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Effect of short ray trajectories on the scattering statistics of wave chaotic systems
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In many situations, the statistical properties of wave systems with chaotic classical limits are well described
by random matrix theory. However, applications of random matrix theory to scattering problems require
introduction of system-specific information into the statistical model, such as the introduction of the average
scattering matrix in the Poisson kernel. Here, it is shown that the average impedance matrix, which also
characterizes the system-specific properties, can be expressed in terms of classical trajectories that travel
between ports and thus can be calculated semiclassically. Theoretical results are compared with numerical

solutions for a model wave chaotic system.
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I. INTRODUCTION

Wave systems appear in many different branches of phys-
ics, such as quantum mechanics, classical electromagnetism,
and acoustics. However, solving the wave equations in gen-
eral can be quite difficult, particularly, in the short-
wavelength limit for systems which have chaotic dynamics
in the classical limit [1]. Furthermore, even if exact solutions
were feasible, there may be uncertainties in the locations of
boundaries or in parameters specifying the system. Thus,
rather than solving such systems exactly, it has often been
convenient to create statistical models, which reproduce the
generic properties of such systems without the need to accu-
rately model the details [2]. One successful statistical ap-
proach known as random matrix theory is to replace the ex-
act wave-mechanical operators, such as the Hamiltonian or
scattering matrix, with matrices whose elements are assumed
to be random. Although such formulations cannot predict any
particular wave system’s properties exactly, they can predict
the distribution of properties in an ensemble of related wave
chaotic systems. Random matrix theory also predicts the sta-
tistical properties of a single wave chaotic system evaluated
at different frequencies. The random matrix technique ap-
plies to a wide range of systems and has been well studied
both theoretically and experimentally. See Refs. [3-6] for
reviews of the theory, history, and applications of random
matrix theory.

In this paper, we use random matrix theory to model the
scattering behavior of an ensemble of wave chaotic systems
coupled to the outside world through M discrete scattering
channels. Such scattering systems have been studied exten-
sively, with most work focusing on the M X M scattering
matrix S, either by using a random Hamiltonian for the
closed system and deriving the resulting scattering matrix
using assumptions for the coupling between the wave system
and the scattering channels [7] or by replacing the scattering
matrix with a random matrix directly [8—12]. These two ap-
proaches are complementary and for some ensembles have
been explicitly shown to be equivalent [7].

We consider ensembles of systems whose distribution of
scattering matrices are well described by the so-called Pois-
son kernel [8—10]. The Poisson kernel characterizes the prob-
ability density for observing a particular scattering matrix S
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in terms of the average scattering matrix S, which is also
called the “optical scattering matrix.” It represents contribu-
tions to the scattering matrix from elements of the system
which are not random. For instance, if the scattering chan-
nels are not perfectly coupled to the wave system, some frac-
tion of the energy in the incident waves will simply bounce
off the interface between the channel and the scatterer with-
out experiencing the chaotic aspects of the scatterer, thus,
strongly constraining S. This is known as the prompt reflec-
tion [13]. In addition, rays within the scattering region,
which connect the scattering channels without ergodically
exploring the chaotic dynamics, also affect S [11,14].

Because S is the only parameter in the Poisson kernel,
methods of finding it for a specific system are of interest.
Although S can be extracted quite simply from experimental
data, predicting it from first principles is quite difficult in
general, although it has been done for some specific systems
such as quantum graphs [15]. In most wave systems, how-
ever, it depends in a complicated way on the interactions
between the scattering channels, the wave system, and any
significant classical trajectories. To address this problem, we
find it convenient to transform from the scattering matrix S
to the M X M impedance matrix Z [16-18],

Z=Z*1+8)1-S)"'z}> (1)

where Z is an M X M diagonal matrix, whose ith diagonal
element is determined by the detailed properties of the ith
scattering channel as described below. We will show that the
average impedance matrix (to be defined) can be expressed
directly in terms of classical ray trajectories.

Impedance is a meaningful concept for all scattering wave
systems. In linear electromagnetic systems, it is defined via
the phasor generalization of Ohm’s law as

vV=12I, (2)

where the M-dimensional vector V represents the voltage
differences across the attached transmission lines (the sys-

tems port) and the M-dimensional vector I denotes the cur-
rents flowing through the transmission lines. The concept of
impedance can be generalized to cases where the cavity is
excited through apertures connected to waveguides that may
support several propagating modes. In acoustics, the imped-
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ance is the ratio of the sound pressure to the fluid velocity. A
quantum-mechanical quantity corresponding to impedance is
the reaction matrix, which is often denoted in the literature as
iK [3].

The diagonal elements of Z, are the characteristic imped-
ances of the scattering channels. In electromagnetic systems
with transmission lines for scattering channels, the character-
istic impedances are the ratio between the voltage difference
across the transmission line and the current through the
transmission line for a monochromatic wave propagating a
single direction through the transmission line. Other wave
systems have analogous definitions for Z, determined by the
details of the scattering channels. In what follows, we use
terminology appropriate in the context of an electromagnetic
cavity connected to the outside world via transmission line
channels.

With the transformation to impedance, we find that we

can define_an “average” impedance matrix Z,,,, which is
related to S via the transformation,
Zoe=Z*1+8)(1-8)7'24". (3)

In contrast to S, we find that Z,,,, can be evaluated directly in
the semiclassical limit as a sum over contributions from the
prompt reflection and short classical trajectories. Thus,
through Eq. (3), this gives a method for approximating S in
the semiclassical limit.

In this paper, we present our approach to calculating Z,,,,,.
In Sec. II, we provide an overview of our theory for lossless
systems and describe the most important results of our inves-
tigations. In Sec. III, we find expressions for the impedance
of a specific quasi-two-dimensional (quasi-2D) lossless mi-
crowave cavity as explicit functions of the boundaries and
port positions, creating a framework in which we can keep
some cavity properties fixed and let others change. We then
apply the semiclassical approximation to our exact formula-
tions. In Sec. III A, we use the semiclassical approximation
to derive expressions for the impedance induced by objects
near the port in terms of classical short orbits between the
ports and the internal scatterers. In Sec. III B, we use the
semiclassical approximation to convert our exact solution
with integral operators into a finite-dimensional matrix equa-
tion with an internal scattering matrix 7. In Sec. IV, we as-
sume that the matrix T is distributed according to the Poisson
kernel with the average T given by the results of Sec. III and
use a result by Brouwer [7] to find the corresponding distri-
bution for the impedance. In Sec. V, we demonstrate that in
the lossless case, our theory agrees with numerical simula-
tions of our system. In Sec. VI, we extend our theory to lossy
cavities and briefly refer to experimental results in lossy sys-
tems, which will be published separately.

II. OVERVIEW OF LOSSLESS THEORY

The results presented in this paper are an extension of our
previously developed random coupling model [16-18]. For
simplicity, we consider only systems and frequencies in
which the scattering channels have a single propagating
mode and in which the ports which couple the scattering
channels to the cavity are separated from each other by much
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more than a wavelength. We found previously with these
assumptions that by replacing the resonant frequencies of our
closed chaotic cavity with a set of resonant frequencies ap-
propriate to a random matrix drawn from the Gaussian or-
thogonal ensemble and modeling the eigenfunctions using
the random-plane-wave hypothesis, the impedance of our
lossless wave chaotic systems could be described by [18]

. . [ [
Z=iXp+ l\r'RRg()\"RR, (4)

where R is the radiation resistance, and Xy is the radiation
reactance, are the real and imaginary parts of the M XM
diagonal radiation impedance matrix Zz, which represents
the impedance the scattering system would have if all the
energy, which successfully coupled into the system, was ab-
sorbed rather than allowed to couple back out. The matrix &,
is an element of the appropriate M X M Lorentzian ensemble
introduced by Brouwer [7] with width 1 and median 0, which
in the single-port case simplifies to a Lorentzian random
variable with width 1 and median 0. We denote &, the nor-
malized impedance and have previously studied its proper-
ties in chaotic systems [16-19].

Equation (4) is the direct impedance analog of the Poisson
kernel distribution for § in the case that the only contribution
to S is due to the “prompt reflections” caused by the imped-
ance mismatch between the scattering channels and the wave
system [16]. From experimental measurements and simula-
tion results performed using the commercial off-the shelf
program high-frequency structure simulator (HFSS), we
know that Eq. (4) describes the impedance statistics of our
sample systems only if the impedances are sampled from a
very wide frequency range [16]. We find, however, that if we
consider sample impedances from either narrower frequency
ranges or from many slightly different chaotic systems, the
distribution of the resulting impedances is still well de-
scribed by a Lorentzian distribution, but with a different me-
dian and width than that predicted by Eq. (4).

These deviations are illustrated in Fig. 1, which shows the
median calculated impedance for the quasi-two-dimensional
cavity illustrated in Fig. 2 (its dimensions are given in Sec.
V). This cavity was the basis for our previous numerical and
experimental research. It is a simulated electromagnetic cav-
ity filled with a uniform lossless dielectric and is coupled to
the outside world through coaxial cables (the ports) inserted
into holes on the top of the cavity. For the data in Fig. 1, only
port 1 is present. On the walls, we impose perfect-conductor
boundary conditions. Because our cavity has a uniform
height £ in the z direction, which is much smaller than the
wavelength of the incident microwaves, Maxwell’s equations
become effectively two dimensional with the electric and
magnetic fields uniform in the z direction [17,20]. This sys-
tem is an example of a wave billiard, meaning that the rays
within the cavity follow straight lines except for specular
reflection at the walls. To produce the simulation data shown
in Fig. 1, we generated 95 different realizations of related
systems by adding a small mobile perturber to our baseline
system and moving it to 95 different widely spaced locations
(see Fig. 2). We then find that at each frequency, the distri-
bution of impedances is Lorentzian, but with a median and
width which are different from X and Rg. (For this example,
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FIG. 1. A comparison between the port radiation reactance as
measured by HFSS (solid line) and the ensemble median of the
HFSS simulated impedances (circles). The random coupling model
predicts that if the ensemble is sufficiently random, the ensemble
median should equal the radiation reactance. The error bars were
estimated by assuming that the ensemble impedance is a Lorentzian
random variable (justified by statistical examination of the en-
semble data) and finding the uncertainty in the median, given the
numerically found width. The differences between these two curves
are caused by short orbits within the cavity, which exist in many
realizations in the ensemble.

Xy and Ry are scalars.) We also find that as a function of
frequency, the fitted medians and widths oscillate almost
symmetrically around X and Ry. As we will later see, this
behavior arises because short classical trajectories within the
system alter the distribution of impedances, analogous to the
distortion of S observed in previous work [11,12,14].

In this paper, we show that corrections to the radiation
impedance matrix due to the direct orbits redefine Z in an
additive way, Zp—Z,,,=Zg+[direct orbit terms]. More
specifically, we find that

Zyo=Zg+RyRY, (5)

avg

where ¢ is an M X M dimensionless matrix whose (m,n)th
element describes the effects of wave propagation from port

Port 1 Perturber

Locations

(not always
used)

X

FIG. 2. This plot displays a 2D view of our simulated micro-
wave cavity and the perturber positions used to produce the en-
semble displayed in Fig. 1. The outer walls are fixed in all realiza-
tions, while every realization has the perturber at a different
location. The microwaves are fed into the cavity through the ports,
which are coaxial cables inserted through the top of the cavity. The
dimension & of the cavity in the z direction (out of the page) are
much smaller than the wavelengths used to excite the cavity and
therefore results in effectively two-dimensional waves in the x-y
plane.
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m to port n and is explicitly defined in Eq. (50). The indi-
vidual elements £, , are each a sum over all different pos-
sible ray paths going from port m to port n, with each path
having a phase factor proportional to the length of the path
and prefactors describing the directivity of the classical tra-
jectories relative to the shape of the ports, the stability of the
ray trajectory, and the number of reflections from the bound-
aries. In addition, in cases where the geometry of the cavity
is varied to create an ensemble (for example, by moving a
perturber throughout the cavity), there is a factor that ac-
counts for the fraction of realizations in which that particular
path will contribute (i.e., not be blocked by the perturber).
We note that as the frequency window within which sample
impedances are generated gets wider and/or the ensemble
changes more drastically between realizations, the value of {
needed to normalize the data goes to 0 and we get our origi-
nal random coupling model back as a limit.

The substitution of Z,,,, for Z can be understood to be a
generalization of the radiation impedance of the ports to in-
clude the effects of features of the cavity that are distant
from the ports but that do not vary from one member of the
ensemble to another. Consider an ensemble of lossless mi-
crowave cavities whose generic properties (such as volume
and circumference) are fixed but whose shapes are random
and independent except that the ports are always placed in
the same positions relative each other and except that some
segments of the wall are also fixed. The impedance of each
configuration will reflect the interaction between the ports
and both the fixed and varying segments at the wall. The
interactions between the ports and fixed wall segments will
be the same for each member of the ensemble and will con-
tribute to the average impedance, while the interactions be-
tween the ports and the varying segments will vary from
member to member and contribute to statistical deviations
from the average. As our subsequent analysis will show, the
ports and fixed wall segments can together be considered to
be a single superport, which has a radiation impedance of
Z .. thus, justifying replacing Z, with Z,,, in Eq. (4).

avg’ avg

II1. IMPEDANCE AS A FUNCTION OF CAVITY SHAPE

For the electromagnetic system described in Sec. II, we
previously derived [18] the following inhomogeneous wave
equation for the case where the ports are modeled by vertical
(z direction), externally imposed, and localized current den-
sities flowing from the bottom to the top plates,

M
(V3 +K)VHP) = ikhn 2 w,(PI,, (6)
p=1

where V| is the 2D Laplacian in the (x,y) plane, V; repre-
sents the voltage difference between the two plates, I, repre-
sents the total current injected into the cavity through port p,
u(7) represents the profile of the current injected onto the top
plate at port p and has the property [dF' u(#')=1, p=\u/€is
the wave impedance of propagation within the medium in-
side the cavity (i.e., 7 is the ratio of the electric field to the
magnetic field in an infinite plane wave), and k=27/\ is the
wave number of the external driving frequency. With perfect-
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conducting boundary conditions, V; must be zero on the cav-
ity boundary. The model of the port considered here is ap-
propriate to the case, in which the port is smaller than a
wavelength so that the distribution of current [given by
u(7")] is fixed, independent of frequency of the fields in the
cavity V(7). In this way, each port is characterized by a
single current /,,, and a corresponding voltage [18],

V,= J d*F u,(F ) V(7). (7)

Definition (7) was selected in Ref. [17] since it yields P
:(1/2)Re{V;Ip} for the power flow into the cavity. The cav-
ity impedance then gives the matrix relation between the port
currents /, and port voltages V),

Equation (6) is the driven Helmholtz equation, and al-
though it was derived in the context of quasi-2D electromag-
netic cavities and a particular port model, it can be applied to
many different types of systems (such as quantum dots or
acoustic resonators) simply by relabeling the constants and
tweaking the boundary conditions [20].

Before considering statistics, we first derive an expression
for the impedance for individual realizations of the cavity.
Similar to previous work by Georgeot and Prange [21], we
can convert Eq. (6) into an integral equation. We do this by
introducing the outgoing Green’s function G(7, 7' ;k), which
satisfies

(V3 + )Gy, 7 3 k) = 8(F = 7). (8)

We then multiply both 51des of Eq. (6) by Gy(7,7 ;k) and
integrate both sides over 7' obtaining

f &7 Go(7 7 ) (V12 + )Vl

M

=ikhn, 1, f d*F' Go(F, 7 u,(F'), )
D

p=1

where D denotes the two-dimensional domain within the
cavity. Applying the Green’s second identity in two dimen-
sions to the left-hand side of Eq. (9) and applying the bound-

ary condition on V(F), this becomes

A R ,&‘7 (q")
VilP) = - f dq' Gy(Fq' ) ———
) on

M

+ikhnX 1, J &*F Go(7, 7 u,(7),  (10)
D

p=1

where ¢’ represents a position on the boundary JD of the
cavity and the integral over ¢’ integrates over the cavity
boundary JD, and where d/dn’ denotes a derivative in the
direction normal to the surface of the cavity at ¢’.

In electromagnetic systems, Eq. (10) has a physical inter-
pretation. From Maxwell’s equations and the perfect-
conductor boundary conditions, we find that the gradient of

the voltage VTG is proportional to the surface current in the
upper and lower plates of the cavity, with the two currents
flowing in opposite directions. At the edges of the cavity, the
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surface current flowing in the lower plate travels up the outer
wall and into the top plate. Thus, it temporarily travels in the
z direction. We can then interpret Eq. (10) as stating that the
electric field inside the cavity is simply the sum over the field
radiating from the changing currents in the ports and the field
radiating from the changing current in the outer walls. There-
fore, solving Eq. (10) is equivalent to finding the self-
consistent current induced in the walls given the currents in
the ports. We evaluate the normal derivative of Eq. (10) on
the surface to get our integral equation,

d ‘A/T(CI)
on

J' L 3Go(q,9") aV(q")
=— dq ;

M

9G

+ikh7721,,f dz*'—O(”) (7). (1)
p=1 D

We henceforth drop the subscripts dD and D on the integral
symbols. As long as the function defining the boundary of
the cavity is well behaved, Eq. (11) is a Fredholm integral
equation of the second type and can be solved via the estab-
lished Fredholm theory [22].

To simply and clarify our results, we follow Georgeot and
Prange [21] and Fishman er al. [23] and define the operators

Go(q q')

K¢(q)=—f — —9(d),

1 dGo(q,7'
Vo= [ @ P ),
vk on

V_¢(q) = \’%f dq'Gy(r.q" ) p(q"),

Gou(F) = fdz F' Go(7, P )u(F"). (12)

In these operators, ¢ and ¢’ are real scalars denoting points
on the cavity boundary JD. They represent distance along
the boundary of the cavity as measured relative to some ar-
bitrary starting position. The vectors 7 and 7’ represent posi-
tions within the cavity (i.e., within D). Every operator inte-
grates over a primed variable and maps it onto the space
represented by the unprimed variable.

These operators all have physical meanings in electro-
magnetism. G, is the two-dimensional outgoing Green’s
function in empty space; it finds the voltage at some position
7 caused by a delta-function current distribution at point 7.
The operator V, finds the current induced in the wall by a
delta-function current in the volume. The operator K repre-
sents the current induced in one part of the wall by the cur-
rent in another part of the wall. The operator V_, on the other
hand, gives the voltage inside the volume, which results from
the currents in the walls. A schematic of the effects of these
operators is shown in Fig. 3.

Using this operator notation and solving Eq. (11), we con-
vert Eq. (10) into
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FIG. 3. (Color online) A schematic of the different operators
defined in Eq. (12). Each operator takes a current at the source
position and finds the resulting current (K and V,) or voltage (G,
and V_) induced at the end point.

M
Vi(7) = ikhn X, LIV_-1-K)'V, + Gylu,(7).  (13)
p=1

In Fredholm theory, the operator (1-K)~! is well defined and
can be defined as a ratio of two convergent sums,

2 2K,
n=0 r=0

0 )

> d,
n=0

1-K)'= (14)

where d,, is an nth order polynomial in the traces of K", m
=n. For more details on constructing d,, see Refs. [21,23],
where it is denoted D,,.

Using the definition of port voltage [Eq. (7)], we get the
impedance between ports n and m

Zpym = ikhn f d*7u,(AV_1 - K)'V, + Gylu,, (7). (15)

The second term in the integral on the right-hand side of Eq.
(15) represents the impedance the system would have if the
walls were moved to infinity and outgoing boundary condi-
tions were imposed but impedance due to direct orbits be-
tween the ports were still included. Therefore, we define an

M X M matrix Z r» Which has the elements
ZR,n,m = ikh 7]J dzfun(F)GOMm(F) . (16)

The diagonal elements of Zy are equal to the diagonal ele-
ments of the radiation impedance Zy from Eq. (4) [17] and
the off-diagonal elements represent contributions to the im-
pedance from direct orbits between the ports. Because the
distance between the ports is large compared to a wave-
length, we can treat the off-diagonal terms semiclassically.
The diagonal terms ZR’M depend on near-field interactions
within the port and thus are sensitive to the detailed proper-
ties of the port. As in Eq. (4), rather than attempting to solve
for the diagonal elements of Z r» We treat them as inputs to
the theory. This has the advantage of freeing us from a de-
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tailed port model; we expect our model to be accurate even
when the port behavior is not modeled by Eq. (6).

In addition, we define the corresponding radiation resis-
tance and radiation reactance matrices as

— 1 -~ —
RR=E(ZR+Z;), (17)

XR=_é(ZR_Z;), (18)

where { denotes the conjugate transpose. In the case of the
Helmholtz equation, or any system in which time-reversal

symmetry is present, Z & 1S symmetric and so ER and X R are

simply the real and imaginary components of Z R

Equation (15) is an exact solution to Eq. (6) explicitly in
terms of the boundaries. Analytically, it is intractable. In the
following two sections, we consider two different, but
equivalent, approximations to Eq. (15). It is by equating
these two different formalisms that we derive our refined
theory.

A. Short-orbit formulation

To get useful theoretical results from Eq. (15), we make
the assumption that each port p is located near the position
7o, and that u(7) is nonzero only within a small radius
around 7 ,. We assume that the ports are physically sepa-
rated from each other and from the walls by much more than
a wavelength and that the dimensions of the cavity as a
whole are much larger than a wavelength. With these as-
sumptions, we find that all integrals in Eq. (15) [except the
diagonal terms in Eq. (16)] evaluate G, or its derivatives in
the far-field limit. Thus, we approximate G, and its deriva-
tives with their asymptotic forms, which replaces K with
Bogomolny’s transfer operator T [24], which in the electro-
magnetic case is given by

_ i ; = =, .
T(q.q';k) = I\/Dr‘,we’s(”’ K)—imid

where 6; () is the angle between the initial (final) wave
vector and the surface at the position it leaves (hits),
S(7,F ;k) is the classical action along the direct trajectory
from 7 to 7', and V’m is the stability of the orbit from 7 to
7', defined formally as

cos(&i)
cos(6,)’ (19)

2 | PS(FF)
Dip=—3|">"=
k= | 97, IF

; (20)

where the derivative with respect to 7, (7)) denotes the gra-
dient with respect to 7 (7) dotted into a unit vector perpen-
dicular to the initial (final) momentum of the classical trajec-
tory from 7 to 7.

We note that the approximation made in Eq. (19) can be
used to extend our theory beyond Eq. (6) by simply changing
T to represent the semiclassical approximation for other
physical situations. For instance, it is possible to allow T to
have a different action depending on the direction of travel,
thus, violating time-reversal symmetry. It is also possible to
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add loss or gain to the system by adding a complex compo-
nent to the action.
With these assumptions and approximations, we find
G (—>r) — 11- D iS(F, 7o p)—im/4~ [ ]g(') —»/)] (21)
Oup r)= 2k \ ;’;re P up — K\, r N

where we have expanded S(7,7")=S(F, Fo’p)—lgi(r*, Fo,p) - AF,
the quantity k(7,7) is the initial wave vector for the classi-
cal trajectory from 7 to 7', and L’Z,,(E) is the Fourier transform
of u,(7) centered on 7,

i, (k) = f PAFF (7, + AP). (22)

If we insert Eq. (14) into Eq. (15), we find

@ n

ikhn>, 2 d,fd*u,(AV_K""V,u,(7)
n=0 r=0

Zn,m = ZR,n,m + 0
> d,
n=0

(23)

Thus, the impedance depends only on d,, which depends on
Tr(K"), and on integrals over the operators V_K""V_,. Evalu-
ating all integrals using stationary phase, the prefactors and
wave vectors are selected such that [1,24]

f d*ru,(FAV_K"'V u,,(7)

- 2 M /Db(l,m,n)eisb(l’m’")_iWM, (24)

b(l,m,n) 4

where b(I,m,n) is an index over all classical trajectories that
bounce [ times, starting at the center of port m and ending at
the center of port n, Sy, ) is the action for the correspond-
ing classical trajectory, and Dy, ) is the stability coefficient
defined as in Eq. (20) with S(7,7") — Sy m.n)-

At this point, we bring attention to the fact that the bound-
ary of the cavity does not need to be connected. For example,
in the cavity of Fig. 2, there is a circular perturber that is
moved about, creating an ensemble of different cavities. That
circle represents a portion of the boundary that is not con-
nected to the outer portion of the cavity boundary. Equation
(24), in principle, includes trajectories that pass through the
perturber in going from one point on the surface to another.
[In addition Eq. (24) includes trajectories that can pass
through the convex upper boundary of Fig. 2.] However,
Bogomolny considered such trajectories [24] and found that
such unphysical orbit terms come in pairs whose semiclassi-
cal contributions cancel exactly. Thus, the sum over all semi-
classical bounce terms, which is all that we will consider,
will include only physical contributions.

It was found in previous work [17] that the radiation re-
sistance for our model ports is given by
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% (25)

khy [ dO,_
Rey(0) == j 31,

where 6 is the two-dimensional unit vector [cos(8),sin(8)],
which when inserted into Eq. (24) gives

khz J d*ru,(FAV_K"='V u,,(7)

=VRR,nRR,m E Cb(l,m,n)eish(l’m’n)_iWM7 (26)
b(l,m,n)

where

w(kpun (k)
Cb(l,m,n) = \/Db(l,m,n) . (27)
\’<|un|2><|um|2>
Using similar logic, we can also calculate the off-diagonal
terms of Eq. (16),

ZR,n,m = \'RR,nRR,mC((),m,n)eiS(O’m’n)_mM’ n# m, (28)

where C ) and S, ») are the corresponding prefactor and
action for a direct orbit from port m to port n. We view the
sum over b(I,m,n) as adding successively longer length or-
bits, and we thus refer to Egs. (25)—(28) as the “short-orbit
formalism.”

With this result and similar semiclassical results for
Tr(K') [25], it is possible, in principle, to evaluate Eq. (15)
semiclassically for any cavity. We will not need to perform
this entire calculation explicitly, however. Instead, we will
use the results from the next section to relate the sums over
classical trajectories to the elements of random matrices.

We test this short-orbit formalism using the HFSS pro-
gram. In the simulator, we construct a fully three-
dimensional cavity and antenna system similar to the one
used in previous research; the quasi-2D nature of the cavity
is enforced by choosing the excitation frequency to be below
the cut-off frequency for modes that vary between the top
and bottom plates.

To test our short-orbit theory, we first simulate the radia-
tion impedance of a single cylindrically symmetric antenna
by placing the antenna inside a circular cavity, where the
outer circular wall has absorbing boundary conditions (to
simulate the radiation condition of purely outgoing waves)
and the port was off center (this was to reduce coherent
numerical reflections from the outer wall; the numerical ab-
sorbing boundary condition is imperfect). As expected, we
find a slowly varying function of frequency for both the ra-
diation resistance Ry and reactance Xp. We then change the
cavity by introducing one perfectly conducting wall into the
system, effectively producing a cavity in which all waves
would either radiate away or bounce once off the single wall
and then radiate away, thus, isolating a single term in Eq.
(26). Plots of such isolated bounce terms are shown in Figs.
4-6.

We find empirically that each short-orbit term experiences
a frequency-dependent phase shift A¢, when coupling
through the port p, requiring the introduction of a phase fac-
tor ¢'A%*A%m) to Eq. (26). Although this phase shift is fre-
quency dependent, in the cylindrically symmetric case it is
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FIG. 4. (Color online) Comparison of the simulated impedance
(circles) and theoretical impedance (solid line) of a single port with
a circular perfectly conducting scatterer on one side and radiation
boundary conditions on all other sides [see the inset in plot (a)]. The
radius of curvature of the scatterer is 1.02 m and its surface is 7.6
cm from the port. The radiation impedance and phase shift for the
port were extracted from independent simulation data. Plot (a)
shows the resulting resistances and plot (b) shows the reactances.

orbit independent; thus, it is possible to measure the phase
shift using one short orbit and then apply it to all others. For
our ports, it is most convenient to introduce this phase shift
and the cylindrical symmetry by simply setting

i(Ag,+Ad,,) \’D (29)

Cb(l,m,n) =e b(l,m.n)*

This phase shift exists due to the fact that in the HFSS simu-
lations, we model the ports in detail as a circular cross-
section coaxial transmission line in which the outer conduc-
tor contacts the upper plate and the inner conductor extends
the short way across the cavity and contacts the lower plate.
The shape and dimensions of port 1 are shown in Fig. 7. Port
2, when it is present, has the same geometry as port 1, but
with an outer radius of 3.0 mm. This more detailed port
model results in an additional phase shift that is not treated in
our simple model of Eq. (6), where we add a fixed current
source to the wave equation. With this phase correction in
C(1m.n)» however, we find that we can model the impedance
very well by using Eq. (26).

To show the agreement between theory and simulation,
we create three different cavity configurations. In the first
configuration, we have a single port with a single conduct-
ing, curved wall near it, with absorbing boundary conditions
on the remaining surfaces. After simulating the isolated ports
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FIG. 5. (Color online) Comparison of the simulated (circles) and
theoretical (solid line) Zg ; , when the ports are separated by a dis-
tance of 14.4 cm. Note that unlike the diagonal impedance matrix
elements, the real part of the off-diagonal terms can be negative.
The radiation impedances and phase shifts were extracted from in-
dependent simulations of each port.

radiation impedance and finding the phase shift, we both
predict and simulate the resulting impedance in the presence
of the curved wall. Figure 4 shows the measured and the
predicted impedance from 5 to 7 GHz, both resistance and
reactance, where it can be seen that the theoretical and simu-
lated results agree well. The deviations between the two are
expected; the semiclassical approximation is not perfect at
frequencies this low, and we also have diffraction from the
necessary truncation of the wall.

In the second configuration, we tested Eq. (24) by intro-
ducing a second antenna into the system and imposing radia-
tion boundary conditions on all the outer walls. We found the
radiation impedance and phase shift of the second antenna
using exactly the same methods as for the first. We then
simulated the mutual impedance between the two ports and
compared it to Eq. (28), using the simulated port parameters,
and found that the agreement was again excellent, as shown
in Fig. 5.

The third configuration is the same as the second, except
we add a conducting wall next to the two ports, creating an
orbit which leaves the first port, bounces off the wall once,
and goes to the second port. To isolate the impedance due to
this new orbit, we compare the changes in impedance (which
we denote Z, | ;) between configurations 2 and 3 rather than
the raw impedances. Comparing this difference with the
semiclassical prediction from Eq. (26), we again see excel-
lent agreement, as shown in Fig. 6.
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FIG. 6. (Color online) Comparison of the simulated (circles) and
theoretical (solid line) impedance due to the orbit shown in the inset
in (a). The ports were 14.4 cm apart and 10 cm from the reflecting
wall. This impedance is found by finding the total impedance of the
system with the reflecting wall nearby and radiation boundary con-
ditions everywhere else and then subtracting the radiation imped-
ance as found in Fig. 5. We denote it Z, ; ,. The radiation imped-
ances and phase shifts were extracted for each port from
independent simulation data.

Thus, we believe that our short-orbit formulation is effec-
tive at predicting the impedance of cavities with a few short
orbits. In the next section, we discuss an equivalent formu-
lation, which expresses the impedance as elements of a
finite-dimensional matrix. This equivalence between the ma-
trix and semiclassical formulations will allow us to create
ensembles of cavities, which account for short orbits within
the cavity.

B. Finite matrix formulation

The results of Sec. III A are based on an evaluation of the
continuous integral operator K defined in Eq. (12). To make
connection with random matrix theory, we wish to recast the
equations in matrix form. The authors of Ref. [23] have
shown how to do this.

To derive the matrix formulation, we first replace the con-
tinuous operator K with the semiclassical operator 7', which
has finite rank and is unitary [24]. Then we use the result that
semiclassically [23],

VI =V, (30)

The operator VIV+ was also found in the semiclassical ap-
proximation to be [23]
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Side View of Coaxial Transmission Line on Port 1
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FIG. 7. Cross section of the port connecting transmission line 1
and the microwave cavity.

VIV, =i(Gy-G}). (31)

By using Eq. (30) to eliminate V_ and by adding [VIV,
—i(GO—Gg)]/ 2, which is zero, to the operator inside Eq. (15),
we can rewrite the impedance as

1+T
Zym=3khy f dzfu,l(r*){vl—l Tv++ i(Gy+ G}) |u,(7)
A+T
=iXgm+ kh7 J dzfun(f)v;ﬁmum(f). (32)

Fishman er al. [23] demonstrated, following previous work
by Bogomolny and others [24], that in the semiclassical
limit, the operator T can be represented as an infinite-
dimensional matrix whose components are zero except on a
finite subspace of dimension N=2L/\, where in our formu-
lation L is the circumference of the cavity. On this finite-
dimensional subspace, T is unitary. They demonstrate the
finite-dimensional nature of the subspace by expanding all
functions on their surface of section (in our formulation, the
cavity boundary) in a Fourier series. In this basis, an arbi-
trary function v(g) is expanded as

o

Wg)= 2 a2t (33)

n=—ow

They showed that the operator 7, evaluated using stationary
phase in this basis, is insensitive to Fourier components
smaller than a wavelength, resulting in the truncated sub-
space. By identical logic, the operator V, only projects onto
this semiclassical subspace. Thus, semiclassically, the func-
tion V,u,(F) is nonzero only on this subspace, where it has N
discrete components corresponding to the Fourier compo-
nents of the expansion in Eq. (33).

Using Eq. (31), we get the dot product between two of
these vectors,

f i, (AVIV,u, (P =i f d*Fu, (P Gy — Gi)u,,(F)

— 2RR,n,m

khn (34)

Thus, we can rewrite Eq. (32) as
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1+T
1-T

Z=iXz+v'- v, (35)
where we now treat T as an N X N unitary matrix, and where
v is an NXM matrix whose columns ¢, are the
N-dimensional vectors proportional to the semiclassical

V,u,(7) and which are normalized such that

viv =§R. (36)

Because Egs. (26), (28), and (36) are all evaluated in the
stationary phase approximation, we can equate the matrix
elements of any power of T with the semiclassical orbit
terms

-1 -1 - _ iS —iml4
2vn -T Uy = VRR,ilRR,m 2 Cb(l,m,n)e b(tm.n) .
b(l,m,n)

(37

Equation (37) is one of the most important results of this
paper. By explicitly connecting the semiclassical sums to a
semiclassical matrix formulation of impedance, we can relate
the classical trajectories to the more abstract operator formal-
ism. Thus, when we create ensembles of v and T, we can
relate the ensemble averages of v and T to the corresponding
ensemble averages of the classical trajectories within the
cavity, which gives us a natural method of creating en-
sembles of T which are constrained by short orbits within the
system.

IV. IMPEDANCE STATISTICS

As noted in the Introduction, it is often difficult to solve
the wave equation exactly. Even in the semiclassical regime,
where the problem is in principle tractable using classical
trajectories, there are difficulties. If the classical dynamics is
chaotic, the number of classical trajectories grows exponen-
tially as does their sensitivity to numerical errors. Small mis-
takes in modeling or small changes between similar systems
will result in large changes in the observed behavior. Thus,
we follow the long-standing tradition of replacing our deter-
ministic expressions with statistical models, which reproduce
the generic behavior of the systems being considered.

Our model for the cavity impedance is given in Eq. (35).

The matrices X ¢ and v (up to an unmeasurable and thus
arbitrary basis, which can thus be absorbed into T) are de-
termined by Egs. (16) and (17), which depend only on the
radiation fields from the ports, and are thus amenable to di-
rect measurement or nonchaotic semiclassical theory. Thus to
find our statistical properties, we simply seek an appropriate
distribution for 7.

Because it is unitary, the matrix 7 may be viewed as
representing an internal scattering matrix. In the case of cha-
otic dynamics and in the context of random matrix theory, it
is most natural to model T as an element of Dyson’s circular
ensemble [8] (with the time-reversal symmetry determined
by the symmetry of the underlying system). If we make this
substitution, it can be shown that the resulting statistical
properties of Z are completely equivalent to our previously
published random coupling model. In this model, the system-
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specific properties of the ports (specifically, the radiation im-
pedance) are all that is used to “normalize” the statistically
fluctuating impedance. Effectively, the previous model as-
sumes that once wave energy enters the cavity, it is random-
ized by the chaotic ray trajectories such that no details of the
interior of the cavity modify the statistics of the impedance.
However, we have seen in Fig. 1 that there is likely some
influence of specific ray trajectories within the cavity on the
statistical properties (in the case of Fig. 1, the median) of the
impedance. We now assume that the effect of these trajecto-
ries can be described by the Poisson kernel [10]. That is, we
assume that the distribution of T is given by the Poisson
kernel [11]

1 det(1 - TIT)BV+2-P)12
BN+2—E)/2V det(1 - TTT)ﬁmz—ﬁ ’

P(T) = ox; (38)

where V is a normalization constant and T is the average
value of T over the ensemble, and T is, in principle, deter-
mined explicitly by the boundaries of the cavities in the en-
semble.

The Poisson kernel does not just specify the average value
of T; it has the general property that [10]

(TY=T'. (39)

If we knew T, then we could find the distribution of Z di-
rectly. Unfortunately, finding 7 for a specific ensemble such
as that shown in Fig. 2 is almost as complex as finding T and
thus has no advantage over numerically solving the Helm-
holtz equation. By averaging both sides of Eq. (37), however,
we can find the components of T' spanned by the column
vectors of v. We find that knowing these average short-orbit
terms for all / is sufficient to get the statistics of Z; because
the sum over average short orbits is expected to converge,
the problem becomes tractable for a wide range of en-
sembles.

With this assumption for the distribution of T, we can find
the statistical properties of Z. From a result due to Brouwer
for matrices distributed according to the Poisson kernel [7],
we find that we can parametrize T as

- iIWI(NHy+ el)W -1

- , (40)
iW(NHy+ el) W +1

where the scalars A, €, and the N X N matrix W are ensemble-

specific constants which depend only on T, and ﬁo is an N
X N random matrix distributed according to the Lorentzian
ensemble with median 0 and width 1,

AN(BN+2-)/2

— 1
P (H 0) =3, ~ s (41)
Vdet(1 + H?)AN+2-P12
where B=1(2,4) for the orthogonal (unitary, symplectic)
choice of time-reversal behavior. Inserting Eq. (40) into Eq.
(35), we find
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Z=iXg+iN(Wo) H,Wo + ie(Wo) ' Wo. (42)

We now wish to eliminate \, €, and Wo from Eq. (42). We do
this by noting that given the parametrization in Eq. (40),
Brouwer found the value of T to be [7]
A +ieW'Ww-1

TN+ioW Wil (“43)

N

Solving Eq. (43) for W'W and projecting both sides onto the
subspace spanned by v, we get

(N +ie)(Wo)' - (Wo) =Z,,, — iXp, (44)

where we formally define Z,,, as

~ 1+T
Z,,=iXg+v"- . (45)

We denote the Hermitian and anti-Hermitian components of
Z,e 38 R, and X, respectively. Matching the Hermitian
and anti-Hermitian components across the equality in Eq.
(44) and_noting that R,,, must be a non-negative matrix
because T is subunitary and normal, we find that

A(Wv)'Wo=R,,,, (46)
8

e(Wo)'Wo =X, — Xp. (47)
Inserting these results into Eq. (42) gives us
Z=iX o+ iVR 1y EVR 4y, (48)

where £ is ﬁo projected onto the subspace spanned by Wuv.
Brouwer proved that any diagonal submatrix of a Lorentzian
distributed matrix is also a Lorentzian distributed matrix
with the same median and width. This result combined with
the basis invariance of Eq. (41) leads to the conclusion that &
is a Lorentzian random matrix with width 1 and median 0, as

predicted. The basis invariance of the distribution of ﬁo also
means that although Eq. (46) has a family of related solu-
tions for Wo, all members of this family are related via a
change in basis and therefore result in identical statistics for
Z.

Although knowing the form of the distribution for Z is
useful and can be used fruitfully to fit experimental or simu-
lation data, at a single frequency it is only a minor improve-
ment over the Poisson kernel in which one can also extract S
from numerical data [11,12]. Our last step is therefore to
predict the value of Z,,, using the semiclassical approxima-
tions developed in Sec. III A. We do this by noting that be-
cause T is subunitary, the magnitude of all its eigenvalues are
less than or equal to one. The set of 7', which has any eigen-
values on the unit circle, has measure zero. Therefore, we
can expand Eq. (45) in a convergent series as

Zavg=ZR+22 v T v. (49)
I=1
Substituting Egs. (37) and (28) into Eq. (49), and remember-

ing Eq. (39), we see that semiclassically Z,,, is the port
impedance plus the sum of the average contributions the
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short orbits make to the impedance. In our case, where we
have a perturber which moves much more than a wavelength
between realizations through the entire cavity, the contribu-
tions of orbits reflected off the perturber will have an essen-
tially random phase, and we approximate their contributions
as zero. Because the outer walls are fixed, short orbits from
the ports to the walls will systematically appear in the sum in
Eq. (49), but must be weighted by p,, the fraction of realiza-
tions in which they do not pass through the perturber. With
these results, we find the elements of ¢ from Eq. (5) to be

gn,m= 2 pb(n,m)Cb(n,m)eisb(n’m}(k)_im“7 (50)
b(n,m)

where the index b(n,m) is over all short orbits, which go
from port m to port n, including direct orbits between differ-
ent ports. Note that when we test this theory, we use the
empirically discovered form of C,, from Eq. (29).

We note that Z,,, is the impedance the baseline system
would have if some fraction of energy were lost every time a
wave passed through a perturber. Even for very large num-
bers of bounces, this seems to be a general result: the imped-
ance needed to normalize the statistics of any sufficiently
random ensemble will correspond to the impedance of a
single lossy cavity, where loss occurs in those features which
change between realizations, with the degree of loss deter-
mined by the degree of change in those elements. Thus, even
with very small perturbations in which the semiclassical ap-
proach is unfeasible, the form of Z,,,, is known, and in anal-
ogy to the Poisson kernel, we can fit to find the effective
radiation impedance. More importantly, this implies that the
frequency dependence of Z,,, matches that of an appropriate
lossy cavity. If the perturbations are sufficiently uniform
within the cavity, the statistics of Z,,,, evaluated over a range
of sufficiently separate frequencies would exhibit the statis-
tics found in our previous work for lossy cavities.

In microwave billiards exhibiting hard chaos with a uni-
form distribution of perturber locations within the volume, it
is possible to estimate the expected loss parameter for Z,,,.
Because typical ray trajectories within the cavity explore the
phase space ergodically and because the perturber locations
are distributed uniformly, we expect that pjg, .
~exp(=aLy,,), Where @ is determined by the perturber
size and shape and the perturber locations, and Ly, ) is the
length of the bh(n,m)th orbit. Neglecting the phase shifts
from the traversals of the ports (which are expected to be
small due to the small size of the ports), we find that with
this expression for pp, ),

Lom~ 2 Copum explLitk + i@ Ly, — im/4],  (51)
b(n,m)

where we have used that the classical action in microwave
billiards is given by Sy, m)=kLp(,m- We found in previous
work [17] that the transformation k— k+ia corresponds to
adding loss, with the loss parameter given by Q=k/(2&) and
the linewidth to level spacing ratio a=kAa/m, where A is
the area of the microwave cavity. Thus, by analogy, introduc-
ing p, into Eq. (50) is roughly equivalent to Z,,, being the
impedance of a lossy cavity with uniform loss. Using a
Monte Carlo simulation of long ray trajectories in our bowtie
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billiard, we find that for the perturber positions in Fig. 2, &
~0.25 mL

This result for the average impedance is related to work
done by Brouwer and Beenakker [26] following Biittiker
[27]. In their work, they found that a lossy quantum dot
could be modeled as a lossless quantum dot coupled both to
the physical-scattering channels and to a large number of
weakly coupled parasitic channels. Because Z,,,,, represents
the impedance of a system where a small amount of energy
is lost when it passes through a perturber position, the per-
turber positions function as effective parasitic channels, and
we expect the resulting average impedance and average scat-
tering matrix to be well fit by their theory.

V. NUMERICAL TESTS OF THE THEORETICAL
PREDICTIONS

In this section, we show the results of several tests of Eqgs.
(5) and (50) for both one- and two-port configurations. We
obtained the data for these tests from simulations using
HFSS. The cavity configuration we used is shown in Fig. 2.
Port 1 is centered at location (x=18.03 c¢cm,y=15.48 cm)
and port 2 (when it is present) is at (x=36.7 cm,y
=15.48 c¢m). The lower-left corner of the cavity is at (x
=0.0 c¢m,y=0.0 cm). Both ports have essentially the geom-
etry as shown in Fig. 1 of Ref. [17], but with different di-
mensions. Both ports have an inner radius of 0.635 mm, but
port 1 has an outer radius of 2.29 mm while port 2 has an
outer radius of 3.05 mm. The lower and left straight sides of
the cavity have lengths L;=43.18 cm and L,=21.59 cm, re-
spectively, and the upper and right sides have radius of cur-
vature R;=103 cm and R,=63.9 cm, respectively. By mov-
ing a perfectly conducting circular perturber with a diameter
of 2.54 cm to 95 different locations (shown as circles in Fig.
2) within the cavity, we construct our ensemble. The result-
ing impedances were simulated at 201 uniformly spaced fre-
quencies from 5 to 7 GHz, inclusive. For this frequency
range, we get that the effective loss parameter Q due to the
ensemble averaging changes linearly from about 210 at 5
GHz to 300 at 7 GHz. The effective linewidth to level spac-
ing ratio « also increases linearly from about 0.95 to 1.35.

A. Single-port tests

To test our predictions in the single-port case, we first
confirm that at each frequency the impedances have a
Lorentzian distribution, fitting to find the median and width.
From the fit, we see that Eq. (50) does not converge quickly
enough to be practical at a single frequency. However, we
find that if we use frequency averaging and short orbits to-
gether, we regain universal statistics over a much narrower
frequency band than was required with our previous theory
[17] [i.e., if Zg is used as in Eq. (4)]. In addition, we confirm
that as a function of frequency, the fitted Z,,, has the char-
acteristic behavior of the impedance of a lossy cavity.

To test that the impedance is Lorentzian distributed at
each frequency, we numerically find the three quartiles
Q(123)(f) of the 95 sample impedances [denoted Z;(f)] and
thus find the sample median Z,,,,(f)=0Q,(f) and the sample
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width Z,,.,(f)=05(f)-0,(f). Assuming that Z,,,(f) and
Z,,.a(f) are approximately the correct median and width, we
can then find the phase of the normalized scattering matrix
coefficient

Z (f) _ Zmed (f) )
Zwid(f) .

For large N and with a Lorenzian distribution for Z(f), ¢,(f)
should be uniformly distributed between —7 and 7. We bin
the numerical ¢; into ten equal-sized bins and find the result-
ing x*> deviation from a uniform distribution. We then find
the anticipated distribution of y* by performing a Monte
Carlo statistical analysis on 402 000 realizations of 95
Lorentzian random variables each, transforming them pre-
cisely as done in Eq. (52) and finding the resulting x*. Com-
paring the values of x> for the simulation data and the Monte
Carlo distribution, we find that at the 95% confidence level,
we can accept the Lorentzian hypothesis for 93% of our fre-
quency impedance samples, while at the 99% confidence
level, we can accept all of our impedance samples. These
results are consistent with the data being distributed with a
Lorentzian distribution at each frequency.

To test the semiclassical theory in the single-port case,
rather than using the sample median and width we attempt to
predict the median and width using Egs. (5) and (50). In
practice, we must eventually truncate the sum over semiclas-
sical trajectories. We therefore define the truncated average
impedance

di(f)=2 tan‘1< (52)

N

Zy,=Zg+220" T vy, (53)
I=1

which is equivalent to the sum over all classical trajectories
which bounce up to N, times. Thus, the normalized scatter-
ing phase we use to test our semiclassical theory is

Z{f) - iX,
bin, () =2 tan”™! (— i%) , (54)

where RN, and X n, are the real and imaginary parts of the
single port ZiN,-

In Fig. 8, we compare Z,,Nh to Z,,;, for N,=2,5,6. We see
that as N, increases, the two terms become increasingly simi-
lar. Z,, follows the frequency average of Z,,;,. Also, despite
the fact that Z,;; changes rapidly in frequency, consistent
with the assumption that it is the real part of a lossy imped-
ance, Z, 5 and Z, ¢ have begun to fit even the large spikes in
Z,,ia- This strongly supports the validity of Eq. (50) and im-
plies that with a sufficiently large number of bounces or a
more random ensemble (such as including more perturbers
or having a larger perturber), it may be possible to predict
Z,,, at a single frequency. We have not yet confirmed this
possibility.

In a previous work, we found that normalizing the imped-
ance with zero bounces (i.e., the radiation impedance Zjy)
was sufficient to get universal statistics if we sampled the
impedances over a sufficiently wide frequency range. If the
frequency window was too narrow, however, we found sys-
tematic deviations from universal statistics. Even though we
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FIG. 8. (Color online) A comparison between the fitted width of
the impedance distribution Z,,;, at each measurement frequency and
the semiclassical predictions for the widths due to short orbits,
which bounce up to 2, 5, or 6 times. By 6 bounces, the semiclassical
prediction has begun to fit the gross features of the fitted widths but
is far short of the number of orbits needed to fit the sharp spikes. In
addition, Gibbs phenomenon has become a problem in the sixth
bounce around 5.75 and 6.7 GHz with the semiclassical prediction
dipping too close to zero.

do not have enough terms in Z, ¢ to experimentally find Z,,,
semiclassically at a single frequency, we find that by com-
bining short orbits and frequency averaging, we can get uni-
versal statistics over much narrower frequency ranges than
previously.

To measure the deviation of the distribution of the mea-
sured ¢; w, from uniform, we introduce the X’ statistic. For a
frequency window of width §f and centered at f, the x*
statistics is calculated by binning the ¢”Nb from every real-
ization and from every other frequency in the frequency win-
dow into ten equally sized bins from —7 to 7. (We take
every other frequency because the impedance values of ad-
jacent frequencies are found to be strongly correlated.) The
X° statistic for this window is then given by

(N, = (N.)?

2 : (55)

r=1 <N >
where N, is the number of ¢, , in the rth bin, and (N,) is the
expected value of N, given a uniform distribution. The x?
statistic is chosen because it has approximately the same dis-
tribution independent of Af.

In Fig. 9, we display the average )’ statistic from our
sample for multiple values of N, and different choices of
window width. The averaging is performed over all fre-
quency windows of the same width, including windows
whose frequencies overlap. We see that for small window
widths, increasing N, systematically decreases the error. In
addition, we also see that up to a point, increasing the win-
dow size also decreases the error, but, once the error has
leveled off, it decreases no further. This is consistent with the
frequency averaging effectively removing the longer orbits,
making the improved statistics from the larger N, irrelevant.
In addition, for comparison we include the y? statistics for a
set of truly independent random phases and see that for the
largest N, and widest window widths, our results are statis-
tically indistinguishable from true randomness.
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FIG. 9. (Color online) The average x> deviation of the bin,
from the uniform distribution for different frequency windows and
different choices of N,. The x> were calculated for all possible
frequency windows with a given width and then averaged over all
different window realizations. The random control was generated
by a Monte Carlo simulation of the y* for uniformly distributed
phases. Note that for the sixth bounce, we exclude frequency win-
dows in which the calculated R, falls below 0.1Rp.

At this point we note one caveat to our use of Eq. (54)
relevant to Fig. 9. In Fig. 8, we see that Z, ¢ drops almost to
zero near 5.7 and 6.7 GHz. In fact, if we continue to add
bounces, Rt’Nb can actually become negative at some fre-
quencies, which would represent gain in a lossy system and
is unphysical. This unphysical behavior occurs only because
the sum in Eq. (50) has been truncated, but it badly distorts
the calculation in Eq. (54) within the affected frequency
ranges due to the abnormally small denominator. This occurs
because our sum over orbits is effectively an attempt to ex-
pand a function with poles near the real axis in a Fourier
series. Due to the rapidly changing features in R, 1, we
get a form of Gibbs phenomenon, in which a Fourier series
attempting to fit a discontinuous function systematically
overshoots the fitted function. For the purposes of producing
Fig. 9, we simply ignored frequency windows which con-
tained frequencies such that R,¢(f) <O.1Rg(f). It may be
possible to avoid this problem by using a smarter method to
expand Eq. (45).

B. Two-port tests

To test the results from the two-port configuration, we
first test the statistical properties of the diagonal elements of
the two-port impedance, considered separately. From Eqgs.
(36) and (48), and remembering that the distribution of & is
basis independent, we find that the diagonal elements of the
multiport impedance, considered independently, should be
Lorentian random variables with width R, ,, and median
Xavgnn- Thus, the diagonal elements of Z are susceptible to
the same analysis used in the single-port case. When we
perform this statistical analysis on both diagonal elements of
Z considered independently, we get results essentially iden-
tical to those shown for the single-port case.

Because port 1 is in the same location for both the single-
port and two-port simulations, our theory also predicts that
the median and width of the distribution of Z, ; at a single
frequency should be almost identical to the median and
width of the single-port impedance distribution at the same
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frequency. We find that the statistics of our HFSS simulation
data for one- and two-port configurations agree well with this
prediction.

The statistics of the two-port normalized impedance are
more than the independent statistics of the diagonal ele-
ments; the elements of the 2 X2 matrix Z are strongly cor-
related. All elements of Z go to infinity, for instance, when
the frequency goes through a cavity resonance. One common
way of expressing this is via the correlation between the
eigenvalues of & The eigenvalues of & have the form
cot(6d,/2), where the distribution of the 6, is given by [7]

P60} = T [t — /P, (56)

n<m

For the two-port impedance problem, this distribution sim-
plifies to
. ( 6, - 492)
sinf ———
2

Thus to test our theory, we must fit or calculate Zavg, find the
values of & for our sample data, diagonalize, and find the
distribution of the differences between the resulting phases.
We again use y° to determine the goodness of fit with the
definition from Eq. (55), but with (N,) determined by inte-
grating Eq. (57). As we did for the single-port case, we both
fit to find the numerical Z,,,, and use the semiclassical sum.
Numerically fitting Z,,,,, is more difficult for the two-port
case than in the one-port case. We can find the diagonal
elements of the fitted Z,,, simply by fitting the diagonal
elements of Z to Lorenzians exactly as in the single-port
case. Fitting the off-diagonal elements numerically is more
complex because both the shape and width of the distribution
of the off-diagonal elements of Z depend in a nonlinear way
on all the elements of R,,,,. Rather than attempting this more
complex fit, we consider the rotated impedance matrix

0Z0"=i0X,,,0" +i(O\R,,,0")(0£0")(O\R,,,0"),
(58)

(57)

1
P(6,.6,) =~
(6.6,) =

where O is a constant orthogonal matrix. Because the statis-
tics of & are independent of basis, the diagonal elements of
the rotated matrix OZOT will be Lorentzian distributed ran-
dom variables with widths and means give by the diagonal
elements of OXngT and ORaUgOT. Thus, if we make the

simple choice
L1
0=<‘1 j), (59)
- \E \3

we find that the widths of the distribution of the diagonal
elements of the rotated impedance are
Rav 1,1 +Rav 2,2

_ 8 8, n
(ORangT)n,n - 2 - (_ ) Ravg,l,Z’

(60)
where n=1,2, and with corresponding logic for X,,,. Thus,
to find Z,,,,, we fit the diagonal elements of 0ZO07 to
Lorenzians and take the half difference between the fitted
medians and widths for the different diagonal terms. This
algorithm generalizes to larger numbers of ports by choosing
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FIG. 10. (Color online) A comparison between the universality
of the phases of & as extracted using different methods for normal-
izing the two-port impedance data. All data shown are the x* sta-
tistics for fitting the difference between phases to Eq. (57). The
“bounce” data points represent the phase difference error for imped-
ances normalized using Z,,Nh. The “fitted” data points represent the
phase difference error evaluated at each frequency using the fitted
value for Z,,,, where the fitting parameters are found as described
in the text.

O to rotate between the appropriate port indices. In the pro-
cess, we also confirm that the diagonal elements of the ro-
tated impedance are in fact Lorentzian distributed, providing
further support for Eq. (48).

In Fig. 10, we show the results of this analysis. Rather
than considering frequency windows, we simply consider the
statistics of |0, — 6| at each individual frequency using dif-
ferent values of Z,,,,. We find that the numerically fitted Z,,,,,
normalizes the data well, but not perfectly, with the range of
X values falling well within acceptable bounds as deter-
mined by the theoretical distribution of x?, but systematically
larger than would be expected from true randomness. For the
truncated sums, however, the story is rather different. We see
that at many frequencies, no corrections are needed at all to
get good statistics. Some frequencies, however, have large
deviations from Eq. (57). That these deviations are caused by
short orbits is demonstrated by the fact that, as we add 1 and
2 bounces to the semiclassical Z,,,, the deviations initially
become smaller, almost reaching the level of noise. Unfortu-
nately, adding longer orbits does not improve the situation;
they leave the statistics either unchanged or markedly worse.
The reasons for this are unclear but are likely due to a com-
bination of the Gibbs phenomenon observed in Sec. V A and
the tendency of some impedance matrices to be poorly con-
ditioned due to systematically large values of cot(6,/2).

Thus, we have confirmed many of the predictions of the
extended random coupling model, including the approximate
independence of the statistics of the diagonal elements of Z,
the invariance of the distribution under rotation, and the level
spacing statistics for pairs of eigenvalues of &.

VI. ADDING LOSS

In practice, no real cavity will be truly lossless. For non-
zero frequencies, even cavities with superconducting bound-
aries have loss due to interactions between microwave pho-
tons and quasiparticles. In quantum-mechanical systems,
there will always be dephasing, which is functionally equiva-
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lent to loss [26]. In this section, we therefore address the
effects loss has on our theory.

From Maxwell’s equations, we derived in previous work
[17] that going from lossless to uniformly lossy is performed
by the transformation k— k+ic, where a=k/(2Q) and Q
>1 is the loss parameter of the closed cavity. Performing
this analytical continuation takes some care. The function
that must be explicitly continued analytically to obtain uni-
versal statistics of the sort we found previously is the nor-
malized impedance £, given by

iE=RV(Z-iX

avg avg

)R—I/Z (61)

avg *

Because R, and X, appear independently in Eq. (61), we
must analytically continue each independently. Because tak-
ing the real and imaginary parts of nonconstant functions is
not an analytic operation, for lossy systems R, and X, are
not real but rather the analytic continuation of the real and
imaginary parts of the lossless Z,,, on the real axis. These
analytic continuations are unique.

To find this analytic continuation for the microwave bil-
liards used in our experiments, it is necessary to explicitly
find the real and imaginary parts of Z,,,,. For our microwave
billiard system, we find that

Raug = RR + RIIQ/ZPR;Q’ (62)
X, =Xp+RXRE, (63)

where the M X M matrices p and x have the elements

Pnm= 2 pb(n,m) \/Db(n,m) COS[k(LpJ, + Lp,m + Lb(n,m)) - 77/4]’
b(n,m)

(64)

Xnm = E Pb(n,m) VDb(n,m) Sin[k(Lp,n + Lp,m + Lb(n,m)) - 77/4’] P
b(n,m)

(65)

where we have made the empirically observed substitution
A¢,=kL,,, L, , is observed to be a port-dependent constant,
and Ly, is the length of the trajectory b(n,m), where we
have used that for billiards, Sy, (k) =kLp,n)-

Because Zy and Dy, ,) change slowly in frequency com-
pared to the level spacing, they are approximately indepen-
dent of « and thus equal to their lossless counterparts. Thus,
the analytic continuations of R, and X,,, consist of keep-
ing the forms of Egs. (62)-(65) unchanged but allowing k to
become complex.

After performing this continuation, & will no longer be
real. However, the distributions of the real and imaginary
parts of i& have been found as a function of the loss param-
eter [28,29], and, for low-loss systems, we expect the distri-
bution to be approximately universal. The only difficulty
with this analytic continuation is that the sum in Eq. (49) will
not necessarily converge if the loss parameter is too high. In
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such a case, it is necessary to perform the analytical continu-
ation on the form of Z,, given in Eq. (45). At this time, we
have not attempted this, but we anticipate that it will require
evaluating the denominator in Eq. (45) via a method other
than short orbits, a possible subject of further research.

We have experimentally tested this theory in the one-port
case for a microwave quarter-bowtie billiard described in
previous work for frequencies from 6 to 18 GHz [30]. The
primary difficulty in applying Egs. (5) and (50) over this
frequency range is the fact that the loss parameter is not
constant as a function of frequency. However, our theory
predicts that the phase of the normalized scattering parameter
s will be uniformly distributed independent of the loss pa-
rameter [17], where s is given by

iE-1
s = .
iE+1

(66)

Thus, by fitting the distribution of the phase of the normal-
ized scattering parameter to the uniform distribution, we can
again find the x? statistic for various frequency windows and
different choices for the number of bounces before truncation
N,. We have performed this experiment with a lossy cavity
and found results qualitatively similar to Fig. 9 [30].

VII. CONCLUSIONS

In this paper, we have shown that the random coupling
model, Ref. [18] and Eq. (4), can be extended to take into
account system-specific short orbits that affect the statistical
features of the system. From the numerically and experimen-
tally observed deviations of our results from universality, we
anticipated that interactions between the walls and the port
that were not sufficiently changed from realization to realiza-
tion would result in corrections to our model. We then de-
rived a model that could predict such corrections. Numeri-
cally and experimentally, we found that the improved model
resulted in statistically significant improvement when fitting
to the random coupling model, effectively reducing the de-
viations to the level of noise. In addition, we developed uti-
lizations of several mathematical tools, including Prange’s
semiclassical version of Bogomolny’s T operator, that could
be fruitful in further study of chaotic cavities and wave cha-
otic systems with known dynamics in general.
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