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Classical analogs of the quantum mechanical concepts of the Loschmidt Echo and quantum fidelity
are developed with the goal of detecting small perturbations in a closed wave chaotic region.
Sensing techniques that employ a one-recording-channel time-reversal-mirror, which in turn relies
on time reversal invariance and spatial reciprocity of the classical wave equation, are introduced. In
analogy with quantum fidelity, we employ scattering fidelity techniques which work by comparing
response signals of the scattering region, by means of cross correlation and mutual information of
signals. The performance of the sensing techniques is compared for various perturbations induced
experimentally in an acoustic resonant cavity. The acoustic signals are parametrically processed to
mitigate the effect of dissipation and to vary the spatial diversity of the sensing schemes. In addition
to static boundary condition perturbations at specified locations, perturbations to the medium of
wave propagation are shown to be detectable, opening up various real world sensing applications in
which a false negative cannot be tolerated. © 2010 American Institute of Physics.
�doi:10.1063/1.3518047�

I. INTRODUCTION

Detecting small changes inside enclosures with compli-
cated boundary conditions can be of practical importance.
The small changes inside such enclosures can either be per-
turbations of the boundary conditions or the medium of wave
propagation. Examples of practical situations where such
sensitive detection capabilities are beneficial include the fol-
lowing: strict surveillance of the interior of an unoccupied
building, scrutiny of a potentially harmful rearrangement of
objects inside an enclosure being transported, supervision of
a tightly sealed chamber for gas leaks, inspection of a con-
fined fluid for hazardous turbulence, etc. In each of these
circumstances, false negatives may not be tolerated and it is
essential to have a sensitive detection mechanism with broad
spatial coverage. A traditional approach of monitoring a
complicated enclosure is to use a network of several wave-
based sensor units each monitoring a limited region of the
enclosure. Our approach is to use a single, cost effective
wave based sensor unit that can monitor the complicated
enclosure as a whole. Unlike traditional sensors, the sensor is
not confounded by multiple reflections. Instead, it actually
takes advantage of, and works better using, the information
of ray trajectories that ergodically explore the cavity through
multiple reflections before collapsing back onto the sensor.

In the limit where the wavelength is small compared to
the characteristic size of the enclosure, wave propagation
inside the enclosure can be modeled using ray trajectories.
The irregularities in the boundaries of the enclosure results in
sensitive dependence of the trajectories of the rays on their
initial conditions. This property is known as “ray chaos.” As
usually defined, chaos is a property associated with nonlinear

dynamical systems, and linear wave systems cannot be
chaotic.1 However, wave systems whose classical �small
wavelength� limit is ray chaotic show interesting properties.
The study of such wave systems is called “wave chaos” or
“quantum chaos.”2 In related work, we have created a ran-
dom coupling model to understand the frequency-domain
and time-domain properties of wave chaotic systems,3–6 and
this model has been tested through experiments on a micro-
wave resonator.7,8

The underlying ray chaos in a wave chaotic system
promises to be useful in detecting small changes to the sys-
tem. In this paper, two classes of sensing techniques, which
take advantage of the sensitive dependence of wave trajecto-
ries on small changes to the system, are studied. The first
class of sensing techniques is based on a “propagation com-
parison” of two distinct wave excitations of the system. The
second class of sensing techniques exploits time reversal in-
variance and spatial reciprocity of the wave equation; it
works by comparing pulses reconstructed using a time rever-
sal of the wave excitations of the system. These sensing tech-
niques are tested experimentally, and their performance un-
der various circumstances is compared quantitatively.

In this paper, the quantum mechanical concepts of fidel-
ity and Loschmidt Echo �LE� are extended to classical waves
with the goal of sensing perturbations to a scattering envi-
ronment. The physical theory behind these quantum me-
chanical concepts is briefly discussed in Sec. II. Section III is
a summary of the literature in related areas. The operation of
four different acoustic sensing techniques tested in an en-
closed stairwell is explained in Sec. IV. In this section, an
indicator value of perturbation is defined for each sensing
technique. The details of signal processing done to mitigate
the effect of dissipation, and to alter the spatial range sensi-
tivity of the sensors is also included in Sec. IV. Section Va�Electronic mail: anlage@umd.edu.
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explains a method to standardize the indicator values of per-
turbation of the different sensing techniques to enable con-
sistent comparisons. The performance of the sensing tech-
niques for perturbations made at different locations in the
stairwell is summarized in Sec. VI. Section VII contains
some comments on the relative merits of these different sens-
ing techniques and discusses some of the experimental limi-
tations. Finally, a brief conclusion is presented in Sec. VIII.
This paper expands considerably on a preliminary
publication.9

II. THEORY

Wave chaotic systems have wave scattering properties
that are quite sensitive to small perturbations of the scatter-
ing environment. One can define two mathematically equiva-
lent measures of this sensitivity in the context of quantum
mechanics; these are the quantum fidelity and the LE.10,11

Each of these mathematically equivalent quantities measures
the sensitivity of the dynamics of a quantum mechanical sys-
tem to small perturbations of its Hamiltonian.

The LE can be defined as follows. A system is prepared
in a given initial state ���0��, propagated forward in time
under an unperturbed time-reversible Hamiltonian H to some
time t, ���t��=U�t����0�� where U�t�=exp�−iHt /�� is the
time evolution operator. At that time, the evolution is stopped
and the Hamiltonian is perturbed by a small amount H�, so
that H→H+H�. The system is then propagated backward in
time under the perturbed Hamiltonian H+H� to create an-
other state U��−t�U�t����0�� where U��−t�=exp�i�H
+H��t /��. The overlap of this forward and backward propa-
gated state with the initial state is known as the LE,
LEH��t�= ���0��U��−t�U�t����0��.

The formula above for the LE can also be interpreted as
the overlap of two different final states of the system which
started out from the same initial state, ��0�, but have been
propagated forward in time with different Hamiltonians,
namely, H and H+H�. Such a different interpretation of the
same quantity defines the quantum fidelity. The quantum fi-
delity is unity in the absence of perturbations �i.e., H�=0� for
any H and t. However, in the presence of perturbations the
quantum fidelity will decay with t at a rate depending on H
and the perturbation. It is worth noting that despite their
mathematical equivalence the implementation details of the
computation or measurement of these quantities can be quite
different, as we shall see below.

The theoretical equivalence of the LE and quantum fi-
delity motivates the exploration of their classical wave ana-
logs with the goal of developing a practical perturbation sen-
sor. In this paper, we experimentally investigate two classes
of sensing techniques which extend these two quantum me-
chanical concepts to classical waves. The paper devises a
tunable sensor that overcomes the effects of dissipation in
classical waves, and as a consequence, also creates a sensor
with adjustable spatial range coverage. A statistical figure of
merit �FOM� is defined to compare the relative merits of the
different sensing techniques developed. The figure of merit
defined also helps to choose an optimum set of parameters
for sensing a given perturbation.

The classical wave analog of the LE is implemented us-
ing a time reversal procedure which involves the following
steps. Suppose that there is a cavity whose response to inci-
dent input signals can be characterized by a linear, causal,
time invariant system. Let the reflected system response to
an incident impulse be s�t�; the corresponding Fourier trans-
form of the impulse response �i.e., the transfer function� is
denoted by ŝ���, which is a function of the Fourier frequency
transform variable � �in what follows we consider � to be
real�. The first step of the time reversal procedure is to inject
a narrow band, pulse modulated, incident input signal a�t�
into the system and to retrieve the resulting reflected output
b�t�. The Fourier transforms of these signals obey the

relation b̂���= ŝ���â���, where, because b�t� and a�t�
are real, ŝ����= ŝ�−��. After recording b�t�, consider time
reversing it and reinjecting it as an incident signal b�−t�;
the Fourier transform of b�−t� is b̂�−��. The system’s
response to b�−t� is denoted by b��t�. The Fourier transform

of b��t� is given by b̂����= ŝ���b̂�−��= ŝ���ŝ�−��â�−��
= �ŝ����2â�−��. This expression is examined for different loss
mechanisms in the system as follows.

For a lossless system, the scattering transfer function
obeys the relation �ŝ����2=1. Thus, in the lossless case,

b̂����= â�−�� holds, which implies that b��t�=a�−t�. This
means that a time reversed version of the original input, a�t�,
is recovered after b�−t� is injected into a lossless system.
Thus, for the lossless case, the classical analog of the LE is
unity, and the time reversal procedure described here is “per-
fect.”

For a system that is lossy, �ŝ����2 generally depends on
�. As a result, the exact time reversed version of the original
pulse �OP� is not expected to be reconstructed for the lossy
case. This result will be used to justify the experimental im-
perfection of the time reversal procedure explained in Sec.
IV B 2.

Next, consider a special case of a lossy system which
has uniform loss. To motivate the definition of uniform loss,
first consider a lossless situation in which temporally sinu-
soidal waves inside the scattering region are described by the
wave equation ��2+ �� /v�2��=0, where v is the wave ve-
locity, and the dependent variable � is subject to a lossless
�-independent boundary condition on the boundaries of the
scattering region. In this lossless case, the assumed solution
to the scattering problem is described by a scattering coeffi-
cient ŝ0���, where �ŝ0����2=1; here, the subscript zero de-
notes the lossless case. Now assume that loss is added uni-
formly in space to the medium, but not to the boundary
conditions. For small loss and a wide range of loss mecha-
nisms, this modifies the wave equation within the scattering
region via the replacement �→�+ i�. Furthermore, we as-
sume that any �-dependence of the loss rate � is negligible
within the frequency bandwidth of the incident pulse a�t�.
Since the only �-dependence of the scattering problem is
assumed to occur in the wave equation, the transfer function
of the uniformly lossy system, ŝ���, is given by ŝ���= ŝ0��
+ i��. Therefore, for the uniform loss case, the Fourier trans-

form of b��t� defined above is given by b̂����= ŝ0��+ i��ŝ0�
−��+ i���â�−��. Once again, ŝ0��+ i��ŝ0�−��+ i��� gener-
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ally depends on �, and hence the time reversal procedure is
not expected to work perfectly even in the uniform loss case;
in other words that b��t� is generally different from a�−t�.

However, we now argue that, if the uniform loss in the
system is compensated by applying a proper time exponen-
tial amplification to b�t�, the time reversal procedure will still
work. The exponential amplification involves multiplying
b�t� by exp�2�t�. The time reversed version of this exponen-
tially amplified signal is b�−t�exp�−2�t�, with a correspond-

ing Fourier transform b̂�−��+ i2���. The Fourier transform
of the response of the system to b�−t�exp�−2�t� is given by

b̂����= ŝ���b̂�−��+ i2���. Here, ŝ��� can be written as

ŝ0��+ i�� and b̂�−��+ i2��� can be written as ŝ�−��
+ i2���â�−��+ i2���. After substituting these expressions and

simplifying we get b̂����= ŝ0��+ i��ŝ0�−��+ i���â�−��
+ i2���. The expression ŝ0��+ i��ŝ0�−��+ i��� is identically
one for �=0 and all � as this is the lossless case. For arbi-
trary � we note that the product is an analytic function of �.
Thus, by analytic continuation it is also equal to one for any

�. Therefore, b̂����= â�−��+ i2���. In the time domain,
b��t�=a�−t�exp�−2�t�. If the time duration of the original
input signal, a�t�, is short compared with 1 /�, then, b��t�
	a�−t�. Therefore, if the loss in the system is uniform, then
the time reversal procedure is expected to approximately
work with the help of the exponential amplification. This is
our motivation to use exponential amplification, described in
Sec. IV C, assuming that the loss in the system roughly ap-
proximates the case of a uniform loss over the bandwidth of
the original input signal.

While uniform loss does not strictly apply when there
are reflection losses at the boundaries �generally these de-
pend on angle of incidence�, we still might expect that the
uniform loss case applies approximately. To justify this ex-
pectation, we think of ŝ��� as resulting from multiple ray
paths originating from the port and then returning to it after
following paths that bounce from the scatterer boundaries
multiple times. Insofar as the loss over such a path is ap-
proximately proportional to the path length �travel time�, the
uniform loss approximation is expected to apply. Further-
more, if these paths are long and involve many reflections,
their complicated, chaotic, nature implies that the net reflec-
tion loss would involve an average of the losses over many
different incidence angles of the rays on the boundary. Thus,
approximately ergodic behavior of chaotic rays implies a
self-averaging process over different incidence angles and
approximately uniform loss for long ray paths.

III. PREVIOUS RELATED WORK

The idea of quantifying perturbations to a system using
either a propagation comparison of two different final states
of the system obtained from a given initial state, or a com-
parison of an initial state with a final state of the system
obtained by a time reversal mirror has been explored previ-
ously. The concept of quantum fidelity which quantifies the
sensitivity of the dynamics of a quantum mechanical system
to small perturbations of its Hamiltonian is well

developed.10,11 The LE makes connection to spin-echo ex-
periments widely used in nuclear magnetic resonance.12

The concept of the LE has been extended to classical
waves using “time-reversal mirrors” for acoustics13,14 and
electromagnetics.15–17 Ideally, time-reversal mirrors operate
by collecting and recording a propagating wave as a function
of time, and at some later time they propagate it in the op-
posite direction in a time-reversed manner. Experimentally, it
is not generally possible to mirror all waves in this manner.
Experimental time-reversal mirrors can however be realized
in the special case of confined systems with highly reflective
walls �so called “billiard” systems� and classically chaotic
ray dynamics such as those considered here. Under these
conditions a single-channel time-reversal mirror can very ef-
fectively approximate the conditions required to measure the
LE using classical waves.17,18 The experimental set up for
the measurement of the LE can be further simplified by ex-
ploiting the spatial reciprocity of the wave equation.9,19

Time-reversal mirrors have found a wide range of practical
applications such as crack imaging in solids,20 and improved
acoustic communication in air,21 among other things. Re-
cently, it was proposed that time reversal mirrors cold also be
applied to quantum systems.22

On the other hand, the concept of quantum fidelity has
been applied to classical waves as in the study of the scat-
tering fidelity �SF� of acoustic waves, which is, practically
speaking, the correlation between signals as a function of
time.23–27 The relative merits of the cross correlation and
mutual information of acoustic signals in the context of un-
derwater source detection has been studied, for example, in
Ref. 28.

IV. EXPERIMENTS

The goal of our experiment is to test the sensitivity of
different sensing techniques to small perturbations of a moni-
tored acoustic cavity. A two story tall stairwell of dimensions
6 m deep�2.5 m wide�6.5 m high serves as our enclo-
sure under surveillance �see Fig. 1�. A Samson C01U micro-
phone and a desktop computer speaker that are about 1 m
apart are set up inside the stairwell, and are controlled by a
laptop computer that is stationed outside the enclosure. This
is the common experimental setup for all the sensing tech-
niques tested. In general, the sensing techniques rely on mea-
surements before and after a perturbation to the cavity. In
Sec. VI, results on three different classes of perturbations are
presented; these are: �i� static boundary condition perturba-
tions �i.e., insertion of an object� at six specified locations in
the cavity, �ii� perturbation of the medium of wave propaga-
tion in the cavity, and �iii� global perturbation to the cavity.
Next, the peculiarities of each sensing technique is dis-
cussed, and an indicator value of perturbation is defined for
each sensing technique.

A. Sensing based on propagation comparison

The sensing techniques that rely on propagation com-
parison work as follows. The first step is to broadcast a short
pulse of a carrier signal into the cavity �see Fig. 2�a��. In the
experiment discussed here, an acoustic pulse with a carrier
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frequency of 7 kHz and a Gaussian envelope with time width
of 1 ms is broadcast into the stairwell. A typical input signal
is shown in Fig. 3�a�. The carrier wave has a wavelength that
is much smaller than the typical size of the cavity so that the
semiclassical limit applies. The time duration and envelope
of the pulse are chosen to keep the bandwidth of the pulse
narrow enough to minimize the additive background noise in
the cavity, which cannot be mitigated by simple band pass
filtering. A center frequency and bandwidth of the pulse
which result in a relatively strong coupling of the pulse en-
ergy into the cavity are chosen.

The second step of these sensing techniques is recording
the response of the cavity to the stimulus pulse; this response
is called the sona signal. Figure 3�b� shows a typical sona
signal from the stairwell. The sona is band pass filtered using
a pass-band that matches the bandwidth of the OP. The sona
effectively contains multiple reflections of the pulse off dif-
ferent parts of the stairwell and extends in time for many
pulse durations. A baseline sona signal is recorded by the
microphone before perturbing the cavity �see Fig. 2�b��. For
the case of “boundary condition perturbation,” the stairwell
is perturbed by inserting a cylindrical perturbing object,
which has just about 0.1% of the total volume of the stair-
well. The perturber, which is shown as an inset in Fig. 1, is
placed at one of the six perturbation locations labeled A
through F in Fig. 1. Then, the pulse is rebroadcast into the
perturbed stairwell �see Fig. 2�c��, and the resulting per-
turbed sona is recorded by the microphone �see Fig. 2�d��.
The baseline sona, which is collected before the perturbation,
and the perturbed sona, which is collected after the perturba-
tion, are compared in one of the following ways giving rise
to two sub-classes of sensing techniques by propagation
comparison. We refer to these techniques as sensing by cross
correlation �SCC� and sensing by mutual information �SMI�.

1. Sensing by Cross Correlation „SCC…

One way of comparing the sonas before and after pertur-
bation involves computing the maximum of their cross cor-
relation. As can be seen in Eqs. �1� and �2� below, this ap-
proach is inspired by the SF.23–27 Consider two time-domain
sona signals that are represented as vectors, X and Y, of
voltage sample values that can be indexed in time. The cross
correlation, �X�Y��n� �Eq. �1��, of these two signals is com-
puted by finding their magnitude-normalized dot product
while applying an index shift, n, between the signals; the
cross correlation is a function of the index shift applied be-
tween the signals

FIG. 1. �Color online� The experiment is conducted inside a stairwell with
cinderblock walls and tile floors. The locations of perturbations chosen to
exemplify short, medium, and long range detection attempts, both at con-
cealed and nonconcealed locations, with respect to the sensor, are labeled
with letters A to F. The inset shows the perturbing object that is introduced
at the various locations A–F.

FIG. 2. �Color online� Schematic operation of a sensor based on propagation
comparison. An acoustic pulse is broadcast into the stairwell in �a� and �c�.
The resulting sona signals are recorded in �b� and �d�. In �c� and �d�, the
cavity is perturbed. The sensor works by comparing the baseline and per-
turbed sonas through either cross correlation or mutual information. The red
rectangle, which is at the bottom right corner of the schematic of the stair-
well, schematically shows the speaker and microphone.

FIG. 3. �Color online� �a� The OP broadcast into the stairwell, �b� sona, �c�
a baseline time reversed reconstructed pulse �BRP�, �d� a perturbed time
reversed reconstructed pulse �PRP�. All parts show an acoustic signal �in
volts� vs time.
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�X�Y��n� =

m=1

m=l X�m�Y�m + n�
�X�x�Y�

. �1�

Here, the numerator of the right hand side represents the dot
product between the sona vectors X and Y, whose contents
are shifted by index n with respect to each other; for a given
value of n, l is the maximum index in which both X�l� and
Y�l+n� have a well defined value. The denominator repre-
sents the product of the magnitudes of the sona vectors X and
Y. The maximum of the cross correlation values �taken over
all possible index shifts, n� is used as an indicator value of
perturbation, ISCC, for the sensing technique SCC

ISCC = Maximumn��X�Y��n�
 . �2�

If there is no perturbation in the cavity, the indicator value of
perturbation for SCC �ISCC� is expected to be 1; otherwise
ISCC is generally a number between 0 and 1.

The reason for applying an index shift between the sonas
while computing their normalized dot product, and later con-
sidering the maximum of the cross correlation, is as follows.
The sona signals measured before and after the perturbation
are digitized using slightly different time bases. In general,
this is due to variations in data acquisition triggering. Thus, it
is essential to align the sona signals by applying an appro-
priate relative index/time shift between them before consid-
ering the resulting correlation value; typically, a relative time
shift of at most 20 ms �i.e., an index shift of at most 880� is
applied between the sonas.

2. Sensing by Mutual Information „SMI…

An alternative method of comparing the two sona signals
is to measure their mutual information. In the context of this
computation, each sona is considered as a random variable,
X, taking on different voltage values as time increases. A
histogram of the voltage values of a sona can be constructed
using equally spaced bins. The size of these bins in Volts is
determined by the inherent voltage fluctuations due to mea-
surement noise. For this experiment, different bin sizes were
tried and 1 mV �which is also the measurement noise level�
is chosen as it resulted in an optimal detection capability of
the SMI technique. Thus, slightly different voltage values of
the sona, which are all within an interval whose width is the
typical noise level, are considered as a single voltage value
for the purpose of construction of the histogram. The prob-
ability mass function, p�x�, of the sona is readily derived
from the histogram constructed; p�x� represents the probabil-
ity that sona X has a voltage value of x. The entropy of the
sona signal, which quantifies the information content of the
sona in bits, is denoted as H�X�

H�X� = − 

x�X

p�x�log2 p�x� . �3�

All the voltage values that the sona could take on after the
binning process are considered in this formula for the en-
tropy.

The mutual information of sonas X and Y, which are
considered as random variables, is denoted by I�X ;Y�, and
serves as the indicator value of perturbation, ISMI, for the
SMI technique

ISMI = I�X;Y� = 

x�X



y�Y

p�x,y�log2� p�x,y�
p�x�p�y�

� . �4�

The mutual information can be described as the difference
between the sum of the individual entropies of the sonas and
their joint entropy I�X ;Y�=H�X�+H�Y�−H�X ,Y�. The calcu-
lation is similar to that of the entropy except that now the
joint probability mass function of sonas X and Y, p�x ,y�, is
involved �Eq. �4��; the marginal probability mass functions
of X and Y are denoted by p�x� and p�y�. The joint probabil-
ity mass function p�x ,y� assigns the probability that sona X
and Y take on voltage values x and y, respectively, at the
same time. Once again, the bins have a size on the order of
the noise level in the data.

As discussed in Sec. IV A 2, the sona signals X and Y,
which are collected under slightly different time bases, are
time aligned based on their maximum correlation value be-
fore their correlation is considered as an indicator value of
perturbation. By the same token, the computation of the joint
probability p�x ,y� of event �X=x , Y =y�, which is used in
determining the mutual information �Eq. �4�� of two sona
signals X and Y, is done after the sonas are aligned with
respect to their time index. The alignment can be achieved
by finding a time index shift between the sona signals which
maximizes their mutual information.

The mutual information is zero if the two signals being
compared are statistically independent. In general, the mu-
tual information takes on values ranging from zero to a
maximum value, which is the entropy value of a sona signal
in the case of two identical sonas. A typical sona signal in
these experiments has an entropy of about 5 bits; whereas,
the mutual information between two sonas collected from
two nominally identical configurations of the stairwell is
typically about 2 bits.

B. Sensing based on time reversed wave propagation

The extension of the LE to classical waves is tested by
using a one channel time reversal mirror for acoustic waves
in the same stairwell. As in the experiment discussed above,
an acoustic pulse with 7 kHz center frequency and a Gauss-
ian envelope of 1 ms time width is broadcast into the stair-
well �see Fig. 4�a��. The resulting sona is measured by the
microphone and digitized as shown in Fig. 4�b�. The digi-
tized and band-pass filtered sona is time reversed before it is
broadcast back into the stairwell through the speaker �see
Fig. 4�c��. To carry out a full and complete time-reversed
wave propagation process, the time reversed sona should be
broadcast back into the stairwell from the location of the
microphone, where the sona was collected. However, spatial
reciprocity of the wave equation is employed which allows
us to broadcast the time reversed sona from the speaker at its
original location without the need to interchange the location
of the two transducers. The time reversed sona propagates in
the cavity and reconstructs as a time reversed pulse at the
location of the microphone, where it is recorded �see Figs.
4�d� and 3�c��. The time reversed pulse is periodically gen-
erated using the same time reversed sona signal and possibly
different conditions of the cavity monitored. If a perturbation
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occurs �see Fig. 4�e��, the resulting reconstructed time re-
versed pulse shown in Fig. 4�f� will be different from the
reconstructed pulse shown in Fig. 4�d�.

In general, the sensing techniques based on time reversal
work by comparing two time reversed pulses reconstructed
under baseline and perturbed conditions of the cavity; hence,
such sensing techniques are called chaotic time reversal sen-
sors �CTRS�. The time reversed pulses reconstructed under a
baseline and a perturbed condition of the cavity are referred
to as a baseline reconstructed pulse �BRP� and a perturbed
reconstructed pulse �PRP�, respectively. A typical BRP and
PRP are shown in Figs. 3�c� and 3�d�, respectively. The com-
parison between BRP and PRP, which have a brief time du-
ration, is computationally inexpensive and can be done in a
number of different ways. Two representative methods of
comparing these signals which give rise to two versions of
the CTRS, namely, CTRS1 and CTRS2, are discussed.
CTRS1 is based on the comparison of the peak to peak am-
plitude of BRP and PRP. Alternatively, CTRS2 is based on
the computation of a normalized correlation of the brief
pulses PRP and BRP with a time reversed version of the OP,
which is shown in Fig. 3�a�.

1. Chaotic Time Reversal Sensor 1 „CTRS1…

Comparison of the BRP and PRP based solely on their
peak to peak amplitude is computationally the simplest and
most efficient. The ratio of the peak to peak amplitudes of
the PRP to BRP is defined as an indicator value of perturba-
tion for CTRS1, ICTRS1

ICTRS1 =
PkPk _ AmplitudePRP

PkPk _ AmplitudeBRP
. �5�

This ratio is expected to be about 1 if the perturbed condition
of the cavity is the same as its baseline condition. In the case
of an actual perturbation, the ratio is a number smaller than
1. The contrast in the amplitude of BRP and PRP can be seen
in Figs. 3�c� and 3�d�.

2. Chaotic Time Reversal Sensor 2 „CTRS2…

An alternative method to compare BRP and PRP is based
on a normalized correlation that is analogous to the definition
of the LE. Consequently, this method involves the use of the
OP, which is broadcast into the cavity in order to collect the
sona. The OP broadcast by the speaker is measured in a
separate experiment carried out in an anechoic chamber
whose walls are acoustic absorbers. Figure 3�a� shows a typi-
cal measured OP. Once the OP is measured and digitized it is
numerically time reversed resulting in the reversed OP
�ROP�. In principle, the ROP is expected to be identical to
the BRP. However, this is not the case because the one chan-
nel acoustic time reversal mirror is not perfect. The imper-
fections are due to the finite time recording of the sona,29 and
the dissipation in the cavity;9 the imperfection of the time
reversal process due to loss is also discussed in Sec. II. Ad-
ditive noise from the cavity within the bandwidth of the OP
also plays a role in the incongruity of the ROP and BRP.

The correlation of the ROP and the BRP is used to quan-
tify the overall limitations of the time reversal mirror. If the
experiment were ideal, in the sense that the sona were re-
corded for an infinite amount of time in a nondissipative and
noiseless system, this correlation would be 1 for a ray cha-
otic system; in these experiments this correlation is roughly
80%. This correlation is used below to normalize the corre-
lation of the ROP and the PRP. The ratio of these two corre-
lations is the indicator value of perturbation for the CTRS2
technique, ICTRS2.

ICTRS2 =
�PRP,ROP�/�PRP�x�ROP�
�BRP,ROP�/�BRP�x�ROP�

. �6�

Here, pulses PRP, ROP, and BRP are considered as vectors of
voltage values that can be indexed in time. Thus, the numera-
tor of ICTRS2 is the dot product of PRP and ROP divided by
the product of their magnitudes. Likewise, the denominator
of ICTRS2 is the dot product of BRP and ROP divided by the
product of their magnitudes. Note that the quantity in the
numerator of this ICTRS2 is analogous to the definition of the
LE. The normalization in the denominator is needed to en-
sure that ICTRS2 is 1 in the absence of a perturbation. In the
presence of a perturbation the ICTRS2 is a number between 0
and 1.

Yet another way of comparing the BRP and PRP is their
correlation, �BRP,PRP� / �BRP�x�PRP�. However, we have
experimentally demonstrated that such an approach does not
yield a reliable indication of whether a perturbation has hap-
pened or not. In other words, the correlation of two time
reversed pulses that are reconstructed before and after per-
turbation is not statistically distinguishable from the correla-

FIG. 4. �Color online� Schematic operation of the CTRS, which is based on
the extension of the LE to classical waves. A sequence of steps illustrated in
�a�–�d� are carried out to measure the BRP. Using the sona collected in �b�,
the steps illustrated in �e� and �f� are carried out to measure the PRP. The
CTRS works by comparing the baseline and perturbed pulses collected.
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tion of two time reversed pulses that are reconstructed under
nominally identical conditions of the cavity. Hence, this third
variety of the CTRS is not discussed further.

C. Effects of dissipation and processing the sona
signal

The sensing techniques discussed so far face the problem
of dissipation of classical waves which effectively limits the
sensitivity and spatial coverage of the sensor. The dissipation
brings about an exponential decay of the signal set up by the
initial broadcast of the acoustic pulse. This exponential de-
cay is seen in the envelope of the sona signal recorded, from
which the 1 /e decay time is estimated. �Fig. 5�a�� A typical
1 /e decay time of the sona signals collected from the stair-
well is about 0.1 s. This measured 1 /e decay time, �, is
reasonably consistent with the 60 dB decay time of the stair-
well estimated from Sabine’s formula

T60 dB = cV/

m

Sm�m. �7�

Here, the parameter c=0.161 s /m. Applying Sabine’s for-
mula involves estimating the volume of the cavity, V
	93 m3. In addition, the surface area, S, of each of the
constituent materials of the interior of the cavity is estimated.
The corresponding frequency dependent absorption coeffi-
cient, �, of the materials is found from the literature,30 and
the summation in Eq. �7� is carried out over all the constitu-
ent materials, m, of the interior of the cavity. The interior of
the stairwell has approximately 129 m2 of painted concrete
block and 46 m2 of concrete floor; these constituent materi-
als are known to have an absorption coefficient of 0.08 and
0.02, respectively, for 4 kHz sound waves. Using these rough
estimates, the 60 dB decay time for 4 kHz sound waves in
the stairwell is 1.3 s. From this, one estimates a 1 /e decay
time of 0.09 s for 4 kHz sound waves in the stairwell, which
is close to the measured �=0.1 s at 7 kHz.

The exponential decay of the sona can be numerically
mitigated by applying an exponential amplification A�t ,F� to
the portion of the sona signal that has a signal to noise ratio
�SNR� of at least 1

A�t,F� = exp�Ft/�� . �8�

The time dependent amplifying function, A�t ,F�, is a func-
tion of parameter F, and it uses the measured value of the 1 /e
decay time, �, of the sona signal being amplified.31 The pa-
rameter F typically takes on values of either 0, 1, or 2. If F
=0, there is no exponential amplification of the sona �see
Fig. 5�a��. If F=1, the resulting exponential amplification
removes the effects of dissipation that happened during the
time-forward propagation of the acoustic pulse up to the col-
lection of the sona �see Fig. 5�b��. If F=2, the resulting ex-
ponential amplification removes the effects of dissipation
that the sona has suffered up to its collection during time-
forward propagation and also the dissipation that it will suf-
fer as it goes through the stairwell again in a time reversed
manner �see Fig. 5�c��.

The motivation for applying exponential amplification is
to make the sona signal closer to what it would be in the
nondissipative case. Working in the approximately nondissi-
pative case can expand the range of the sensor. In addition,
the range of the sensor can be changed to some extent with
choice of parameter value F. In Sec. VI C, we shall see that
global perturbations to the stairwell are detected best when
the sonas are exponentially amplified to approximate the
nondissipative case. The exponential amplification is also
motivated by the theoretical results in Sec. II.

Another possibility of tuning the sensor involves apply-
ing a rectangular time-gating window function to the sona.
Such a window is a function of two parameters: start and
stop time �see Fig. 5�c��. The motivation for time-windowing
the sona to change the sensitivity and spatial coverage of the
sensor is founded on a “ray propagation model” of the prob-
lem. Rays that bounce back from perturbation locations in
the vicinity of the sensor get recorded at the beginning of the
sona. In contrast, rays that bounce back from perturbation
locations farther out from the sensor are recorded toward the
end of the sona. This simple generalization of the complex
ray trajectory dynamics in the stairwell motivates the possi-
bility of windowing the sona to change the spatial sensitivity
of the sensor. Thus, the start and stop time parameters of the
rectangular window are varied to explore this possibility of
tuning the sensor’s sensitivity to perturbation at various lo-
cations within the stairwell.

The rectangular time window has a rise and fall time that
is designed to keep the bandwidth of the windowed sona
invariant. Particularly, the rise and fall times are both on
order of magnitude of the time width of the original acoustic
pulse that generated the sona �i.e., 1 ms�. Before a sona is
windowed, it is exponentially amplified with a given F value.
The amplitude of the windowed sona is then uniformly
scaled to fit into the voltage dynamic range of linear output
of the speaker, which is 	0.4 to 0.4 V. This range was de-
termined by an experiment in an anechoic chamber with the
microphone and speaker.

To summarize, the sona signal is processed using the
three parameters discussed above: exponent F, start time, and
stop time. Each of the sensing techniques discussed so far are
done with various values of these parameters. For sensing
techniques based on time reversal of wave propagation, the

FIG. 5. �Color online� �a� A typical measured exponentially decaying sona
signal, �b� exponentially amplified sona with F=1, �c� exponentially ampli-
fied sona with F=2 after rectangular windowing between times tSTART and
tSTOP.
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sona is processed with the appropriate parameters before it is
time reversed and broadcast back into the cavity. On the
other hand for the sensing techniques based on propagation
comparison, both of the sonas being compared are processed
by the same exact parameter values before the computation
of mutual information or cross correlation of the processed
sonas are carried out.

As a caveat, the following special procedures are taken
for the case of the SMI technique to improve its detection
performance. The windowed sonas are not uniformly scaled
to fit into the dynamic range of 	0.4 to 0.4 V �mentioned
above�. Furthermore, the voltage values of the processed so-
nas are rounded off to 3 significant figures both before and
after the sonas are processed �using exponential amplifica-
tion and windowing�; in other words, the binning of the so-
nas with a bin size of 1 mV is done both before and after
processing the sonas.

D. Investigation of the tunability of the range of the
sensor

So far, four sensing techniques have been introduced,
and a mechanism to tune the range of a sensor using three
parameters is established. The parameters are designed to
compensate for the effects of dissipation and to alter the
spatial range of the sensor, to some extent. The following
experiments were done to investigate the problem of pertur-
bation detection at short, medium and long range.

Six different locations of perturbations, which are la-
beled A through F in Fig. 1, were chosen in the stairwell.
These locations were chosen so that there are two represen-
tative locations for short �perturbation locations A and B�,
medium �perturbation locations C and D� and long range
�perturbation locations E and F� detection attempts, respec-
tively. Each pair of representative locations were chosen so
that there is an example of a location that is concealed from
the sensor �B, D, and F�, and a location that is almost within
the line of sight of the sensor, or at least within a couple of
reflections from the sensor �A, C, and E�. For each sensing
technique, the baseline �unperturbed� situation involves the
absence of the perturber in the stairwell, while the perturbed
situation has the perturbing object located at one of the six
locations A through F.

The detection experiment was systematically performed
at each perturbation location using all the sensing techniques
introduced above. The experiment was carefully designed to
allow all the sensing techniques to be applied to a single
instance of perturbation at a given location. All the sensing
techniques were operated with the same set of parameter
values. This experimental scheme allows for the following
considerations. An optimal set of parameter values can be
identified for a given sensing technique at a given perturba-
tion location. The effectiveness of a sensing technique,
which is operating at its optimal parameter values, can be
gauged at different perturbation locations. The optimal detec-
tion capability of different sensing techniques can be com-
pared at a given perturbation location. Standardization of
these comparisons is discussed in the data analysis section.

V. DATA ANALYSIS

In the experiment section, the measurement and calcula-
tion of four different indicator values of perturbation �i.e.,
ICTRS1, ICTRS2, ISCC, and ISMI� corresponding to the four sens-
ing techniques were introduced. Each of those indicator val-
ues have their own inherent uncertainty in their measurement
and calculation. The range of values that the indicators take
on is not uniform. Even though ICTRS1, ICTRS2, and ISCC have
the same range of values �i.e., 0 to 1�, the dependence of
their value on the perturbation is not necessarily the same.
All these complications make the comparison of the different
sensing techniques, solely using their respective indicator
values of perturbation, a difficult task. This problem is
solved by defining a standardized FOM that can be calcu-
lated from the typical statistics of the indicator values of any
of the techniques.

In the absence of perturbation, ICTRS1, ICTRS2, and ISCC

should ideally be 1. Whereas, ISMI should have a particular
value, which is closest to the typical entropy of the sona in
bits, in the absence of perturbation. However, this is not al-
ways the case due to measurement uncertainties and noise
that propagate through the steps of the computation of the
indicators. Consider a control experiment of detection, in
which we do not induce any perturbation to the cavity under
surveillance. In such a control experiment, the resulting in-
dicator values fluctuate somewhere around the ideally ex-
pected value of 1 �for CTRS1, CTRS2, and SCC�, or some-
where around a value close to the entropy of the sona in bits
�for SMI�. The statistics of these control indicator values of
perturbation are considered for each sensing technique. Par-
ticularly, the mean, 
, and standard deviation, �, of the con-
trol indicator values of perturbation are calculated.

If an indicator value of perturbation is much smaller than
the mean of the control indicator values compared to their
standard deviation, then there is a statistically significant de-
tection. Thus, the following FOM is defined

FOM =

 − I

�
. �9�

The FOM, is the ratio of the difference between the observed
indicator value, I, and the mean, 
, of the control indicator
values to the standard deviation, �, of the control values. The
observed indicator value of a perturbation, I, for a given
instance of perturbation may itself fluctuate around some
value due to noise. This results in the FOM fluctuating as
well. Therefore, the FOM is averaged over 25 different real-
izations. Such an average FOM, �FOM�, also has a propa-
gated uncertainty, ��FOM�, associated with it. The difference
between the average FOM and the uncertainty in the average
FOM is defined as the lower-bound of the FOM, FOML

FOML = �FOM� − ��FOM�. �10�

To use an abundance of caution, the FOML is used to ulti-
mately decide whether or not there is a statistically reliable
detection. Heuristically, if FOML is greater than 2, then we
conclude that there is a statistically reliable detection.

The FOML is calculated for detection attempts using dif-
ferent parameter values. In what follows, the FOML is plot-
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ted, using a contour plot, as a function of start time and stop
time parameters of the rectangular time-windowing function
applied to the sona �see Fig. 6�. These plots are done for a
given value of the F parameter used to amplify the sona.
Such plots are also annotated by the sensing technique that
was used to generate the FOML and also the location of the
perturbation that is being detected.

VI. RESULTS

A. Results of detection of perturbations at specified
locations

The experiments performed can be summarized as fol-
lows. Detection attempts were made using four different
sensing techniques at six different perturbation locations in
the stairwell, which are labeled A through F in Fig. 1. The six
perturbation locations are chosen to be representative of
short, medium, and long range detection both in a concealed
and nonconcealed sections of the stairwell with respect to the
sensor. Each of the detection attempts using each technique

were done using various parameter values. Particularly, the F
parameter, which controls the exponential amplification,
takes on values of 0, 1, or 2. The start time and stop time of
the windowing function each take on seven equally spaced
values ranging from 0 s to the time at which a typical sona’s
SNR becomes 1, which is roughly 0.7 s. Therefore, there are
�7��7−1�� /2=21 plausible pairs of start time and stop time
values that constitute a rectangular sona windowing function
of nonzero time width.

The FOML �Eq. �10��, which is a function of start time
and stop time, is plotted as a contour plot for a specified F
value, sensing technique and perturbation location. In such
contour plots, only the lower right triangle of the plane is
used. Overall, since there are six perturbation locations, four
sensing techniques, and three F-values, there are 72 such
contour plots for the set of experiments carried out. In this
results section, a select group of these plots, which illustrate
general trends, will be presented. A table that summarizes all
the results is also included �see Table I�. Given a perturbation
location and sensing technique, the table shows the maxi-

FIG. 6. �Color online� Contour plots of the lower bound
on the FOM �FOML� as a function of start time and stop
time parameters of the rectangular time windowing
function applied to the sona. The plots show detection
attempts at perturbation location A �indicated in Fig. 1�
using F=0. �a� FOML for CTRS1, �b� FOML for
CTRS2, �c� FOML for SCC, �d� FOML for SMI.

TABLE I. The maximum FOML over all the parameter values tried is shown for each of the four sensing
techniques detecting a perturbation at each of the six perturbation locations indicated in Fig. 1. In addition, the
percentage of parameter values which gave a FOML that is greater than 2 is also shown.

Sensing technique

Perturbation location as indicated in Fig. 1

A B C D E F

CTRS1 Maximum FOML value 28.9 24.6 17.8 16.0 20.1 9.9
% of FOML value 
2 97% 81% 73% 71% 67% 46%

CTRS2 Maximum FOML value 21.7 18.0 9.9 11.5 13.1 5.8
% of FOML value 
2 90% 63% 67% 32% 48% 13%

SCC Maximum FOML value 32.7 33.1 33.1 22.3 30.2 7.9
% of FOML value 
2 100% 95% 87% 78% 87% 24%

SMI Maximum FOML value 8.3 11.2 12 8.3 15.2 3.5
% of FOML value 
2 76% 71% 89% 54% 76% 6%
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mum FOML value over all parameter values tried in these
experiments. The table also shows the percentage of param-
eter values that gave a FOML greater than 2, which is a
conservative estimate of statistically reliable detection. The
table gives an overall sense of the effectiveness of the sens-
ing techniques, because it presents their performance in de-
tecting perturbations at different ranges from the sensor.

In Fig. 6, the FOML is plotted for detection attempts at
perturbation location A �shown in Fig. 1� without exponential
amplification of the sona �i.e., F=0�. Figures 6�a�–6�d� dem-
onstrate that the techniques of CTRS1, CTRS2, SCC, and
SMI, respectively, allow for a short range and nonconcealed
perturbation detection over a wide range of parameter values
�i.e., FOML is greater than 2 for a large number of rectangu-
lar windowing functions�. The SMI technique has relatively
smaller FOML values compared to the other techniques.
Overall, all the sensing techniques work without the need for
exponential amplification and windowing of the sona when
the perturbation is in the vicinity of the sensor.

Here, Fig. 6�c� illustrates the connection between the
calculations of the SCC technique and the traditional SF,23–27

which has inspired the SCC technique. In Fig. 6�c�, there is
no exponential amplification �i.e., F=0�. Therefore, the
FOML values plotted near the diagonal-line of the start-time
stop-time contour plane essentially come from a set of ISCC

values which can be plotted as SF versus time of the baseline
and perturbed sona signals being compared. We see that the
optimal parameter region in Fig. 6�c� is not near the
diagonal-line of the contour plane; thus, the generalized SCC
technique does indeed offer greater flexibility with its three
adjustable parameters �start-time, stop-time, and F�, espe-
cially for perturbations that are further from the sensor,
and/or hidden.

The need to process the sona comes into play when a
medium or long range detection is attempted. In Fig. 7, the
results of long range detection at concealed perturbation lo-
cation F �see Fig. 1� are presented. The FOML for the CTRS1
technique is plotted with F=0, F=1, and F=2 in Figs.
7�a�–7�c�, respectively. In contrast to Fig. 6�a� �which shows
results for short range detection by CTRS1 with F=0�, a
smaller set of windowing parameters allow long range detec-
tion by CTRS1 with F=0. Therefore, successful long range
detection demands a judicious choice of windowing param-
eters with F=0. If there is an exponential amplification with
F=1 or 2, there is, in this case, a slightly larger set of win-
dowing parameters that can be used to do long range detec-
tion. However, as can be seen in Fig. 7, the right choice of
the windowing parameters is more important in doing long
range and concealed detection using CTRS1 than the value
of F; this is also generally true for the CTRS2 and SCC. In
general, the percentage of parameter values that allow detec-
tion decreases as the perturbation location gets farther away
from the sensor, as seen in Table I.

The possibility of associating a set of optimal detection
parameter values with detection of a perturbation at a par-
ticular location was investigated next. In general, as the per-
turbation location is farther away from the sensor, the opti-
mal detection parameters space either shrinks and/or moves

to the upper right corner of the “start time—stop time plane.”
Figure 8 illustrates this phenomena for the case of short,
medium and long range detection attempts at perturbation
locations A, C, and E �see Fig. 1�, respectively, by the SCC.
The broad swath of parameter space that is optimal for de-
tection at short range �see Fig. 8�a�� shrinks as the perturba-
tion location moves farther away from the sensor �see Figs.
8�b� and 8�c��; it also moves to the upper right corner of the
plane in this case. Even though this is a consequence of the
fact that the waves that bounced off the farthest perturbation
location take a longer time to get back to the sensor, it is not
a trivial consequence as there are multiple reflections of all
the waves within the cavity.

FIG. 7. �Color online� Contour plots of the lower bound on the FOM
�FOML� as a function of start time and stop time parameters of the rectan-
gular windowing function applied to the sona. �a� Long range detection at
location F, indicated in Fig. 1, using CTRS1 with F=0, �b� long range
detection at location F using CTRS1 with F=1, �c� long range detection at
location F using CTRS1 with F=2.
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B. Results on detection of perturbations of the
medium of wave propagation in the cavity

So far, the results of experiments which involve detec-
tion of perturbations at six different locations in the stairwell,
illustrated in Fig. 1, are presented. Such perturbations essen-
tially change the boundary conditions of the cavity at a lo-
calized region. A different kind of perturbation involves per-
turbation of the medium of wave propagation in the cavity:
for example, creating air currents will perturb acoustic wave

propagation. Such perturbations naturally start out locally
and may spread out throughout the medium filling the cavity
in a complex manner. This motivates yet another kind of
perturbation to the cavity which is global in nature. As a
significant amount of time elapses, both the boundaries of
the cavity and the medium within may undergo complex and
spatially extensive changes due to uncontrollable thermal
variations �giving rise to convection currents, for example�.
Next, we present the results of experiments which investigate
the possibility of detecting a relatively localized perturbation
to the medium of wave propagation in the cavity, and also a
global perturbation to the cavity.

The medium of wave propagation in the stairwell is per-
turbed by remotely activating a fan which is stationed inside
the stairwell about 2 m away from the sensor. The air cur-
rents induce a phase shift, ��, in the sound waves that pass
through the part of the cavity in which the air is perturbed

�� 	
�v
v

kLpath. �11�

Here, v is the speed of sound, �v is the speed of the wind, k
is the wave number of the sound wave, and Lpath is a typical
path length of travel of the sound wave through the moving
air. Taking v=343 m /s, �v=2 m /s, k=2� /5 cm, Lpath

=1 m, gives ��=0.23�. Such a significant phase shift de-
grades the reconstruction of the time reversed pulse during
the operation of the CTRS. This is because the coherent su-
perposition of the time reversed sona is thwarted due to the
phase shift that waves, which pass through the moving air,
experience.

The following experiment is done to study the detect-
ability of perturbations of the medium of wave propagation
by CTRS1. A pulse is broadcast into a quiescent stairwell,
and a sona is collected. The time reversed sona is then peri-
odically broadcast into the stairwell 30 times over 9 min. The
resulting time reversed reconstructed pulses are saved. Then,
the air in the cavity is perturbed by remotely activating a
mechanical fan for 15 s; the fan had been stationed inside the
stairwell in the vicinity of the sensor. After the fan is turned
off, the time reversed sona is broadcast into the stairwell 30
more times over 9 min. The resulting 30 additional recon-
structed pulses are also saved. In this experiment, the very
first time reversed reconstructed pulse is considered as a
BRP. All the other pulses are considered as a PRP. Then, the
indicator value of perturbation for CTRS1, ICTRS1, �Eq. �5��
is constructed for each of the 59 PRP, BRP pairings. Finally,
ICTRS1 is plotted versus time as shown in Fig. 9.

Figures 9�a�–9�c� show the cases when the sona is expo-
nentially amplified with parameter F=0, F=1, and F=2, re-
spectively. In all cases, the sonas are windowed with start
time=0 s and stop time=0.3 s. From Fig. 9, it is clear when
the medium perturbation occurred �i.e., halfway in the dis-
played time axis between index 30 and 31�. The dynamic
nature of the perturbation is exhibited in the plots because
the ICTRS1 increases as the air currents damp out and the
perturbation in the vicinity of the sensor relaxes. In Fig. 9�a�,
there is no exponential amplification, hence the dynamic per-
turbation is no longer sensed after about 3 min, which is
roughly the time that it takes for the air in the vicinity of the

FIG. 8. �Color online� Contour plots of the lower bound on the FOM
�FOML� as a function of start time and stop time parameters of the rectan-
gular windowing function applied to the sona. In all plots, an exponential
amplification of F=1 is applied to the sona. The three plots shown here
show detection attempts at different locations of perturbations illustrated in
Fig. 1. �a� short range detection at location A, �b� medium range detection at
location C, �c� long range detection at location E.
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sensor to calm down. The ICTRS1 indicator ends up with a
smaller static value after 3 min in Fig. 9�a� in part because
after the fan is activated its blades took on a different posi-
tion, which by itself is a static perturbation. However, if there
is exponential amplification, ICTRS1 changes nonmonotoni-
cally as shown in Figs. 9�b� and 9�c�, because the sensor is
now sensitive to what happens farther out, both from the fan
and the sensor. In other words, the medium of wave propa-
gation perturbation eventually spreads out in the cavity ini-
tiating a more global perturbation. In the next sub-section,
global perturbations are studied in detail.

To summarize, the general results presented in this sub-
section based on the CTRS1 technique are also observed in
the other three techniques. It is also important to note the
practical implication of these results. The medium of wave
propagation can be perturbed in a variety of circumstances of
interest. For instance: the dynamic nature of these perturba-
tions means that one can verify that a cavity had been per-
turbed by a fast moving object even after the object has left
the cavity, based solely on the air turbulence the fast moving
object induced.

C. Results on detection of global perturbations to the
cavity

Experimentally inducing a uniform global perturbation
to a cavity is not simple. A possible global perturbation is to
allow the boundaries of the stairwell and its medium to un-
dergo thermal changes through time. If sufficient time
elapses, three sides of the stairwell are exposed to the outside
environment, and undergo some thermal changes that ap-
proximate global perturbations.

The procedure of the global perturbation experiment in
the stairwell is very similar to the procedure of the experi-
ments performed to detect perturbations at the six locations

illustrated in Fig. 1. The perturbation simply involves allow-
ing about 2 h to elapse in between collection of baseline and
perturbed sonas �time reversed pulses�.

First, the same set of parameter values and techniques
are used to analyze this global perturbation as in the case of
the six local perturbations discussed in Sec. VI A. The results
are summarized in Table II. The table presents results for
each of the three different exponential amplification param-
eter F values used �0, 1, and 2� separately.

From Table II, it is seen that global perturbations can be
detected by almost any of the windowing parameters tried.
This supports the intuition that the effect of global perturba-
tions leaves a signature throughout the sona signals. This
raises the following question. Are global perturbations de-
tected best when exponential amplification is applied to ap-
proximate the nondissipative case?

If the answer is yes, then it is expected that F=1 is
optimum for the SCC technique and F=2 is optimum for the
CTRS1 and CTRS2 techniques. This hypothesis is tested by
repeating the experiment discussed above using a different
set of parameter values. Here, F values ranging from 0 to 3
with increment of 0.1 are used �as opposed to using just F
=0, 1, and 2�. On the other hand, no windowing is applied to
the sona to simplify the experiment. As shown in Fig. 10, the
FOML has a maximum around F=1 and 2 for SCC and

FIG. 9. �Color online� Indicator values of perturbation for CTRS1, ICTRS1,
vs measurement number �approximately 18 s elapse between each measure-
ment�. Halfway in the displayed time interval, a mechanical fan is briefly
activated in the stairwell perturbing the medium of wave propagation. Each
of the plots correspond to cases in which the sona is exponentially amplified
by different F values. In all cases, the sonas are windowed with start time
=0 s and stop time=0.3 s: �a� F=0, �b� F=1, and �c� F=2.

TABLE II. The maximum FOML over all the windowing parameter values
tried is shown for each of the four sensing techniques detecting a global
perturbation with a given value of the exponential amplification parameter F.
In addition, the corresponding percentage of windowing parameter values
which gave a FOML that is greater than 2 is also shown.

Sensing technique

Global perturbation

F=0 F=1 F=2

CTRS1 Maximum FOML value 12.5 13.0 33.0
% of FOML value 
2 100% 95% 90%

CTRS2 Maximum FOML value 15.2 12.3 23.0
% of FOML value 
2 100% 95% 90%

SCC Maximum FOML value 40.3 56.8 40.6
% of FOML value 
2 100% 100% 100%

SMI Maximum FOML value 13.8 5.1 3.1
% of FOML value 
2 95% 90% 38%

FIG. 10. �Color online� The lower bound on the FOM �FOML� vs the
exponential amplification parameter F for detection of global perturbation
using CTRS1, CTRS2, and SCC. The CTRS based techniques work best
when F is close to 2, and SCC works best when F is close to 1.
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CTRS2 �and also CTRS1� techniques, respectively. There-
fore, global perturbations are best detected by CTRS and
SCC when the sona is exponentially amplified to approxi-
mate the nondissipative case.

VII. DISCUSSION

The results summarized in Table I indicate that SCC,
CTRS1, and CTRS2 perform reliably in detecting perturba-
tions at different ranges. The SMI performs detection as well,
despite its relative weakness. The SCC has the highest FOML

across the board, which is its main advantage. However, the
SCC also has the broadest optimal parameter space, which
may be a disadvantage if one is interested in associating a
given perturbation location with a narrow distinct optimal
parameter space; such an association can be useful to local-
ize the perturbation.

Another shortcoming of the SCC, and also the SMI, is
their higher computational cost. The lower bound on the
computational resources needed to compare two sona signals
using the SCC or SMI roughly scales with the length of the
sona signals �see Eqs. �1�–�4��. Besides, it is important to
note that we have implemented the SMI by calculating the
mutual information with the so called “equidistant binning
estimator” technique which is the simplest method
computationally;32 if the SMI were to be implemented using
other more complicated “mutual information estimators,” its
higher computational cost would overshadow any other ben-
efits. This computational problem inherent in the SCC and
SMI methods can be mitigated only by considering narrow
windows of the sona signals. In contrast, the CTRS based
sensing techniques have a small fixed computational cost in
comparing the time reversed pulses regardless of the values
of the parameters used to process the sona. Particularly,
CTRS1 is the most computationally efficient sensing tech-
nique as it relies on a simple peak to peak amplitude mea-
surement of the reconstructed time reversed pulses. How-
ever, the CTRS requires analogizing and broadcasting a time
reversed sona signal.

It is worth emphasizing that the SCC technique is moti-
vated by the SF.23–27 As mentioned in Sec. IV A, the SCC
technique implicitly calculates the SF for the case of no ex-
ponential amplification �i.e., F=0� as long as a set of start-
time and stop-time windowing parameters are used which
effectively result in the sliding of a narrow rectangular-time-
window across the baseline and perturbed sona signals being
compared. Figure 11 shows the 25-realization-averaged SF
versus time measured for the six local perturbations illus-
trated in Fig. 1. The SF is simply calculated using Eqs. �1�
and �2� as follows: SF�t��= ISCC�t��, where t� is the middle of
the time-window formed by the parameters start-time and
stop-time, and where F=0.

It is clear that the SF decays the fastest for short-range
perturbations �i.e., perturbation locations A and B in Fig. 1�,
whereas the slowest SF decay is for the long-range and con-
cealed perturbation �i.e., perturbation location F�. When the
SF decay of concealed and nonconcealed perturbations that
are at about the same distance from the sensor is compared,
it turns out that nonconcealed perturbations �i.e., A, C, and

E� result in a faster SF decay. These results agree with our
earlier observations regarding the dependence of the opti-
mum parameter space �in the start-time stop-time contour
plane of the FOML� on the perturbation location; �i.e., long
range and concealed perturbations are detected better if we
look at the end of the sona.�

The exact mathematical equivalence between the quan-
tum mechanical quantities LE and quantum fidelity is not
quite replicated in their classical analogs developed here,
namely, the ICTRS2 and ISCC. It is important to note that the
overlap between the classical wave systems is done only at a
single point in space where the microphone is located; in
addition, there is dissipation in the classical system.

VIII. CONCLUSION

The direct analogy of the quantum mechanical concepts
of LE and quantum fidelity give rise to the sensing tech-
niques CTRS2 and SCC presented here. In addition, the
CTRS1 and the SMI techniques are developed in parallel.
The CTRS based techniques, which rely on a time reversal
mirror, offer a computationally cheap alternative to the SCC
and SMI techniques that are based on a more traditional
propagation comparison concept.

A systematic set of experiments are done to detect per-
turbations at six different locations in an enclosed stairwell
using these sensing techniques. The processing of the sona
signals by exponential amplification and time windowing al-
lowed long range detection at concealed locations in the cav-
ity; such detection endeavors would not have been possible
without such processing of the sona, especially the time win-
dowing. The optimal parameter space of the sensing tech-
niques is also seen to be related to the perturbation location.
Even though there may not be a one to one correspondence
between an optimal parameter space and a perturbation loca-
tion �which would enable exact localization of the perturba-
tion�, the current results indicate that one can at least rule out
candidate locations for a detected perturbation by looking at
the optimal parameter space found.

FIG. 11. �Color online� SF of sonas before and after a perturbation as a
function of time. The SF plotted here is averaged over 25 realizations. The
width of the time window over which the ISCC and hence the SF is computed
is 0.1 s. The six SF curves are labeled A through F; the labels correspond to
the locations of the perturbations illustrated in Fig. 1. For example, the
slowest decaying SF curve comes from sonas measured before and after
perturbing the cavity at location F in Fig. 1. The rates of fidelity decay are
generally indicative of the relative distance of the perturbations from the
sensor.
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In addition to detection of static boundary perturbations
at given locations, perturbations to the medium of wave
propagation are also shown to be detectable. Detection of
such perturbations opens up a wide range of applications. It
is also shown that by using exponential amplification of the
sona, one can see how the initially localized medium pertur-
bation spreads out into other parts of the cavity. The extreme
case of global perturbations, which can be experimentally
realized by allowing the cavity to undergo thermally induced
changes, is also investigated. It is shown that the global per-
turbations are detected best when the sona is exponentially
amplified to approximate the lossless case.
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