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Chapter 1: Introduction

Every second-order phase transition, like the superconducting transition,
is typically dominated by fluctuation effects. However, the critical region of
conventional low temperature superconductors is so small that fluctuations

usually do not affect the properties of the material very strongly.

With the discovery of the high-Tc oxide superconductors new materials
became available, in which ﬂuctqations play a more important role and affect
their properties over a much larger temperature range. Although this discovery
was several years ago [1], the nature of the transition -in the high Tc¢
superconductors is still not clear and its characterization is the focus of many

experimental as well as theoretical investigations.

Fluctuations lead to the formation of superconducting regions inside the
superconducting material even above its transition temperature Tc. Fluctuations
affect the properties of the material also below Tc: normal-conducting regions

can appear for short times in an otherwise completely superconducting system.

The effects of fluctuations are of manifold nature. Simply speaking one
could say that fluctuations “round off” the superconducting transition. Because of
them, there are no real discontinuities or sharp peaks in the temperature-

dependent properties of the superconductor that otherwise would be expected to



emerge at Tc. Without fluctuations, the resistivity of a superconducting sample
for instance would really drop instantly to zero at the transition temperature (Tc)
and would be non-zero at any higher temperature, no matter how close to Tc that
temperature might be. Another example is the temperature dependence of the
heat capacity that would also have a sharp step at Tc in a system without any

fluctuations at all.

These are only two instances but in fact, fluctuations manifest themselves
in a number of ways. Naturally, they are most directly observed in transport or
thermodynamic properties: Heat capacity, diamagnetic susceptibility or dc as

well as ac-conductivity are typical examples.

Since the superconducting transition is a true phase transition, it can be
characterized by critical exponents. These critical exponents are universal in the
sense that they are independent of the individual quantity in which they are
observed. They are also indépendent of the specific system that undergoes the
phase transition. However, in the high-T¢ materials observations of these

properties have yielded a wide range of sometimes contradictory results.

The values of the universal critical exponents that characterize the
transition differ between heat capacity measurements [2], observations of the
microwave penetration length [3] , temperature-dependent de-conductivity

measurements [4], or the analysis of nonlinear current voltage characteristics



near Tc [5]. Recent measurements of the specific heat of YBa,CuzO; samples
even suggest that the critical exponents are asymmetric around Tc¢ [6], which
cannot be explained at all within the theory of a regular second-order phase-

fransition.

In this work fluctuation effects in the complex frequency- and
temperature-dependent conductivity are investigated. The measurement we have
done is a microwave reflection experiment employing a special configuration
that directly yields the surface impedance of the sample. That data is then used to
extract the complex frequency-dependent conductivity of superconducting films

in the broadband microwave range 45MHz-45GHz.

The analysis of the data yields the critical exponents v and z of the
superconducting transition. In addition, the scaling behavior of the fluctuation
conductivity above as well as below Tc is investigated. This continues the work
of Jim Booth who made measurements with YBa,Cus0; (YBCO) thin films and

analyzed the data mainly above T¢ [7,8].

The data presented here was obtained by measurements of YBCO thin
films. During the time I have spent in the group of Professor Anlage 1 have also
worked on measurements of Pr; ssCeo.15CuQ, (PCCO) films. PCCO belongs to
the copper-oxide high-T¢ materials; its transition temperature (~20K) is much

lower than that of YBCO (~90K), which makes the measurement more difficult.



In order to reach these much lower temperatures required for measurements on
PCCO, the existing experimental set up [9] had to be modified significantly. The
changes include the use of a different material for the microwave coaxial cable
connector (stainless steel instead of copper), effectively heat-sinking the cable
and determining the sample temperature more accurately. Another modification
is a small spring that provides a restoring force on the center pin that is essential
to keep good electrical contact between the conductors of the cable and the
sample. These changes have made the measuremeﬁt technique very reliable and
helped to improve the temperature stability. A more detailed description of the
changes is given in chapter 4. The system is now capable of successfully making
low-temperature measurements, unfortunately it still does not reach temperatures
far below the transition temperature of PCCO, which are necessary for the data

correction.



Chapter 2: Principle of the measurement

In the following, the principle of the measurement is introduced. This
includes a description of its strengths and weaknesses and an explanation of what
is actually measured. More detailed descriptions of the measurement method, the
necessary correction procedures and the analysis of the data are given in chapters

4.5 and 8.

Our experiment makes use of a special broadband microwave reflection-
technique with a configuration in which the sample forms an electrical short at
the end of a coaxial cable. The coaxial cable is used as a microwave transmission
line and guides the microwave signal to the sample. This method allows it to
measure directly the complex surface imiaedancg Zs of the sample, which can be
related to the complex conductivity © (F&l—icz) of the film. The measurement
yields the real and imaginary parts of ¢ as a function of frequency in the
broadband microwave range 45MHz-45GHz, as well as their te1ﬁperature

dependence.

Other methods to measure the complex surface impedance often make
use of resonant techniques. In these cases, either the sample itself forms a
resonant cavity or it is located inside a resonant cavity. The characteristics of the

resonant system (resonance frequency, quality factor) can then be measured and



related to the properties of the sample. These methods usually have a very high
precision; however they are limited to certain frequencies or to a very small
range of frequencies around the resonance frequency. In contrast, broadband
methods allow for measurements of the frequency dependence of Zg over a wide

range, although at the price of lower sensitivity.

It is also advantageous to investigate the effects of thermal fluctuations
with frequency dependent measurements, because they lead to less ambiguity in
the analysis of the data and provide information about the time dependence of the
system under study. An example of an important part of the data analysis that
makes use of the frequency dependence is the unique determination of the

transition temperature by studying isotherms of the conductivity (see chapter 8).






complex conductivity o of the film. Once o is obtained, it gives insight into the

nature of the phase transition and fluctuations effects.

The analysis of the reflectivity data starts by using the fact that the
Sii-signal can be related to the load impedance Zjo.a at the end of the
transmission line by the following formula:

Syp = Zioad —Z0 2)
Zioad +Zg

where Z is the characteristic impedance of the specific transmission line that is
used in the measurement. In our case Z; is real and equal to 50Q (ie.
Zo=(50+01)Q2). The load impedance is the ratio of the total 4voltage across the
Corbino disc to the total current flowing through the disc, i.e. Zioad=Viotai/ltotal [1].
As can be seen from equation (2) S;; is in general a complex and dimensionless
quantity with a magnitude bounded between zero and one.

The coaxial cable supports only the TEM mode, which is characterized
by transverse electrical and magnetic fields. The TEM mode has no cut off
frequency, this makes it in principle possible to make frequency dependent
measurements down to the dc limit. In this case, the load impedance is

proportional to the surface impedance Zsof the sample. Hence:

Zload=1“ Zs (3)



The proportionality factor I" is a geometrical factor. For coaxial cables
I'=2zlIn(b/a), where a and b are the inner and outer radii of the coaxial cable.

The surface impedance Zg is by definition equal to the field impedance
Zsela at the surface of the sample, (i.e. Zg=Zgieid | surface)- Zfiata=(E/Hy) is the ratio
of radial electric (E,) and azimuthal magnetic field (H,). Zs is the measurable
quantity, which contains direct information about the electric properties of the

sample like the microwave conductivity.

In the case were the sample is a thin film on a substrate, some part of the
radiation will propagate through the thin film into the substrate. Therefore, the‘
properties of the substrate will affect the signal so that substrate effects have to
be taken into account in the analysis of the surface impedance-data.

The film and substrate act like a two-layer system for which it is possible

I depends

to calculate an effective surface impedance 7T For such a system, Zs
on the impedances of the bulk sample (Zpux) and substrate material (Zsb), the

complex wavenumber k in the film and the film thickness to. Using an impedance

transformation Z,"" can be calculated. Such an effective impedance is given

by[2]:

S u
Zo o + Z, tanh(kty)




where Zpyx is the surface impedance of a bulk sample of the material of
the film (e.g. bulk piece of YBCO), Zsub the impedance of the substrate and t, the

film thickness.

The above equation (4) has two obvious limits: If there is no film at all
(film thickness ty=0) the effective impedance is equal to the substrate impedance
(Zseff=Zsub). On the other hand, for a bulk material (tp—c0) the equation recovers
the impedance of the bulk material (Zseff=Zbulk). In the second case, the substrate
does not contribute to the effective impedance, because no radiation penetrates

through the first layer.

The expression for the impedance can also be significantly simplified in
the intermediate region for metallic or metal-like samples in the case of the so-
called thin-film limit. In this limit, the thickness to of the film is much smaller
than the skin depth 8 (i.e. to<<d). To investigate the behavior of the effective
impedance in this case it is useful to employ first the explicit formula for the
impedance of the bulk material. The surface impedance of a metallic or

superconducting copper oxide (in the normal state) bulk sample Zpuy is given by:

1u®
Zuik = \/—L (%)
(e}

depending on the frequency o, the permeability p and the conductivity o of the

material (0=1/p), a quantity that is in general complex (c=0i-icy). The wave

10



number k of a metal is given by k=(ipa/p)" ?=( 1+1)/8, where 3=(2/nwo)'”? is the
skin depth of a metal. In the thin-film limit ty<§ this is equivalent to |kt | «1.
The expression for the effective surface impedance can therefore be simplified by
approximating the hyperbolic tangent function with its argument (i.e.
tanh(kto)~kty for |kt, | <1). If this approximation is combined with the above

expressions for Zy,x (5) and k, the expression (4) for a thin metallic film on a

substrate reduces to:

7 off Pty (6)

This expression is also valid for copper-oxide superconductbrs above Tg.
Equation (6) makes it clear that substrate effects dominate Z*™ in the case
the sheet resis£ance is much larger than the substrate impedance (Z a7, for
p/t>>Zaw). Substrate effects play an important role for 7 as long as [pl/t is
comparable to Zsuy, pt~Zgyp. In the limit were p/t<<Zqp the expression (6) for

Z! further simplifies to:

ZS M wplty (7)
The case where none, or only a very small portion, of the radiation
penetrates through the film and any substrate effects can be neglected is realized,

for example, for a superconducting film at temperatures far below Tc. That being

11



the case the wave number k reduces to k~1/A, where A is the magnetic
penetration length, whereas the expression of the effective surface impedance is
the same provided that one defines the resistivity p as p=p;+ip,, with p;~0 and
p2=po)A’ [3]. In other words the effective surface impedance Z°T for a
superconducting film below T¢ is almost completely independent of the substrate
and dominated by the kinetic inductance of the film: .Zse“ziuomk(T)z/to. Néte that
this impedance is enhanced by a factor of MT)/ty compared to the bulk value in

the same limit.

Summing up, the directly measured reflectivity S, of the sample can be
related to the load impedance Z,q, which is related to an effective surface
impedance of the film-substrate system. If the data are corrected for substrate
effects (as described in section 5.2.2) and. the film thickness to is known, the
effective surface impedance 7, yields directly the complex bulk resistivity p of
a thin film sample. Having obtained p, the complex conductivity ¢ can easily be
calculated. Both, p and o are fundamentally interesting quantities, because they
can be compared directly with theories that often give explicit expression for

p(T,m) or o(T,w).

12



Chapter 4: Experimental technique

4.1 General Overview of the set up

The objective of our measurement is to investigate fluctuations using
finite frequency conductivity of superconducting thin films. The conductivity is

obtained by measuring the surface impedance Z; of the sample.

In the microwave range, this is often done by using resonance methods
that allow very sensitive measurements of Zs;. However, these methods are
necessarily limited to frequencies close to the resonance frequencies of the
specific experimental system. To investigate the frequency dependence of the
surface impedance a broadband technique is required that allows to measure Z

continuously as a function of frequency.

The experiment described here is a microwave reflection measurement
that yields Z of the sample in the broad frequency range 451\4]‘12;45GHZ. Using
a network analyzer, the complex reflection coefficient S;; of the sample is
measured. During the measurement, the sample forms an electrical short across
the end of a coaxial cable. The coaxial cable is used to guide the microwayes
from a microwave source to the sample and the reflected signal back to the
network analyzer. The network analyzer calculates the reflection coefficient Sy,

by comparing incident and reflected signals. S;; can then be related to the surface

13



impedance of the sample using standard transmission line theory. In addition to
the reflection coefficient, a two-point de resistance between the inner and outer
conductor of the coaxial cable can be measured simultaneously. For these
measurements, a dc bias current is applied to the coaxial cable and the resulting
voltage drop between the inner and outer conductor is measured. Measuring the
dc resistance serves mainly as a check for the electrical vcontact between the

sample and the coaxial cable.

A schematic overview of the set up is given in figure 1. The termination

of the coaxial cable with the sample is located inside a continuos-flow cryostat

Temperature Controller

Cryostat with
continuous Termination of
- DC Current source He flow coaxial cable
Computer and voltmeter and with
’_T sample

Network analyzer with
microwave source

Figure 1: Schematic Overview of the experimental set up

(Janis model ST-100). The cryostat can be evacuated and cooled with liquid
helium. The temperature is regulated by a temperature controller that uses a

heater to ramp the temperature through the temperature range of the

14



measurement (Lakeshore temperature controller 340). During the measurement,
the temperature changes by less then 2mK per minute. All measurement devices,
the network analyzer, the de current source with voltmeter and the temperature
controller are connected to a computer that controls these devices and collects

and saves the data.

The microwave source, a HP83651A synthesized sweeper, is part of the
network analyzer system and provides microwaves in the range 45MHz-50GHz.
During the measurement, it is operated in step mode with 201 frequency points.
To ensure a constant power output at the termination of the coaxial cable at all
frequencies,. the frequency range is limited to 45MHz-45GHz. The power at the

end of the coaxial cable is then adjusted to be —21.6dBm at all frequencies.

The measurement was performed with an existing apparatus that had been
used before in several different measurements with different objectives. The
apparatus was originally designed to study vortex dynamics [1], as well as the
fluctuation conductivity in YBCO [2], but it has also been used to make surface
impedance  measurements  in ferromagnetic  materials  (in  particular

Lag §Sro2MnO3) [3].

To reach the lower temperatures required for making measurements in the
vicinity of the phase transition of PCCO we modified the apparatus to heat sink

the coaxial cable. Further modifications involve increasing the reliability (spring-

15



loaded center pin) of the system and a more accurate determination of the sample
temperature by moving the temperature sensor (o a position right behind the

sample.

4.2 Corbino Geometry

The measurement takes advantage of a special geometry in which the
sample is a thin disc forming an electrical contact between the inner and outer

conductor. This geometry is referred to as the Corbino geometry.

The exact shape of the sample is not important, as long it is big enough to
cover the outer diameter of the coaxial cable. The contact to the conductors of the
coaxial cable is made through a modified V101F microwave connector. The
modification makes it possible to press the sample directly against the inner and
outer conductor while it is still possible to connect calibration standards to the
connector. This is essential because before each measurement the system has to
be calibrated at the same position where the sample is later mounted. A further

description of the calibration is given in chapter 5.

The coaxial cable—sample interface is schematically shown in figure 2.
The sample is firmly pressed against the termination of the cable by a spring-

loaded copper pedestal. This copper pedestal slides inside a bigger cylindrical

16



Gold Thin
! film | Substrate ]
Contacts
i i
!

Spring-loaded
center pin

I\

Modificd
microwave
connector

{
{
i
i
i
i

i
Coaxial cable and Sample Copper pedestal
m iCl’DWﬂ\'C Connector

Figure 2: Schematic diagram of the cross section of the coaxial
cable-sample interface

copper housing that is rigidly connected to the coaxial cable (screwed onto the

connector),

contacts match the inner and outer conductor of the cable.
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The electrical contact between sample and cable is made directly between
the outer conductor and the film through the modified microwave connector. The
contact between the inner conductor and the sample on the other hand is
established by a center conductor pin, which is inserted into the connector center
conductor. The pin is tapered down from a diameter of 0.020”* to 0.015°°. This
leads to a restoring force that presses the pin against the cable: While the thinner
part slides inside the connector center conductor, the bigger top-part is pressed
outwards against the sample. In addition, the pin is spring-loaded by a very small
spring that is located inside the connector center conductor between center
conductor and pin (see figure 2). The purpose of the spring is to provide an
additional restoring force to ensure electrical contact is maintained between
sample and inner conductor while the temperature is lowered. The dimensions of
center pin and spring are crucial, If the diameter of the pin is much less then
0.020° it slides too far inside the connector center conductor, if it is too large it
perturbs the microwaves and Iesonances can occur making accurate frequency
measurements impossible. The spring that goes inside the connector center and
presses the pin out must be long enough to ensure that there is enough restoring
force to press the pin out while lowering the temperature. At the same time, it
must be short enough that the thinner part of the pin slides far enough into the
center conductor. Such a contact can hold over the entire temperature range with

changes in the contact resistance of usually less than 30mQ during the cooling.

18



The springs that are used inside the center pin are very small. Originally,
they were actually part of high-performance probe contacts (POGO-pins). They
are employed inside a small barrel to provide a restoring force pressing the tip of
the pin that slides inside the barrel. The POGO-pins we used here were made by
the company Everett Charles Technologies (ECT) and have the model number
MEPJ-22BD. By cutting the POGO-pins, the spring can be pulled out carefully
with tweezers. The springs are initially too long for our purpose and have to be
shortened to fit inside the Corbino-center-pin. Their inner diameter is
approximately 0.0065”, the outer approximately 0.0085”. The Corbino-center-
pins have a length of (0.060+0.005)”, the hole inside is approximately 0.0045”
deep and has a diameter of 0.009”. The length of the spring has to be chosen in a
way that it fits completely inside the hole of the center pin but sticks out a little
bit when it is not compressed. If the spring is t‘oo long it deforms permanently
and gets easily stuck inside the center pin. If it is too short it does not provide
enough restoring force to the center pin and the electrical contact between pin
and sample can be lost. We found that a spring of the type that is inside the
POGO pin MEPJ-22BD must have a length of about 30 turns in order to function

in the desired manner. 30 turns correspond to a length of approximately 0.01”.
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4.3 Measurement process

4.3.1 Overview

The experiment typically consists of two independent measurements over
the same temperature range: In a first measurement we measure the actual
sample, while afterwards in a second measurement the copper pedestal that
usually holds the sample is measured alone. The second measurement is
necessary to be able to correct for background contributions. The basic idea is
that the conductivity of tﬁe copper changes very little over the measured
temperature range. All changes in the signal of the background measurement can

then be related to temperature dependent changes in the coaxial cable.

4.3.2 Preparation of the measurement

An important part of the preparation of each measurement is a calibration
and the correct mounting of the sample on the copper pedestal in the position that

gives the lowest contact resistance.

Before data can be taken, the system is cooled down very slowly (1-2K
per minute typically) in order to avoid loss-of-contact-problems due to rapid
thermal contraction. The cooling takes usually a few hours; the time for the data

collection itself depends on the desired temperature stability of each
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measurement and its range; in general, one complete frequency spectrum is

measured every few minutes.

4.4 Sample Preparation

The samples studied in this work are several thousand A thick
YBa,Cus07.5 (YBCO) films deposited on NdGaO; (NGO) single crystal 0.5mm
thick substrates (Smm square typically) by pulsed laser deposition [4]. They were

made by D. R. Strachan at the Center for Superconductivity research.

4.4.1 Thin film fabrication

The films we used in this study were grown byb pulsed laser deposition.
To do this, the NdGaO; substrate was attached to a heater plate using silver
paste, which has a high thermal conductivity. First the silver paste is dried by
heating the plate slowly to 100°C. Then the substrate and heater-assembly are
loaded into a vacuum chamber, which is evacuated to 6*107 torr and heated to
825°C. Once the pressure is stabile, 146mtorr of oxygen is admitted into the
chamber and the temperature is raised to the deposition temperature of 840°C.
For the homogeneity of the sample it is important that the temperature is uniform
within the substrate. The film is grown by hitting a YBa,Cuz0 target with laser
pulses of 248nm at a rate of 10Hz. This leads the formation of plume of plasma

above the surface of the target. By directing the plume towards the substrate, the
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YBa,Cu307 film is grown at a rate of roughly 3A/s. The laser energy density is
typically about 1.7J/cm’. Once the desired film thickness is reached
approximately 500 torr oxygen are admitted into the chamber and the film is

annealed at 500°C for three hours and cooled back to room temperature.

The film used mainly for the measurements of this work is a 15004 thick
YBa;Cu3O745 film with sample number ds67a. AC-susceptibility measurements
give a transition temperature of T¢=87.6K. This is the temperature at the peak of
the imaginary part of the ac-response. The transition width (i.e. 10% to 90% full

width at half maximum) is approximately 0.8K

4.4.2 Gold contacts

As mentioned before the measurement depends crucially on good
electrical contact between the sample and the modified microwave connector. To
improve this contact gold contacts matching the shape of the connector are
evaporated onto the film. This is done immediately after the film deposition. The
films are taken out of the deposition chamber and mounted on a specially
designed substrate holder. This holder has small magnets embedded into it. These
magnets can hold a small shadow mask that is put on top of the film. The shadow
mask itself is magnetic and therefore stays in place during the evaporation of the
gold contacts. The gold is evaporated thermally forming inner and outer contacts

on the film. The thickness of the gold layer is typically 1000A. We found that it
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is very important to try to minimize the time the film is exposed to air. With the
procedure described above the time between taking the film out of the deposition

chamber and putting it into the evaporator is not longer than 15 minutes.
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Chapter 5: Calibration and error correction

5.1 Calibration

Before the start of each measurement, the system has to be calibrated.
The calibration removes systematic errors and makes the measurement sensitive
to the sample, which otherwise would only be a very small contribution to the
total signal that is measured. It is performed at room temperature using
calibration standards; since the measurements described here are made in a range
of temperatures all much lower than room temperature, a second calibration
procedure is done. Room and low temperature calibrations are described in the

next two sections [1].

5.1.1 Calibration at room temperature

In an uncalibrated system, the measured reflection coefficient S;; is in
general dominated by effects that are not caused by the sample. For our
measurement, these effects can be seen as systematic errors. These include
effects due to the coaxial cable, connectors, multiple reflections and systematic
errors of the measurement hardware. A calibration removes these effects and

makes the system sensitive to the plane where the calibration is performed.
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All systematic errors that are removed by the calibration can be classified
in three different categories and described by three complex error terms: Eg Ep
and Eg. These error terms depend on the frequency and characterize completely
any effects of the transmission line or the detection apparatus to the measured

signal.

The reflection tracking Eg corrects the change of the signal that
propagates in the transmission line (including connectors). This change is
described by a phase offset and attenuation in the line. The phase offset and
attenuation depend on the actual length of the line and its particular phase
constant B as well as the attenuation constant a. In general o~Rs and p=a(ue)’’
depend on the material of the transmission line and are also frequency dependent

(y=o+ip is the propagation constant).

The error term Ep, the directivity, considers errors of the directional
coupler inside the network analyzer and reflections due to the connectors of the
system. Because of these effects, a small part of the signal from the source goes

directly into the detector without being reflected off the sample.

Eg, the source match, describes the effect of single or multiple reflections
of a part of a signal that is reflected back inside the network analyzer due to a

small impedance mismatch between detectors.
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The total effect of the calibration can be described in an equation that
relates the measured Si;-signal, S;imes 10 the actual signal, Syjactual, coming from
the sample (or whatever is at the position at which the system is calibrated)[1]:

ER Sllactual
- ES Sllactual

Siimeas = Ep + (8)

The procedure to determine Er, Ep and Es consists of connecting
calibration standards with known responses to the end of the transmission line.
By comparing the measured response Sjimess Of each standard to the known
theoretical response at each frequency point, the network analyzer is able to
compute Eg_Ep and Es. It stores the error terms internally, and by inverting the
above equation (9), calculates Siiacual in all subsequent measurements. Hence,

once Er Ep and Es are known the Syiactua 1S given by the relation:

S

Sllactual = Limess ED 9
Er + Eg Siimess — Ep ©)

S| 1actaal 1S automatically determined during subsequent measurements by
the network analyzer. The calibration standards that are used to determine the
error terms are a perfect short, a perfect open, a 502 load (matches exactly the
impedance of the transmission line) and a sliding load. During the calibration
procedure, the reflection coefficients of these devices are measured for each

frequency point in the same frequency range where the actual measurement is
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later performed. To apply the calibration correctly to an actual measurement the
sample has to be as close as possible to the location where the calibration was
performed. The measurement described here makes use of a modified microwave
connector to contact the sample. Hence, the calibrations are performed using the

same modified connector that is directly at the location of the sample.

5.1.2  Calibration at lower temperatures

The calibration procedure described in section 3.1.1. is performed at room
temperature. However, all miérowave measurements with superconducting films
were done at a range of temperatures all much lower than room temperature. This
causes the following problem for the calibration: Since the sample is in direct
contact with the transmission line, the temperature of at least a portion of the
coaxial cable will also change. The electrical properties of the transmission line
depend on the temperature; hence, the accuracy of the room temperature
calibration is affected. The temperature changes have effects on the length of the
transmission line, its dielectric constant £ as well as the surface resistance Rg of

inner and outer conductor. Since Poce'? and ocRg these changes change the

propagation constant y (y=o+ip) of the transmission line.

It can be reasonably assumed that not all three error-terms are affected in

the same way by cooling of the sample. The directivity (Ep) and source match
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(Es) occur mainly due to effects inside the network analyzer, which is outside the
cryostat and stays at room temperature. Therefore the cooling affects almost

exclusively the third error term Eg, the reflection tracking.

The reflection tracking is caused by the whole transmission line, so it is
possible to correct for any temperature-dependent changes by determining Eg at
low temperatures. This is done by a further calibration procedure using the
superconducting film itself as a reference. Far below the transition temperature,
the film acts like a perfect short over the measured frequency range. A perfect
short has the known reflectivity S;;""=-1+0i. So a measurement of S;; at a
temperature Tio, far below the transition temperature can be used to recalculate

short

Er to get Er(T=Tiw) using the theoretical response (Si; ) the measured

meas

response S;; - and the earlier measured values for the error coefficients Ep and
Es. Once Eg(Tiw) is obtained it can be used to correct all S;; data in the

measured temperature range Tiow<T<Thpign, Were Thign 1S the highest temperature

of the temperature ramp.
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5.2 Error Correction

5.2.1 Background correction

Section 5.1.1. describes how the room-temperature calibration is
corrected at lower temperatures using the sample itself at a temperature T, as a

further calibration standard. This allows to recalculate Ey to get Er(Tiow)

However even with the recalculated Er(Tiow) the calibration wil] actually
only be valid at the temperature T=T]ow. A further correction is needed at each
temperature T>T,,,, of the measurement range to account for changes in the
transmission line over that range. This background correction is done by
measuring the response signal of the copper pedestal that supports the sample
during the actual measurement. For that purpose the response of the copper block
is measured at the same temperatures as the sample. With the assumption that the
contributions of the copper itself to the S11-signal do not change between T\, and
Thign, all changes in the measured S11 signal are related to temperature dependent
changes within the transmission line. The Si1 data are corrected for these
temperature dependent changes by directly subtracting off the changes
AS1=S11(T)-S11(Tiow) (in phase and magnitude) in the measured response of the

copper pedestal.
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Using the response of the sample at Ty, as a reference also serves another
purpose: The normal calibration is done using the commercially available
calibration standards, which screw onto the (modified) microwave connector.
The calibration obtained that way can only correct measurements that are done at
exactly the same position. The sample on the other hand has a flat surface and is
in contact with the inner conductor through a small center pin that slides into the
connector center conductor. Since the calibration is performed without the pin, it
will in general introduce new disturbances and errors in the measurements. The
copper block used to determine background contributions to the measured Sy e
is also flat and measured with the center pin in place. Hence using it as a further
calibration standard to recalculate Er also removes the effects on the signal due

to the center pin.

5.2.2  Substrate Effects and their correction

As described in chapter 3 the measured S;; signal can be used to
determine an effective surface impedance Z of the two layer system substrate-

film. In the thin-film limit (Iktol < 1) ZMis given by the equation;

: /t
Zeﬂzi——L (10)
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Since we are interested in the properties of the film, hence in the complex
sheet resistance p/tp, the substrate will be a source of errors due to the
transmission of radiation through the film and into the substrate, provided that
the thickness of the film is sufficiently small. However even for thin films the
effect of the substrate on the measured effective impedance Z™ depends strongly
on the temperature. In the limit were |pl/to<<|Zsl the effects of the substrate are
negligible. This limit is realized for superconducting films regardless of the

thickness to (sufficiently far) below T¢ were lp| is very small.

In order to correct for contributions of the substrate to Z: ™, Zgp has to be
measured. Once Zqp is known, the above equation (10) can be inverted to extract
plty as a function of the quantities 7T which is measured as a function of
frequency and Zgb. By the substrate impedance Zsu, we actually mean here an
effective substrate impedance including effects due to resonances inside the
substrate. Therefore, Zqp depends also on the specific geometry and orientation
of the sample during the measurement, not only on the impedance of the material
of the substrate. In order to determine Zg,, the sheet resistance Rsquare=pac/to 15
determined independently at a temperature Ty, where the film is in the normal

state. Requare 1S related to the measured two-point resistance Rpess between the

inner and outer conductor of the Corbino disc:

Rmeas:quuare ln(b/a)/zﬂ. (1 1)
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In the normal state the imaginary part of p is zero and the real part can be
assumed to be frequency independent and therefore equal to the DC value of the
sheet resistance Rgneer In other words: p(Tn, f)/te=ppc(Tn)/to [2]. If then the
effective surface impedance Zseﬂ‘ of the film-substrate system is measured at Tx,
Ze(Tn, ) can be calculated from the equation (10) for Z° since Z° and p/ty
are known at Ty. Assuming further that the substrate impedance does not change
with temperature over the measured temperature range, that is Zg(T)=Zsun(Tn)
for TiowS<T<Thign, Zaun(Tn) can be used in equation (10) together with the

measured Zseff to calculate p(T,f)/ty at temperatures T different from Tx.

The magnitude of the effective substrate impedance |Zseff(TN,f)l at

Tn=125K determined by the method described above is shown in figure 3.

The ﬁgure shows that |ZSGH(TN,t) | is very high at low frequencies and
falls off roughly like 1/f. At a given température above the transition temperature
substrate effects therefore have a greater influence at higher frequencies on the

measurement.
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Chapter 6: Fluctuation effects in the conductivity of
superconductors

Fluctuation effects near phase transitions have been the focus of many
investigations. These fluctuation effects typically dominate second order phase

transitions including the superconducting phase transition.

However, the critical regime of low T¢ superconductors is usually too
small to measure critical behavior. This is a result of the low value of T¢ as well
as the large coherence length & in these materials. This limits fluctuations,
because the energy required for the formation of a coherent volume is large and
there is only little thermal energy available. Only in an unobservably small

region close to T¢ do the effects of critical fluctuations become significant [1].

Contributions due to fluctuation effects are supposed to be larger in
high-Tc materials, where the transition temperature is higher and the coherence
length shorter than in conventional superconductors. Fluctuation effects in these
materials are not only stronger but the temperature range over which they are
important is much wider. Their effects can be observed in a number of different
thermodynamic and transport properties, like the specific beat, the diamagnetic

susceptibility, dc conductivity and ac conductivity.
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This chapter describes a systematic study of fluctuation effects in the
temperature and frequency-dependent microwave conductivity of PCCO thin
films near Tc. These fluctuation effects are important above as well as below Tc.
Qualitatively, at temperatures above T¢ fluctuations cause small regions of the
sample to become briefly superconducting, although their surrounding remains
normal. Similarly, below Tc, small regions of the superconducting material can

become normal.

Fluctuations appear in samples of all dimensionality. Their importance,
however, is not equal in all dimensions, but increases with reduced
dimensionality. It is therefore favorable to study thin films rather than bulk

material [2].

The size & and lifetime 1t of the fluctuating regions depend on the
temperature T of the system, and diverge as T approaches the transition
temperature. This behavior, as well as the phenomenon of fluctuations in
superconductors itself, can be described, for example, by the Ginzburg-Landau
theory. A brief description of the Giniburg—Landau theory is given in section
(6.2.1). It leads to the Gaussian fluctuation theory that has been used to describe
results of previous work [3]. However, Gaussian fluctuations do not describe

critical fluctuations near Tc. In this region, the correlation length & and the

fluctuation lifetime < diverge differently from the Gaussian predictions.
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With the Corbino reflection technique, it is possible to obtain the
frequency dependence of the conductivity, in addition to the temperature
dependence, so that the nature of the phase transition can be investigated in
detail. By measuring the frequency dependence of the magnitude and phase of
the fluctuation conductivity, the thermodynamic critical temperature Tc as well
as the dynamical exponent z can be obtained. This would be more difficult with

techniques that use only temperature dependence at specific frequencies.

Booth's measurements. [3] of the fluctuation conductivity in YBCO thin
films revealed a value of z=2.3-3 and v=1-1.5 indicating a critical region around
the transition temperature in which the fluctuation lifetime di\}erges much more
rapidly than predicted by Gaussian theory. Gaussian theory predicts v=1/2 and is

based on the assumption that z=2.

6.1 Fluctuations in Superconductors

The following is intended to give a brief description of the Ginzburg-
Landau theory and introduces it only as far as it is necessary in this context.
Mainly I want to define the Ginzburg-Landau coherence length £ and relaxation
time t and explain their physical meaning as a description of the size and the
lifetime of fluctuations. Extensive treatments of the Ginzburg-Landau theory can

be found in many textbooks and publications [4,5,6].
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6.1.1 Mean field theory

The Ginzburg-Landau theory is a mean field theory that uses a
phenomenological approach to describe macroscopic properties of all types of
superconducting materials. It can also be expanded to provide a description of
fluctuation effects on thermodynamic properties, by employing small fluctuations
around the mean-field solutions (Gaussian fluctuation theory). This leads, for
example, to the formulas for the fluctuation conductivity described in section
6.1.1.2. However, if the fluctuations are not small, as in the critical region of the
transition, the Gaussian fluctuation theory breaks down and a more general
approach, which uses scaling theory, is necessary. A brief description of the more

general scaling theory is given in chapter 7.

The Ginzburg-Landau theory describes the superconducting state by
introducing a complex order parameter . It is then postulated that | W | is small
so that an expansion of the .free energy in terms of \y can be performed. The
coherence length & is a characteristic length that describes the spatial extent of

the fluctuations. It can be written as:

E(T)=£(0) e (12)
where
.o T-Te .
Tc
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&o is a non universal length scale that depends on the specific sample.

That the order parameter v is not only small but also varies only slowly
in space is a second basic assumption of the Ginzburg-Landau theory. With these
assumption in place, the free energy density of the superconducting state relative

to the normal state Af=f,~f, can be expanded in a series:

1

*
2m

2
L (13)
87

2
(h §~e*Ajw

Af = oc‘\p21+-g—|\u[4 + N

where o=ape, with o and B positive temperature-independent constants close to
Te.
For a spatially uniform order parameter minimizing Af with respect to

variations in \ leads to the most probable value yo:

| v I =yo=0 for T>Tc
|\y l =yo=(-a/p)*> for T<T¢ |
So the most probable value of the order parameter is zero above and
nonzero below the transition, which is what one would expect if there were no
fluctuations. However, above Tc other values of |\y | are also probable, as long
as the values of the free energy F stay within kgT of the minimum value
(F=f AfdV<kT). That means that even above Tc¢ superconducting effects can

occur, leading for example to an increase in the conductivity of the normal state.
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Below Tc there are also fluctuations in the order parameter leading to deviations

of |\|/ | from its equilibrium value.

6.1.2 Fluctuations above T¢

To investigate fluctuations above T¢ we reconsider the equation (13) for
Af. If the fluctuations above T¢ are small, we can drop the term proportional to
I\;l |4. Note that this assumption is not valid in the critical region that is
fluctuation dominated. This so-called Gaussian approximation leads to the
following expression for the GL free energy density Afgaus relative to the normal

state:

2
AF a4

Gauss *

2m

= oclqlz R

LEI——V5 - e*Aj\V
i

A is here the vector potential, e and m” are effective charge and mass.
In the following, I want to derive the Ginzburg-Landau coherence length

¢ and explain its physical meaning. For that it is sufficient to consider the zero

field case (A=0). In zero field it is appropriate to expand y(r) in a Fourier series:

y(r) =Yy exp(ik o) (15)
k

Putting this into the expression of the free energy density, we obtain for AfGauss:

of (16)

Af Guss = Z(Oﬁl\yzl + ﬁzkj j

X 2m
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A possibility to obtain an expression for the coherence length € is to
compute the thermodynamic average of l\p |2 using the above expression (16).
| W |2 can be found by taking the direct thermodynamic average over all possible

values of the order parameter:

? exp(—F/kpT)d> |
pij- by,
fexp(—F/kBT)d W

Using the Ginzburg-Landau free energy functional F=/£dV in the Boltzmann

factor of the above formula gives:
2\ kgT
(i) =220 1267, (18

Here &, the Ginzburg-Landau coherence length is defined by:

A% 05 E(O
g=T ot =20 (19)
T
where again
€= T—TC .
Tc

€ is a characteristic length scale over which local values of the order
parameter \y are correlated (at H=0). In order to see that, it is helpful to calculate

explicitly the two-point correlation function g(r,r*), where

g(r,r’) = <\|1* (r)\y(r‘)>. (20)
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For a homogenous medium g(r,r) depends only on the relative

coordinate R=r-r¢ and can be simplified to:

e(r)=Zic(yil®) exp (ikeR). 1)
Replacing the sum with an integral and carrying out the integration leads to the

result:

_ m kT exp(~R /&(T))

g(R) == 2= 22)

Thus in the fluctuation regime in the absence of a magnetic field, spatial

correlation fall off exponentially over a characteristic length scale defined by E_,

6.1.3 Time dependent Ginzburg-Landau theory

To derive the effects of fluctuations on non-equilibrium properties such
as the electrical conductivity it is necessary to use a model that includes not only
time-averaged quantities such as I\p |2 but explicit time dependence. The
contribution of a fluctuation to the (excess) conductivity will depend on the
Jifetime of the fluctuation t, since this time will limit the period available for
acceleration in an applied field. The Ginzburg-Landau theory can be extended to

include time dependence.

So far, the expansion of the free energy density has been the basis for the
above derivations. In the presence of gradients, currents or fields minimizing the

overall free energy given by the volume integral of the equation (13) for Af with
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respect to y(r)= | y (1) ‘ exp(ip(r)) leads to the Ginzburg-Landau differential

equation:

2
oc\|1+B\\|;lqu+ 1* (z§~e*A) y=0 (23)
2m \1

The simplest generalization is to assume that \ decays exponentially
towards its equilibrium value (which is zero above T¢). In this case, the time

dependent Ginzburg-Landau (TDGL) equation is then given by:

, 1 (he ) 0
oy +Ply[ y+—| Ve A y=—vh_w (24)
2m \!1 ot

Neglecting the non-linear term {3 ‘ ) ‘ %y and electromagnetic potentials gives the

linearized TDGL equation:
o 1 22
'a?v—“{(l"i Vv (25)

1 is the characteristic time scale of the relaxation of the k=0 mode.
The contributions of fluctuations to the conductivity that create the excess
conductivity o= mﬂ—csgﬂ can be calculated using the ansatz

(2¢) z<ka|2>Tk 26)

*

m k 2

ol =
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This ansatz is motivated by analogy to the normal dc conductivity o"=ne*t/m by
replacing the mean scattering time t; by T and e and m by ¢’ and m' respectively.
The sum over k can be converted into an integration depending on the

dimensionality of the system. In the dc limit (w=0) o'is given by:

2
L 27
¢y T T6nd ¢ @7

in two dimensions and by

. 2
Gfll) . - € g =05 (28)
73D 32RE(0)

in three dimensions, Here d is the film thickness and £(0) the coherence length at
T=0K.

These calculations were carried out by Aslamazov and Larkin {7] and
Schmidt [8,9]. They also provided the expressions for the frequency dependence
of the fluctuation conductivity (Gﬂ=cﬂ1—i0ﬂ2) .The frequency dependence of o"

can be described by two functions F*1(wt) and F5(01):

o :ogc|m T (o) (29)

o'y =GﬂDC13D -F*5 (01) (30)

In three dimensions F'i(ot) and F'y(@t) are given above T¢ by:
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3

FHi(or) = 8 {1 - (l + ((D’E)2 )Z cos@-Arc tan(ot ﬂ (31

3(wr)?
{_ % . (1 + (1) )% Sm(% Arc tan(ot )ﬂ

(32)

F*y(at) = 5
3(or)

Below Tc, Fi(@t) and F»(wr) are given above by:

3

Fi(ot)= —-———L—{ﬁ - (1 +(or)? )_Z ((1 - (m)z )X + 2°)TY)} (33)

3(1+ (w1)?)
2 (34)
- 8ot | 2\ 1= (o)
F 2(mt)~————-——~—3(1+(m)2){ «[i+2(1+(mr) ) 4(}( . YH

Where X=cos(0.5 Arctan(wt)) and Y=sin(0.5 Arctan(wt)).

In two dimensions it is also possible to write the fluctuation conductivity
as a product of the dc fluctuation conductivity o'pe | .o and two frequency
dependent functions G*(wt) [8,9]. The functions F'y and ™, are equal to the real
and imaginary part of the 3D Gaussian scaling function [10] above Tc that is

used in chapter 7 for the investigation of the scaling behavior.

In both dimensions (2D, 3D) 1, the fluctuation relaxation time is given

Th

T = 35
16k, Tce (33)
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6.2 Temperature dependence of the dc resistivity

Before investigating the finite frequency fluctuation conductivity let us
first look at the temperature dependence of the dc sheet resistance ppc(T)/to . A

plot of ppc(T)/ty of the sample ds67a versus T is given in figure 4. Figure 5

50 =

40 -
30 - J/

pft ()

50 100 150 200 250 300

Temperature (K)

Figure 4: Plot of the dc sheet resistance p/to of sample ds67a vs.
temperature, in the temperature range 75-300K

shows the numerical derivative d(ppc(T)/to)/dT of the same data. Figure 5 shows
that the slope is approximately constant in the temperature range from room

temperature to about 20-30K above Tc. The point where the slope begins to
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Figure 5: The numerical derivative d(p/to)/dT for the sheet resistance
data in figure 4.

increase is an indication for the enhanced conductivity as the temperature

approaches the superconducting transition.

The dc resistivity was measured after the gold contacts were put on the
film by a two-point resistance measurement between room temperature and Tc.
The main purpose of this measurement is to have data to determine for the mean

field normal-state conductivity.

Our measurement yields the total conductivity ¢’ as a function of
frequency and temperature. This total conductivity ¢ can be decomposed in a

mean field part 6™ and a contribution due to fluctuations o'
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o"{(T,0)=c"(T,0)+c"(T,w) (36)
To obtain the mean field conductivity we make use of the fact that the
measurement is done in the microwave-range and the frequencies are much

mf

smaller than the inverse of the scattering rate. In this case ¢" is frequency
independent, ¢™{(T,m)=c™4(T). Empirically it is known that in the case of
YBCO o™(T)=1/(pe+p;T) for not too high temperatures in the normal state.
Hence, a fit of this function combined with the appropriate model for the dc
fluctuation conductivity to the normal-state resistivity data yields pp and p, as

fitting parameters. Once these are known they can be used later to obtain

o™(T,w), by simply subtracting c™4(T) from ¢"(T,®).

The copper oxides are characterized by a strong anisotropy and a layered
structure. Therefore, it is a priori not clear, what formula should be used for the
fluctuation dc fluctuation-conductivity, which depends strongly on the

dimensionality of the system.

Lawrence and Doniach developed a model for the analysis of layered
structures like the copper oxide materials by modeling them as system of many
coupled two-dimensional superconductors [11]. The LD-model is an

interpolation of the 2d and 3d forms of o". o'Lp is given by:

DN [ e

f ez 1

= 1+
2| 1p = T 6hde QN
d

(37
€
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Here d is the inter-layer separation and £(0) the c-axis correlation length
at T=0K. The LD form of ¢" contains the 2D and the 3D formulas as special
cases. If the correlation length is much less then the interlayer spacing (£(0)<d),
the fluctuation conductivity reduces to the 2D Gaussian expression, while in the
opposite limit (§(0)>>d) it recovers the three dimensional form. Further
correction terms like the Maki-Thompson term in 2D that takes pair breaking
effects above Tc¢ into account are not considered in the following analysis,

because they do not seem to-be important at dc in low fields [12].

Figure 6 and 7 show fits to the dc sheet resistance using different models
for the fluctuation conductivity and a simple mean-field behavior. A summary of
the fit parameters and the fit quality is given in table 1. In the case of o'>p and
o™p four fit parameters po, p1, Tc and d respectively £(0) are used. The
Lawrence-Doniach model requires five parameters po, p1, Tc, d and £(0). In the
first row of table 1 we give the result of a purely mean field fit without taking
fluctuations into account (¢"=0), leading to only three fitting parameters po, Pi

and Tc.
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Fit | po P1 Tc & (A) | d(A) | Fitrange (K) | Fit quality
(uem) | (uQen/K) | (K) (xz)

Mf | 70.47 1.99 - - - 149-280 0.695%107

2-D | 70.17 2.02 90.14 | - 8.82 | 90.69-280 3.97*10™*

3-D | 54.94 2.10 90.67 |2.49 |- 90.69-280 45%10™

LD | 78.16 2.05 90.57 | 6.08 | 18.45 | 90.69-280 3.15%10™™

Table 1: Fitting parameters to the dc resistance vs. temperature data. The fit
quality is in Q/degrees of freedom and a minimum for the best fit

Note: The fit quality of the mean-filed fit and the fits to fluctuation

conductivity can not be directly compared to each other, because of the different

fitting ranges. The Lawrence-Doniach model gives the best fit of the three

models of the fluctuation conductivity, with the fitting parameters for the mean

field resistivity po=78.16uQcm and p1=1.99puQcm.

50 -
40 -
30 -
)
~, 20+ + data
a2 ——— LD fit
10 — mf fit
O,.
i | I i 1
50 100 150 200 250 300

Temperature (K)

Figure 6: The Lawrence-Doniach (line with circles) and mean-field (solid
line) fits to the dc sheet resistance.
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Figure 7: Fits to the dc sheet resistance vs. temperature using different
models of the fluctuation conductivity near Tc.
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Chapter 7: Scaling Theories

Very close to Tc fluctuation effects dominate the transition; they are no
longer small. In this critical region, the derivation of the Gaussian fluctuation
conductivity is no longer valid, since non-linear and higher order terms cannot be
neglected. In addition, the expansion of the free energy density in terms of the
assumed to be small order parameter \ breaks down. In this region a more
general scaling theory [1,2] is needed. A brief description of such a theory that
can be used to obtain expressions for the fluctuation conductivity in the critical

region is given in this section.

The general scaling theories assume that the coherence length & as well as

the fluctuation relaxation time t are symmetric around Tc and diverge at Te.

&
el

Where e=(T-Tc)/T. & is a non- universal sample-dependent length. The exponent

&)= (38)

v is not restricted to v=1/2 as in the Gaussian theory but can take any positive
value.
The relaxation time t scales as t~£", where z is the dynamical critical

exponent. Thus,

= (39)
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1o is a non-universal time scale that depends on the specific sample.

Combining this with the assumption that the conductivity below Tc is
proportional to the superfluid density ps (ps~c§2'd) makes it possible to describe
the scaling of the conductivity o. The constraint that ¢ should remain finite as

T—>Tc leads to the following form for the (low-frequency) conductivity:

o(T,0)~E""S(w1) (40)
where Si(oT) are universal scaling functions above (S+) and below (S.) Tc, z is
the dynamical critical exponent and d the dimensionality of the system. It is
especially useful to look at the scaling behavior of the phase angle ds,defined by
o=|o ] exp(ids). The phase should scale near the transition as:

¢o(T,0)=0+(07) (41)
where in analogy to Si(®t), ®.(wt) are universal scaling functions that do not
depend on the individual sample~dependent_ parameters Tc, To and .

In the limit T=T¢, S:(ot) and ®.(wt) simplify significantly. Since E_,Z'D”
diverges at T¢, but ¢ should stay finite at the same time, the magnitude of the

conductivity must scale as:
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Io(T = Te, )| = dJu| *2+?/* (42)

The phase ¢, on the other hand is, for a given z and dimensionality D, a
constant independent of frequency at T=T¢:

(43)

bo (T =Te,0) {—(m]

zZ

The limiting forms of the scaling functions are especially useful to
pinpoint Tc by investigating the curves of the isotherms of the magnitude (Gil|
and phase of the fluctuation conductivity. However, explicit forms of the

complex scaling function Si(wt) also exist, calculated by Wickham and Dorsey

31

2 —
S, (01) = 2z . |:1_D 2+Zi0)‘C—(1*iO)T)(D—2+Z)/Z} (44)
(D-2+2z)D-2)or)

This form of the scaling function S. includes the Gaussian form of the
scaling function as a special case for z=2. The Gaussian form of S. has been
calculated earlier by Dorsey [2] and the resulting fluctuation conductivity agrees

with the corresponding formulas in chapter 6. The scaling function for the phase

of o is ®.(w7) and is given by:
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d, (w1) = Arctan

= Arctan

Im(S, (o))
Re(S, (o))

at(D-2+2z)

z (D -2+ ((m)2 )D_ZZH
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Chapter 8: Data and Analysis

81 The complex resistivity near T¢

The main advantage of the Corbino reflection geometry is the ability to measure
the complex resistivity p(T,w)=pi(T,0)+ip2(T,0) over a wide range of
frequencies in the microwave range. Figure 8 shows the temperature dependence
of the real part of the sheet resistance of sample ds67a, (the resistivity p; divided
by the film-thickness to) at a number of different measurement frequencies.

At high temperatures, in the normal state, p; appears to be frequency
independent; the data at all frequencies fall on the same curve. This behavior is a
consequence of the fact that the normal state scattering rate (1/zy) is much larger
than the measurement frequencies over the entire frequency range [1]. However,
as the temperature is lowered and the system enters the region of the
superconducting transition, the data show more and more frequency dependence.
In fact, the transition appears to broaden as the measurement frequency increases.
At even lower temperatures, below the transition temperature, the frequency
dependence becomes weaker again and the values of p;/ty become very small [2].

The temperature dependence of the imaginary part of the sheet resistance,
pa/to, is shown in figure 9 at the same measurement frequencies as figure 8. The

main feature of the temperature dependent data is a peak that grows as the
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Figure 8: Real part of the sheet resistance vs. temperature at different
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Figure 9: Imaginary part of the sheet resistance vs. temperature at

different frequencies
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measurement frequency increases. The position of this peak is temperature
dependent and moves to lower temperatures for higher frequencies. The fall off
of pa/t at temperatures well below Tc is a result of the temperature dependence
of the microwave penetration depth A, since pg/tozuo(nkz(T)/to for T sufficiently
below Tc [3]. Above the transition temperature p should be completely real
since, as pointed out before, the measurement frequencies are much lower than
the normal state scattering rate [1]. The fact that pa/to in figure 9 seems to be a
constant non-zero value at high frequencies is an artifact of an inadequate
correction procedure.

The Corbino reflection technique is a swept-frequency measurement that
yields not only the temperature dependence but also the frequency dependence of
the complex resistivity. The frequency dependence of pi/ty and py/to at several
temperatures in the vicinity of Tc is shown in the next two figures 10 and 11.
Figure 10 shows pi/ty over the entire measurement frequency range (45MHz-
45GHz) at different temperatures. At high temperatures above the transition
temperature pi/ty is approximately frequency independent. In the transition
region pi/tp exhibits some frequency dependence and becomes very small well
below Tc.

po/ty versus frequency at the same temperatures as is shown in fig(11). As
with pi/to,it shows some frequency dependence in the midst of the transition

region. At lower temperatures, well below T, again pz/tozpomkz(T)/to is valid,
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Figure 10: Real part of the sheet resistance versus frequency at temperatures near Tc.
Tc=89.94K is determined in section 8.2.
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Figure 11: Imaginary part of the sheet resistance versus frequency at temperatures
near Tec. Tc=89.94K is determined in section 8.2.
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resulting in a roughly linear frequency dependence of P2Aw). Above Te Pa/to
Seems to be non-zero and Very noisy, which is dye to the same problem in the
calibration procedyre that was mentioned already above in the discussion of the

temperature dependence,

8.2 Fluctuation effects in the frequency dependent conductivity

and a mean-field contribution ™. T, investigate the frequency dependence of
the fluctuation conductivity, the mean field contribution as determined from the

de resistivity fits is first removed.

Once the fluctuation conductivity is obtained the frequency dependence
of the fluctuation conductivity magnitude ([Gﬂl=[(csﬂ1)2+(oﬂz)2]“2) and phase
¢U=Arctan[0ﬂ2/oﬂ]] can be compared to the predictions of scaling theory
discussed in chapter 7. An important role is played by the frequency dependence
at T=Tk. According to scaling theory, the phase angle of the fluctuation
conductivity should take on g ﬁequency~i11dependent Constant value at the
critical temperature Tc. This value depends only on the dimensionality D of the

system and the critica] exponent z: d)G(T:TC,o))=(n/2)(2~D+z)/z [4].
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The corresponding frequency dependence of the magnitude of the
fluctuation conductivity is a power law behavior at the critical temperature:
lo™(T=Tc,0)=¢c o, with a=(2-D+z)/z. The investigation of the frequency
dependence of isotherms of the phase and magnitude of the fluctuation
conductivity can therefore be used to obtain a value for the dynamical critical

exponent z provided that the dimensionality D is known.

Figures 12 and 13 show the measured frequency dependence of the
magnitude and phase of the fluctuation conductivity at temperatures in the
vicinity of Tc¢. The critical isotherm in the frequency dependence of the
magnitude of the fluctuation conductivity is determined by fitting a power law
behavior to all measured isotherms and comparing the quality of the fits. In this
manner we found the best fit to the | 6™ | -data at T=88.94K. As can be seen from
figure 13 the phase of the fluctuation conductivity takes on a roughly constant
value at T=88.94K. Hence the behavior of magnitude and phase is consistent and
it is reasonable to define the isotherm at T=88.94K as the critical isotherm. In
addition the behavior of the phase of the fluctuation conductivity is even more
convineing if the concavity of the isotherms is taken into account. The isotherms
of the phase below T¢ bend up at low frequencies, where the isotherms above Tc
bend down. The critical isotherms separate these two regions clearly. The data
sets are taken at 0.1K intervals therefore there is some uncertainty in the exact
determination of Tc from the frequency dependence of the conductivity.

Certainly, T lies at least between the temperatures of the adjacent isotherms
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meaning that we get Tc=(88.94+0.1)K. In any case the uncertainty in Tc affects
the exact determination of the critical phase angle and power law values. The
fitting parameters are also not completely independent of the fitting range. Fitting
the isotherms of the phase instead of the magnitude however give, as expected,

only slightly different results.

Fitting the frequency dependence of the magnitude of the fluctuation
conductivity with |ojca™® at T=(88.94+0.1)K yields 0=0.60-0.63 for the fitting
range 0.4-10GHz and 0=0.60-0.64 for the fitting range 0.4-20GHz. The data at
higher frequencies seems to be much noisier, especially in the phase, aﬁd
therefore is not taken into account here. Fits to the phase of the fluctuation
conductivity at T=(88.94+0.1)K with ¢=(n/2)a yield 0=0.59-0.63 for the fitting
range 0.4-10GHz and for the fitting range 0.4-20GHz. Taking the lowest and
highest value that was obtained for o, we get ®=0.59-0.64. Since o=(2-D+z)/z
the value of the dynamical critical exponent lies in the range z=2.44-2.78 if we
assume the dimensionality of the system D=3. This assumption is justified
because the size of the fluctuations, the coherence length &, diverges as T
approaches Tc, so even an apparently two-dimensional, layered system will
eventually become three-dimensional. The results for the value of the critical
exponent z are larger than the prediction in Gaussian theory of z=2. This suggests

critical behavior in the sample.
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Note that the values that we obtained for Tc and z stay the same within
the stated range for the different values of the mean field contribution that were
obtained by fitting functions from different models (2D,3D, Lawrence-Doniach)

to the normal state resistivity.

8.3 Scaling of the frequency dependent conductivity above Tc

The value of the critical exponent z~2.6 that we obtained in the previous
section can be used to investigate the scaling behavior of the frequency
dependent fluctuation conductivity o' at temperatures above and below Tc. In
this section, the scaling behavior of o' is investigated. From scaling theory it is
eipected that the fluctuation conductivity scales with the appropriate power of
the correlation length & and the fluctuation lifetime 'cﬂv as can be seen from the

following equation (40) from chapter 7 [4]:

(2-d+z)/z

[o(T =Te, )] = clo| (40)
The functions. S, and S. are scaling functions above (S.+) and below (S.)
Te. Ss and S. are universal and equal for all members of a given universality class
as should be the critical exponents v >and 7. equation (40) combined with the
assumptions D=3, &T)~¢" and t~&* implies that the quantity o™(T,0)"*"
plotted versus the scaled frequency we™* yields the universal scaling function S..

To determine if the measured data really shows scaling behavior, we plot the

scaled conductivity measured at different temperatures versus the scaled
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frequency. From scaling theory the parameters Tc, v and z are undetermined and
can be chosen such that the data sets all collapse onto the same universal curve.
However, we have fixed already the transition temperature Tc to be
Tc=(88.9440.1)K and the critical exponent z to be z~2.6 by investigating the
behavior of the critical conductivity isotherm. Only the value of v is yet

undetermined and can be adjusted to collapse the data.

Figure 14 shows the scaled fluctuation conductivity versus the scaled

frequency that collapses onto a single curve with v chosen to be v=2.2. The other
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Figure 14: Scaling behavior of the phase of the fluctuation
conductivity and theoretical curves: 3D Gaussian scaling function
(solid line) and WD Scaling function (dashed line). Shown is data

above T in the range T=88.97-90.7K and +=0.27-10GHz.
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parameters are T¢=88.94K and z=2.6.

Shown are data above Tc in a range of roughly 1.8K. Also shown is the
3D Gaussian scaling function [4] which incorporates z=2 and the more general
Wickham-Dorsey scaling function [5] that is valid for general values of z. The
Wickham-Dorsey function shown in figure 14 was calculated using the
experimentally determined value of z=2.6. The data is in good agreement with
the Wickham-Dorsey form of the scaling function and differs significantly from
the Gaussian prediction for large arguments. The limit where the argument is
very large corresponds to temperatures very close to Tc. In this limit, the 3D
Gaussian scaling function approaches a power law of -0.5, while the data and the

Wickham-Dorsey scaling function approach a power law of -0.62.

Like the magnitude of the fluctuation conductivity, it is also possible to
investigate the behavior of the phase of the fluctuation conductivity, which
should scale as ¢o(T,m)=®:(wt). Figure 15 shows a plot of the measured
conductivity phase angles versus the scaled frequency ot using the same values
for Tc, z, v that were used to scale the magnitude of the fluctuation conductivity.
Figure 15 shows also plots of the phase angel of the 3D Gaussian scaling
function and the Wickham-Dorsey form. The data clearly approaches a constant
value of roughly 0.62. It is in good agreement with the Wickham-Dorsey scaling
function while the 3D Gaussian scaling function shows a similar functional

dependence, but reaches a maximum value of 0.5 for large argument.
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The scaling behavior of the fluctuation conductivity above as well as

below Te is shown in the next two figures (figure 16 and 17). The temperature
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Figure 15: Scaling behavior of the phase of the fluctuation conductivity and theoretical
curves: 3D Gaussian scaling function (solid line) and WD Scaling function (dashed
line). Shown is data above Tc in the range T=88.97-90.7K and =0.27-10GHz.

range of the data in these figures is 87.88-91.46K, while the values of Te, v and z
are the same as in the previous figures. One can clearly see that the data for

temperatures above and below Tc collapse onto two curves that take on the same

form in the limit of large argument.

The frequency dependent data clearly shows scaling behavior in both the
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Figure 16: Scaling behavior of the magnitude of the fluctuation
conductivity above and below Tc. Shown is data in the temperature range
87.15-88.84K below and 88.98-90.73K above Tc
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Figure 17: Scaling behavior of the phase of the fluctuation conductivity
above and below Tc. Shown is data in the temperature range 87.15-
88.84K below and 88.98-90.73K above Tc
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magnitude and phase of the measured fluctuation conductivity with the same
values for the critical exponents v=2.2, z=2.6, T¢=88.9K. However, it should be
noted that the data shows scaling behavior over a range of values for v. Scaling
behavior can be reached for values of v between 1.5 and 3.5. An example for the
scaling behavior of the data with a different value of v that lies in that range is

shown in the figures 18 and 19.
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Figure 18: Scaling behavior of the magnitude of the fluctuation
conductivity above and below Tc. Shown is data in the temperature
range 87.15-88.84K below and 88.98-90.73K above T¢

Here v is chosen to be v=3. With this value for v both the magnitude and
the phase of the fluctuation conductivity the data can also be collapsed onto two

curves, one above and one below Tc.
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Figure 19: Scaling behavior of the phase of the fluctuation
conductivity with v=3.

However, although there is some ambiguity in the exact value of v, we
find no data collapse for v=1/2, the value that is predicated by the Gaussian
theory. Figure 20 and figure 21 show the attempt to reach a data collapse of the
data with v=1/2 for the magnitude and phase of o". The other parameters Tc¢ and
7 are not changed. The data collapse is not as clear as in the previous figures (16~

19) and indicates that the reasonable values of v are larger than 1/2.

In spite of the uncertainty in the exact values of the critical exponents, v
as well as z, it can be concluded that the fluctuation lifetime tloce™” diverges
faster than the Gaussian prediction of tlcg as T approaches Tc. This is also

shown in the next section.
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Figure 21: Scaling behavior of the phase of the fluctuation conductivity with
v=0.5 as predicted by Gaussian theory
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8.4 Further investigation of the scaling below Tc

We have shown in section 8.3. that the scaling of the conductivity data
above T¢ is in good agreement with theoretical expressions. Unfortunately, there
is no theoretical expression for the scaling function below T¢ available, but we
can start to investigate the scaling below T¢ by comparing it to expressions
derived from Gaussian theory. The scaled magnitude of the conductivity data is
shown in figures 16 and 18: the data above and below T¢ clearly collapse onto
two curves, which lay on top of each other for large arguments. In this limit, at
temperatures close to Tc, the data shows a power-law behavior with the same
power above and below Tc. At temperatures further away from Tc the curves
split. The data above T¢ goes to a limiting value for smalf wt, which is in
agreement with the theoretical forms of the scaling functions. Below Tc the data
does not seem to saturate but appears to diverge. This behavior in the limits of
large and small ot is in agreement with a prediction of the behavior of the
scaling function below Tc (S7) by Fisher, Fisher and Huse [6]. According to this
prediction S” should behave as S~i/(wt) for mt—0, which eventually recovers
the behavior of the conductivity of a superconductor as described by the two-
fluid model [7]. This prediction implies that the phase of the conductivity goes to
7/2 in the limit of small ®t, which seems to be consistent with the behavior of

the data shown in figures 17 and 19.
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In the absence of a theoretical expreséion for S” another approach is to
check if the behavior of the data can be qualitatively described by the frequency
dependent functions Fi(wt) and F,(wt) that were found by Schmidt [8]
(equations 33 and 34) in analogy with the situation above Tc. A plot of
magnitude and phase of F'=F,+iF,” and as a comparison F* versus @t is shown

in figures 22 and 23.

Abs(F") and Abs(F)

0.1 S —— — e
10™ 10° 10" 10° 10"
oOT~0/t

Figure 22: Magnitude of the frequency dependent function F" (straight line)
and F'(dashed line) vs. ot

F" and F show a similar behavior in magnitude and pbase. The
magnitude of both functions has a power law behavior for large wt and goes to a

finite value for wt—0. The behavior of the scaled phases ®(F") and ®(F"), which
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go both to 1/2 as wt—>0c0 and to 0 for wt—o0 are similar. Clearly, F~ does not
describe the behavior of the data shown in figures 16-19. The reason for this
might be that F~ was derived for the fluctuation conductivity only, whereas the
data contains the total conductivity with only the mean-field contribution above
Tc removed. In the following, I want to describe preliminary results of the
attempt to find and subtract off the mean field part of the conductivity below Tec.
This treatment is by no means complete and should only be regarded as a “first

step”.
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To describe the mean-field conductivity below T¢ we can use expressions

derived from BCS-theory [9]:

o™ (T, 0) = s 2°5(T, 0) - ic 53 (T, ) (41)

As a start we concentrate only on the imaginary part of the mean-field
conductivity and leave out the real part completely, because the imaginary part of

o™ is much larger than its real part just below Tc [7]. The imaginary part of the

mean field conductivity 6,°® is given by:

pcs _ TA(T) A(T) | Ns ‘
Gy 0= Y. tanh(szT) o (1) (42)

A(T) is the temperature dependence gap energy and o™(T) is equal to the dc
normal state conductivity extended to temperatures below Tc. The gap energy

close to T¢ is given by:

A(T)=1.74 /TC _TA(O) T
Tc

s

Tc (43)
where

A(0)=1.764*kpT¢ (44)

is the zero temperature gap energy.

A fit of of 6,°%, with an additional factor in equation (43) as a fitting parameter,

to the temperature dependent o,-data at the frequency £=2.295GHz is shown in
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figure 24. The plot shows clearly that the data is much larger than zero at

temperatures close to T¢ and above, whereas the BCS-fit goes to zero as T—T¢.

o, (1/Qm)

10 T i T T T T T T T T
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Temperature (K)

Figure 24: o, data at £=2.295GHZ and BCS-fit below T¢

The difference between the curves, shown in figure 25 is the fluctuation oy,
which peaks around Tec. Figure 25 also shows two fits to the fluctuation o," using
the Schmidt expressions (equations 29 and 30) for the imaginary part of the
fluctuation conductivity.

To remove the mean-field conductivity at all measured frequencies we
use the BCS expression combined with the fitting parameter determined by the

fit in figure 25. This corrected data together with the corresponding o1(T,w)

gives the fluctuation conductivity o below Tc. The scaling behavior of the
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Figure 25: Difference between measured o, and BCS expression 5,568

magnitude and phase of ¢ corrected this way is shown in figure 26 and 27. The
figures also show the uncorrected data and the behavior of magnitude and phase
of F". Figure 26 shows that for large wt the corrected and uncorrected daia have
power law behavior, whereas it is not clear whether or not the corrected data will
saturate as mt—0 as suggested by the behavior of F". The changes in the phase
(figure 27) are more dramatic. Before the correction the scaled phase seemed to
flat or even go up for small @t, whereas the phase of the corrected data clearly

goes to zero in that limit, in qualitative agreement with the behavior of the phase
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Figure 26: Comparison of the scaling behavior of the magnitude of the
corrected (squares) and uncorrected (crosses) data
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Figure 27: Comparison of the scaling behavior of the phase of the corrected
(squares) and uncorrected (crosses) data
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of ", For large ot the scaled phase of corrected and uncorrected data goes to a

fixed value around 0.6.

Figure 26 and 27 show that at least qualitatively the scaling behavior of
the fluctuation conductivity in magnitude and especially in phase agree with the
behavior of F~. It is possible that this agreement would further increase with the

mf

appropriate correction of the data for ;™ that was omitted here.

8.5 Temperature dependence of the fluctuation conductivity

Figure 22 shows a plot of the real part of the fluctuation conductivity o;"
versus the reduced temperature e=(T-Tc)/Tc at several fixed frequencies. To
calculate £ we used a value of Tc=88.94K as determined from the critical scaling.
As can be seen from the figure for each frequency curve there is one specific
temperature where it splits off from the other curves. This is an indication of the
fact that the fluctuation relaxation rate 1/z" passes through the measurement
frequency. In the dc limit, the fluctuation conductivity diverges as &—0.
However, for finite frequencies the fluctuation lifetime 1 remains finite. This
causes a cut off in the divergence when w~1/1", The points were this cut off
occurs for the shown measurement frequencies are indicated by arrows in the
figure; at these points, frequency and fluctuation relaxation rate are of the same
order, @t'~1. In other words at large values for € (e>2% 10) all frequency curves

lay on top of each other, because ot <<1 leads to a frequency independent o,

78



s, (1/um)

At values for ¢ that correspond to wt’~1, the data becomes frequency dependent
and the curves split (indicated by the arrows). If € is decreased even further
(closer to T¢) we have the situation where wt™1. In this case ;" is frequency
dependent, the frequency curves remain apart and show strong frequency
dependence. According to Gaussian theory the curves should remain together
until £~107 for the measurement frequencies. This is a further indication that the

sample shows critical behavior close to Tc.

107 -
1 . 1"~ 0.5 GHz
T e g “m o
.8 /
A
‘ 4 ‘\A\A.Aiu\ 1" ~2 GHz
i ‘ \Ai e
s f .
J‘*ﬂqu /v ~ 15 GHz
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1073 —e—(0.495 GHz
] —a-—207 GHz
—+—15.12 GHz |
10* T T T L R R L T T L L
10° 10* 10"
e=(T-T )T,

Figure 28: Plot of the fluctuation conductivity o' vs. & at different ﬁequenc1es.
The arrows indicate roughly the points where the curves split, because 1/ is
equal to the measurement frequency
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Chapter 9: Conclusions and Future Work

9.1 Review of results and conclusions

We have successfully measured the surface impedance of YBa,CuzOs.s
thin films in the microwave frequency range of 45MHz-45GHz at temperatures
around the transition temperature. From the surface impedance data we were able
to extract the complex conductivity and investigate fluctuation effects near Tc.
We find that at a specific temperature the enhanced conductivity due to
fluctuations has a frequency dependence that is consistent with the predictions of
general scaling theory: a pure power law dependence of the magnitude and a
frequency independent behavior of the phase of the fluctuation conductivity. We
have used this behavior to locate the thermodynamic critical temperature of the
sample and to measure the dynamical critical exponent z. We found that z lies in
the range 2.44-2.78. This is larger than the prediction of z=2 of the Gaussian
theory, which is an extension of Ginzburg-Landau theory. We also investigated
the scaling behavior of the fluctuation conductivity around T¢ and find that both
magnitude and phase of the fluctuation conductivity can be collapsed onto
universal curves. We investigated this for data above and below the
thermodynamical critical temperature and find that the data collapses on two
curves above and below Tc that fall together in the limit were T—Tc. Above Tc

the scaling behavior of magnitude and phase are in good agreement with the
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Wickham-Dorsey scaling function that generalizes the Gaussian scaling function
if the experimentally determined value of z is used. The investigation of the
scaling behavior yields also values for the critical exponent v. We have found
values for v in the range of v=1.5-3.5 that are larger than the value of the
Gaussian prediction of v=1/2. Our values of v and z indicate that the fluctuation
lifetime t~g™* diverges quicker than in Gaussian theory (where vz=1) in the

critical region close to Tc.

9.2 Future Experiments

The Corbino apparatus has shown that it can be successfully used to
investigate fluctuation effects in YBa;Cu3O7. It would be fruitful to go to other
high Tc superconducting materials to investigate the scaling behavior and the
universality of the critical exponents. We have improved the existing
experimental set up so that it can be reliably used for measurements at lower
temperatures. Measurements with Pr gsCeg 15CusO (PCCO) have so far yielded
preliminary results. We have reached the temperature region of the
superconducting transition of PCCO but we have not been able to cool the
PCCO-samples far enough below their transition temperature. For the
investigation of fluctuation effects PCCO is an interesting material, because it
belongs to the high T¢ materials, but is more 'two-dimensional' than YBCO,
which should result in larger fluctuation effects. The main future improvement

that could lead to the possibility to reach lower temperatures is probably to use a
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longer coaxial cable. In addition, the cooling from the cold finger to the sample
could be improved by redesigning the attachment of the copper barrel that holds

the coaxial cable.
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