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Metamamterials are 1D, 2D or 3D arrays of artificial atoms. The artificial

atoms, called ”meta-atoms”, can be any component with tailorable electromagnetic

properties, such as resonators, LC circuits, nano particles, and so on. By design-

ing the properties of individual meta-atoms and the interaction created by putting

them in a lattice, one can create a metamaterial with intriguing properties not

found in nature. This thesis examines the meta-atoms based on radio frequency

superconducting quantum interference devices (rf-SQUIDs); their tunability with

dc magnetic field, rf magnetic field, and temperature are studied. The rf-SQUIDs

are superconducting split ring resonators in which the usual capacitance is supple-

mented with a Josephson junction, which introduces strong nonlinearity in the rf

properties. At relatively low rf magnetic field, a magnetic field tunability of the

resonant frequency of up to 80 THz/gauss by dc magnetic field is observed, and a

total frequency tunability of 100% is achieved.



The macroscopic quantum superconducting metamaterial also shows manip-

ulable self-induced broadband transparency due to a qualitatively novel nonlinear

mechanism that is different from conventional electromagnetically induced trans-

parency (EIT) or its classical analogs. A near complete disappearance of resonant

absorption under a range of applied rf flux is observed experimentally and explained

theoretically. The transparency comes from the intrinsic bi-stability and can be

tuned on/ off easily by altering rf and dc magnetic fields, temperature and history.

Hysteretic in situ 100% tunability of transparency paves the way for auto-cloaking

metamaterials, intensity dependent filters, and fast-tunable power limiters. An rf-

SQUID metamaterial is shown to have qualitatively the same behavior as a single

rf-SQUID with regards to dc flux, rf flux and temperature tuning.

The two-tone response of self-resonant rf-SQUID meta-atoms and metama-

terials is then studied here via intermodulation (IM) measurement over a broad

range of tone frequencies and tone powers. A sharp onset followed by a surprising

strongly suppressed IM region near the resonance is observed. This behavior can

be understood employing methods in nonlinear dynamics; the sharp onset, and the

gap of IM, are due to sudden state jumps during a beat of the two-tone sum input

signal. The theory predicts that the IM can be manipulated with tone power, center

frequency, frequency difference between the two tones, and temperature. This quan-

titative understanding potentially allows for the design of rf-SQUID metamaterials

with either very low or very high IM response.
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Chapter 1: Introduction

1.1 Metamaterials and Superconducting Metamaterials

Metamaterials are artificially structured media that are designed to have unique

electromagnetic properties which are not ordinarily found in nature. Metamateri-

als are composed of 1D, 2D, or 3D arrangements of artificial atoms the same way

the natural materials are composed of atoms. Those artificial atoms, also known

as meta-atoms, can be any element that has tailorable electromagnetic properties.

The most common meta-atoms are resonators, LC circuits, nano-particles and so

on. A schematic of a 2D metamaterial is shown in Fig. 1.1.

When the electromagnetic waves of a wavelength λ shine on the metamaterial

with a lattice constant a, and λ � a, the waves see the metamaterial as a single

effective medium instead of discrete elements. The electromagnetic properties of

a metamaterial arise from both the structure of individual meta-atoms and the

interactions between these elements, resulting in interesting collective behavior.

One of the most intriguing properties of a metamaterial is the capability of

negative index of refraction n < 0 [1] [2] [3]. It requires the metamaterial having

both a negative permeability µ and a negative permittivity ε. Natural materials

such as some ferrites reveal a negative permeability when responding to magnetic
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Figure 1.1: (a) An example of a 2D metamaterial made of meta-atoms (blue circles)
with a lattice constant a. (b) Materials with different values of permeability µ and
permittivity ε.

field. Metals respond to the external electric fields with a negative permittivity

below their plasma frequency. However, a material with both negative permeability

and permittivity is not found in nature.

A metamaterial with a negative refraction index can enable many novel appli-

cations. A straightforward consequence of the negative refraction index is a negative

refraction angle for a light ray propagating through a planar interface between pos-

itive and negative index media. As a light ray injects from a n1 (n1 > 0) medium

to a n2 medium with incidence angle θ1 (0◦ < θ1 < 90◦), the refraction angle θ2

satisfies (Fig. 1.2 (a)) :

sin θ1

sin θ2

=
n2

n1

according to Snell’s Law. If n2 < 0, the refraction angle θ2 is also negative, and the
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Figure 1.2: (a) The refraction at the interface between two media. The incident
light ray is in a medium of positive refraction index. (b) A flat lens built with a
medium with a refraction index of n = −1.

light ray bends backward after the interface, as plotted in Fig. 1.2. One can build

a flat lens utilizing the negative index property, especially if n2 = −n1, as shown in

Fig. 1.2. All light rays from the object on one side can be focused and imaged at

the other side of the flat lens.

The refraction index is of a material is

n =
√
µrεr

where µr and εr are the relative permeability and permittivity, respectively. The

permeability and the permittivity are usually complex numbers because of the loss

in a material. We can write µr = |µr|eα1 , εr = |εr|eα2 as complex numbers (0◦ <

α1, α2 < 180◦), and the refraction index becomes

n =
√
|µrεr|e(α1+α2)/2.
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Figure 1.3: The relative permeability µr (red), the relative permittivity εr (blue),
and the corresponding refraction index n (green) in the complex plane.

This relationship is plotted in the complex plane in Fig. 1.3. In order to get

a negative real part of the refraction index, the real parts of µr and εr must be

negative at the same time. An attractive case is a metamaterial with a refraction

index n = −1 for the lowest reflection at the interface of the metamaterial and air.

A metamaterial which couples to magnetic field in an eletromagnetic wave

is usually called a magnetic metamaterial, while an electric metamaterial mainly

interacts with the electric field. One approach to achieve negative refraction index

is to combine a magnetic metamaterial with a negative permeability and an electric

metamaterial with a negative permittivity.

A common form of a magnetic meta-atom is a conducting loop resonator,

which is diamagnetic according to Lenz’s law. The real part of the effective relative
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permeability of a metamaterial made with magnetic meta-atom can be written as

µr = 1− Fω2

ω2 − ω2
0

where F is the filling factor of the meta-atoms inside the effective medium, ω is

the drive frequency of the magnetic field, and ω0 is the resonant frequency. This

implies that as the drive frequency approaches the resonant frequency, the effective

permeability can become negative. A well-studied magnetic meta-atom is a split-

ring resonator (SRR), where the inductance and the capacitance come from the loop

and the gap, respectively.

The effective relative permittivity of a metallic medium is related to its plasma

frequency ωp

εr = 1−
ω2
p

ω2

where ω denotes the frequency of the electric field. Metals naturally have a negative

permittivity even in the visible because their plasma frequency is usually in the

ultraviolet frequency range, much higher than microwaves and visible light. Since

the ultra-violet plasma frequency is much higher than a typical drive frequency, the

metals generally have a very large negative permittivity.

The idea of an engineered electric metamaterial aims at bringing down the

plasma frequency to achieve a negative permittivity with a magnitude around unity

at the frequency of interest. One way is to build a sub-wavelength metal-wire

array, which effectively decreases the electron concentration in the medium thus
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contributing to a lower plasma frequency [4].

A negative refraction index metamaterial has been realized experimentally by

combining a SRR metamaterial with a metal-wire metamaterial [3]. The resonant

frequency of the SRR meta-atoms and the plasma frequency of the metal-wire meta-

material are designed to be at around the same frequency in the microwave frequency

range.

Other than the negative refraction index, a wide variety of properties and ap-

plications have been pursued using metamaterials, including super-resolution imag-

ing [5] [6], cloaking [7] [8], transformation optics [9] [10], and perfect absorption [11].

Many traditional metamaterials work only in a narrow range of frequencies.

The properties cannot be modified after the metamaterial has been fabricated. It is

therefore desirable to make them tunable and reconfigurable even after fabrication

[12]. Being able to tune the electromagnetic response over a wide range, and on short

time scales, is highly desirable for applications such as software-defined radio [13],

tunable antennas [14], and filters for digital rf receivers [15].

Adding nonlinear elements, such as diodes [16], into metamaterials facilitates

tunability, design flexibility, and self-induced nonlinear responses [14, 17], giving

rise to developments in metamaterial-based amplifiers [18, 19] , filters [20–22] and

antennas [23–25]. However, loss also arises from those nonlinear components.

Low attenuation is required for a metamaterial as the electromagnetic waves

pass through it. Even small amounts of loss suppresses features such as evanes-

cent wave amplification [26] and negative refraction [26–31]. For example, the en-

hanced loss in metamaterials approaching the plasmonic limit has imposed a se-
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vere limitation on visible-wavelength metamaterials composed of noble metal meta-

atoms [32–35].

Another issue with many metamaterials is that the meta-atom sizes often

approach the scale of the wavelength to minimize losses [24, 36]. A consequence

is that the electromagnetic properties of the collection of meta-atoms cannot be

interpreted as those of an effective medium. This has been an issue both in the

visible and in the microwave regime.

Superconducting metamaterials are low-loss, even when the meta-atoms are

built with very small size, thus solving the attenuation problem while staying in the

sub-wavelength regime [14,37,38]. Moreover, superconducting metamaterials are in-

trinsically nonlinear and tunable [14, 37, 38]. Many temperature tunable properties

in superconducting metamaterials have been explored based on the temperature de-

pendence of the superfluid density and thus the kinetic inductance [39–45]. However,

temperature tuning is generally too slow (on the scale of 10µs [46]) for a real-time

applications, due to large thermal inertia of the superconducting meta-atoms.

Superconducting metamaterials can be tuned by magnetic fields in a much

shorter time scale. Both dc and rf magnetic fields have been employed to tune the

properties of superconducting SRRs [47, 48], mainly through enhancing the induc-

tance either by the additional magnetic flux in the thin-film superconductors [47], or

by increased rf currents in the SRRs [47,49–53]. High rf power is also found to intro-

duce switchable electromagnetically-induced transparency behavior in a supercon-

ducting resonator [45]. However, the insertion of magnetic flux is often accompanied

by additional dissipation. The tuning range is also limited.
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The introduction of Josephson junction into superconducting meta-atoms of-

fers high speed, low dissipation and large tunability. Metamaterials employing the

Josephson effect will be discussed in the next section.

1.2 Superconducting Meta-Atoms Employing the Josephson Effect

The superconducting electrons in a superconductor can be described by a

macroscopic phase-coherent complex quantum pseudowave-function Ψ. The local

density of superconducting electrons ns is related to Ψ =
√
nse

iθ where θ denotes the

time and position-dependent phase of the wavefunction [54,55]. The phase coherence

of this wavefunction results from the underlying microscopic BCS (Bardeen, Cooper,

Schrieffer) wavefunction describing the Cooper pairing of all electrons in the metal.

A Josephson junction is two superconductors connected by a weak link, often

a very thin insulating barrier (Fig. 1.4), such that the Cooper pairs described by the

wavefunction can tunnel through the barrier [56] [54]. The current I through the

junction, and the voltage V across the junction, both depend on the gauge-invariant

phase difference δ(t) between the macroscopic quantun wavefunctions |Ψ1|eiθ1 and

|Ψ2|eiθ2 of the two superconductors

δ(t) = θ1(t)− θ2(t)− 2π

Φ0

∫ 2

1

~A(~r, t) · d~l, (1.1)

where ~A(~r, t) is the magnetic vector potential, Φ0 = h
2e
∼= 2.07 × 10−15 Tm2 is the

flux quantum (h is Planck’s constant and e is the electronic charge). The integral

is from superconductor 1 to superconductor 2.
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Figure 1.4: The schematic of a Josephson junction, a thin layer of insulator sand-
wiched between two superconductors.

The gauge-invariant phase difference δ(t) causes a dc superconducting current

I through the junction even in the absence of a dc voltage, according to the dc

Josephson effect,

I = Ic sin δ(t), (1.2)

where Ic is the critical current - the maximum superconducting current a Josephson

junction can support. The critical current depends on the area of the junction, as

well as the critical current density which increases as the temperature reduces [54].

When the gauge-invariant phase δ varies with time, the variation gives rise to

a voltage V across the junction (the ac Josephson effect):

dδ

dt
=

2π

Φ0

V, (1.3)

The voltage further causes an ac superconducting current in the tunneling barrier.

9



Figure 1.5: Schematic of (a) a single rf-SQUID meta-atom, and (b) a 2D rf-SQUID
metamaterial made of identical rf-SQUID meta-atoms.

The dynamics and properties of a metamaterial incorporating Josephson junctions

can thus be modulated by the gauge-invariant phase difference δ across the junction

[55] according to Eqs. (1.2) and (1.3).

In this thesis I will focus on tuning the gauge-invariance phase difference δ us-

ing the dc and rf magnetic fields in a magnetic meta-atom made of a single Josephson

junction interfered with a superconducting loop (Fig. 1.5 (a)), commonly known

as a radio-frequency Superconducting QUantum Interference Device (rf-SQUID). A

2D metamaterial composed of identical rf-SQUID meta-atoms is shown in Fig. 1.5

(b). The meta-atoms combine fluxoid quantization and Josephson effects, thus are

highly tunable and nonlinear.

The fluxoid quantization effect in a superconducting ring comes directly from

the phase factor of the macroscopic wavefunction Ψ = |Ψ|eiθ describing the super-

conductor. The single-valueness of Ψ requires that the phase difference ∆θ = 2nπ

10



(n is an integer) after going around a ring and return to the same location on any

path. This quantization condition requires that the fluxnoid Φ′ in a superconduct-

ing loop is also quantized as nΦ0. The total flux Φ in the superconducting loop is

equal to the fluxnoid Φ′ if the ring thickness is larger than the penetration depth of

the superconductor. Thus, the total magnetic flux in the superconducting loop is

limited to Φ = nΦ0 where n is an integer.

In an rf-SQUID, the closed superconducting loop is interfered with a Josephson

junction, and the flux quantization condition becomes [54]

Φ/Φ0 = δ/(2π) + n. (1.4)

Equation (1.4), plus Eqs. (1.2) and (1.3) suggest that the voltage across the junction,

and the current through the junction can by dramatically modulated by the magnetic

flux, and the response is nonlinear, and on the scale of Φ0 = 2.07 × 10−15 Tm2.

Extremely small magnetic flux is capable of tuning the properties of an rf-SQUID

meta-atom.

Rf-SQUID metamaterials combine the advantages of superconducting elec-

tronics and nonlinear metamaterials [14, 37, 38]. An rf-SQUID is the macroscopic

quantum version of a split ring resonator (SRR) with the gap capacitance in the SRR

replaced by a nonlinear Josephson junction. Basically, an rf-SQUID is a nonlinear

resonator with a manipulable resonant frequency and absorption that depend on the

dc and rf flux amplitudes, the temperature, and the drive signal history. The prop-

erties of rf-SQUID metamaterials have been studied intensively [14, 37, 38, 57–59],
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including the dc magnetic flux tunable resonant frequency [60–62], rf magnetic flux

tunable resonance strength [63, 64], and nonlinear dynamics in coupled rf-SQUID

meta-atoms [65–69].

Note that we are in the limit where the lattice constant a is much less than the

input wavelength (λ/a ≈ 80) such that the electro-magnetic wave sees the whole

metamaterial as an effective medium, as opposed to the other limit for photonic

crystals where the size and the lattice constant of the elements in an array are

comparable to the wavelength, giving rise to band-gap structures depending on the

periodicity and shape of the lattice.

Previous work reveals that rf-SQUID meta-atoms and metamaterials have a

resonant frequency tunability of up to 80THz/gauss by varying the dc magnetic

flux when the driving rf flux amplitude is low [60–62]. I studied the bistability of

rf-SQUID meta-atoms and metamaterials driven by intermediate rf flux amplitudes.

The bistability results in a lower resonant frequency and a nearly full disappear-

ance of resonant absorption (transparency). Such broadband transparency can be

switched on and off via drive frequency, signal amplitude, or dc flux hysteresis [64].

These properties offer a range of previously unattainable functionalities because the

rf-SQUID acts effectively as a three-terminal device. New applications include filters

and wide-band power limiters for direct-digitizing rf receivers [70], gain-modulated

antennas [71], rf pulse shaping for qubit manipulation, and tunable intensity-limiting

filters.

As data streams containing multi-frequency signals pass through these non-

linear components, they may generate intermodulation (IM) products via frequency

12



mixing [72]. The same issue appears in intrinsically nonlinear superconducting elec-

tronics. The IM between two input frequencies f1 and f2 leads to products at

frequencies pf1 ± qf2 (p and q are integers), forming side bands and additional

noise that could diminish the performance of superconducting devices [73–85]. On

the other hand, IM generation can be used as a diagnostic to determine various

types of defects in superconductors [86–89], to study unconventional superconduc-

tors [86,87,89–98], and to amplify microwave signals [85,99,100], even at the quan-

tum limit in Josephson parametric amplifiers [101,102] and Josephson metamateri-

als [18]. Therefore, IM is of research interest in wireless communication, nonlinear

metamaterials, as well as in superconducting electronics/materials and quantum

information processing. Extensive measurement and theory have been devoted to

IM in these fields [75, 83, 103–111]. The IM response of rf-SQUID meta-atoms and

metamaterial will thus be studied in this thesis.

In the following parts of the thesis, a detailed model of rf-SQUID meta-atoms

and metamaterials will be discussed (Chap. 2), followed by a description of our

experimental setup and the designs of the rf-SQUID metamaterials in Chap. 3. Ex-

perimental results and nonlinear simulation results on the transmission and tunable

resonance of the SQUID meta-atoms (metamaterials) will be presented in Chap.

4. In Chap. 5, several analytical models are used to explain the experimental and

simulation phenomena. Chapter 6 focuses on the two-tone excitation of rf-SQUID

meta-atoms and metamaterials. A two time-scale analysis is used to understand the

unique two-tone response observed in experiment. Finally, a summary and some

future works are presented in Chap. 7.

13



Chapter 2: Modeling of rf-SQUIDs

Radio Frequency SQUIDs are the macroscopic quantum version of the com-

monly employed Split Ring Resonator (SRRs) in the metamaterial community in

that the gap capacitor in the SRR is replaced with a nonlinear Josephson junction

(JJ).

The Josephson junction enables various applications in superconducting cir-

cuits as well as quantum computing using superconducting qubits. The uniqueness

of the JJ comes from the macroscopic quantum gauge-invariant phase difference

across the junction δ, which determines the current through the junction I = Ic sin δ.

Moreover the time-dependence of the phase difference is related to the voltage over

the junction V = (h̄/2e)dδ/dt. Ic is the critical current (maximum current that

can flow through the junction in the zero-resistance state) of the junction, which

is determined by the area and quality of the junction. h̄ is the Planck’s constant

divided by 2π. We model an rf-SQUID as a Resistively and Capacitively Shunted

Josephson Junction (RCSJ-model) coupled to the superconducting loop inductance

(see Fig. 2.1).
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Figure 2.1: Circuit diagram of the rf-SQUID modeled as an RCSJ coupled to loop
inductance L.

In an rf-SQUID, δ is related to the total magnetic flux via

δ = 2πΦtot/Φ0 + 2nπ, (2.1)

where n is an integer, Φ0 = 2.07 × 10−15 Tm2 is the quantum magnetic flux. The

voltage across the junction results from a change in the magnetic flux Φtot, and can

be written as

V =
Φ0

2π

dδ

dt
.

Here we can take n to be 0 without loss of generality as shifting δ by 2π leaves the

current I and the voltage V unchanged [56].

The total magnetic flux through the loop Φtot is determined by the applied

flux,

Φtot = Φa − LI.

Here Φa is the applied magnetic flux, I is the total current through the loop, which

flows through the parallel combination of the junction, shunt resistance R and ca-

pacitance C in the RCSJ model. One can rewrite this relation in terms of phases,
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and obtain the dimensionless equation

δ = φa −
2πLI

Φ0

= φa − βrfI/Ic, (2.2)

where φa = 2πΦa/Φ0 is the dimensionless applied flux, usually made up of a dc

flux φdc and an rf flux φrf . The quantity βrf = 2πLIc/Φ0 determines the rela-

tionship between the applied flux and the Josephson phase. Note here that some

researchers employ the notation βL instead of βrf . Another quantity β = βrf/2π is

also frequently used in works related to SQUIDs.

2.1 Small RF Flux Approximation

When the applied rf flux φrf is extremely small, the time dependent part of δ

should oscillate very weakly, i.e., dδ/dt → 0. Several approximations can be made

to simplify the model.

2.1.1 Effective Josephson Inductance

If the driving rf flux is very small, we can define an effective inductance for

the Josephson junction by requiring V = LJJdI/dt [56], with

LJJ =
Φ0

2πIc cos δ
. (2.3)

We get a nonlinear inductance which is inversely related to cos δ where Φ0 = h/2e =

2.068 × 10−15 Wb is the magnetic flux quantum, a combination of fundamental
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Figure 2.2: The Josephson inductance LJJ as a function of the gauge invariant
phase δ. The critical current Ic here is taken as 0.8 µA, a typical value in our
SQUID design.

physical constants: the Planck constant h and the electron charge e. Note that

the quantity βrf = 2πLIc/Φ0 = L/|LJJ |min introduced earlier in Eq. 2.2 is also

the ratio of the loop inductance L to the minimum absolute value of the Josephson

inductance in the SQUID.

Figure 2.2 is a plot of LJJ versus δ according to Eq. 2.3. The inductance is

tuned by δ through both positive and negative values: LJJ ≤ −Φ0/(2πIc) or LJJ ≥

Φ0/(2πIc). Once the gauge-invariant phase δ across the junction is modulated, the

self-resonant frequency of an rf-SQUID would be tuned through LJJ according to

equation (2.4).

The resonant frequency of the lumped RLC circuit for an rf-SQUID is written

as

f0 =
1

2π

√(
1
L

+ 1
LJJ

)−1

C

, (2.4)
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2.1.2 Stationary State

When φrf → 0 and dδ/dt→ 0, the SQUID is in a stationary state. The applied

flux is equal to the dc flux, and the current through the junction just I = Ic sin δ.

Equation (2.2) becomes

δ = φdc − βrf sin δ. (2.5)

The sin δ nonlinearity brings in interesting behavior for solutions of Eq. (2.5).

In particular, the question of whether the δ− φdc function is single-valued or multi-

valued depends on the value of βrf . The critical value is βrf = 1. Figure 2.3 shows

the solution to Eq. (2.5) as the βrf is below (red curve), equal (black curve), and

above unity (blue curve).

If βrf < 1, the function is single-valued: For one dc flux value there is only

one stable solution for δ. Note also that all the curves for βrf < 1 have crossings at

dc flux Φdc at integer numbers and half integer numbers of quantum flux. At these

crossings δ = φdc = mπ/2 and m is an integer.

For βrf above unity however, each dc flux value corresponds to multiple pos-

sible solutions for δ; some of the solutions are not stable (dashed segments of the

blue line in Fig. 2.3). The value of δ under certain dc flux is hysteretic, depending

on the history and the scanning direction of dc magnetic field. The hysteresis in dc

flux may introduce chaotic behavior in SQUIDs when the rf flux amplitude is not

negligible [112]. So in our work we design our SQUIDs to be non-hysteretic in terms

of the dc flux, i.e., βrf < 1.
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Figure 2.3: The relationship between δ and φdc when βrf is 0.2 (red curve), 1.0
(black curve), and 9.0 (blue curve).
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Figure 2.4: (a) The Josephson inductance LJJ as a function of dc flux. (b) The
resonant frequency of an rf-SQUID when the junction is modeled using the simple
RSCJ model and the Josephson junction is modeled as a tunable inductance. The
critical current Ic is 0.8 µA, βrf = 0.6, inductance L = 0.24 nH, geometrical resonant
frequency fgeo = 16.6 GHz, and capacitance C = 0.4 pF.

Remember that LJJ = Φ0/(2πIc cos δ) 2.3. From the above discussions of Eq.

(2.5) for βrf < 1, we achieve the following conclusions: when φdc/2π = 0,±1,±2, ...,

cos δ = 1 and LJJ = Φ0/(2πIc); as φdc/2π = ±1/2,±3/2, ..., cos δ = −1 and

LJJ = −Φ0/(2πIc). We plot LJJ for a junction embedded in an rf-SQUID as a

function of perpendicular dc flux in Fig. 2.4 (a).

The self-resonant frequency of an rf-SQUID incorporating the JJ will then

be tuned with dc flux, as shown in Fig. 2.4 (b). We write the tunable resonant

frequency of the rf-SQUID f0 in terms of the geometrical resonant frequency fgeo =

1/(2π
√
LC),

f0 =
1

2π

√(
1
L

+ 1
LJJ

)−1

C

= fgeo

√
1 +

L

LJJ
.

At zero dc flux, L/LJJ=2πLIc/Φ0 = βrf ; the resonant frequency has the

maximum value f0,max. At Φdc/Φ0 = φdc/2π = 1/2, the ratio L/LJJ=−2πLIc/Φ0 =

−βrf ; the resonant frequency is at minimum f0,min. The resonant frequency is

periodic with dc flux Φdc with a periodicity of Φ0.
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f0,max = fgeo
√

1 + βrf (2.6)

f0,min = fgeo
√

1− βrf (2.7)

To get maximum tunability, we usually design our SQUID samples to have a

near unity value of βrf . The theoretically predicted minimum resonant frequency

is thus close to DC, out of our microwave measurement frequency range because

our measurements are performed inside a single-conductor waveguide with a finite

non-zero cutoff frequency. In the experiment we measure f0,max as well as fgeo; this

is how we estimate the quantity βrf for our SQUID, and compare with the nominal

design value.

2.2 Full Nonlinear Numerical Calculation

Next we consider the most general case where the applied magnetic flux Φa

is composed of a dc flux Φdc and an rf flux Φrf,a(t). Here we assume the rf flux

is in the form of Φrf,a(t) = Φrf sinωt where ω is the driving frequency and Φrf is

the amplitude of the rf magnetic flux. The current I in the loop flows through the

junction, the shunt resistance R and the capacitance C in the RCSJ model (see Fig.

2.1): I = Ic sin δ+V/R+CdV /dt . We replace these terms in Eq. (2.1), and obtain:

Φtot = Φdc + Φrf sinωt− L(Ic sin δ +
V

R
+ C

dV

dt
) (2.8)
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Substituting Φtot with Φ0δ/2π and V with (h̄/2e)dδ/dt into equation (2.8) and

rearranging terms, we arrive at the dimensionless equation:

d2δ

dτ 2
+

1

Q

dδ

dτ
+ δ + βrf sin δ = (φdc + φrf sin Ωτ) (2.9)

where φdc = 2πΦdc/Φ0 and φrf = 2πΦrf/Φ0 are the applied dimensionless dc flux

and rf flux, ωgeo = 2πfgeo = 1/
√
LC is the geometrical frequency, Ω = ω/ωgeo, τ =

ωgeot, Q = R
√
C/L is the quality factor of the SQUID that reflects the dissipation,

and βrf = 2πLIc/Φ0 is the coefficient determining the degree of nonlinearity and

tunability in an rf-SQUID.

An array of N coupled rf-SQUIDs can be described as a system of coupled

nonlinear differential equations [113]:

δ̂ + ¯̄λ(
d2δ̂

dτ 2
+

1

Q

dδ̂

dτ
+ δ̂ + βrf sin δ̂) = φ̂dc + φ̂rf sin Ωτ (2.10)

where δ̂ is an N -element vector describing the gauge-invariant phases of the N rf-

SQUIDs, φ̂dc and φ̂rf are N -element vectors denoting the non-dimensional dc flux

and rf flux applied to each rf-SQUID respectively, ¯̄λ is an N × N coupling matrix

determining the interactions between the meta-atoms [113]. More details of the array

behavior can be found in my colleague’s work [113]. In this work we mainly consider

the weakly coupled and uniformly driven SQUID array, which can be modeled as a

single Josephson junction RCSJ model.

We solve equation (2.9) (or equation (2.10) for an array) numerically to deter-
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Figure 2.5: (a) Schematic for measuring the transmission of the SQUID meta-atoms
and metamaterials inside a rectangular waveguide. (b) The analog for the exper-
imental setup that treats the SQUID meta-atoms or metamaterials as an effective
medium with length l and effective permeability µr inside a waveguide.

mine δ(τ) in steady state. The δ(τ) also has a dc component and an rf component.

To obtain the resonant performance of the SQUID meta-atoms and metama-

terials, we measure the resonant frequency and the resonance of our SQUID meta-

atoms and metamaterial using the setup in Fig. 2.5 (a). The SQUID meta-atom or

metamaterial is positioned in a rectangular waveguide (either X, Ku, or K-band),

orientated so that the rf magnetic field of the propagating wave is perpendicular to

the SQUID loops (Fig. 2.5 (a)).

As the SQUID meta-atoms are on resonance, they absorb energy traveling

through the waveguide, thus the transmission S21 as a function of frequency will

show a dip at the resonant frequency. We calculate S21 of this setup by treating

the SQUID meta-atoms or metamaterials as an effective medium with length l and
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effective relative permeability µr inserted into the waveguide (Fig. 2.5 (b)), and

calculate the S-parameters.

We calculate the effective permeability µr of a meta-atom (or a metamate-

rial) using the rf component. Consider the SQUID as an effective medium with an

effective relative permeability, µr [60] [114], we find

µr = 1 + F

(〈
Φac

Φrf sinωt

〉
− 1

)
, (2.11)

where Φac is the rf flux response of the loop, the angle brackets represent time

averaging, and F is the filling fraction of the SQUID in the medium [65] [115]. The

transmission and reflection through a partially filled rectangular waveguide with

the rf-SQUID medium can be calculated and compared to experiment [62]. The

transmission S21 is proportional to the ratio of the transmitted electric field, ET , to

the incident field E0, and can be calculated using the continuity of E and H fields

at the boundaries of the effective medium and the empty waveguide as

S21 =
√
γ
ET
E0

=

√
γ

cos kl − i
2

(
1
γ

+ γ
)

sin kl
, (2.12)

where l is the effective length of the medium, γ = k/(µrk0), k =
√
µr (ω/c)2 − (π/a)2

is the wave number in the medium, and k0 = k(µr = 1) is the wave number in the

empty waveguide.
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Chapter 3: Experiment Setup and Sample Designs

3.1 Fabrication and Design of SQUID Meta-atoms and Metamateri-

als

The 3D structure of a single rf-SQUID design is shown in Fig. 3.1 (a) . Two

dimensional metamaterials were constructed by positioning rf-SQUID meta-atoms

in a square grid array on a planar substrate. Two Nb films (135 nm and 300 nm

thick) connected by a via and a Josephson junction make up the superconducting

loop with geometrical inductance L. The capacitance C has two parts: the overlap

between two layers of Nb with SiO2 dielectric in between, and the Josephson junction

intrinsic capacitance.

The single rf-SQUID meta-atoms the metamaterials were fabricated by Hypres

Inc. in Elmsford, New York. The meta-atom has a superconducting transition

temperature Tc = 9.2 K. We plot the layout for one of our SQUIDs in Xic Graphical

Editor [116] and label each layer in Fig. 3.1 (b). The inset blows up the Josephson

junction area. There are through holes in the two Nb layers designed to prevent

vortices from moving around. According to our experimental results, this might not

be a good idea because these holes would trap magnetic flux, which may be the
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Figure 3.1: (a) The 3D structure of a single rf-SQUID. The distance between the
two niobium layers is exaggerated to show the overlap capacitance. (b) The mask
layout of (a). (c) The chip cross-section at the junction looking into the x-axis of
(a). The gray areas represent the niobium films, the blue area denotes the SiO2

dielectric layer. The red area is the Josephson junction. The layers are labeled by
their mask names respectively.
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reason we usually see an offset in the dc magnetic field. Figure 3.1 (c) shows the

chip cross-section at the junction looking into the x-axis of Fig. 3.1(a).

The fabrication process is composed of several main procedures: 1) the first

layer of niobium film M1 (135 nm) is deposited and etched to the designed shape;

2) the Josephson junction layer I1A (50 nm) is defined and fabricated using Hypres

0.3 µA/µm2 Nb/AlOx/Nb junction process; 3) the dielectric layer SiO2 (200 nm) is

deposited to separate and isolate Nb layers, and then etched to form the via (I1B)

between M1 and M2, and the through holes from M2 to the junction; 4) the second

Nb layer M2 (300 nm) is deposited and etched according to the design. Both M1

and M2 layers have a penetration depth of λ = 90 nm [117]. After these processes

a layer of SiO2 material is deposited on top of the whole chip to protect the device

from oxidization and damage. The details of the process flow and properties of each

layer in designing our SQUIDs are shown in Table 3.1 and Table 3.2.

Note that the Nb ground plane utilized in the standard Hypres process will

affect our SQUIDs’ properties and we need to get rid of it. We define the area of

layers M0 and I0 to cover the whole chip (see chip layout Fig. 3.2) so that they

would be developed away through lithography process since the mask polarity of the

two layers are negative. The resistance layers and contact pads (not shown in Table

3.1 and 3.2) are not used in our design; details of them can be find in the Hypres

website [117].

The rf-SQUIDs are designed to be low-noise (Γ = 2πkBT
Φ0Ic

< 1 where T is the

temperature and Ic is the critical current in the Josephson junction, and LF =

1
kBT

(
Φ0

2π

)2
>> L [118]) and non-hysteretic (βrf = 2πLIc

Φ0
< 1).
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Table 3.1: Selected Hypres Niobium Process Flow Overview

Layer Description Mask polarity

Nb deposition

M0 holes in Nb ground plane -

SiO2 deposition

I0 via between M1 and ground plane -

Nb/AlOx/Nb trilayer deposition

I1A Counter-electrode (junction area) definition. +

Base electrode anodization

A1 Anodization layer patterning +

M1 Quad-layer base electrode patterning +

SiO2 deposition

I1B Contact (via) between M2 and (I1A, or M1) -

M2 M2 layer patterning +

SiO2 deposition

Table 3.2: Selected Physical Layer Process Specifications

Layer Material layer properties thickness (nm)

M1 Nb Base electrode. Penetration depth λL = 90nm 135±10

I1A AlOx/Nb Trilayer counter electrode and tunnel barrier 50±5

A1 Nb2O5 Insulation on M1 surrounding I1A 40±5

SiO2 Insulator. Capacitance: 0.42 fF/µm2 ± 20 % 100±10

SiO2 Insulator. Capacitance: 0.42 fF/µm2 ± 20 % 100±10

I1B Contact hole through the above two SiO2 layers

M2 Nb Penetration depth λL = 90nm ± 5 % 300±20

SiO2 Insulator. Capacitance: 0.08 fF/µm2 ± 20 % 500±40
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Figure 3.2: The layouts of the SQUID chips we designed and had fabricated at
Hypres. The white areas represent the Silicon substrate and the top SiO2 protection
layer. The green and red areas denote the M2 and M1 layers, respectively.

There are additional constraints when we design the samples. First of all, the

SQUIDs should operate around 10 - 20 GHz to meet the frequency requirement for

the Hypers next generation wireless communication system. Thus all the designs

have geometrical resonant frequency fgeo = 1/(2π
√
LC) inside this frequency range

of 10 - 20 GHz. We also hope to get maximum tunability by dc flux without going

into the hysteretic regime, by demanding βrf = 2πLIc/Φ0 < 1 but close to unity.

We designed 16 distinct single SQUIDs, each has a different value of fgeo as

well as a different size. The layouts shown in Fig. 3.2 are drawn in Xic Graphical

Editor [116]. We design two chips both of 5mm×5mm; one is for individual SQUIDs,

and one has four arrays of SQUIDs. The two chips are separated by 150 µm for

dicing required by Hypres design rules. Four arrays (27× 27, 6× 6, 11× 11, 2× 2)
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are composed of identical SQUIDs meta-atoms that are labeled by red and black

dashed boxes in Fig. 3.2. The SQUID in the black dashed box is the only single

SQUID meta-atom we measured. Results in the following chapters on the single

SQUID meta-atom comes from this design. The optical image of this SQUID is

shown in Fig. 3.3 (a). The detailed parameters of the individual SQUIDs in Fig.

3.2 can be found in Anlage group backup space.

The inner radius ri and the outer radius ro of the superconducting loop de-

termines its self magnetic inductance L at a fixed temperature. The penetration

depth λ obeys λ < d/2 (d is the thickness of the superconducting films) for the

M2 layer. For the M1 layer, λ > d/2, but the two-dimensional screening length

2λ2/d << ri. So we can assume that on the superconducting surfaces, the normal

component of the magnetic induction is zero [119]. A consequence is that the su-

perconductor has inverse-square-root singularities in the sheet-current distribution

at the edges, which leads to a simple expression for the inductance of the thin-film

superconducting ring [119]

L = µ0ro[
ri
ro
− 0.197(

ri
ro

)2 − 0.031(
ri
ro

)6 + (1 +
ri
ro

) tanh−1 ri
ro

].

Here ri and ro are in units of meters, µ0 = 1.26 × 10−6 H/m is the permeability of

free space, and the inductance is in units of Henry.

I also calculate the kinetic inductance of the superconducting ring according to

Ref. [120], and find it is almost 5 orders of magnitude less than the self-inductance at

temperature below the critical temperature Tc of the superconducting film (9.2 K).
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The kinetic inductance starts to play a role only when the temperature is close to

the critical temperature. Our base temperature of the cryostat is 4.6 K; the kinetic

inductance is thus neglected in our design.

We will use the size of the loop (or the inductance L), the βrf , and fgeo to

complete the design of the junction and the capacitance. Knowing βrf = 2πLIc/Φ0

and L gives the value of critical current Ic through the junction, and further the

area of the junction AJJ since the critical current density in the Hypres process is

0.3 µA/µm2. The Josephson capacitance is then:

CJJ =
1

24.7− 2.0 ln jc
× AJJ ,

where AJJ is the junction area in units of µm2, jc is in units of µA/µm2, and CJJ

is in units of pF.

The total capacitance C can be obtained from the values of the geometrical

resonance fgeo, and the inductance L. The Josephson capacitance CJJ and the

overlap capacitance Co (from the SiO2 layer sandwiched by two Nb layers) are in

parallel, so C = CJJ + Co. According to Hypres fabrication design rules,

Co = 0.42Ao.

Here, Ao is the the overlap area in units of µm2, and Co are in units of fF. Thus the

overlap area Ao of the two Nb layers can be also derived.

Two examples of our sample designs are discussed here. Figure 3.3 shows the
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Figure 3.3: The optical images of (a) the single rf-SQUID meta-atom, and (b) part
of a 27 × 27 array. Inset of (a) is a zoom-in of the dashed rectangular box. Inset
of (b) shows a SQUID meta-atom inside the 27× 27 array metamaterial, where the
Josephson junction, the via, and the two Nb layers are labeled.

optical images of (a) a single rf-SQUID meta-atom and (b) a 27× 27 array SQUID

metamaterial. The single meta-atom is on a 1.25mm × 1.25mm chip and the array is

on a 2.5mm × 2.5mm chip. The single SQUID has an outer diameter of 800 microns,

while the meta-atoms in the array has a small outer diameter of 80 microns.

Note that larger SQUID size results in higher value of the inductance. To

compensate for βrf and fgeo respectively, we need to have a small junction size as

well as a small overlap area for the capacitor. That is why the large single SQUID

(Fig. 3.3 (a)) has a very small overlap area and a small junction (radius of 1.3

micron), while the meta-atoms in the array (Fig.3.3 (b)) has an overlap area taking

up half of the loop, with a junction radius of 3 micron.

The parameters for the single meta-atom are: Geometrical inductance of the

rf-SQUID loop L = 280 pH, the total capacitance C = 0.495 pF, the geometrical
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resonant frequency ωgeo/2π = 13.52 GHz, the resistance in the junction R = 1780

Ω (4.6 K), Ic = 1.15µA (4.6 K), βrf = 0.98, rf-SQUID inner diameter 200µm, outer

diameter 800µm. The 0 dc flux low-power resonant frequency is at 19 GHz at 4.6

K.

The parameters for meta-atoms of the 11×11 array at 4.6 K: L = 55.99 pH,

C = 2.1 pF, ωgeo/2π = 14.85 GHz, R = 500 Ω, Ic = 5µA, βrf = 0.86, rf-SQUID

inner diameter 40µm, outer diameter 160µm, center-center distance 170µm. The 0

dc flux low-power resonant frequency is at 20.25 GHz.

3.2 Experimental Setup

We measure the resonant frequency and the resonance of our SQUID meta-

atoms and metamaterial using the setup in Fig. 3.4. Our sample is positioned

in a rectangular waveguide (either X, Ku, or K-band), orientated so that the rf

magnetic field of the propagating wave is perpendicular to the SQUID loops and

couples to the meta-atoms (Fig. 3.4) [62]. The waveguide is made of copper and

is not superconducting. The rectangular waveguide allows us to excite single-mode

propagation which ensures that the rf magnetic field is perpendicular to the sample,

it also opens up the opportunity for measurement of 3D SQUID metamaterials. A

superconducting coil outside the waveguide provides dc magnetic field also perpen-

dicular to the SQUID loops. The sample sits inside a pulsed-tube refrigerator with

a base temperature of 4.6 K. The temperature is controlled via an electric resistor

heater, and measured by a diode thermometer.
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Figure 3.4: Schematic diagram of the experiment showing the flow of the rf signal
from the network analyzer (at room temperature, RT), through the attenuator, into
waveguide (in the cryogenic environment), through the rf-SQUID sample biased by
dc magnetic field, out of the waveguide through a series of amplifiers, and back to
the network analyzer.

We assembly these parts in the cryostat as in Fig. 3.5 (a). The waveguide is

clamped by an E-shape customized waveguide holder (Fig. 3.5 (b)) made of oxygen-

free high thermal conductivity (OFHC) copper. The holder is screwed tightly be-

neath the 4K plate for good thermal conductivity. The sample is stabilized in the

waveguide by a kind of foam called ”rohacell” [121], which has nearly the same

dielectric properties as air [121]. We cut the rohacell to fit the size of a waveguide,

and open up an aperture in it to put our sample, then insert the rohacell with the

sample inside the waveguide. The superconducting solenoid is made of NbTi (criti-

cal temperature is 10 K) wrapped around a Bakelite coil holder designed to fit each

waveguide (see Fig. 3.5 (b)). The coil is clamped to the waveguide with good ther-

mal conductivity by a customized copper clamp. A resistor heater is screwed tightly

to the waveguide holder by a heater clamp. Two waveguide adapters transition the

microwave signals between coaxial and single-conductor waveguide geometries. A
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Figure 3.5: Picture of the waveguide and components around it for the measurement.
(a) Assembled parts inside the cryostat. (b) Details of each part. The waveguide
holder is composed of a clamp and two planar pieces with screw holes to stabilize
the waveguide in the clamp; the through hole on the top is for attaching to the 4K
plate. The rohacell carrying the sample is inserted in the rectangular waveguide
and the two adapters. The coil is made up of superconducting wires; it is held in
position with a coil holder. The resistor heater is attached to the waveguide holder
by a heater holder; the two connections are for dc current to flow through the heater
and generate heat.
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Figure 3.6: Schematic of the magnetic shielding layers inside the cryostat made of
three temperature-stage cans.
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thermometer is attached to a corner of the bottom waveguide adapters by a screw.

For better thermal conductivity, one or two grounding braids (heat leads) made

of tin-plated copper conductor are screwed on the waveguide and holder, and are

attached tightly to the 4K plate of the cryostat.

The sample is protected from environmental magnetic fields via several layers

of magnetic shielding around the waveguide, including one layer of Nb foil with a

thickness of 100 micron covering the side walls and bottom of the 4K can, and a

µ-metal cylindrical box. The schematic of the magnetic shielding layers are shown

in Fig. 3.6. The µ-metal shielding is composed of three parts: the lid, the body,

and the bottom. Four screws attach them together. The openings in the top lid

allows one coaxial cable and the thermometer into the shielding, and helps screwing

together the top of the waveguide holder and the top of the 4K plate (see Fig. 3.5

(a)). The openings cut in the bottom lid are used for connecting the other coaxial

cable, all the dc wires (for the coil and the heater), and the heat leads into the

shielding.

The dc current through the superconducting coil is applied by a Keithley 220

programmable current source. The transmission and reflection signals from our

sample are amplified by a cryogenic low noise amplifier (LNF-LNC6 20A) and a

room temperature amplifier (HP 83020A), and are measured by a network analyzer

(Agilent N5342A). The wires of the heater are connected to a Lake Shore Cryogenic

Temperature Controller (Model 340).

Our experiment detects the resonance as a dip in the frequency dependent

transmission magnitude through the waveguide |S21(ω)|. We observe the change in
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frequency and strength of the resonance dip as we change various parameters, such

as dc flux, rf flux, temperature and stimulus scanning directions.

3.3 Verification of Experiment Design with HFSS

There are several things to verify before we finalize the designs for the SQUID

samples, as well as the experimental setup. For example, how would the substrate

of the SQUIDs affect the resonance, how well does the waveguide mode couple mag-

netically to the sample, will there be a measurable resonance, and so on. We look

into these concerns with the High Frequency Structure Simulator (HFSS) electro-

magnetic simulation package.

The SQUID layout in .gds file format can be directly imported into HFSS.

We then assign material properties and thicknesses to each layer. An example is

shown in Fig. 3.7. HFSS does not have the ability to simulate superconductors and

Josephson junctions, and it can only simulate linear responses. Therefore, we treat

the superconducting material Nb as perfect electric conductors (PEC) which have

zero resistivity. The nonlinear Josephson junction is treated as a PEC material with

a lumped parallel RLC boundary. The resistance and capacitance of the lumped

RLC boundary are the nominal design values for the Josephson junction. The

effective Josephson inductance is related to the dc flux so it can be derived as well

and included in the HFSS model.

We first check if the SQUID has a resonance within the frequency range of

single-mode propagation in the waveguide. To make sure that there is a strong
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Figure 3.7: The picture of SQUID layout in Xic layout software and in HFSS.

coupling and thus a strong signal in HFSS simulation, we use a pair of rf magnetic

loops (diameter of 0.2 mm and separation of 1 mm) to excite the SQUID directly,

instead of a rectangular waveguide. A single SQUID is positioned in the center of a

pair of rf magnetic loops (inset of Fig. 3.8). The loops are coaxial cables where the

stripped inner conductor bends and connects to the outer conductor. The rf wave

is sent into the magnetic loops through two ports at the ends of the coaxial cables,

and we simulate S21 of the system. The current flowing in the top loop creates a

magnetic field coupling strongly to the SQUID, which in turn induces some magnetic

field and couples to the lower loop. In this SQUID design, the resistance is 2880 Ω,

and the Josephson capacitance is 0.88 pF.

We simulate the zero dc flux case and the half quantum flux case by assigning

the Josephson inductance to be 73 pH and -73 pH respectively (at a temperature

of 6.5 K). Figure 3.8 shows S21 as a function of the frequency of the input signal.
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Figure 3.8: HFSS simulation result for the SQUID coupled to a pair of rf magnetic
loops. The simulated transmission shows a resonant feature (red) at around 9.7
GHz at a dc flux of 0.5Φ0, and a resonant feature (blue) at 22 GHz at 0 dc flux.
Two 0 dc flux transmission simulation also shows that lower resistance gives rise to
a weaker resonance.
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The resonance feature is at around 21.8 GHz and 9.6 GHz for φdc/2π of 0 (blue

curves), and 0.5 (red curve), respectively. The results verify that the SQUID can

resonate when excited by rf magnetic field, and the resonant frequency is similar to

our design.

We vary the resistance in the Josephson junction, and simulate again for the

zero dc flux case (Fig. 3.8 ). Clearly a higher resistance results in a sharper resonance

feature (higher quality factor). This justifies our choice of not having external shunt

resistance in the SQUID design.

Figure 3.8 is a result for a SQUID without holes in the Nb layers and without

the thick silicon substrate. We simulate the same SQUID again with holes in the

lower film as in our layout and find that the holes only reduce the resonant fre-

quency by at most 0.1 GHz. Further, adding a 500 micron thick silicon substrate

to the SQUID chip drops the resonant frequency by 0.5 GHz. Thus, it is safe to

conclude that the SQUID equation (Eq. (2.9)) can effectively predict the behaviors

of the SQUID meta-atoms and metamaterials, even with some extra small holes in

the superconducting loop, and with a silicon substrate. The effects of holes and

substrate cannot be measured directly, thus will just be treated as modifications to

the parameter set of the RCSJ model, in the following sections.

Next we simulate the SQUID in a rectangular waveguide and see if there is still

a resonance feature in the calculated transmission S21. The simulated transmission

of the SQUID meta-atom (same design) in a 5 cm long X-band waveguide as a

function of frequency is shown in Figure 3.9 for φdc/2π = 0.5. The TE mode is

excited so that the SQUID is oriented perpendicular to the rf magnetic field. On
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resonance, the SQUID absorbs energy from the propagating wave so there is a dip at

the resonant frequency 9.5 GHz. Note that the SQUID fills up very small space inside

the waveguide, so the resonance dip is only -0.0023 dB deep. We utilized several

methods in HFSS trying to strengthen the signal. One is to add an extra metal ring

close to the SQUID to create more perturbation. It does not work out because the

response of the ring totally overwhelms the signal coming from the SQUID. Other

methods like operating in a smaller waveguide and simulating a larger SQUID array

can increase the signal strength. A higher resistance value also greatly improves the

quality factor and depth of the resonance.

We simulated a 3×3 array SQUID metamaterial inside the rectangular waveg-

uide using the same design as the previously simulated single SQUID. The resonant

frequency increases to 10.3 GHz, as expected from the coupling of the SQUID meta-

atoms [68].

In experiment, it is hard to position the SQUID exactly at the center of the

waveguide, and perfectly perpendicular to the rf magnetic field of the TE mode.

Results of HFSS simulation actually reveals that positioning the SQUID closer to

one end of a waveguide can greatly increase the resonance strength. Tilting the

sample up to 15◦ does not affect the resonance much. However if we tilt the sample

so much that it is perpendicular to the electric field, the resonance strength is

around 5 orders of magnitude smaller than coupling to the magnetic field. The other

orientation of the SQUID, perpendicular to the wave propagation direction, gives

a signal that is 4 orders of magnitude smaller than the case when the rf magnetic

field Brf is perpendicular to the SQUID.
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Figure 3.9: HFSS simulation result for the SQUID in a X-band rectangular waveg-
uide.

In summary, simulation of HFSS verify the SQUIDs and measurement designs,

giving us an idea of the signal strength, and give some idea of the sensitivity of the

results to the orientation and placement of the SQUID in the waveguide. In the next

chapter the measurement results of SQUID meta-atoms and metamaterials will be

discussed.
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Chapter 4: Experiment and Simulation Results for SQUID Meta-

atoms and Metamaterials

There are many parameters that one can tune to modulate the response of

an rf-SQUID. In our experiment, we mainly look at the modulation of resonance

through rf magnetic flux (rf power of the input wave), dc magnetic flux, drive

frequency, and temperature. The rf flux, or the drive amplitude, determines the

nonlinear regime of a SQUID. Under three levels of the drive amplitude (low, inter-

mediate, and strong), the SQUIDs behave dramatically differently. The dc magnetic

flux tunes the resonant frequency for low and intermediate rf drive amplitudes. The

temperature changes the critical current, and thus the parameter βrf that sets the

degree of nonlinearity and the range of tunability. We will discuss these effects

seen in experimental data, under low, intermediate, and high rf drive amplitude,

respectively, in this chapter.
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4.1 Large DC Flux Tunability of Resonant Frequency in SQUID

Meta-atoms and Metamaterials at Low rf Drive Amplitudes

As discussed in Chap. 2, when the rf-SQUID is driven by a small rf flux

(Φrf/Φ0 < 0.001), the Josephson junction is effectively a tunable inductance LJJ =

Φ0/(2πIc cos δ) where δ is determined by the applied dc flux by

δ + βrf sin δ = φdc. (4.1)

The resonant frequency of the lumped RLC circuit for an rf-SQUID is

f0 =
1

2π

√(
1
L

+ 1
LJJ

)−1

C

, (4.2)

and can be tuned by the applied dc flux (which modifies LJJ) and temperature

(which modifies the critical current Ic).

4.1.1 Single rf-SQUID Meta-atom

Figure 4.1 (a) shows the experimental results for |S21| of an rf-SQUID meta-

atom as a function of dc flux and frequency for an input rf power of -80 dBm. The

rf power results in an rf magnetic flux through the loop and drives the SQUID. The

incident rf flux amplitude at the sample and the temperature were fixed at 0.003Φ0

and 6.5 K, respectively. Resonance dips in |S21(ω)| appear as the red features in the

plot against a yellow background of unaffected signals (|S21|= 0dB). The signal was

45



Figure 4.1: (a) Experimental measurements of |S21| of the rf-SQUID meta-atom as a
function of frequency and applied dc flux at 0.003Φ0 rf flux and 6.5 K. The resonant
response is identified by the red features. (b) The |S21| of 0 dc flux.

extracted by subtracting |S21| at 16 K (which is well above the critical temperature)

from |S21| at 4.6 K, removing a background variation, and applying a threshold to

identify the resonance. The transmission dips show good periodicity as a function

of dc flux, with a maximum resonant frequency of 17 GHz and minimum at around

9.5 GHz. Ku waveguide is used here; the cutoff frequency of the Ku waveguide is

9.5 GHz which imposes a lower frequency limit on this measurement.

A frequency cut at 0 dc flux is shown in Fig. 4.1 (b). There is a dip at around

16.5 GHz, with a depth of -0.015 dB and a width of around 1 GHz. The weak

signal is due to the small filling factor of the single SQUID meta-atom in a Ku-band

waveguide. We are sure that this signal comes from the single SQUID meta-atom

because this resonance dip tunes with the applied flux.

There are also some consistent horizontal features on top of the tuning reso-

nance dip feature in Fig 4.1 (a). We believe they comes from standing waves due

to the impedance mismatch between components and cables. The transmission as
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a function of frequency in Figure 4.1 (b) shows that the standing waves breaks the

resonance into several split dips.

To reduce the base temperature, I replaced all the original coaxial cables with

low thermal conductivity cables inside the cryostat to ensure low heat exchange

with the outside. The cables, made by Coax Company, Ltd. in Japan [122], are

made of beryllium copper conductors, are also non-magnetic. This change reduced

the base temperature from 6.5 K to 4.6 K (even reaching 4.1 K once). The new

cables also caused more attenuation of the microwave signals, which is favored in

our measurement.

As the temperature decreases, the highest tunable resonant frequency 17 GHz

at 6.5 K is modified to 19 GHz at 4.6 K (Fig. 4.2). The resonant frequency is not

measurable below 9.5 GHz due to the cut-off frequency of the Ku-band waveguide,

but from the measured geometrical resonant frequency fgeo =13.52 GHz (see Sec.

4.2) we can estimate the βrf to be 0.98 at 4.6 K. The theoretical lowest resonant

frequency, at a dc flux value of 0.5Φ0, is then fgeo
√

1− βrf = 2 GHz. The dc

flux tunability of approximately 7 GHz at 6.5 K is then modified to approximately

17 GHz at 4.6 K. We also deliberately increased the temperature using an electric

heater, and measure the dc flux tunability at different temperatures. The red fea-

tures in Fig. 4.3 show the dc flux tuned resonances at 6.5 K, 7.6 K, and 8.3 K for

an rf flux amplitude of 0.001Φ0.

The increased temperature reduces the flux tunability from ∼ 7 GHz at 6.5 K,

to approximately 3 GHz at 7.6 K, and approximately 1 GHz at 8.3 K. The grey lines

follow the resonance dips by using the solution for δ from Eq. (4.1) and calculating
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Figure 4.2: Experimental measurements of |S21| of the rf-SQUID meta-atom as a
function of frequency and applied dc flux at 0.001Φ0 rf flux amplitude and 4.6 K.
The resonant response is identified by the red features.

Figure 4.3: Experimental measurements of |S21| of the rf-SQUID meta-atom as a
function of frequency and applied dc flux at three different temperatures, 6.5 K, 7.6
K, and 8.3 K, and 0.001Φ0 rf flux amplitude. The resonant response is identified by
the red features. The solid lines are the resonant frequency calculated by Eq. ( 4.1)
and Eq. (4.2).

48



Figure 4.4: The highest and lowest tunable resonant frequency of a single SQUID
meta-atom at different temperatures.

the resonant frequency using Eq. (4.2). The only parameter varied to fit this data

is the temperature dependent critical current of the junction. We also performed

a series of low rf flux amplitude measurements of |S21| as a function of frequency

and dc flux for various fixed temperatures ranging from 6.5 to 9.2 K (Fig. 4.4) and

observed that at fdc = φdc/2π = 0 the resonant frequency decreases from 17 to

13.5 GHz with increasing temperature and when fdc = 1/2 the resonant frequency

increases from 9.5 to 13.5 GHz over the same temperature range. The reduction

in tunability with increased temperature in consistent with the predictions of the

model. Also consistent with the model, the resonant frequency saturates in the high

temperature limit at ωgeo/2π = 13.5± 0.2 GHz (Eq. (2.4)).
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4.1.2 RF-SQUID 2D Array Metamaterial

When the SQUIDs are arranged into 2D array metamaterials, the flux-tunability

of resonance in rf-SQUID metamaterials is similar to the tunability of a single rf-

SQUID meta-atom. However, things become a little complicated because of the

coupling between the meta-atoms, as well as the possibility of non-uniform applied

flux.

We first look at the dc flux dependence of a 2×2 SQUID array metamaterial

(inset of Fig. 4.5) composed of the same large single SQUID discussed before, with

a diameter of 800 micrometers. We plot the transmission of this array as a function

of frequency and dc flux in Fig. 4.5 when the applied rf flux is in the linear-response

limit (power of -80 dBm). The temperature is 6 K. Unlike the single SQUID’s

transmission results, the resonance dips modulated by dc flux are composed of four

nearby tunable curves, each of which represents a resonance of a SQUID meta-atom

in the array. The discrete resonance dips all have a highest resonant frequency of

around 18 GHz, and lowest resonant frequency below the cutoff frequency of the

Ku-band waveguide, 9.5 GHz. They also have similar resonance strengths of -0.04

dB. I label those four resonances in one period as blue, black, white, and green

dashed curves, respectively.

To extract the weak resonance features, the data is processed with great care.

I first measured the |S21|(f) as a function of frequency for all the dc flux values, and

I took the average of these curves to be |S21|avg(f). Then I subtracted |S21|avg(f)

from the original |S21|(f) and plotted it in Fig. 4.5. Thus the figure only shows the
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Figure 4.5: Experimental measurements of |S21| of a 2×2 rf-SQUID array metama-
terial as a function of frequency and applied dc flux at 6 K, and 0.003Φ0 rf flux
amplitude. The resonant response is identified by the red features.

transmission change due to the dc flux applied on the SQUID. The positive values

of |S21| are a result of this data processing.

The presence of four separate peaks might be caused by a non-uniform mag-

netic field. The SQUID meta-atoms are of very large size while the dc magnetic

field is provided by a relatively small diameter solenoid. Here the SQUID diameter

is around 1 mm, and cross-section of the coil is less then 1 cm in diameter. A small

displacement of the SQUIDs to a location off the center of the solenoid can result in

significant variation of the magnetic field. Therefore, each SQUID sees a different dc

flux value. From Fig. 4.5 we know that the 2×2 array metamaterial has a variation

in dc flux of approximately Φ0/2.

Luckily, 2D SQUID array metamaterials are not always so incoherent. When
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Figure 4.6: Experimental measurements of |S21| of an 11×11 rf-SQUID array meta-
material as a function of frequency and applied dc flux at 4.6 K, and 0.001Φ0 rf flux.
The resonant response is identified by the red features.

the applied magnetic field is uniform, an array can resonant coherently, almost like

the performance of a single SQUID (see Fig. 4.6).

Figure 4.6 is the transmission for an 11 × 11 SQUID array as a function of

frequency and dc flux, when the rf flux is 0.001Φ0 (an rf power of -90 dBm) and the

temperature is 4.6 K. The zero applied dc flux renders the highest resonant frequency

(20.5 GHz in this case), while lowest resonance is at a half flux quantum, and the

tunability is periodic in dc flux. Within two flux quanta the resonance feature tunes

with the dc flux just like a single rf-SQUID. However, due to the disorder in the

system, the resonance gets wider and shallower as the applied dc flux increases, and

the periodicity is also affected. Details about this systematic degradation of the dc

flux tuning curve can be found in my colleague’s work [68].
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Temperature changes the tunability of resonant frequency by dc flux even for

a SQUID array. An example of the dc flux dependent transmission of a 27×27

SQUID array at two different temperatures (4.1 K and 7.9 K) is shown in Fig. 4.7

(a). Again, lower temperature results in a much larger tunability and a stronger

signal.

The array behaves coherently in the dc flux range -0.5Φ0 to 0.5Φ0. Out of

this flux range, the disorder in the SQUID array is so large that the resonance dip

splits into several branches (labeled as ”MI modes” in Fig. 4.7 (a)), due to the

appearance of magneto-inductive modes in the the SQUID array [68]. Note here

that the distinct MI modes disappear in the resonance dip of SQUID array at 7.9 K.

Operating at high temperature might be useful to eliminate the effects of disorder.

Another set of experiments on temperature dependence for the 27×27 SQUID

array with low rf flux drive is done at a fixed dc flux (in this case zero flux), while

the temperature is changed continuously. The result is shown in Fig. 4.7 (b). As

the temperature changes from 4.1 K to 8.5 K, the resonance feature gradually goes

down in frequency from 23.5 GHz to 17.5 GHz. Further increasing the temperature

to 9.2 K (the critical temperature Tc) leads to a much shallower resonance dip which

goes to even lower frequencies (see inset of Fig. 4.7 (b)). Above 9.2 K, there is no

measurable resonance dip, because the SQUID is no longer in its superconducting

state and thus becomes lossy with low quality factor.

However, if we extract the highest resonant frequency measured for a SQUID

array as a function of dc flux, and plot the resonant frequency as a function of

temperature on top of Fig. 4.7 (b), the two curves do not match. This is because
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Figure 4.7: Measured transmission of |S21| of a 27×27 rf-SQUID array metamaterial
(a) as a function of frequency and applied dc flux at 4.1 K, and (b) as a function
of temperature at 0 dc flux. The resonant response is identified by the red features.
The inset of (b) blows up the resonance feature at temperatures of 7.8 K to 9.2 K.
The blue curve in (b) is plotted as the highest tunable resonant frequency extracted
from the dc flux dependent transmission at each temperature. All measurement is
under an rf flux amplitude of 0.001Φ0.
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the temperature is continuously increased by an electric heater, the ends of which

are connected to two dc wires. When electrical current is brought into the heater,

there is also magnetic field created by current flowing in the dc wires. This results

in additional ”dc” flux being applied to the rf-SQUID array. Hence a direct temper-

ature dependence measurement where temperature is the only variable is difficult

to realize. In all subsequent temperature dependence experiments, I always run a

dc flux dependence experiment first to find the true ”0” dc flux. Note here that

all the higher temperature results are calibrated so that the dc flux axis reflects

the true dc flux value that the SQUIDs experience. Using twisted pairs and careful

wiring layout might reduce the dc magnetic flux offset coming with the temperature

increase.

Also note that we frequently see an offset in dc magnetic flux value without

introducing any external magnetic field (either by the heater or the solenoid) into

the magnetic shielding. For example, in Fig. 4.7 (a) the whole red resonance

feature is displaced in the x-axis by approximately 0.05. This is possibly because

the holes we deliberately design in the Nb layers of the SQUIDs pin some residual

field in the sample. Usually the residual magnetic flux is less than Φ0/2. It is easier

to determine the true zero dc flux for the SQUID array than the single SQUID,

because under that flux value the SQUID array is the most coherent, has a clear

resonance dip and the highest resonant frequency, while the resonance of a single

SQUID meta-atom is always periodic in dc flux (unless the field is so high that it

destroys the superconductivity in the Niobium layers, or the current in the coils

causes measurable temperature increase of the sample and shrinks the frequency
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tunability range).

4.2 Broadband Transparency of SQUID Meta-atoms and Metamate-

rials at Low rf Drive Amplitudes

As the drive rf flux amplitudes increase, the effective Josephson inductance

expression LJJ = Φ0/2πIc cos δ (Eq. (2.3)) is not valid any more because the ex-

pression assumes that the term cos δ does not vary with time. Even at a fixed

applied dc flux, the modulation rf flux changes both the resonant frequency as well

as the resonance absorption strength [64].

Measured transmission of a single meta-atom as a function of frequency and

rf flux Φrf at a temperature of 4.6 K under 0 dc flux is shown in Fig. 4.8 (b).

Red features denote the resonance absorption dips of the meta-atom. At low input

rf flux, the resonance is strong at 19 GHz [62]. In the intermediate rf flux range,

the resonance shifts to lower frequency and systematically fades away (|S21|= 0

dB) through the entire frequency range of single-mode propagation through the

waveguide. At an upper critical rf flux, a strong resonance abruptly appears at the

geometrical resonance frequency ωgeo/2π = 13.52 GHz for a single rf-SQUID. We

employ the nonlinear dynamics of an rf-SQUID in Eq. 2.9 to numerically calculate

transmission shown in Fig. 4.8 (c) which shows the same transparency behavior.

We define a normalized transparency level that quantitatively determines the

degree of resonance absorption compared to the low rf flux absorption. Under a

fixed applied dc flux, the normalized transparency value is defined as a function of
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Figure 4.8: Transmission of a single meta-atom at 4.6 K depending on frequency
and rf flux is shown in (a) experiment and (b) simulation. Red (dark) feature denotes
the resonance dip. (c) and (d) shows the transparency as a function of input power
under 4.6 K (solid blue), 5.6 K (dashed red) and 6.5 K (dot line green) both for (b)
experiment and (c) simulation.
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φrf (Fig. 4.8 and Fig. 4.9):

Transparency(φrf ) = 1− |S21,res(φrf )|(dB)

|S21,res(0)|(dB)
(4.3)

where |S21,res(φrf )| is the transmission on resonance at a given rf flux, and |S21,res(0)|

is the transmission on resonance when the drive amplitude is low (Φrf/Φ0 < 0.001

for the single rf-SQUID meta-atom). High transparency indicates a weak resonance

absorption. The extracted transparency shows a clear onset rf flux for transparency

and an upper critical rf flux determining the abrupt end of transparency (insets of

Fig. 4.8 (b) and (c)). The transparency approaches 1.0 between these rf flux values.

The measurements are taken at 4.6 K, 5.6 K, and 6.5 K; at lower temperature, both

experiment and simulation show a larger range of transparency as well as a higher

degree of transparency.

Collecting rf-SQUID meta-atoms into a metamaterial preserves the self-induced

broadband transparency behavior. Fig. 4.9 illustrates the transmission of an 11×11

rf-SQUID array metamaterial with interactions among the meta-atoms. The meta-

material is stimulated at fixed frequency while the rf flux amplitude is scanned under

nominally 0 applied dc flux at 4.6 K. The resonance is almost invisible as the input

rf flux increases continuously through the transparency range (Fig. 4.9 (a)).

However, a reverse rf flux scan renders an opaque behavior (Fig. 4.9 (b)): the

resonance is strong across all rf flux values. Quantitatively, the transparency value

reaches 0.9 in the forward sweep and is below 0.3 for the backward sweep (Fig. 4.9

(c)). We did numerical simulations on this metamaterial and they show the same
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Figure 4.9: Measured transmission as a function of frequency and applied rf flux for
an 11x11 array rf-SQUID metamaterial, when the input rf flux (a) keeps increas-
ing, and (b) continuously decreases. (c) Extracted Transparency values for sweep
directions (a) and (b). The arrows denote the rf flux scanning directions. The
temperature is 4.6 K.
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hysteretic transparent/opaque behavior [68]. Similar hysteresis is also observed

for simulations of a single rf-SQUID meta-atom. These observations mean that

transparency is a robust property of rf-SQUID metamaterials, and can be turned

on and off depending on the stimulus scan direction and metamaterial history.

The origin of the nonlinear transparency is the intrinsic bi-stability of the rf-

SQUID. The gauge invariant phase difference of the macroscopic quantum wavefunc-

tion across the Josephson junction, δ(t), and its time dependence, determine essen-

tially all properties of the rf-SQUID and the associated metamaterial (see Modeling

in Chapter. 2). In simulation, the amplitude of the gauge-invariant phase difference

oscillation on resonance as a function of rf flux for a forward stimulus sweep (δLH)

is lower than the amplitude for a reverse sweep (δHL) above the onset of bi-stability

(Fig. 4.10 (a)). The lower gauge-invariant phase difference amplitude results in a

smaller magnetic susceptibility and thus a reduction of resonant absorption. The

relation between the resonance strength (degree of transparency) and δLH is shown

in Fig. 4.10 (b) for the transparent state. The onset rf flux of transparency coincides

with the abrupt reduction of δLH-Φrf slope and the onset of bi-stability.

We can apply the Duffing oscillator approximation to analytically predict the

onset of bi-stability. For intermediate drive amplitude an rf-SQUID can be treated

as a Duffing Oscillator (Kerr Oscillator) [123], which is a model widely adopted for

studying Josephson parametric amplifiers [101, 102]. This approximation suggests

that when the drive amplitude reaches a critical value, the amplitude of the δ(t)

oscillation as a function of frequency is a fold-over resonance (Fig. 4.11 (a)), cre-

ating bi-stable oscillating states (see analysis in Sec. 5.2). The amplitudes of the
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Figure 4.10: Simulation results for a single rf-SQUID. (a) The amplitude of gauge
invariant phase δ(t) oscillation on resonance as a function of driving rf flux am-
plitude. Red curves denote the full nonlinear numerical results. The δLH is the
amplitude of δ(t) when the frequency or rf flux scans from low value to high value,
and δHL is the amplitude for a reverse scan. Blue curves are calculated analytically
with the Duffing oscillator approximation. The δOP and δTR denote the analytic
amplitudes for the opaque state and the transparent state respectively. The gray
arrow points out the onset of bi-stability. (b) The simulated transmission (blue
curve, left y-axis) and the amplitude of δ(t) (red curve, right y-axis) on resonance
as a function of rf flux for the transparent case. The gray arrow shows the onset rf
flux for transparency. It is the same as the bi-stability onset.

Figure 4.11: (a) The fold-over resonance of the amplitude of δ(t) calculated in the
Duffing oscillator approximation results in a bistable oscillation on resonance with
amplitudes δTR and δOP respectively at an rf flux of 0.006Φ0. (b) The numerically
calculated transmission as a function of rf driving frequency at an rf flux of 0.006Φ0

shows that the frequency range of bistability is the same as analytically predicted
in Duffing oscillator approximation in (a).
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gauge-invariant phase difference oscillation for the transparent state (δTR) and the

opaque state (δOP ) are calculated analytically for each rf flux, and compared to the

amplitudes δLH and δHL calculated numerically (Fig. 4.10 (a)). Both the onset of

bi-stability and the amplitudes of the two states match very well. The bi-stability of

δ(t) amplitudes explains the bi-stability of transmission observed in experiment and

simulation (Fig. 4.11 (b)). The very good agreement between the Duffing oscillator

and the full nonlinear numerical simulation allows us to study analytically how to

enhance the transparency values and the transparency range.

The onset rf flux value for transparency depends on several parameters. Higher

resistance in the junction, higher capacitance, and higher critical current all give a

lower onset rf flux for transparency (see analysis in Sec. 5.2). Operating the meta-

material at a lower temperature increases the resistance and the critical current, thus

decreasing the onset, explaining the modulation of onset by temperature observed

in experiment and simulation (insets of Fig. 4.8). The applied dc flux has a more

modest effect on the onset rf flux. With a dc flux of a quarter flux quantum, the

single rf-SQUID has an onset that is 13% smaller than the 0-flux case (see analysis

in Sec. 5.2).

4.3 Strong Resonance in SQUID Meta-atoms and Metamaterials at

High rf Drive Amplitude

The dc flux produces a strong modulation in the transparency upper critical

rf flux. Above the upper critical rf flux, the rf-SQUID experiences phase slips on
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Figure 4.12: The transmission as a function of rf flux and dc flux at the geometrical
frequency ωgeo/2π of (a) experiment and (b) simulation for a single rf-SQUID at
4.6 K. The strong resonance absorption (red region) at the geometrical frequency
determines the upper critical rf flux of transparency. The edge between the red
region and the white region denotes the tuning of upper critical rf flux with applied
dc flux. The experiment is taken with pulsed rf measurement with a duty cycle of
1% . The pulse width is 2 µs which ensures that the rf-SQUID achieves a steady
state. The details of the pulsed rf measurement are in Appendix A.
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each rf cycle and shows strong resonant absorption at the geometrical frequency

ωgeo/2π [63]. We can determine the transparency upper critical edge when the driv-

ing frequency is fixed at the geometrical frequency ωgeo/2π, while rf flux amplitude

scans from 0.001Φ0 to 0.1Φ0. The sudden decrease of transmission denotes the up-

per critical rf flux as a function of dc flux (Fig. 4.12 (a)). The numerical simulation

is depicted in Fig. 4.12 (b). There is a tunability of over a factor of 10 in trans-

parency upper critical flux by varying dc flux through the sample. Note that the

entire dc magnetic field variation in Fig. 4.12 is only 10 nT. The result shows that

at a fixed frequency ωgeo/2π the meta-atom can be transparent or opaque depending

very sensitively on the rf flux and dc flux.

Also, at a fixed rf flux near the upper critical edge the sample can be resonantly

absorbing at ωgeo or be transparent in the broadband frequency window depending

on the applied dc flux. Fig. 4.13 plots the experimental transmission as a function

of dc flux and frequency when our sample is illuminated with an rf flux amplitude of

0.018Φ0 and 0.032Φ0 respectively. Strong absorption at the geometrical resonance

appears around Φ0/4 and 3Φ0/4 dc flux values, while being broad-band transpar-

ent near 0 and 0.5 Φ0. Figure 4.13 (c) shows that higher rf flux values push the

rf-SQUID to be opaque under a larger range of dc flux, but the maximum value of

transparency is higher than the lower rf flux case (Fig. 4.13 (c)). As the temper-

ature increases, the transparency is weaker, as seen in Fig. 4.13 (d). The tuning

of transparency by dc flux at a fixed rf flux indicates again a switchable on/off

transparency behavior with dc flux for our meta-atom. The remarkable sharpness

of transparency modulation gives an opportunity to use single flux quantum (SFQ)
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Figure 4.13: The measured transmission at 4.6 K of a single rf-SQUID meta-atom
as a function of dc flux and frequency at different drive amplitudes: (a) rf flux=
0.018Φ0, (b) rf flux= 0.032Φ0. Dark red is the perfect transmission background,
light red and blue features denote the weak and strong resonance absorption. The
extracted transparency values for rf flux amplitude of 0.018Φ0 (red dashed line) and
0.032Φ0 (blue solid line) are shown for (c) 4.6 K and (d) 6.5 K. They both show a
clear dc flux-switchable transparency.
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logic to achieve fast transparency switching of the rf-SQUID metamaterial [62,124].

This will enable a range of applications starting from SFQ-modulated digital com-

munication transmitters to energy-efficient wireless data links between low-power

cryogenic SFQ electronics and room-temperature semiconductor modules. Both of

these applications are difficult to solve by means of conventional low-dissipation

superconducting electronics.
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Chapter 5: Analytical Models for Understanding Experimental Phe-

nomena

We can make different approximations to equation (2.9), and analytically solve

the full nonlinear equation to understand these phenomena, including the dc flux

tunable resonant frequency, the broadband transparency behavior, and the strong

resonance at the geometrical resonant frequency fgeo at high rf flux amplitudes. The

gauge invariant phase difference can always be written as the combination of a dc

part δdc and a time-dependent part δrf : δ = δdc + δrf , leaving us with the following

equation.

d2δrf
dτ 2

+
1

Q

dδrf
dτ

+ δdc + δrf + βrf (sin δdc cos δrf + cos δdc sin δrf ) = (φdc + φrf sin Ωτ)

(5.1)

In the following analysis we will focus on how the two parts of δ(t) vary with various

parameters for different levels of rf flux amplitude.

5.1 Linear Oscillator Approximation in Low rf Drive Amplitude

When the drive φrf is small (φrf/2π < 0.001), the oscillation of δ under the

small drive will be very weak. Thus, the amplitude of δrf is also small. We can

assume that cos δrf ≈ 1, sin δrf ≈ δrf and separate the dc part from the rf part in

67



Eq. 5.1.

The dc part is only affected by the applied dc flux,

δdc + βrf sin δdc = φdc (5.2)

Note that δdc is a measure of the total dc flux in the system since δ = 2πΦtot/Φ0 =

φtot. Eq. (5.2) describes how the total dc flux in the system responds to the exter-

nal dc flux depending on the parameter βrf . Since βrf is smaller than one in my

experiments, this equation has a single solution for δdc. Larger βrf will result in

multiple solutions for δdc at a fixed applied dc flux and the response of the SQUID

will be hysteretic. For this reason, the rf-SQUID with a larger-than-unity βrf is

called a hysteretic rf-SQUID. In our case, we only consider non-hysteretic rf-SQUID

(βrf < 1) which does not show hysteresis upon applied dc flux amplitude scanning,

however, it can be hysteretic as the rf flux amplitude increases.

The equation for δrf from Eq. 5.1 shows a linear oscillator behavior,

(5.3)
d2δrf
dτ 2

+
1

Q

dδrf
dτ

+ (1 + βrf cos δdc)δrf = (φdc + φrf sin Ωτ).

The resonant frequency of this linear oscillator is
√

1 + βrf cos δdc ωgeo. When δdc =

0, the oscillator has the highest resonant frequency. When δdc = π, the resonant

frequency is lowest. And when δdc = π/2, the system resonates at ωgeo. Recall

that δdc is determined through the nonlinear Eq. (5.2). The analytical resonant

frequency as a function of applied dc flux fits the experimental results very well (see

Fig. 5.1).
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Figure 5.1: Experimental measurements of |S21| of the rf-SQUID meta-atom as a
function of frequency and applied dc flux at 0.003Φ0 rf flux and 6.5 K. The calculated
analytical resonant frequency is plotted as black dashed lines on top of the figure.

5.2 Duffing Oscillator Approximation Analysis at Intermediate rf

Drive Amplitude

As the rf drive amplitude increases, the system is not linear any more. Given

that sin δ ' δ − δ3/3! for small argument, we get the equation of a single rf-SQUID

in the Duffing oscillator approximation, which can be solved analytically

d2δ

dτ 2
+

1

Q

dδ

dτ
+ (1 + βrf )δ −

βrf
6
δ3 = φdc + φrf sin Ωτ (5.4)

The natural frequency of the oscillating δ when φdc = 0 is ω0 =
√

1 + βrfωgeo;

it determines the resonant frequency of an rf-SQUID when the drive amplitude

is very low. For the single meta-atom at 4.6 K, ω0/2π = 19 GHz. The −βrf/6
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prefactor of the nonlinear term δ3 will modify the resonance properties when the

drive amplitude increases.

We separate the dc and ac parts of δ(t) for analysis. With the ansatz δ =

δdc + δrf in equation (5.4), we get two coupled equations for δdc and δrf ,

− βrf
6
δ3
dc + (1 + βrf )δdc − φdc = 0 (5.5)

d2δrf
dτ 2

+
1

Q

dδrf
dτ

+ (1 + βrf −
βrf
2
δ2
dc)δrf

− βrf
6
δ3
rf −

βrf
2
δdcδ

2
rf = φrf sin Ωτ .

(5.6)

The non-zero φdc gives rise to a non-zero δdc, which adds a δ2
rf term in the ac

gauge invariant phase oscillation. Also, the resonant frequency at low drive with a

non-zero dc flux is modified to

ω1 = ωgeo

√
1 + βrf − (βrf/2)δ2

dc (5.7)

which is smaller than ω0 found above.

If we make the ansatz that the long-term response is at the drive frequency,

δrf = b sin Ωτ [125], we find a cubic equation for the amplitude b2,

b2[(ε− κb2)2 + (
ωgeo
2Q

)2] = [
(ω2

geoφrf )
2

2ω1

]2 (5.8)

where ε = ω − ω1 is the difference between driving frequency and the natural fre-

quency, and κ is the anharmonicity coefficient given by:
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κ = −
βrfω

2
geo

16ω1

(1 +
5

3

βrfω
2
geoδ

2
dc

ω2
1

) (5.9)

The number of real roots of equation (5.8) changes with driving frequency and

driving amplitude. When the driving amplitude is very small, equation (5.8) has

one real root for b2 throughout the whole frequency range. The peak value of b

denotes resonance. If driving amplitude of the meta-atom increases, the resonance

bends towards the lower frequency side, but is still single-valued. After the driving

amplitude reaches a critical value φrf,bi determined by

φrf,bi = 2

√
ω2

1

3
√

3|κ|Q3ωgeo
, (5.10)

equation (5.8) has three real roots for b2 in a range of frequencies. The amplitude

of the oscillating δ, or the quantity b, is plotted in Fig. (5.3) (a) for an rf flux

amplitude larger than φrf,bi. The middle-value root is unstable [125], so finally we

get bi-stability in a certain range of frequencies at a high enough driving amplitude.

With a non-zero dc flux, the oscillating δ now has a dc part, and the natural

frequency decreases to ω1, which further modifies the anharmonicity coefficient κ.

Since the onset of transparency predicted by Eq. (5.10) is related the resonant

frequency ω1 and κ, we can tune the onset of transparency by dc flux. For example,

with a dc flux of a quarter flux quantum, the single-SQUID has an onset φrf,bi/2π

that is 13% smaller than the 0-flux case.
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5.2.1 Transparency Range Tuning

We evaluate the onset Φrf/Φ0 of transparency in the Duffing oscillator approx-

imation, and the upper critical Φrf/Φ0 by methods discussed in [63]. The two limits

of transparency can be tuned by different parameters (Fig. 5.2). Larger critical

current Ic increases significantly the upper critical Φrf/Φ0, while the higher capac-

itance and resistance reduce the onset Φrf/Φ0 for transparency. The transparency

range greatly broadens when any of these three parameters is increased. At lower

temperature, the critical current and resistance increase simultaneously, resulting

in a wider transparency Φrf/Φ0 range. The enhancement of transparency range at

lower temperature is consistent with both experimental and numerical results shown

in Figs. 4.8 (a) and (b).

5.2.2 Bi-stability of fold-over resonance

In the bi-stability regime, a frequency scan and rf flux amplitude scan both

result in hysteretic transparency behavior. The fold-over resonance (Fig. 5.3(a))

predicted in the Duffing oscillator approximation shows that if the driving frequency

scans from low to high, the amplitude of δ follows the trace F-E-D-B-A, where the

largest amplitude is at point B, denoting the transparent resonance state (δTR). A

reversed frequency scan of trace A-B-C-E-F makes point C the dissipative resonance

(δOP ).

The hysteresis in rf flux is similar. Fig. 5.3 (b) plots the bi-stable fold-over

resonance of an rf-SQUID meta-atom at drive amplitude Φrf/Φ0 = 0.003 (red curve)
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Figure 5.2: The transparency rf flux range tuned by capacitance (green line, R =
1780 ohm, Ic = 1.15 µA), resistance of the junction (black solid line, C = 0.49 pF,
Ic = 1.15 µA), and the critical current (red dashed line, R = 1780 ohm, C = 0.49
pF). In all cases L = 280 pH, rf-SQUID inner diameter: 100 µm, outer diameter:
800 µm.
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Figure 5.3: The analytically calculated fold-over resonance of an rf-SQUID meta-
atom in the Duffing approximation. (a) The fold-over resonance when Φrf/Φ0 =
0.006. The region between B-C-E-D is hysteretic. Depending on scanning direction,
the resonance can either happen at point B with amplitude of δTR or at point C
with amplitude of δOP . (b) The calculated fold-over resonances for two rf flux values:
Φrf/Φ0 = 0.003 (red line), and Φrf/Φ0 = 0.006 (black line). Dashed lines denote the
unstable state. A1 (B1) and A2 (B2) are the lower-amplitude roots in the bi-stability
regime for Φrf/Φ0 = 0.003 (Φrf/Φ0 = 0.006) case. A′2 is the higher-amplitude root
in the bi-stability regime for Φrf/Φ0 = 0.003 at the same frequency of A2. B′1 and
B′2 are the higher-amplitude roots in the bi-stability regime for Φrf/Φ0 = 0.006.
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and Φrf/Φ0 = 0.006 (black curve). As the rf flux amplitude keeps increasing at a

fixed frequency, in this case 17.6 GHz, the amplitude of δ changes from A1 to B1,

and stays in the transparent state. However, if the scan starts from very high rf flux

value and gradually decreases, the higher amplitude B′1 which denotes the dissipative

mode will be excited. Further reducing the rf flux to Φrf/Φ0 = 0.003 brings the

rf-SQUID back to the A1 state. The highest amplitude at a fixed frequency (17.6

GHz) is at B1 when sweeping rf flux from low to high values, while it is at B′1 for

a reverse scan. The same applies for the rf flux amplitude scan at 18.5 GHz: a

forward sweep in rf flux amplitude keeps the amplitude of δ in the lower values (A2

to B2), while the backward sweep excites δ to oscillate at B′2 and A′2, resulting in a

dissipative state.

5.3 Linear Approximation for High rf Drive Amplitude

At even higher drive amplitude (φrf/2π > 0.01), where the rf-SQUID enters

the phase-slip state, the Duffing approximation fails. Now the amplitude of δ is

much greater than sin δ, so we ignore the sin δ term in Eq. (2.9) to obtain

δ +
L

R

dδ

dt
+

1

ω2
geo

d2δ

dt2
= (φdc + φrf sinωt). (5.11)

The dc part now is determined by δdc = φdc and the rf part is a linear oscillator

resonating at ωgeo. This explains the high power resonance for a single rf-SQUID

meta-atom.

A detailed discussion on the multistability in high rf drive amplitude is also
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in section 6.2.4 [63].

Up to this point we have mainly discussed the results for a single rf-SQUID, because

the flux-tuning and transparency behavior of the rf-SQUID metamaterial arise from

the tunability and bi-stability of single meta-atoms, respectively. Disorder in the

rf or dc flux can affect the degree of transparency in an rf-SQUID metamaterial

but the effect is quite small. In experiments on an 11 × 11 array metamaterial,

an intentionally introduced dc flux gradient of 0.11Φ0 across the array changes the

peak transparency value from 0.94 (for the uniform applied flux case) to 0.91. This

suggests the transparency is quite robust against noise and disorder. However, simu-

lation shows that increased coupling between meta-atoms reduces the transparency

range [113].
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Chapter 6: Multi-tone Response of rf-SQUID Metamaterials

6.1 Intermodulation Measurement

We have shown in previous sections that the rf-SQUID meta-atom and meta-

material are very nonlinear and tunable when responding to dc/rf magnetic field.

Nonlinearity also brings in possible frequency mixing when signals composed of more

than one frequency are applied. The multi-tone behaviors are explored here using

an intermodulation (IM) measurement, where two tones f1 and f2 with a small

difference in frequency go through the SQUID metamaterial, interact with it, and

generate signals at frequency pf1 + qf2 (IM products) where p and q are integers. I

will show results from experimental and theoretical IM studies of rf-SQUID meta-

atoms and metamaterials around their tunable and bi-stable resonance [126]. I first

focus on the case where two input signals have the same amplitude, as opposed to

IM amplification experiments (section 6.2.5) where one tone is much stronger than

the other.

In the experimental setup Fig. 6.1 (a), the rf-SQUID array sits in a rectangular

waveguide orientated so that the rf magnetic field of the TE mode is perpendicular

to the rf-SQUIDs. Before each two-tone experiment, a single-tone transmission

experiment is conducted to determine the resonant frequency at which the system
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has maximum power absorption. IM products are then measured systematically

around the resonance; two signals of frequencies f1 and f2 having the same amplitude

and a small difference in frequency ∆f = f2−f1 > 0 are injected. The output signal

contains the two main tones and their harmonics, as well as IM products.

The two-tone signal is generated from two built-in synthesizers of the network

analyzer (Agilent PNA-X N5242A). The output power of the IM signal (up to 99th-

order) can be directly measured at the output by the same network analyzer. Using

this equipment we can scan either the center tone frequency f = (f1 + f2)/2, the

frequency difference ∆f , or the tone powers, and measure the IM power easily

and quickly. However our setup does not have the ability to do the phase sensitive

measurements in the two-tone experiment; only amplitudes (powers) of the two main

tones and IM tones are obtained. In the experiment we usually keep the frequency

difference ∆f fixed and small (≤ 10 MHz) compared to the 3 dB bandwidth of the

resonance dip of SQUID meta-atoms and metamaterials, such that the two tones

stay in the resonance dip together.

An example of the generation of an IM spectrum in the metamaterial around

resonance (a 27×27 array of rf-SQUIDs) is shown in Fig. 6.1 (b) with ∆f = 1MHz.

This spectrum was measured under a fixed tone center frequency and a fixed tone

power. The input two-tone signal was from the network analyzer, and the output

spectrum was measured by the spectrum analyzer. The noise floor of the spectrum

analyzer is around -145 dBm while that of the network analyzer is -110 dBm so it

reveals more IM products than the network analyzer above the noise floor. How-

ever, the spectrum analyzer measurement is much slower than the measurement of
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network analyzer. For measurement of a specific IM product as a function of tone

power and center frequency we usually employed the network analyzer.

The output signal at frequency pf1 + qf2 is called the (|p|+|q|)th order IM. We

focus on nearby IM products which are of the 3rd, 5th, 7th, ... order. The IM signals

generated at nearby frequencies f3 = 2f1−f2 and f4 = 2f2−f1, called the lower and

upper 3rd order IM (f2 > f1), respectively, are of most concern in communications

and mixing applications. When the metamaterial is superconducting (measured at

T = 4.6 K), there is strong IM generation observed above the noise floor up to 51st

order. There is no observed IM output when temperature is above the transition

temperature,Tc = 9.2 K.

The IM spectrum changes considerably as the center frequency and tone power

are varied. We mainly examine the modulation of the 3rd order IM power. Again we

first search for resonance in a single-tone experiment as the input power varies. In

the intermediate power regime, higher input power results in a shift of the resonant

frequency to lower values [64], as seen in the purple curve in Fig. 6.2 (a). The 3rd

order IM power is then measured with two-tone input around the resonance. Fig.

6.2 (a) shows the upper 3rd order IM power Pf4 (colors) generated from a single rf-

SQUID meta-atom as a function of the input tone power (horizontal axis) and the

center frequency (vertical axis) of the two tones. The IM generation generally follows

the resonant frequency curve. Intermodulation is small for low input tone powers

(< −80 dBm), with a peak just below the resonant frequency. As the input power

increases, the IM generation also increases while shifting to lower frequencies. At

the same time a second peak appears above the resonant frequency, forming an IM
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Figure 6.1: (a) The experimental setup for our IM measurements. (b) Experi-
mental measurements of output power from the 27×27 rf-SQUID metamaterial at
a temperature of T = 4.6 K as a function of frequency when two signals of the
same amplitude are injected at a center frequency of 21.499 GHz and a difference
frequency of 1 MHz.
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Figure 6.2: The upper 3rd IM power Pf4 generated from a single rf-SQUID meta-
atom as a function of the applied rf flux and the center frequency of the two tones
for (a) experiment and (b) numerical simulation. The purple curve indicates the
resonant frequency for a single-tone excitation. The frequency cut for output power
at the third IM Pf3 (blue solid line) and Pf4 (black dashed line) at -65 dBm for
(c) experiment and (d) simulation. The spacing between the two input tones is 10
MHz, and the temperature is 4.6 K.
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gap where the IM is reduced to nearly the noise level around the resonant frequency.

The same phenomenon is observed for a 6×6 array rf-SQUID metamaterial and an

11×11 array rf-SQUID metamaterial. Operating the meta-atom or metamaterial in

the gap regime minimizes the 3rd order IM frequency mixing.

Figure 6.2 (c) compares the measured lower and upper 3rd order IM products

(Pf3 and Pf4) as a function of frequency around the gap feature at -65 dBm. Both

IM powers show a sharp onset above the noise level at around 17 GHz, and decrease

to a minimum value at 18 GHz, then reach another peak at around 18.4 GHz before

dropping continuously at higher frequencies. However, the upper tone Pf4 has a

higher peak and a substantially lower dip than the lower tone Pf3 . This asymmetry

between two same-order IM tones was also observed in other SQUID samples and

in our numerical simulations. We now wish to explore the origins of the features

seen in the data, including the sharp onset and the dip in the 3rd IM generation, as

well as the asymmetry between the upper and lower IM output signals.

6.2 Modeling

6.2.1 Numerical Simulation

In this section we explore a simple circuit model that reproduces the effects

seen in the previous sections. A single rf-SQUID can be treated as a Resistively and

Capacitively Shunted Josephson Junction (RCSJ-model) in parallel with supercon-

ducting loop inductance (Fig. 2.1). We assume a uniformly driven and uncoupled

SQUID array metamaterial can also be described by the single junction RCSJ-model.
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The gauge-invariant phase difference across the junction δ determines the current

through the junction I = Ic sin δ (Ic is the critical current of the junction). In a

closed superconducting loop δ is related to the total magnetic flux inside the loop:

δ − 2πΦtot/Φ0 = 2πn, where n is an integer, and again Φ0 = h/2e. Here we can

take n to be 0 without loss of generality as shifting δ by 2π leaves the current I

unchanged [56]. The voltage across the junction can be written as V = 2πΦ0dδ/dt.

The time evolution of the phases is determined by the RCSJ circuit equa-

tion [56], obtained by demanding that the total flux through the loop Φtot is the

combination of the dc and rf applied flux (Φdc + Φrf (t)), and the induced flux due

to the self inductance L of the loop,

Φtot = Φdc + Φrf (t)− L(Ic sin δ +
V

R
+ C

dV

dt
). (6.1)

Here, Ic sin δ + V/R + CdV/dt is the total current through the loop, which flows

through the parallel combination of the junction, shunt resistance R and capacitance

C in the RCSJ model. Replacing Φtot by Φ0δ/2π and V by Φ0dδ/dt in Eq. (6.1)

and rearranging terms, we obtain the dimensionless RCSJ equation:

d2δ

dτ 2
+

1

Q

dδ

dτ
+ δ + βrf sin δ = φdc + φrf (τ) (6.2)

where βrf = 2πLIc/Φ0, φdc = 2πΦdc/Φ0, φrf = 2πΦrf/Φ0, ωgeo = (LC)−1/2, τ =

ωgeot, and Q = R
√
C/L.

Typical parameter values are as follows. The inductance, L = 280 pH, of
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the single SQUID meta-atom is calculated numerically by Fasthenry based on its

geometrical structure [127]. Other parameters such as the capacitance, C = 0.495

pF, the shunt resistance in the junction, R = 1780 Ω (4.6 K), and the critical

current, Ic = 1.15µA, are determined by fitting to the measured geometrical resonant

frequency ωgeo/2π = 13.52 GHz, the measured quality factor Q = 75, and the

quantity βrf = 0.98. The quantities ωgeo, Q, and βrf were directly measured in

previous single-tone transmission experiments. For our setup, the rf flux φrf driving

the loop results from the injected rf power inside the rectangular waveguide. Note

that the single SQUID meta-atom has an inner diameter of 200µm, and an outer

diameter of 800µm. Other meta-atoms in our SQUID metamaterials all have smaller

sizes. Thus the rf flux amplitude through the SQUID loop is always much smaller

than the flux quantum in the rf power range we consider in this work. Thus, |φrf |<

2π.

The time-dependent functional form of the rf flux is determined by the driv-

ing signal. To study intermodulation, the circuit is driven with two tones, which

generally can be written

φrf = φrf,1 sin(Ω1τ + θ1) + φrf,2 sin(Ω2τ + θ2) (6.3)

where Ω1,2 = 2πf1,2/ωgeo and f1 and f2 are the frequencies of the two injected

signals. Here the two tones have different amplitudes φrf,1 and φrf,1, and phases θ1

and θ2.

The driving flux can also be written in the form of a complex phasor envelope
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modulated by a carrier at the mean frequency Ω = (Ω1 + Ω2)/2,

φrf,a = Re[eiΩτ−iπ/2φe(τ)] (6.4)

where the envelope function φe(τ) = φrf,1 exp(−i∆Ωτ/2+ iθ1)+φrf,2 exp(i∆Ωτ/2+

iθ2) and ∆Ω = Ω2 − Ω1 > 0 is the difference frequency. For the situation in our

experiment, ∆Ω << Ω, i.e., the carrier frequency is much greater than the envelope

frequency. This will lead to a number of simplifications in the analysis. At present

it allows us to argue that the results will not depend on the relationship between

the carrier and the envelope phases. Since the relative phase between the carrier

and the envelope is unimportant we may shift the time axis in the carrier and the

envelope independently. Shifting time in the carrier by τsc = −Ω−1(θ1 + θ2) and in

the envelope by τse = ∆Ω−1(θ1−θ2) removes the phases θ1 and θ2 from the problem.

Equivalently we can set θ1 = θ2 = 0.

We first consider the case of equal amplitude tones (set φrf,1 = φrf,2 = φs to

be the amplitude) and set θ1 = θ2 = 0. We then solve Eq. (6.2) for δ(τ) using the

previously described circuit parameters. Under all circumstances explored here δ(τ)

is observed to be sinusoidal to a good approximation. Figure 6.3 (c) is an example of

the solution to δ(τ) at an input power of −65 dBm, with tone frequencies f1 and f2

centered around f = 17.35 GHz and separated by of ∆f = 10 MHz. The dense blue

curves are the fast carrier oscillations and the vertical extreme of the blue represents

the slowly varying envelope. More precisely, δ(τ) can be represented as in Eq. (4).

In this example, the envelope varies on a time scale 3 orders of magnitude longer
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than the carrier period. One beat period of the envelope is shown in Fig. 6.3 (c) .

To further investigate IM, we extract the amplitude and phase of δi for fre-

quency component fi via Fourier transform of δ(τ). Since magnetic flux is related to

δ through δ = 2π(Φtot/Φ0), we can extract the generated third order IM magnetic

flux Φ3,4. The IM flux translates into an IM magnetic field inside the SQUID loop

of area A, i.e., B3,4 = Φ3,4/A. The excited IM magnetic field transmits through the

rectangular waveguide and generates the third order IM powers at the detector. The

SQUID is inductively coupled to the waveguide via a coupling coefficient g [128], so

only part of the IM power couples to the waveguide mode. The final simulated out-

put IM power is adjusted by varying g (g ≈ 0.015 for the single SQUID meta-atom),

and plotted as a function of center frequency and tone power in Fig. 6.2 (b) for the

upper third order IM tone Pf4 , with a cut through -65 dBm plotting both lower and

upper third order IM powers (Pf3 and Pf4) in Fig. 6.2 (d). The cut through the

simulated IM power displays a similar sharp onset and gap feature as observed in

the experiment, as well as the prominent asymmetry between the two IM tones.

Since δi is a surrogate for the output tone power Pfi (δi ∼
√
Pfi) and a direct

solution of the nonlinear equation, we use this quantity to analyze the degree of

IM generation. Figure 6.3 (a) shows amplitudes of δ1 to δ4 as a function of tone

center frequency at an input power of -65 dBm, which shows the same asymmetric

gap feature. The upper third order IM output δ4 reduces to nearly zero inside the

gap. We plot δ(t) during one beat period of the input rf signal at the onset center

frequency (17.35 GHz) of the abrupt IM generation peak in Fig. 6.3 (c). The δ(t)

envelope stays at a higher amplitude in the first quarter of the signal beat period,

86



Figure 6.3: The lower and higher main tone output amplitudes δ1 and δ2, and third
order tones δ3 and δ4 for a single rf-SQUID meta-atom at -65 dBm calculated with
(a) numerical simulation and (b) analytical model. Plots of δ(t) over a beat period
at 17.35 GHz and -65 dBm calculated by (c) numerical simulation and (d) steady-
state analytical model. The dashed boxes in (c) point out the overshooting ringing
features in numerical simulation. The spacing between the two input tones is 10
MHz, the temperature is 4.6 K, and the applied dc flux is set to zero.
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suddenly decreases to a low amplitude, and gradually increases before it jumps to

a higher amplitude again. Note that each abrupt jumps comes with an overshoot

feature (labeled as dashed boxes in Fig. 6.3 (c)) with a frequency around 1.5 GHz.

The overshoot frequency is intermediate to the fast oscillation (17.35 GHz) and the

slow modulations (10 MHz).

6.2.2 Steady-State Analytical Model

In this section we develop an analytical model to understand the phenomena

revealed in the experiment and the numerical solutions of the previous sections.

We adopt the observation that the gauge-invariant phase δ(τ) and the driving flux

can be represented as in Eq. (6.4) as a rapidly varying carrier modulated by an

envelope. Thus, we insert Eq. (6.4) on the right hand side of Eq. (6.2). We

first look for solutions where the time variation of the envelope is so slow that the

temporal derivatives of it can be ignored. This leads (after neglecting harmonics of

the drive signal, which will be justified below) to a time-dependent gauge-invariant

phase difference

δ(τ) = δ̄ + δ̃ sin(Ωτ + θ)

where Ω = (ω1 + ω2)/(2ωgeo) and δ̄, δ̃ and θ are taken to be constants that depend

parametrically on τ through the slow variation of φrf (τ) = φ̃rf = φe. Here δ̄ and δ̃

denote the dc part and the slowly varying envelope of δ, respectively, θ is the phase

of δ (which can also vary slowly with time).

For the nonlinear term in Eq. (6.2) we have sin δ = sin[δ̄ + δ̃ sin(Ωτ + θ)] =
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Figure 6.4: Analytical solutions of steady-state model (Eqs. (6.5)-(6.7)) at an rf
power of -65 dBm. (a) The relationship between δ̃ and φ̃rf for five remarkable fre-
quencies. φlh denotes the value of rf flux required for transitions of δ̃ from low to
high amplitude solution branch, and φhl denotes the rf flux value for the transition
from high to low amplitude solution. (b) to (f): Blue curves represent δ(t) calcu-
lated by the analytical model for (a) 17.3 GHz, right before the onset of strong IM
generation, (b) 17.35 GHz, at the onset (c) 17.7 GHz, at the gap (d) 18.4 GHz,
at the 2nd peak, and (e) 19.5 GHz, low IM generation. The red curve is φ̃rf as a
function of time during a beat period. φlh and φhl are marked in the figures as black
and green lines. All assume φdc = 0.
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sin δ̄ cos[δ̃ sin(Ωτ + θ)] + cosδ̄ sin[δ̃ sin(Ωτ + θ)] through a trigonometric identity. In

principle this term will contain all harmonics of the carrier, nΩ (n = 0, 1, 2, ...),

and induce harmonics in the gauge-invariant phase difference δ(τ). However, higher

harmonics in the gauge-invariant phase are suppressed by the second derivative term

in Eq. (6.2) (capacitive current). This is confirmed in our numerical solutions where

the amplitudes of higher harmonics (components of frequency 2Ω and 3Ω) of δ are at

least 2 orders of magnitude lower than the fundamental frequency component. We

note that for the examples considered here the dc phase, δ̄, is zero and consequently

only odd harmonics are present. We thus neglect these higher order harmonic terms

when we expand sin[δ̃ sin(Ωτ + θ)] and cos[δ̃ sin(Ωτ + θ)]. As a result, we obtain

sin δ ≈ sin δ̄J0(δ̃)+2 cos δ̄J1(δ̃) sin(Ωτ+θ) where J0(δ̃) and J1(δ̃) are Bessel functions.

Separating the dc, in-phase, and quadrature components of Eq. (6.2), leads to three

coupled equations for the three unknowns (δ̄, δ̃ and θ),

(1− Ω2)δ̃ + 2βrf cos δ̄J1(δ̃) = φ̃rf cos θ (6.5)

Ω

Q
δ̃ = −φ̃rf sin θ (6.6)

δ̄ + βrf sin δ̄J0(δ̃) = φdc (6.7)

We construct δ(t) by solving Eqs. (6.5) - (6.7) to find δ̄, δ̃, and θ for a

given φ̃rf and φdc. The relationship between δ̃ and φ̃rf at different frequencies

(f1 + f2)/2 is plotted in Fig. 6.4 (a) for our standard parameter set, φdc = 0,

Q = 75, and βrf = 0.98. The oscillation amplitude δ̃ as a function of rf flux
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amplitude φ̃rf is symmetric about the origin, so only positive φ̃rf is shown. Figure

6.4 (a) indicates that δ̃ can be single-valued or multi-valued depending on the fast-

oscillation frequency and the slowly-varying envelope amplitude φ̃rf . For cases where

δ̃ is multivalued, we let φhl and φlh denote the lower and upper critical rf flux values

(as labeled in Fig. 6.4 (a)) between which there are three solutions for the oscillation

amplitude, δ̃. When this occurs (φhl < φ̃rf < φlh) the middle solution is always

unstable and the largest and the smallest solutions are stable. Thus, if φ̃rf is in the

bistable regime, and δ̃ is on the lower (higher) stable branch, then, as φ̃rf is slowly

increased (decreased) through φlh (φhl), the solution for δ̃ will experience a jump

transition from the lower (higher) stable branch to the higher (lower) stable branch.

For two equal amplitude input tones with a fixed center frequency and a fixed

tone power, φ̃rf is a sinusoidal function with a peak value of 2φs, and a frequency

of ∆Ω/2, i.e. φ̃rf = 2φs cos ∆Ωτ/2.

Figures 6.4 (b) - (f) show the evolution of δ(t) at different center frequen-

cies (blue), as well as the relationship between the envelopes of the rf flux φ̃rf (red

curves), the transition rf flux values φlh (black horizontal lines) and φhl (green hori-

zontal lines) for positive and negative φ̃rf values during a beat period (ωgeo∆Ω/2π =

10 MHz). For tone center frequencies below 17.3 GHz, although δ̃ is bistable, the

envelope of rf flux φ̃rf is always below φlh, so δ̃ remains on the low amplitude branch

during a beat period. Above 18.6 GHz, δ̃ as a function of φ̃rf becomes single valued.

Both cases give rise to low IM generation.

Between 17.3 GHz to 18.6 GHz, however, the peak value of φ̃rf exceeds the

upper bi-stable transition rf flux amplitude φlh, while the minimum value of φ̃rf
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is below φhl, so there are four discontinuous jumps in δ(t) during a beat period.

Changing the center frequency from 17.35 GHz to 17.7 GHz makes the solutions

for δ̃ stay on the high-amplitude branch longer (Fig. 6.4 (d)). This is because φlh

is smaller for higher frequencies (as seen in Fig. 6.4 (a)), so it is easier for φ̃rf to

pass the low-to-high transition. The sudden asymmetric state jumps during a beat

period generates rich IM products.

We extract the IM components of δ by Fourier transform as discussed for the

numerical simulation, and extract the amplitude of two main tones and two third

order IM tones of δ, plotted in Fig. 6.3 (b). The analytically calculated amplitudes

of IM tones are almost the same as those in the full numerical simulation. However,

comparison of time dependent gauge-invariant phase δ(t) between the full numerical

calculation and the analytical calculation in Fig. 6.3 (c) and (d) indicates that the

dynamical ringing appears around the state jumps in the full-nonlinear numerical

calculation but is not present in the steady-state solutions to Eqs. (6.5) to (6.7).

These will be investigated subsequently.

6.2.3 Dynamical Analytical Model

The ringing behavior of δ(t) during state jumps indicates that the system

requires time to transition from one stable state to another. We study this process

using a dynamical model for the complex amplitude of the phase δ̂, where δ(τ) =

δ̄ +Re[δ̂(τ)eiΩτ−iπ/2].

For two equal amplitude input tones, the envelope of the rf flux φ̂rf = φe =
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2φs cos(∆Ωτ/2) is real. In this case, sin δ is expanded as

sin δ̄J0(|δ̂|) + 2 cos δ̄J1(|δ̂|)Re(δ̂eiΩτ−iπ/2)/|δ̂|

with negligible higher order terms assuming that the higher harmonics of δ are

much smaller than the base frequency component. In deriving an equation for the

envelope, we adopt the approximations that Q >> 1 and that δ̂(τ) changes slowly,

|Ωδ̂|>> |dδ̂/dτ |. Thus in Eq. (6.2) we replace d/(Qdτ) with iΩ/Q, and d2/dτ 2 with

−Ω2 + 2iΩd/dτ . This yields a first-order nonlinear equation for the phasor δ̂ and a

transcendental equation for the steady part of δ(t),

iΩ[2
d

dτ
+

1

Q
]δ̂ + [1− Ω2 + βrf cos δ̄

2J1(|δ̂|)
|δ̂|

]δ̂ = φ̂rf (6.8)

δ̄ + βrf sin δ̄J0(|δ̂|) = φdc (6.9)

To analyze the dynamics, we express δ̂ as an in-phase part and a quadrature

part, i.e. δ̂ = δR + iδI , and write the real and imaginary parts of Eq. (6.8). We note

that in the absence of losses (Q → ∞) one can construct a Hamiltonian function

for the nonlinear system. Including losses we have

d

dτ
δR = − 1

2Q
δR −

∂

∂δI
H(|δ̂|) (6.10a)

d

dτ
δI = − 1

2Q
δI +

∂

∂δR
H(|δ̂|) (6.10b)
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where

H =
1

4Ω
[(1− Ω2)|δ̂|2]− 2βrf cos δ̄J0(|δ̂|)− δRφ̂rf

is the Hamiltonian. Equilibrium states of the system Eqs. (6.10a) and (6.10b) are

the same as those described by Eqs. (6.5) - (6.7). However, we note that the Q-

value for our system is quite large, Q ≈ 75. As a result we look for equilibria of the

lossless system, Q → ∞, which are located in the δR − δI plane at the stationary

values of the Hamiltonian, ∂H/∂δR = ∂H/∂δI = 0. Equilibria will be stable if they

are at maximal or minimal points of H when (∂2H/∂δ2
I )(∂

2H/∂δ2
R) > 0. Note that

the Hamiltonian is symmetric about δI = 0.

In Figs. 6.5 (a) - (c) we plot the Hamiltonian as a function of δR and δI at a

center frequency of 17.35 GHz and -65 dBm tone power, when the rf flux amplitude

φ̂rf is at its peak (0.23), zero (0.0), and negative maximum (−0.23) during a beat

period. Figure 6.5 (e) shows a cut through the δI = 0 plane, plotting H as a

function of δR at various rf flux values. In Fig. 6.5 (f) a blow-up of the dashed

region is shown that traces the minimum and maximum of H as the rf flux envelope

evolves with time. Note that the state transition occurs at an rf flux amplitude of

0.22 for this frequency. When rf flux is zero, the Hamiltonian H is symmetric around

the origin, and has a local minimum (stable point) centered at the origin. As the rf

flux increases, the H(δR) curve tilts so that the peak located in the positive region of

δR decreases and moves towards the origin; gradually meeting the dip which moves

away from the origin along the δR axis. At the same time another peak rises up.

As the rf flux value reaches 0.23, the lower peak and the dip between the two peaks
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Figure 6.5: The calculated Hamiltonian of a single rf-SQUID as a function of δR
and δI for rf flux amplitudes of (a) 0.23, (b) 0.0, and (c) -0.23. (d) The colormap of
the calculated Hamiltonian as a function of δR and δI for rf flux amplitude of 0.23,
with contours from −1 to −0.5 with a step of 0.05. (e) The calculated Hamiltonian
as a function of δR when δI = 0 with different values of rf flux. (f) A zoom-in plot
of the dashed box in (e). The transition rf flux value to bistability is around 0.22.
All assume a center frequency of 17.35 GHz.
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disappear. The system then has to transition to another stable state located at the

higher peak in the negative δR region. At an rf flux of −0.23, H tilts to the other

side (Fig. 6.5 (c)).

Because of the high value of Q, the system’s transition trajectory from one

stable state to another follows the constant contour lines of the Hamiltonian surfaces

in a spiral manner. Figure 6.5 (d) shows the contour lines (from −1 to −0.5 with a

step of 0.05) on top of the Hamiltonian colormap at φ̂rf = 0.23.

We can find the trajectory of δ̂(t) for φdc = 0 by solving Eq. (6.8) to obtain

δR and δI during a beat period as φ̂rf changes. Again, we look at the solutions for a

center frequency of 17.35 GHz at -65 dBm input tone power. The time trajectory of

the phase envelope δ̂ in the δR-δI plane during the beat period as calculated by the

dynamical model is shown in Fig. 6.6 (a). Compare this with Figs. 6.6 (b) and 6.6

(c) which present the δ̂ trajectories extracted from δ(t) in the full nonlinear numerical

calculation and the steady-state model, respectively. Figure 6.6 (a) and (b) are

almost identical to each other, serving to validate the dynamical model. In the

trajectory plots Fig. 6.6 (a) and (b) we see four colored in-spiraling orbits centered

around four corresponding dense regions (red and black dense regions are close to

each other near the origin); the dense regions denote the steady-state solutions right

after a state jump. We can clearly see these four states in the steady-state trajectory

(Fig. 6.6 (c)) labeled as A, B, C and D. The blue dense region in Fig. 6.6 (a) and

(b) is the solution at the beginning of a beat period, corresponding to state A. As

the rf flux amplitude during a beat period reduces below φhl, the high-amplitude

state has to jump to state B (red). For the steady-state solution (Fig. 6.6 (c)),
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Figure 6.6: The time elapsed trajectories for δ̂(t) for one beat period calculated
by (a) the dynamical model, (b) the numerical simulation, and (c) the steady-state
model. The inset of (c) zooms in on the trajectory around the origin by five times.
(d) shows δ(t) calculated from the dynamical model, and (e) is a zoom-in of the
dashed box in (d) showing the ringing behavior.
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the system oscillates in the high-amplitude branch following the blue curve, then

directly jumps to state B (red dot). In numerical simulation of Eq. (6.2) and the

dynamical model Eqs. (6.10a) and (6.10b) though, the system goes through several

orbits before settling down at the low-amplitude stable state B (red dense region)

near the origin in the δ-plane. It follows from Eqs. (6.10a) and (6.10b) that the

area in phase enclosed by the orbit decreases exponentially at a rate 2/Q during

approach to the equilibrium point. The boundary between the two colors denotes

the time when the system starts to jump to another state.

The in-spiraling orbits during a transition are predicted by the Hamiltonian

analysis. The shape of the trajectory before jumping to state A matches the contour

lines in Fig. 6.5 (d), except that the trajectory is not symmetric about δI axis due

to the losses (parameterized by Q) which is not included in the Hamiltonian. The

number of trajectory orbits during the transition illustrates the relaxation time of

a state jump. The relaxation time also depends on the losses.

Figure 6.6 (d) displays the δ(t) calculated by the dynamical model; Fig. 6.6

(e) is a zoom-in for the selected region near a state jump. The colors match the

colored curves in the trajectory plots Fig. 6.6 (a) to (c). There are very clear ringing

features during a jump, which is a reflection of damped spiral orbits. The ringing

feature oscillates at a frequency of around 1.5 GHz, and can cause sidebands in the

IM spectrum.

In principle the envelope of the generated rf power as a function of time can

be measured, which is a surrogate for the gauge-invariant phase δ(t). Similar to

the amplitude-modulated (AM) radio, the fast oscillation can be filtered out by a
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nonlinear element, usually a diode, and the output would just be amplitudes of the

slowly-varying envelope. Making the frequency difference ∆f small allows us to

expand the beat period and make it easier to measure the envelope. One concern

is that the operating power range of the SQUID meta-atoms and metamaterials is

very low. It is hard to see the signal from the diode at such low powers. The method

also lacks the ability to measure the ringing between each state jump at a frequency

of around 1.5 GHz because the bandwidth of the diode is limited.

6.2.4 DC Flux Dependence of IM generation in SQUIDs

The models all include dc flux as a variable that affects the response of the

SQUID. Previous discussions mainly focus on the zero dc flux case. Varying the dc

flux value modifies the relationship between the envelope of δ and the envelope of

φrf (zero flux case shown in Fig. 6.4 (a)), but it preserves the discontinuous jumps

during a beat. Here I explore the effect of non-zero dc flux on the IM generation.

Figures 6.7 (a) and (b) shows the measured lower 3rd IMD power generated

from a single rf-SQUID meta-atom as a function of center frequency and tone power,

under applied dc flux φdc/2π of 0 and 0.3, respectively. Again, the spacing between

the two input tones is 10 MHz, and the temperature is 4.6 K.

At low input tone powers (< −80 dBm), the non-zero dc flux case has a IM

power peak when the two tones are centered at 16 GHz. The center frequency for the

IM peak is 3 GHz less than the 0 dc flux case. In the intermediate power range, the

IM gap feature also appears at non-zero dc flux. At higher input tone powers, the
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Figure 6.7: The measured lower 3rd IMD power generated from a single rf-SQUID
meta-atom as a function of center frequency and tone power, under applied dc flux
φdc/2π of (a) 0, and (b) 0.3. The same quantity calculated by numerical simulation
under applied dc flux φdc/2π of (c) 0, and (d) 0.3. The spacing between two inputs
is 10 MHz. The temperature is 4.6 K. Four plots share the same colorbar.
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Figure 6.8: The (a) measured and (b) simulated upper 3rd IM power Pf3 generated
from a single rf-SQUID meta-atom Pf4 as a function of tone center frequency and
the applied dc flux at a fixed rf power -60 dBm. The spacing between two inputs
is 10 MHz. The temperature is 4.6 K. Note that in the simulation only IM powers
at the dc flux values from 0 to 0.5Φ0 are calculated, and then mirrored about the
0.5Φ0 dc flux to generate results from 0.5Φ0 to Φ0. The experiment is taken from a
dc flux range 0 to Φ0.

IM power becomes very strong at the geometrical resonant frequency because the

SQUIDs are multistable there. The critical tone power for the strong IM products

at the geometrical resonant frequency changes from -50 dBm to -70 dBm as the dc

flux value changes from 0 to 0.3Φ0. The upper IM power Pf4 is calculated using the

full nonlinear model for the single rf-SQUID meta-atom under two dc flux values.

The calculated responses show similar behavior as in experiment. (Fig. 6.7 (c) and

(d)).
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Figure 6.9: The measured upper 3rd IM power Pf3 generated from a single rf-
SQUID meta-atom. IM power Pf3as a function of the tone center frequencyat a
fixed rf power -60 dBm, and at (a) 0 dc flux, and (b) 0.39Φ0 dc flux. (c) and
(d): Same quantities as in (a) and (b), calculated by the full nonlinear numerical
simulation. The spacing between two inputs is 10 MHz. The temperature is 4.6 K.
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Next I explore how the IM gap changes with the applied dc flux. Figure 6.8 (a)

shows the IMD power at a fixed input rf power (-60 dBm) as a function of frequency

in varying dc flux. The gap width and frequency are tunable in almost all dc flux

ranges except at the dc flux values with the strongest IM signals at the geometrical

resonant frequency (around 0.3Φ0). The gap, tuned smoothly from 0 to 0.3 Φ0 dc

flux, breaks as it reaches the geometrical resonant frequency fgeo, then ”flips” and

modulates smoothly with dc flux again below fgeo. Two frequency cuts at 0 and

0.39 Φ0 dc flux in Fig. 6.9 (a) and (b) clearly reveal the flipped gap feature. At 0

dc flux the peak value of IM products is at the lower frequency side of the gap. At

0.39 Φ0 dc flux however, the IM generation is strongest above the gap. The same

quantities are calculated by numerical simulation and shown in Fig. 6.8 (b) and

Figs. 6.9 (c) - (d) for comparison. The simulation also shows a flipped gap feature.

This flipped gap feature can be explained by the steady-state relationship

between the envelope of the gauge-invariant phase δ and φrf (solutions to Eqs. 6.5

to 6.7), which changes with dc flux. Figures 6.10 (a) and (b) show this relationship

for two dc flux values. Curves in various colors denote different center frequencies

of the two excitation tones. At zero flux, the function is bistable around the gap

regime. Higher center frequencies results in smaller upper critical rf flux value φlh.

For a flux value close to 0.5 Φ0 though, the upper critical rf flux value φlh is larger

for higher center frequencies around the gap regime (10 - 13 GHz) - exactly opposite

to the 0 dc flux case.

I extract the upper critical rf flux value φlh as a function of tone center fre-

quency in blue when φdc/2π equals zero and 0.47, and plot them in Figs. 6.10
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Figure 6.10: The extracted amplitudes of two main tones (δ1 and δ2) and two third
IM tones (δ3 and δ4) from steady-state solutions δ(t) under (a) φdc/2π = 0, and (b)
φdc/2π = 0.47. The upper critical rf flux value φlh (blue curves) and the peak value
of rf flux envelope (red curves), as a function of tone center frequency at (c) 0 dc
flux, and (d) 0.47Φ0 dc flux. Gray areas denote the conditions for discontinuous
jumps. The rf power is -60 dBm. The spacing between the two tone inputs is 10
MHz. The temperature is 4.6 K.
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Figure 6.11: The calculatedamplitudes of two main tones (δ1 and δ2), and two third
IM tones (δ3 and δ4) extracted from δ(t) by solving steady-state analytical model
Eqs. (6.5) - (6.7), under (a) 0 dc flux, and (b) 0.47Φ0 dc flux value.

(c) and (d), respectively. Also plotted is the peak value of rf flux envelope which

slightly varies with frequency, because the rf magnetic field is related to rf power

as well as the propagation constant inside the rectangular waveguide. From pre-

vious sections we know that when the peak value exceeds the non-zero critical rf

flux value, the envelope of δ will experience four state jumps during a beat period.

Gray areas denote the conditions for discontinuous jumps. Switching from no state

jump to abrupt state jumps (where the state amplitude change is large) determines

the richest IM generation. The switch happens at the lower and higher tone center

frequency side for 0 and 0.47 Φ0 dc flux, respectively (Figs. 6.10 (c) and (d)). This

difference is consistent with the flipped gap feature observed in experiment.

Figure 6.11 shows the amplitudes of δ(t) at the two main tones, and two third

IM tones extracted from δ(t) by solving the steady-state analytical model Eqs. (6.5)

to (6.7). The calculated gap feature also flips as the dc flux value approaches 0.5

Φ0, consistent with the experiment.
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Figure 6.12: (a) The measured upper 3rd IMD power generated from a single rf-
SQUID meta-atom as a function of dc flux and tone power, at a tone center frequency
of 13.54 GHz, just above the geometrical resonance frequency (13.52 GHz). (b) The
steady-state relationships between envelope of δ versus envelope of rf flux at a center
frequency of of 13.54 GHz; the dc flux modulates from 0 to 0.5 Φ0. (c) Larger scale
of (b) for 0 dc flux. The spacing between two inputs is 10 MHz. The temperature
is 4.6 K.

Another effect brought on by non-zero dc flux is the change of the critical

rf power for the strong IM generation around the geometrical resonant frequency

at high rf drive amplitudes. The upper third order IM power shown as colors in

Fig. 6.12 (a) is measured at a tone center frequency of 13.54 GHz (just above

the geometrical frequency 13.52 GHz) with ∆ω/2π = 10 MHz, while the rf flux

scans from low to high amplitudes, in different applied dc flux values. The red

region denotes the strong IM power. The unique horizontal stair-like features are a

characteristic of multistability [59,63] .

Figure 6.12 (b) shows the steady-state relationships between the envelope of

δ versus the envelope of rf flux at a tone center frequency of 13.54 GHz; the dc

flux modulates from 0 to 0.5 Φ0 in steps of 0.1Φ0. All curves are calculated by

Eqs. (6.5) - (6.7) reveal multistable solutions. The critical rf flux envelope value for
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one stable state to jump to another depends on the current state the SQUID is in.

However, the boundary between very weak and very strong IM generation region is

determined by the critical rf flux envelope value for the lowest δ amplitude branch,

labeled as φlh1. Once the peak value of the rf flux envelope function passes φlh1, the

gauge-invariant phase δ would jump from the lowest amplitude branch to another

high amplitude state.

An example of this state jump is shown in Fig. 6.12 (c) for the zero dc flux

case where the envelope of δ as a function of the envelope of φrf is plotted in a

much larger scale than Fig. 6.12 (b), so it reveals more states at higher amplitudes.

The amplitude of the δ envelope changes from 0.25 to 13 during the abrupt state

jump, giving rise to a much stronger IM products than the previously discussed

IM products generated in the bi-stable regime. Thus the IM generation is always

strongest around the geometrical resonant frequency at high tone powers.

From Fig. 6.12 (b) we can tell that the first critical rf flux envelope value

φlh1 is largest when φdc/2π is equal to 0 and 0.5, and is smallest near 0.3. This

qualitatively explains the dc flux modulated boundary between weak and strong IM

generation near the geometrical resonant frequency seen in Fig. 6.12 (a).

6.2.5 IM Hysteresis and Amplification in SQUID Metamaterial

We also notice that utilizing two equal-amplitude tone inputs always gives

a zero node in the driving rf flux envelope, hence the IM products of the SQUID

depend little on the system’s history, even in the bistable regime. As long as the
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rf flux envelope peak (determined by tone power) exceeds the transition point φlh,

the SQUID will experience discontinuous jumps during a beat. However if the two

tones have different amplitudes so that the minimum value of the envelope is higher

than φhl, the amplitude of the δ envelope depends on the direction of tone power

sweep. In an upward sweep δ modulates in the low-amplitude branch during the

whole beat until the tone power increases to the point that the rf flux envelope peak

exceeds φlh; δ will then keep oscillating in the high-amplitude branch during a beat.

In a downward tone power scan though, δ would modulate with the beating rf flux

in the high-amplitude branch until the peak drops below φhl.

The predicted hysteresis brought on by the difference between the two tone

amplitudes is observed in experiment. For example, I plot the measured lower third

IM power generated from an 11 × 11 rf-SQUID array metamaterial in Fig. 6.13

as a function of pump power (power of the lower tone frequency f1) and the two-

tone center frequency, under three different tone amplitude ratios. For equal tone

amplitude, the upward power scan (Fig. 6.13 (a)) and the downward power scan

(Fig. 6.13 (d)) result in similar onset power of IM generations at a fixed frequency.

Keeping the power of the upper main tone f2 20 dB less than the power of f1 (Figs.

6.13 (c) and (f)), however, gives rise to an approximately 15 dBm difference in the

onset power of strong IM generation at a tone center frequency of around 16 GHz,

depending on the direction of the tone power scan. Figures 6.13 (b) and (e) display

the results from upward and downward power scans when there is a 10 dB difference

in two tones. The third IM power shows an intermediate level of hysteresis.
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Figure 6.13: The measured lower 3rd IM power generated from an 11×11 rf-SQUID
array metamaterial as a function of pump power (power of the lower tone frequency
f1) and two-tone center frequency, at 0 dc flux. Tone power upward scan: (a) The
two tones have the same power. (b) The power of f2 (signal) is 10 dBm lower than
the pump f1. (c) The power of f2 (signal) is 20 dBm lower than the pump f1. (d)
to (e) plot the same quantities for downward power scan. The spacing between the
two tone inputs is 10 MHz. The temperature is 4.6 K.

109



Chapter 7: Conclusions and Future Work

Rf-SQUID metamaterials combine the advantages of superconducting elec-

tronics and nonlinear metamaterials. We have shown in previous sections that the

rf-SQUID meta-atom and metamaterial are very nonlinear and tunable when re-

sponding to dc/rf magnetic field. The single-tone experiments and simulations show

that the SQUID meta-atoms and metamaterials yield large tunability in resonant

frequency at low rf flux amplitudes, enabling potential applications in fast tun-

able digital filters. The broadband and switchable transparency behavior in the rf-

SQUID meta-atoms and metamaterials also holds promise for applications in power

limiters, digital communication transmitters, gain modulated quantum antennas,

and the novel concept of a metamaterial that automatically reduces its scattering

cross section to near zero (auto-cloaking). The range, switchability and tunability of

the transparency can be accurately evaluated by a Duffing oscillator approximation.

Therefore we can design SQUID meta-atoms and metamaterials with controllable

and predictable transparency bahavior.

We also studied the multi-tone response of SQUID meta-atoms and metamate-

rials via the intermodulation experiments. We find that under certain combinations

of tone power and frequency, the SQUID shows a sudden onset of the 3rd order IM
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generation followed by a near-zero 3rd order IM generation (gap). This phenomenon

is a result of the bi-stable properties of rf-SQUIDs. This intrinsic suppression of

IM generation may be useful as a mechanism for depressing signal mixing in com-

munication applications. A detailed theoretical model is presented to explain this

surprising gap feature in IM generation. The intensity of IM generation sensitively

depends on the parameters of the rf-SQUIDs, and can be modulated by dc/rf mag-

netic field, and temperature, potentially allowing one to design and tune the IM

generation to meet various requirements for applications.

These works bring novel physics into nonlinear metamaterial research, and

serve to link the fields of quantitative nonlinear dynamics and macroscopic quan-

tum effects to the metamaterials community. It also introduces revolutionary new

applications of metamaterials.

In the subsequent parts in this chapter I will summarize the experimental,

theoretical, and analytical results obtained in this thesis work, and propose some

future works on the SQUID meta-atoms and metamaterials.

7.1 Tunable Transmission (Resonance) of rf-SQUID Meta-atoms and

Metamaterials

The rf-SQUID meta-atoms and metamaterials have a resonant frequency tun-

ability of up to 80THz/Gauss via dc flux when the driving rf flux amplitude is low.

For intermediate rf flux amplitudes, the rf-SQUID meta-atoms and metamaterials

are bistable. The bistability results in lower resonant frequency and a nearly full dis-
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Figure 7.1: The tuning parameter space for SQUID meta-atoms and SQUID meta-
materials. The transmission as a function of (a) dc flux and frequency, (b) input rf
power and frequency, and (c) dc flux and input rf power.

appearance of resonance absorption (transparency). Such broadband transparency

can be switched on and off via drive frequency or amplitude hysteresis, and dc flux.

At higher rf amplitudes, the SQUIDs become multistable around the geometrical

resonant frequency. The onset rf amplitude for entering the mulstability regime also

tunes with dc flux.

There are many things one can use to tune the transmission properties of an

rf-SQUID meta-atom or a metamaterial. To obtain a bigger picture based on those

properties and link them together, I like to think of transmission being tuned inside

a parameter space composed of a dc flux axis, an rf power (rf flux) axis, and a

frequency axis, as plotted in Fig. 7.1. Inside the parameter space, every surface

corresponds to a unique resonance behavior. I build the parameter space for the

single rf-SQUID meta-atom, cut three surfaces, and plot the transmission in colors
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for each of the surfaces in this tuning parameter space in Fig. 7.1. Red features

denote the low transmission in a resonance.

The surface shown as Fig. 7.1 (a) displays the transmission as a function

of dc flux and frequency when the value of input rf flux is extremely low. The

resonant frequency in this case tunes smoothly by the dc flux all the way from 19

GHz to 2 GHz at a temperature of 4.6 K. This tunable resonant frequency can

be predicted by a simple circuit model which treats the Josephson junction as an

effective inductance.

Another cut at the zero dc flux (Fig. 7.1 (b)) shows the transmission in colors

as a function of frequency and the input rf power, where the resonance gradually

disappears in the intermediate power range, and reappears strongly at the geomet-

rical resonant frequency fgeo. The disappearance of the resonance is a result of

bistability of the SQUID, and can be analyzed in detail using the Duffing oscillator

approximation. Inside the bistability regime, the SQUID can be transparent (weak

resonance) or opaque (strong resonance) depending on the drive history.

Then we cut a surface perpendicular to the frequency axis at this geometrical

resonant frequency fgeo, and observe the transmission as a function of the dc flux

and the input rf power (Fig. 7.1 (c)), where the onset of this strong geometrical

resonance modulates dramatically with dc flux. The SQUID enters the multistable

regime above the critical power. In the multistable regime, the resonant frequency

is fixed at the geometrical resonant frequency fgeo, but the strength of the resonance

depends on the particular state the SQUID is in. Jumping between states generates

stair-like transmission as a function of the rf power [59,63].
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We can move the surface (transmission as a function of dc flux and frequency)

in Fig. 7.1 (a) along the rf power axis. The resonant frequency at zero dc flux will

transit to lower frequencies at higher rf powers, and the strength of the resonance dip

would decrease because the SQUID enters the low-amplitude state of the bistable

regime. Moreover, as the surface in Fig. 7.1 (a) moves to a point where the rf

power value is higher than the lowest critical rf power for the geometrical resonance

(labeled by the dashed blue line in Fig. 7.1 (c)), the resonance will be very strong

at the geometrical resonant frequency at the dc flux values for low onset rf powers,

while staying weak at other dc flux values. An example is shown in Fig. 4.13 and

discussed there. The transparency behavior can thus be tuned on and off by dc flux.

Similarly, moving the surface in Fig. 7.1 (b) along the dc flux axis, the trans-

mission as a function of frequency and input rf power will change according to the

trend in Fig. 7.1 (a) and Fig. 7.1 (c). For instance the resonant frequency at very

low rf flux amplitudes consistently becomes lower as the dc flux changes from 0 to

0.5 Φ0. At the same time, the onset rf power of the strong geometrical resonance

modulates with the dc flux. As a result, the transparency rf power range where the

resonance is weak and undetectable is the smallest when the SQUID is driven at

0.25 Φ0. When the surface in Fig. 7.1 (b) is at a dc flux value near 0.5 Φ0, the

low-rf-flux resonant frequency is below the geometrical resonant frequency fgeo. A

consequence is that the resonant frequency will increase as the rf flux amplitude

increases.

One can also move surface Fig. 7.1 (c) along the frequency axis. This behavior

has not been explored in my work yet, and may be interesting to look at in the
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future. I can imagine that there will be an onset rf power and an offset rf power for

the resonance at any fixed frequency inside the tunable frequency range. The two

critical rf powers, and the strengths of the resonance at a fixed frequency can also

modulate with dc flux.

The surfaces in the tuning parameter space basically covers all the transmission

properties of an rf-SQUID meta-atom or a SQUID metamaterial. Other tuning

parameters, such as temperatures, drive history, couplings between meta-atoms in

an array, the measurement methods, additive noise and standing waves all modify

transmission behaviors inside this space.

In the thesis, the temperature dependence has been discussed in detail, es-

pecially for the dc flux tunability of the resonant frequency at low rf powers. The

temperature affects the critical current in the Josephson junction, and further the

value of βrf . A higher βrf value results in larger resonant frequency tunability via

the dc flux (Fig. 4.3), and broadens the rf power range where the SQUID is bi-

stable and shows transparency behavior (Fig. 4.8). Higher temperature also breaks

more Cooper-pairs into normal electrons, giving rise to a lower gap resistance in the

junction and a lower quality factor of the SQUID.

7.2 Discussion of IM generation in SQUID Meta-atoms and Meta-

materials

The rf-SQUID meta-atoms and metamaterials have rich intermodulation gen-

eration due to the nonlinearity of the Josephson junctions. Experiment, numerical
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simulation, and analytical models all predict a sharp onset followed by a dip in the

third order IM output as a function of the tone center frequency. The rf-SQUID

array metamaterials show similar unique behaviors as the single rf-SQUID meta-

atom. The sharp onset of IM generation comes from a series of asymmetric jumps

between two stable states of the rf-SQUID as the drive amplitude modulates during

a beat of the input signal. Each state jump creates a transient response appearing as

ringing in the time domain. The dynamics can be explained by a dynamical model

employing a Hamiltonian analysis with damping.

Three models for IM generation in rf-SQUIDs have been discussed. The solu-

tions to the full numerical nonlinear model contain the most complete information

for the response of rf-SQUIDs to two-tone excitation, yet gives little insight into

the underlying physics. The steady-state analytical model greatly simplifies the 2nd

order nonlinear differential equation to three coupled algebraic equations, and sheds

light on the origin of the unique IM features - the state jumps during a beat period

cause an abrupt increase in IM products. While it predicts the same level of IM

generation as calculated by numerical simulation (Fig. 6.3), the steady-state model

lacks the dynamics accompanying each state jump, which can be understood using

the nonlinear dynamical model. This model reduces the full nonlinear equation to a

complex first order differential equation, and allows for construction of a Hamilto-

nian for the SQUID. The topology of the Hamiltonian surfaces evolves continuously

as the envelope of the drive signal changes. The topology determines the form of

the trajectories, δ̂(t), to be spirals during transitions as the SQUID switches from

one stable state to another, resulting in ringing features in δ(t).

116



According to these models, we can design SQUID metamaterials to generate

either very high or very low IM products in response to multi-tone excitation. The

analytical models can also be applied to design other nonlinear systems employing

Josephson junctions, such as the Josephson parametric amplifier.

7.3 Future Work

The equations discussed in my thesis focus on the single Josephson junction

system. These models can also predict the behaviors of the rf-SQUID array meta-

materials assuming that the meta-atoms are identical, not coupled to each other,

and subjected to uniform driving conditions (including dc and rf flux, temperature).

For a coherent array metamaterial, the tunability of resonant frequency with dc flux,

the hysteretic transparency behaviors, the rich IM generation and the gap feature

in the IM products are similar to a single rf-SQUID. However, we also see that the

arrays under nonuniform dc flux lose the collective tunable resonance (an example

is shown in Fig. 4.5).

The effects of coupling and nonuniform dc flux in the SQUID metamaterial are

intensively discussed in my colleague’s work [68] which focuses on the transmission

properties. Her work theoretically suggests that the coupling between SQUIDs

would enhance the resonance strengths, increase the resonant frequency, and gives

rise to magneto-inductive modes when the SQUID arrays experience non-uniform dc

flux. The current experimental-setup only measures the collective response from the

whole array, but lacks the local information on each SQUID. Thus the distribution
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of amplitudes and phases of the SQUIDs in each magneto-inductive mode cannot be

measured directly. A near-future experiment is to use a laser scanning microscope

to scan the whole array and measure the microwave response (magnitude and phase)

at the location of each SQUID [129].

It would be intriguing to build a metasurface using an array of SQUIDs. This

requires a totally different experiment configuration. The incident wave propagates

at an angle to the 2D SQUID array metamaterial plane, and we measure the prop-

agation direction of the output electro-magnetic wave. The output propagation

direction depends on the angle of the incident wave, and the properties of the meta-

surface [130]. If one can create a gradient of magnetic field across the 2D array

metasurface, the SQUIDs interact with the incident wave differently, and might

cause a steering of the original wave propagation. The gradient can be applied by a

coil, or by designing on-chip wires around the SQUID meta-atoms so we can change

the local magnetic fields by applying current into these wires. Another method is

to use non-identical SQUID meta-atoms in an array to create the intrinsic gradual

property variation across the whole metasurface. For this experiment, an angle-

sensitive setup is needed so we can measure the angle of the output wave as we

change the magnetic field gradient or the angle of the incident wave.

All of our SQUIDs are designed to have a less-than-unity βrf to avoid compli-

cations brought by the chaotic behavior and the hysteretic dc flux behavior [112].

Now that we have studied in detail the dynamics of non-hysteretic rf-SQUID meta-

atoms and metamaterials, it might be worth stepping further and looking at the

SQUID design with higher βrf values. I have designed a single rf-SQUID meta-
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atom and a SQUID array metamaterial that have the same size, and geometrical

resonant frequency as our currently measured single SQUID meta-atom. The only

difference is that the areas of the junction is larger so the critical current is higher,

resulting in a βrf value of 2.7.

The calculated resonant frequency as a function of the dc flux is shown in Fig.

7.2 for a unity βrf (blue curve) and a larger βrf (red curve). Increasing the βrf value

greatly enhances the resonant frequency tunability with the dc flux, however, the

sharp tuning resonance feature (nearly vertical as a function of dc flux) below the

geometrical resonant frequency may be hard to follow in an experiment. The tuning

also depends on the direction of the dc flux scanning. One thing good about the

higher βrf value in our experiment is that we can carefully control the temperature

and explore the behaviors for βrf values ranging from 0 - 2.7. Higher βrf values also

have the benefits of inducing Chimera states in an rf-SQUID array metamaterial [69].

We also plan to deliberately create Chimera states in the SQUID metamaterial and

measure them using the laser scanning microscope in the future.

We have not investigated the effects of coupling and nonuniform dc flux on

the IM generation in SQUID array metamaterials. In the experiment on an 11× 11

array, even when the two input tones are equal in amplitude, there is a hysteretic

onset tone power for the strong IM generation at a center tone frequency of around

16 GHz (see Fig. 6.13 (a) and (d)). The upward tone power scan gives a higher

onset power for the abrupt increase in IM products as a function of the tone power.

The single SQUID meta-atom, however, never shows a measurable hysteretic IM

generation. The single junction Eq. 6.2 predicts that the hysteresis is small for
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Figure 7.2: The resonant frequency as a function the applied dc flux at very low rf
flux amplitude for the single rf-SQUID meta-atom, for βrf = 1 (blue) and βrf = 2.7
(red).

the equal tone case due to the zero amplitude of the rf flux drive during every

beat period. Apparently the array shows some two-tone response that cannot be

explained by the single Josephson junction model. The theoretical model for the

IM generation in the future should include the coupling and the non-uniform drive

in the SQUID metamaterials.

One interesting topic is whether the sudden onset and the gap feature in the

IM generation are affected by putting the SQUIDs in an array, especially when they

couple strongly and form magneto-inductive modes where the SQUIDs oscillate at

different amplitudes and phases under non-uniform magnetic fields. I think the

onset would be less sharp, and the gap would be shallower for the SQUID array

because each SQUID has an onset and a gap at a slightly different tone center

frequency. However since the cause of the sudden onset and the gap feature is
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the intrinsic bistability of the rf-SQUIDs, and this is not altered for SQUIDs in

an array. Therefor these phenomena observed should be robust against noise and

non-uniformity, consistent with our experimental observation for the SQUID array

metamaterials.

The discussed theoretical results for the IM generation in my thesis mainly

focus on the bistable regime of the SQUIDs, where the intrinsically suppressed IM

generation happens. The multi-stable states results in complex and interesting stair-

like features when the two tones center near the geometrical resonant frequency (see

Fig. 6.12). I hope to understand these features using the tools of nonlinear dynamics

in the multistability regime.

Finally, our current experimental setup has a base temperature of 4.6 K, so

the SQUIDs behave classically. Now our lab has the capability for measurements

in the mK temperature range. The extreme low temperatures allows one to ad-

dress discrete quantum energy levels in the SQUID metamaterials, and introduces

intriguing quantum phenomena. We are now designing a quantum Josephson junc-

tion metamaterial that can be explored utilizing the methods and theories discussed

in this thesis.
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Appendix A: Pulsed RF Measurement of SQUID Meta-atoms

In the main thesis parts, only the continuous wave (CW) measurement results

are considered, where the rf wave is turned on all the time and has the same ampli-

tude over the whole measurement time span. However we have found some cases of

discrepancy between the experiment and the simulation. For example, the critical

rf power where the single SQUID meta-atom shows strong resonance absorption at

the geometrical resonant frequency, or the critical power where the SQUID meta-

atom enters the multistability regime, differs by approximately 10 dBm between

data and simulation. One hypothesis is that the energy at high powers absorbed

by the SQUID is largely confined in the chip due to poor heat transfer between the

chip and the foam inside the rectangular waveguide, thus contributing to a local

temperature increase in the experiment. According to the discussions in Chap. 2,

increasing the temperature gives rise to a lower upper critical rf power.

In a pulsed-rf measurement, the rf wave is turned on for a certain time span

tw, and then turned off for some time, in a periodic manner with a periodicity of tp.

The S-parameters are measured when the pulse is on. The scheme is shown in Fig.

A.1. The pulse width is much longer than the fast oscillating rf wave period so that

we are sure the SQUIDs are in their steady state response in the pulse. The shortest
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Figure A.1: The scheme of a pulsed-rf measurement.

pulse width in experiment, 2 µs, contains at least 20,000 fast rf oscillation periods.

The Duty cycle value is defined here as tw/tp, i.e. the percentage of a pulse being

on in a cycle. In the following discussion I will show how pulsed-rf measurement

changes the nonlinear behaviors of the single SQUID meta-atom.

The transmission as a function of driving frequency and rf power for the single

rf-SQUID meta-atom at a temperature of 4.6 K and zero dc flux is plotted in Figs.

A.2 (a) - (e) for the pulsed rf measurement (pulse width 200 µs and pulse periodicity

1 ms), CW measurement, and numerical simulation, when rf power is scanned from

low values to high values as the frequency is fixed. Reducing the duty cycle from

100% to 20% increases the upper critical rf power by 5 dBm, closer to the result in

simulation.

The Transparency values (defined in Chapter 4) of the pulsed-rf measurement,

the CW measurement, and the simulation are plotted in Fig. A.2 (f) as blue , red,

and black curves, respectively. The CW transparency curve shows a slightly higher

onset power and a 5 dBm lower upper critical power in the transparency range - the
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Figure A.2: The transmission of the single rf-SQUID meta-atom as a function of
frequency and rf power under zero dc flux of (a) pulsed-rf measurement and (b) CW
measurement, and (c) simulation, at a temperature of 4.6 K. (a) - (c) are results of
an upward rf power scan. Downward rf power scan results are shown in (d) pulsed-rf
measurement and (e) CW measurement. The extracted transparency as a function
of rf power from (a) - (c). The pulse has a width of 200 µs and a periodicity of 1
ms (20% duty cycle).
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Figure A.3: (a) The transmission as a function of rf flux and dc flux at the geomet-
rical frequency ωgeo/2π of simulation, pulsed-rf experiment, and CW experiment for
a single rf-SQUID at 4.6 K. (b) The critical power as a function of duty cycle. (c)
The power cut at a dc flux value of 0.25Φ0.

same effect brought by increasing temperature. The transparency extracted from

the pulsed-rf measurement resembles more of the simulation.

A reversed rf power scan does not change the transmission in the pulsed-

rf measurement. However in the CW measurement and simulation, a reversed rf

power scan causes a 10 dBm decrease in the upper critical power for the strong

resonance at the geometrical resonant frequency 13.52 GHz. This is because during

the pulsed-rf measurement all the history in the SQUID meta-atom vanishes inside

the time period when the pulse is off.

Since the main difference between the pulsed-rf and CW measurement lies in

the onset for the strong resonance at the geometrical resonant frequency, I measure
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the transmission as a function of rf power at this frequency, 13.52 GHz, with dif-

ferent pulse widths, and check how the dc flux dependence of this critical power is

modified. The results are displayed in Fig. A.3 (a) and compared with the simulated

transmission. The strong resonance absorption (blue region) at the geometrical fre-

quency determines the upper critical rf power. The edge between the blue region

and the red region denotes the tuning of upper critical rf power by applied dc flux.

I extract and plot the critical power as a function of duty cycle in Fig. A.3 (b) for

two dc flux values. As the pulse width becomes larger, the critical power gets lower

for all dc flux values.

Also, around 0.5 Φ0 dc flux, there is a ”w”-shape feature at the boundary in

the simulation, as well as in the pulsed-rf experiment where the pulse width is 2 µs

in a periodicity of 1 ms. This feature gradually disappears at higher duty cycles.

The pulsed-rf and CW measurements both have a lowest critical power at

around 0.25 Φ0 dc flux, and highest critical power at 0 dc flux. Above the critical

power the SQUID meta-atom enters the multistability regime. Each state has a

different amplitude thus presents a different transmission value. As the SQUID

meta-atom jumps from one state to another, the transmission shows a step feature.

A frequency cut at the 0.25 Φ0 dc flux value is plotted in Fig. A.3 (c) that clearly

reveals these state jumps. This plot demonstrates that the pulse widths also affects

the state jumps. References [63] and [59] investigated these state-changes in rf-

SQUID meta-atoms and metamaterials induced using very short pulses ( ns) near

the geometrical resonance frequency at zero dc flux.
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Appendix B: The Effect of Noise on Simulations of SQUID Meta-

atoms and Metamaterials

Up to this point all simulations ignore the effect of noise, but in actual experi-

ment noise is unavoidable. The noise-free simulations may miss important behaviors

that are seen in experiments. Adding noise to the simulation allows one to explore

other solutions that are not otherwise accessible. Here I will show some preliminary

results of adding noise in the numerical simulation, and see how the noise can affect

the transmission of a SQUID meta-atoms.

Noise is simulated as a magnetic flux fn(t) = φn(t)/2π that changes with time.

Assuming it is white noise, at each time point a random value within a certain range

is assigned to the noise flux by the Python code I wrote. The equation of a SQUID

meta-atom with noise becomes:

d2δ

dτ 2
+

1

Q

dδ

dτ
+ δ + βrf sin δ = (φdc + φrf sin Ωτ + φn(τ)) (B.1)

Again, φdc = 2πΦdc/Φ0 and φrf = 2πΦrf/Φ0 are the applied dimensionless dc flux

and rf flux, ωgeo = 2πfgeo = 1/
√
LC is the geometrical frequency, Ω = ω/ωgeo, τ =

ωgeot, Q = R
√
C/L is the quality factor of the SQUID that reflects the dissipation,
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Figure B.1: The transmission of the single rf-SQUID meta-atom as a function of
frequency and rf flux under zero dc flux, at noise flux levels of (a) |fn(t)|< 0.01, (b)
|fn(t)|< 0.01 and (c) no noise, at a temperature of 4.6 K. The three upper (lower)
plots are results of an upward (downward) rf power scan.

and βrf = 2πLIc/Φ0 is the coefficient determining the degree of nonlinearity and

tunability in an rf-SQUID. I solve this equation numerically with the same parameter

set used for the single rf-SQUID meta-atom to get the gauge-invariant phase δ(τ),

and further calculate the transmission S21 (see Chap. 2 for details).

The simulated transmission as a function of frequency and rf flux under two

noise levels is shown in Figs. B.1 (a) and (b). They are compared with results from

simulation free of noise Figs. B.1 (c) . The red feature denotes the resonance. At

low rf flux amplitude values, the resonance strength is smaller than the noise and

thus is lost in the vertical red noise bands at small Φrf . For a smaller noise level

(|fn(t)|< 0.01), the disappearance of resonance in the intermediate rf flux range is
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more clear, and the hysteresis in the rf flux scan is larger than the higher noise level

case. Also, adding noise reduces the upper critical power for the strong resonance at

the geometrical resonant frequency 13.52 GHz. This might explain why the critical

power is lower in experiment than in simulations which ignores noise (see Fig. 4.8

(a)).

In conclusion, the reduced range and degree of the broadband transparency

seen in the SQUID meta-atoms and metamaterials in experiment can be realized

by adding noise in the simulation. The noise also depresses the hysteresis in the

bistable regime. However adding noise does not destroy the transparency behavior.

It is important to lower the noise level in the experiment for a more robust and

larger range broadband transparency.
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Appendix C: Detailed Understanding the Gap Feature in IM gener-

ation of SQUID Meta-atoms and Metamaterials

In Chap. 6, I discussed the IM generation in SQUID meta-atoms and meta-

materials. A prominent IM gap feature is observed both in experiment and in sim-

ulations. The extracted amplitudes of the gauge-invariant phase for the two main

tones and two third order IM tones are plotted as a function of center frequency in

Fig. C.1 (a). The near-zero amplitude of upper third order IM (δ4) at a tone center

frequency of around 17.75 GHz suggests both the real part and the imaginary part

of this tone are equal to zero. Chapter 6 mainly shows the result of the amplitude

information. In fact, the phase plays an important part in the zero-amplitude IM

tone generation.

Figure C.1 (b) - (f) display the extracted δ1 to δ4 from δ(t) calculated by the

steady-state model (Eqs. (6.5)-(6.7)) in the complex δ-plane, where the distance to

the origin denotes the amplitude, and the angle relative to the positive x-axis (Re[δ])

denotes the phase of each tone δi where i = 1, 2, 3, 4. As the tone center frequencies

changes from 16 to 18.9 GHz (around the gap feature), the amplitudes and phases

of the two main tones and the two third order IM tones also vary. Results shown

in Fig. C.1 (b) are calculated using the same parameter set as of Fig. C.1 (a), i.e.,
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the rf power is -65 dBm, the resistance is R = 1780Ω, and the nonlinear quantity

βrf is 0.98. The arrows denote the change as the center frequency increases. The

two main tones and the two third IM tones are not symmetric about the x-axis.

The effects of various parameter values to the zero-crossing and the asymmetry

are explored through analyzing Figs. C.1 (c)-(e) that display the amplitudes and

phases of extracted δ1 to δ4 under several parameter sets. Increasing the resistance

from R to 5R (Fig. C.1 (c)) eliminates the asymmetry as well as the zero amplitude

point of δ4. Changing the rf power (Fig. C.1 (d)) and the value of βrf (Fig. C.1

(e)) does not affect the zero-crossing. Comparing Fig. C.1 (b) and (c) one sees that

reducing the resistance from 5R to R results in asymmetric distortions which causes

a counter-clockwise rotation for the two main tone curves, and a clockwise rotation

for the two IM tones, in the complex δ-plane. This distortion causes the upper third

order IM tone δ4 to cross the origin (zero-crossing), while δ3 stays away from the

origin.

The resistance value affects the quality factor Q of an rf-SQUID. According to

Eq. (6.6) the phase of δ(t) approaches zero when the resistance (or Q) is very high.

This suggests that the existence of the imaginary part of δ(t) causes the asymmetry

between upper and lower main tones and IM tones. To verify this, I plot δ1 to δ4

extracted from the real part of δ(t) only in Fig. C.1 (f). The full δ(t) and the

real part of δ(t) as a function of time in a beat period are displayed as insets of

Figs. C.1 (b) and (f), respectively. All other parameters are the same. The lack of

imaginary parts give rise to disappearance of the asymmetry and the zero-crossing,

as expected.
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Figure C.1: The lower and upper main tone output δ1 and δ2, and third order tones
δ3 and δ4 for a single rf-SQUID meta-atom calculated with steady-state analytical
model. (a) The amplitudes of those four tones at an rf power of -65 dBm, resistance
of R = 1780Ω, and the nonlinear quantity βrf of 0.98. (b) to (f) The amplitudes and
phase of the four tones plotted in the complex δ−plane under different conditions.
The arrows denote the change as the center frequency increases. Insets of (b) and
(f) shows the time dependence of full δ(t) and real part of δ(t) at the onset tone
center frequency 17.35 GHz, respectively. All assume φdc = 0.
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From these analytical results we can predict that the asymmetry in the upper

and lower IM tones is related to the loss in the SQUID. Tuning Q with temperature

can make one of the IM tones have a ”zero-crossing” as a function of the tone center

frequency.
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Appendix D: Detailed Information on How to Conduct the Experi-

ment

The descriptions on the experimental setup for single-tone and two-tone mea-

surements are summarized in Section 3.2 and Section 6.1, respectively. In this

Appendix I would talk about the detailed procedures for a successful measurement.

D.1 Preparation of the Samples

The chips from Hypres Inc. are 5 mm × 5 mm in size. Each chip has several

designs (Fig. 3.2) and we need to dice the chip in order to measure the designs

separately. I used one of the dicing saws in the Maryland NanoCenter Fablab with

the help of a technician [131]. Note that before the dicing process the chip has to be

stabilized on a silicon wafer by wax. The wafer is 3-inch in diameter, or determined

by the technician.

D.2 Put Sample in the waveguide

After the sample is diced and cleaned we can put it inside the rectangular

waveguide. First of all, the rohacell is cut manually to fit the size of the waveguide
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so it can be inserted into the waveguide without moving around. It is better to

also cut the rohacell with a length that equals the length of the waveguide plus the

distances of the antennas in the waveguide adapters to the ends of the waveguide.

In this way, even when the waveguide is positioned vertically the rohacell can still

be stabilized. This is extremely important for a uniform and stable dc magnetic

field because the position of the solenoid is fixed outside the waveguide (Fig. 3.5).

A slit is cut in the middle of the rohacell for the samples to sit in.

D.3 Assembly of Waveguide Holder and Other Components

The waveguide with samples can then be clamped in the E-shape waveguide

holder as shown in Fig. 3.5. Two copper bars with screw holes are used to press

and stabilize the waveguide in the holder. The coils and the heater are also clamped

onto the waveguide holder using two customized copper holders (Fig. 3.5). One end

of the thermal straps can be attached to the waveguide holder, or one corner of the

bottom waveguide adapter. The other end of the thermal straps is usually screwed

tightly onto one of the feedthroughs on the 4K plate.

D.4 Attach to the 4K plate

After all the components are held together, one can feed the top of the waveg-

uide holder through the slit on the top lid of the mu-metal magnetic shielding (Fig.

3.6). Lead one of the coaxial cables and one thermometer into the round-shape

opening in the magnetic shielding top lid, before screwing the lid and the waveguide

135



holder to the 4K plate. Then the thermometer should be attached to the bottom

corner of the waveguide as shown in Fig. 3.5. The coaxial cable is connected to the

top waveguide adapter. Make sure to adjust the waveguide holder’s relative position

to the magnetic shielding such that the whole setup stays within the shielding.

Next put the cylindrical mu-metal shielding around the assembled setup, and

screw it to the top lid. All the dc wires, thermal straps should go out from the

opening of the bottom lid of the magnetic shielding. Make sure that the other

coaxial cable goes into the opening of the bottom lid and connect to the bottom

waveguide adapter before one closes the bottom lid.

Then, the other ends of the thermal straps are screwed tightly onto one of

the feedthroughs on the 4K plate. The dc wires for the heater and the coils are

connected to the pins at the ends of the dc wires in the cryostat.

D.5 Microwave Measurement

The transmission and reflection of the rf-SQUID meta-atoms and metamateri-

als in a rectangular waveguide are measured by the Agilent PNA-X N5242A network

analyzer. A source power calibration can be done for an accurate input rf power at

one end of the waveguide [132]. The rf-SQUIDs work in low powers so one or two

20 dB attenuators are added at the input. A cryogenic low-noise amplifier and a

room-temperature amplifier at the output ensures a detectable signal. The common

TRL calibration and the in situ broadband cryogenic calibration method developed

by my colleague [133] do not apply here due to the amplifiers in the route. In my
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experiment, the calibration is usually done by subtracting the data measured above

the critical temperature (often at 15 K) from the data collected below the critical

temperature of the superconductor niobium (9.2 K).

I usually use the following parameters when setting up the measurement on

the network analyzer [132]. Average (point mode) number is 3, the IF bandwidth

is 50 Hz, the sweeping points number is around 1001. This combination gives low

enough noise while keeps the measurement time not too long. The time for a single

sweep is around 50 seconds. If you change the setting parameters and the sweep

time varies, make sure to also change the wait time in the Matlab code to be around

3 seconds longer than the sweep time to ensure a complete measurement.

The network analyzer can also measure the intermodulation. Simply change

the measurement class to IM sweep [132]. Other parameters are similar to the

single-tone experiment.

The Matlab codes for running these experiments can be found in the group

backup space under the folder named Daimeng.

D.6 Other Concerns

The typical pump down time for the cryostat is around 10 hours. If the pressure

is still high after 10 hours, there is probably a leakage. Common leaks come from

the O-ring of the 300 K can. To fix it, clean the O-ring and put the 300 K can back

onto the cryostat. If this does not solve the issue, a careful leakage check is needed.

Typical cool down time is 36 hours. I usually wait for 2 days after starting
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the compressor before taking the date. For temperature dependent experiment, I

wait for an hour after the temperature of the waveguide (where the thermometer

locates) reaches the setting value to make sure that the sample reaches the same

temperature concerning the thermalization time of the sample. Also note that the

temperature increases when using high magnet currents. A better heat sink method

should be developed to solve this problem. After the low-temperature experiment,

the warm-up process takes more than 2 days after the compressor is turned off. Wait

until the temperature is at the room-temperature before one turns off the pump.

More tricks on the experiment of rf-SQUID meta-atoms and metamaterials

can be found in Anlage group wiki page.
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