21 − P12〉 = 0.28.

To explore the asymmetric transmission further, Fig. 3(a)
shows P21 − P12 as a function of lumped attenuation on each

bond (�A/2) for the model graph. Due to the periodic wig-
gles arising from the shape resonances of the ring graph, we
perform an average of P21 − P12 over the range of frequen-
cies 8.25–8.75 GHz corresponding to one period of the shape
resonances (� = 0.5 GHz), and designate it as 〈P21 − P12〉.
The frequency averaged transmission asymmetry 〈P21 − P12〉
shows a nonmonotonic bell shaped behavior as the lumped
attenuation increases.

We have also simulated the more realistic case where
both uniform attenuation and lumped variable attenuation are
present in the AB-ring microwave graph. We set the parame-
ters of the simulated coaxial cables to approximately match
those used in the experiments discussed below, leading to
a frequency-dependent uniform attenuation η described by
Eq. S1 in the Supplemental Material [89]. The resulting trans-
mission asymmetry 〈P21 − P12〉 versus lumped attenuation is
also shown in Fig. 3(a) as a dashed line. The main difference is
that uniform attenuation effectively establishes a finite amount
of asymmetric transmission even with zero lumped attenua-
tion.

B. Time domain simulations

Time-domain simulations have been performed with the
model microwave ring-graph shown in Fig. S1 (see Ap-
pendix A and Supplemental Material [89] section “Simula-
tions”). Gaussian wave packets with 1 ns width and a chosen
carrier frequency are injected into the graph from each port.
The output pulses show the expected 3:1 asymmetry in time
delay upon going through the graph, as shown in Fig. S2
in Ref. [89]. To quantify the transmission probability differ-
ence in the time-domain, we form the quantity σV = (|V21|2 −
|V12|2)/|Vin|2, where V21 and V12 are the voltage amplitudes
of the transmitted pulses in the simulations and Vin is the
amplitude of the incident pulse. Figure 3(b) shows σV as a
function of the lumped attenuation (solid line). As the lumped
attenuation increases the transmitted wave packets first show
an increasingly asymmetric transmission probability. How-
ever, beyond about �A/2 = 0.29 Np the wave packets show
reduced transmission asymmetry. The addition of uniform
loss serves to shift the σV curve (dashed line), just as with
the frequency domain simulations in Fig. 3(a).

These simulation results of the microwave ring-graph in
both the frequency- and time-domains establish the basic
properties of asymmetric transmission.

IV. EXPERIMENT

The microwave graph consists of a coaxial cable structure
that supports a single mode of propagation for microwave
frequencies below the cutoff of higher-order modes, which
is well beyond our operating frequency range [55]. An
Aharonov–Bohm ring uses magnetic flux to produce nonre-
ciprocal transmission times in a simple electron interferome-
ter. To mimic that effect, we use a microwave gyrator [96–98]
to create a unidirectional π phase shift in a microwave ring
network. As illustrated in Figs. 9 and S3 [89] this is achieved
by means of two microwave circulators that are configured
with short and open circuits on their third ports to create
the requisite π relative phase shift. We also demonstrate in
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FIG. 4. (a) Photograph of the Aharonov–Bohm microwave ring
graph constructed with the gyrator from Fig. 9. The upper branch
is a single coaxial cable matching the electrical length of the lower
branch. This is the experimental realization of the schematic shown
in Fig. 1(b), without the attenuators. (b) Microwave graph analogue
Aharonov-Bohm ring for the two-attenuator case, with one attenuator
of strength �A/2 on each bond.

Appendix B that this relative phase difference is approxi-
mately achieved over a broad frequency range (7–12.4 GHz)
with virtually no difference in attenuation of the signals in the
two directions.

Next, we construct the Aharonov–Bohm analogue ring mi-
crowave graph (see Fig. 4) using the gyrator design. The key is
to add an upper branch to the ring that has the same electrical
length as the gyrator, so that waves traveling from left to right
in both branches would go through the same electrical length.
Equating the electrical lengths of the branches also has the
effect of eliminating the Feshbach modes, leaving only the
shape resonances of the ring graph (see Refs. [95] and [99]).
We measured the electrical length of the gyrator and a series
of single coaxial cables, and selected a 12-inch-long coaxial
cable as the upper branch. We then perform some fine-tuning
on both phase trimmers to achieve an electrical length on the
lower bond as close as possible to that of the 12-inch cable.
The 12-inch coaxial cable has an electrical length of 0.4386 m,
and we manage to adjust the electrical length of the gyrator
to be 0.4385 m while maintaining a near π phase difference

for left/right transmission. The resulting microwave analogue
of the AB graph with π flux-induced phase shift is shown in
Fig. 4(a) (no lumped loss) and Fig. 4(b) (including lumped
loss �A).

The losses in the microwave graph arise from two sources.
There exists roughly uniform attenuation of the microwave
signals associated with the insertion loss of the coaxial ca-
bles, circulators, phase trimmers, microwave tees, adapters,
and terminations. The attenuation η of the coaxial cables
used here, which dominates the uniform attenuation in the
circuit, has been characterized in Appendix B of Ref. [95].
The second source of loss is associated with the variable
lumped (localized absorbing channels) attenuators �A, shown
schematically in Fig. 1(b). In the experiments both types of
loss in the microwave graph will be considered. Note that in
all comparisons of microwave data and mesoscopic theory we
treat the independent variables frequency f and energy E as
interchangeable.

A. Frequency domain measurements

We measure the scattering (S) matrix of the two-port mi-
crowave ring-graph as a function of frequency. A Keysight
N5242B network analyzer (PNA-X) is calibrated with a
Keysight N4691D Electronic Calibration kit over the 7 to
12.4 GHz frequency range with a frequency step size of
168 750 Hz. An Agilent Technologies N5242A vector net-
work analyzer (VNA) is also used over the same frequency
range; it is calibrated with an Agilent N4691-60001 Elec-
tronic Calibration kit with the same frequency step size. The
device under test (DUT) is attached at the calibration planes
of the network analyzer and the 2×2 S-matrix is measured
as a function of frequency for various settings of the lumped
attenuators in the microwave ring-graph.

To measure the response of the microwave ring-graph to
incoherent input signals, a Microwave Semiconductor Corp
(MSC) MC65242, 1.0 to 18 GHz noise source producing
output excess noise ratio (ENR) of 31.5 dB, is used to create
broadband noise in the microwave domain. The noise signal
is amplified by two mini-circuits amplifiers (ZX60-183A-S+)
each with a bandwidth of 6 to 18 GHz. The two amplifiers
are separated by one Narda-MITEQ (94S46) attenuator with
a bandwidth of 4 to 18 GHz. The amplified noise source is
connected to one port of the microwave ring-graph while the
other port of the graph is connected to a network analyzer
(Keysight N5242B). The network analyzer is used in receiving
mode, with a resolution bandwidth of 10 kHz and 200 point
averaging, to measure the transmitted power in a frequency
resolved manner. The experiment is repeated with the ports
on the microwave ring-graph reversed.

B. Time domain measurements

The broadband nature of the 3:1 transmission time ratio
of our AB-ring graph analogue allows us to utilize wide-
bandwidth pulses to investigate the asymmetric transmission
through the device. We perform pulse propagation measure-
ments through the microwave ring-graph in both directions,
systematically varying the center frequency of the pulse, and
measuring the time delays and amplitudes of the transmitted
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FIG. 5. Measured S-matrix transmission data for the microwave
ring-graph in Fig. 4(a) with approximately uniform attenuation, as a
function of frequency. The scale bar gives the expected periodicity
frequency scale (� = 0.342 GHz) for the shape resonances of a
simple ring graph. Note that |S21| is larger than the |S12| consistently
across the full frequency range. Inset (a) shows the real part of
the transmission time delays of the graph. We see that Re[τ 12

T ] ≈
3×Re[τ 21

T ] over the full frequency range. The dashed lines repre-
sent the average of the time delays. Inset (b) shows transmission
probability asymmetry of the graph measured in both the frequency
domain (P21 − P12, green line) and time domain (σV , red diamonds)
as a function of frequency.

pulses. A Tektronix model AWG70001B Arbitrary Waveform
Generator (AWG) is attached to the input port of the DUT,
and the other port is attached to a Keysight/Infiniium model
UXR0104A real-time oscilloscope. The input pulse created by
the AWG is designed to be a 1-ns long Gaussian modulated
pulse of center frequency fc, with fc ranging in value from
7 to 12.4 GHz. The pulse is measured by connecting the
output of the AWG directly to the oscilloscope to establish the
amplitude and timing of the incident pulse. The measurement
is then repeated with the microwave ring-graph present in the
other orientation.

We note that prior measurements of pulse transport in
microwave graphs has focused on the delay distribution and
identifying orbits due to short closed loops in the graph [100].

C. Frequency-domain experimental results

We measure the 2×2 scattering (S)-matrix of the
Aharonov-Bohm ring microwave graph shown in Fig. 4(a)
(with approximately uniform attenuation only) from 7 to
12.4 GHz, and plot the results in Fig. 5. The periodic wiggles
in the plot come from the shape resonances of the graph,
which have been thoroughly studied in Refs. [95] and [99],
and discussed for the simulations. The periodicity of the shape
resonances depends on the total circumferential length of the
graph � = 0.8771 m, which corresponds to a repetition fre-
quency of � = c

�
= 0.342 GHz. Note that waves propagating

anticlockwise around the microwave ring satisfy the ordinary
shape resonance conditions, fn = c

�
n, with n = 1, 2, 3, ....

However, waves traveling clockwise around the microwave
ring suffer an additional π phase shift upon passage through

the gyrator, resulting in a different resonance condition,
fm = c

�
(m − 1

2 ), with m = 1, 2, 3, ..., creating a series of
modes that begin at �/2 = 0.171 GHz, and then alternate
with the anticlockwise modes as a function of frequency,
consistent with the periodicity shown in Fig. 5. This creates
two distinct sets of S-matrix poles and zeros for the modes
of the microwave ring-graph (see Supplemental Material [89]
section “Poles and Zeros of the S-Matrix of the Microwave
Ring-Graph”).

D. Transmission time delays

The measured results for the real part of transmission
time delay in both directions, Re[τ 21

T ], Re[τ 12
T ], are shown

in Fig. 5(a). The mean values are clearly different, while the
regular variations of the transmission time delay plot come
from the shape resonances of the ring graph, although here
we are more interested in the ratio between the two transmis-
sion time delays. The mean values are 〈Re[τ 21

T ]〉 = 1.49 ns
and 〈Re[τ 12

T ]〉 = 4.47 ns, with a ratio of 2.99. This demon-
strates the average 3:1 ratio for the two transmission time
delays in the Aharonov–Bohm ring microwave graph, based
on frequency-domain data.

E. Asymmetric transmission

Figure 5 shows a comparison between forward and re-
verse transmission amplitudes |S21| and |S12| in the microwave
ring-graph, where it can be seen that |S21| > |S12| for all
frequencies in the bandwidth of the device. The asymmetric
transmission probability P21 − P12 is plotted as a function of
frequency in Fig. 5(b) (green line), demonstrating the broad-
band nature of the effect.

In addition to measuring the microwave ring-graph with
coherent sources in the frequency domain and time domain,
we are curious to see how it behaves when subjected to a
broadband noise source. It is interesting to see whether or
not the asymmetric transmission properties are also exhib-
ited when the AB-ring graph is excited by incoherent noise.
Figure 6 shows the results of such an experiment, in which
a microwave noise source is used to illuminate one port of
the graph. In this case the transmitted signal is measured in a
frequency-resolved manner by a network analyzer operating
in receiver mode, as discussed in Sec. IV A. The experiment
demonstrates broadband asymmetric transmission over the
bandwidth of the device. The bandwidth-averaged asymmet-
ric transmission probability was measured as a function of
total attenuation in the microwave ring-graph [Fig. 4(b)], and
the results are shown in Fig. 3(c). This result shows that the
nonmonotonic dependence of transmission asymmetry exists
even for a completely incoherent source of microwaves.

F. Time-domain experiments

The results presented so far have been obtained from mi-
crowave scattering matrix measurements performed entirely
in the frequency domain. Electrons in mesoscopic systems
are modeled as quantum wave packets in the time domain.
Electron wave packets do not have a single energy, as im-
plied by our time-delay results obtain from S-matrix data,
presented above. After demonstrating a 3:1 ratio between
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FIG. 6. Measurements of asymmetric noise power transmission
(NP12 and NP21 in units of dBm) as a function of frequency through
the AB-microwave graph having only uniform attenuation, when
subjected to a broadband noise source. Averaging (NP12, NP21) is
performed by sectioning the data in groups of 50 frequency points
and replacing each of these groups with their respective mean value.
Inset shows the asymmetric transmission power ratio NP21

NP12
in linear

scale over the bandwidth of the graph, showing a mean value of

1.35. Averaging for ( NP21
NP12

) is performed in the same way as described

above for NP12 and NP21.

the two transmission time delays from the frequency-domain
data, the question arises whether or not we can demonstrate
the asymmetric delay directly in the time domain.

Figure 7 shows representative time-domain results of trans-
mitted pulses emerging at each port when sending in the pulse
from the other port. Here, an arbitrary waveform generator
(AWG) generates the gaussian-modulated pulse of fixed car-
rier frequency fc used in the time-domain measurements. The
pulse is a 1-ns wide Gaussian amplitude modulation of an
fc = 8.5 GHz carrier signal. Such a pulse includes approxi-
mately 1 GHz bandwidth, which is well within the operating
bandwidth of our gyrator-based microwave ring-graph. The
pulse will have the effect of averaging the nonreciprocal
properties of the graph over a finite bandwidth. Here DUT
is the device under test (the microwave ring-graph), and the
oscilloscope records the incident and transmitted signals. We
measured the pulse transmission in both directions, and plot
them on the same time axis. Shown for reference (yellow pulse
in Fig. 7) is the incident pulse on the DUT, illustrating the
relatively modest effects of pulse dispersion in the experiment.
Figure 7 demonstrates directly a 3:1 ratio of the transmission
time delays for pulses propagating through the AB graph in
opposite directions. From the plot, the transmitted pulse from
port 2 to port 1, V12, has smaller amplitude compared to the
transmitted pulse from port 1 to port 2, V21.

The red diamonds in Fig. 5(b) show the pulse trans-
mission asymmetry parameter σV = (|V21|2 − |V12|2)/|Vin|2
versus pulse center frequency from the measured time-domain
results in Fig. S4 of Ref. [89]. The results are in good
agreement with the transmission probability asymmetry from

-1 0 1 2 3 4 5 6
-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

AWG 1 DUT 2 Scope

AWG 2 TUD 1 Scope

FIG. 7. Time-domain measurements for the microwave ring-
graph (the DUT here) shown in Fig. 4(a). Insets show the schematic
of the time-domain setup for the 1 → 2 and 2 → 1 measurements.
The yellow pulse is a measurement of the incident pulse (a 1-ns wide
Gaussian amplitude modulation of a fc = 8.5 GHz carrier signal)
from the arbitrary waveform generator (AWG) to the oscilloscope
and establishes the baseline pulse amplitude. The blue pulse shows
the transmitted pulse from port 1 to port 2, while the orange pulse
shows the transmitted pulse from port 2 to port 1. Note that for the
port 2 to port 1 measurement the DUT orientation is reversed.

frequency domain measurements of the same graph (green
line). Figure 3(b) shows a plot of σV at a pulse center fre-
quency of 8.5 GHz versus the lumped attenuation on each
bond �A/2, as they are varied together (red diamonds).
Adjusting both attenuators to the same attenuation setting
preserves identical electrical path lengths on the two bonds
of the microwave graph [Fig. 4(b)]. We see once again
the nonmonotonic dependence of transmission asymmetry
on variable lumped attenuation, and good agreement be-
tween frequency domain 〈P21 − P12〉 and time domain σV

measurements.

V. DISCUSSION

We note some interesting parallels between the mea-
surements on the classical microwave graph and earlier
simulations of asymmetric transport in a model mesoscopic
device with dephasing centers. The mesoscopic calculation in
Fig. 3(d) shows a nonmonotonic dependence of asymmetric
left/right transmission probability P21 − P12 as a function of
the average number of inelastic scattering events per pas-
sage based on a phenomenological model of the quantum
mesoscopic system, illustrated in the inset [12,35]. Plotting
the lumped attenuation �A in units of Nepers (a 1/e de-
cay of amplitude) is roughly analogous to the number of
inelastic scattering events per passage of the wave packet
through the device. A plot of asymmetric transmission ver-
sus �A/2 from microwave data has essentially the same
dependence as simulated transmission probability asymme-
try plotted versus the average number of inelastic scattering
events per passage, as shown in Fig. 8 (see also Fig. S6
in Supplemental Material [89] section “Detailed microwave
AB-ring graph results”). The similarities are illustrated in
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FIG. 8. Comparison of AB-graph microwave analogue asymmet-
ric transmission (�P on left axis) and simulated mesoscopic device
transmission probability asymmetry (�P on right axis), as a function
of attenuation �A/2 in Nepers, and average number of inelastic
scattering events per electron passage, on a common log scale. Mi-
crowave measurements and simulation results are obtained in the
(a) frequency-domain, (b) time-domain, and (c) frequency-resolved
noise transmission. Lines and symbols have the same meaning as
those in the corresponding parts of Fig. 3. The mesoscopic simulation
results �P (in yellow) are the same in all panels [12,35].

Fig. 8 for (a) frequency-domain, (b) time-domain, and (c)
broadband noise transmission. In the unitary evolution (zero
attenuation) limit, there is symmetric transmission due to the
purely coherent properties of the system. At large decoher-
ence (attenuation) rates, the scattering events are so frequent
that they destroy any bias for the electrons (microwaves) to
follow a particular direction through the device, sometimes
explained as a manifestation of the quantum Zeno effect [101].
Only in the intermediate decoherence (attenuation) case does
the combination of coherent transport, along with a finite
degree of modeled decoherence (attenuation) acting asymmet-
rically, result in a net transmission asymmetry through the
device.

From the perspective of the PCP, this unique state is not
observed in either the purely coherent or strongly attenuated
limits, but is a unique feature of wave systems augmented by
a finite number of parasitic lossy channels. Similar results on
asymmetric transport of a Bose-Einstein condensate through
an AB-ring analogue in cold atoms, as a function of loss rate
(analogous the the attenuation used here), shows the same
qualitative dependence as those in Figs. 3 and 8 [40]. It has
also been proposed that transport of excitations across dissi-
pative quantum networks can be enhanced by local dephasing
noise, and the dependence of transport probability on dephas-
ing rate is nonmonotonic [18,19]. Experiments on electronic
excitation transport through a network of coupled trapped ions

shows evidence of environment-assisted quantum transport
(ENAQT) effects that are also a nonmonotonic function of
dephasing rate [21,22]. There are also proposals for dephasing
assisted transport in coupled quantum dot systems [102,103].

There have also been classical wave transport experiments
that demonstrate similar behavior to that shown in Figs. 3 and
8. A classical optics experiment involving noisy resonators on
a fiber network demonstrated a peak in the dependence of the
transport efficiency as a function of the amount of “dephasing
noise” in the network, realizing the phenomenon of “noise-
assisted transport” [104]. Another classical optics experiment
utilizes variable input optical bandwidth to enhance transport
[105].

It is remarkable that the measured microwave transmission
asymmetry and the phenomenological mesoscopic dephas-
ing treatment of asymmetric electron transport [12,35] have
the same dependence on the loss/dephasing parameter over
such a wide dynamic range. One possible reason for this
is that the dephasing model effectively results in the same
non-Hermitian treatment of the system Hamiltonian, and con-
sequent modification of the scattering matrix, as observed for
classical waves. This conclusion is consistent with all three
observations discussed here, namely the experimental data on
the classical wave analogue of the AB-graph, the simulated re-
sults for an asymmetric mesoscopic scatterer of Refs. [12,35],
and the dissipative cold-atom experiment modeling an AB-
graph in momentum space [40]. In fact, the nonmonotonic
dependence of transmission probability on “dephasing” or
measurement rates seems to be a generic property of many
treatments of quantum transport, such as environment-assisted
quantum transport [18,19,21] and monitored quantum devices
[106,107]. This leaves open the question of whether a more
detailed or microscopic treatment of dephasing in quantum
systems might arrive at different conclusions with regards to
asymmetric transmission.

The microwave ring-graph elegantly captures the fun-
damental wave interference, nonreciprocal and dissipative
properties that give rise to asymmetric transmission. Of
course, there are a number of limitations of the analogy
between electromagnetic (EM) and mesoscopic quantum sys-
tems. In the EM analogue there are no Fermi-Dirac statistics,
a linear (as opposed to quadratic) dispersion relation, and no
electron-electron interactions. The physics of entanglement
and superposition states are also absent in the classical case.
In the EM case the microwave photons are dissipated, whereas
in the mesoscopic case the particle number is conserved.
Finally, the wave-packet time evolution is different in de-
tail, owing to the first-order nature of the time-dependent
Schrodinger equation versus the second-order nature of the
EM wave equation. In addition the PCP approach to account-
ing for absorption in classical wave systems (or dephasing in
quantum systems) is entirely phenomenological and generic
in nature, detached from microscopic theory. For example, it
fails to capture multiparticle quantum interactions that lead to
dephasing.

Next we comment on several properties of the microwave
graph. It is well established that nonreciprocal wave transport
can be created by a simple microwave device known as an
isolator. One might ask: how does the microwave analogue of
the AB-ring graph differ from an isolator? An isolator can be
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FIG. 9. The schematic design and photograph of a microwave
gyrator offering nonreciprocal π phase difference between the left-
going waves and right-going waves traveling between ports 1 and
2. Two nominally identical circulators are used to guide the wave
propagation directions, and a pair of open/short circuits are used
to create the π phase difference for waves traveling in different
directions. Between the open/short circuits and the circulators, there
are a pair of phase trimmers for calibrating the phase shift on the two
vertical branches of the circuit.

fabricated from a three-terminal circulator, like those utilized
in our design for the gyrator (see Fig. 9). The second port
of the circulator is connected to a matched load that absorbs
energy injected into port 1 and circulated to port 2. Waves
entering port 3 are directed to port 1, creating a two-port
device that passes waves in one direction while absorbing
those going in the opposite direction. We note that photons
absorbed and then re-emitted from the absorptive load will
be forced to circulate to port 3, due to the design of the
device. In contrast the microwave AB-ring graph has a crucial
difference. Photons absorbed and re-emitted by the localized
attenuators �A/2 are able to exit the device through either
port, with equal probability. This feature is utilized in the
phenomenological mesoscopic analogue model to create the
asymmetric flow of electrons in that case [12,35].

A second important feature of the microwave graph con-
cerns its linearity. It is well established that nonreciprocal
transport can be achieved by exploiting nonlinearities. A
common example is the diode, which has a nonlinear current-
voltage characteristics at large voltage amplitudes, but a linear

response at low amplitude [34]. In Fig. S5 of Ref. [89]
we demonstrate that the asymmetric transmission of the mi-
crowave AB-graph is present over a broad range of amplitude
excitation. Its ability to create asymmetric transmission is not
based on nonlinear processes or features.

VI. CONCLUSIONS

In this paper, we present a two-port microwave network
structure that demonstrates a 3:1 ratio of the transmission
time delays for waves traveling in opposite directions. The 3:1
ratio of the time delay has been illustrated in both frequency-
domain and time-domain experiments. Using both simulations
and experiments, we also demonstrate the asymmetric trans-
mission through the microwave ring in both the frequency
domain and time domain. The degree of asymmetric trans-
mission is shown to be a nonmonotonic function of localized
attenuation in the ring. The experimental results on asymmet-
ric transmission exist for both coherent and incoherent signal
sources. We find that a particular phenomenological model of
decoherence in mesoscopic quantum systems produces a very
similar dependence of transmission asymmetry on dephasing
rate.
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APPENDIX A: CST SIMULATIONS

Figure S1 of Ref. [89] shows the simulation schematic of
the microwave ring-graph as a CST circuit model. Each port
leads to a three-way tee junction that acts as a beam-splitter
and combiner for the incident waves from either direction,
but having finite reflection for waves arriving on all three
transmission lines. The upper branch is a finite length of uni-
form coaxial cable transmission line, while the lower branch
contains a model gyrator. The upper and lower branches
are chosen to have the same electrical length to eliminate
Feshbach resonances of the ring [95,99] and both branches
contain a lumped-loss variable attenuator. The model closely
approximates the experimental realization of the AB-analogue
microwave graph. The model allows introduction of lumped
loss �A (variable attenuator) and uniform loss η (in all the
coaxial cables) to the graph. Using Eq. S1 in Ref. [89],
the value of η can be shown to range from 0.00741 to
0.00767 GHz in the frequency band 8.25–8.75 GHz used in
Figs. 3 and 8.

The shape modes of the ring graph involve standing wave
patterns around the circumference of the ring and having
a large overlap with propagating modes on the two leads
[95,99,108]. The resulting poles and zeros of the scattering
matrix are located relatively far from the real-frequency axis
[95,99]. The Feshbach modes are an orthogonal set of modes
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that have minimal overlap with the extended modes on the
leads, and create poles and zeros near the real-frequency axis
[95,99], giving rise to narrow spectral features.

APPENDIX B: AHARONOV-BOHM-ANALOGUE
MICROWAVE GRAPH

Figure 9 shows the schematic design and photograph of the
microwave gyrator setup. A wave traveling from port 1 to port
2 will be directed upwards and reflect from the open circuit
on the left circulator, while the wave traveling in the opposite
direction from port 2 will be directed downwards and reflect
from the short circuit on the right circulator. The open/short
circuits are designed to provide a π phase difference for waves
traveling in opposite directions, but due to the unequal finite
electrical length of the components inside the circuits, the
phase difference is not exactly π . Thus, we add a pair of
carefully adjusted phase trimmers in the design to compensate
for the difference in electrical lengths. (This basic idea of
creating 0 and π phase shifts for left- and right-going waves
was inspired by the graph presented in Ref. [109].)

The measured phase difference between S12 and S21 be-
tween ports 1 and 2 in Fig. 9 as a function of frequency is
shown in Fig. S3 of Ref. [89]. The circulators used in the
experiment have a working frequency range of 7–12.4 GHz,
and we measure the S-matrix of the gyrator in that frequency
range. This broad frequency range enables the time-domain
measurements with wave packets. After doing some fine-
tuning of the two phase trimmers, we are able to get the
phase difference from the gyrator to be close to π across
the frequency band. We also verify that the insertion loss of
the gyrator is symmetric (Fig. S3(b) of Ref. [89]). There are
some small wiggles in these plots, which are due to the imper-
fection of the circulators and resulting standing waves inside
the circuit. Note that the circulators contain microwave ferrites
that are biased by a dc magnetic field in a fixed direction,
dictating the circulation direction. The operating bandwidth
of the circulators is what limits the overall bandwidth of the
entire microwave ring-graph. Further characterization of the

gyrator is given in Supplemental Material [89] section “Gyra-
tor Properties.”

Figure 4(b) shows a photograph of the assembled mi-
crowave AB-ring graph with two identical attenuators present.
Further characterization of this circuit is given in Supple-
mental Material [89] section “Detailed microwave ring-graph
results.”

APPENDIX C: COMPLEX TIME DELAY

We have introduced a generalized version of time delay
applicable to non-Hermitian (in this case subunitary) scat-
tering systems, such as the ring graph with either uniform
or lumped attenuation, or both. The Wigner-Smith time de-
lay for an M-port scattering system described by the M×M
scattering matrix S measured as a function of frequency f
is defined as [91] τW ≡ −i

M
d
df log det S( f ). This definition is

a straightforward generalization of the Wigner-Smith time
delay, previously considered only in the context of unitary
quantum systems, to include variations in the magnitude of the
scattering matrix with frequency. The complex Wigner-Smith
time delay as a function of frequency can be expressed in
terms of the pole and zero locations of the scattering ma-
trix S [76,91] (see Supplemental Material [89] section “Poles
and Zeros of the S-Matrix of the Microwave Ring-Graph”).
We also utilize the complex reflection and transmission time
delays to identify the zeros of the reflection and transmis-
sion submatrices, respectively. In this paper we evaluate the
asymmetric complex transmission time delays of the M =
2-port microwave ring-graph as [95] τ 12

T ≡ −i d
df log[S12( f )]

and τ 21
T ≡ −i d

df log[S21( f )]. We have previously utilized all
of the complex time delays to characterize the shape and
Feshbach modes of the ordinary (as opposed to AB-like) ring
graph in terms of the zeros and poles of the scattering matrix
and its transmission and reflection submatrices [95].

Please see the Supplemental Material [89] and the addi-
tional references [110–117] therein for additional details for
the simulations and experiments.
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