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Scattering waves off resonant structures, with the waves coupling into and out

of the structure at a finite number of locations (‘ports’), is an extremely common

problem both in theory and in real-world applications. In practice, solving for the

scattering properties of a particular complex structure is extremely difficult and, in

real-world applications, often impractical. In particular, if the wavelength of the

incident wave is short compared to the structure size, and the dynamics of the ray

trajectories within the scattering region are chaotic, the scattering properties of

the cavity will be extremely sensitive to small perturbations. Thus, mathematical

models have been developed which attempt to determine the statistical, rather than

specific, properties of such systems. One such model is the Random Coupling Model.

The Random Coupling Model was developed primarily in the frequency do-

main. In the first part of this dissertation, we explore the implications of the Random

Coupling Model in the time domain, with emphasis on the time-domain behavior

of the power radiated from a single-port lossless cavity after the cavity has been



excited by a short initial external pulse. In particular, we find that for times much

larger than the cavity’s Heisenberg time (the inverse of the average spacing between

cavity resonant frequencies), the power from a single cavity decays as a power law

in time, following the decay rate of the ensemble average, but eventually transitions

into an exponential decay as a single mode in the cavity dominates the decay. We

find that this transition from power-law to exponential decay depends only on the

shape of the incident pulse and a normalized time.

In the second part of this dissertation, we extend the Random Coupling Model

to include a broader range of situations. Previously, the Random Coupling Model

applied only to ensembles of scattering data obtained over a sufficiently large spread

in frequency or sufficiently different ensemble of configurations. We find that by us-

ing the Poisson Kernel, it is possible to obtain meaningful results applicable to

situations which vary much less radically in configuration and frequency. We find

that it is possible to obtain universal statistics by redefining the radiation impedance

parameter of the previously developed Random Coupling Model to include the av-

erage effects of certain classical trajectories within the resonant structure. We test

these results numerically and find good agreement between theory and simulation.
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Chapter 1

Introduction

Waves are a ubiquitous part of the physical world. In fact, at the most funda-

mental level, all particles are described by quantum mechanics and are thus essen-

tially waves. Even at the macroscopic level, many useful and important phenom-

ena are waves, including such varied phenomena as electromagnetic waves, acoustic

waves, waves on the surface of water, etc. Thus, describing wave phenomena is im-

portant and useful in many different fields of physics, both theoretical and applied.

While there are many different types of waves, a large number of wave problems

can be modeled by a variant of the linear, scalar wave equation (also known as the

Helmholtz equation),

(∇2 + k2
)
ψ(~r) = 0, (1.1)

where ψ represents the wave field and k = 2π/λ, where λ is the wavelength of the

wave. For instance, Eq. (1.1) is equivalent to Schrödinger’s equation in empty space

ih̄
∂

∂t
Ψ(~r, t) = − h̄2

2m
∇2Ψ(~r, t) (1.2)

via the ersatz

Ψ(~r, t) = ψ(~r)e−ih̄k2t/2m. (1.3)

In the appropriate regimes, Eq. (1.1) can also be applied to acoustic waves in matter,

waves on the surface of various media, and electromagnetic waves systems which

allow only quasi-2D dynamics. Via simple modifications, Eq. (1.1) can be applied
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to an even larger range of problems. For instance, if the density of a medium (or

the applied potential) is not uniform, k can be modified to be a function of ~r. In

the case of electromagnetism, a form of Eq. (1.1) can be found, but with ψ as a

vector rather than a scalar. In the case of uniform loss or gain, the simple ersatz

k → k+ iα, where α = k/(2Q) and Q À 1 is the loss parameter of the closed cavity,

successfully predicts a system’s behavior. If there are sources or sinks within the

system, it is necessary to add inhomogeneous terms to the right side of Eq. (1.1).

Therefore, solving Eq. (1.1) is an extremely practical and common problem.

However, Eq. (1.1) cannot be solved without specifying boundary conditions. The

shape of the boundary can be, and in practical applications quite often is, quite

irregular. This is a very difficult problem in general; the well-known solutions to

Eq. (1.1) are found in simple geometries which are rarely encountered in any cases

except those specifically engineered to have the required symmetry. Often, such

careful engineering is not possible, either because of other constraints or because

we have no control over the properties of the system of interest. Thus methods of

solving Eq. (1.1) in general, both numerically and theoretically, are of broad interest

and are still being actively researched.

Solving Eq. (1.1) in general has other theoretical implications. For instance,

from the correspondence principle, the dynamics of quantum mechanical systems

must become equivalent to those of classical mechanics as the wavelength of the par-

ticles in the system become very small. However, the classical limit can have some

extraordinary properties. For instance, the classical limit can often have chaotic dy-

namics, in which initially close classical trajectories diverge exponentially in time.
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It is impossible for the solutions of Eq. (1.1) to diverge exponentially in time; each

eigenmode simply oscillates independently with a fixed frequency in time, resulting

in very simple, linear dynamics. This is not a paradox because the relationship

between classical trajectories and quantum eigenstates is not trivial. In fact, rela-

tionships between several quantum-mechanical properties and classical trajectories

have been found, especially in the short-wavelength limit. In general, the properties

of quantum mechanical systems whose classical limit is chaotic are distinct from

those same systems who classical limit is integrable.

One common class of well-studied systems whose classical limit is chaotic are

chaotic billiards. Billiards are classical systems with some well-defined boundary.

Classical particles within the boundary travel at constant velocities. When they are

incident on the boundary, the classical particles reflect specularly. In many such

systems, the dynamics of these classical particles have been proven to be chaotic.

Some common chaotic billiards are shown in Fig. 1.1. The quantum-mechanical ana-

logue of classical billiards are the higher-dimensional versions of the infinite square

well, with the potential zero inside the boundary, and infinite on and outside the

boundary. From a theoretical standpoint, these systems are very useful for testing

the various theories and methods that have been proposed to solve Eq. (1.1). In

practice, however, it is challenging to create quantum-mechanical systems with the

desired attributes. Thus alternative macroscopic systems that obey Eq. (1.1) with

constant k are desirable. Such macroscopic analogues exist, and include acoustic

and electromagnetic cavities.

The electromagnetic analogues of such systems are cavities filled with a uni-
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Figure 1.1: Several examples of billiards whose ray trajectories have
chaotic dynamics.
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form, isotropic, lossless, linear dielectric and bounded by a perfect conductor. The

electromagnetic case is more difficult than the quantum mechanical because of the

vector nature of the electric and magnetic fields. However, if we constrain the cav-

ity to be much narrower than the wavelength in the z-direction, then the resulting

propagating modes are uniform in the z-dimension, and obey the 2D Helmholtz

equation in the x-y plane, with the electric field (which is purely in the z direc-

tion) constrained to be zero on the two-dimensional boundary [52]. Thus using

macroscopic, electromagnetic cavities, it is possible to test theoretical predictions

for quantum-mechanical systems.

Many theoretical connections have been made between classical orbits and the

corresponding quantum-mechanical properties [31, 32, 8]. These connections have

proven extremely fruitful, but have limits. For instance, in chaotic systems, it is

challenging to numerically find and classify all periodic orbits (a common element

of the semi-classical approach to wave chaos) due to their rapid proliferation and

high sensitivity to initial conditions. In addition, any experimental setup created

to model such a system will invariably deviate from the ideal theoretical setup, and

the resulting changes, combined with the chaotic sensitivity, will make any results

disagree quantitatively, even while agreeing qualitatively. Thus, in practice, most

theories do not attempt to predict exact results, but rather aim to predict the sta-

tistical properties of such observable quantities as the spectrum [56], the eigenfunc-

tions, the scattering amplitudes [19, 43, 18, 42], and other related measurements.

The statistical approach is the approach we take here.

There are two broad methods used to predict the statistical behavior of wave
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chaotic systems. One is the semiclassical method, treating the length and stability

of the classical trajectories as statistical quantities or theoretical inputs [30, 4, 6].

The other is random matrix theory, a set of mathematical tools designed to predict

the generic properties of complex wave or quantum systems without including any

details [32, 56, 19, 43, 18]. These methods are generally complementary, and we

will combine elements of both to make our predictions. The core of our results,

however, lie within random matrix theory. Specifically, they lie within a branch of

random matrix theory that has been developed more recently, known as the random

coupling model. Thus we first turn our attention to random matrix theory, and then

the random coupling model as developed in the context of random matrix theory.

1.1 Random matrix theory

Random matrix theory is based on the premise that sufficiently complex wave

systems have a wide range of properties that are generic, i.e., not dependent on the

details of the system being modeled, but rather dependent only on the underlying

physical symmetries. This premise has been tested in many different contexts and

has proved remarkably accurate in many of them, although this fact is considered

remarkable even by those who have extensive experience with the field [31].

Random matrix theory was originally developed and applied in the field of

nuclear physics by Wigner [56], who used it to model the spectra of nuclei excited

by incident neutrons. This development was spurred by the (at that time) lack

of a dynamical theory for the strong interactions, as well as various theoretical
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considerations suggesting that such a model might be appropriate. In this context

many important concepts, such as the basic symmetry classifications, the Gaussian

and Circular ensembles, the level-spacing statistics, and the eigenvector statistics

were derived [32].

Later, it was found that many other systems could also be characterized with

random matrix theory, such as chaotic quantum systems [8], disorganized media, or

quantum networks [27, 39, 38]. In addition, new mathematical techniques such as

supersymmetry [32] were discovered which enabled much more complex quantities

to be evaluated in the context of random matrix theory. With these developments,

the field of random matrix theory has grown enormously, and remains an invaluable

tool for analysis of complex systems.

Random matrix theory is used in practice by taking a wave system with

unknown or complex dynamics and treating the pertinent operator (typically the

Hamiltonian or a scattering matrix) as an element of an ensemble of N -dimensional

random matrices, where N is large but finite. The classical random matrix ensembles

defined by Wigner [56] and Dyson [19] are constrained only by the known physical

symmetries and are otherwise assumed to be completely random. Later work has

produced ensembles which have some additional constraints (such as non-zero aver-

ages or a banded structure) but are otherwise assumed to be random [29]. Which

ensemble is appropriate must be determined by considerations outside of random

matrix theory.

One type of statistic that demonstrates how random matrix theory is used

is the nearest level spacing statistic [32]. Any sufficiently complex, confined wave
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system will have a countably infinite set of eigenenergies. One question of interest

with respect to these eigenenergies is how they are distributed with respect to each

other, i.e., how closely spaced are they. The average spacing between eigenvalues is

something that cannot be modeled by random matrix theory; it is not generic. This

can be easily seen by noting that such an average level spacing depends on the units

in which energy is measured. It must be determined experimentally or predicted

using outside knowledge of the system. On the other hand, the energy level differ-

ences between adjacent eigenvalues within a narrow energy band, once normalized

to the average spacing, can be predicted by random matrix theory. Although the

experimental systems have an infinite, deterministic spectrum, and the ensembles

are finite-dimensional and random, the local eigenvalue spacing statistics are typi-

cally found to be very accurately the same for both. Other predictions by random

matrix theory are of a similar nature; once the system-specific properties have been

specified, the behavior of purely random ensembles mirrors that of complex systems.

The energy-level statistics are of especial interest to those interested in wave

chaos because the statistical properties of the level spacings are radically different

for wave systems whose ray equations are integrable rather than chaotic. Of par-

ticular interest is the fact that random matrix theory predicts that energy levels

will repel each other. In other words, the probability density of the spacing of two

adjacent eigenenergies goes to zero as the spacing goes to zero (i.e., the probability

of near degeneracy is very low). In integrable systems, on the other hand, no such

effect occurs; eigenenergies being almost degenerate is extremely common and not

suppressed [31, 32].
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1.2 Types of Random Matrices

1.2.1 Symmetries and Ensembles

There are constraints on the Random Matrices that can be used to model

various physical systems. For instance, if the system being modeled has an axis of

symmetry (as with all of the billiards in Fig. 1.1), the eigenfunctions of the resulting

system will be cleanly divided into independent symmetric and anti-symmetric solu-

tions. The resulting Hamiltonian is block-diagonal, with the symmetric solutions in

one block and the anti-symmetric solutions in the other. In general, all symmetries

will produce this blocked behavior, with a separate block for each quantum num-

ber of the symmetry. Random matrix theory handles these symmetries by treating

each block as a random matrix independent of all other blocks. Two eigenvalues

from separate blocks do not experience level repulsion, although the eigenvalues

within each block do. Such symmetries mix the resulting spectra and destroy the

measurable level spacing repulsion. Most tests of random matrix theory reduce the

symmetry so that only one block Hamiltonian is measured.

In addition, the behavior of the system under time-reversal constrains the

possible Hamiltonians or other operators. This is not a geometric symmetry like

the ones described in the previous paragraph, in that there is no quantum num-

ber associated with the symmetry, and the matrices cannot be decomposed into

block-diagonal form. Instead, the structure of the various matrices is constrained.

Dyson showed [19] that there are three fundamental types of time-reversal behav-

ior in quantum-mechanical systems, each one imposing structural constraints on
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the resulting operators. The third symmetry group enumerated by Dyson (which

produces the so-called symplectic ensembles) can exist only in systems which have

half-integer spin and a few other technical constraints [19], and are very difficult to

access experimentally, especially in macroscopic systems. Thus, in this dissertation,

we ignore the symplectic case and consider only the other two readily accessible

time-reversal categories, which are

1. systems with time-reversal invariance, which result in the various Orthogonal

ensembles,

2. and systems whose time-reversal invariance has been broken, which result in

the various Unitary ensembles.

In addition to these three classes, there are intermediate states in which (for exam-

ple) time-reversal invariance has been broken, but only very weakly, or only in a

small part of the system. These intermediate states are still not well understood,

and are the subject of active research [45, 32, 1, 44, 50].

Each of these classes results in different constraints on the elements of the

ensembles. The Helmholtz equation (Eq. (1.1)) falls in class 1 and is where we will

focus the bulk of our numerical and experimental effort.

These different classes of ensembles are often closely related to each other.

In fact, the equations describing them are often analytically identical if we intro-

duce β, an integer which indexes the type of ensemble being considered. For the

Orthogonal(Unitary, Symplectic) Ensembles, we have β = 1(2, 4).
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1.2.2 The Gaussian Ensembles

The Gaussian Ensembles were the first random matrix ensembles to be applied

to solve physical problems [56, 2, 29, 32]. The elements of the Gaussian Ensembles,

which we denote H , are used to model the Hamiltonians of closed systems and thus

are Hermitian. For the symmetry classes defined in Sec. 1.2.1,

1. systems with time-reversal invariance and rotational symmetry must have a

real and symmetric H , resulting in the Gaussian Orthogonal Ensemble (GOE),

2. systems whose time-reversal invariance has been broken must have an H which

is Hermitian, resulting in the Gaussian Unitary Ensemble (GUE).

One of the primary requirements used to derive the Gaussian Ensembles is

that they be basis independent [32]. In practice, this means that the distribution

must be invariant under arbitrary changes of basis H → UHV . In the Orthogonal

case, V = UT and U is any orthogonal matrix. In the unitary case, U and V

are independent, arbitrary unitary matrices. The second major constraint typically

imposed is that they be as random as possible, e.g. that they be distributed in such a

way as to maximize the information entropy associated with their distribution. With

these constraints, the pdf of the Gaussian ensembles with respect to the Lebesgue

measure on the matrix entries is found to be

P (H) ∝ exp

(
−β

4
tr(H2)

)
, (1.4)

which implies that every independent element of H is an independent Gaussian

random variable centered on zero. In the GOE, the width of the diagonal elements
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of H is twice that of the off-diagonal elements. In contrast, in the GUE case, the real

and imaginary parts of the off-diagonal elements, as well as the diagonal elements,

are all independent Gaussian random variables and all have the same width.

In many cases, the physical quantity of interest is not the individual elements

of H , but rather the eigenvalues, which we denote En. The distribution of the En

is given by [32]

P ({En}) ∝ exp

(
−β

4

∑
n

E2
n

) ∏
n<m

|En − Em|β. (1.5)

Note that this pdf is a product of two factors, with the first one equivalent to

the global properties expressed in Eq. (1.4) and the second dependent only on the

pairwise difference between eigenvalues. This kind of distribution is typical of eigen-

values of random matrices of all sorts.

It is worth again mentioning that these ensembles are typically used to model

fluctuations from non-generic behavior. The density of states for the Gaussian

ensembles (e.g. the average number of eigenvalues between E and E + dE, where

dE is an infinitesimal energy) are given by the Wigner semicircle distribution [32]

ρ(E) =
1

2π

√
4N − E2

n, (1.6)

which depends explicitly on N , and thus cannot be used to model the density of

states in any physical Hamiltonian, which typically has an infinite spectrum with the

density of states determined by non-generic considerations. Rather, the spectrum so

generated is typically unfolded (i.e. rescaled and shifted so that the density of states

matches that of the target system) and then analyzed in terms of the statistics of

the resulting physical properties.
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Using the Gaussian ensembles, it is possible to model the scattering matrix of

a chaotic system coupled to the outside world. In order to do this, however, it is

necessary to specify the coupling between the scattering channels and the modes of

the closed system. This coupling is typically not random but rather depends on the

detailed properties of the method used to couple energy into and out of the system.

Thus adding coupling typically requires adding information about the ports to the

system.

1.2.3 The Circular Ensembles

The circular ensembles were first introduced to physics by Dyson [19]. They are

used to model the scattering properties of ideally-coupled chaotic systems. They are

unitary matrices. We denote the elements of this ensemble by S. For the symmetry

classes defined in Sec. 1.2.1,

1. systems with time-reversal invariance and rotational symmetry must have a

symmetric S, resulting in the Circular Orthogonal Ensemble (COE),

2. systems whose time-reversal invariance has been broken must have an S which

is unitary, result in the Circular Unitary Ensemble (CUE).

In Sec. 1.2.2, we saw that the Gaussian Ensembles were constructed to be

basis-independent. We impose the same constraint on the circular ensembles: Their

pdf must be invariant under changes of basis, but the matrices must be otherwise

random, once the appropriate time-invariant structure has been imposed.
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For the CUE, these constraints have a deep meaning. The circular unitary

ensemble forms a group under matrix multiplication (U(N)), and changes of basis

correspond to left- or right-multiplying by other elements of the group. We are thus

seeking a measure on the group of unitary matrices which is invariant under the

transformation S → USV , where U and V are arbitrary N ×N unitary matrices.

Because U(N) is a compact group, such a measure exists and is unique; it is given

by the Haar measure for U(N) [55, 33], normalized so that the integral over the

entire group is 1.

Clearly the explicit form of the Haar measure will vary depending on how

one parameterizes the scattering matrices. For instance, for scattering matrices S

distributed uniformly w.r.t the Haar measure, the resulting eigenvalues of S, denoted

eiφn , have the pdf [19, 32]

P ({φn}) ∝
∏
n<m

|eiφn − eiφm |2. (1.7)

The Haar measure is simply a geometric factor, and all elements of the group

are equally likely when distributed according to the Haar measure. In a three-

dimensional analogy, consider a sphere. Clearly every point on the surface of the

sphere is identical to every other; if we rotate the sphere around its center in three

dimensions, the surface does not change. If we wish to define a completely random

distribution on the surface of the sphere, simply declaring every point identical is

sufficient. However, in order to actually perform integrals over this distribution us-

ing spherical coordinates, it is necessary to introduce a geometric factor, which can

be expressed sin(θ) dθ dφ, where θ is the inclination and φ is the azimuthal angle.
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The Haar measure is the geometric factor defined on the group of unitary matrices

and it depends on the choice of parametrization. The actual function whose entropy

must be maximized to generate the Circular Ensemble is the prefactor to the Haar

measure. The most random such prefactor is simply the function 1, and so the Haar

measure describes the distribution of the elements of the CUE.

The elements of the COE do not form a group and therefore cannot be assigned

a Haar measure. However, it is possible to parameterize the COE S-matrices as [10]

S = uuT (1.8)

where u is a unitary matrix chosen from the CUE. With this parametrization, we

can see that all our constraints for the COE have been met. The resulting S will

be symmetric, unitary and its pdf is invariant under changes of basis S → OSOT ,

where O is an arbitrary N ×N orthogonal matrix. That it is otherwise as random

as possible can be seen by noting that beyond the symmetry constraints, we have

added no information to the pdf. The resulting distribution of the eigenvalues of S

for the COE is

P ({φn}) ∝
∏
n<m

|eiφn − eiφm|, (1.9)

which is again simply a geometric factor. The function with maximized entropy is

again 1.

1.2.4 The Poisson Kernel

In general, chaotic systems are not ideally coupled to the outside world and

are not described by the circular ensembles. In effect, the assumptions behind our
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use of the circular ensembles are incorrect; we do know something about the system

and therefore the resulting scattering matrices are, in effect, less random. This

can be seen by considering the discussion about the Gaussian ensembles; once we

have assumed a random spectrum, we must still add information about the coupling

into and out of the cavity in order to get a working model for a scattering system.

In addition, the dynamics within the cavity once the signal has entered are often

not random, but easily predicted from the presence of features near the coupling

region. All of these effects lead to the breakdown of the Circular ensembles as useful

descriptions of the scattering matrix.

To solve these problems, we need a new ensemble of scattering matrices [43].

The new distribution is based the maximum entropy principle with the constraint

that the scattering matrix have a non-zero average S̄. The resulting distribution has

the useful property that for any polynomial in the elements of S (but not allowing

complex conjugation),

〈Si,jSk,l . . .〉 = S̄i,jS̄k,l . . . (1.10)

where the brackets indicate ensemble averaging. The pdf w.r.t the Haar measure of

the distribution of an N ×N scattering matrix S with a symmetry indexed by β is

then given by

PS̄(S) =
1

2N(βN+2−β)/2V

det
(
1− S̄

†
S̄

)(βN+2−β)/2

det
(
1− S̄

†
S

)βN+2−β
. (1.11)

The Poisson kernel represents a much broader set of systems than the circular

ensemble. It not only allows for a prompt reflection from the port due to the

mismatch between the port and the cavity, but also can model such features as direct
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orbits between ports, the effects of nearby walls, whispering gallery trajectories, and

so on [41, 42]. In effect, as long as the long-time behavior of the waves within the

system become chaotic, the Poisson kernel can handle the short-term non-chaotic

behavior.

Unlike the previous ensembles, the Poisson kernel is not invariant under changes

of basis. Rather, it has the property [9]

PS̄(USV ) = PUS̄V (S), (1.12)

where in the presence of time-reversal invariance (corresponding to the orthogonal

ensembles), V = UT with U being an arbitrary orthogonal matrix, and in the

absence of time-reversal invariance, U and V are arbitrary unitary matrices.

Although the Poisson kernel can be used to model systems with poor coupling

between the scattering channels and the system, it is not the most elegant method for

modeling this behavior, relying as it does on the distribution of scattering matrices

rather than the individual scattering matrices actually measured. The impedance

matrices do a much better job of explicitly separating the non-random and random

components of the scattering properties.

1.2.5 The Lorentzian Ensembles

The Lorentzian ensembles were originally used by Brouwer to represent Hamil-

tonians, but they can be used just as effectively to represent the impedance matrix

of a scattering system. In fact, although he did not interpret it as such at the time,

Brouwer’s 1995 paper proved the mathematical equivalence of the Poisson kernel

17



description of the scattering matrix and the random coupling model description of

the impedance [9].

The pdf of the Lorentzian ensemble with the symmetry determined by β is

given by

P (H) =
1

V

λN(βN+2−β)/2

det(λ21 + (H − ε1)2)(βN+2−β)/2
(1.13)

where V is a normalization constant which is independent of λ and ε, where λ and

ε are the width and median, respectively, of the diagonal elements of H , which are

Lorenzian-distributed random variables. From Eq. (1.13), we can make the change

of variables

H = λH0 + ε (1.14)

where H0 is a Lorentzian-distributed random matrix with width 1 and median 0

(e.g., H0 is distributed according to Eq. (1.13) with the parameters λ = 1 and

ε = 0). From Brouwer’s work, we also have the result that

H0 = −i
1 + S

1− S
(1.15)

where S is distributed according to the circular ensemble with the same symmetry.

As a result, for the Lorentzian Orthogonal Ensemble, the matrices are constrained

to be symmetric. They also inherit the property that their distribution is basis in-

dependent in direct analogy to the basis-independence of the Gaussian and Circular

ensembles.

The Lorentzian ensembles have the useful property that any diagonal sub-

matrix of Lorentzian-distributed random matrices is also a Lorentzian distributed

random matrix with identical λ and ε [9]. One corollary of this is that the diagonal
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elements of a Lorentzian matrix are Lorentzian random variables. They also have

the property that the inverse matrix H−1 is also a Lorentzian distributed random

variable with λ → λ(λ2 + ε2)−1 and ε → ε(λ2 + ε2)−1.

From Eqs. (1.14) and (1.15) combined with the form of the eigenvalues of the

circular ensembles, we get that the eigenvalues of the Lorentzian ensembles have the

form λ cot(φn/2) + ε, where the φn are distributed according to Eq. (1.7) or (1.9).

1.3 The random coupling model

Although many wave systems can be described by the Helmholtz equation,

to probe such systems we must perform scattering experiments. This implies the

need to model the coupling between the outside world and the scattering system.

In general, the coupling between the wave system and the outside world is not

universal, with a large part of the incident wave being reflected off the interface

between the two without entering the chaotic system at all. We consider systems in

which scattering can only occur through a small number of discrete channels coupled

to the wave systems through discrete ports. In such cases, we find that we can

separate the effects of coupling into and out of the system from those effects which

occur within the system itself. Not all methods of describing the scattering factorize

cleanly, however. One common method of characterizing the scattering behavior of

a system is the M ×M scattering matrix S where M is the number of scattering

channels, but as discussed previously in our discussion of the Poisson kernel, the

resulting model is not cleanly factorized into internal and external behavior. To get
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this factorization, the appropriate formulation is the impedance matrix.

Impedance is a meaningful concept for all scattering wave systems. In linear

electromagnetic systems, it is defined via the phasor generalization of Ohms law as

V̂ = Z Î (1.16)

where the M -dimensional vector V̂ represents the voltage differences across the

attached transmission lines and the M -dimensional vector Î denotes the currents

flowing through the transmission lines. The concept of impedance can be generalized

to cases where the cavity is excited through an aperture in which case the impedance

gives the components of the electric field in the place of the aperture in terms of the

components of the magnetic field. In acoustics, the impedance is the ratio of the

sound pressure to the fluid particles’ velocity. The quantum-mechanical quantity

corresponding to impedance is often denoted in the literature as iK [2].

Impedance can be related to the scattering matrix via the relationship [58, 59,

60]

Z = Z
1/2
0 (1 + S)(1− S)−1Z

1/2
0 . (1.17)

where Z0 is an M × M diagonal matrix whose ith diagonal element is the char-

acteristic impedances of the ith scattering channel. In electromagnetic systems

with transmission lines for scattering channels, the characteristic impedances are

the ratio between the voltage difference across the transmission line and the current

through the transmission line for a monochromatic wave propagating a single direc-

tion through the transmission line. Other wave systems have analogous definitions

for Z0 determined by the details of the scattering channels.
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In terms of impedance, the coupling strength between the scattering channels

and the chaotic system is best expressed in terms of the M ×M diagonal radiation

impedance matrix ZR. The diagonal elements of ZR are the radiation impedance

of individual ports. The radiation impedance of a single port is the impedance that

single transmission line would have if the system was configured such that any signal

successfully transmitted through the port into the bulk of the cavity was immediately

absorbed. The real and imaginary parts of ZR are known as the radiation resistance

and radiation reactance and are denoted RR and XR, respectively.

In our work, we couple the outside world to the cavity by creating holes in

the top of the quasi-2D cavity and inserting antennas attached to coaxial cables

through them. We model the pth antenna as a phasor current with frequency f

induced directly in the top plate of the cavity with a total current Îp and a shape

up(~r), where ~r is a two-dimensional vector in the x-y plane. The current density up(~r)

has the property that
∫

d2~rup(~r) = 1 and we assume that the size of the current

density is much smaller than a wavelength. With these additions, the Helmholtz

equation becomes

(∇2 + k2
)
ψ(~r) = ikhη0

M∑
p=1

up(~r)Îp, (1.18)

where k = 2πf is the wavenumber of the incident wave, h is the height of the cavity

in the narrow dimension, η0 =
√

µ0/ε0 is the characteristic impedance of waves

within the cavity.

As we showed in previous work, the (n,m)th element of the port impedance
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in a system described by Eq. (1.18) is given by

Zn,m = i
∑

l

khη0〈unφl〉〈umφl〉∗
k2 − k2

l

(1.19)

where φn is the nth eigenfunction and kn the nth eigenvalue of the closed system

(e.g. (∇2 + k2
n)φn = 0) and where 〈. . .〉 is the integral over ~r. The random coupling

model’s primary contribution is the result that the overlap integral 〈unφl〉 can be

statistically represented as

〈unφl〉 =
√

RR,n(kl)wl (1.20)

where RR,n(kl) is the radiation impedance of the nth port at frequency kl and wl is

a Gaussian random variable width mean 0 and width 1. With this result, we found

in previous work that [59, 60]

Z = iXR + i
√

RRξ0

√
RR, (1.21)

The matrix ξ0 is an element of the appropriate M × M Lorentzian ensemble in-

troduced by Brouwer [9] with width 1 and median 0, which in the single-port case

simplifies to a Lorentzian random variable with width 1 and median 0. We denote

ξ0 the normalized impedance and have extensively studied its properties in chaotic

systems [58, 59, 60, 36].

Equations (1.19) and (3.4) were the primary results of our prior research and

form the starting point for all research presented in this dissertation.
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1.4 Outline of Dissertation

The dissertation is organized as follows: In Chapter 21, we show that the en-

semble averaged power scattered in and out of lossless chaotic cavities decays as a

power law in time for large times. In the case of a pulse with a finite duration,

the power scattered from a single realization of a cavity closely tracks the power

law ensemble decay initially, but eventually transitions to an exponential decay. We

explore the nature of this transition in the case of coupling to a single port. We find

that for a given pulse shape, the properties of the transition are universal if time

is properly normalized. We define the crossover time to be the time at which the

deviations from the mean of the reflected power in individual realizations become

comparable to the mean reflected power. We demonstrate numerically that, for ran-

domly chosen cavity realizations and given pulse shapes, the probability distribution

function of reflected power depends only on time, normalized to this crossover time.

In Chapter 32, we extend Eq. (3.4) to ensembles whose statistics are not com-

pletely random. In particular, we find that if we consider the statistics of impedances

generated by making small perturbations to a single baseline wave-chaotic cavity

over a narrow frequency window, Eq. (3.4) is incorrect. However, we find that by

defining a generalized radiation impedance Zavg which includes the effects of short

orbits within the cavity, we can replace ZR in Eq. (3.4) with Zavg, where we can

1Chapter 2 is a republication of work published in Physical Review E, as approved by the thesis

committee [35].
2Chapter 3 has been submitted for publication in Physical Review E and is available as a

preprint, as approved by the thesis committee [34].
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explicitly calculate Zavg if we know the details of the scattering system.
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Chapter 2

Long time scattering off single-port chaotic systems

In this chapter, we focus our efforts on understanding the long-time behav-

ior of the power reflected off a wave-chaotic cavity whose scattering properties are

well-described by the random coupling model as discussed in chapter 1. The scat-

tering properties of such wave systems have been well studied, both experimentally

[54, 20, 14, 15, 40, 7] and theoretically [46, 2, 29, 17, 3, 61, 13], in a wide variety

of contexts. Much of the the theory has focused on the frequency domain, and

sophisticated techniques exist to analyze and characterize the scattering process.

See Refs. [2, 29, 17, 3, 61, 13] and the references cited therein. Similarly, the time

domain response of typical wave systems to a delta-function impulse has also been

considered [17, 3, 61, 13], especially in relationship to fidelity decay(for an overview

of fidelity decay, see the Ref. [28] and the references therein). In this chapter, we

consider an intermediate situation: we excite the wave system through an external

port with a pulse modulated sinusoidal signal, exciting a large but finite number

of modes. The problem of scattering pulse-modulated sinusoidal waves arises in a

host of diagnostic situations, such as radar, sonar, nuclear scattering, etc. In what

follows, for specificity, we discuss our problem in the context of electromagnetic

waves. For simplicity, we consider only lossless two-dimensional microwave cavities

excited through a small antenna. We emphasize that the results we obtain can
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be generalized to higher-dimensional systems and to quantum mechanical or other

wave-chaotic systems(e.g., acoustic or elastic wave systems).

On a formal level, the time domain dynamics of such a system is straightfor-

ward. The system is open and linear. An incident pulse with a small but finite

width in the time domain excites a large number of modes in the cavity, which then

radiate their energy back out through the port. Because the system is linear, the

reflected voltage can be expressed as a superposition of contributions from modes of

the open system. The chaotic dynamics is expressed, not through the dynamics of

the individual modes, but rather in the eigenvalue statistics [31] and the statistics

of the coupling between the port and the cavity.

As showed in Sec. 2.1, the contribution from each mode decays exponentially

in time. For short times compared with the Heisenberg time (the inverse of the mean

spacing of mode frequencies), the resulting dynamics will be determined primarily by

the semiclassical dynamics within the cavity [49]. However, for large times compared

with the Heisenberg time, the ensemble average of the reflected power decreases as a

power law in time [17]. This is due to the fact that there is a probability distribution

of mode decay rates which extends to zero decay rate, and for long times the average

is dominated by modes with very small decay rates. In the case of a single realization

of the chaotic cavity, the incident pulse excites a large number of modes with very

similar amplitudes, and consequently the reflected power initially behaves as though

the sum of modes were an ensemble average, and the total power decays as a power

law. We call this behavior self-averaging. In a single specific realization, however,

there are only a finite number of modes excited. Eventually the slowest-decaying
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mode in the realization will be much larger than the other modes, and the sum will be

dominated by this slowest mode, which decays exponentially. Thus for extremely

long times we expect that the reflected power for any single realization will fall

exponentially, eventually becoming much smaller than the ensemble average.

To test this hypothesis, we have created a program that models the time-

domain behavior of generic chaotic systems. It does this by first generating the

spectrum and coupling constants of a cavity using the Random Coupling Model [59]

(RCM) and then integrating the evolution equations for fields in the cavity, which are

modeled in the RCM as a set of driven, damped coupled harmonic oscillators. Single

realizations of the power reflected from these cavities, as well as the ensemble average

of 50 different cavities, are shown in Fig. 2.1, where we show two very different

realizations: one (Fig. 2.1(a)) in which the self-averaging persists throughout the

length of the time shown and one (Fig. 2.1(b)) in which self-averaging occurs early,

but becomes dominated by solitary slowly decaying modes before the conclusion of

the numerical simulation.

Our goal in this chapter is to quantitatively describe the transition from self-

averaging to exponential decay. In particular, we wish to predict the time-scale

needed to see this transition. In Sec. 2.1, we describe the time-domain model we

use for our analysis. In Sec. 2.2, we find the probability distribution function of the

decay rates of the open-cavity modes (for the slowest decaying modes in the cavity)

as a function of the cavity’s port reflection coefficient. In Sec. 2.3 we find the average,

standard deviation and (indirectly) the higher-order moments of the reflected power

as a function of time, and use these moments to derive a normalized time which,
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Figure 2.1: Using the Random Coupling Model (RCM), we created a
program capable of simulating the time-domain response of an individ-
ual chaotic cavity to a pulse injected into the cavity through a small
antenna. By repeatedly creating individual cavities using the RCM, we
created an ensemble of such cavities. The gray lines represent the power
reflected out of the cavity from two single realizations of the chaotic cav-
ity. The dark solid line represents the reflected power averaged over 50
realizations of the chaotic cavity. The dashed line represents the time-
averaged power for the single realization. Figure (a) represents a cavity
where self-averaging persists throughout the entire simulation, but figure
(b) is dominated by solitary modes after about 10−5 seconds.
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along with the power spectrum of the incident pulse, is all that is needed to obtain

a characterization of the transition from self-averaging to exponential decay. In

Sec. 2.4, we evaluate the theory from Sec. 2.3 by numerically finding the number of

modes which fall below certain fractions of the average, and we compare the theory

with simulation results.

2.1 Model

We base our model system on that used in previous work [59]; specifically

a quasi-two-dimensional, electromagnetic cavity defined by two conducting plates

of area A separated by a distance h which are electrically connected along their

perimeters by a conducting side-wall. The cavity is excited by an antenna that

induces currents in the plates. The wave equation for this system is

1

c2

∂2

∂t2
VT −∇2VT = hµu

∂I

∂t
, (2.1)

where c = (εµ)−1/2 is the speed of propagation of waves in the uniform medium inside

the cavity, ε and µ are the permittivity and permeability of this (non-dispersive)

medium, VT (x, y) is the voltage difference between the plates, an antenna is modelled

through the function u(x, y) which gives the profile of current flowing in the antenna

between the surfaces (
∫ ∫

dx dy u(x, y) = 1), and I(t) is the time-dependent current

driving the antenna. Further, as the side walls of the cavity are conducting, VT = 0

along the perimeter of the cavity. A voltage V (t) is induced at the terminals of the

model antenna which is given in terms of the antenna profile u and VT

V =

∫
dx dy uVT . (2.2)
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The antenna is excited by an incident voltage pulse Vinc(t) arriving along a

transmission line of characteristic impedance Z0. The incident wave excites the

cavity and produces a reflected wave pulse Vref(t) travelling away from the cavity in

the transmission line. At the junction between the transmission line and the cavity

the voltages and currents at the antenna and on the transmission line match,

V (t) = Vinc(t) + Vref(t), (2.3)

I(t) = Z−1
0 [Vinc(t)− Vref(t)]. (2.4)

We now introduce Fourier transforms with transform frequency ω such that

each time-dependent variable is represented in the following way,

VT (x, y, t) =

∫
dω

2π
ejωtV̄T (x, y, ω). (2.5)

The transformed field within the cavity is then represented as a superposition of the

orthonormal modes of the closed cavity,

V̄T (x, y, ω) =
∑

n

cn(ω)φn(x, y). (2.6)

where (∇2
x,y + k2

n)φn = 0, and φn = 0 on the cavity side walls.

Solving the transformed wave equation gives the amplitudes cn(ω) which can

then be inserted in Eq. (2.2) to find the transformed voltage,

V̄ (ω) = Ī(ω)Ze(ω), (2.7)

where

Ze(ω) = −j

√
µ

ε

∑
n

kh

k2 − k2
n

[∫
dx dy uφn

]2

(2.8)
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is the (exact) cavity impedance. Here k2
n are the eigenvalues of the closed cavity

and k = ω/c.

In Ref. [59, Eq. 14], it was shown that, if one assumed for the purpose of

evaluating Eq. (2.8) that the eigenfunctions behave as if they were a superposition

of random plane waves, the overlap between the eigenfunctions and antenna current

profile could be expressed in terms of the radiation resistance of the antenna,

Rrad(k) =
kh

4

√
µ

ε

∫
dθ

2π
|ū(~k)|2, (2.9)

where ū(~k) is the spatial Fourier transform of the profile function u(x, y), and the

integral is over the angle θ of the vector ~k.

Here RRad = Re[ZRad] where ZRad, the radiation impedance, is the impedance

V̄ (ω)/Ī(ω) that would apply if the cavity side walls were moved to infinity and

outward propagating radiation conditions were imposed.

With this random plane wave assumption, the exact impedance Ze in Eq. (2.8)

was replaced by a statistical model impedance,

Z(ω) = − j

π

∑
n

k∆w2
n

k2 − k2
n

RRad(kn)

kn

, (2.10)

where wn are zero mean, unit variance, independent Gaussian random variables.

It was further assumed in Ref. [59] that the eigenvalues k2
n have the statistical

properties of eigenvalues of a Gaussian Orthogonal Ensemble (GOE) random matrix

with mean spacing given by Weyl’s formula,

〈k2
n+1 − k2

n〉n ≡ ∆ = 4π/A. (2.11)

We now use the relationship (Eq. (2.7)) between the voltage V̄ (ω) and current
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Ī(ω) along with the transformed version of Eqs. ((2.3)) and ((2.4)) to find the

transform of the reflected voltage pulse,

V̄ref(ω) = ρ(ω)V̄inc(ω), (2.12)

where the reflection coefficient ρ(ω) is given by

ρ(ω) =
Z(ω)− Z0

Z(ω) + Z0

. (2.13)

Although the derivation above has focused on the electromagnetic case, the expres-

sion Eq. (2.13) describes the reflection of a wide variety of waves when they hit an

interface, viz., electromagnetic, acoustic, quantum mechanical, etc. The connection

becomes closer when one considers, as we will, incident pulses whose transformed

bandwidth ωB is narrow enough that the radiation resistance and mean frequency

spacing can be considered constant over the range of excited frequencies.

The time-dependence of the reflected pulse can be found by using the inverse

Fourier transformation,

Vref(t) =

∫
dω

2π
ρ(ω)V̄inc(ω)ejωt. (2.14)

The long-term behavior of the reflected pulse is governed by the poles of ρ(ω) (de-

noted ωk), which satisfy

Z0 + Z(ωk) = 0. (2.15)

The complex frequencies ωk have positive imaginary parts as they correspond to

decaying modes. We can approximate the long time dependence of the reflected

pulse by pushing the inversion contour in Eq. (2.14) up into the upper half of the
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ω-plane and deforming it around each pole

Vref(t) = −2j
∑

k

Z0

Z ′(ωk)
V̄inc(ωk)e

jωkt, (2.16)

where Z ′(ωk) = dZ/dω|ω=ωk
. Thus, the long time behavior of Vref(t) is determined

by the properties of eigenfrequencies ωk of the open system. These eigenfrequencies

have real values whose average spacing is denoted by ∆ω. In principle, ∆ω can vary

as a function of mode number. If we assume that the incident pulse has a spectrum

centered at a carrier frequency ω0, with a bandwidth ωB ¿ ω0 we can relate ∆ω to

the mean spacing ∆ of k2
n values

∆ω =
c2∆

2ω0

. (2.17)

The inverse of this quantity can be identified with what is known as the Heisenberg

time in the Quantum Chaos community.

Each mode has a decay rate γk = Im(ωk) which varies from mode to mode.

We denote the probability density function of these decay rates by Pγ(γ). Consid-

ering the number of excited modes to be effectively finite, since each mode decays

exponentially, the long time behavior of the reflected signal is dominated by modes

with the smallest values of γk. From Eq. (2.15), along with the expression for Z(ω)

in Eq. (2.10), it can be seen that these weakly coupled modes will have particularly

small wn and thus Re(ωk) ' knc. Given this observation, we can approximate the

complex mode frequencies ωn by solving for the poles in the weak coupling approx-

imation. Specifically, in Eq. (2.10), our expression for the impedance, we separate
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the term with ωn ' knc from the others,

Z(ωn) = jXn − j
RRad(ω0)∆ωw2

n

π(ωn − knc)
, (2.18)

where we have changed our indexing labels from k to n (because every kn has a

corresponding ωn), and

Xn = − 1

π

∑

n′ 6=n

knw
2
n′∆

k2
n − k2

n′

RRad(kn′)

kn′
. (2.19)

Thus, we can solve Eq. (2.15) approximately for the complex mode frequencies,

ωn − knc

∆ω
= jw2

n

RRad

π(Z0 + jXn)
. (2.20)

From this we obtain an expression for the decay rate,

γn = ∆ωw2
n

RRadZ0

π(Z2
0 + X2

n)
. (2.21)

The reactance Xn, like the impedance Z is a statistical quantity. It has an average

value to which all the terms in Eq. (2.19) contribute, and which can be calculated

by replacing the sum by an integral [59],

〈Xn〉 = XRad = − 1

π
P

{∫ ∞

0

dk2
n′

kn

kn′

RRad(kn′)

k2
n − k2

n′

}
. (2.22)

where the symbol P indicates that principal value definition of the the integral is

to be taken. This average value is the radiation reactance of the antenna. The

reactance Xn has a fluctuating part which scales as the radiation resistance and is

due primarily to terms in the sum where n and n′ are not too different,

Xn = XRad + RRadξn. (2.23)

The quantity ξn has a universal distribution which we will investigate in depth later.
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Using Eqs. ((2.18)) and ((2.20)) we may evaluate Z ′(ωn) in the denominator

of Eq. (2.16). The result for the reflected signal is

Vref(t) = −2
∑

n

Z0RRad

(Z0 + jXn)2
w2

ne
jωnt∆ωV̄inc(ωn). (2.24)

Taking the magnitude of this, we obtain the reflected power,

Pref(t) = P̄ref(t) + P̃ref(t), (2.25)

where

P̄ref(t) =
∑

n

∣∣2π∆ωV̄inc(ωn)
∣∣2

Z0

γ2
n

∆ω2
e−2γnt, (2.26a)

P̃ref(t) =
∑

n,m6=n

|2π∆ω|2 V̄inc(ωn)V̄ ∗
inc(ωm)

Z0

γnγm

∆ω2
ej(ωn−ω∗m)te2j(ψm−ψn), (2.26b)

and ψn is the phase of Z0 + jXn.

The two contributions to the reflected power (2.26a) and (2.26b) are very

different. In the first contribution the terms decay exponentially and smoothly and

the sum is always positive. In fact, if we smooth over a timescale longer than the

Heisenberg time, this first term will remain essentially unchanged. The second term,

on the other hand, oscillates rapidly on a timescale comparable to the Heisenberg

time, but tends to zero if averaged over long timescales. For the very long timescales

needed to see the transition from self-averaging to exponential decay, we can treat

the rapidly fluctuating terms in Pref(t) as random variables with the phases in the

exponents ((ωn − ω∗m) t) being uniformly distributed. Under this assumption, we

find that, for a single realization of the chaotic cavity, the fluctuating part of Pref is

random and has a variance of

σ2 = 〈
[
P̃ref(t)

]2

〉t ≤ P̄ 2
ref(t). (2.27)
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where 〈. . .〉t indicates a sliding averaging in t over a timescale that is long compared

to the Heisenberg time but short compared to the characteristic time for variation

of P̄ref(t). That is, the order of magnitude of the oscillating part of Pref is typically

the same as that of the smoothed part. Thus, if the smoothed part of Pref drops

exponentially, the fluctuations around it will as well. Hence, if the power stays self-

averaged, the fluctuations will be as large as the signal itself. When we consider the

transition from self-averaging to exponential decay, we consider only the statistics

of the smoothed part of Pref, ignoring the oscillating part which does not contribute

to the self-averaging. Thus in our theory we consider only the time-averaged power

P̄ref(t), Eq. (2.26a), which is the key result of this section.

2.2 Finding Pγ(γn)

From Eq. (2.26a), we see that the average reflected power is a sum over contri-

butions from exponentially decaying modes. Because of the exponential decay, the

relative amplitudes of the modes will separate exponentially in time, with the modes

with the smallest γn eventually dominating the sum. Thus, the crossover time from

self-averaging to exponential decay depends on the behavior of the probability dis-

tribution function of γn for small values of γn. In this section we find the behavior

of Pγ(γn), the probability distribution function for the decay rates for γn ¿ ∆ω.

Previous work has been done on the subject (for instance, in the case of a lasing

chaotic cavity, see Refs. [22, 48]), including analytical solutions for the Pγ(γ) for all

γ [24, 51], but because we focus on the single port case with time reversal symme-
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try for small γ only, many approximations can be made which greatly simplify the

derivation, which we present here.

We start by considering the statistics of ξn, where ξn is defined in Eq. (2.23).

We show in Appendix A that the statistics of ξn are given in terms of the angle

ψn = tan−1(ξn), where ψn is distributed according to the pdf,

Pψn(ψn) =
cos(ψn)

2
. (2.28)

Using this result and Eq. (2.21), we find an expression for Pγ(γn) where γn ¿

∆ω:

Pγ(γn) =
1√
2π

∫ π/2

−π/2

dψn cos ψn

∫ ∞

0

dw e−w2/2δ

(
γn − w2 rr∆ω

π [1 + (rr tan(ψn) + xr,n)2]

)
,

(2.29)

where rr = RRad(k)/Z0 and xr = XRad(k)/Z0. The innermost integral can be

evaluated leaving only an integral over ψn. Further, since we are only interested in

the case of small γn ¿ ∆ω, the main contribution comes from |w| ¿ 1. The result

is

Pγ(γn) ∼= P0

2
√

γn∆ω
for γn ¿ ∆ω, (2.30)

where

P0 = (2rr)
−1/2

∫ π/2

−π/2

dψn

√
cos2 ψn + (rr sin ψn + xr cos ψn)2. (2.31)

The quantity P0 given in Eq. (2.31) can be rewritten in terms of the radiation

reflection coefficient of the port that applies when the walls of the cavity have been

moved out to infinity,

ρr =
zr − 1

zr + 1
, (2.32)
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where zr = rr + ixr = (RRad + jXRad)/Z0 is the normalized radiation impedance

of the antenna. To see this, we introduce the intermediate variable β = z2
r − 1 and

define a new integration variable φ = ψn − arg(β)/2 in Eq. (2.31). The result of

these variable changes is

P0 =

√
2
1− |ρr|
1 + |ρr|E

(
2j

√
|ρr|

1− |ρr|

)
, (2.33)

where

E(k) =

∫ π/2

0

dφ
√

1− k2 sin2(φ) (2.34)

is the complete elliptic integral of the second kind.

We confirm Eqs. (2.30) and (2.33) numerically by generating an ensemble of

γn values. To do this we solve Eq. (2.15) by generating different realizations of

the Gaussian random variables wn and random matrix eigenvalues k2
n appearing in

the definition of Z(ω), Eq. (2.10). We find the mode frequencies by noting that as

Z0 → ∞, ωn → knc for all modes. We then introduce Y0 = Z−1
0 and differentiate

both sides of Eq. (2.15) with respect to Y0, obtaining a differential equation for

ωn(Y0),

dωn

dY0

=
Z2(ωn)

Z ′(ωn)
, (2.35)

which can be solved numerically to find ωn for finite Z0. Note that although both

Z2(ωn) and Z ′(ωn) are singular as ωn → knc, their ratio is finite.

By generating 1000 different realizations of k2
n and ωn (truncating the spectrum

to include only 600 terms), and integrating Eq. (2.35) numerically using fourth-

order Runga-Kutta from Y0 = 0 to Y0 = R−1
Rad, it is possible to generate pdfs of

w̃n ≡ √
γn as a function of |ρr|. We choose the pdfs of w̃n instead of γn because
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Figure 2.2: A comparison of numerically generated values for P0 (circles) with the
theoretical result from Eq. (2.33) (the solid line). The circles represent numerical
calculations of P0 with the radiation reactance of the port set to be XRad = 0. To
get different values of |ρr|, Y0 was changed as described in Eq. (2.35).

Pw̃(w̃ = 0) = P0/∆ω, which is finite and thus numerically easier to fit. The results

are shown in Fig. 2.2 where the numerical results and the theory are seen to be in

clear agreement. We note that this numerical test (solving Eq. (2.35) for Y0 = R−1
Rad)

does not assume the weak coupling limit and thus confirms our assumptions in

obtaining Eq. (2.33).

2.3 The Statistics of P̄ref(t)

The smoothed reflected power P̄ref(t) given by Eq. (2.26a) is a sum of terms

each of which is a random variable. The terms are not strictly independent. This

follow from the fact that there are correlations between the eigenvalues of the closed

system, and γn, given by Eq. (2.21), depends on these eigenvalues through the

reactance Xn, defined in Eq. (2.19). Fortunately the correlation is significant only
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for almost adjacent modes. For times large enough that the self-averaging breaks, the

fraction of modes contributing will be small, and thus, the majority of contributing

modes will be well separated and approximately independent of each other.

Hence for our purposes, P̄ref can be treated as a sum of a large number of

independent terms. Thus, for times when a large number (but small fraction) of

modes have comparable magnitudes, for an ensemble of cavity realizations, P̄ref is a

Gaussian random variable centered on 〈P̄ref(t)〉 with a small standard deviation. As

we demonstrate in the following sections, the standard deviation starts out small,

but as the number of contributing modes decreases, the standard deviation increases

relative to the mean, eventually becoming much larger than the mean. As this

happens, the simple Gaussian distribution changes into a more complex distribution

with the majority of modes becoming much smaller than the average, corresponding

to the shift from self-averaging to exponential decay.

These shifts can be treated analytically by considering the moments of P̄ref. We

first (Sec. 2.3.1) consider the mean and standard deviation of P̄ref to find a scaling

law describing the transition from Gaussian to non-Gaussian behavior. Armed with

the results from this comparison, in Sec. 2.3.2 we generalize the results to higher-

order moments (via the cumulants), showing that for large times all moments of P̄ref

obey the same scaling law. We then numerically demonstrate that the cumulative

distribution function of P̄ref/〈P̄ref〉 satisfies the scaling law for multiple pulse shapes,

as predicted.
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2.3.1 The Mean and Variance

We can calculate the mean and the variance of P̄ref for all times as

〈P̄ref〉 =
∑

n

|2π∆ωV̄inc(ωn)|2
Z0

µ1, (2.36)

and

〈(P̄ref − 〈P̄ref〉)2〉 =
∑

n

|2π∆ωV̄inc(ωn)|4
Z2

0

(µ2 − µ2
1), (2.37)

where

µm(t) =

∫ ∞

0

dγP0

2
√

γ∆ω

[
γ2

∆ω2
e−γt

]m

. (2.38)

Evaluation of the integral in Eq. (2.38) gives

µm(t) =
P0

2(m∆ωt)2m+1/2
Γ(2m + 1/2). (2.39)

Equations (2.36) and (2.38) give the result that the average reflected power (averaged

over an ensemble of reflecting cavities) decreases as a power law in time, which is in

agreement with previous theory [17, 16],

〈P̄ref(t)〉 ∼ t−5/2. (2.40)

Equation (2.37) is useful for finding the range of values that are most likely to

contain P̄ref; for small times with an approximately Gaussian pdf for P̄ref, we expect

that the majority of realizations will fall within the range [〈P̄ref〉− 2σP , 〈P̄ref〉+2σP ]

where σP = 〈(P̄ref − 〈P̄ref〉)2〉1/2. For large times, however, σP > 〈P̄ref〉. We see this

by first considering the ratio

µ2

µ2
1

=
(∆ωt)1/2

P0

Γ(9/2)

27/2Γ(5/2)2
. (2.41)
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Thus, for large times, µ2 À µ2
1, and µ2 dominates Eq. (2.37). For large times, we

have

σ2
P

〈P̄ref〉2
=

(t∆ω)1/2

P0

Γ(9/2)

27/2Γ(5/2)2

∑
n |Vinc(ωn)|4

[
∑

n |Vinc(ωn)|2]2 (2.42)

Equation (2.42) can be made more transparent by considering the sums over |Vinc|2m.

The incident pulse can be considered to have two independent properties: a shape

and a width. If we double the width of the pulse in the frequency domain (or

equivalently if we halve the average mode separation) without changing the shape,

the sums in Eq. (2.42) will, to a good approximation, simply double. We thus define

the effective number of modes excited by the wave to be

N =
[
∑

n |Vinc(ωn)|2]2∑
n |Vinc(ωn)|4 . (2.43)

In the case of a square wave excitation in the frequency domain, Eq. (2.43) gives

exactly the number of modes excited. In the case of more typical pulses, such as a

Gaussian pulse, Eq. (2.43) defines a relationship between the pulse width and the

number of significant excited modes.

Substituting Eq. (2.43) into Eq. (2.42), we get

σ2
P

〈P̄ref〉2
= τ 1/2 Γ(9/2)

27/2Γ(5/2)2
, (2.44)

where

τ =
t∆ω

N2P 2
0

. (2.45)

As long as σP /〈P̄ref〉 is small, it is reasonable to expect the majority of realizations

of P̄ref to be within two sigma of the average, and numerically we find that this is

true. From Eq. (2.44), we see that for t∆ω À 1 and τ ¿ 1 (possible because N
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is assumed to be large) this is possible. Eventually the standard deviation will be

comparable to the mean and for very long times the standard deviation will be much

larger than the mean. This shift corresponds to the change from self-averaging to

exponential decay.

2.3.2 Higher Moments

An analysis of the higher moments of P̄ref follows essentially the same steps

as those to find the mean and variance. We find the moments of P̄ref by finding the

moments of the individual terms in P̄ref, dropping all but the leading order term

in t−1/2, and combining them properly to get the moments of the sum. We cannot

do this by simply summing the moments of the individual terms; the sums of the

moments are not in general the moments of the sum. However, if we define the

moment-generating function,

M(h) = 〈ehP̄ref〉 = 1 +
∞∑

p=1

hp〈P̄ p
ref〉

p!
, (2.46)

we see that the moments of P̄ref are given by

〈P̄m
ref〉 = M (m)(0). (2.47)

Here M (m)(h) is the mth derivative of M(h) with respect to its argument. This can

be related to a function known as the cumulant-generating function

g(h) = log(M(h)) =
∞∑

p=1

κp
hp

p!
(2.48)

where κm is the mth cumulant, defined as

κm = g(m)(0). (2.49)
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We show in Appendix (B) that, in analogy to Eq. (2.42), the higher-order

cumulants (and thus all higher-order moments) of P̄ref are given by

κm

κm
1

=
(
2
√

τ
)m−1 Γ(2m + 1/2)

m2m+1/2Γ(5/2)m

Nm−1
∑

n |Vinc(ωn)|2m

(
∑

n |Vinc(ωn)|2)m . (2.50)

If we use the definition of N from Eq. (2.43) and approximate all sums over n with in-

tegrals over ωn, we find that the expression Nm−1
∑

n |Vinc(ωn)|2m/ (
∑

n |Vinc(ωn)|2)m

is, to a good approximation, independent of the width of the power spectrum but

dependent on the shape. In the case of a square power spectrum, this factor is

identically one for all m. For a Gaussian pulse we find that

Nm−1
∑

n |Vinc(ωn)|2m

(
∑

n |Vinc(ωn)|2)m =

√
2m−1

m
. (2.51)

Similarly, for a pulse with a Lorentzian power spectrum,

Nm−1
∑

n |Vinc(ωn)|2m

(
∑

n |Vinc(ωn)|2)m =
2m−1Γ(m− 1

2
)√

πΓ(m)
. (2.52)

Equation (2.50), combined with replacing the sums over |Vinc(ω)|2m with in-

tegrals, demonstrates the most important theoretical result of this chapter: all

statistical properties of the reflected power depend only on the shape of the pulse

(independent of width) and the normalized time τ defined in Eq. (2.45). Thus the

cross-over from self-averaging to exponential decay, no matter how measured, will

depend only on τ and the pulse shape.

2.4 Numerical Results

In this section, we compare different methods of calculating P̄ref(t) to show

that our theoretical conclusions are correct. To view the resulting distributions,
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we find the ensemble average of the calculated values of P̄ref(t) and then compare

the individual realizations to the average. In particular, we define C(α, τ) to be

the fraction of realizations which are less than α times the ensemble average (i.e.

C(α, τ) is the cumulative distribution of P̄ref at the normalized time τ).

To both test and evaluate the theoretical results in Sec. 2.3, we perform two

separate, independent calculations which should, according to our theory, produce

the same results. The first method calculates the sum in Eq. (2.26a) with the γn

independent of Re(ωn) and distributed according to the Porter-Thomas distribution

with one degree of freedom,

P (γ) =
e−γ/2

√
2πγ

. (2.53)

This distribution is chosen because it has the same behavior for small γ as is in-

dicated in Eq. (2.30). We consider two different pulse spectra, V̄inc(ωn), Gaussian

and Lorentzian, with two different widths N = 20 and 30, where N is defined in

Eq. (2.43). Finally, we take the ωn to be uniformly spaced when evaluating the

sums. We call these results the theoretical results because they are a numerical

evaluation of the theoretical assumptions used in Sec. 2.3. The theoretical results

are shown in Fig. 2.3 for the case of the two pulse shapes and two spectral widths.

The first thing to note about the plots is that the results for N = 20 and N = 30 lie

on top of each other, showing that the definition of τ(Eq. 2.45) correctly accounts

for variation of the pulse width. (There is a small deviation in the Lorentzian case

for small values of α that will be addressed subsequently.) The second thing to note

is that the C(α > 0.3) curves for the two pulse shapes are very similar. Thus, the
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Figure 2.3: The fraction of realizations of P̄ref which are less than α〈P̄ref〉 as a
function of normalized time τ for (a) a Gaussian spectrum and (b) a Lorentzian
spectrum. The black lines(‘+’ symbols) represent the statistics for N = 20(30).
Note that plots for N = 20 and N = 30 are slightly different for the Lorentzian
case with small α. This is due to the fact that the contributions for small α come
from the tails of the distribution, which we numerically truncated to calculate these
plots.

fraction of realizations close to or greater than the mean is the same in the two

cases. Where the two pulse shapes differ is for times τ À 1 and small α ¿ 1. In

the Gaussian case almost all realizations fall well below the average as τ gets large,

whereas in the Lorentzian case there is a larger fraction of realizations with measur-

able power (α > 0.001) at late time. This is due to the long tail in the Lorentzian

distribution exciting a large number of modes with small but significant levels of

power. The difference between the N = 20 and N = 30 cases is due to truncation

of the spectrum at 600 modes.

The second test employs the time-domain code used to generate the data in

Fig. 2.1. We then time-smooth the resulting power (using a Gaussian window with a

width of 10 Heisenberg times) to calculate P̄ref. The time domain code is described in

Appendix C. In Fig. (2.4) we compare results for C(α, τ) using 50 realizations with
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Figure 2.4: The fraction of realizations of P̄ref which are less than α〈P̄ref〉 as a func-
tion of normalized time τ for the theoretical results calculated numerically (the solid
lines) and the same results calculated from integrating Eq. (2.1) directly (indicated
by the ‘+’ symbols). Random Matrix Theory is explicitly used to calculate the
spectrum and coupling constants for the time-domain integration.

the theoretical curves. The time-domain code is run only to τ = 1 which for these

parameters corresponds to 1744 Heisenberg times. The time domain simulation

results agree well with the theoretical results considering the finite sample size.

In addition, we have performed tests which have allowed the value of P0 to

vary, and have solved Eq. (2.35) to get the complex values of ωn. The results agree

well with the theoretical results of Fig. 2.3 and are not displayed.

2.5 Conclusions

In this section, we have found numerically and theoretically that the long

term behavior of power reflected from a lossless, microwave cavity excited through

a single port self-averages for times larger than the Heisenberg time, decaying as a

power law in time. We have also found, theoretically and numerically, that for times
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much longer than the Heisenberg time, when τ , the normalized time, is of order 1,

that single modes in the cavity will begin to dominate the long term decay and the

reflected power will begin to decay exponentially. The details of this behavior have

been found to depend on the shape of the power spectrum of the incident pulse that

excited the cavity, but to otherwise depend only on the normalized time. Because

much of the theory used to derive this behavior depends only on generic Random

Matrix Theory, we expect that this behavior will translate into other lossless wave-

chaotic systems (e.g., acoustic, quantum mechanical, etc.), independent of details.
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Chapter 3

Refining the random coupling model: Short Bounce Orbits

3.1 Introduction

Wave systems appear in many different branches of physics, such as quantum

mechanics, classical electromagnetism and acoustics. However, solving the wave

equations in general can be quite difficult, particularly in the short wavelength limit

for systems which have chaotic dynamics in the classical limit [31]. Furthermore,

even if exact solutions were feasible, there may be uncertainties in the locations

of boundaries or in parameters specifying the system. Thus, rather than solving

such systems exactly, it has often been convenient to create statistical models which

reproduce the generic properties of such systems without the need to accurately

model the details [32]. One successful statistical approach, known as random matrix

theory, is to replace the exact wave-mechanical operators, such as the Hamiltonian

or scattering matrix, with matrices whose elements are assumed to be random.

Although such formulations cannot predict any particular wave system’s properties

exactly, they can predict the distribution of properties in an ensemble of related

wave-chaotic systems. Random matrix theory also predicts the statistical properties

of a single wave-chaotic system evaluated at different frequencies. The random

matrix technique applies to a wide range of systems and has been well studied both

theoretically and experimentally. See Refs. [2, 29, 27, 5] for reviews of the theory,
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history and applications of random matrix theory.

In this chapter, we use random matrix theory to model the scattering behavior

of an ensemble of wave-chaotic systems coupled to the outside world through M

discrete scattering channels. Such scattering systems have been studied extensively,

with most work focusing on the M×M scattering matrix S, either by using a random

Hamiltonian for the closed system and deriving the resulting scattering matrix using

assumptions for the coupling between the wave system and the scattering channels

[9] or by replacing the scattering matrix with a random matrix directly [19, 18, 43,

41, 42]. These two approaches are complementary and for some ensembles have

been explicitly shown to be equivalent [9].

We consider ensembles of systems whose distribution of scattering matrices

are well-described by the so-called Poisson kernel [19, 43, 18]. The Poisson kernel

characterizes the probability density for observing a particular scattering matrix S

in terms of the average scattering matrix S̄, which is also called the ‘optical scat-

tering matrix’. It represents contributions to the scattering matrix from elements of

the system which are not random. For instance, if the scattering channels are not

perfectly coupled to the wave system, some fraction of the energy in the incident

waves will simply bounce off the interface between the channel and the scatterer

without experiencing the chaotic aspects of the scatterer, thus strongly constraining

S̄. This is known as the prompt reflection 1. In addition, rays within the scatter-

1In nuclear scattering, the scattering dynamics naturally splits into two different timescales,

with reflections due to poor coupling and so-called “direct processes” occurring very quickly com-

pared to the slow “equilibrated response.” In these cases, the direct processes are usually included
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ing region which connect the scattering channels without ergodically exploring the

chaotic dynamics also affect S̄ [41, 11].

Because S̄ is the only parameter in the Poisson kernel, methods of finding it

for a specific system are of interest. Although S̄ can be extracted quite simply from

experimental data, predicting it from first principles is quite difficult in general,

although it has been done for for some specific systems such as quantum graphs

[38]. In most wave systems, however, it depends in a complicated way on the

interactions between the scattering channels, the wave system, and any significant

classical trajectories. To address this problem, we find it convenient to transform

from the scattering matrix S to the M ×M impedance matrix Z [58, 59, 60],

Z = Z
1/2
0 (1 + S)(1− S)−1Z

1/2
0 . (3.1)

where Z0 is an M ×M diagonal matrix whose ith diagonal element is determined

by the detailed properties of the ith scattering channel as described below. We will

show that the average impedance matrix (to be defined) can be expressed directly

in terms of classical ray trajectories.

Impedance is a meaningful concept for all scattering wave systems. In linear

in the term “prompt reflection.” In microwave billiards, the distinction between direct processes

and equilibrated response is much less clear because the relevant time-scales are not nearly as well

separated. However, in microwave billiards, the size of the ports used to couple into the system

are typically much smaller than any of the other distances in the system and therefore respond

much more quickly to incident waves. Thus we designate only the reflections due to the dynamics

within the ports as the prompt response.
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electromagnetic systems, it is defined via the phasor generalization of Ohm’s law as

V̂ = Z Î , (3.2)

where the M -dimensional vector V̂ represents the voltage differences across the at-

tached transmission lines (the systems port) and the M -dimensional vector Î denotes

the currents flowing through the transmission lines. The concept of impedance can

be generalized to cases where the cavity is excited through apertures connected

to waveguides that may support several propagating modes. In acoustics, the

impedance is the ratio of the sound pressure to the fluid velocity. A quantum-

mechanical quantity corresponding to impedance is the reaction matrix, which is

often denoted in the literature as iK [2].

The diagonal elements of Z0 are the characteristic impedances of the scattering

channels. In electromagnetic systems with transmission lines for scattering channels,

the characteristic impedances are the ratio between the voltage difference across the

transmission line and the current through the transmission line for a monochromatic

wave propagating a single direction through the transmission line. Other wave

systems have analogous definitions for Z0 determined by the details of the scattering

channels. In what follows, we use terminology appropriate in the context of an

electromagnetic cavity connected to the outside world via transmission line channels.

With the transformation to impedance, we find that we can define an “average”

impedance matrix Zavg which is related to S̄ via the transformation,

Zavg = Z
1/2
0 (1 + S̄)(1− S̄)−1Z

1/2
0 . (3.3)

In contrast to S̄, we find that Zavg can be evaluated directly in the semiclassical
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limit as a sum over contributions from the prompt reflection and short classical

trajectories. Thus, through (3.3) this gives a method for approximating S̄ in the

semiclassical limit.

In this chapter, we present our approach to calculating Zavg. In Sec. 3.2, we

provide an overview of our theory for lossless systems and describe the most impor-

tant results of our investigations. In Sec. 3.3, we find expressions for the impedance

of a specific quasi-2D lossless microwave cavity as explicit functions of the bound-

aries and port positions, creating a framework in which we can keep some cavity

properties fixed and let others change. We then apply the semiclassical approxima-

tion to our exact formulations. In Sec. 3.3.1, we use the semiclassical approximation

to derive expressions for the impedance induced by objects near the port in terms

of classical short orbits between the ports and the internal scatterers. In Sec. 3.3.2,

we use the semiclassical approximation to convert our exact solution with integral

operators into a finite-dimensional matrix equation with an internal scattering ma-

trix T . In Sec. 3.4, we assume that the matrix T is distributed according to the

Poisson kernel with the average T given by the results of Sec. 3.3 and use a result by

Brouwer [9] to find the corresponding distribution for the impedance. In Sec. 3.5, we

demonstrate that in the lossless case, our theory agrees with numerical simulations

of our system. In Sec. 3.6, we extend our theory to lossy cavities and briefly refer

to experimental results in lossy systems which will be published separately.
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3.2 Overview of Lossless Theory

The results presented in this chapter are an extension of our previously devel-

oped random coupling model [59, 60, 58]. For simplicity, we consider only systems

and frequencies in which the scattering channels have a single propagating mode

and in which the ports which couple the scattering channels to the cavity are sepa-

rated from each other by much more than a wavelength. We found previously with

these assumptions that by replacing the resonant frequencies of our closed chaotic

cavity with a set of resonant frequencies appropriate to a random matrix drawn

from the Gaussian orthogonal ensemble and modeling the eigenfunctions using the

random-plane wave hypothesis, the impedance of our lossless wave-chaotic systems

could be described by [60]

Z = iXR + i
√

RRξ0

√
RR, (3.4)

where RR, the radiation resistance, and XR, the radiation reactance, are the real

and imaginary parts of the M ×M diagonal radiation impedance matrix ZR, which

represents the impedance the scattering system would have if all the energy which

successfully coupled into the system was absorbed rather than allowed to couple back

out. The matrix ξ0 is an element of the appropriate M ×M Lorentzian ensemble

introduced by Brouwer [9] with width 1 and median 0, which in the single-port case

simplifies to a Lorentzian random variable with width 1 and median 0. We denote

ξ0 the normalized impedance and have previously studied its properties in chaotic

systems [58, 59, 60, 36].

Equation (3.4) is the direct impedance analog of the Poisson kernel distri-
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bution for S in the case that the only contribution to S̄ is due to the ‘prompt

reflections’ caused by the impedance mismatch between the scattering channels and

the wave system [58]. From experimental measurements and simulation results

performed using the commercial off-the shelf program High Frequency Structure

Simulator(HFSS), we know that Eq. (3.4) describes the impedance statistics of our

sample systems only if the impedances are sampled from a very wide frequency range

[58]. We find, however, that if we consider sample impedances from either narrower

frequency ranges or from many slightly different chaotic systems, the distribution

of the resulting impedances is still well-described by a Lorentzian distribution, but

with a different median and width than that predicted by Eq. (3.4).

These deviations are illustrated in Fig. 3.1, which shows the median calculated

impedance for the quasi-two dimensional cavity illustrated in Fig. 3.2 (its dimensions

are given in Sec. 3.5). This cavity was the basis for our previous numerical and

experimental research. It is a simulated electromagnetic cavity filled with a uniform

lossless dielectric and is coupled to the outside world through coaxial cables (the

ports) inserted into holes on the top of the cavity. For the data in Fig. 3.1, only port 1

is present. On the walls we impose perfect-conductor boundary conditions. Because

our cavity has a uniform height h in the z-direction which is much smaller than the

wavelength of the incident microwaves, Maxwell’s equations become effectively two-

dimensional with the electric and magnetic fields uniform in the z-direction [52, 59].

This system is an example of a wave billiard, meaning that the rays within the

cavity follow straight lines except for specular reflection at the walls. To produce

the simulation data shown in Fig. 3.1, we generated 95 different realizations of
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Figure 3.1: A comparison between the port radiation reactance as mea-
sured by HFSS (solid line) and the ensemble median of the HFSS simu-
lated impedances (circles). The random coupling model predicts that if
the ensemble is sufficiently random, the ensemble median should equal
the radiation reactance. The error bars were estimated by assuming
that the ensemble impedance is a Lorentzian random variable (justified
by statistical examination of the ensemble data) and finding the uncer-
tainty in the median, given the numerically found width. The differences
between these two curves are caused by short orbits within the cavity
which exist in many realizations of the ensemble.

related systems by adding a small mobile perturber to our baseline system and

moving it to 95 different, widely-spaced locations (see Fig. 3.2). We then find that,

at each frequency, the distribution of impedances is Lorentzian, but with a median

and width which are different from XR and RR. (For this example, XR and RR

are scalars.) We also find that as a function of frequency, the fitted medians and

widths oscillate almost symmetrically around XR and RR. As we will later see,

this behavior arises because short classical trajectories within the system alter the

distribution of impedances, analogous to the distortion of S̄ observed in previous

work [41, 42, 11].
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In this chapter, we show that corrections to the radiation impedance matrix

due to the direct orbits redefine ZR in an additive way, ZR → Zavg = ZR +

[direct orbit terms]. More specifically, we find that

Zavg = ZR + R
1/2
R ζR

1/2
R , (3.5)

where ζ is an M ×M dimensionless matrix whose (m,n)th element describes the

effects of wave propagation from port m to port n and is explicitly defined in

Eq. (3.50). The individual elements ζm,n are each a sum over all different possi-

ble ray paths going from port m to port n, with each path having a phase factor

proportional to the length of the path and prefactors describing the directivity of

the classical trajectories relative to the shape of the ports, the stability of the ray

trajectory and the number of reflections from the boundaries. In addition, in cases

where the geometry of the cavity is varied to create an ensemble (for example by

moving a perturber throughout the cavity) there is a factor that accounts for the

fraction of realizations in which that particular path will contribute (i.e., not be

blocked by the perturber). We note that as the frequency window within which

sample impedances are generated gets wider and/or the ensemble changes more

drastically between realizations, the value of ζ needed to normalize the data goes

to 0 and we get our original random coupling model back as a limit.

The substitution of Zavg for ZR can be understood to be a generalization

of the radiation impedance of the ports to include the effects of features of the

cavity that are distant from the ports but that do not vary from one member of

the ensemble to another. Consider an ensemble of lossless microwave cavities whose
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generic properties (such as volume and circumference) are fixed but whose shapes

are random and independent except that the ports are always placed in the same

positions relative each other and except that some segments of the wall are also

fixed. The impedance of each configuration will reflect the interaction between the

ports and both the fixed and varying segments at the wall. The interactions between

the ports and fixed wall segments will be the same for each member of the ensemble

and will contribute to the average impedance while the interactions between the

ports and the varying segments will vary from member to member and contribute

to statistical deviations from the average. As our subsequent analysis will show, the

ports and fixed wall segments can together be considered to be a single super-port

which has a radiation impedance of Zavg, thus justifying replacing ZR with Zavg in

Eq. (3.4).

3.3 The Impedance as a Function of Cavity Shape

For the electromagnetic system described in Sec. 3.2, we previously derived

[60] the following inhomogeneous wave equation for the case where the ports are

modeled by vertical (z-direction), externally imposed, localized current densities

flowing from the bottom to the top plates,

(∇2
⊥ + k2

)
V̂T (~r) = ikhη

M∑
p=1

up(~r)Ip, (3.6)

where ∇⊥ is the 2D Laplacian in the (x, y) plane,V̂T represents the voltage differ-

ence between the two plates, Ip represents the total current injected into the cavity

through port p, u(~r) represents the profile of the current injected onto the top plate
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x
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Figure 3.2: This plot displays a 2-D view of our simulated microwave cav-
ity and the perturber positions used to produce the ensemble displayed
in Fig. 3.1. The outer walls are fixed in all realizations, while every re-
alization has the perturber at a different location. The microwaves are
fed into the cavity through the ports, which are coaxial cables inserted
through the top of the cavity. The dimension h of the cavity in the z-
direction (out of the page) are much smaller than the wavelengths used
to excite the cavity and therefore results in effectively two-dimensional
waves in the x-y plane.
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at port p and has the property
∫

d~r′ u(~r′) = 1, η =
√

µ/ε is the wave impedance

of propagation within the medium inside the cavity (i.e. η is the ratio of the elec-

tric field to the magnetic field in an infinite plane wave), and k = 2π/λ is the

wave-number of the external driving frequency. With perfect-conducting boundary

conditions, VT must be zero on the cavity boundary. The model of the port consid-

ered here is appropriate to the case in which the port is smaller than a wavelength

so that the distribution of current (given by u(~r′)) is fixed, independent of frequency

of the fields in the cavity VT (~r). In this way each port is characterized by a single

current Ip, and a corresponding voltage [60],

Vp =

∫
d2~r′ up(~r

′)VT (~r′). (3.7)

Definition (3.7) was selected in Ref. [59] since it yields P = (1/2)Re{V ∗
p Ip} for the

power flow into the cavity. The cavity impedance then gives the matrix relation

between the port currents Ip and port voltages Vp.

Equation (3.6) is the driven Helmholtz equation, and although it was derived

in the context of quasi-2D electromagnetic cavities and a particular port model,

it can be applied to many different types of systems (such as quantum dots or

acoustic resonators) simply by relabeling the constants and tweaking the boundary

conditions [52].

Before considering statistics, we first derive an expression for the impedance

for individual realizations of the cavity. Similar to previous work by Georgeot and

Prange [25], we can convert Eq. (3.6) into an integral equation. We do this by
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introducing the outgoing Green’s function G0(~r, ~r
′; k) which satisfies

(∇2
⊥ + k2

)
G0(~r, ~r

′; k) = δ(~r − ~r′). (3.8)

We then multiply both sides of Eq. (3.6) by G0(~r, ~r
′; k) and integrate both sides over

~r′ obtaining

∫

D
d2~r′G0(~r, ~r

′)
(
∇′2
⊥ + k2

)
V̂T (~r′) = ikhη

M∑
p=1

Ip

∫

D
d2~r′G0(~r, ~r

′)up(~r
′), (3.9)

where D denotes the two-dimensional domain within the cavity. Applying Green’s

second identity in two dimensions to the left-hand side of Eq. (3.9) and applying

the boundary condition on V̂ (~r), this becomes

V̂T (~r) = −
∫

∂D
dq′ G0(~r, q

′)
∂V̂T (q′)

∂n′
+ ikhη

M∑
p=1

Ip

∫

D
d2~r′G0(~r, ~r

′)up(~r
′) (3.10)

where q′ represents a position on the boundary ∂D of the cavity and the integral over

q′ integrates over the cavity boundary ∂D, and where ∂/∂n′ denotes a derivative in

the direction normal to the surface of the cavity at q′.

In electromagnetic systems, Eq. (3.10) has a physical interpretation. From

Maxwell’s equations and the perfect conductor boundary conditions, we find that

the gradient of the voltage, ~∇V̂T is proportional to the surface current in the upper

and lower plate of the cavity, with the two currents flowing in opposite directions.

At the edges of the cavity, the surface current flowing in the lower plate travels up

the outer wall and into the top plate. Thus it temporarily travels in the z-direction.

We can then interpret Eq. (3.10) as stating that the electric field inside the cavity is

simply the sum over the field radiating from the changing currents in the ports and

the field radiating from the changing current in the outer walls. Therefore, solving
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Eq. (3.10) is equivalent to finding the self-consistent current induced in the walls,

given the currents in the ports. We evaluate the normal derivative of Eq. (3.10) on

the surface to get our integral equation,

∂V̂T (q)

∂n
= −

∫

∂D
dq′

∂G0(q, q
′)

∂n

∂V̂T (q′)
∂n′

+ ikhη

M∑
p=1

Ip

∫

D
d2~r′

∂G0(~r, ~r
′)

∂n
up(~r

′). (3.11)

We henceforth drop the subscripts ∂D and D on the integral symbols. As long as

the function defining the boundary of the cavity is well-behaved, Eq. (3.11) is a

Fredholm integral equation of the second type and can be solved via the established

Fredholm theory [53].

To simply and clarify our results, we follow Prange, Fishman and Georgeot

[25, 21], and define the operators

Kφ(q) = −
∫

dq′
∂G0(q, q

′)
∂n

φ(q′),

V+u(~r) =
1√
k

∫
d2~r′

∂G0(q, ~r
′)

∂n
u(~r′), (3.12)

V−φ(q) =
√

k

∫
dq′ G0(r, q

′)φ(q′),

G0u(~r) =

∫
d2~r′ G0(~r, ~r

′)u(~r′).

In these operators, q and q′ are real scalars denoting points on the cavity boundary

∂D. They represent distance along the boundary of the cavity as measured relative

to some arbitrary starting position. The vectors ~r and ~r′ represent positions within

the cavity (i.e. within D). Every operator integrates over a primed variable and

maps it onto the space represented by the unprimed variable.

These operators all have physical meanings in electromagnetism. G0 is the

two-dimensional, outgoing Green’s function in empty space; it finds the voltage at
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Figure 3.3: A schematic of the different operators defined in Eq. (3.12).
Each operator takes a current at the source position and finds the re-
sulting current (K and V +) or voltage (G0 and V −) induced at the
endpoint.

some position ~r caused by a delta-function current distribution at point ~r′. The

operator V+ finds the current induced in the wall by a delta-function current in

the volume. The operator K represents the current induced in one part of the wall

by the current in another part of the wall. The operator V−, on the other hand,

gives the voltage inside the volume which results from the currents in the walls. A

schematic of the effects of these operators is shown in Fig. 3.3.

Using this operator notation and solving Eq. (3.11), we convert Eq. (3.10) into

V̂T (~r) = ikhη

M∑
p=1

Ip

[
V− (1−K)−1 V+ + G0

]
up(~r). (3.13)

In Fredholm theory, the operator (1−K)−1 is well-defined and can be defined as a

ratio of two convergent sums

(1−K)−1 =

∑∞
n=0

∑n
r=0 Kn−rdr∑∞
n=0 dn

, (3.14)
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where dn is an nth order polynomial in the traces of Km, m ≤ n. For more details

on constructing dn, see the references [25, 21], where it is denoted Dn.

Using the definition of port voltage, Eq. (3.7), we get the impedance between

ports n and m

Zn,m = ikhη

∫
d2~r un(~r)

[
V− (1−K)−1 V+ + G0

]
um(~r). (3.15)

The second term in the integral on the right-hand side of Eq. (3.15) represents the

impedance the system would have if the walls were moved to infinity and outgoing

boundary conditions were imposed but impedance due to direct orbits between the

ports were still included. Therefore, we define an M ×M matrix Z̃R which has the

elements

Z̃R,n,m = ikhη

∫
d2~r un(~r)G0um(~r). (3.16)

The diagonal elements of Z̃R are equal to the diagonal elements of the radiation

impedance ZR from Eq. (3.4) [59] and the off-diagonal elements represent contribu-

tions to the impedance from direct orbits between the ports. Because the distance

between the ports is large compared to a wavelength, we can treat the off-diagonal

terms semiclassically. The diagonal terms Z̃R,n,n depend on near-field interactions

within the port and thus are sensitive to the detailed properties of the port. As in

Eq. (3.4), rather than attempting to solve the for the diagonal elements of Z̃R, we

treat them as inputs to the theory. This has the advantage of freeing us from a de-

tailed port model; we expect our model to be accurate even when the port behavior

is not modeled by Eq. (3.6).

In addition, we define the corresponding radiation resistance and radiation
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reactance matrices as

R̃R =
1

2

(
Z̃R + Z̃

†
R

)
, (3.17)

X̃R = − i

2

(
Z̃R − Z̃

†
R

)
, (3.18)

where † denotes the conjugate transpose. In the case of the Helmholtz equation, or

any system in which time-reversal symmetry is present, Z̃R is symmetric and so R̃R

and X̃R are simply the real and imaginary components of Z̃R.

Equation (3.15) is an exact solution to Eq. (3.6) explicitly in terms of the

boundaries. Analytically it is intractable. In the following two sections, we consider

two different, but equivalent, approximations to Eq. (3.15). It is by equating these

two different formalisms that we derive our refined theory.

3.3.1 The short-orbit formulation

To get useful theoretical results from Eq. (3.15), we make the assumption that

each port p is located near the position ~r0,p and that u(~r) is nonzero only within

a small radius around ~r0,p. We assume that the ports are physically separated

from each other and from the walls by much more than a wavelength, and that

the dimensions of the cavity as a whole are much larger than a wavelength. With

these assumptions, we find that all integrals in Eq. (3.15) (except the diagonal

terms in Eq. (3.16)) evaluate G0 or its derivatives in the far-field limit. Thus, we

approximate G0 and its derivatives with their asymptotic forms, which replaces K

with Bogomolny’s transfer operator T [8], which in the electromagnetic case is given
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by

T (q, q′; k) =
−i

4

√
D~r,~r′e

iS(~r,~r′;k)−iπ/4

√
cos(θf )

cos(θi)
, (3.19)

where θi(θf ) is the angle between the initial(final) wave vector and the surface at the

position it leaves(hits), S(~r, ~r′; k) is the classical action along the direct trajectory

from ~r to ~r′, and
√

D~r,~r′ is the stability of the orbit from ~r to ~r′, defined formally as

D~r,~r′ =
2

πk2

∣∣∣∣
∂2S(~r, ~r′)
∂~r⊥∂~r′⊥

∣∣∣∣ , (3.20)

where the derivative with respect to ~r⊥(~r′⊥) denotes the gradient with respect to

~r(~r) dotted into a unit vector perpendicular to the initial(final) momentum of the

classical trajectory from ~r to ~r′.

We note that the approximation made in Eq. (3.19) can be used to extend

our theory beyond Eq. (3.6) by simply changing T to represent the semiclassical

approximation for other physical situations. For instance, it is possible to allow T

to have a different action depending on the direction of travel, thus violating time-

reversal symmetry. It is also possible to add loss or gain to the system by adding a

complex component to the action.

With these assumptions and approximations, we find

G0up(~r
′) ≈ −iπ

2k

√
D~r,~r′e

iS(~r,~r0,p)−iπ/4ũp(−~ki(~r, ~r
′)), (3.21)

where we have expanded S(~r, ~r′) ≈ S(~r, ~r0,p)− ~ki(~r, ~r0,p) ·∆~r, the quantity ~ki(~r, ~r
′)

is the initial wave vector for the classical trajectory from ~r to ~r′ , and ũp(~k) is the

Fourier transform of up(~r) centered on ~r0,p:

ũp(~k) =

∫
d2∆~r ei~k·∆~rup(~r0,p + ∆~r). (3.22)
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If we insert Eq. (3.14) into Eq. (3.15), we find

Zn,m = ZR,n,m +
ikhη

∑∞
n=0

∑n
r=0 dr

∫
d2~r un(~r)V−Kn−rV+um(~r)∑∞
n=0 dn

. (3.23)

Thus the impedance depends only on dn, which depends on Tr(Kn), and on integrals

over the operators V−Kn−rV+. Evaluating all integrals using stationary phase, the

prefactors and wave vectors are selected such that [31, 8]

∫
d2~r un(~r)V−K l−1V+um(~r) =

∑

b(l,m,n)

ũn(~kf )ũ
∗
m(~ki)

4

√
Db(l,m,n)e

iSb(l,m,n)−iπ/4,

(3.24)

where b(l, m, n) is an index over all classical trajectories that bounce l times, starting

at the center of port m and ending at the center of port n, Sb(l,m,n) is the action for

the corresponding classical trajectory and Db(l,m,n) is the stability coefficient defined

as in Eq. (3.20) with S(~r, ~r′) → Sb(l,m,n).

At this point we bring attention to the fact that the boundary of the cavity does

not need to be connected. For example, in the cavity of Fig. 3.2 there is a circular

perturber that is moved about, creating an ensemble of different cavities. That circle

represents a portion of the boundary that is not connected to the outer portion of

the cavity boundary. Equation (3.24) in principle includes trajectories that pass

through the perturber in going from one point on the surface to another. (In addition

Eq. (3.24) includes trajectories that can pass through the convex upper boundary

of Fig. 3.2.) However, Bogolmony considered such trajectories [8] and found that

such unphysical orbit terms come in pairs whose semiclassical contributions cancel

exactly. Thus, the sum over all semiclassical bounce terms, which is all that we will

consider, will include only physical contributions.
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It was found in previous work [59] that the radiation resistance for our model

ports is given by

RR,p(k) =
khη

4

∫
dθ

2π
|ũp(kθ̂)|2, (3.25)

where θ̂ is the two-dimensional unit vector (cos(θ), sin(θ)), which when inserted into

Eq. (3.24) gives

khη

∫
d2~r un(~r)V−K l−1V+um(~r) =

√
RR,nRR,m

∑

b(l,m,n)

Cb(l,m,n)e
iSb(l,m,n)−iπ/4,

(3.26)

where

Cb(l,m,n) =
un(~kf )u

∗
m(~ki)√

〈|un|2〉〈|um|2〉
√

Db(l,m,n). (3.27)

Using similar logic, we can also calculate the off-diagonal terms of Eq. (3.16),

ZR,n,m =
√

RR,nRR,mC(0,m,n)e
iS(0,m,n)−iπ/4, n 6= m, (3.28)

where C(0,m,n) and S(0,m,n) are the corresponding prefactor and action for a direct

orbit from port m to port n. We view the sum over b(l,m, n) as adding successively

longer length orbits, and we thus refer to Eqs. (3.25)-(3.28) as the ‘short orbit

formalism’.

With this result and similar semiclassical results for Tr(K l) [26], it is possible

in principle to evaluate Eq. (3.15) semiclassically for any cavity. We will not need to

perform this entire calculation explicitly, however. Instead, we will use the results

from the next section to relate the sums over classical trajectories to the elements

of random matrices.

We test this short-orbit formalism using the HFSS program. In the simulator,

we construct a fully three-dimensional cavity and antenna system similar to the
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one used in previous research; the quasi-2D nature of the cavity is enforced by

choosing the excitation frequency to be below the cut-off frequency for modes that

vary between the top and bottom plates.

To test our short-orbit theory, we first simulate the radiation impedance of

a single cylindrically-symmetric antenna by placing the antenna inside a circular

cavity, where the outer circular wall has absorbing boundary conditions (to simu-

late the radiation condition of purely outgoing waves) and the port was off-center

(this was to reduce coherent numerical reflections from the outer wall; the numerical

absorbing boundary condition is imperfect). As expected, we find a slowly varying

function of frequency for both the radiation resistance RR and reactance XR. We

then change the cavity by introducing one perfectly conducting wall into the sys-

tem, effectively producing a cavity in which all waves would either radiate away or

bounce once off the single wall and then radiate away, thus isolating a single term

in Eq. (3.26). Plots of such isolated bounce terms are shown in Figs. 3.4-3.6.

We find empirically that each short orbit term experiences a frequency-dependent

phase shift ∆φp when coupling through the port p, requiring the introduction of a

phase factor ei(∆φn+∆φm) to Eq. (3.26). Although this phase shift is frequency depen-

dent, in the cylindrically symmetric case it is orbit-independent; thus it is possible

to measure the phase shift using one short orbit and then apply it to all others.

For our ports, it is most convenient to introduce this phase shift and the cylindrical

symmetry by simply setting

Cb(l,m,n) = ei(∆φn+∆φm)
√

Db(l,m,n). (3.29)
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Figure 3.4: Comparison of the simulated impedance (circles) and theo-
retical impedance (solid line) of a single port with a circular perfectly
conducting scatterer on one side and radiation boundary conditions on
all other sides (see the inset in plot a). The radius of curvature of the
scatterer is 1.02 meters and its surface is 7.6 centimeters from the port.
The radiation impedance and phase shift for the port were extracted
from independent simulation data. Plot (a) shows the resulting resis-
tances and plot (b) shows the reactances. (Color online)
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Figure 3.5: Comparison of the simulated (circles) and theoretical (solid
line) ZR,1,2 when the ports are separated by a distance of 14.4 centime-
ters. Note that unlike the diagonal impedance matrix elements, the real
part of the off-diagonal terms can be negative. The radiation impedances
and phase shifts were extracted from independent simulations of each
port. (Color online)
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Figure 3.6: Comparison of the simulated (circles) and theoretical (solid
line) impedance due to the orbit shown in the inset in (a). The ports were
14.4 centimeters apart and 10 centimeters from the reflecting wall. This
impedance is found by finding the total impedance of the system with
the reflecting wall nearby and radiation boundary conditions everywhere
else and then subtracting the radiation impedance as found in Fig. 3.5.
We denote it Zb,1,2. The radiation impedances and phase shifts were
extracted for each port from independent simulation data. (Color online)

72



Side View of Coaxial Transmission Line on Port 1

Outer Radius 2.2 mm

Inner Radius 0.64 mm

h = 7.9 mm

Figure 3.7: Cross-section of the port connecting transmission line 1 and
the microwave cavity.

This phase shift exists due to the fact that in the HFSS simulations, we model the

ports in detail as a circular cross-section coaxial transmission line in which the outer

conductor contacts the upper plate and the inner conductor extends the short way

across the cavity and contacts the lower plate. The shape and dimensions of port

1 are shown in Fig. 3.7. Port 2, when it is present, has the same geometry as port

1, but with an outer radius of 3.0 mm. This more detailed port model results in

an additional phase shift that is not treated in our simple model of Eq. (3.6) where

we add a fixed current source to the wave equation. With this phase correction

in Cb(l,m,n), however, we find that we can model the impedance very well by using

Eq. (3.26).

To show the agreement between theory and simulation, we create three dif-

ferent cavity configurations. In the first configuration, we have a single port with a

single conducting, curved wall near it, with absorbing boundary conditions on the
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remaining surfaces. After simulating the isolated ports radiation impedance and

finding the phase shift, we both predict and simulate the resulting impedance in

the presence of the curved wall. Fig. 3.4 shows the measured and the predicted

impedance from 5 to 7 GHz, both resistance and reactance, where it can be seen

that the theoretical and simulated results agree well. The deviations between the

two are expected; the semiclassical approximation is not perfect at frequencies this

low, and we also have diffraction from the necessary truncation of the wall.

In the second configuration, we tested Eq. (3.24) by introducing a second

antenna into the system and imposing radiation boundary conditions on all the outer

walls. We found the radiation impedance and phase shift of the second antenna

using exactly the same methods as for the first. We then simulated the mutual

impedance between the two ports and compared it to Eq. (3.28) using the simulated

port parameters, and found that the agreement was again excellent, as shown in

Fig 3.5.

The third configuration is the same as the second, except we add a conducting

wall next to the two ports, creating an orbit which leaves the first port, bounces off

the wall once, and goes to the second port. To isolate the impedance due to this

new orbit, we compare the changes in impedance (which we denote Zb,1,2) between

configurations 2 and 3 rather than the raw impedances. Comparing this difference

with the semiclassical prediction from Eq. (3.26), we again see excellent agreement,

as shown in Fig. 3.6.

Thus we believe that our short-orbit formulation is effective at predicting the

impedance of cavities with a few, short orbits. In the next section, we discuss
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an equivalent formulation which expresses the impedance as elements of a finite-

dimensional matrix. This equivalence between the matrix and semiclassical formu-

lations will allow us to create ensembles of cavities which account for short orbits

within the cavity.

3.3.2 The finite matrix formulation

The results of Sec. 3.3.1 are based on an evaluation of the continuous, integral

operator K defined in Eq. (3.12). To make connection with random matrix theory,

we wish to recast the equations in matrix form. The authors of Ref. [21] have shown

how to do this. Further, in the semiclassical limit, the resulting matrix is effectively

finite.

To derive the matrix formulation, we first replace the continuous operator K

with the semiclassical operator T . Then we use the result that semiclassically [21],

iV−T † = V+
†. (3.30)

The operator V+
†V+ was also found in the semiclassical approximation to be [21]

V+
†V+ = i

(
G0 −G0

†) . (3.31)

By using Eq. (3.30) to eliminate V− and by adding
[
V+

†V+ − i
(
G0 −G0

†)] /2,

which is zero, to the operator inside Eq. (3.15), we can rewrite the impedance as

Zn,m =
1

2
khη

∫
d2~r un(~r)

[
V+

†1 + T

1− T
V+ + i

(
G0 + G0

†)
]

um(~r),

= iXR,n,m +
1

2
khη

∫
d2~r un(~r)V+

†1 + T

1− T
V+um(~r). (3.32)
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Fishman, Prange and Georgeot [21] demonstrated that in the semiclassical

limit, the operator T can be represented as an infinite-dimensional matrix whose

components are zero except on a finite subspace of dimension N = 2L/λ, where in

our formulation L is the circumference of the cavity. They demonstrated this by

expanding all functions on their surface of section (in our formulation, the cavity

boundary) in a Fourier series. In this basis, an arbitrary function ν(q) is expanded

as

ν(q) =
∞∑

n=−∞
ane2πniq/L. (3.33)

They showed that the operator T , evaluated using stationary phase in this basis,

is insensitive to Fourier components smaller than a wavelength, resulting in the

truncated subspace. By identical logic, the operator V+ only projects onto this

semiclassical subspace. Thus, semiclassically, the function V+up(~r) is non-zero only

on this subspace, where it has N discrete components corresponding to the Fourier

components of the expansion in Eq. (3.33).

Using Eq. (3.31), we get the dot product between two of these vectors,

∫
d2~r un(~r)V+

†V+um(~r) = i

∫
d2~r un(~r)

(
G0 −G0

†) um(~r)

=
2R̃R,n,m

khη
. (3.34)

Thus we can rewrite Eq. (3.32) as

Z = iX̃R + v† · 1 + T

1− T
· v (3.35)

where we now treat T as an N ×N matrix and where v is an N ×M matrix whose

columns ~vp are the N -dimensional vectors proportional to the semiclassical V+up(~r)
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and which are normalized such that

v†v = R̃R. (3.36)

Because Eqs. (3.26), (3.28) and (3.36) are all evaluated in the stationary phase

approximation, we can equate the matrix elements of any power of T with the

semiclassical orbit terms

2~v†n · T l−1 · ~vm =
√

RR,nRR,m

∑

b(l,m,n)

Cb(l,m,n)e
iSb(l,m,n)−iπ/4. (3.37)

Equation (3.37) is one of the most important results of this chapter. By ex-

plicitly connecting the semiclassical sums to a semiclassical matrix formulation of

impedance, we can relate the classical trajectories to the more abstract operator

formalism. Thus when we create ensembles of v and T , we can relate the ensemble

averages of v and T to the corresponding ensemble averages of the classical trajec-

tories within the cavity, which gives us a natural method of creating ensembles of

T which are constrained by short orbits within the system.

3.4 Impedance Statistics

As noted in the introduction, it is often difficult to solve the wave equation

exactly. Even in the semiclassical regime, where the problem is in principle tractable

using classical trajectories, there are difficulties. If the classical dynamics is chaotic,

the number of classical trajectories grows exponentially as does their sensitivity

to numerical errors. Small mistakes in modeling or small changes between similar

systems will result in large changes in the observed behavior. Thus we follow the
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long-standing tradition of replacing our deterministic expressions with statistical

models which reproduce the generic behavior of the systems being considered.

Our model for the cavity impedance is given in Eq. (3.35). The matrices

X̃R and v (up to an unmeasurable and thus arbitrary basis, which can thus be

absorbed into T ) are determined by Eqs. (3.16) and (3.17), which depend only on

the radiation fields from the ports, and are thus amenable to direct measurement or

non-chaotic semiclassical theory. Thus to find our statistical properties, we simply

seek an appropriate distribution for T .

The matrix T may be viewed as representing an internal scattering matrix.

In the case of chaotic dynamics and in the context of random matrix theory, it is

most natural to model T as an element of Dyson’s circular ensemble [19] (with the

time-reversal symmetry determined by the symmetry of the underlying system). If

we make this substitution, it can be shown that the resulting statistical proper-

ties of Z are completely equivalent to our previously published random coupling

model. In this model, the system specific properties of the ports (specifically the

radiation impedance) are all that is used to “normalize” the statistically fluctuating

impedance. Effectively, the previous model assumes that once wave energy enters

the cavity it is randomized by the chaotic ray trajectories such that no details of

the interior of the cavity modify the statistics of the impedance. However, we have

seen in Fig. 3.1 that there is likely some influence of specific ray trajectories within

the cavity on the statistical properties (in the case of Fig. 3.1 the median) of the

impedance. We now assume that the effect of these trajectories can described by

the Poisson kernel [43]. That is, we assume that the distribution of T is given by
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the Poisson kernel [41]

P (T ) =
1

2N(βN+2−β)/2V

det
(
1− T̄

†
T̄

)(βN+2−β)/2

det
(
1− T̄

†
T

)βN+2−β
(3.38)

where V is a normalization constant and T̄ is the average value of T over the

ensemble, and T̄ is, in principle, determined explicitly by the boundaries of the

cavities in the ensemble.

The Poisson kernel does not just specify the average value of T ; it has the

general property that [43]

〈T l〉 = T̄
l
. (3.39)

If we knew T̄ , then we could find the distribution of Z directly. Unfortunately, find-

ing T̄ for a specific ensemble such as that shown in Fig. 3.2 is almost as complex as

finding T and thus has no advantage over numerically solving the Helmholtz equa-

tion. By averaging both sides of Eq. (3.37), however, we can find the components of

T̄
l
spanned by the column vectors of v. We find that knowing these average short

orbit terms for all l is sufficient to get the statistics of Z; because the sum over

average short orbits is expected to converge, the problem becomes tractable for a

wide range of ensembles.

With this assumption for the distribution of T , we can find the statistical

properties of Z. From a result due to Brouwer for matrices distributed according

to the Poisson kernel [9], we find that we can parameterize T as

T =
iW †

(
λH̃0 + ε1

)
W − 1

iW †
(
λH̃0 + ε1

)
W + 1

, (3.40)

where the scalars λ, ε and the N × N matrix W are ensemble-specific constants
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which depend only on T̄ , and H̃0 is an N ×N random matrix distributed according

to the pdf of the Lorentzian ensemble with median 0 and width 1,

P (H̃0) =
1

V

λN(βN+2−β)/2

det(1 + H̃
2
)(βN+2−β)/2

, (3.41)

where β = 1(2, 4) for the Orthogonal(Unitary,Symplectic) choice of time-reversal

behavior. Inserting Eq. (3.40) into Eq. (3.35), we find

Z = iX̃R + iλ(Wv)†H̃0Wv + iε(Wv)†Wv. (3.42)

We now wish to eliminate λ, ε and Wv from Eq. (3.42). We do this by noting

that given the parametrization in Eq. (3.40), Brouwer found the value of T̄ to be [9]

T̄ =
(λ + iε)W †W − 1

(λ + iε)W †W + 1
. (3.43)

Solving Eq. (3.43) for W †W and projecting both sides onto the subspace spanned

by v, we get

(λ + iε) (Wv)† · (Wv) = Zavg − iX̃R, (3.44)

where we formally define Zavg as

Zavg = iX̃R + v† · 1 + T̄

1− T̄
· v. (3.45)

We denote the Hermitian and anti-Hermitian components of Zavg as Ravg and Xavg,

respectively. Matching the Hermitian and anti-Hermitian components across the

equality in Eq. (3.44) and noting that Ravg must be a non-negative matrix because

T̄ is subunitary and normal, we find that

λ (Wv)† Wv = Ravg (3.46)

ε (Wv)† Wv = Xavg − X̃R. (3.47)
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Inserting these results into Eq. (3.42) gives us

Z = iXavg + i
√

Ravgξ
√

Ravg (3.48)

where ξ is H̃0 projected onto the subspace spanned by Wv. Brouwer proved

that any diagonal submatrix of a Lorentzian distributed matrix is also a Lorentzian

distributed matrix with the same median and width. This result combined with

the basis invariance of Eq. (3.41) leads to the conclusion that ξ is a Lorentzian

random matrix with width 1 and median 0, as predicted. The basis-invariance of

the distribution of H̃0 also means that although Eq. (3.46) has a family of related

solutions for Wv, all members of this family are related via a change of basis and

therefore result in identical statistics for Z.

Although knowing the form of the distribution for Z is useful and can be used

fruitfully to fit experimental or simulation data, at a single frequency it is only a

minor improvement over the Poisson kernel in which one can also extract S̄ from

numerical data [41, 42]. Our last step is therefore to predict the value of Zavg using

the semiclassical approximations developed in Sec. 3.3.1. We do this by noting that

because T̄ is subunitary, the magnitude of all its eigenvalues are less than or equal

to one. The set of T̄ which have any eigenvalues on the unit circle has measure zero.

Therefore we can expand Eq. (3.45) in a convergent series as

Zavg = Z̃R + 2
∞∑

l=1

v† · T̄ l · v. (3.49)

Substituting Eqs. (3.37) and (3.28) into Eq. (3.49), and remembering Eq. (3.39),

we see that semiclassically Zavg is the port impedance plus the sum of the average

contributions the short orbits make to the impedance. In our case, where we have a
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perturber which moves much more than a wavelength between realizations through

the entire cavity, the contributions of orbits reflected off the perturber will have an

essentially random phase, and we approximate their contributions as zero. Because

the outer walls are fixed, short orbits from the ports to the walls will systematically

appear in the sum in Eq. (3.49), but must be weighted by pb, the fraction of realiza-

tions in which they do not pass through the perturber. With these results, we find

the elements of ζ from Eq. (3.5) to be

ζn,m =
∑

b(n,m)

pb(n,m)Cb(n,m)e
iSb(n,m)(k)−iπ/4 (3.50)

where the index b(n,m) is over all short orbits which go from port m to port n,

including direct orbits between different ports. Note that when we test this theory,

we use the empirically discovered form of Cb(n,m) from Eq. (3.29).

We note that Zavg is the impedance the baseline system would have if some

fraction of energy were lost every time a wave passed through a perturber. Even

for very large numbers of bounces, this seems to be a general result: the impedance

needed to normalize the statistics of any sufficiently random ensemble will corre-

spond to the impedance of a single lossy cavity where loss occurs in those features

which change between realizations, with the degree of loss determined by the degree

of change in those elements. Thus even with very small perturbations in which

the semiclassical approach is unfeasible, the form of Zavg is known, and in analogy

to the Poisson kernel, we can fit to find the effective radiation impedance. More

importantly this implies that the frequency dependence of Zavg matches that of an

appropriate lossy cavity. If the perturbations are sufficiently uniform within the cav-
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ity, the statistics of Zavg evaluated over a range of sufficiently separate frequencies

would exhibit the statistics found in our previous work for lossy cavities.

In microwave billiards exhibiting hard chaos with a uniform distribution of

perturber locations within the volume, it is possible to estimate the expected loss

parameter for Zavg. Because typical ray trajectories within the cavity explore the

phase space ergodically and because the perturber locations are distributed uni-

formly, we expect that, pb(n,m) ∼ exp(−α̃Lb(n,m)), where α̃ is determined by the

perturber size and shape and the perturber locations, and Lb(n,m) is the length of

the b(n,m)th orbit. Neglecting the phase shifts from the traversals of the ports

(which are expected to be small due to the small size of the ports), we find that

with this expression for pb(n,m),

ζn,m ∼
∑

b(n,m)

Cb(n,m) exp(i(k + iα̃)Lb(n,m) − iπ/4), (3.51)

where we have used that the classical action in microwave billiards is given by

Sb(n,m) = kLb(n,m). We found in previous work [59] that the transformation k →

k + iα̃ corresponds to adding loss, with the loss parameter given by Q = k/(2α̃) and

the line-width to level spacing ratio α = kAα̃/π, where A is the area of the microwave

cavity. Thus, by analogy, introducing pb into Eq. (3.50) is roughly equivalent to

Zavg being the impedance of a lossy cavity with uniform loss. Using a Monte

Carlo simulation of long ray trajectories in our bowtie billiard, we find that for the

perturber positions in Fig. 3.2, α̃ ∼ .25m−1.

This result for the average impedance is related to work done by Brouwer and

Beenakker [10] following Büttiker [12]. In their work, they found that a lossy quan-
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tum dot could be modeled as a lossless quantum dot coupled both to the physical

scattering channels and to a large number of weakly coupled parasitic channels. Be-

cause Zavg represents the impedance of a system where a small amount of energy is

lost when it passes through a perturber position, the perturber positions function

as effective parasitic channels, and we expect the resulting average impedance and

average scattering matrix to be well-fit by their theory.

3.5 Numerical Tests of the Theoretical Predictions

In this section, we show the results of several tests of Eqs. (3.5) and (3.50)

for both one and two-port configurations. We obtained the data for these tests

from simulations using HFSS. The cavity configuration we used is shown in Fig. 3.2.

Port 1 is centered at location (x = 18.03cm, y = 15.48cm) and port 2 (when it

is present) is at (x = 36.7cm,y = 15.48cm). The lower-left corner of the cavity is

at (x = 0.0cm, y = 0.0cm). Both ports have essentially the geometry as shown in

Fig. 1 of Reference [59], but with different dimensions. Both ports have an inner

radius of .635mm, but port 1 has an outer radius of 2.29mm while port 2 has an

outer radius of 3.05mm. The lower and left straight sides of the cavity have lengths

L1 = 43.18cm and L2 = 21.59cm respectively and the upper and right sides have

radius of curvature R1 = 103cm and R2 = 63.9cm respectively. By moving a

perfectly conducting circular perturber with a diameter of 2.54cm to 95 different

locations (shown as circles in Fig. 3.2) within the cavity, we construct our ensemble.

The resulting impedances were simulated at 201 uniformly spaced frequencies from

84



5 to 7 GHz, inclusive. For this frequency range, we get that the effective loss

parameter Q due to the ensemble averaging changes linearly from about 210 at 5

GHz to 300 at 7 GHz. The effective line-width to level spacing ratio α also increases

linearly from about 0.95 to 1.35.

3.5.1 Single-port Tests

To test our predictions in the single-port case, we first confirm that at each

frequency the impedances have a Lorentzian distribution, fitting to find the median

and width. From the fit, we see that Eq. (3.50) does not converge quickly enough to

be practical at a single frequency. However, we find that if we use frequency aver-

aging and short orbits together, we regain universal statistics over a much narrower

frequency band than was required with out previous theory [59] (i.e. if ZR is used

as in Eq. (3.4)). In addition, we confirm that as a function of frequency, the fitted

Zavg has the characteristic behavior of the impedance of a lossy cavity.

To test that the impedance is Lorentzian distributed at each frequency, we

numerically find the three quartiles Q(1,2,3)(f) of the 95 sample impedances (denoted

Zi(f)) and thus find the sample median Zmed(f) = Q2(f) and the sample width

Zwid(f) = Q3(f)−Q1(f). Assuming that Zmed(f) and Zwid(f) are approximately the

correct median and width, we can then find the phase of the normalized scattering

matrix coefficient

φi(f) = 2 tan−1

(
Z(f)− Zmed(f)

Zwid(f)

)
. (3.52)

For large N and with a Lorenzian distribution for Z(f), φi(f) should be uniformly
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distributed between −π and π. We bin the numerical φi into 10 equal-sized bins

and find the resulting χ2 deviation from a uniform distribution. We then find

the anticipated distribution of χ2 by performing a Monte-Carlo statistical analysis

on 402000 realizations of 95 Lorentzian random variables each, transforming them

precisely as done in Eq. (3.52) and finding the resulting χ2. Comparing the values

of χ2 for the simulation data and the Monte-Carlo distribution, we find that at

the 95% confidence level, we can accept the Lorentzian hypothesis for 93% of our

frequency impedance samples, while at the 99% confidence level, we can accept all of

our impedance samples. These results are consistent with the data being distributed

with a Lorentzian distribution at each frequency.

To test the semiclassical theory in the single-port case, rather than using

the sample median and width we attempt to predict the median and width us-

ing Eqs. (3.5) and (3.50). In practice, we must eventually truncate the sum over

semiclassical trajectories. We therefore define the truncated average impedance

Zt,Nb
= Z̃R + 2

Nb∑

l=1

~v†1 · T̄ l · ~v1, (3.53)

which is equivalent to the sum over all classical trajectories which bounce up to Nb

times. Thus the normalized scattering phase we use to test our semiclassical theory

is

φi,Nb
(f) = 2 tan−1

(
−i

Zi(f)− iXt,Nb
(f)

Rt,Nb
(f)

)
, (3.54)

where Rt,Nb
and Xt,Nb

are the real and imaginary parts of Zt,Nb
.

In Fig. 3.8, we compare Zt,Nb
to Zwid for Nb = 2, 5, 6. We see that as Nb

increases, the two terms becomes increasingly similar. Zt,2 follows the frequency
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Figure 3.8: A comparison between the fitted width of the impedance
distribution Zwid at each measurement frequency and the semiclassical
predictions for the widths due to short orbits which bounce up to 2, 5
or 6 times. By 6 bounces, the semiclassical prediction has begun to fit
the gross features of the fitted widths but is far short of the number of
orbits needed to fit the sharp spikes. In addition, Gibbs phenomenon
has become a problem in the sixth bounce around 5.75 and 6.7 GHz with
the semiclassical prediction dipping too close to zero. (Color online)

average of Zwid. Also, despite the fact that Zwid changes rapidly in frequency,

consistent with the assumption that it is the real part of a lossy impedance, Zt,5

and Zt,6 have begun to fit even the large spikes in Zwid. This strongly supports the

validity of Eq. (3.50) and implies that with a sufficiently large number of bounces

or a more random ensemble (such as including more perturbers or having a larger

perturber), it may be possible to predict Zavg at a single frequency. We have not

yet confirmed this possibility.

In previous work, we found that normalizing the impedance with zero bounces

(i.e. the radiation impedance ZR) was sufficient to get universal statistics if we

sampled the impedances over a sufficiently wide frequency range. If the frequency
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window was too narrow, however, we found systematic deviations from universal

statistics. Even though we do not have enough terms in Zt,6 to experimentally find

Zavg semiclassically at a single frequency, we find that by combining short orbits and

frequency averaging, we can get universal statistics over much narrower frequency

ranges than previously.

To measure the deviation of the distribution of the measured φi,Nn from uni-

form, we introduce the χ2 statistic. For a frequency window of width δf and centered

at f0, the χ2 statistics is calculated by binning the φi,Nb
from every realization and

from every other frequency in the frequency window into ten equally sized bins from

−π to π. (We take every other frequency because the impedance values of adjacent

frequencies are found to be strongly correlated.) The χ2 statistic for this window is

then given by

χ2 =
10∑

r=1

(Nr − 〈Nr〉)2

〈Nr〉 (3.55)

where Nr is the number of φi,Nb
in the rth bin, and 〈Nr〉 is the expected value of Nr

given a uniform distribution. The χ2 statistic is chosen because it has approximately

the same distribution independent of ∆f .

In Fig. 3.9, we display the average χ2 statistic from our sample for multiple

values of Nb and different choices of window width. The averaging is performed

over all frequency windows of the same width, including windows whose frequencies

overlap. We see that for small window widths, increasing Nb systematically de-

creases the error. In addition, we also see that, up to a point, increasing the window

size also decreases the error, but, once the error has leveled off, it decreases no fur-
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Figure 3.9: The average χ2 deviation of the φi,Nb
from the uniform distri-

bution for different frequency windows and different choices of Nb. The
χ2 were calculated for all possible frequency windows with a given width
and then averaged over all different window realizations. The random
control was generated by a Monte-Carlo simulation of the χ2 for uni-
formly distributed phases. Note that for the sixth bounce we exclude
frequency windows in which the calculated Ravg falls below 0.1. (Color
online)

ther. This is consistent with the frequency averaging effectively removing the longer

orbits, making the improved statistics from the larger Nb irrelevant. In addition,

for comparison we include the χ2 statistics for a set of truly independent random

phases and see that for the largest Nb and widest window widths, our results are

statistically indistinguishable from true randomness.

At this point we note one caveat to our use of Eq. (3.54) relevant to Fig. 3.9.

In Fig. 3.8, we see that Zt,6 drops almost to zero near 5.7GHz and 6.7GHz. In

fact, if we continue to add bounces, Rt,Nb
can actually become negative at some

frequencies, which would represent gain in a lossy system and is unphysical. This
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unphysical behavior occurs only because the sum in Eq. (3.50) has been truncated,

but it badly distorts the calculation in Eq. (3.54) within the affected frequency

ranges due to the abnormally small denominator. This occurs because our sum over

orbits is effectively an attempt to expand a function with poles near the real axis

in a Fourier series. Due to the rapidly changing features in Ravg,1,1, we get a form

of Gibbs phenomenon, in which a Fourier series attempting to fit a discontinuous

function systematically overshoots the fitted function. For the purposes of producing

Fig. 3.9, we simply ignored frequency windows which contained frequencies such that

Rt,6(f) < 0.1RR(f). It may be possible to avoid this problem by using a smarter

method to expand Eq. (3.45).

3.5.2 Two-port tests

To test the results from the two-port configuration, we first test the statistical

properties of the diagonal elements of the two-port impedance, considered sepa-

rately. From Eqs. (3.48) and (3.36), and remembering that the distribution of ξ is

basis-independent, we find that the diagonal elements of the multi-port impedance,

considered independently, should be Lorentian random variables with width Ravg,n,n

and median Xavg,n,n. Thus the diagonal elements of Z are susceptible to the same

analysis used in the single-port case. When we perform this statistical analysis on

both diagonal elements of Z considered independently, we get results essentially

identical to those shown for the single-port case.

Because port 1 is in the same location for both the single-port and two-port
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Figure 3.10: A comparison between the numerically found median (solid lines) and
width (dashed lines) of the distribution of impedances at each frequency for the
single-port simulated impedance (the black lines) and the (1,1) element of the two-
port simulated impedance (the gray lines). Note that for clarity we have subtracted
the radiation impedance of the single port from the medians of both sets of data.

simulations, our theory also predicts that the median and width of the distribution of

Z1,1 at a single frequency should be almost identical to the median and width of the

single-port impedance distribution at the same frequency. The data is in agreement

with this prediction as shown in Fig. 3.10 (note that, for the sake of clarity, we have

subtracted the radiation reactance of the single port from the plotted medians of

both sets of data).

The statistics of the two-port normalized impedance are more than the in-

dependent statistics of the diagonal elements; the elements of the 2 × 2 matrix Z

are strongly correlated. All elements of Z go to infinity, for instance, when the

frequency goes through a cavity resonance. One common way of expressing this is

via the correlation between the eigenvalues of ξ. The eigenvalues of ξ have the form
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cot(θn/2), where the distribution of the θn is given by [9]

P ({θn}) ∝
∏
n<m

|eiθn − eiθm|β. (3.56)

For the two-port impedance problem, this distribution simplifies to

P (θ1, θ2) =
1

4

∣∣∣∣sin
(

θ1 − θ2

2

)∣∣∣∣ . (3.57)

Thus to test our theory, we must fit or calculate Zavg, find the values of ξ for

our sample data, diagonalize, and find the distribution of the differences between

the resulting phases. We again use χ2 to determine the goodness-of-fit with the

definition from Eq. (3.55), but with 〈Nr〉 determined by integrating Eq. (3.57). As

we did for the single-port case, we both fit to find the numerical Zavg and use the

semiclassical sum.

Numerically fitting Zavg is more difficult for the two-port case than in the one-

port case. We can find the diagonal elements of the fitted Zavg simply by fitting

the diagonal elements of Z to Lorenzians exactly as in the single-port case. Fitting

the off-diagonal elements numerically is more complex because both the shape and

width of the distribution of the off-diagonal elements of Z depend in a non-linear

way on all the elements of Ravg. Rather than attempting this more complex fit, we

consider the rotated impedance matrix

OZOT = iOXavgO
T + i(O

√
RavgO

T )(OξOT )(O
√

RavgO
T ), (3.58)

where O is a constant orthogonal matrix. Because the statistics of ξ are independent

of basis, the diagonal elements of the rotated matrix OZOT will be Lorentzian

distributed random variables with widths and means give by the diagonal elements
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of OXavgO
T and ORavgO

T . Thus if we make the simple choice

O =




1√
2

1√
2

− 1√
2

1√
2


 , (3.59)

we find that the widths of the distribution of the diagonal elements of the rotated

impedance are

(ORavgO
T )n,n =

Ravg,1,1 + Ravg,2,2

2
− (−)nRavg,1,2, (3.60)

where n = 1, 2, and with corresponding logic for Xavg. Thus to find Zavg,1,2, we fit

the diagonal elements of OZOT to Lorenzians and take the half difference between

the fitted medians and widths for the different diagonal terms. This algorithm gen-

eralizes to larger numbers of ports by choosing O to rotate between the appropriate

port indices. In the process, we also confirm that the diagonal elements of the ro-

tated impedance are in fact Lorentzian distributed, providing further support for

Eq. (3.48).

In Fig. 3.11, we show the results of this analysis. Rather than considering

frequency windows, we simply consider the statistics of |θ1 − θ2| at each individ-

ual frequency using different values of Zavg. We find that the numerically fitted

Zavg normalizes the data well, but not perfectly, with the range of χ2 values falling

well within acceptable bounds as determined by the theoretical distribution of χ2,

but systematically larger than would be expected from true randomness. For the

truncated sums, however, the story is rather different. We see that at many fre-

quencies, no corrections are needed at all to get good statistics. Some frequencies,

however, have large deviations from Eq. (3.57). That these deviations are caused

93



5.8 6.0 6.2 6.4 6.6

0

20

40

60

80

100

120

140 Correction:

 None
 1 bounce
 2 bounce
 3 bounce
 Fitted

 E
rr

or
 o

f 
Frequency (GHz)

Figure 3.11: A comparison between the universality of the phases of ξ as extracted
using different methods for normalizing the two-port impedance data. All data
shown is the χ2 statistics for fitting the different between phases to Eq. (3.57). The
gray lines represent error of the data normalized using the semiclassical impedance
sum. The solid line represents the phase difference statistics, but at each frequency
using the fitted value for Zavg, where the fitting parameters are found as described
in the text. (Color online)

by short orbits is demonstrated by the fact that, as we add 1 and 2 bounces to the

semiclassical Zavg, the deviations initially become smaller, almost reaching the level

of noise. Unfortunately, adding longer orbits does not improve the situation; they

leave the statistics either unchanged or markedly worse. The reasons for this are

unclear but are likely due to a combination of the Gibbs phenomenon observed in

Sec. 3.5.1 and the tendency of some impedance matrices to be poorly conditioned

due to systematically large values of cot(θn/2).

Thus we have confirmed many of the predictions of the extended random

coupling model, including the approximate independence of the statistics of the

diagonal elements of Z, the invariance of the distribution under rotation, and the

level spacing statistics for pairs of eigenvalues of ξ.
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3.6 Adding Loss

In practice, no real cavity will be truly lossless. For non-zero frequencies,

even cavities with superconducting boundaries have loss due to interactions between

microwave photons and quasiparticles. In quantum mechanical systems, there will

always be dephasing, which is functionally equivalent to loss [10]. In this section we

therefore address the effects loss has on our theory.

From Maxwell’s equations, we derived in previous work [59] that going from

lossless to uniformly lossy is performed by the transformation k → k + iα, where

α = k/(2Q) and Q À 1 is the loss parameter of the closed cavity. Performing

this analytical continuation takes some care. The function that must be explicitly

continued analytically to obtain universal statistics of the sort we found previously

is the normalized impedance ξ, given by

iξ = R−1/2
avg (Z − iXavg) R−1/2

avg . (3.61)

Because Ravg and Xavg appear independently in Eq. (3.61), we must analytically

continue each independently. Because taking the real and imaginary parts of non-

constant functions is not an analytic operation, for lossy systems Ravg and Xavg are

not real but rather the analytic continuation of the real and imaginary part of the

lossless Zavg on the real axis. These analytic continuations are unique.

To find this analytic continuation for the microwave billiards used in our ex-

periments, it is necessary to explicitly find the real and imaginary parts of Zavg.
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For our microwave billiard system, we find that

Ravg = RR + R
1/2
R ρR

1/2
R (3.62)

Xavg = XR + R
1/2
R χR

1/2
R (3.63)

where the M ×M matrices ρ and χ have the elements

ρn,m =
∑

b(n,m)

pb(n,m)

√
Db(n,m) cos

(
k

(
Lp,n + Lp,m + Lb(n,m)

)− π/4
)
, (3.64)

χn,m =
∑

b(n,m)

pb(n,m)

√
Db(n,m) sin

(
k

(
Lp,n + Lp,m + Lb(n,m)

)− π/4
)
, (3.65)

where we have made the empirically observed substitution ∆φn = kLp,n, Lp,n is

observed to be a port-dependent constant, and Lb(n,m) is the length of the trajectory

b(n,m), where we have used that for billiards, Sb(n,m)(k) = kLb(n,m).

Because ZR and Db(n,m) change slowly in frequency compared to the level

spacing, they are approximately independent of α and thus equal to their lossless

counterparts. Thus the analytic continuations of Ravg and Xavg consist of keeping

the forms of Eqs. (3.62)-(3.65) unchanged but allowing k to become complex.

After performing this continuation, ξ will no longer be real. However the

distributions of the real and imaginary parts of iξ have been found as a function of

the loss parameter, [23, 47] and, for low-loss systems, we expect the distribution to

be approximately universal. The only difficulty with this analytic continuation is

that the sum in Eq. (3.49) will not necessarily converge if the loss parameter is too

high. In such a case, it is necessary to perform the analytical continuation on the

form of Zavg given in Eq. (3.45). At this time, we have not attempted this, but we

anticipate that it will require evaluating the denominator in Eq. (3.45) via a method

other than short orbits, a poosible subject of further research.
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We have experimentally tested this theory in the one-port case for a microwave

quarter-bowtie billiard described in previous work for frequencies from 6 to 18 GHz

[57]. The primary difficulty in applying Eqs. (3.5) and (3.50) over this frequency

range is the fact that the loss parameter is not constant as a function of frequency.

However, our theory predicts that the phase of the normalized scattering parameter

s will be uniformly distributed independent of the loss parameter [59], where s is

given by

s =
iξ − 1

iξ + 1
. (3.66)

Thus by fitting the distribution of the phase of the normalized scattering parameter

to the uniform distribution, we can again find the χ2 statistic for various frequency

windows and different choices for the number of bounces before truncation Nb. We

have performed this experiment with a lossy cavity and found results qualitatively

similar to Fig. 3.9 [57].

3.7 Conclusions

In this chapter, we have shown that the random coupling model, Ref. [60]

and Eq. (3.4), can be extended to take into account system specific short orbits that

affect the statistical features of the system. From the numerically and experimentally

observed deviations of our results from universality, we anticipated that interactions

between the walls and the port that were not sufficiently changed from realization to

realization would result in corrections to our model. We then derived a model that

could predict such corrections. Numerically and experimentally, we found that the
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improved model resulted in statistically significant improvement when fitting to the

random coupling model, effectively reducing the deviations to the level of noise. In

addition, we developed utilizations of several mathematical tools, including Prange’s

semiclassical version of Bogomolny’s T operator, that could be fruitful in further

study of chaotic cavities and wave-chaotic systems with known dynamics in general.
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Appendix A

Finding the Distribution of ξn for Small γn

To find the distribution of ξn defined in Eq. (2.23) for small γn, we exploit the

fact that, in a two-port system with the ports identical and described by Random

Matrix Theory, the diagonal elements of the normalized impedance matrix each have

the same statistics as the single-port normalized impedance. Then using the exact

statistics of the two-port RMT impedance, we can find the statistics of the one-port

impedance (2.19).

We see this by first writing the elements of the two-port normalized impedance

matrix as a sum, analogous to Eq. (2.10),

ξi,j = − j

π

∑
n

wi,nwj,n

k2 − k2
n

, (A.1)

where the wi,n are independent Gaussian random variables and the k2
n have the

statistics of the eigenvalues of a GOE random matrix.

As shown in previous work [60], the 2x2 matrix ξ has the following statistics:

its eigenvalues tan θ1, and tan θ2 have a joint pdf,

P (θ1, θ2) ∝
∣∣∣∣sin

(
θ2 − θ1

2

)∣∣∣∣ , (A.2)

and its eigenvectors (cos ν, sin ν) and (− sin ν, cos ν) have ν uniformly distributed

and independent of θ1 and θ2. Consequently, a diagonal element of ξ can also be

parameterized as

ξi,i = cos2 η tan θ1 + sin2η tan θ2. (A.3)
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Comparing Eqs. (A.1) and (A.3), we see that the singularity at k = kn in

Eq. (A.1) is matched by either θ1 or θ2 going through π/2; for specificity we assume

that it is θ1. For small γn, corresponding to small w2
n, the coefficient of the singularity

is small, which corresponds to cos2 η ≈ 0. Thus, for small γn, ξn has the statistics

given by

ξn = tan θ2|θ1=π/2 (A.4)

which inserted into Eq. (A.2) produces the pdf for ψn = tan−1 ξn = θ2

P (ψn) =
cos ψn

2
(A.5)

Numerically we confirm this by generating a single 600x600 element matrix

from the Gaussian Orthogonal Ensemble and calculating and scaling the eigenvalues

to get an appropriate spectrum. We then repeatedly generate 600 realizations of

600 coupling constants and use them to calculate 360,000 realizations of Xn, which

we then normalize to calculate ψn. The resulting statistics are demonstrated in

Fig. A.1.
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Appendix B

Finding the Cumulants of P̄ref

To obtain Eq. (2.50), we note that the cumulant generating function of P̄ref

obeys

g(h) = log

(〈
exp

(
h

∑
n

∣∣2π∆ωV̄inc(ωn)
∣∣2

Z0

γ2
n

∆ω2
e−2γnt

)〉)

=
∑

n

log

(〈
exp

(
h

∣∣2π∆ωV̄inc(ωn)
∣∣2

Z0

γ2
n

∆ω2
e−2γnt

)〉)
. (B.1)

This result is a specific example of a general property of cumulants [37]: The mth

cumulant of a sum of independent variables is the sum of the mth cumulants of the

single variables. Thus, in analogy to Eq. (2.48), we define the cumulant-generating

function and the cumulants κ̃p for each term in the sum in Eq. (B.1) as

g̃(q) = log

(〈
exp

(
q

γ2
n

∆ω2
e−2γnt

)〉)
=

∞∑
p=1

κ̃p
qp

p!
, (B.2)

and by matching coefficients of hm in Eq. (B.1), we get that

κm = κ̃m

∑
n

∣∣2π∆ωV̄inc(ωn)
∣∣2m

Zm
0

. (B.3)

All that is left is to find the long-term behavior for κ̃m. To do this, we note that we

can rewrite the average exponential in Eq. (B.2) as

〈
exp

(
q

γ2
n

∆ω2
e−2γnt

)〉
= 1 +

∞∑
n=1

qnµn

n!
. (B.4)
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Because q is a dummy variable which can be arbitrarily small, we can also expand

the logarithm in Eq. (B.2) to get that

∞∑
p=1

κ̃p
qp

p!
=

∞∑
n=1

qnµn

n!
− 1

2

( ∞∑
n=1

qnµn

n!

)2

+
1

3

( ∞∑
n=1

qnµn

n!

)3

− . . . . (B.5)

By matching coefficients of qp on both sides of Eq. (B.5), we find that [37],

κ̃1 = µ1, (B.6)

κ̃2 = µ2 − µ2
1, (B.7)

κ̃m = µm −mµm−1µ1 + . . .− (−1)mµm
1 , (B.8)

where the elided terms are products of different µn such that the indices add up to

m. For large t, all of these polynomial terms are small compared µm. We can see

this by noting that µm ∝ (t∆ω)−2m−1/2. Thus

µm

µlµm−l

∝ (t∆ω)1/2, (B.9)

where the proportionality constant can be shown to be order 1. For every extra factor

of µl included in a term, we pick up an extra factor of (t∆ω)1/2 in the numerator of

the ratio between µm and that term. Thus for large times we have that µm is much

greater than any of the other polynomial terms in Eq. (B.8) and therefore

κ̃m ≈ µm. (B.10)

Combining Eqs. (2.39), (B.3), and (B.10), we get Eq. (2.50).
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Appendix C

The time domain code

In this section, we describe the time domain code used to create the realiza-

tions in Fig. 2.1. This code effectively solves Eq. (2.1) using the approximations that

were inserted into Eq. (2.8) to produce Eq. (2.10). In addition, it makes use of a

slowly varying envelope approximation which greatly increases the size of the numer-

ically stable time-step and also transforms Maxwell’s Equations into Schrödinger’s

Equation.

To solve Eq. (2.1), we first find expand V (x, y, t) in terms of the eigenfunctions

of the closed system

V̄T (x, y, t) =
∑

n

c̃n(t)φn(x, y)√∫
dθ |u(~w0c)|2

. (C.1)

We note that the cn(ω) from Eq. (2.6) are proportional to Fourier transforms of the

c̃n(t). Substituting Eq. (C.1) into Eq. (2.1) and using the orthonormality of the φn,

we get

1

c2

d2

dt2
c̃n(t) + k2

nc̃n(t) =
8πRR(ω0c)

ω0

dI(t)

dt




∫
dx dy uφn√∫
dθ |u(~w0c)|2


 , (C.2)

where we have used the definition of radiation resistance from Ref. [59, Eq. 19] to

remove the factor hµ. The value of ω0 is the modulation frequency used in the

envelope approximation (See Eqs. (C.3) and (C.4)).

To apply the envelope approximation, we assume that

I(t) = Ienv(t)e
jω0t (C.3a)

104



c̃n(t) = dn(t)ejω0t (C.3b)

where

d

dt
Ienv(t) ¿ ω0Ienv(t) (C.4a)

d

dt
dm(t) ¿ ω0dm(t). (C.4b)

d2

dt2
dm(t) ¿ ω0

d

dt
dm(t). (C.4c)

Then we drop all terms which are small, noting that kn ≈ ω0/c, which implies that

k2
nc

2 − ω2
0 = (knc− ω0)(knc + ω0) is on the order of ω0. This gives us

[
2jω0

c2

∂

∂t
+ (k2

n −
ω2

0

c2
)

]
dn(t) = 8jπRR(ω0c)Ienv(t)




∫
dx dy uφn√∫
dθ |u(~w0c)|2


 (C.5)

Again we replace the overlap integral between φn and u with the statistical

approximation found in Ref. [59, Eq. 14] to get

[
2jω0

c2

∂

∂t
+ (k2

n −
ω2

0

c2
)

]
dn(t) =

√
8∆wnjRR(ω0c)Ienv(t). (C.6)

Similarly, combining Eqs. (C.1) and (2.2) and using the envelope approxima-

tion throughout, we get

Venv(t) =
∑

n

Vn(t), (C.7)

where Venv(t) is the envelope of V (t) in analogy to Eq. (C.3) and

Vn(t) =

√
∆

4π
dn(t)wn. (C.8)

Solving Eqs. (2.3) and (2.4) for I(t) by eliminating Vref(t) and inserting the

result into Eq. (C.6), we get

[
2jω0

c2

∂

∂t
+ (k2

n −
ω2

0

c2
)

]
Vn(t) = j

∆RR(ω0c)w
2
n√

2πZ0

(
2Vi,env(t)−

∑
m

Vm(t)

)
, (C.9)
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where Vi,env(t) is the envelope of Vinc(t) in direct analogy to Eq. (C.3).

Equation (C.9) is a set of complex first order linear differential equations anal-

ogous to Shrödinger’s equation. By truncating the spectrum to a finite number of

modes, it is possible to solve Eq. (C.9) numerically via standard numerical inte-

gration techniques. In our case, we choose forth-order Runga Kutta. We generate

the values of k2
n − k2

0 by generating 600x600 random matrices from the Gaussian

Orthogonal Ensemble, finding the spectrum, and unfolding it such that the k2
n − k2

0

have a uniform density. We also generate the 600 wn as Gaussian random variables

with 0 mean and width 1. All of the remaining variables (including the initial con-

ditions) are physical parameters that must be set to match the situation we wish to

simulate.

For the runs displayed in this paper, we chose RR(ω0c)/Z0 = 1, ω0 = 22.5 GHz,

and ∆ = 10 m−2. The kn were chosen to lie between ≈ 51 m−1 and 93 m−1. For

initial conditions, Vn(0) = 0. The envelope of the incident pulse, Vi,env, had the form

Vi,env(t) = e−(tσω−5)2/2 (C.10)

with σω = 150 MHz.
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