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Wave scattering in a complicated environment is a common challenge in many

engineering fields because the complexity makes exact solutions impractical to find,

and the sensitivity to detail in the short-wavelength limit makes a numerical solu-

tion relevant only to a specific realization. On the other hand, wave chaos offers

a statistical approach to understand the properties of complicated wave systems

through the use of random matrix theory (RMT). A bridge between the theory and

practical applications is the random coupling model (RCM) which connects the uni-

versal features predicted by RMT and the specific details of a real wave scattering

system. The RCM gives a complete model for many wave properties and is beneficial

for many physical and engineering fields that involve complicated wave scattering

systems.

One major contribution of this dissertation is that I have utilized three mi-

crowave systems to thoroughly test the RCM in complicated wave systems with

varied loss, including a cryogenic system with a superconducting microwave cavity



for testing the extremely-low-loss case. I have also experimentally tested an ex-

tension of the RCM that includes short-orbit corrections. Another novel result is

development of a complete model based on the RCM for the fading phenomenon

extensively studied in the wireless communication fields. This fading model encom-

passes the traditional fading models as its high-loss limit case and further predicts

the fading statistics in the low-loss limit. This model provides the first physical

explanation for the fitting parameters used in fading models.

I have also applied the RCM to additional experimental wave properties of

a complicated wave system, such as the impedance matrix, the scattering matrix,

the variance ratio, and the thermopower. These predictions are significant for nu-

clear scattering, atomic physics, quantum transport in condensed matter systems,

electromagnetics, acoustics, geophysics, etc.
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Chapter 1

Introduction

1.1 Motivation

Waves are a ubiquitous phenomenon in diverse branches of physics and en-

gineering, including examples such as quantum waves, electromagnetic waves, and

acoustic waves. Many practical applications related to wave phenomena confront

a common challenge of wave propagation in a complicated environment. For ex-

ample, wireless devices communicating with each other in a house or office space

involves electromagnetic waves propagating in a complicated environment with scat-

tering created by floors, walls, and furniture. Radio signals and cell phone signals

propagating in a metropolis also confront complicated reflections and diffraction

on buildings and trees. Quantum waves in an irregularly-shaped quantum dot or

acoustic waves in a complex medium or enclosure are other instances of complicated

wave systems.

For all applications, one first tries to find the exact solution of the wave prop-

agation. However, the complexity makes the exact solution impractical to find, or

once found, the solution is of little utility if small details in the scattering envi-

ronment are changed. Therefore, it is often more practical to pursue a statistical

approach. Random matrix theory has been utilized to successfully develop a statis-

tical approach to wave properties of complex systems [1], which is initially applied
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in nuclear physics and then broadly utilized in other wave systems.

Random matrix theory can describe the statistics of a wave property based on

the universal physical symmetries of the wave system. For practical applications,

one needs to combine predictions of random matrix theory with system-specific

(nonuniversal) features of the wave system. In this dissertation, I focus on a sta-

tistical model, the random coupling model, originally developed in our group [2, 3].

The extended version of the random coupling model [4] connects the statistical pre-

dictions of random matrix theory to practical wave systems by taking account of

the system-specific features, such as the radiation impedance and the short orbits.

The random coupling model is valuable for many applications related to compli-

cated wave systems, including wireless communications with electromagnetic waves,

quantum dots with quantum waves, high power microwaves, energy focusing with

microwaves or acoustic waves.

Our goal is to establish statistical predictions for different wave properties in

complicated wave systems based on the extended random coupling model. In this

dissertation, my contributions are firstly verifying the extended version of the ran-

dom coupling model and secondly indicating practical applications of the extended

random coupling model.

In the rest of this chapter, I first introduce the general wave equations in

Sec. 1.2. Based on these wave equations, I explain the difficulties of solving them in

a complicated environment, and then I introduce a popular solution, the statistical

approach, in Sec. 1.3. In Sec. 1.4 I introduce the field of wave chaos in which

researchers use random matrix theory and the features of chaotic dynamics to predict
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the statistical properties of the wave scattering system in wave chaotic systems in

the short-wavelength limit. I review random matrix theory (RMT) in Sec. 1.5.

However, RMT is not enough to make predictions for a practical system unless

one combines RMT with the system-specific features of the wave scattering system.

The random coupling model (RCM) introduced in Sec. 1.6 is the approach I utilize

to connect RMT to my experimental results in this dissertation. The experiments

verify that the RCM is a complete model for many wave properties in a complicated

wave scattering system. One example of the utility of the RCM is its application to

the fading phenomenon in the wireless communication field. I introduce fading and

its traditional statistical models in Sec. 1.7. Finally, in Sec. 1.8, I give an outline

for the dissertation.

1.2 Wave Equations

In general one can describe waves by their wave propagation equations. For

example, the Schrödinger equation

ih̄
∂

∂t
Ψ = ĤΨ (1.1)

describes a quantum system, where Ψ is the wave function of the system, i =
√−1

is the imaginary unit, h̄ is the reduced Planck constant, and Ĥ is the Hamiltonian

operator. Another example is the electromagnetic wave equations

1

c2

∂2

∂t2
−→
E = ∇2−→E (1.2)

and

1

c2

∂2

∂t2
−→
B = ∇2−→B (1.3)
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which describe the propagation of electromagnetic waves through a medium, where

−→
E is the electric field,

−→
B is the magnetic field, c is the speed of light in the medium,

and ∇2 is the Laplace operator.

In a large subset of wave-related problems where applying the technique of

separation of variables of space and time is valid, one can describe the wave phenom-

enon by a variant of the linear, scalar wave equation (also known as the Helmholtz

equation)

(∇2 + k2)ψ(~r) = 0, (1.4)

where ψ(~r) is the wave field as a function of position ~r; k is the wave number

k = 2π/λ, where λ is the wavelength. For instance, considering the non-relativistic

Schrödinger equation for a single particle moving in an infinite potential well with

the Hamiltonian

Ĥ =
−h̄2

2m
∇2 + V (~r), (1.5)

where m is the mass of the particle, and the potential V (~r) is constant V0 in the

potential well and V (~r) → ∞ outside, the wave equation can be rewritten in the

form of the Helmholtz equation via the ansatz

Ψ(~r, t) = ψ(~r)e−iEt/h̄, (1.6)

with

k2 =
2m

h̄2 (E − V0) , (1.7)

where E is the energy of the quantum state Ψ(~r, t).

For the case of the electromagnetic wave, if the electric field can be written as

−→
E (~r, t) =

−→
E (~r)ei2πft, (1.8)
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where f is the frequency, then Eq. (1.2) can be rewritten in the Helmholtz form

with k = 2πf/c. Therefore, solving the Helmholtz equation [Eq. (1.4)] is common

in many physical and engineering applications related to waves.

To solve the Helmholtz equation [Eq. (1.4)] in a practical wave scattering sys-

tem, which is an enclosure where the wave propagates, one needs to specify the

boundary condition of the system. However, solving this equation can be difficult,

particularly in the short-wavelength limit [5], where the solutions to the wave equa-

tion are very sensitive to the boundary conditions. The major motivation of this

dissertation is to study this common but challenging condition, a complicated wave

scattering system.

1.3 Statistical Approach

To solve the Helmholtz equation [Eq. (1.4)] with a specific boundary condition,

it is difficult to find the exact analytic solutions unless the boundary condition has

special geometric symmetry. For most practical problems, one usually uses numeri-

cal methods to obtain the approximate solution with errors below a specified limit

[6]. For example, many researchers and engineers use the high frequency structure

simulator (HFSS), a commercial program which uses the finite element method to

solve electromagnetic structures, for antenna design, complex radiofrequency (RF)

electronic elements design, or electromagnetic property simulation.

The computational complexity for an accurate solution to Eq. (1.4) strongly

depends on the wavelength of the applied waves compared with the characteristic
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length scale of the wave scattering system. When the applied wavelength is much

smaller than the characteristic scale of the wave enclosure (the short-wavelength

limit, known as the “semiclassical limit” in wave chaos), the computational com-

plexity enormously increases because more details of the system become influential

to the solution, so the computation could be infeasible. Even if the solution was fea-

sible with the computation power of modern computers, there may be uncertainties

in the locations of boundaries or in parameters specifying the system. The exact

solution of the wave equation, or the desired wave quantities, will be extremely

sensitive to changes of the details of boundary conditions and the uncertainties.

Therefore, the solution for a special realization (including the geometrical configu-

ration and the applied wavelength) of a system may not be useful in predicting that

of another similar system.

Instead of seeking the exact solution of a complicated wave system in the short-

wavelength limit by a numerical approach, which only represents the solution for a

specific realization, researchers turned to statistical approaches. The predictions of

a statistical approach are the statistical distributions of the desired wave quantities,

and the results can represent the outcome of measuring an ensemble of realizations

[7]. For example, in applications to the wireless communication field, boundary con-

ditions are complicated due to the structure of buildings and time varying due to the

motion of objects in the wave-propagation environment [8]. Therefore, researchers

created empirical statistical models for the fading phenomenon of communication

signals. For another example, RF coupling to a targeted sensitive electronic de-

vice within a large enclosure can be considered as a wave scattering problem in

6



the short-wavelength limit. In this limit, distributions of the electromagnetic field,

or the induced voltage on the target, can vary dramatically even with a small re-

arrangement of the internal objects, a small change in the enclosure boundaries, or

a change in frequency of the excitation [9]. Thus, rather than seeking solutions for

specific systems, it is often convenient to create statistical models which reproduce

generic properties of the system [10] that can predict the statistical properties of an

ensemble of similar systems.

1.4 Wave Chaos

The statistical models we use in this dissertation are based on the theory in the

wave chaos field, which was initiated in nuclear physics and quantum wave systems

[10, 11]. The development of the wave chaos field can be traced back to Wigner’s

work in the 1950s [12, 13, 14, 15], concerning the statistics of the energy levels

of large nuclei. Large nuclei are examples of complicated systems with extreme

sensitivity to small changes, and therefore the exact solution is either inaccessible

or may not be useful for predicting the properties of another similar system. To

address this problem, Wigner replaced the complicated Hamiltonian matrix H of

the system with a random matrix from a suitable ensemble. He found that the

statistical properties of the eigenvalues and eigenfunctions of these random matrices

agree with those of real nuclei.

Wigner’s approach later became the well-known “random matrix theory” in

the nuclear reaction field [16]. In 1962 Dyson introduced new kinds of statistical
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ensembles for the energy levels of complex systems [17]. Other researchers have

extended the random matrix approach to other complicated systems in different

fields, such as wave scattering [18], quantum systems [10, 11], acoustic waves [19, 20],

quantum dots and mesoscopic systems [21, 22, 23], and microwave cavities [3, 11,

24]. The fundamental conjecture of random matrix theory is: useful statistics can

be obtained by replacing the exact Hamiltonian or scattering matrices by random

matrices drawn from an appropriate ensemble [1, 25]. Further details of random

matrix theory (RMT) will be discussed in Sec. 1.5.

Since Wigner’s work, applying statistical approaches to quantum wave equa-

tions has become a very active area in theoretical physics, where the field has been

called “quantum chaos” [10, 11]. The quantum aspect can actually be generalized

to all kinds of waves, hence a better terminology, emphasizing the generality of the

issues addressed, might be “wave chaos” [26, 27, 28]. In general this field utilizes a

statistical approach to understanding the wave properties of complicated systems.

In addition to solving wave systems with the RMT approach, quantum chaos studies

how to include classical chaotic dynamics in the quantum theory description in the

semiclassical limit [10, 11].

1.4.1 Classical Chaos and Wave Chaotic Systems

Combining the ideas of chaos and waves is not straightforward. Classical

chaos is characterized by the fact that small differences in the initial conditions of

a dynamical system grow exponentially in time [5, 27]. For example, considering
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a vacuum-filled uniform two-dimensional cavity, classical particles move in straight

lines in the cavity and bounce specularly on the boundary. Such dynamical systems

are called “billiards” and have been studied as a paradigm of particle motion in

Hamiltonian mechanics [29]. The equations of motion of a particle in a billiard can

be written as

H =
~p · ~p
2m

+ V (~r), (1.9)

where H is the Hamiltonian of the particle, ~p is the particle momentum, m is the

particle mass, and V (~r) is the potential. The potential V (~r) = 0 for the position ~r in

the billiard, and V (~r) →∞ elsewhere. Note that Eq. 1.5 is a quantum mechanical

version of this equation.

The motion of particles in a billiard can be separated into three categories:

(i) integrable, (ii) chaotic, and (iii) mixed, depending on the shape of the billiard

[29]. Figure 1.1 illustrates several examples of these three types of billiards. Con-

sidering the trajectory of the particle motion, if one randomly choose two particles

with slightly different positions (~r) or momentums (~p) as their initial conditions,

with probability one, the difference (on average) grows linearly with time in an

integrable billiard. However, with probability one, the difference of the randomly

chosen particles (on average) grows exponentially with time in a chaotic billiard.

For a mixed billiard, there is a finite amount of probability that the difference grows

as the integrable case, and also a finite amount of probability that the difference

grows as the chaotic case.

On the other hand, for wave scattering systems, the linear wave equations do
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Figure 1.1: Two-dimensional billiards: (a) a rectangular billiard (inte-

grable), (b) a circular billiard (integrable), (c) a bowtie billiard (chaotic)

with four inward circular arcs, (d) a cut-circle billiard (chaotic) as a circle

with two straight cuts, (e) a mushroom billiard (mixed) as a semicircle

with a rectangular stem, and (f) an annular billiard (mixed) as the region

between two eccentric circles.
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not demonstrate an exponential sensitivity to initial conditions. One may ask how

a wave system described by linear wave equations becomes chaotic. The answer is:

a wave chaotic system is a wave scattering system with a chaotic-shaped boundary,

for example, the billiards in Fig. 1.1(c) and (d). Although the wave equation is not

chaotic, if the wavelength is very short compared to the typical length scale of the

wave scattering system, the so-called “semiclassical limit”, the wave behavior can

be well approximated by ray equations [11, 30]. Then the ray equations will be the

same as the equations of motion of classical particles in a chaotic billiard. Since the

ray equations are a nonlinear Hamiltonian system, ray trajectories can be chaotic

[26, 31].

Wigner’s original setting (the energy levels of large nuclei) was a complicated

wave system, and the complexity invoked the statistical hypothesis. Subsequently

it was proposed that a wave chaotic system (even though the boundary shape is ap-

parently simple) might satisfy the Wigner hypothesis [25, 28, 32, 33]. The proposal

had been tested numerically [25, 28, 32] and later experimentally in electromagnetic

cavities [26, 31, 34] and found to be valid. Therefore, we also use wave chaotic

systems to test random matrix theory and the random coupling model in this dis-

sertation, and we presume the results in wave chaotic systems can be further applied

in practical complicated wave systems, without proving that the boundary of the

system is ray-chaotic.
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1.4.2 Microwave Billiard Approach

As the examples in the beginning of this chapter demonstrate, the Helmholtz

equation [Eq. (1.4)] is a general equation which may describe a quantum wave sys-

tem or an electromagnetic wave system. Due to the equality of the mathematical

expressions, many researchers use chaotic microwave billiards to represent quantum

systems of potential wells or quantum dots with a chaotic shape [24, 35, 36]. These

wave chaotic systems are microwave cavities, and the behavior of the wave system

in the short-wavelength limit is described by chaotic ray trajectories [36]. In this

dissertation I introduce three microwave cavities as our experimental wave chaotic

systems. Two of them are quasi-two-dimensional, and that means the scale of the

cavity in the ẑ direction is smaller than the applied wavelength. Therefore, one can

only consider the wave fields as ψ(x, y), and a quasi-two-dimensional cavity can be

a good analog of the two-dimensional quantum potential well.

Note that the wave chaos can be extended to three-dimensional systems, and

we also do experiments in a three-dimensional microwave cavity. More details of

the microwave cavities will be introduced in Chapter 3. Note that here we con-

sider wave systems with uniform potential inside and specular reflections on the

boundary (billiards). Although our explicit considerations in this dissertation are

for billiard systems (i.e., scattering regions that are homogeneous with perfectly

reflecting walls), presumably these effects may also be present with continuous po-

tentials (i.e. soft walls [37]) and are not limited to billiards. In practical systems,

there might be diffraction and ray-splitting in the wave enclosure, as well as dif-
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fuse reflections on the boundary. We presume these situations would increase the

complexity and make the statistical approach more valid.

In this dissertation, we use microwave experiments in wave chaos systems to

test universal statistical properties predicted by the wave chaotic theory, namely

random matrix theory. The study of random matrix theory (RMT) is a highly de-

veloped field, and applications of RMT have been found in many different scientific

and engineering disciplines [1, 38]. Researchers have applied RMT as a statistical

approach to model the scattering behavior of an ensemble of wave chaotic systems

coupled to the outside world through scattering channels [39, 40, 41]. More intro-

duction of RMT is given in the next section.

1.5 Random Matrix Theory

Random matrix theory (RMT) applied to wave systems is based on the as-

sumption that many statistical properties of a sufficiently complex wave system are

generic. It means that these properties do not depend on the details of a system, but

rather depend only on underlying physical symmetries. This assumption has been

tested in many different fields, and RMT has successfully been applied in many ap-

plications [5], such as chaotic quantum systems [42], quantum networks [43, 44, 45],

or wireless communications in a complicated scattering environment [40, 46].

For a wave system with unknown or complex dynamics, RMT is invoked by

treating the pertinent operator (typically the Hamiltonian, a scattering matrix, or an

impedance matrix) of the system as an element of an ensemble of random matrices
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[4]. The constraints on these random matrix ensembles only depend on the known

physical symmetries of the system, and otherwise the ensembles are assumed to be

completely random [47]. Here we introduce Wigner’s random matrix ensembles for

the Hamiltonian operator. In Chapter 2 we will discuss how to use RMT to generate

random impedance matrices of wave scattering systems.

There are several constraints on the random matrices [4], for example, the

geometric symmetries of the system, the time-reversal symmetry, and the group of

symmetries related to half-integer spin [17]. Wigner introduced three types of wave

chaotic systems with three different ensembles of random matrices respectively, the

Gaussian orthogonal ensemble, the Gaussian unitary ensemble, and the Gaussian

symplectic ensemble [13, 17]. For the microwave systems in this dissertation, I will

focus on the first two systems with the presence or absence of time-reversal invari-

ance. For systems with time-reversal invariance (TRI), the category is the Gaussian

orthogonal ensemble (GOE). On the other hand, the category for systems with

time-reversal invariance broken (TRIB) is the Gaussian unitary ensemble (GUE).

The random matrices of these two ensembles have different statistics, so the desired

wave quantities will have different statistical distributions. For example, Wigner

had considered the M × M random Hamiltonian matrices H and computed the

eigenvalues k2 of H. Wigner ordered them as k2
1 ≤ k2

2 ≤ k2
3 ≤ . . . ≤ k2

M , where k2
m

is the mth eigen-energy. 4k2
m is the mean spacing of the eigen-energy. For large M

with k2
M À4k2

m, Wigner had found the distributions of the normalized eigen-energy
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spacing

∆̃m ≡ k2
m+1 − k2

m

4k2
m

(1.10)

are

PGOE(∆̃) ' π

2
∆̃e−

π
4
∆̃2

(1.11)

for the GOE case and

PGUE(∆̃) ' 32

π2
∆̃2e−

4
π

∆̃2

(1.12)

for the GUE case [2, 12, 13, 14, 15, 27]. Researchers have also found there are

intermediate states where time-reversal invariance is partly broken between these

two limits [10, 48, 49, 50, 51, 52, 53].

1.6 Random Coupling Model

In addition to eigen-energy spacing of large nuclei, random matrix theory

[1] has achieved substantial success at predicting the universal statistics of many

wave properties, including spectra, eigenfunctions [54], scattering matrices [55], im-

pedance matrices, and conductances [56] of wave chaotic systems in the semiclassical

limit [11]. However, the experimental applicability of RMT requires consideration

of nonuniversal effects in practical situations. For example, in the particular case

of scattering, the scattering system may have N ports, which are the scattering

channels where the waves access this open wave scattering system. The scattering

properties of an open system depend on the coupling between the field within the

scattering region and the asymptotic incoming and outgoing waves connecting the

exterior to the scatterer at the ports. The random coupling model (RCM) introduced
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by Zheng, Antonsen, and Ott [57, 58, 59] is a stochastic model that incorporates

nonuniversal coupling and port-specific effects into the analysis of short-wavelength

scattering data for wave chaotic systems [36, 60].

Our group has extended the RCM by considering the short-orbit correction

[39, 40, 41] which better describes practical systems. Further details of the short-

orbit correction and the extended RCM will be introduced in Chapter 2, and the

extended RCM is the main theoretical model of this dissertation. We have also

introduced new applications of the RCM in the field of wireless communications,

such as predictions of the statistics of the fading amplitude [61, 62]. The RCM model

for fading can explain the statistics of the fading phenomenon more completely in

different loss environments and also offers physical understanding for traditional

empirical models of fading commonly used in wireless communications [8].

1.6.1 Random Coupling Model and Poisson Kernel

The random coupling model combines the universal predictions of RMT and

the nonuniversal parts of the practical system in the impedance matrix Z domain.

The concept is similar to the Poisson kernel which combines the universal parts and

the nonuniversal features in the scattering matrix S domain [23, 24]. The advantage

of the random coupling model is that nonuniversal contributions manifest themselves

in Z as simple additive corrections [39, 57, 58], and the expression is simpler than

the expression for S in the Poisson kernel [4, 63]. In addition, one can directly

calculate the nonuniversal features of a system in the impedance description, rather
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than relying on the more empirical Poisson kernel approach.

Impedance is a meaningful concept in electromagnetism, and it can be ex-

tended to all wave scattering systems. In a linear electromagnetic wave system with

N ports, the N ×N impedance matrix is the linear relationship of the vector V̂ of

the port voltages and the vector Î of the port currents, via the phasor generalization

of Ohm’s law as [64]

V̂ = Z Î. (1.13)

A cartoon of the linear wave system is shown in Fig. 1.2. The port voltages V̂ is a

vector with elements V1, V2, ... VN , and the port currents Î is a vector with elements

I1, I2, ... IN . A quantum-mechanical quantity corresponding to the impedance

is the reaction matrix K, which is often denoted in the literature as K = −iZ

[2, 22, 54, 56, 65, 66]. The impedance matrix can also be related to the scattering

matrix via the relationship [57, 58]

Z = Z0
1/2

(
1 + S

) (
1− S

)−1
Z0

1/2, (1.14)

where Z0 is a N × N diagonal matrix which gives the characteristic impedance of

the scattering ports, and 1 is the identity matrix. The diagonal element Z0,nn is

the characteristic impedance of the nth port. In this dissertation we assume that

lossless transmission lines attached to the ports, and Z0,nn are real for all ports.

In our experiment, Z0,nn = 50 Ω. The scattering matrix S specifies the linear

relationship between the incoming power waves â (a vector with elements a1, a2, ...

aN) and the outgoing power waves b̂ (a vector with elements b1, b2, ... bN), as [64]

b̂ = S â. (1.15)
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Figure 1.2: An N -port network system as the model of the N -port wave

scattering enclosure. The voltage Vn appears on the nth transmission

line of characteristic impedance Z0,nn, carrying the current In. The in-

coming (V in
n ) and outgoing (V out

n ) voltage waves offer a complementary

description of the situation at the nth port.
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The nth elements of incoming and outgoing power waves are

an =
V in

n√
Z0,nn

(1.16)

and

bn =
V out

n√
Z0,nn

, (1.17)

where V in
n and V out

n are the incoming and outgoing voltage waves at the nth port,

respectively [64].

The Poisson kernel characterizes the probability density for observing a par-

ticular scattering parameter S in terms of the average scattering parameter 〈S〉 [24].

〈S〉 represents contributions to the scattering behavior from elements of the system

which are not random, such as the prompt reflection from the interface between the

scattering channel and the chaotic system. The scattering parameter can be gener-

alized to a matrix for multiple-channel systems [67, 68, 69, 70, 71, 72, 73, 74, 75].

On the other hand, the random coupling model characterizes the nonuniver-

sal features as the ensemble-averaged impedance matrix Zavg. Zavg includes (i) the

system-specific features of the ports, which we denote as the radiation impedance

matrix, and (ii) the geometry of the wave scattering enclosure (including the po-

sitions of the ports and the shape of the boundary) which we encompass in the

short-orbit effect. The details of these quantities will be introduced in Chapter 2.

By combining all these features, the random coupling model becomes a complete

statistical model for complicated wave scattering systems in the semiclassical limit.
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1.7 Fading Models

Our group also studied applications of the RCM to fading statistics [61]. Con-

sidering wave propagation between a source and a receiver through a complex scat-

tering environment, fading is the time-dependent variation in the received signal

amplitude as the scattering environment changes and evolves with time [8]. Fading

occurs because waves propagating via multiple paths or around obstacles interfere

when they arrive at a receiver. A common example is the nighttime variation of AM

radio signal reception in the presence of ray bounce(s) off a time varying ionosphere.

Another common observation of fading is experienced by radio listeners in automo-

biles moving among vehicles and buildings in an urban environment. Although

fading exists in closed or open scattering systems and in all types of wave propa-

gation, such as electromagnetic waves, acoustic waves, and quantum waves, it has

been most extensively studied in the wireless communication field [76, 77, 78, 79].

Because of the complexity of wireless communication environments, a pre-

cise mathematical description of the fading phenomenon is either unknown or too

complex for tractable analysis [8]. Researchers have empirically designed statisti-

cal models for fading channels in particular scattering environments and frequency

bands, and different (apparently unrelated) fitting parameters are introduced in dif-

ferent models. For example, the Rayleigh fading model applies a one-parameter

Rayleigh distribution to model the fading amplitude in an environment where there

is no line-of-sight (LOS) path between the transmitter and the receiver, such as mo-

bile wireless systems in a metropolitan area [8, 76, 77, 78]. The Rice fading model,
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on the other hand, applies a two-parameter distribution to model situations with a

strong LOS path [8, 79, 80]. The detailed physical origins of these models, and their

parameters, are not clear.

The complexity of the wave propagation environment is advantageous from

the perspective of wave chaos theory because it means that wave propagation is

very sensitive to details, and a statistical description is most appropriate. For ap-

plying wave chaos approaches, the system should be in the semiclassical limit where

the wavelength is much shorter than the typical size of the scattering system [11].

Researchers have applied RMT in wireless communications [46] and in analyzing

the information capacity of fading channels [81, 82, 83, 84], or directly to the fading

phenomenon itself [61]. In this dissertation I will demonstrate that the RMT fad-

ing model is more complete than the Rayleigh and Rice fading models, which are

recovered by the RMT model in the high-loss limit [61] in Chapter 5. I also present

a thorough derivation of the RMT fading model in Appendix D.

1.8 Outline of Dissertation

In this chapter I have introduced the big picture of wave chaos research related

to this dissertation. In the following chapters, I will go through the details of the

theory, the experiments, and the novel contributions of this work. The structure of

the following chapters is illustrated in Fig. 1.3. It can be separated into two groups.

Chapters 2, 3, and 4, and Appendix A, B and C are the theoretical derivations,

experimental systems, and the experimental verifications of the extended random
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Figure 1.3: The structure of the chapters in this dissertation.

coupling model. Chapter 5, Chapter 6, and Appendix D are applications of the

extended random coupling model.

Chapter 2 introduces the extended random coupling model, and it is the main

theory we used in all of the experiments in this dissertation. I first introduce the

original random coupling model which is developed by previous members of our

group. Then I introduce the short-orbit correction which takes an additional system-

specific feature, the short-orbit effect of wave scattering systems, into account and

greatly expands the utility of the random coupling model. Numerical algorithms of

how to generate random matrices and how to compute short-orbit contributions in
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impedance are introduced in Appendix A.

Chapter 3 introduces all of the experimental systems we used for verifying the

extended random coupling model and testing its applications. Three systems are in-

troduced respectively. The first system is a quasi-two-dimensional microwave cavity

with a 1/4-bowtie shape. The experiment is operated at room temperature, and the

system shows moderate loss. The second system aims to achieve a much lower loss

environment, so we use a quasi-two-dimensional superconducting microwave cavity,

and the measurement is done in a cryogenic system. Details of the cryogenic system

are separately addressed in Appendix B. For the third system, the major differ-

ence is that the cavity is three-dimensional, and it can be used to test the random

coupling model and its applications in the more practical three-dimensional case.

In Chapter 4, we verify the short-orbit correction and compare the extended

RCM with the original RCM in varied aspects. We first verify the short-orbit cor-

rection by the effect of individual short orbits in the first experimental system. A

more detailed discussion of the error sources of this experiment is given in Appendix

C. Then we compare the short-orbit correction with two other approaches to depict

the system-specific features of a wave scattering system, which are the frequency

smoothing and the configuration ensemble. In the end of Chapter 4, we show the

benefits of applying the short-orbit correction by comparing the normalized results

of the extended RCM and the original RCM.

After we verified the extended RCM, it is important to demonstrate its ap-

plications. In Chapter 5, I introduce the application of the extended RCM in the

statistical model of fading. I first demonstrate how to build a fading model based on
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the extended RCM. I also compare this model with the traditional fading models,

such as the Rayleigh fading and the Rice fading. The results show that the fading

model based on the RCM can explain the physical meaning of the parameters of

the Rayleigh fading model and the Rice fading model. It also better describes the

statistics of the wave scattering system in the low loss regime. In the high loss

regime, I can show the RCM model goes over to the Rayleigh model and the Rice

model, and the derivation is shown in Appendix D.

In Chapter 6, I further test the applications of the extended RCM. The ex-

tended RCM is a complete statistical approach that can predict the statistics of

different properties of a wave scattering system with varied loss. These properties

include the elements of the impedance matrix and the scattering matrix, the vari-

ance ratios of these quantities, and the transmittance. Furthermore, the statistics

of the first-order energy derivatives of the scattering matrix and the impedance ma-

trix are also well predicted. The first-order energy derivatives are related to the

thermopower of a quantum dot.

In the end, Chapter 7 gives the conclusion of this dissertation and suggestions

for future work. I also summarize the extended RCM and its applications. The

future work section includes the interesting but incomplete projects related to our

wave chaos research.
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Chapter 2

Extended Random Coupling Model

The random coupling model (RCM) is a statistical model of impedance matri-

ces of a complicated wave scattering system. It connects wave chaos theory to the

measurement results of a practical system. The model combines the universal prop-

erties of the predictions of random matrix theory and the system-specific features

of real-life wave scattering systems. In Sec. 2.1, I review the original random cou-

pling model introduced by Zheng et al. [57, 58] which described one system-specific

feature, namely the radiation impedance of the ports of the system. Hart et al.

[4, 39] extended the random coupling model by replacing the radiation impedance

with the ensemble-averaged impedance which includes additional short-orbit infor-

mation of the wave system. This short-orbit correction will be reviewed in Sec. 2.2.

The short-orbit information incorporates more fluctuating details in the frequency

domain than the original radiation impedance, so the extended RCM can better

predict the statistics of the practical measurement results than the original RCM in

a narrower frequency band.

2.1 Original Random Coupling Model

The original random coupling model was introduced by Zheng et al. [57, 58].

They use the random plane wave hypothesis and random matrix theory (RMT)
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to describe the statistical properties of the impedance matrix Z of a complicated

wave scattering system, and the system-specific features are incorporated through

the radiation impedance matrix. On the other hand, the Poisson kernel combines

the universal properties and the system-specific features in terms of the scattering

matrix S [24, 85]. The advantage of the random coupling model is that system-

specific (nonuniversal) contributions manifest themselves in Z as simple additive

corrections [39, 57, 58], as compared to the Poisson kernel where the nonuniversal

features are both in the numerator and the denominator of a fraction expression

[4, 63].

We assume that the wave system is linear in all of our studies. Therefore, wave

scattering in an enclosure can be modeled as a linear network system with N ports

which act as the access channels of the waves. For an N -port system, the original

random coupling model [57, 58] expresses the N ×N impedance matrix as

Z(0) = iXrad + Rrad
1/2

(
zrmt

)
Rrad

1/2. (2.1)

This equation combines the universal fluctuating property predicted by RMT (zrmt)

and the system-specific features (Rrad and Xrad). The superscript ((0)) stands for

the original version of the RCM. In the next two sections we discuss zrmt, Rrad, and

Xrad in detail.

2.1.1 Perfectly-Coupled Impedance Matrix

The RMT part of the random coupling model can be expressed as

zrmt =
−i

π
W

(
λ− iα1

)−1
W T , (2.2)
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and we call it the perfectly-coupled impedance matrix. This form combines (i) the

randomness of the eigenmodes in the wave enclosure (λ, based on random matrix

theory), (ii) the randomness of the coupling between the ports and the eigenmodes

(W , based on the random plane wave hypothesis), and (iii) the system-dependent

feature, namely the loss parameter α. The coupling matrix W is an N ×M matrix

where its element Wnm represents the coupling between the nth driving port (1 ≤

n ≤ N) and the mth eigenmode of the wave scattering enclosure (1 ≤ m ≤ M).

W T is the transpose matrix of W . Each Wnm is an independent Gaussian random

variable of zero mean and unit variance. The statistics of Wnm is based on the

random plane wave hypothesis [57], in which the wave scattering is assumed as a

superposition of random plane waves, and it is justified by the complexity of the

enclosure and the smallness of the wavelength compared to the enclosure size. The

random plane wave hypothesis has also been used for waves in plasmas [86] and

within the context of quantum mechanics of classically chaotic systems [87].

In Eq. (2.2), λ is an M ×M diagonal matrix where its diagonal elements are

the eigenvalues of the wave scattering enclosure. The statistics of these eigenvalues

are based on RMT [1, 57]. α is the loss parameter of the wave system, and it will

be further introduced in the following paragraphs. 1 is an identity matrix. Previous

work focused on the statistics of the scattering matrix (srmt) described by random

matrix theory [21, 63]. With

zrmt =
(
1 + srmt

) (
1− srmt

)−1
, (2.3)

Hemmady et al. have experimentally examined the statistics of zrmt and srmt as a

27



function of the loss parameter and found excellent agreement with RMT [36, 60, 88,

89, 90]. In Appendix A.1, I introduce our numerical algorithm to generate random

impedance matrices zrmt, and some examples of the elements of 2× 2 zrmt matrices

are shown. In Appendix D, Brouwer and Beenakker’s method [21] of generating

srmt will be discussed in more detail.

The statistics of zrmt is a universal property that is independent of the system-

specific features of a wave system. A single parameter governs the statistics of zrmt:

the loss parameter α, which represent the (assumed uniform) distributed losses of

wave scattering in the wave enclosure [57, 88]. The distributed losses mean losses

that affect all modes in a frequency band almost equally, for example, wall losses and

losses from a lossy dielectric that fills the wave system are considered distributed

[2]. Moreover, Hemmady’s semiclassical experiments in a microwave cavity showed

that the loss of localized microwave absorbers can also be well described by the loss

parameter [60]. The loss parameter is defined as

α ≡ k2

∆k2
mQ

, (2.4)

where k is the wave number of the operated wave. The wave number k = 2πf/c,

where f is the frequency of the wave, and c is the speed of light. ∆k2
m is the mean

spacing of the eigen-energies (k2
m), and it can be approximated by Weyl’s formula

in the limit of small wavelength compared to the system size. Weyl’s formula is

∆k2
m ' 4π

A
(2.5)

for two-dimensional systems, where A is the area of the enclosure, and

∆k2
m ' 2π2

kV
(2.6)
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for three-dimensional systems, where V is the volume of the enclosure [91]. The

quantity Q represents the quality factor of the wave system, and accounts for the

losses within the enclosure (dielectric losses, ohmic losses, etc.) and the dissipation

through the port [88]. The loss parameter can also be written as α = f/(2Q∆f),

and it represents the ratio of the half width of the frequency resonances due to

distributed losses in the enclosure (f/2Q) to the average spacing between resonant

frequencies (∆f).

Other researchers also use similar parameters for representing the loss of the

wave system. For example, Brouwer and Beenakker have derived the statistics of

the scattering matrix srmt based on RMT for a chaotic quantum dot [21]. They use

a parameter γ, which represents the dephasing rate of a quantum dot. Hemmady et

al. have shown the statistics of srmt with the parameter γ are equivalent with the

statistics of zrmt in the random coupling model with zrmt = (1 + srmt)(1 − srmt)
−1

and γ = 4πα.

2.1.2 Radiation Impedance Matrix

When applying wave chaos theory to practical systems, one needs to take ac-

count of the system-specific (nonuniversal) features of the wave system. One of the

major contributions of the random coupling model is to combine the universal fluc-

tuating feature (zrmt) with the system-specific features (Rrad and Xrad) in Eq. (2.1).

In the original random coupling model, the system-specific features are embodied

in the radiation impedance matrix Zrad [57, 58]. Rrad and Xrad are the real and the
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imaginary parts of Zrad respectively, Zrad = Rrad + iXrad.

The radiation impedance matrix captures the system-specific features of the

ports of the wave scattering system. For the waves entering the enclosure at the

ports, there are prompt reflections in general. If waves impinging at the ports are

fully transmitted to the wave enclosure with no prompt reflections, the wave enclo-

sure is said to be perfectly coupled to the outside environment through the ports.

In practical wave systems, the coupling is a frequency-dependent feature due to the

geometry of the ports, and thus it is difficult to directly compare the measured

impedance matrix with the perfectly-coupled impedance matrix (zrmt) [3]. The

original random coupling model encompasses the effect of prompt reflections in the

frequency-dependent radiation impedance matrix Zrad(f), which is the impedance

measured at the ports when the boundaries of the enclosure are removed, so that the

waves launched at a port propagate in the enclosure and never return to the port.

Therefore, the radiation impedance matrix Zrad represents the radiation features of

the ports. The real part Rrad (radiation resistance) describes the radiation of power

from the ports, and the imaginary part Xrad (radiation reactance) describes the dif-

ference between the amounts of electric and magnetic energy stored in nonradiating

fields near the ports [2]. Note that for the perfectly-coupling situation, Rrad = Z0

and Xrad = 0.

Hemmady et al. [36, 60] employed the original random coupling model to

identify these nonuniversal features. In the semiclassical limit, their results [3] verify

that the random coupling model (RCM) can represent wave systems composed of

a wave scattering enclosure and probing ports coupling the outside world and the
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scattering system. Note that, for a multiple-port system, Hemmady et al. considered

the direct orbits between a pair of ports (see Fig. 2.1) as a part of the radiation

impedance matrix, and this effect was represented in the off-diagonal terms of Zrad

[88]. However, in this dissertation I treat the effect of the direct orbits in the

short-orbit correction, which will be introduced in the next section, and therefore

the radiation impedance matrix Zrad is diagonal, and each diagonal component

represents the radiation of an isolated port. Another method to deal with the

coupling between the scattering ports and the wave system is the Poisson kernel,

which represents the nonuniversal features as an average 〈S〉 in the scattering matrix

description [24, 85].

2.2 Short-Orbit Corrections to the Random Coupling Model

After the research of the original random coupling model, Hart et al. [39, 40,

41] introduced another system-specific feature, the short-orbit effect, and extended

the random coupling model as

Z(1) = iXavg + Ravg
1/2

(
zrmt

)
Ravg

1/2, (2.7)

where the superscript ((1)) stands for the extended version of the RCM. The differ-

ence is that the radiation impedance matrix Zrad = Rrad + iXrad has been replaced

by the ensemble-averaged impedance matrix Zavg = Ravg + iXavg. This new matrix

quantity includes the radiation impedance and the short-orbit effect, and we will

discuss the details in the following sections. The extended RCM can better describe

the statistics of complicated wave systems than the original RCM. The experimental
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verification will be shown in Chapter 4.

2.2.1 Short Orbits

A “short orbit” (or a “short ray trajectory”) means one ray trajectory whose

length is not much longer than several times the characteristic size of the scattering

enclosure, and the trajectory enters the scattering enclosure from a port, bounces

(perhaps several times) within the scattering region, and then returns to a port. A

“port” is the region in which there is a connection from the scatterer to the outside

world. Note that the short orbits are different from periodic orbits [68, 92, 93],

which are closed classical trajectories bouncing in a closed system. Short orbits, as

defined here, are only relevant to open systems.

Figure 2.1 illustrates short orbits in a two-dimensional cut-circle billiard. In

Fig. 2.1, the red dots represent the ports where the waves enter the billiard from

outside. The circular perturber is a movable object for creating different boundary

realizations. Colored lines are examples of short orbits. Note that the blue lines are

direct orbits between the two ports. Dark green lines are one-bounce orbits, and

light green lines are two-bounce orbits. Short orbits can also leave and return to the

same port, such as the one-bounce orbit in purple. In these two realizations, the

light green orbit in (a) is blocked in (b) due to the shift of the perturber. In general,

the longer orbits have higher probability to be blocked by moving perturbers.

In practical experiments for measuring the statistics of wave scattering proper-

ties, one needs an ensemble measurement of many different realizations. Researchers
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Figure 2.1: Illustrations of short orbits in a cut-circle billiard with a cir-

cular perturber. The red dots are the ports, black lines are the boundary

of the billiard and the perturber, and colored lines are examples of short

orbits. Note that the blue lines are direct orbits. The two-bounce orbit

(light green) in (a) is blocked in (b) due to the shift of the perturber.
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have typically (i) varied the geometrical configurations of the scattering enclosure

(as the example in Fig. 2.1) and/or (ii) taken measurements at different frequencies

[36, 51, 57, 58, 94]. These variations aim to create a set of systems in which none

of the nonuniversal system details are reproduced from one realization to another,

except for the effects of the port details. Thus, by suitably accounting for the port

details (as the radiation impedance matrix in the RCM), it was hoped that only

universal RMT properties remained in the ensemble data.

However, there can be problems in practice. For example, in the case of (i)

geometrical configuration variation, researchers typically move perturbing objects

inside a ray-chaotic enclosure with fixed shape and size [36, 57], or move one wall

of that enclosure [51, 94], to create an ensemble of systems with varying details.

The problem is that certain walls or other scattering objects of the enclosure remain

fixed throughout the ensemble. Therefore, there may exist relevant ray trajectories

that remain unchanged in many or all realizations of the ensemble. We term such

ray trajectories, which leave a port and soon return to it (or another port) before

ergodically sampling the enclosure, as “short orbits” or “short ray trajectories.”

The influence of short orbits is also a problem for ensemble realizations with (ii)

frequency variation. A orbit with short length (Lo) shows long-range oscillation in

the frequency domain. Within a limited frequency range (fbw), the variation of the

phase accumulated by a wave following that short orbit may not be large enough

to be considered random. In such a case (fbw < c/Lo) the effect of specific (hence,

nonuniversal) short orbits will survive the ensemble averaging processes.

The influence of short orbits makes systematic, nonuniversal contributions to
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the ensemble data, and thus consideration of short orbits arises naturally in the

semiclassical approach to quantum scattering theory [5, 11, 30, 95, 96, 97]. Previous

work has examined short orbits in cases where the system and the ports can be

treated in the semiclassical approximation [70, 74, 98] or considered the effect on

eigenfunction correlations due to short orbits associated with nearby walls [73, 99].

Such short-orbit effects have been noted in microwave billiards [57, 58, 59] or for

quantum transport in chaotic cavities [30, 100] and have either constrained or frus-

trated previous tests of RMT predictions. Microwave billiard experimental work has

extracted a measure of the microwave power that is emitted at a certain point in

the billiard and returns to the same point after following all possible classical tra-

jectories of a given length [68]. The short-orbit effect on wave scattering properties

of chaotic systems has been explicitly calculated in the case of quantum graphs [43]

and for two-dimensional billiards [39]. Moreover, the Poisson Kernel approach can

also be generalized to include short orbits [75] through measurement of a (statistical)

optical S matrix. Later, a general first-principles deterministic approach to exper-

imentally analyzing the short-orbit effect is developed and verified by microwave

billiard experiments [40, 41], which I will introduce in Chapter 4.

2.2.2 Semiclassical Approach to Short-Orbit Terms

Hart et al. [39, 41] extended the RCM by considered a port and its nearby

walls as a generalized port. This method takes the information of the geometry

of the system to compute the short-orbit contribution to the radiation impedance.

35



More specifically, the generalized system-specific impedance matrix (the short-orbit-

corrected radiation impedance matrix) is written as

Zsoc = Zrad + Rrad
1/2 ζ Rrad

1/2, (2.8)

where Zrad is the diagonal radiation impedance matrix representing the features of

the ports, Rrad is the real part of Zrad, and

ζ ≡ ρ + iχ (2.9)

is the short-orbit correction matrix.

For the system with N ports, the (n,m) element of the N × N matrix ζ is

[39, 41]

ζn,m =
∑

b(n,m)

{
−pb(n,m)

√
Db(n,m) exp[−(ik + κ)Lb(n,m) − ikLport(n,m) − iβb(n,m)π]

}
,

(2.10)

where b(n,m) is an index over all classical trajectories which leave the nth port,

bounce βb(n,m) times, and return to the mth port. Note that for the off-diagonal

term (n 6= m), ζn,m includes the direct orbit from the nth port to the mth port

without bouncing on the walls (β = 0). In Appendix A.2, I introduce our numerical

algorithm which can find short orbits in the billiard and compute the parameters

pb(n,m), Db(n,m), Lb(n,m), and βb(n,m) for each short orbit term.

In Eq. 2.10, Lb(n,m) is the length of the trajectory b(n,m). The effective at-

tenuation parameter, κ = k/(2Q) = α∆k, takes account of loss, where Q is the

quality factor, α is the loss parameter, k denotes the wave number of a plane wave,

and ∆k is the average spacing between resonant wave numbers. Lport(n,m) is the
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port-dependent constant length between the nth port and the mth port, and it is a

correction term for the orbit length required to explain the experimental results. In

our experimental results, we constantly observe a frequency-dependent phase shift

corresponding to a short-length transmission line in each port, so we add the cor-

rection term Lport(n,m) in Eq. 2.10. More details of Lport(n,m) will be introduced in

Sec. 4.1.

The amplitude of each term in the sum [Eq. (2.10)] is determined by two

quantities, where the orbit stability factor Db(n,m) is a geometrical factor of the

trajectory, and it measures how the energy spreads out along the orbit path. This

geometrical factor is a function of the length of each segment of the trajectory,

the angle of incidence of each bounce, and the radius of curvature of each wall

encountered in that trajectory. More details of computing Db(n,m) are introduced

in Appendix A.2.2. In arriving at Eq. (2.10), it has been assumed that the port

radiates isotropically from a location (several wavelengths) far from the boundaries

of the wave enclosure, and the walls of the wave enclosure present perfect-metal

boundary conditions with π phase shift on each bounce. These assumptions are well

satisfied for the cavities used in our experiments.

The other quantity pb(n,m) is the survival probability of the trajectory due to

the positions of the perturbing objects in the ensemble. For example, the light green

orbit in Fig. 2.1(b) is blocked by the perturbing object. One can determine if an

orbit is been blocked by knowing the positions and the shapes of the perturbing

objects. In Sec. 4.3, I introduce how we utilize perturbing objects in our experiment

and how we determine pb(n,m).
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With ρn,m + iχn,m ≡ ζn,m, the analytic continuations of ρn,m and χn,m are

ρn,m =
∑

b(n,m)

{
−pb(n,m)

√
Db(n,m) cos[−(k − iκ)Lb(n,m) − kLport(n,m) − βb(n,m)π]

}
,

(2.11)

χn,m =
∑

b(n,m)

{
−pb(n,m)

√
Db(n,m) sin[−(k − iκ)Lb(n,m) − kLport(n,m) − βb(n,m)π]

}
.

(2.12)

The short-orbit-corrected radiation impedance matrix is Zsoc ≡ Rsoc + iXsoc, where

Rsoc = Rrad + Rrad
1/2 ρ Rrad

1/2, (2.13)

Xsoc = Xrad + Rrad
1/2 χ Rrad

1/2. (2.14)

In the lossless case (κ = 0) ρ and χ are the real and imaginary parts of ζ; Rsoc and

Xsoc are the real and imaginary parts of Zsoc. However, with uniform loss (e.g., due

to an imaginary part of a homogeneous dielectric constant in a microwave cavity),

Rsoc and Xsoc are the analytic continuations of the real and imaginary parts of the

lossless Zsoc as k → k + iκ. These analytic continuations are no longer purely real

(i.e., ρ, χ, Rsoc, and Xsoc become complex).

For the summation of orbit terms (ζ, ρ, and χ), the issue of convergence is

worthy of discussion. Note that the sums in Eqs. (2.11) and (2.12) involve terms

of the form sine and cosine of [(k − iκ)Lb(n,m) + ...] which for large Lb(n,m) increase

exponentially like exp(κLb(n,m)). Although in the numerical tests of a bowtie billiard

[39], we have observed that the parameters pb(n,m) and Db(n,m) decrease exponen-

tially when Lb(n,m) increases, the sums do not necessarily converge if the loss is

too high. Accordingly, we will use a finite cutoff of the sum and regard the cut-

off result as being asymptotic. In contrast, the sum involved in the calculation of

38



ζ [Eq. (2.10)] is now over terms that decrease exponentially with increasing path

length as exp(−κLb(n,m)). This sum is much more likely to converge than the sums

in Eqs. (2.11) and (2.12).

The contribution of orbits decreases exponentially with the orbit length [39,

40, 41], so one can only take account of a finite number (Nso) of short (major) orbits

by setting a threshold of the maximum length LM . In practice, when considering

either of the sums in ζ, ρ, and χ, we employ a cutoff by replacing the sums by

∑Nso

b(n,m) which signifies that the sum is now over all trajectories b(n,m) with lengths

up to the maximum length LM , Lb(n,m) ≤ LM , and this is the reason of the name

“short-orbit correction.” We use ρ(LM ), χ(LM ), ζ(LM ), Z(LM )
soc , R(LM )

soc , and X(LM )
soc to

indicate the finite length versions of those quantities. Combined with the measured

radiation impedance (Rrad and Xrad), these corrections (R(LM )
soc and X(LM )

soc ) can be

analytically determined by using the ray-optics of short orbits between the ports

and the fixed walls of the cavity.

Another way to estimate the nonuniversal features of a scattering system is by

computing the averaged impedance matrix Zavg = 〈Z〉 over all realizations of varied

geometrical configurations. The universal fluctuations in Z would cancel each other

in the averaging, and only the nonuniversal parts remain. The ensemble-average

impedance matrix Zavg is a frequency-dependent quantity just like Zsoc. In a lossy

system Z(LM )
soc → Zavg as LM increases [39, 40, 41], and only a limited number

of short orbits are required to represent system-specific nonuniversal features that

survive the ensemble average. The experimental comparison of Z(LM )
soc and Zavg will

be shown in Chapter 4.
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2.3 Chapter Summary

The extended RCM can represent the statistics of the impedance matrix Z(1)

[Eq. (2.7)] by combining the universal fluctuating feature (zrmt) and nonuniversal

features (Zavg). The perfectly-coupled impedance matrix zrmt can be generated

by the Monte Carlo method according to RMT, and the statistics depend on only

one parameter, the loss parameter α. The loss parameter can be determined by

the experimental results [3]. The ensemble-averaged impedance matrix Zavg can be

computed by averaging measured Z matrices in varied geometrical configurations,

or it can be approximated by Z(LM )
soc . The short-orbit-corrected radiation impedance

Z(LM )
soc includes the nonuniversal features of the radiation impedance, which can be

measured, and the short orbits (Lb(n,m) ≤ LM), which can be analytically calculated

with knowledge of the ports and enclosure geometry.

On the other hand, the extended RCM can be used as a normalization method

for removing the system-specific features in the measured impedance matrix Z as

zn = Ravg
−1/2

(
Z − iXavg

)
Ravg

−1/2. (2.15)

We use zn to denote the normalized impedance matrix, and correspondingly sn =

(zn−1)(zn+1)−1 is the normalized scattering matrix. The normalized impedance zn

contains the remaining features of longer trajectories and the deviations between a

single realization and the ensemble average. A longer length threshold (LM) makes

sure that more short-orbit effects are removed from the measured impedance, and

the statistical distributions of normalized impedance are closer to the predictions of

RMT (zrmt) [40, 41]. In Chapter 4, I also show the comparison of the statistics of
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zn and zrmt.

In many of the wave related applications, one can treat the transmitters and

the receivers of the system as ports and the wave propagating environment as the

scattering enclosure. Therefore, with the extended random coupling model and

N × N impedance matrices (or scattering matrices), one is able to model many

statistical properties of a complicated wave scattering system, such as the reflection

coefficient, transmission coefficient, conductances, impedances, scattering parame-

ters, and fading amplitude.
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Chapter 3

Experimental Systems with a Variety of Loss Values

The predictions of wave chaos can be applied in different types of waves, such

as electromagnetic waves, acoustic waves, and quantum waves. Here we choose

microwaves as an accessible wave source, and the wave scattering enclosures are

simply metal cavities with movable perturbing objects inside. For the semiclassical

limit, the typical length scales of the cavities are several times larger than the applied

wavelengths. Sec. 3.1 shows the measurement of a quasi-two-dimensional microwave

cavity made of copper by a network analyzer. It can be used to test the statistics

of different wave scattering properties and the extended random coupling model

(RCM) in the loss range from α = 0.3 to α = 1.9. In order to test the interesting

features of the statistics of wave chaos in the low loss regime, we use a quasi-two-

dimensional superconducting cavity and a cryogenic system which can reach the

extremely low loss from α = 0.02 to α = 0.2. This system is introduced in Sec. 3.2.

In Sec. 3.3, we further test the extended RCM in a three-dimensional cavity, and

the loss range of this cavity is from α = 1 to α = 10.

3.1 Measurement of Ray-Chaotic Microwave Cavity

We use an Agilent PNA E8364C network analyzer to measure the frequency

dependence of the complex 2 × 2 scattering matrix S, and then we compute the
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Figure 3.1: (a) The 1/4-bowtie cavity connected through two transmis-

sion lines to a network analyzer. (b) The side view of a port antenna

and the cavity. (c) The top view of the 1/4-bowtie cavity with the two

ports as red dots and the two metallic perturbers as blue circles.
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corresponding impedance Z = Z0
1/2(1 + S)(1 − S)−1Z0

1/2. The measured results

are frequency spectra of complex elements S11, S12, S21, and S22. We can change

the sampling resolution in frequency and the incident wave power in the network

analyzer. I will specify them in each experimental system. The network analyzer

also has an averaging function to reduce the noise, and we set the averaging factor

to 10.

The first experimental system is for measuring complex 2×2 scattering matri-

ces S in a quasi-two-dimensional ray-chaotic microwave cavity illustrated in Fig. 3.1.

The cavity has two coupling ports [as the red dots in Fig. 3.1(c)], which can be

treated as a transmitter and a receiver in the fading system. Microwaves are injected

through each port antenna attached to a coaxial transmission line of characteristic

impedance Z0,11 = Z0,22 = 50Ω [as the green lines in Fig. 3.1(a)], and each antenna

is inserted into the cavity through a small hole (diameter about 0.1 cm) in the lid

[shown in Fig. 3.1(b)], similar to previous setups [41, 88, 89, 90, 101, 102]. The effect

of the transmission lines is calibrated by the Agilent N4691 electronic calibration

module. The waves introduced are quasi-two-dimensional for frequencies (from 6 to

18 GHz, 48000 sample points) below the cutoff frequency for higher order modes

(∼ 19 GHz) due to the thin height of the cavities [0.8 cm in the vertical (ẑ) direction

in Fig. 3.1(b)]. The wave power is 0 dBm. The 1/4-bowtie cavity is made of copper,

and measurements of the transmission spectrum at room temperature suggest the

loss parameter goes from α = 0.3 to α = 1.0, varying with the frequency range [40].

The shape of the cavity walls is chosen to create classical ray chaos. In

Sec. 1.4 I have introduced ray-chaotic billiards [for example, Fig. 1.1(c) and (d)],
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and these ray-chaotic systems have been used to test the application of RMT

[25, 26, 28, 31, 32, 33, 34]. In this dissertation, we use wave chaotic systems to

test RMT and the RCM. We perform the experiments in ideal ray-chaotic billiards,

as opposed to real-life complicated wave systems, so that clear and definitive tests

of RMT and the RCM can be accomplished. We presume that the results can be

applied to practical complicated wave systems. The cavity is a symmetry-reduced

“bowtie billiard” made up of two straight walls and two circular dispersing walls

as in Fig. 3.1(c) [103]. The bowtie billiard has been previously used to examine

eigenvalue [26] and eigenfunction [49] statistics of the closed system in the crossover

from Gaussian orthogonal ensemble (GOE) to Gaussian unitary ensemble (GUE)

statistics as time-reversal invariance is broken. In addition, this cavity has also been

used to study scattering (S), [41, 60, 88] impedance (Z) [36, 41] and conductance

(G) [90] statistics. The length scales of the billiard (shown in Fig. 3.1) compared

to the wavelengths of the microwave signals (1.7 − 5.0 cm) put these systems into

the semiclassical limit (short-wavelength limit). The total area of the billiard is

A = 0.115 m2, so the measured frequency range (6− 18 GHz) includes about 1100

eigenmodes of the corresponding closed cavity. The quasi-two-dimensional eigen-

modes of the closed system are described by the Helmholtz equation for the single

nonzero component of electric field (Ez), and these solutions can be mapped onto

solutions of the Schrödinger equation for an infinite square well potential of the same

shape [11, 103].
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3.1.1 Perturbers and Configuration Ensemble

To create an ensemble for statistical analysis, we add two metal perturbers to

the interior of the 1/4-bowtie cavity and randomly move the perturbers to create

100 different realizations. Note that although we move the perturbers randomly, we

keep the perturbers away (> 3 cm) from the ports to avoid affecting the radiation

impedance of the ports. In each realization, we measure the scattering matrix over

the frequency window (6−18 GHz). The average frequency shift of the resonances in

different realizations is on the scale of the average frequency spacing. The perturbers

are short prisms with about the same height of the cavity (0.7 cm). The purpose

of these perturbers is to create different geometry configurations for a configura-

tion ensemble, but the volume of enclosure remains the same as they move about.

The perturbers can be considered scattering objects in the propagation medium, so

changing the positions creates the equivalent of time-dependent scattering variations

that give rise to fading. The walls are fixed relative to the ports in all realizations.

We made two pairs of perturbers for the experiments in the 1/4-bowtie cavity.

They are shown in Fig. 3.2. The two irregular-shaped perturbers are made of iron

and coated with aluminum foil with the maximum diameters 7.9 and 9.5 cm. The

two circular cylindrical perturbers are made of aluminum with diameter 5.1 cm

and an iron core in the center. Therefore, we can use a magnet held outside the

closed cavity to translate and rotate the perturbers in-situ. The irregular-shaped

perturbers was designed to further randomize the wave scattering within the cavity

by preventing the formation of standing waves between the straight wall segments of
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Figure 3.2: The two pairs of perturbers.

Figure 3.3: The two cylindrical perturbers in the 1/4-bowtie cavity with-

out the lid.
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Figure 3.4: The arrangement of microwave absorbers for the measure-

ment of the radiation impedance. The upper plot is the side view, and

the lower plot is the top view. Microwave absorbers are represented as

the gray material along the walls. The red dots represent the ports of

the cavity.

the cavity and the perturbers [90]. Experimental results show no notable difference

in the impedance statistics between using the irregular-shaped perturbers or the

cylindrical perturbers [41].
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3.1.2 Microwave Absorbers and Radiation Impedance

The radiation impedance Zrad can be experimentally determined by removing

the perturbers, placing microwave absorbers along all the side walls of the cavity,

and measuring the resulting impedance matrix. We use the DD-10017 microwave

absorber made by ARC Technologies. The absorbers largely eliminate reflections

from the walls (by > 10 dB for the frequency range 6 − 18 GHz), so this method

removes the effect of ray trajectories bounced back from the walls, leaving only the

effects of the port details.

Figure 3.4 illustrates the 1/4-bowtie cavity with microwave absorbers and

without metal perturbers. The gray material along the side walls are microwave

absorbers. In our measurement, we also add microwave absorbers on the floor near

the side walls [see the side view in Fig. 3.4], and the purpose is to further reduce

the reflected waves. Note that this measurement of the radiation impedance will

also include the effect of the direct orbits between each pair of the ports. The

experimental result is shown in Chapter 4.

3.2 Superconducting Cavity and the Cryogenic System

Many important wave chaos predictions for complicated wave scattering sys-

tems are in the low loss regime, such as the variance ratio of the scattering matrix

and impedance matrix [90] and the statistics of the fading amplitude [61]. Further

discussion of the theoretical predictions of fading is given in Chapter 5, and the

variance ratio is discussed in Chapter 6. Here I focus on the experimental setup of
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the extremely-low-loss system. This wave scattering system can reach the loss range

from α = 0.02 to α = 0.2.

We have carried out experiments by measuring the complex 2 × 2 scattering

matrix S of a quasi-two-dimensional microwave cavity, illustrated in Fig. 3.5. There

are two coupling ports (the red cylinders and dots in Fig. 3.5) where microwaves

are injected through an antenna attached to a single-mode coaxial transmission line

of characteristic impedance Z0,11 = Z0,22 = 50Ω. Each antenna is inserted into the

cavity through a small hole in the lid, similar to the setup of the 1/4-bowtie cavity.

The waves introduced have frequencies from 3 to 18 GHz, and they are quasi-two-

dimensional due to the thin height of the cavity (0.8 cm in the ẑ direction). For

the low loss system, the frequency resonances are much sharper than the 1/4-bowtie

cavity case, so we increase the frequency sampling resolution to 150000 points over

the 15 GHz frequency band. We have applied wave powers of −10 dBm, 0 dBm, and

3 dBm to observe the effect of the wave power on superconductivity. The antennas

are terminated with SMA microwave connectors, one male and the other female, on

the surface of the cavity. The shape of the cavity is a symmetry-reduced “cut-circle”

and is a billiard potential that shows classical chaos [61, 101, 102, 104].

The superconducting cavity is made of copper with Pb-plated walls and cooled

to a temperature (6.6 K) below the transition temperature of Pb [101, 102, 105].

Measurements of the transmission spectrum suggest that the quality factor of the

resonances is on the order of Q ≈ 105. A Teflon wedge (the blue wedge in Fig. 3.5)

can be rotated as a ray-splitting perturber inside the cavity, and we rotate the

wedge by 5o each time to create an ensemble of 72 different realizations. The ray-
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Figure 3.5: (a) The quasi-two-dimensional symmetry-reduced cut-circle

microwave cavity in a three-dimensional perspective, showing the cavity

dimensions, ports, and the perturber. (b) Projected two-dimensional

view of the cut-circle billiard.

splitting and refraction due to the dielectric material can make the wave system

more complicated. The rotation axis of the perturber is connected with a MDC

vacuum rotary feedthrough (BRM-133) at room temperature, so we can control the

angular position from outside the cryostat.

The measurements of the scattering matrix of the superconducting cavity

are calibrated by an in-situ broadband cryogenic calibration system illustrated in

Fig. 3.6. One major challenge of the cryogenic experiment is the calibration of

the two transmission lines between the network analyzer and the superconducting

cavity. Due to the limited space and the cold temperature, the convenient elec-

tronic calibration module, which we use in the room temperature measurement,

cannot be applied here. Therefore, we use the Thru-Reflect-Line (TRL) calibration
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method which is a manual calibration method by using three calibration standards

[106, 107, 108]. In Fig. 3.6, the voltage controller, cryogenic switches, and the four

additional electrical paths are all for the TRL calibration. More discussion of the

cryogenic TRL calibration is given in Appendix B.

The cryostat includes two cylindrical vacuum chambers (aluminum) with one

cylindrical thermal shield (copper) in between them. The switches, calibration stan-

dards, and the superconducting cavity are all contained in the inner vacuum chamber

(designed temperature 4 K, radius 16.5 cm, and height 30.2 cm). We use an Alcatel

Drytel 31 Dry Vacuum Pump System to evacuate the inner and outer chambers

to a pressure lower than 1 × 10−6 atm and a Cryomech PT405 Pulse Tube Cry-

orefrigerator (with a water-cooled compressor) to cool down the cavity to the base

temperature of 6.6 K. The cavity is hung on the cold plate of the cryorefrigerator,

and we also use copper thermal straps to connect the cold plate and the cavity

(Fig. 3.7). The thermometer is attached in the lower part of the outside surface

of the cavity. We also designed two copper clamps to mount and thermally anchor

the cryogenic switches on the cold plate. More details of the cryogenic switches are

given in Appendix B. The second layer of the cryostat is the cylindrical copper

shield (designed temperature 40 K, radius 17.8 cm, and height 43.8 cm). The third

layer is the outer vacuum chamber (designed temperature 300 K, radius 20.3 cm,

and height 55.9 cm). For a thermal cycle, it takes about one day to pump the system

to vacuum and cool down the cavity to thermal equilibrium at the base temperature,

while warming-up takes about two days. The dwell time of the system at the base

temperature can be longer than one week.
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Figure 3.6: Illustration of the in-situ broadband cryogenic calibration

system with the cut-circle cavity. Note that the phase-matched coaxial

cables are not shown to scale.
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Figure 3.7: The upper picture shows the cut-circle cavity hanging in

the cryostat. The thermal straps are connected to the 4K stage of the

refrigerator on the top and to the cavity on the bottom. The lower

picture shows the measurement system with the cryorefrigerator, the

network analyzer, the voltage controller, and the cryostat labeled.
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With this cryogenic system, we can measure and calibrate the 2 × 2 scatter-

ing matrices at different cavity temperatures and different powers of the incident

microwave signals, and thus different loss parameter values. The equilibrium tem-

perature of the cavity and the standards can be changed by tuning the applied DC

current to heating resistors installed in the cryostat; the applied microwave power

can be controlled by the network analyzer.

3.3 Three-Dimensional Cavity

The previous two wave systems are both quasi-two-dimensional cavities. In

order to demonstrate that the random coupling model and wave chaos can be ex-

tended to three-dimensional cavities, we also do microwave experiments in a three-

dimensional metal cavity. Biniyam Taddese and Matthew Frazier in our group have

used the original version of this three-dimensional cavity to study the linear and

nonlinear time-reversal mirror [109, 110]. We have cooperated with the Andreadis

group at the U.S. Naval Research Laboratory, and they have built another cavity

which is a nearly exact copy of our original version. Zachary Drikas et al. in the An-

dreadis group performed measurements in the new three-dimensional metal cavity,

and I analyzed the data. The experimental results and the analysis will be shown

in Chapter 6.

The experimental system is shown in Fig. 3.8. The complicated wave scattering

enclosure is called the “GigaBox”. The GigaBox is approximately a rectangular

microwave resonator with dimensions of length 1.27 m, width 1.22 m, and height
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Figure 3.8: The experimental setup of measurement of the GigaBox as

measured by the Naval Research Laboratory group.
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0.65 m. The cavity is made of aluminum and has mode stirrers (perturbers made

of aluminum) inside it. Even though the shape of this cavity is not ray-chaotic,

the mode stirrers and the irregularities on the surface facilitate the creation of a

complicated wave scattering system. A stepper motor is used to rotate the mode

stirrers to create an ensemble of 199 different realizations. A network analyzer is

connected to the two ports of the GigaBox and measures the scattering matrix in

the frequency range 3− 10 GHz, which is in the semiclassical limit.

Port 1 is a monopole antenna with a length 13 mm, mounted on the front wall

of the GigaBox. Port 2 is an electronically-long U-shaped conductor with one end

connected to the transmission line on the side wall of the GigaBox, and the other

end terminated with a 50 Ω load circuit. The U-shaped conductor is a copper tube

of 6 mm diameter and total length 1156 mm, and the lengths of the three segments

of the U shape are L1 = 127 mm, L2 = 902 mm, and L3 = 127 mm (see Fig. 3.8).

In the three-dimensional case, the loss parameter α = k3V/(2π2Q). Due to

the large volume (V = 1.01 m3), the GigaBox system has a high mode density and

a high loss parameter. In addition, due to the k3 term in α, this system has a wide

loss parameter range (α = 1 − 10) when the frequency varies from 3 to 10 GHz.

Due to the high mode density, we use 16000 frequency points in a 100 MHz window.

This experimental result will also be shown in Chapter 6.
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Chapter 4

Verification of Short-Orbit Correction

Predicting the statistics of realistic wave-chaotic scattering systems requires,

in addition to random matrix theory (RMT), introduction of system-specific in-

formation. The original random coupling model (RCM) combines the radiation

impedance (Zrad) and the normalized impedance predicted by RMT (zrmt). The

extended RCM further introduces the short-orbit correction on top of the original

RCM to take account of these system-specific features.

In this chapter, we investigate experimentally the short orbits in a wave chaotic

system, the 1/4-bowtie cavity open to outside scattering channels. In particular,

we consider ray trajectories (orbits) of limited length that enter a scattering region

through a channel (port) and subsequently exit through a channel (port). We exam-

ine the results in a one-port experiment and a two-port experiment. In the one-port

experiment, we measure the 1 × 1 scattering matrix, or the scattering parameter;

in the two-port experiment, we measure the 2 × 2 scattering matrix by a network

analyzer. The frequency range is from 6 to 18 GHz, and therefore the ratio of the

wavelength (λ) to the typical length scale (Lt) of the cavity is λ/Lt ' 10. This

makes the wave system in the semiclassical limit.

We show that a suitably averaged value of the impedance can be computed

from the short-orbit correction, and this can improve the ability to describe the
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statistical properties of a scattering system. The compensation for the effects of

short orbits improves the agreement between RMT-based predictions and measured

statistical properties of the data from an ensemble of realizations or even a single

realization. In Section 4.1 we consider the modification of the free-space radiation

impedance arising in configurations when there are only a few possible short orbits,

and this situation applies directly to many cases where, although reflecting objects

are present, there is also substantial coupling to the outside. In Section 4.2 and

4.3, we test the short-orbit correction and compare it with the frequency smoothing

approach and the configuration ensemble approach which are both used to repre-

sent the system-specific features in a complicated wave system [24, 41, 111]. After

verifying the effects of short orbits, in Section 4.4 we compare the original RCM

and the extended RCM to demonstrate the benefits of introducing the short-orbit

correction for the goal of uncovering RMT statistics.

4.1 Individual Short Orbits

The first experiment tests whether the analytical form of short-orbit correction

[ζ, Eq. (2.10)] can correctly predict the effect of individual ray trajectories, as well

as the aggregate effect of a small number of ray trajectories, on the impedance. We

have discussed the short orbit terms in Sec. 2.2.2, and here we test the term

ζn,m =
∑

b(n,m)

{
−

√
Db(n,m) exp[−(ik + κ)Lb(n,m) − ikLport(n,m) − iβb(n,m)π]

}
, (4.1)

where the amplitude is determined by the geometrical factor Db(n,m) of the trajectory

b(n,m), and the phase is determined by the wave number k, the effective attenuation
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parameter κ, the length of the trajectory Lb(n,m), the port-dependent constant length

Lport(n,m), and the number of bounces of the trajectory βb(n,m). In this experiment,

the perturbers are removed from the cavity, and thus the survival probability of the

trajectory pb(n,m) in Eq. (2.10) is always pb(n,m) = 1.

In order to isolate individual trajectories, I employ microwave absorbers to

cover some of the cavity walls, and the experiment systematically includes short

orbits involving bounces from exposed walls of the 1/4-bowtie cavity (see insets of

Fig. 4.1 for examples, where the thick black lines denote the walls covered by the

microwave absorbers). In some combinations of exposed walls, there are an infinite

number of trajectories existing in the cavity. Therefore, I employ a cutoff of the

sum in Eq. (4.1) by setting a threshold of the maximum length LM of the computed

orbits, and the term is now denoted as ζ(LM )
n,m . By knowing the geometry of the

exposed walls and the port locations, the quantities Db(n,m), Lb(n,m), and βb(n,m) in

ζ(LM )
n,m can be analytically computed. The numerical algorithm for computing these

parameters of the short orbit terms is introduced in Appendix A.2. The effective

attenuation parameter κ is related to the loss parameter α and will be discussed in

the last paragraph of this section.

In Eq. (4.1), −ikLport(n,m) is a modification of the phase of the short-orbit

correction term. In all of the experimental results, we observed phase shifts between

the measured data and the numerical results. These shifts are consistently observed

in all orbit terms, and the quantity is equivalent to the effect of adding an additional

offset length. The offset length for Port 1 is 1.86 cm, and the offset length for Port 2

is 1.97 cm. We think that these lengths are from the deviation between the calibrated
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reference plane at the end of the transmission lines and the practical reference plane

at the port antennas. Therefore, in Eq. (4.1) we introduce this port-dependent

correction term Lport(n,m) for orbits from the nth port to the mth port.

For the experimental results, in order to compare with the theoretical ex-

pression ζ(LM )
n,m , I use the random coupling model to remove the effect of the port

mismatch (in other words, the radiation impedance matrix Zrad) from the measured

impedance. Following from Eq. (2.8), we define the impedance correction matrix

zcor as

zcor ≡ Rrad
−1/2

(
Zwall − Zrad

)
Rrad

−1/2. (4.2)

Zwall is the measured impedance of the microwave cavity with specific walls exposed,

where the subscript wall = B, CD, or BC stands for one or more of the walls (A,

B, C, and D, shown in the insets of Fig. 4.1) exposed. The radiation impedance

matrix Zrad is determined by a separate measurement in which all four side walls

are covered by the microwave absorbers [36]. In Eq. 4.2, we remove the radiation

impedance Zrad from the measured impedance Zwall. Note that, for the two-port

case, the measured result is a 2×2 matrix with non-zero off-diagonal elements which

represent the coupling between the two ports (the direct orbit). However, here we

want to examine the effect of this direct orbit in zcor in the two-port case. Therefore,

we only take the diagonal elements of the measured radiation impedance matrix for

Zrad and Rrad. After this normalization method, the direct orbit and other bounced

orbits of the measured impedance Zwall remain in the impedance correction matrix

zcor.
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Figure 4.1: Four examples of the comparison between the zcor,n,m ele-

ments (Data) and the ζ(LM )
n,m elements (Theory). The insets are the cor-

responding geometry of the exposed walls. The thick black lines denote

microwave absorber material covering the walls.
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Figure 4.1 shows four examples of the comparison in frequency domain (6 −

10 GHz) between the impedance correction zcor,n,m from the measured impedance

(Zwall) and the short-orbit correction term ζ(LM )
n,m according to Eq. (4.1) with the

maximum length LM . The measured results (Data) are represented by red and solid

curves, and the theoretical results are represented by blue and dashed curves. The

resistance correction is the real part of the impedance correction (Re[zcor,n,m] or

Re[ζ(LM )
n,m ]); the reactance correction is the imaginary part of the impedance correc-

tion (Im[zcor,n,m] or Im[ζ(LM )
n,m ]). We have examined other combinations of exposed

walls and choose some representative cases to show here. Figures 4.1(a) and 4.1(b)

are for the cases of one-port experiments with (a) one wall exposed (wall B) and (b)

two walls exposed (walls C and D), and Figures 4.1(c) and 4.1(d) are for cases of

two-port experiments with (c) one wall exposed (wall B) and (d) two walls exposed

(walls B and C). The geometry is illustrated in the insets, where the red dots are

positions of the ports, and the thicker black walls represent the walls covered by the

microwave absorbers. I also illustrate some short orbits as black lines in the insets.

The measured data generally follow the theoretical predictions quite well, thus

the comparison verifies that the short-orbit correction offers a quantitative predic-

tion of short-orbit features of the impedance Zwall. In Fig. 4.1(a), we examine the

resistance correction for the waves entering and returning from the cavity through

the single port (the zcor,11 element), and the short-orbit correction includes only one

orbit from the exposed wall B. This explains the simple oscillation in the frequency

domain. In Fig. 4.1(b), still a one-port case, we examine the reactance correction

for Z11 due to orbits from the exposed walls C and D. There are an infinite number
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of orbits in this case, but for ζ
(LM )
11 we only include eight of them with orbit lengths

shorter than LM = 80 cm. The good agreement shows longer orbits are less im-

portant. In Figs. 4.1(c) and 4.1(d), the two-port cases, we examine the resistance

correction and the reactance correction between the two ports (the zcor,12 element).

For the case in Fig. 4.1(c), there are only two orbits including the direct orbits and

a one-bounce orbit. For the case in Fig. 4.1(d), there are only four orbits. The

small deviations between the theoretical results and the measured results can be

further analyzed if we plot the results in the length domain. The major error source

is the imperfections of the microwave absorbers. The details of this length-domain

analysis are given in Appendix C.

In the end of this section, I go back to discuss how to measure the effective

attenuation parameter κ used in Eq. (4.1). κ represents the the propagation at-

tenuation of orbits and is a frequency-dependent attenuation parameter κ(f). We

compute κ by utilizing the previously measured frequency-dependent loss parameter

α of the 1/4-bowtie cavity [3]. Here α is the loss parameter introduced in Chapter

2.1.1 as the ratio of the 3-dB bandwidth of the closed-cavity resonance modes to the

mean spacing between cavity modes, α ≡ k2/(∆k2
mQ) ' k2A/(4πQ), where A is the

area of the cavity (A =0.115 m2), k is the wave number, and Q is the quality factor

of the cavity. The mean spacing between modes varies from 21 MHz at 6 GHz to

6.9 MHz at 18 GHz.

Figure 4.2 shows the loss parameter α and the effective attenuation parameter

κ versus frequency of an empty 1/4-bowtie cavity. We obtain the loss parameter

α from the measured impedance data in an empty 1/4-bowtie cavity according to
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Figure 4.2: The loss parameter α and the attenuation parameter κ versus

frequency of the empty 1/4-bowtie cavity. The loss parameter is deter-

mined by the best-fit of the statistics of the measured impedance data

and the RMT prediction, and the attenuation parameter is calculated

from the loss parameter.
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the procedures presented in previous work [36, 60]. In this procedure the frequency-

dependent loss parameter α(f) is determined by the best-fit of the statistics of the

measured data and the RMT prediction. More particularly, we use RMT to generate

a series of numerical data of the perfectly-coupled impedance matrix [zrmt, Eq. (2.2)]

with varied loss parameters in a step of 0.05. For the experimental data, we select a

proper frequency range (e.g., 1.8 GHz) and compute the probability density function

(PDF) of the “perfectly-coupled” normalized impedance zn [Eq. (2.15)] in the range.

Then we compare the PDF of the experimental data to different PDFs of numerical

data generated according to RMT, using α as a fitting parameter. We choose the α

value of the best-fit PDF of the numerical data as the loss parameter at the center

frequency f of the frequency range. Once α(f) is known, the frequency-dependent

attenuation parameter κ(f) can be calculated because the dominant attenuation

comes from losses in the top and bottom plates of the 1/4-bowtie cavity, and it is

well modeled by assuming that the waves suffer a spatially uniform propagation loss

κ = k/(2Q) = 2πα/(kA).

4.2 Short-Orbit Correction and Frequency Smoothing

Considering the short-orbit correction, Eq. (4.1), each orbit term creates a

periodic oscillation in the frequency domain, and the period is related to the or-

bit length Lb(n,m). When we set a maximum length LM to cut off the sum in

Eq. (4.1), it is equivalent to applying a low-pass filter or a smoothing method on

the frequency dependent quantity Z(f). In this section, we first demonstrate the
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measured results of the impedance of a empty 1/4-bowtie cavity, where all orbits

present. Then we introduce a smoothing method for the frequency-domain data.

Finally the comparison will shows that the short-orbit-corrected impedance agrees

with the frequency-smoothed impedance (the frequency ensemble).

Firstly, we measure the impedance matrix of an empty 1/4-bowtie cavity with-

out microwave absorbers or perturbers. Therefore, all possible orbits between ports

are present in this single realization. Figure 4.3 shows (a) the real and (b) the

imaginary parts of the first diagonal element of the impedance in a two-port cavity,

corresponding to Re[Z11] and Im[Z11]. Figures 4.3(c) and 4.3(d) are for the off-

diagonal element of the impedance, Re[Z12] and Im[Z12]. The measured data are

shown in red curves. The radiation impedance data are shown in black curves in the

cases of the diagonal elements. The radiation impedance Zrad is measured with all

side walls covered by the microwave absorbers, and it traces through the center of

the fluctuating impedance data of the empty cavity and represents the nonuniversal

aspects of the coupling antennas [36, 57, 58]. Note that I treat Zrad as a diagonal

matrix, so the off-diagonal term is zero and not shown in Figs. 4.3(c) and 4.3(d).

The blue curves represent the short-orbit-corrected radiation impedance matrix Zsoc

[Eq. (2.8)], which combines the radiation impedance and the short-orbit correction

up to LM = 200 cm.

Z(LM )
soc = Zrad + Rrad

1/2
(
ζ(LM )

)
Rrad

1/2. (4.3)

This gives a total of 584 orbit terms for Z
(LM )
soc,11 and 1088 orbit terms for Z

(LM )
soc,12.

The theoretical impedance Z(LM )
soc tracks the main features of the single-realization
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measured impedance although there are many sharp deviations between the two

sets of curves. These fluctuations are expected because of the infinite number of

trajectories (Lb(n,m) > 200 cm) not included in the short-orbit correction.

When computing the sum of short-orbit correction terms in a low loss system

like the empty metal cavity, a problem associated with the finite number of terms

(Lb(n,m) ≤ LM) occurs in the sum. In the theory, to perfectly reproduce the measured

data in the empty cavity requires an infinite number of orbit terms. Therefore,

in some frequency regions where the experimental impedance changes rapidly, the

finite sum for the theoretical resistance Re[Z(LM )
soc ] will show values less than zero,

which are not physical for a passive system. For example, see the blue dashed

curve in Fig. 4.3(a) between 6.3 and 6.4 GHz. This problem is similar to the Gibbs

phenomenon in which the sum of a finite number of terms of the Fourier series has

large overshoots near a jump discontinuity.

In Fig. 4.3 we claim that the theoretical impedance Z(LM )
soc tracks the main

features of the single-realization measured impedance Z. To further verify this,

we introduce a frequency-smoothing method and apply it to both Z(LM )
soc and Z.

In particular, if Z(f) denotes a frequency dependent quantity, then we take its

frequency smoothed counterpart to be the convolution of Z(f) with a Gaussian

function,

Z(f) =
∫

Z(f ′)g(f − f ′)df ′, (4.4)

where the Gaussian function

g(f) =
1√

2πσf

exp

(−f 2

2σ2
f

)
, (4.5)
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Figure 4.3: The impedance of the empty 1/4-bowtie cavity with two

ports. Shown are (a) the real part of Z11, (b) the imaginary part of Z11,

(c) the real part of Z12, and (d) the imaginary part of Z12 with the mea-

sured impedance Zn,m (red thinner), the short-orbit-corrected radiation

impedance Z(LM )
soc,n,m (blue dashed), as well as the radiation impedance

Zrad,n,m (black).

69



and σf is the standard deviation of the Gaussian smoothing function. Applying the

operation (4.4) to our short-orbit correction formulas, Eq. (4.1), with k = 2πf/c,

we see that the summations acquire an additional multiplicative factor,

exp
[
−1

2
(Lb(n,m) + Lport(n,m))

2(2πσf/c)
2
]
. (4.6)

Thus, as the orbit length Lb(n,m) increases (i.e., longer orbits are included), the

factor [Eq. (4.6)] eventually becomes small, thus providing a natural cutoff to the

summations in Eq. (4.1).

We compare the frequency-smoothed impedance matrices Z(LM )
soc and Z in the

one-port experiment and the two-port experiment. Both are single-realization mea-

surement in the empty 1/4-bowtie cavity, and the results are shown in Fig. 4.4.

The frequency smoothing [Eqs. (4.4) and (4.5)] suppresses the impedance fluctu-

ations due to long orbits and reveals the system-specific features associated with

short orbits. Figure 4.4 shows the radiation impedance (black thick), the smoothed

measured impedance Z (red solid) and the smoothed theoretical impedance Z(LM )
soc

(blue dashed). The smoothing is made by a Gaussian smoothing function with the

standard deviation σf = 240 MHz [Eq. (4.5)]. Gaussian frequency smoothing inserts

an effective low-pass Gaussian filter on the orbit length, and thus, the components

of impedances (Z and Z(LM )
soc ) in the length domain are limited by the cutoff length

c/σf = 125 cm. Figure 4.4 shows that the smoothed short-orbit feature matches

the smoothed experimental data very well. Therefore, the short-orbit correction

correctly captures the effects of ray trajectories up to the cutoff length (125 cm).
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Figure 4.4: The smoothed impedance of the 1/4-bowtie cavity versus

frequency of (a) Z11 in the one-port experiment, (b) Z11 in the two-port

experiment, and (c) Z12 in the two-port experiment. Shown are the

real (three upper curves) and the imaginary parts (three lower curves)

of the smoothed impedance for the theory Z(LM )
soc,n,m (blue dashed curves)

and the experiment Zn,m (red solid curves), as well as the measured

(un-smoothed) radiation impedance of the port (Zrad,n,m, black thick).
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4.3 Short-Orbit Correction and Configuration Ensemble

We have tested that the short-orbit-corrected radiation impedance Z(LM )
soc and

the frequency smoothed impedance (frequency ensemble) can both represent the

system-specific features of a complicated wave scattering system. In this section we

will compare the short-orbit correction with another major method to reveal the

system-specific features, the configuration averaging.

Many efforts to determine universal RMT statistics in experimental systems

are based on a configuration averaging approach that creates an ensemble aver-

age from realizations with varied configurations. In principle, one can recover the

nonuniversal (system-specific) properties of the system [24, 111] via the configu-

ration averaging approach, which is motivated by the “Poisson kernel” theory of

Mello, Pereyra, and Seligman [63]. Specifically, ensemble averages of the measured

cavity data are used to remove the system-specific features in each single realiza-

tion. Note that in the past, the configuration averaging approach was explicitly

assumed to only remove the effects of the nonuniversal coupling; however, it was

later generalized to include the nonuniversal contributions of short orbits [75].

We compare the short-orbit-corrected radiation impedance Z(LM )
soc and the

ensemble-averaged impedance Zavg (configuration ensemble) in a one-port exper-

iment and a two-port experiment. In order to collect a realization ensemble, two

metal perturbers are used in the 1/4-bowtie cavity. In the one-port experiment,

two irregular-shaped pieces of metal are added as perturbers; in the two-port ex-

periment, two cylindrical pieces of metal are added as perturbers. Both are shown
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Figure 4.5: Left: the one-port experiment system with two irregular-

shaped perturbers. Right: the two-port experiment system with two

cylindrical perturbers.

in the Fig. 4.5, where the dots represent the ports, and the blue objects represent

the perturbers. In each experiment, the locations of the two perturbers inside the

cavity are systematically changed and accurately recorded to produce a set of 100

realizations for the ensemble [36, 40, 41, 60]. The impedance matrix Z is measured

from 6 to 18 GHz, covering roughly 1100 modes of the closed cavity. Typically,

the shifts of resonances between two realizations are about one mean level spacing.

Then we compute the average over the 100 realizations, Zavg = 〈Z〉. After the en-

semble averaging, longer orbits have higher probability of being blocked by the two

perturbers in the 100 realizations; therefore, the main nonuniversal contributions are

due to shorter orbits. We compare the ensemble-averaged impedance Zavg and the

short-orbit-corrected radiation impedance Z(LM )
soc which is calculated from Eqs. (2.8)

and (2.10) with the maximum orbit length LM = 200 cm.
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In the configuration ensemble, contrary to the previous cases of an empty

cavity without perturbers, we need to introduce a survival probability pb(n,m) for

each orbit term in Eq. (2.10).

ζ(LM )
n,m =

Lb(n,m)≤LM∑

b(n,m)

{
−pb(n,m)

√
Db(n,m) exp[−(ik + κ)Lb(n,m) − ikLport(n,m) − iβb(n,m)π]

}
.

(4.7)

Notice that the two perturbers can block orbits and influence their presence in

the ensemble realizations. Thus, we multiply each term in the sum by a weight

pb(n,m) equal to the fraction of perturbation configurations in which the orbit is not

intercepted by the perturbers. The values of pb(n,m) are between 0 and 1, and a

longer ray trajectory generally has a higher chance of being blocked by perturbers,

and thus it has smaller pb(n,m). Note that by recording the positions of perturbers

in all realizations, we are able to calculate the short-orbit correction individually

for each realization, similar to the procedures in the empty cavity case [Eq. (4.1)].

Here we introduce pb(n,m) as a more general description for the case in which only

the probabilities of survival of particular short orbits are known. In addition, we

ignore the effect of newly created orbits by the perturbers in each specific realization

because they are averaged out in the ensemble. Note that the attenuation parameter

κ in the short-orbit correction terms [Eq. (4.7)] is recalculated by using the measured

PDFs of impedance in the ensemble case, using procedures similar to those for the

case of the empty cavity [36, 60]. Due to the presence of two perturbers in the

cavity, the attenuation parameter and loss parameter are slightly larger (∼ 0.1 for

α) than in the empty cavity case (Fig. 4.2).
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Figure 4.6: The averaged impedance versus frequency of (a) Z11 in the

one-port experiment, (b) Z11 in the two-port experiment, and (c) Z12

in the two-port experiment. Shown are the real (three upper curves)

and the imaginary parts (three lower curves) of the ensemble-averaged

impedance Zavg,n,m (red solid curves), comparing with the theory Z(LM )
soc,n,m

(blue dashed curves) and the radiation impedance of the port (Zrad,n,m,

black thick).
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The result of comparisons between the ensemble-averaged impedance Zavg and

the short-orbit-corrected radiation impedance Z(LM )
soc are shown in Fig. 4.6. Figure

4.6 (a) shows the comparison of the impedance in the one-port experiment, Fig. 4.6

(b) shows the first diagonal component of the impedance, and Fig. 4.6 (c) shows

the comparison of the off-diagonal component in the two-port experiment. The

measured data (red solid) follow the trend of the radiation impedance (black thick),

and the theory (blue dashed) reproduces most of the fluctuations in the data by

including only a modest number of short-orbit correction terms (584 orbits for Z
(LM )
soc,11

and 1088 orbits for Z
(LM )
soc,12 with LM = 200 cm). Note that no frequency smoothing

(or wavelength averaging) is used here. The good agreement between the measured

data and the theoretical prediction verifies that the short-orbit correction theory

predicts the nonuniversal features embodied in the ensemble-averaged impedance

well.

The deviations between the Zavg curves and the Z(LM )
soc curves in Fig. 4.6

may come from several effects. The first is the remaining fluctuations in the Zavg

due to the finite number of realizations. We estimate this to be on the order of

σZavg ' σZ/
√

100 ∼ 1Ω, where σZavg is the standard deviation of ensemble-averaged

impedance Zavg of 100 realizations, and σZ is the standard deviation of the measured

impedance Z of a single realization. This accounts for the remaining sharp features

in Zavg. Another source of errors is that we ignore the effect of newly created or-

bits by the perturbers. Even though these new orbit terms are divided by 100 (the

number of realizations), the remaining effects create small deviations.
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4.4 Benefits of the Short-Orbit Correction

In previous sections we have verified that the short-orbit correction can repre-

sent the system-specific features of the measured data. Next, we will demonstrate

that including the short-orbit correction in the random coupling model (RCM) can

improve the ability to reveal underlying universal statistical properties. Recall the

RCM normalization [Eq. (2.15)] introduced in Chapter 2, in this section, we will

compare the statistical results of the three different types of the RCM normaliza-

tion:

z(0)
n = Rrad

−1/2
(
Z − iXrad

)
Rrad

−1/2, (4.8)

z(1)
n = Ravg

−1/2
(
Z − iXavg

)
Ravg

−1/2, (4.9)

z(LM )
n = R(LM )

soc

−1/2 (
Z − iX(LM )

soc

)
R(LM )

soc

−1/2
. (4.10)

z(0)
n is the normalized impedance based on the original RCM [Eq. (2.1)] which only

takes account of the radiation impedance Zrad as the system-specific feature. z(1)
n

is the normalized impedance of the extended RCM [Eq. (2.15)] which includes the

radiation impedance and the effect of short orbits by directly utilizing the ensemble-

averaged impedance Zavg. z(LM )
n is the short-orbit correction version of z(1)

n , and we

will tune the maximum orbit length LM to examine the influence of short orbits in

the RCM normalization.

4.4.1 Statistics of the Impedance Matrix

Hemmady et al. have compared the statistical predictions of random matrix

theory (RMT) with the statistics of the normalized impedance matrix based on the
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original RCM (z(0)
n ) [36, 60, 88]. Their results show good agreement between the

statistics of z(0)
n and zrmt when the data of z(0)

n are collected from a large enough

frequency window [3]. Here we demonstrate the benefit of using the short-orbit

correction that the statistics of the revealed universal properties (z(LM )
n ) by the

extended RCM have better agreement with the prediction of RMT (zrmt) than the

original version (z(0)
n ) when the bandwidth of the frequency window is small. A small

frequency window means fbw < c/min{Lo}, where fbw is the frequency bandwidth,

and min{Lo} is the shortest orbit length. For example, in the one-port experiment

in the 1/4-bowtie cavity, the shortest orbit is the one launching from the port,

bouncing on wall D, and returning back (Lo = 15 cm and c/Lo = 2 GHz).

We compare the probability distributions of the eigenvalues of the normalized

impedance matrices (z
(0)
n,eig and z

(LM )
n,eig ), and the PDFs that are generated from nu-

merical RMT [36, 60, 88] in Fig. 4.7. The experimental data are measured from

the 100 realizations of the 1/4-bowtie cavity and in a frequency range of 200 MHz.

Then we compute the eigenvalues of the 2 × 2 normalized impedance matrix for

each realization and each frequency. For the short-orbit correction case (z(LM )
n , the

blue curves with squares), we use LM = 200 cm. Here we show two examples for

frequency ranges 6.8− 7.0 GHz in Figs. 4.7(a) (the real part) and 4.7(b) (the imag-

inary part); and 11.0 − 11.2 GHz in Figs. 4.7(c) (the real part) and 4.7(d) (the

imaginary part). For the numerical RMT data (zrmt the black curves), we use the

Monte Carlo method to generate zrmt and then compute the eigenvalues, and the

loss parameters (α = 0.3 for 6.8 − 7.0 GHz and α = 0.4 for 11.0 − 11.2 GHz) were

determined by the best-matched distribution with a much wider frequency range (2
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Figure 4.7: The probability distributions of (a) the real part and (b) the

imaginary part of the normalized impedance eigenvalues in the frequency

range 6.8− 7.0 GHz, and (c) the real part and (d) the imaginary part of

the normalized impedance in the frequency range 11.0− 11.2 GHz.
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GHz). As seen in Fig. 4.7 the distribution of the eigenvalues of the normalized im-

pedance has much better agreement with the prediction of RMT when we consider

the short-orbit correction up to the orbit length of 200 cm.

We have also compared the statistics of z(LM )
n (LM = 200 cm) and z(1)

n which

directly use Zavg in the RCM normalization [Eq. (4.9)]. In small frequency windows,

the statistics of z(LM )
n and z(1)

n are similar, and they both agree better with the

theoretical prediction zrmt than the statistics of z(0)
n . However, when we enlarge the

frequency window, the PDFs of the z(0)
n get closer to the other two. This is because

the fluctuations in the impedance due to a short orbit can be compensated in a wide

enough frequency window (i.e., the required window is 2 GHz for the shortest orbit

with Lb(1,1) = 15 cm). Therefore, we take a 2 GHz frequency window to obtain a

universal distribution that is independent of which normalization methods we use

[Eqs. (4.8), (4.9) or (4.10)], and we also determine the loss parameter from this

universal distribution [3, 88, 90].

Furthermore, the deviations shown in Fig. 4.7 match the difference between

Zavg and Zrad shown in Fig. 4.6. For example, in the frequency range 6.8− 7.0 GHz

the ensemble-averaged impedance Zavg,11 is smaller than the radiation impedance

Zrad,11 in the real part and larger in the imaginary part. In Figs. 4.7(a) and 4.7(b)

we can see the same bias of the distribution of the normalized impedance z(0)
n that is

normalized with the radiation impedance only. Therefore, with the short-orbit cor-

rection, we can better explain the deviations between the statistics of the measured

data and the universal properties predicted by RMT.
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4.4.2 Statistics of the Scattering Matrix

We now test the benefits of the short-orbit correction in uncovering universal

statistics of the scattering matrix (srmt) predicted by RMT. We find that including

short orbits in the RCM normalization improves our determination of the RMT

statistical properties of the scattering matrix S, given the same number of samples

from the ensemble realizations and the frequency window. In other words, we show

that the need to resort to a wide frequency window over large numbers of modes

is significantly reduced after including the short-orbit correction in the impedance

normalization. We show the results of the one-port experiment and the two-port

experiment in the 1/4-bowtie cavity with 100 realizations varied by the two per-

turbers.

Random matrix theory predicts that the eigenvalue of the scattering matrix

srmt = (zrmt − 1)(zrmt + 1)−1 should have an independent uniformly-distributed

phase. In other words, the phases ϕs of the eigenvalues of srmt should have a uniform

distribution from 0 to 2π independent of loss, frequency, and mean level spacing

[63, 111]. Hemmady et al. [60, 88] have experimentally verified this prediction in

the 1/4-bowtie cavity by the original RCM. Here we examine the statistics of the

phase ϕs of the eigenvalues of the normalized scattering matrix

s(LM )
n =

(
z(LM )

n − 1
) (

z(LM )
n + 1

)−1
(4.11)

in varied frequency bandwidths and LM , in order to analyze the influence of the

short-orbit correction.

Firstly, we show an example in Fig. 4.8 to illustrate the benefits of using
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Figure 4.8: An example of the probability distributions P (ϕs) of the

phase ϕs of eigenvalues of the normalized scattering matrices, taken over

from the 11.0− 11.5 GHz frequency window.
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short-orbit-corrected data to determine the statistical properties of the scattering

matrix. We do the RCM normalization with (i) the radiation impedance matrix

(Zrad) only [Eq. (4.8)] and (ii) with the short-orbit-corrected radiation impedance

matrix (Z(LM )
soc ) [Eq. (4.10)] from a two-port 1/4-bowtie cavity. The data of the

normalized scattering matrix are formed by taking the measured impedance from

each of the 100 realizations and in a 500 MHz frequency range (11.0 − 11.5 GHz).

The blue (squares) curve is from data normalized with Z(LM )
soc (LM = 200 cm), the

green (circles) curve is from data normalized with the radiation impedance only,

and the black line shows the uniform distribution for comparison. In this frequency

range, it is clear that the distribution normalized with the short-orbit correction

is significantly closer to a uniform distribution than the one normalized with the

radiation impedance only.

In order to do a thorough analysis of the benefits of the short-orbit correction,

we define a parameter, the average root-mean-square (RMS) error to evaluate how

uniform the resulting phase distributions P (ϕs) are. Here the RMS error is defined

as

RMS error ≡ 1

〈ni〉

√√√√ 1

10

10∑

i=1

(ni − 〈ni〉)2, (4.12)

where ni is the number of elements in the ith bin in the 10-bin histogram of P (ϕs),

and 〈ni〉 is the mean of ni. The RMS error is the standard deviation of the 10-bin

histogram normalized by its mean. Therefore, when a distribution is closer to a

uniform distribution, its RMS error is smaller. We compute the RMS errors of the

phase distributions P (ϕs) from the normalized scattering matrices with different
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RCM normalization methods and varied frequency window sizes, then we compute

the average RMS error of each frequency window size, given the data in the spectral

range from 6 to 18 GHz in 100 realizations. Figure 4.9 shows the average RMS error

versus the frequency window sizes of (a) the one-port case and (b) the two-port case.

In Fig. 4.9(a) the one-port case, the normalized scattering parameter are cal-

culated from impedance normalized with the radiation impedance only (green cir-

cles) and with additional short orbits according to the maximum orbit length from

LM = 50 cm (red triangles) up to LM = 200 cm (blue squares), versus frequency

window sizes from 0.1 to 4.0 GHz. The results indicate that the distributions of

the measured data are systematically more uniform as more orbits are taken into

account in the impedance normalization [Eq. (4.10)] for a given window size. The

improvement is dramatic after including just a few short orbits (LM = 50 cm, 7

trajectories) and saturates beyond LM = 100 cm (36 trajectories). The periodic

wiggles represent the effects of the strongest remaining orbit not taken into ac-

count in the theory. Note that the radiation impedance curve (green circles) has

local minimums near 1.8 GHz and 3.6 GHz, which correspond with the effect of the

shortest remaining orbit [the one launching from the port, bouncing on wall D, and

returning back, with the orbit length Lo = 15 cm and Lport(1,1) = 1.86 cm, and thus

c/(Lo + Lport(1,1)) ' 1.8 GHz]. Thus, we see that nonuniversal effects of short orbits

in the ensemble of a wave chaotic system can be efficiently removed by consider-

ing a few short orbits or by increasing the window size for the frequency ensemble.

It is observed that the improvement of statistical properties with the short-orbit

correction is more significant when the frequency window size is smaller.
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Figure 4.9: The average RMS error of the phase distributions P (ϕs)

of the eigenvalues of the normalized scattering matrices from different

normalization methods and varied frequency window sizes. Shown are

(a) the one-port case and (b) the two-port case.
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Figure 4.9(b) shows the data of the two-port case, and the results agree with

the one-port case. The average RMS errors are in general smaller because we have

two times of eigenvalues in the two-port experiment than the one-port experiment.

Therefore, the phase distributions are more uniform. For comparison, we also add

a curve (pink stars) for the data normalized by the ensemble averaged impedance

matrix Zavg, and it is the most uniform case. Thus, in Chapter 5 and Chapter

6, I may directly use Zavg [Eq. (4.9)] when we need to apply the extended RCM

normalization.

4.4.3 Statistics of a Single Realization

In Section 4.4.1 we see the extended RCM works similarly with Zavg or Z(LM )
soc

to reveal the universal statistical properties of the normalized impedance matrix

zn; in Section 4.4.2 the extended RCM with Zavg works better on the statistics of

the phase of the eigenvalues of the normalized scattering matrix sn. Nevertheless,

the extended RCM with the short-orbit correction is still useful when creating an

ensemble of configuration realizations by perturbers is not conveniently applicable.

To show the benefit of the short-orbit correction in this stringent situation,

we examine the statistical properties of the normalized impedance matrix zn in 500

MHz frequency windows from 6 to 18 GHz for a single realization of the empty 1/4-

bowtie cavity. Random matrix theory predicts that the distribution of the complex

eigenvalues of z(LM )
n should have the mean = 1 and identical standard deviations

in the real and the imaginary parts [56, 57, 58]. For the one-port case, we use the

86



normalized impedance directly, and for the two-port case, we consider the eigenval-

ues of the 2× 2 normalized impedance matrix. We compute the errors between the

experimental results and the theoretical prediction for a series of frequency windows

covering the range from 6 to 18 GHz, and the results are shown versus different

short-orbit corrections with varied maximum orbit lengths LM in Fig. 4.10.

Figure 4.10 shows that the errors (δµ and δσ) decrease upon including more

short orbits in the correction (i.e., increasing LM). In each 500 MHz frequency

window, the error δµ is defined as the root-mean-square value of |µZ − 1| for the

difference of the measured mean from the theoretical mean 1, and δσ is defined as

the root-mean-square value of |σR − σX |/(σR + σX) for the difference of standard

deviations between the real part and the imaginary part of the normalized impedance

eigenvalues. µZ is the means of the eigenvalues of z(LM )
n in each window, and σR

and σX are the standard deviations of the real part and the imaginary part of

the eigenvalues in each window, respectively. Notice that the case of LM = 0

denotes the impedance normalized by only the radiation impedance without any

short-orbit corrections. For both one-port and two-port cases, the errors (δµ and

δσ) decrease when we use more short orbits to remove the nonuniversal features in

the complicated wave system. This verifies that using the short-orbit correction in a

single realization of the wave chaotic system can more effectively reveal the universal

statistical properties in the data.
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Figure 4.10: The errors for (a) the one-port experiment and (b) the two-

port experiment. Shown are δµ for the errors in the mean (blue circles)

of the normalized impedance eigenvalues and δσ for the errors in the

standard deviations (green squares).

88



4.5 Chapter Summary

In this chapter we test the extended random coupling model, a theory for the

nonuniversal effects of port coupling and short orbits on wave-chaotic scattering

systems, in the 1/4-bowtie cavity of the one-port and the two-port systems. In

particular, the theoretical predictions of random matrix theory match the statistics

of the measured data in the cases of a frequency ensemble in a single realization

and a configuration ensemble of 100 realizations. By removing nonuniversal effects

from measured data, we can reveal underlying universally fluctuating quantities in

the scattering and impedance matrices. These results should be useful in many

fields where similar wave phenomena are of interest, such as nuclear scattering,

atomic physics, quantum transport in condensed matter systems, electromagnetics,

acoustics, geophysics, etc.
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Chapter 5

Application of the Random Coupling Model in Fading

We have introduced the extended random coupling model (RCM) in Chapter

2 and also experimentally analyzed the effect of the short orbits and demonstrated

the benefits of using the extended RCM in Chapter 4. The extended RCM is a

statistical model for a complicated wave scattering system, and it can be applied

to different kinds of waves. On the other hand, fading is a wave propagation phe-

nomenon in complicated wave systems and is broadly studied in the field of wireless

communications, satellite-to-ground links, and time-dependent transport in meso-

scopic conductors [8, 76, 77, 78, 79, 80, 112]. In this chapter we apply the extended

RCM to establish a statistical model of fading.

In Section 5.1, we introduce the first-principles model for fading based on the

extended RCM. This random matrix theory (RMT) model of fading provides a more

general understanding of the most common statistical fading models (the Rayleigh

fading model and the Rice fading model) and provides a detailed physical basis for

their parameters. We also report experimental tests on the 1/4-bowtie cavity and

the superconducting cut-circle cavity in Section 5.2 and Section 5.3. The results

show that our RMT model agrees with the Rayleigh/Rice models in the high loss

regime, but there are strong deviations in low-loss systems where the RMT approach

describes the data well.

90



5.1 Fading Model based on the Random Coupling Model

Considering wave propagation between a source and a receiver in a complex

medium, fading is the time-dependent variation in the received signal strength

through a complex medium due to interference or temporally evolving multipath

scattering [8]. To model fading in a wave system, one can use a scattering matrix S

that describes a linear relationship between the input and the output voltage waves

on a network. I consider a 2× 2 scattering matrix, where the two ports of the net-

work system correspond to the transmitter and the receiver of the wave scattering

system. The complicated scattering system is modeled by the scattering matrix.

The magnitude of the matrix element |S21| therefore corresponds to the fading am-

plitude, which is defined as the ratio of the received signal to the transmitted signal

[8].

To apply the random matrix approach, I start with an RMT description of the

2×2 scattering matrix of a wave chaotic system, based on Brouwer and Beenakker’s

work in a chaotic quantum dot [21]. The scattering matrix srmt of the time-reversal-

invariant (TRI) case and s̃rmt of the time-reversal-invariance-broken (TRIB) case do

not contain any system-specific information and are totally ergodic. The statistics

of |srmt,21| and |s̃rmt,21| depend only on the dephasing rate γ of the quantum dot [21].

Note that the statistics of the scattering matrix generated according to Brouwer and

Beenakker’s formulas [21] are equivalent with the statistics of the impedance matrix

generated by Zheng’s method [57, 58] as zrmt = (1 + srmt)(1 − srmt)
−1, which we

introduced in Chapter 2. Hemmady et al. [90] found the relationship between γ
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Figure 5.1: The probability density functions of the fading amplitude

(a) |srmt,21| for the TRI case and (b) |s̃rmt,21| for the TRIB case. Solid

curves show the numerical results from the RMT approach with different

loss parameters. For the higher loss cases (α = 1 and α = 10), the

corresponding Rayleigh distributions are shown as dashed curves.
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and the loss parameter α of the corresponding closed system as γ = 4πα. Figure

5.1 illustrates some probability density functions (PDFs) of (a) |srmt,21| for the TRI

case and (b) |s̃rmt,21| for the TRIB case generated by the Monte Carlo method with

varying loss parameters α. In practice, time-reversal invariance for wave systems can

be continuously broken [26, 49, 53, 113], so in the partially broken case the statistical

properties would be in between the TRI case and the TRIB case. Our group did

work on partial TRI breaking in wave function statistics [49], and Schäfer’s research

also shows the experimental methods of partially breaking time-reversal invariance

by adding magnetized ferrite objects in the wave scattering cavity [52].

In extreme loss cases, the probability density functions (PDFs) of |srmt,21|

and |s̃rmt,21| can be analytically derived [62]. For a lossless system (α = 0), the

distribution of the fading amplitude is uniform for 0 ≤ |srmt,21| ≤ 1 in the TRI case,

and the probability distribution P (|s̃rmt,21|) is a triangular distribution P (x) = 2x

for 0 ≤ x = |s̃rmt,21| ≤ 1 in the TRIB case. Both cases are illustrated as the black

curves in Fig. 5.1. For high loss systems (α À 1), the distribution of |srmt,21| and

the distribution of |s̃rmt,21| both go to [61, 62]

P (x = |srmt,21|; α) = P (x = |s̃rmt,21|; α) = 8παxe−4παx2

, (5.1)

which is identical to the Rayleigh distribution

P (x; σ) =
x

σ2
e−x2/(2σ2) (5.2)

with the relation

σ2 =
1

8πα
. (5.3)
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In other words, the statistics of the complex quantities srmt,21 and s̃rmt,21 have the

phase distributed uniformly from 0 to 2π, and the real and imaginary parts go

to an independent and identically distributed Gaussian distribution of zero mean

and σ standard deviation. More detailed derivations of the statistics of the fading

amplitude in the high loss regime are shown in Appendix D.

The fading amplitudes |srmt,21| and |s̃rmt,21| have not included the system-

specific features yet. Therefore, in order to apply wave chaos theory to practical

systems, one can convert srmt to zrmt and then use the random coupling model

[Eq. (2.7)] to describe the experimental impedance matrix as

Z = iXavg + Ravg
1/2 zrmt Ravg

1/2, (5.4)

to combine the chaotic properties and the non-chaotic system-specific features of a

wave system in the impedance domain [3, 39, 40, 41]. One then can convert the

impedance matrix Z back to the scattering matrix S and have a complete statistical

model for the measured fading amplitude |S21|. We call this the RMT fading model.

The non-zero off-diagonal elements of Zavg bring S21 a non-zero bias in the complex

plane. In Section 5.3 we will use experimental results to show that this non-zero

bias is due to the short-orbit effect, and in the high-loss limit it can be related to

the ν parameter of the Rice fading model [61, 62]. The Rice fading model uses the

Rice distribution

P (x; σ, ν) =
x

σ2
exp

(
−x2 + ν2

2σ2

)
I0

(
xν

σ2

)
, (5.5)

which contains an additional parameter ν (ν → 0 recovers the Rayleigh distribution),

and I0(·) is the modified Bessel function of the first kind of order zero.

94



5.2 Comparison with the Rayleigh Fading Model

We have carried out experimental tests of the RMT fading model by measuring

the complex 2 × 2 scattering matrix S in two quasi-two-dimensional ray-chaotic

microwave cavities, the 1/4-bowtie cavity and the superconducting cut-circle cavity

introduced in Chapter 3 (Figs. 3.1 and 3.5). Both of these cavities have two coupling

ports, which we treat as a transmitter and a receiver. Microwaves are injected

through each port antenna, and the waves introduced are quasi-two-dimensional for

frequencies below the cutoff frequency for higher order modes (∼ 19 GHz) due to

the thin height of the cavities (8 mm in the ẑ-direction). The scales of the billiards

compared to the wavelengths of the microwave signals (1.7 − 5.0 cm) put these

systems into the semiclassical limit. Note in both cavities, the systems are in the

TRI case.

To create an ensemble for statistical analysis, we add two cylindrical metal

perturbers to the interior of the 1/4 bow-tie cavity and systematically move the

perturbers to create 100 different realizations. For the cut-circle cavity, the perturber

is a Teflon wedge that can be rotated inside the cavity. We rotate the wedge by

5 degrees each time and create a total of 72 different realizations. The perturbers

can be considered as scattering objects in the propagation medium, so changing the

positions creates the equivalent of time-dependent scattering variations that give

rise to fading. The 1/4 bow-tie cavity is made of copper, and measurements of

the transmission spectrum at room temperature suggest the loss parameter goes

from α = 0.3 to 1.9, varying with the frequency range [41]. The superconducting
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cut-circle cavity is made of copper with Pb-plated walls and cooled by a pulsed

tube refrigerator to a temperature of 6.6 K, below the transition temperature of

Pb [101, 102, 105]. Measurements of the transmission spectrum suggest the loss

parameter from α = 0.02 to α = 0.2.

The experimental data show good agreement with the RMT fading model. We

first use the extended RCM to reveal the universal part of the measured impedance

as

zn = Ravg
−1/2

(
Z − iXavg

)
Ravg

−1/2, (5.6)

where Z is the measured impedance matrix, and the normalized impedance matrix

zn is expected to correspond to zrmt in Eq. (5.4). Note that I denote this quantity

as z(1)
n [Eq. (4.9)] in Chapter 4, where the superscript (1) denotes the RCM normal-

ization with Zavg. In this process we remove the system-specific features including

the radiation impedance and all short orbits. Because the short-orbit effect has

been removed, the situation is equivalent to the Rayleigh fading environment where

no direct paths exist. By choosing data over all realizations in a 2-GHz frequency

range, we can construct the distribution of |sn,21| and compare with the distribution

of |srmt,21| (the prediction of RMT). Figure 5.2 shows the distributions of the fading

amplitude from the RMT model (black solid), the experimental data (red circles),

and a best-matched Rayleigh distribution (blue dashed). In Fig. 5.2(a) the room-

temperature case in the 1/4-bowtie cavity, the best-matched RMT model gives a

value of the loss parameter α = 0.5 for the experimental data, which corresponds to

σ ' (8πα)−0.5 = 0.282. The best-matched Rayleigh distribution yields σ = 0.226.
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Figure 5.2: Probability density functions from the experimental data

[P (|sn,21|), the red curves with circles] in (a) the 1/4-bowtie cavity and

in (b) the cut-circle cavity, comparing with the RMT model [P (|srmt,21|),

the black solid curves] and the best-matched Rayleigh distribution (the

blue dashed curves).
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The difference in σ values is due to the fact that the loss parameter is not very large

in this case. Nevertheless, both models agree with the experimental data well in this

loss regime. In Fig. 5.2(b) the low temperature case in the superconducting cavity,

the agreement between the experimental data and the RMT model is still good, but

the distributions are never like a Rayleigh distribution. In fact, in the very-low-loss

region (α << 1), the long exponential tail of a Rayleigh distribution can never

match the RMT theoretical distribution that is limited to 0 ≤ |srmt,21| ≤ 1.

5.3 Comparison with the Rice Fading Model

According to RMT, the universal complex parameter srmt,21 has zero mean,

but the system-specific features of short orbits (including the direct orbit between

the two ports) bring about a non-zero bias in the off-diagonal elements of Zavg.

Therefore, the measured S21 can have a non-zero mean, and this is similar in char-

acter to the Rice fading model [Eq. (5.5)]. The Rice fading model is an extension

of the Rayleigh fading model in which the real and imaginary parts of S21 are still

independent and identical Gaussian variables with variance σ2, but the means are

generalized to a biased mean of magnitude ν. The Rice fading model is used in en-

vironments where one signal path, typically the line-of-sight signal, is much stronger

than the others [8, 79, 80], and the ν parameter is related to the strength of the

strong signal. More generally, we find that the RMT fading model in the high loss

limit yields an explicit expression for ν in terms of the short-orbit correction matrix

ν = 〈|sζ,21|〉f =

〈∣∣∣∣∣
2ζ21

(1 + ζ11)(1 + ζ22)− (ζ21)2

∣∣∣∣∣

〉

f

, (5.7)
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and 〈·〉f denotes frequency averaging in the corresponding frequency band. Here

the short-orbit correction matrix ζ is the sum of short-orbit effects introduced in

Eq. (2.10), and we use ζ(LM ) to denote the sum up to the maximum orbit length

LM . The matrix sζ = (1 + ζ)/(1− ζ)−1 is the corresponding scattering matrix of ζ.

This result generalizes the meaning of ν to include the influence of all major (short)

paths. Note that when there is a single strong signal that dominates the sum of

all paths, the ν parameter reverts to the original interpretation of the Rice fading

model.

In the room-temperature experiment in the 1/4-bowtie cavity, the loss parame-

ter is high enough, and we can use the result to compare the relationship between

the RMT model and the Rice fading model [Eq. (5.7)]. In Fig. 5.3, we compute

ζ(LM ) to include short orbits with length up to LM = 200 cm in the 1/4-bowtie

cavity, apply Eq. (5.7) to compute |s(LM )
ζ,21 |, perform a sliding average over a 2-GHz

frequency band, and plot
〈
|s(LM )

ζ,21 |
〉

f
as the red curve. For the ν parameter of the

Rice model, we first remove the coupling features of the ports from the measured

impedance matrix Z by

z = Rrad
−1/2(Z − iXrad)Rrad

−1/2 (5.8)

and convert the impedance matrix z to s. Then we compare the distribution of |s21|

over a 2-GHz frequency band and 100 realizations with the best-matched Rice distri-

bution. Since the σ parameter has been determined by the best-matched Rayleigh

distribution as described above for the fully universal data [Fig. 5.2(a)], we can

use ν as the only fitting parameter. In Fig. 5.3, we plot the ν parameters of the
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best-matched Rice distributions (blue squares) along with the system-specific aver-

age magnitudes of s21 versus the central frequency of a 2-GHz frequency band. The

value of the Rice ν parameter and the system-specific feature described by the RMT

model agree well.

One more advantage of applying the RCM is that we can extend the relations

Eq. (5.3) and (5.7) from the normalized data to the raw measured data in the high

loss cases, in which the effect of the radiation impedance Zrad of the antenna ports

are included. In high loss cases, the magnitude of the elements of srmt are much less

than one, so we take the approximation to the lowest order [114]. For the generalized

ν̃ parameter, we only need to replace the matrix ζ(LM ) in Eq. (5.7) by Zavg(Z0)
−1

or Z(LM )
soc (Z0)

−1 [see Eq. (2.8)], for example

ν̃ =
〈
|S(LM )

soc,21|
〉

f
=

〈∣∣∣∣∣∣
2
√

Z0,11Z0,22Z
(LM )
soc,21

(Z0,11 + Z
(LM )
soc,11)(Z0,22 + Z

(LM )
soc,22)− (Z

(LM )
soc,21)

2

∣∣∣∣∣∣

〉

f

, (5.9)

where Z0 is a diagonal matrix representing the characteristic impedance of the ports.

On the other hand, the generalized σ̃ parameter is a function of the loss para-

meter α and all elements of the matrix Z(LM )
soc or Zavg. If the transmission between the

ports is much less than the coupling reflection at the ports (i.e. |Zavg,21| ¿ |Zavg,11|

and |Zavg,22|), the modified Rayleigh σ̃ parameter can be simplified to

σ̃ ' σ
4
√

Z0,11Ravg,11Z0,22Ravg,22

|Z0,11 + Zavg,11||Z0,22 + Zavg,22| . (5.10)

5.4 Chapter Summary

In conclusion, we have provided a first-principles derivation of a RMT fading

model. In high-loss scattering environments, this model reduces to the traditional
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Rayleigh and Rice fading models, and hence it provides a more general understand-

ing of the detailed physical basis for their parameters σ and ν. If one use the

RCM to normalize out the effect of the radiation impedance Zrad, then the σ pa-

rameter is only determined by the loss parameter α of the scattering system, and

the ν parameter is determined by the effect of short orbits. Moreover, in low-loss

environments, the RMT model can better predict the distribution of the fading am-

plitude |S21|. This is a new application of wave chaos theory in the field of wireless

communications. Because fading is a general phenomenon for all sorts of waves

[8, 76, 77, 78, 79, 80, 112], the RMT fading model can, in addition to the wireless

communication field, also be applied to other wave scattering related applications.
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Chapter 6

Wave Scattering Properties in Varied Loss Systems

The extended random coupling model (RCM) gives a complete statistical

model of the impedance matrix of a complicated wave scattering system. One can

use it to reveal the universal features, namely the normalized impedance matrix zn,

by applying the RCM normalization

zn = Ravg
−1/2

(
Z − iXavg

)
Ravg

−1/2, (6.1)

where Z is the raw cavity impedance, as we have shown in Chapter 5 and Eq. (2.15).

The normalized impedance matrix zn can be converted to the normalized scattering

matrix sn, and one can use these two matrices to derive more wave properties,

such as the variance ratio and the thermopower. Therefore, the extended RCM

can predict the statistics of all of these wave properties, and the statistics of these

universal features only depend on the loss parameter α.

In Chapter 3 we introduced three microwave systems with varied loss. The

superconducting cut-circle cavity has the loss parameter from α = 0.02 to α = 0.2

as we increase the temperature from 6.6 K to room temperature. The 1/4-bowtie

cavity has the loss parameter from α = 0.3 to α = 1.9 for the frequency range from

6 GHz to 19 GHz. The GigaBox has the loss parameter from α = 1 to α = 10 for

the frequency range from 3.0 GHz to 10.1 GHz. With these systems, we can test

the predictions of the RCM with a wide spectrum of the loss parameter.
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6.1 Impedance and Scattering Matrices

Firstly, we compare the statistics of the normalized impedance matrix zn, the

normalized scattering matrix sn, and the predictions of RMT. We use the ensemble-

averaged impedance Zavg to represent the system-specific features, and we remove

it from the measured impedance Z by Eq. (6.1). In Chapter 4 we have tested the

results in the 1/4-bowtie cavity, and here we use four sets of data from the three

different experimental systems. The first set of data is from the superconducting

cut-circle cavity at the temperature 6.6 K with 72 configuration realizations and the

frequency range 14−16 GHz. The second set of data is from the cut-circle cavity at

the temperature 270 K (and therefore not superconducting) with 72 configuration

realizations and the frequency range 17− 19 GHz. The third set of data is from the

1/4-bowtie cavity at room temperature with 100 configuration realizations and the

frequency range 17− 19 GHz. The fourth set of data is from the GigaBox at room

temperature with 199 configuration realizations and the frequency range 9.0 − 9.1

GHz. All of these experiments are two-port. The reason I chose these representative

data sets is because their loss parameters are all different and on the order of 10−2,

10−1, 100, and 101, spanning a wide range.

For the numerical results, we generate a series of sets of the impedance matrix

zrmt according to RMT [Eq. (2.2)] with varied loss parameter values (ranging from

α = 0 to α = 10 with the step 4α = 0.01), and we also derive the scattering matrix

srmt from zrmt. To determine the best-fit distribution, we compare the probability

density function (PDF) of the measured results and the numerical results of the
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normalized scattering matrix component |sn,21| (i.e. the fading amplitude). The

loss parameter values of the best-fit P (|sn,21|) are α = 0.02, α = 0.21, α = 1.90, and

α = 9.31 for the four sets of experimental data (with the coefficients of determination

R2 = 0.9962, R2 = 0.9976, R2 = 0.9996, and R2 = 0.9999) respectively. The results

of the best-fit PDFs will be shown in Fig. 6.2(b). I choose P (|sn,21|) to find the

best-fit loss parameters because these results are directly from the analysis of fading

statistics in Chapter 5. In addition, the scattering matrix elements are bounded in

magnitude (between 0 and 1) making it more reliable for fitting then the elements of

the impedance matrix, which are unbounded. Since the RCM is a complete model

for the entire matrices zn and sn, the loss parameter determined from one component

(i.e. sn,21) should be able to predict the PDFs for all the other components.

Figure 6.1 shows the comparison of the PDFs of (a) the real part and (b)

the imaginary part of the normalized impedance component zn,11. Figure 6.2 shows

the comparison of the PDFs of the magnitude of the normalized scattering matrix

components (a) |sn,11| and (b) |sn,21|. In all plots I use gray curves for the measured

data from the cut-circle cavity at 6.6 K, pink curves for the measured data from

the cut-circle cavity at 270 K, light green curves for the measured data from the

1/4-bowtie cavity, and light blue curves for the measured data from the GigaBox.

Respectively, the numerical data are shown in dashed curves in black, dark red,

green, and blue. Since the loss parameter values are determined by the best-fit to

P (|sn,21|), Fig. 6.2(b) shows very good agreement between the experimental data

and the RMT predictions. For the other plots, there are small deviations, but the

agreement is still good. This shows that the extended RCM gives a complete sta-
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Figure 6.1: Probability density functions of (a) the real part and (b) the

imaginary part of the normalized impedance component zn,11 from four

sets of experimental data. The thicker solid curves represent measured

results from the cut-circle cavity at 6.6 K (gray), the cut-circle cavity at

270 K (pink), the 1/4-bowtie cavity (light green), and the GigaBox (light

blue). The dashed curves are the best-fit numerical results (from fits

to P (|sn,21|)) to the four experimental results with the loss parameters

shown respectively.
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Figure 6.2: Probability density functions of the magnitude of the nor-

malized scattering matrix components (a) |sn,11| and (b) |sn,21| from four

sets of experimental data. The thicker solid curves represent measured

results from the cut-circle cavity at 6.6 K (gray), the cut-circle cavity

at 270 K (pink), the 1/4-bowtie cavity (light green), and the GigaBox

(light blue). The dashed curves are the best-fit numerical results (from

fits to P (|sn,21|)) to the four experimental results with the loss parame-

ters shown respectively.
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tistical model for different components of the impedance matrix and the scattering

matrix of a complicated wave scattering system.

Another test of the RCM is to examine the statistical properties of the phase

of the normalized scattering matrix component sn,21. RMT predicts the statistics of

this quantity to be independent of the loss parameter, and the distribution should

be uniform from 0 to 2π. The comparison of the PDFs of the experimental data

and the theory, a uniform distribution, is shown in Fig. 6.3. It shows that the

experimental PDFs are all very uniform and independent of the loss parameter.

Here we have examined the statistics of the normalized impedance matrix and

the normalized scattering matrix. We can also use the extended RCM to combine

the predictions of RMT (zrmt) and the system-specific features (Zavg) to examine

the statistics of the raw measured impedance matrix Z and the raw measured scat-

tering matrix S. Presumably the statistics should be a function of not only the

loss parameter but also all of the components of Zavg. However, in the next section

we will introduce the variance ratio of the impedance matrix, which is independent

of Zavg, hence this variance ratio has the same value before and after the RCM

normalization.

6.2 Variance Ratio

The variance ratio of the impedance matrix is defined as [59]

ΞZ ≡ Var[Zij]√
Var[Zii]Var[Zjj]

, i 6= j, (6.2)
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Figure 6.3: Probability density functions of the phase of the normalized

scattering matrix component sn,21 from four sets of experimental data.

The thicker solid curves represent measured results from the cut-circle

cavity at 6.6 K (gray), the cut-circle cavity at 270 K (pink), the 1/4-

bowtie cavity (light green), and the GigaBox (light blue). The dashed

black curve is the uniform distribution.

109



where Var[x] stands for the variance of the x variable. For the experimental data,

I take the variance over configuration realizations at each frequency, so Var[x] is a

function of frequency. Zii and Zjj are the diagonal components of the impedance

matrix, and they are Z11 and Z22 in the two-port case. Zij is the off-diagonal

component, and it is Z12 or Z21 in the two-port case. In all of my experiments, the

systems are reciprocal, i.e. Z12 = Z21.

Considering the RCM normalization [Eq. (6.1)], in general the variance ratios

of the impedance matrices before (Z) and after (zn) the RCM normalization could

be different. However, if the two ports of the wave scattering system are far apart,

then the off-diagonal components of system-specific features, namely the ensemble-

averaged impedance matrix components Zavg,21 and Zavg,12, are small and negligible

[59]. More specifically, Ravg,11, Ravg,22 À |Ravg,12|, |Ravg,21|. In this case, one can

take Ravg as a diagonal matrix. Therefore, the relationship of impedance variances

over configuration realizations at a frequency f will be

Var[Z11] = Ravg,11(f)Var[zn,11], (6.3)

Var[Z22] = Ravg,22(f)Var[zn,22], (6.4)

Var[Z12] =
√

Ravg,11(f)Ravg,22(f)Var[zn,12], (6.5)

and therefore

ΞZ = Ξzn . (6.6)

This shows the significance of the variance ratio of the impedance: the quantity is

independent of the system-specific feature Zavg and is directly related to the univer-

sal fluctuating quantity zn whose statistics only depend on the loss parameter α [59].
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Therefore, the variance ratio of the measured impedance matrix ΞZ is a universal

property of the wave scattering system and only depends on the loss parameter α.

On the other hand, the variance ratio of the scattering matrix ΞS does not have this

universality, and we will discuss this in more detail later in this section.

We can test this prediction [Eq. (6.6)] in the experimental systems with varied

loss parameter values. In each experimental system, I choose a 100 MHz frequency

window where the assumption Ravg,11, Ravg,22 À |Ravg,12|, |Ravg,21| is valid, and the

data are shown in Fig. 6.4. Note that if the off-diagonal terms are not negligible,

the simple equations (6.3) − (6.6) will not be true. I compute the variance ratio

of the impedance matrix at each frequency point over the configuration realizations

and then calculate the averaged variance ratio in the 100 MHz frequency window.

The results of the averaged variance ratio are shown in Fig. 6.5 versus the loss

parameter on a logarithmic scale. The loss parameter values of the experimental

data are α = 0.02, α = 0.21, α = 1.90, and α = 9.31 from the previous section. The

results show that the relationship ΞZ = Ξzn is valid to good approximation in all

four cases.

Zheng et al. have an analytical prediction for the variance ratio of impedance

versus the loss parameter [59], which is shown as the blue curve in Fig. 6.5. The

agreement between the theory and the experimental results is also good. However,

the agreement of the lower loss cases is not as good as the higher loss cases. This

is because the impedance values fluctuate enormously when the loss is reduced. In

principle, as the loss parameter goes to zero, the fluctuations should diverge [57, 58].

Our numerical test of computing the variance ratio of zrmt shows that the standard
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Figure 6.4: The ensemble-averaged resistances Ravg,11 (blue), Ravg,22

(green), and |Ravg,12| (red) versus frequency in (a) the cut-circle cav-

ity at 6.6 K over 72 realizations, (b) the cut-circle cavity at 270 K over

72 realizations, (c) the 1/4-bowtie cavity over 100 realizations, and (d)

the GigaBox over 199 realizations. In all of these cases the condition

Ravg,11, Ravg,22 À |Ravg,12|, |Ravg,21| is well satisfied for these data sets.
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Figure 6.5: The averaged variance ratios of the impedance matrix before

the RCM normalization (ΞZ , red circles) and after the RCM normaliza-

tion (Ξzn , green squares) from the four sets of experimental data. The

blue curve is the theoretical prediction for Ξzn versus the loss parameter

α [55]. The light blue stars with error bars are the numerical data with

the same ensemble sizes as the measured data. The black diamond with

an error bar is the numerical result with many more samples (40001

realizations). The horizontal axis is on a logarithmic scale.
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error of the averaged variance ratio (in a fixed number of realizations and in a

fixed frequency range) grows as the loss parameter decreases. More specifically, I

numerically generate zrmt with the same loss parameters as the measured data, the

same frequency windows, and the same number of realizations as the measured data.

Then I compute the averaged variance ratio of the numerical data, as well as the

standard error bars of the numerical data. The results are plotted in Fig. 6.5 as

the light blue stars and the error bars. Note that the number of realizations (72,

72, 100, and 199 in the four sets of data, in order of increasing α) influences the

accuracy of the variances and the length of the standard error bars, and the number

of frequency points in 100 MHz windows (1001, 1001, 401, and 16001 in the four

sets of data, respectively) for computing the average also influences the length of

the standard error bars. Due to the finite number of samples, the light blue stars do

not agree well with the theory (the blue curve) in lower loss cases. In the numerical

test, if we increase the number of samples, the numerical results converge to the

theoretical prediction. I have tried the numerical data for the α = 0.02 case with

40001 realizations and 1000 frequency points in the 100 MHz frequency window.

This result is shown as the black diamond with an error bar in Fig. 6.5. Therefore,

for the lower loss cases, one needs many more realizations to get better statistics to

properly calculate the impedance variance ratio.

In contrast with the variance ratio of the impedance matrix, one can similarly

define the variance ratio of the scattering matrix [59]

ΞS ≡ Var[Sij]√
Var[Sii]Var[Sjj]

, i 6= j. (6.7)
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However, the relationship of S and sn is not a simple additive equation as Eq. (6.1).

Therefore, ΞS is not equal to Ξsn in general. In addition ΞS is not universal, and

there is no simple ΞS function of α, such as the blue curve in Fig. 6.5. Only in the

high loss limit, can one make the assumption |Z12|, |Z22| ¿ |Z11|, |Z22|, and it will

lead to [59]

ΞS = Ξsn = ΞZ , (α À 1). (6.8)

I use the same data sets from Fig. 6.5 to test this prediction. The computing

process is similar, but the impedance matrices are replaced by the scattering ma-

trices. The results are shown in Fig. 6.6. The results show that the averaged ΞS

and the averaged Ξsn do not agree with each other in lower loss cases. However,

when the loss parameter increases, the deviation between the averaged ΞS and the

averaged Ξsn decreases, and the value approaches 0.5, as predicted by RMT in the

high-loss limit [59].

6.3 Quantum Dot Properties and the Thermopower

Another interesting application of random matrix theory (RMT) is to con-

densed matter physics, including the research of quantum electronics and classical

and quantum optics [115]. In order to compare the experimental results with the

predictions of RMT, one can use the RCM to remove the system-specific features of

the condensed matter system. In this section, we focus on the RMT predictions of

the properties of a quantum dot.

A common type of quantum dots are cavities etched in a semiconducting two-
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Figure 6.6: The averaged variance ratios of the scattering matrix before

the RCM normalization (ΞS, red circles) and after the RCM normaliza-

tion (Ξsn , green squares) from the four sets of experimental data. The

horizontal axis is the loss parameter α on a logarithmic scale. The blue

dashed line is the theoretical prediction of ΞS for α À 1.
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dimensional electron gas. Such cavities are usually of sub-micron scale [115]. A

ballistic quantum dot (the mean free path greater than the quantum dot’s linear

dimension) can be viewed as a wave scattering system of quantum waves. Since

the wave equations are the same, researchers have utilized microwave cavities to

study the statistics of the properties of a quantum dot [37, 72, 90, 94, 116]. These

properties include the conductance [117, 118, 119] and the thermopower [120]. In

this wave chaos (quantum chaos) analogy, the statistics of these properties can also

be investigated by RMT models.

In this section, I utilize the data from the two quasi-two-dimensional microwave

cavities (the cut-circle cavity and the 1/4-bowtie cavity) to test these RMT predic-

tions. I apply the RCM normalization [Eq. (6.1)] to remove the system-specific

features and unveil the perfectly-coupled impedance matrix zn. On the other hand,

I generate numerical results zrmt, using the loss parameter values that are deter-

mined by matching the PDFs of |sn,21| and |srmt,21|. Note that the experimental

and the numerical data are in the time-reversal invariant (GOE) case.

6.3.1 Transmittance

The first property we test is the transmittance τ of a quantum dot. We define

the transmittance τ ≡ |sn,21|2 for our two-port microwave cavity. A port of our

microwave cavity is like a single-channel ballistic point contact to a quantum dot.

According to the RMT prediction, the transmittance is the sum of the transmission

eigenvalues of random transmission matrices [115, 119]. Schanze et al. have studied
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the statistics of the transmittance (as the transmission coefficient in their work) in

microwave cavities [94]. Our superconducting cut-circle cavity allows us to test the

theoretical predictions in the previously inaccessible case, namely the extremely-

low-loss case. For a lossless system (α = 0), P (|sn,21|) is uniform between 0 and 1

(shown in Chapter 5), and therefore [117, 118]

P (τ ; α = 0) =
1

2
τ−1/2. (6.9)

I show the measured distributions of the transmittance in Fig. 6.7. In Fig. 6.7(a),

the experimental data are from the superconducting cut-circle cavity at the tem-

perature 6.6 K with 72 realizations and in the frequency range 14 − 16 GHz. In

Fig. 6.7(b), the experimental data are from the 1/4-bowtie cavity with 100 realiza-

tions and in the frequency range 9− 11 GHz. The best-fit loss parameter values are

α = 0.02 and α = 0.80 [according to P (|sn,21|)], respectively. The agreement be-

tween the theoretical PDFs and the experimental PDFs is very good. In Fig. 6.7(a)

I add the lossless case [Eq. (6.9)] as the green curve for comparison.

6.3.2 Thermopower

Another important property of a quantum dot is the thermopower [120]. The

thermopower Pth, or thermoelectric power, of a material is the magnitude of an

induced thermoelectric voltage ∆V produced by a temperature difference ∆T across

that material at zero electrical current, as

Pth =
∆V

∆T
, (6.10)
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Figure 6.7: The PDFs of the transmittance τ in (a) the cut-circle cavity

at 6.6 K and (b) the 1/4-bowtie cavity. Shown are the experimental data

(solid red) and the numerical data (dashed blue). The thin green curve

in (a) is the RMT prediction for the lossless case.
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and it has units of volts per kelvin. In a chaotic quantum dot,

Pth ∝ d

dE
(ln τ) , (6.11)

where τ is the transmittance, and E is the energy [115, 120].

The statistics of thermopower Pth can be related to the symmetrized Wigner-

Smith matrix

QWS = −ih̄S−1/2

(
d

dE
S

)
S−1/2, (6.12)

whose eigenvalues are called proper delay times [115, 121]. These quantities not

only depend on the statistics of the scattering matrix S, but also the information of

the energy dependence of S [115, 120].

In our experiments, the measured data zn are in the frequency domain, and

the numerical data zrmt [Eq. (2.2)] can also be generated with frequency dependence

[3]. The numerical method is introduced in Appendix A.1.1. Therefore, we convert

the frequency spectrum to the energy spectrum and compute the energy derivatives

of the impedance matrix, the scattering matrix, or the transmittance. To examine

the statistics of the thermopower, we define a normalized thermopower as

P̃th =
d

dẼ
(ln τ) , (6.13)

where Ẽ is the normalized energy Ẽ ≡ k2/∆k2, which is the eigen-energy k2 nor-

malized by the mean eigen-energy spacing ∆k2. The experimental data and the

generated numerical data are the same as those used in the analysis of the statistics

of the transmittance τ , and the results for P (P̃th) are shown in Fig. 6.8.

The comparison between the experimental data and the numerical data shows

good agreement. For the extremely-low-loss case in Fig. 6.8(a), the thermopower
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and the best-fit Gaussian distributions (dashed green) to the experimen-

tal data.

121



distribution is strongly non-Gaussian as the RMT prediction [115, 120]. When the

loss increases, the thermopower distribution tends to a Gaussian-like distribution,

as the results shown in Fig. 6.8(b).

The deviation of the experimental PDF and the numerical PDF at the peak in

Fig. 6.8(a) is due to the noise in the measured data. Since the measured data have

fluctuating noise as a function of frequency, when we compute the energy derivative,

the chance to get a near-zero derivative is reduced. We have utilized smoothing

approaches to eliminate the noise, but there are still remaining noisy fluctuations.

On the other hand, we have added noise to the noise-free RMT calculation s21,rmt

and found the same effect. In fact we added Gaussian random noise of the same

magnitude (seen in the measured data, the standard deviation of the noise 4s =

0.002) and found that the PDF of P̃th of the noisy RMT calculation agrees almost

exactly with the data (see Fig. 6.9).
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Figure 6.9: The PDFs of the normalized thermopower P̃th in the cut-

circle cavity at 6.6 K. Shown are the experimental data (solid red) and

the RMT numerical data with additional noise in srmt,21 (dashed blue).

Compare to Fig. 6.8(a).
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Chapter 7

Conclusions and Future Work

7.1 Conclusions

Wave scattering in a complicated environment is a common challenge in many

engineering fields because the complexity makes exact solutions impractical to find.

On the other hand, chaos theories offer useful approaches to analyze the statistical

properties of these complicated dynamical systems [27]. Therefore, there is great in-

terest in studying the wave properties of systems that show chaos in the semiclassical

(short wavelength, or ray) limit [11]. These wave-chaotic systems appear in many

contexts, including nuclear physics, acoustics, quantum dots, and electromagnetic

enclosures.

Researchers have developed wave-chaotic models to understand wave statistics

in complicated scattering environments. The random coupling model (RCM) is one

wave-chaotic approach that applies ideas from the field of wave chaos to practical

questions in complicated scattering environments [2]. The theory of the RCM has

been extended to combine universal wave-chaotic features and the specific details of

a practical system [4], and the extended RCM is the core theory of this dissertation.

In this dissertation I first introduced the wave chaos theory, random matrix

theory (RMT) [1], and reviewed the development of the random coupling model

[2, 3, 4]. One of my major contributions is to thoroughly test the RCM and the
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short-orbit correction in a wave scattering system with a quasi-two-dimensional

microwave cavity [40, 41]. The experimental results show that the extended RCM

can well describe the statistics of a complicated wave scattering system even under

stringent conditions, such as a single configuration realization or a small frequency

window.

In addition to the quasi-two-dimensional microwave cavity, I have utilized two

more experimental systems to test the extended RCM in systems with varied loss.

In order to achieve extremely-low-loss, I have used a superconducting microwave

cavity and built an in-situ broadband cryogenic calibration system to measure wave

scattering properties [108]. For the high loss limit, a three-dimensional microwave

cavity offers a high-loss wave scattering environment.

Another contribution of this dissertation is demonstrating new applications of

the RCM. One application is for the fading phenomenon of wave propagation in a

complicated system, which is well known in the wireless communication field [8].

The extended RCM offers a complete model for fading statistics [61, 62], which en-

compasses the traditional Rayleigh and Rice fading models as its high-loss limit case

and further predicts the fading statistics to the low-loss limit. Other applications of

the extended RCM include offering a complete statistical model for wave properties,

such as the impedance matrix, the scattering matrix, the variance ratio, and the

thermopower. These results are beneficial for physical and engineering fields, in-

cluding nuclear scattering, atomic physics, quantum transport in condensed matter

systems, electromagnetics, acoustics, geophysics, etc.
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7.2 Future Work

I have experimentally tested and applied the extended random coupling model

in linear microwave systems with time-reversal invariance (the GOE case). There

are other interesting systems where we have not tested the RCM yet, such as mixed

(regular and chaotic) systems, time-reversal invariance broken (TRIB, the GUE

case) systems, and nonlinear wave systems. One would want to ask if the RCM

can be extended to these systems. In order to answer this question, I will explain

these systems in the following sections and point out possible experimental systems

for testing the RCM. Another direction for the future work is utilizing the informa-

tion of short orbits to locate the source of emitted waves in a complex scattering

environment.

7.2.1 Random Coupling Model for Mixed Systems

In Chapter 1, I have introduced wave scattering systems whose boundaries are

a billiard with a ray-chaotic shape. More generally, according to the shape, there are

three categories of billiards: (i) chaotic, (ii) integrable, and (iii) mixed. For example,

the 1/4-bowtie and the cut-circle are both chaotic billiards. A rectangular box like

the GigaBox is an integrable billiard, but we add perturbers in the GigaBox cavity

to make it a complicated wave scattering system. For the third type, the mixed

billiards are systems where there are chaotic regions and integrable regions in their

phase space [27, 122]. Fig. 7.1 gives some examples of mixed billiards, as (a) a cut-

circle with a circular insert, (b) an annular billiard, (c) a 1/2-mushroom billiard,
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Figure 7.1: Mixed two-dimensional billiards: (a) a cut-circle with a cir-

cular insert, (b) an annular billiard, (c) a 1/2-mushroom billiard, and

(d) a 1/2-mushroom billiard with a triangular stem.

and (d) a 1/2-mushroom billiard with a triangular stem.

The RCM introduced in this dissertation assumes the wave system is purely

chaotic in the semiclassical limit. Ming-Jer Lee et al. in our group have established

a more extended RCM [122] to encompass the mixed wave systems by modifying

the RCM expression [Eq. (2.7)] to

Z = iXavg + AC
1/2Ravg

1/2
(
zrmt

)
Ravg

1/2AC
1/2 + AI

1/2Rrad
1/2

(
zint

)
Rrad

1/2AI
1/2.

(7.1)
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AC and AI are diagonal matrices of the weight coefficients of the chaotic portion

and the integrable portion in the phase space [122]. The elements of AC and AI

are functions of the port positions, i.e. AC,nn = AC,nn(~rn) and AI,nn = AI,nn(~rn)

for 1 ≤ n ≤ N , where ~rn is the position vector of the nth port. For each port, the

weight coefficients of the chaotic portion and the integrable portion are determined

by the position of the port in the billiard, and AC,nn +AI,nn = 1 with 0 ≤ AC,nn ≤ 1

and 0 ≤ AI,nn ≤ 1. If the ports are in the purely chaotic regions, AC becomes an

identity matrix, AI vanishes, and the RCM expression goes back to Eq. (2.7). zint is

the impedance matrix for orbits originating from the ports in the integrable regions,

and it is also a deterministic quantity depending on the positions of the ports [122].

Therefore, only zrmt is a random matrix based on RMT, and all of the other terms

are deterministic and can be measured or calculated by knowing the geometry of

the boundary shape and the port positions.

The theoretical model of the RCM for mixed systems is developed [122], and

some examples of the mixed billiards are shown in Fig. 7.1. Therefore, one can build

a wave scattering system with a cavity of one of these mixed billiards, and then one

can do experiments by using a network analyzer (as the experimental systems in

Chapter 3) to test the RCM [Eq. (7.1)]. This can broaden the range of applications

of the RCM.
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7.2.2 Random Coupling Model for TRIB Systems

Another way to broaden the range of applications of the RCM is to expand it

to time-reversal invariance broken (TRIB) systems. The random matrix theory for

TRIB systems is ready, so one can generate zrmt in the GUE case [13, 17, 57, 58].

Zheng and Hemmady et al. have developed the TRIB version of the original RCM

[57, 58, 88]. For the extended RCM [Eq. (2.7)], the calculation of the short-orbit

correction (for z(LM )
n ) and the measurement of the ensemble-averaged impedance

Zavg can also be generalized to the TRIB systems [39]. Therefore, the expression of

the RCM for TRIB systems is similar to the TRI version as

Z(TRIB) = iX(TRIB)
avg +

(
R(TRIB)

avg

)1/2 (
z

(TRIB)
rmt

) (
R(TRIB)

avg

)1/2

. (7.2)

This expression is for a pure TRIB system. In practice, researchers have

found that the time-reversal invariance for wave systems can be continuously broken

[26, 49, 53, 113], so one may need to introduce weight coefficients for the partially

broken cases, like what we introduced for the mixed systems. Our group have worked

on partial TRI breaking in wave function statistics [49], and Schäfer’s research also

shows the experimental methods of partially breaking time-reversal invariance by

utilizing magnetized ferrite objects in the wave scattering cavity [52]. Researchers

have also used quantum dots in an external magnetic field to test RMT in the TRIB

cases [120].

The partially time-reversal invariance broken RCM would provide a more com-

plete fading model as we introduced in Chapter 5 and thermopower model as we

introduced in Chapter 6. Applications of this research include satellite-to-ground
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communications in which waves propagate through the ionosphere [79, 123, 124]

and quantum dots in an external magnetic field [120]. One challenge is to achieve a

low-loss TRIB system since external magnetic fields and magnetized ferrite objects

all increase the loss parameter of the system [94, 120]. In the high loss cases, the

statistics of wave properties, such as the fading amplitude, are similar in the TRI

case or in the TRIB case. Therefore, one would like to build a low-loss system in

order to observe a clear difference in the statistics.

7.2.3 Random Coupling Model for Nonlinear Systems

All of the wave systems we have discussed are assumed to be linear, and we

have used linear wave equations to describe the wave scattering. However, there are

wave systems with strong nonlinearity in the real world, and one cannot approximate

these nonlinear wave systems by linear wave equations. In the following section, I

will introduce rouge waves as an example and discuss the application of the RCM

to this nonlinear wave system.

7.2.3.1 Rouge Waves

One new application of the wave chaos approach is to study rogue waves.

Rogue waves, also known as freak waves or giant waves, are waves of extreme height

relative to the typical wave in a given sea state [125]. Because of their extreme

height, rogue waves are a significant risk to cargo ships and even to large cruise

liners. Documents show damage to oil platforms or ships caused by rogue waves
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[125]. Therefore, there is great interest to build a statistical model or to understand

the fundamental origins of this rogue wave phenomenon.

The Longuet-Higgins random seas model offers a simple statistical model for

the occurrence of rogue waves by assuming linear superposition of many random

plane waves with different directions and wavelengths [126]. This model predicts

that the probability of crest height h follows a Rayleigh distribution in the limit of

a narrow frequency spectrum. However, observational data [127] suggest that the

actual probability of rogue waves should be significantly higher than the prediction

of this pure stochastic Rayleigh model. Several alternative theories of the rogue

wave phenomenon have appeared and have been reviewed in Ref. [128].

An extensively studied mechanism for the formation of rogue waves is nonlin-

ear instability effects [129], in which the instabilities depend sensitively on initial

conditions. For a generic random sea state, the full numerical computations are

costly, and deriving quantitative predictions of the statistics of the crest height h is

difficult, except in approximations such as the nonlinear Schrödinger (NLS) equa-

tion [130, 131, 132]. These methods are valid for small to moderate values of the

wave steepness. In addition to purely nonlinear effects, other researchers suggest

that strongly nonlinear evolution is likely to be triggered in an initial condition

where the waves are already unusually high [125]. Combining a linear triggering

mechanism, such as the focusing or refraction of an incoming plane wave by random

current eddies [133, 134] with nonlinear evolution is a potential model for quantita-

tive predictions of the rogue wave statistics.

Recently, the research on rogue waves has gathered more interest. More non-
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linear theories have been suggested by Peregrine as the solutions (the so-called Pere-

grine soliton) of the scalar NLS equation [135] and by Baronio et al. as the solutions

of the vector NLS equation [136]. The existence of rogue waves has been observed

not only in oceans [137], but also in the atmosphere [138], in optics [139, 140, 141],

in plasmas [142], in Bose-Einstein condensates [143], and in microwave scattering

cavities [144]. Chabchoub et al. have also presented experimental results of the

Peregrine soliton in a water wave tank [145].

7.2.3.2 Nonlinear Wave Models

The existing random coupling model has been applied to linear wave systems.

Extending the applications of the RCM to include nonlinear dynamics is an inter-

esting objective. One potential application for this nonlinear model is for studying

rare intense events or rogue waves, which can cause severe damage and have been

observed in varied wave systems [136]. Previous work has investigated rogue wave

phenomenon by microwaves on purely linear systems [144, 146]. It would be more

interesting to analyze systems that include nonlinearity.

Many researchers have used nonlinear Schrödinger (NLS) equations to model

nonlinear self-reinforcements presented in the rogue wave phenomenon [147]. In

particular, the two-dimensional NLS equation is

∂u

∂t
= iAN |u|2u + iAL∇2u, (7.3)

where the amplitude u = u(x, y, t), and AN and AL are coefficients of the nonlinear

term and the Laplace term, respectively. A more generic NLS equation is the com-
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plex Ginzburg-Landau (CGL) equation [148], which can be viewed as a dissipative

extension of the nonlinear Schrödinger equation. One can consider the CGL equa-

tion on a two-dimensional domain, which corresponds to the quasi-two-dimensional

wave cavities.

In order to study the nonlinear model, one will need to add nonlinearity in

the wave system. The results of this research can be applied to investigate the

relationship between the formation of rogue waves and nonlinear dynamics.

7.2.3.3 Proposal of Experimental Systems

Researchers have investigated rogue wave phenomenon in linear microwave

cavities [144, 146]. We would like to use our chaotic microwave cavities with non-

linearity to test the model of the CGL equation. One idea is to connect diodes as a

net structure and put it evenly in the 1/4-bowtie cavity. The diodes will be biased

by an external voltage, and the microwave will be used to trigger the nonlinearity

of the diodes. When the microwaves propagate in the cavity, these evenly distrib-

uted diodes will become nonlinear sources with a quite homogeneous distribution.

Because the nonlinear wave phenomenon is modeled by the NLS equation, one can

tune the coefficients of the equation to achieve rogue wave solutions (such as the

Peregrine solitons [136]). The advantage of a diode net is that one can adjust the

distribution of the nonlinearity sources, and the experimental parameters can be

designed based on Eq. (7.3) or the CGL equation.

In order to measure the rogue wave phenomenon, which is in the space and
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time domain, it will be better to have a movable scanning antenna rather than

fixed antennas [144]. In the original design of the 1/4-bowtie cavity, the ports are

all fixed. Therefore, one can build a scanning lid for the measurement, in which

one can translate the position of a port by shifting the lid. Notice that the vector

network analyzer actually measures the scattering matrix in the frequency domain,

but one can transfer it to time domain by the Fourier transform. The challenge is

that the diode net may make the system very lossy, and the nonlinearity may not

be strong enough.

7.2.4 Source Localization

Short orbits are considered a system-specific feature in the extended RCM

[39, 40]. James Hart has developed an algorithm for finding short orbits in a two-

dimensional cavity with given geometry, and Bo Xiao in our group has developed a

more complete algorithm. Based on this algorithm and the quasi-two-dimensional

microwave cavities with perturbers, one can further analyze the effect of short orbits

and utilize the information of short orbits for other applications, such as source

localization and energy focusing.

One application is to utilize the information of short orbits to create a source lo-

calization algorithm. Given measurements with an ensemble of perturber locations,

I have investigated the relationship between perturber locations and the strength of

the short-orbit effect of each individual orbit. These short orbits are like a finger-

print of the geometry of the wave scattering system. Fig. 7.2 shows an example of
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Figure 7.2: The short orbit amplitude versus the orbit length in one

realization of the two-port 1/4-bowtie cavity with two perturbers.
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the short orbit amplitude versus the orbit length in the two-port 1/4-bowtie cavity

with two perturbers. The short orbit amplitude |IFT{zcor,21(f)}| is computed by

the inverse Fourier transform of the impedance correction matrix component zcor,21

[Eq. (4.2)], where IFT{·} stands for the inverse Fourier transform, and the hori-

zontal axis of Fig. 7.2 is transformed from the time domain to the length domain.

One can analyze short orbits that are created or destroyed at each perturber loca-

tion and use this information to make a series of estimates of the distance to the

source. Therefore, it is possible to create an algorithm that utilizes the short orbit

information and perturber locations to find out the location of another port, or at

least construct the best estimate of the port location. This algorithm could be used

to discover a wave source, which might be useful for wireless communication, radio

frequency coupling to a target, and other localization applications.

I have created an algorithm to utilize the short-orbit information to find the

wave source, and this algorithm has been tested in the 1/4-bowtie cavity experiment.

In this two-port system, one port is treated as an observer, and the other port is the

wave source that the algorithm aims to discover. We use the known geometry of the

cavity, the locations of the perturbers, and the measured short-orbit information

(|IFT{zcor,21(f)}|) to find the possible locations of the other port. The algorithm

makes a grid on the quasi-two-dimensional 1/4-bowtie cavity, where the size of the

grid cells is equal to 1/2 of the applied wavelength, and the algorithm computes

the possibility of the wave source being located in each grid cell. Examples of the

results of this algorithm are shown in Fig. 7.3. Fig. 7.3(a) shows the geometry of the

cavity and the positions of the two perturbers (blue circles). The two red dots are
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Figure 7.3: (a) The 1/4-bowtie cavity, the two ports (red dots), and the

two perturbers (blue circles). The wave source probability distributions

are shown as (b) with the information of one short orbit, (c) with the

information of two short orbits, and (d) with the information of four

short orbits. In each case, the longest orbit length is shown, and the

white star indicates the correct position of the wave source.
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the positions of the ports, and Port 1 is the observer; Port 2 is the unknown wave

source. Three examples of the results of this algorithm are illustrated in Fig. 7.3,

as (b) utilizing information of one short orbit, (c) utilizing information of two short

orbits, and (d) utilizing information of four short orbits. The probability in each

cell is color-coded as the color bar shows, and the white star indicates the correct

position of Port 2.

The results in Fig. 7.3 show that the high probability region of the wave source

narrows down when the algorithm includes more information of short orbits. How-

ever, there is an error in the upper right corner of the cavity, where the probability

is high, but the location is wrong. One may improve this algorithm by including

additional short orbits.

Another application of utilizing short orbits is creating coherent-in-time-and-

space spikes of electromagnetic energy after propagation through a cluttered en-

vironment. Each orbit can be viewed as a wave propagation channel, and short

orbits can be viewed as independent channels when the length difference between

two orbits is much larger than the wavelength. The many independent channels

of propagation through a cluttered environment allow one to stimulate them inde-

pendently with a superposition waveform. By carefully considering the phases of

pulses and the lengths of short orbits, one can compute a synthetic waveform which

makes a series of pulses through different channels accumulate a strong spike at a

controllable point in time and space. This algorithm will be beneficial for energy

focusing applications.
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Appendix A

Numerical Algorithms

A.1 Impedance Matrix Based on Random Matrix Theory

In Sec. 2.1.1, I have introduced how we numerically generate the impedance

matrix zrmt based on random matrix theory. In this section, we discuss more details

of the numerical algorithm of generating zrmt.

For an N -port system, zrmt is an N ×N matrix. Eq. 2.2 gives the impedance

matrix based on random matrix theory in the Gaussian orthogonal ensemble (GOE)

case. From Eq. 2.2, the (a, b) element of zrmt is

zrmt,a,b =
−i

π

M∑

m=1

WamWbm

λ
(rmt)
m − iα

. (A.1)

This element zrmt,a,b represents the impedance element between Port a and Port b,

and the sum is over the M eigenmodes of the wave scattering enclosure, where Wam

(or Wbm) stands for the coupling between the Port a (or the Port b) and the mth

eigenmode. Based on the assumption of the random plane wave hypothesis [57],

Wam and Wbm are independent Gaussian random variables of zero mean and unit

variance. λ(rmt)
m is the mth eigenvalue of the wave scattering enclosure, and it is

generated based on random matrix theory [3]. Note that α is the dimensionless loss

parameter, and it is determined by the system of interest.

The algorithm of generating λ(rmt)
m has been introduced in Sameer Hemmady’s
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thesis (in Sec. 2.5) [3]. For the GOE case (time-reversal-invariant), one first gener-

ates a big M ×M random matrix (with M > 1000) where (i) the diagonal elements

are independent Gaussian random variables of zero mean and unit variance; (ii)

the off-diagonal elements are independent Gaussian random variables of zero mean

and 1/2 variance. The second step is to computing the M eigenvalues λ(0) of the

M ×M random matrix. According to random matrix theory, the M ×M random

matrix needs to be large in order to reduce the finite-sample-size problem. However,

computing eigenvalues of a big matrix requires a large amount of computational re-

sources. This original algorithm used a MATLAB function to directly operate the

matrix decomposition, and the computation process was time consuming. Ming-Jer

Lee in our group has written a modified MATLAB code which transforms the big

matrix to a sparse matrix first and then computes the eigenvalues of the sparse

matrix [149]. His code significantly accelerates this computation, so we can do

M = 106 now. For large M , the eigenvalues λ(0) have a semi-circle distribution fol-

lowing “Wigner’s Semi-Circle Law” [1]. The third step of this algorithm is applying

a mapping function (Eq. 2.15 in [3]) which transforms λ(0) (with a semi-circle distri-

bution) to λ(rmt) (with a uniform distribution). Finally, the M generated eigenvalues

λ(rmt) are inserted in Eq. A.1.

For our experiments, we only need to generate 2 × 2 zrmt matrices. Note

that zrmt,12 = zrmt,21 due to reciprocity of the network system, and zrmt,11 and

zrmt,22 have the same statistics according to Eq. A.1. Figure A.1 shows examples

of the numerically generated zrmt,11 and zrmt,12 in the complex plane with the loss

parameters α = 0.1 and α = 1.0.
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Figure A.1: Shown are examples (blue circles) of (a) zrmt,11 with α = 0.1,

(b) zrmt,12 with α = 0.1, (c) zrmt,11 with α = 1.0, and (d) zrmt,12 with

α = 1.0 in the complex plane. Each plot has 10000 samples from Eq. A.1,

and M = 106.
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A.1.1 Frequency Dependence of zrmt

If one took the loss parameter as constant, the impedance matrix zrmt gen-

erated by Eq. A.1 has no explicit frequency dependence. This expression of the

impedance is a simplified version. When frequency dependence is not of concern,

this form is convenient and requires less computation time. In Sec. 6.3.2, we discuss

the statistics of the thermopower which concerns the energy derivative of the trans-

mittance, and therefore, the frequency-dependent version of zrmt is needed. Xing

Zheng et al. has introduced the frequency-dependent zrmt as [57, 58]

zrmt,a,b(k) =
−i

π

M∑

m=1

WamWbm(
k2−k2

m

∆k2
m

)
− iα

, (A.2)

where k = 2πf/c is the wave number, f is the frequency of the wave, and c is the

speed of light. Here ∆k2
m is the mean spacing of the eigen-energies (k2

m). Comparing

with Eq. A.1, the frequency-independent λ(rmt)
m has been replaced by the frequency-

dependent
(

k2−k2
m

∆k2
m

)
. Note that the loss parameter can also be frequency-dependent.

With Eq. A.2, one can numerically generate zrmt,a,b over a frequency window.

Note that Eq. A.2 is based on the assumption of random matrix theory and the ran-

dom plane wave hypothesis, so it is only valid under the condition k2 À ∆k2
m when

the eigenmodes are dense enough [2]. For our microwave cavities in the semiclassical

limit (the short-wavelength limit), this condition is valid. We choose a frequency

window and take the frequency-dependent loss parameter determined from the ex-

perimental results. More details of determining the loss parameter are introduced

in Sec. 4.1. ∆k2
m is approximated by Weyl’s formula in the limit of small wave-

length compared to the system size. For a quasi-two-dimensional microwave cavity,
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Figure A.2: Shown are (a) frequency-dependent zrmt,11 (light blue) and

zrmt,22 (red) and (b) zrmt,12 (blue) in the complex plane. The numerical

results are generated as a single realization of the frequency window

9 − 11 GHz with the loss parameter α = 0.8 and the two-dimensional

cavity area A = 0.112 m2 using Eq. A.2.

∆k2
m ' 4π/A, where A is the area of the wave enclosure, and ∆k2

m ' 2π2/(kV ) for

a three-dimensional cavity, where V is the volume of the wave enclosure [91]. The

coupling Wam (or Wbm) is generated in the same way as a Gaussian random variable

based on the random plane wave hypothesis. The normalized eigen-energy k2
m/∆k2

m

is generated the same way as λ(rmt)
m according to random matrix theory [2, 3].

For example, I generate a single realization of the frequency window 9 − 11

GHz of a quasi-two-dimensional ray-chaotic microwave cavity with the (constant)

loss parameter α = 0.8 and the two-dimensional cavity area A = 0.112 m2. The

mean spacing of the eigen-energies ∆k2
m is determined by the area. I use M = 2000
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eigenmodes to compute the sum in Eq. A.2. The results are shown in Fig. A.2 as (a)

zrmt,11 (light blue) and zrmt,22 (red) and (b) zrmt,12 (blue) in the complex plane. The

results from both Eq. A.1 and Eq. A.2 show the same statistics of zrmt when the

number of samples are large enough. However, instead of discrete and independent

results from Eq. A.1, Eq. A.2 gives continuous results with frequency-dependent

information and correlations.

A.1.2 Gaussian Unitary Ensemble Case

Both Eq. A.1 and Eq. A.2 use random matrix theory based on the Gaussian

orthogonal ensemble (GOE) case. For time-reversal-invariance-broken systems, one

should use the Gaussian unitary ensemble (GUE) to generate random matrices.

Zheng et al. have also developed the numerical model of z̃rmt for the GUE case

[57, 58].

z̃rmt,a,b(k) =
−i

π

M∑

m=1

W̃amW̃ ∗
bm(

k2−k̃2
m

∆k2
m

)
− iα

, (A.3)

where the random coupling W̃am (or W̃bm) for the GUE case is a “complex” random

variable whose real part and imaginary part are independent Gaussian variables of

zero mean and 1/2 variance. Note that the superscript ∗ stands for the complex con-

jugate, and the average 〈W̃amW̃ ∗
bm〉 = δab. The other difference from the GOE case is

about generating the energy eigenvalues λ̃(rmt)
m or k̃2

m/∆k2
m. For the GUE case, these

eigenvalues are computed from a big M ×M random matrix (with M > 1000). For

the matrix elements (Hpq, 1 ≤ p ≤ M and 1 ≤ q ≤ M), (i) the diagonal elements

(Hpp) are independent real Gaussian random variables of zero mean and unit vari-
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ance; (ii) the upper-diagonal elements are independent complex random variables

whose real part and imaginary part are independent real Gaussian variables of zero

mean and 1/2 variance; (iii) the lower-diagonal elements are complex-conjugates of

the corresponding upper-diagonal elements (Hpq = H∗
qp). All other procedures of

generating z̃rmt,a,b(k) are the same as in the GOE case.

A.2 Short Orbit Terms

In Sec. 2.2.2, we introduce the semiclassical approach to compute short-orbit

terms in impedance, as the short-orbit correction matrix ζ [39, 41]. For an N -port

system, the (n,m) element of the N ×N matrix ζ is described by Eq. 2.10 as

ζn,m =
∑

b(n,m)

{
−pb(n,m)

√
Db(n,m) exp[−(ik + κ)Lb(n,m) − ikLport(n,m) − iβb(n,m)π]

}
,

(A.4)

where b(n,m) is an index over all classical trajectories which leave the nth port,

bounce βb(n,m) times, and return to the mth port. pb(n,m) is the survival probability

of the trajectory due to the positions of the perturbing objects in the ensemble.

The orbit stability factor Db(n,m) is a geometrical factor of the trajectory. k is the

wave number, and κ is the effective attenuation parameter taking account of wave

propagation loss. Lb(n,m) is the length of the trajectory b(n,m), and Lport(n,m) is the

port-dependent constant length between the nth port and the mth port.

In this section, we introduce our numerical algorithm for computing pb(n,m),

Db(n,m), Lb(n,m), and βb(n,m) of short orbits. For other parameters, more details of

κ and Lport(n,m) are introduced in Sec. 4.1. This algorithm was initially developed
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by James Hart et al. for a two-dimensional billiard with N ports [4], and it has

been further modified by Michael Johnson and Jen-Hao Yeh. For this algorithm,

the billiard can have multiple straight segment or circular arc walls, and specular

reflection of the walls can have reflection coefficient -1 for the metal walls or reflection

coefficient 0 for walls covered by microwave absorbers.

A.2.1 Short-Orbit-Searching Algorithm

The first part of our numerical algorithm is to find short orbits. To use this

algorithm, one first defines the boundary geometry of the two-dimensional billiard

and inputs the locations of the source port (the nth port) and the target port (the

mth port). Note that these two locations can be the same for the diagonal element

ζn,n. One also needs to set the maximum orbit length LM . Then the algorithm

launches trajectories from the source port over different angles θso, and it traces

each of these trajectories bouncing in the billiard until: (i) it gets close enough to

the target port (the distance from the trajectory to the target port less than dso) or

(ii) the length of the trajectory reaches LM . If the algorithm finds one short orbit as

in the case (i), it records the length (li) of each segment of the orbit between bounces

and the reflection angle (θi) after each bounce. For example, Fig. A.3 illustrates a

short orbit with two bounces and labels θso, dso, l1, l2, l3, θ1, and θ2. The dashed

circle centered at the target port has radius dso.

There are two parameters to control the accuracy of this algorithm. One is

the resolution of the scanning angles ∆θso of the trajectories from the source port.
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Figure A.3: A short orbit with two bounces. The red dots are the source

port and the target port. The billiard walls (gray) are only shown near

the bounces for illustration, and they can be straight segments or circular

arcs.

A finer ∆θso will reduce the chance of missing an orbit. The other parameter is

the threshold distance dso for determining arrival at the target port. A smaller

dso makes the results of this algorithm more correct. However, a small ∆θso or

a small dso make the algorithm very time consuming. When the short orbits are

not uniformly distributed in launch angle from the source, a lot of computation

is wasted if one sets a small constant ∆θso. Therefore, this algorithm utilizes a

port-crossing detection strategy and dynamically varies ∆θso to save time and also

preserve accuracy.

The port-crossing detection strategy is based on the intermediate value theo-

rem and only works for a two-dimensional system. Considering two scanning trajec-

tories next to each other from the source port at angles θso,1 and θso,2 = θso,1 +∆θso,
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Figure A.4: An example of the port-crossing detection. The two solid

lines are trajectories launching at angle θso,1 and angle θso,2, and the

dashed line represent the true orbit between them.

the algorithm can record the two trajectories in each segment and determine if they

pass the target port on the same side. Once the algorithm discovers the two trajec-

tories passing the target port on different sides after a certain bounce, this means

that there should be an orbit launched at the angle between θso,1 and θso,2 and it

will hit right on the target port. We call this method “the port-crossing detection”

and illustrate the idea in Fig. A.4, where the two solid lines are the two scanning

trajectories, and the dashed line represents the true orbit.

Our algorithm starts with a larger scanning angle resolution ∆θ(0)
so = 2π/1000,

and once the port-crossing detection discovers the port-crossing situation, the al-

gorithm utilizes a smaller resolution (∆θ(1)
so = ∆θ(0)

so /2) to scan the angle region

between θso,1 and θso,2. The algorithm recursively applies this angle refinement

(∆θ(n)
so = ∆θ(n−1)

so /2) until ∆θ(n)
so ≤ 10−9. In addition to this port-crossing detec-
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tion, in order to make sure that there is no short orbit missing, the algorithm

utilizes half of its scanning angle resolution (∆θ(1)
so = ∆θ(0)

so /2) to scan again and

compares the results. If the result with the finer scanning resolution includes newly-

discovered orbits, then the algorithm keeps utilizing a smaller scanning resolution

(∆θ(n)
so = ∆θ(n−1)

so /2) until the two results of ∆θso and ∆θso/2 are the same. Note

that the algorithm will ultimately stop since we have the threshold ∆θ(n)
so ≤ 10−9,

and there might still be missing orbits, especially for longer orbits.

Bo Xiao in our group is developing a new short-orbit algorithm based on this

algorithm. His algorithm can record the wall of each bounce and use this information

to eliminate the duplicate orbits. His algorithm also aims to generalize the short-

orbit searching to three-dimensional systems. In this dissertation, I have not applied

Xiao’s algorithm.

A.2.2 Computing Parameters

Since the algorithm records every segment of an orbit, the parameters pb(n,m),

Db(n,m), Lb(n,m), and βb(n,m) can be computed. The number of bounces βb(n,m) is

straightforward, and the orbit length Lb(n,m) is the sum of all segment lengths.

For the survival probability pb(n,m), one needs the position and shape/size of the

perturbers in each realization, then one can determine that the orbit is blocked or

not in each realization and compute the overall survival probability pb(n,m) of the

orbit in all realizations.

The orbit stability factor Db(n,m) determines the contribution of an orbit to the
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impedance. This parameter measures how the energy spreads out along the orbit in

each segment [4, 150]. For example, if all the bounces are on straight segment walls,

in the two-dimensional system the energy along the orbit spreads out as [150]

Db(n,m) =
2

πk

(
Lb(n,m)

)−1
, (A.5)

where Lb(n,m) is the orbit length, and k is the wave number. If there are bounces

on circular arc walls, the algorithm can still compute Db(n,m) by considering the

segment length (li), the incident angle (θi), and the radius of curvature (Ri) of the

circular arc wall of each of these bounces, as

Db(n,m) =
2

πk

∣∣∣∣∣∣∣


Lβb(n,m)+1

βb(n,m)∏

i=1

(
1 +

2Li

Ri cos(θi)

)

−1

∣∣∣∣∣∣∣
, (A.6)

where Li are effective lengths after bounces on circular arc walls, and they are

recursively computed as [150]

L1 = l1,

Li+1 = li+1 + Li

(
1 +

2Li

Ri cos(θi)

)−1

, for 1 ≤ i ≤ βb(n,m).

(A.7)

Note that walls with positive radius of curvature [Fig. 1.1(c)] have a stronger dispers-

ing effect (smaller Db(n,m)) than walls with a negative radius of curvature [Fig. 1.1(b),

(d), and (e)]. With all these parameters, the magnitude and the phase of each orbit

term in Eq. A.4 can be determined.
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Appendix B

Cryogenic Thru-Reflect-Line Calibration

In Chapter 3, I have introduced our three experimental systems, the 1/4-

bowtie cavity, the superconducting cut-circle cavity, and the GigaBox. For each

system, we use a vector network analyzer (VNA) through transmission lines to

measure the scattering matrix of the wave scattering system. In order to measure

the scattering matrix S with high accuracy over a broad bandwidth, a broadband

calibration method of microwave measurement is necessary. The calibration method

removes the effect of the transmission lines connecting the vector network analyzer.

For measurement at room temperature, we can utilize the electronic-calibration kit

of a commercial VNA to conveniently calibrate the measured results. However, the

convenient electronic-calibration kit does not function in a cryogenic environment,

one must perform a manual calibration by utilizing known standards.

In this appendix, we introduce an improved microwave calibration method for

use in a cryogenic environment, based on a traditional three-standard calibration,

the Thru-Reflect-Line (TRL) calibration [108]. I review the Thru-Reflect-Line cali-

bration in Sec. B.1 and introduce more details of this in-situ broadband cryogenic

calibration system in Sec. B.2. With this in-situ calibration system, all calibration

measurements are done in the same thermal cycle as the measurement of the cavity

(requiring only an additional 20 minutes), thus avoiding 4 additional thermal cycles
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for traditional TRL calibration (which would require an additional 12 days). In

Sec. B.3, I further discuss the modified calibration method that takes advantage of

additional information from multiple measurements of an ensemble of realizations of

a superconducting cavity, as a new pseudo-Open standard, to correct errors in the

TRL calibration. The experimental results of measuring a wave-chaotic microwave

billiard shown in Sec. B.4 verify that the new method significantly improves the

measured scattering matrix of a high-quality-factor superconducting cavity.

B.1 Thru-Reflect-Line Calibration

Microwave calibration is an important process to remove the systematic errors

due to the transmission lines and connectors between the network analyzer and

the device under test (DUT) as well as other systematic measurement errors. The

calibration process utilizes measurements of known standards to move the reference

plane of the measurement to the ports of the DUT [151, 152, 153]. A commonly-

used calibration method for two-port measurement is the Thru-Reflect-Line (TRL)

calibration [106, 107, 151].

The Thru-Reflect-Line calibration uses three standards to calibrate the effect

of the two transmission lines connecting the two ports of the DUT to the VNA. I

plot Fig. B.1 to illustrate the three standards in an anatomically-correct manner.

For the Thru standard measurement, the two transmission lines are directly con-

nected together; two identical reflectors, shown as the pink objects in Fig. B.1, are

connected to the ends of the two transmission lines as the Reflect standard; an ad-
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Figure B.1: Illustrations of the Thru, Reflect, and Line standards. The

left transmission lines are terminated with a male connector, and the

right transmission lines are terminated with a female connector. The

Reflect standard consists of one male reflector and one female reflector.

The Line standard is a transmission line with a male connector and a

female connector in its two ends.
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ditional electrically short (on the order of one guided wavelength) transmission line,

shown as the green object in Fig. B.1, is added between the two transmission lines as

the Line standard [107]. This TRL calibration method calibrates the transmission

lines and brings the reference plane to the ends of the transmission lines for connect-

ing to a DUT with one male connector and one female connector. The advantages

of the TRL calibration are from two facts: (i) the use of redundant calibration

standards reduces the uncertainty due to errors, such as connector irreproducibility,

cable flexure, test-set drift, and noise, and (ii) the foundation of the calibration

standard definitions depend solely on qualitative requirements (uniformity of the

lines, identical cross-sections of the lines, and identical reflection coefficients of the

Reflect standards) [154].

For applying TRL calibration in cryogenic systems, one challenge is that mea-

suring multiple standards may involve cooling down and warming up of the sys-

tem, changing the standard, and repeating the thermal cycle. These thermal cycles

can be very time consuming and expensive. In addition, there is enhanced uncer-

tainty of the reproducibility of experimental conditions in different thermal cycles

[153, 154]. On the other hand, researchers have developed single-thermal-cycle cali-

bration methods which use an on-wafer cryogenic probe station or electromechanical

switches [108, 155, 156]. However, the problem of these single-thermal-cycle meth-

ods is that the differences between electrical paths in measurements of different

standards, which are assumed to be equal, degrade the measurement accuracy and

limit the frequency bandwidth [153].

For two-port systems, researchers have developed cryogenic TRL calibration
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methods for measuring the 2 × 2 scattering matrix of a DUT. Laskar et al. [155]

utilized the multiline method of the TRL and LRM (Line-Reflect-Match) calibra-

tions introduced by Marks [107], to their cryogenic on-wafer probe station for noise

and scattering-parameter measurements, and they emphasized the importance of

providing a stable thermal environment [155]. Booth et al. also used a cryogenic

probe station for scattering-parameter measurements of their coplanar waveguide

(CPW) structures in high temperature superconductors [157, 158]. They applied a

set of CPW calibration structures of TRL standards to characterize the errors in

the network analyzer/probe station system [157], or alternatively three other stan-

dards: a Thru, a Reflect, and a series resistor [159]. Shemelin et al. used the TRL

calibration for waveguides and coaxial cables to measure ferrites at low temperature

[160]. In addition to the TRL calibration method, Jun et al. used a different calibra-

tion method by introducing a cryogenic dip probe for time-domain measurements

of nanodevices [161].

Another way to achieve single-thermal-cycle TRL calibration is to utilize cryo-

genic microwave switches [162]. Ranzani et al. [156] have used cryogenic switches

(coaxial subminiature latching switches) to switch the coaxial cables from the VNA

to coaxial cables with different calibration standards, as well as the device under

test. The electromechanical switches simply operate by means of brief electrical

pulses to latch the switch to different positions, so no electrical signal is applied to

the switch in its quiescent state. Due to the convenience of connecting the coax-

ial transmission lines to the ports of our superconducting cavity, we use cryogenic

switches to develop the in-situ calibration system. Similar cryogenic switches have
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been applied for calibrating measurement of superconducting quantum interference

device (SQUID) amplifiers [163], measuring different superconducting qubit samples

[164], or other experiments involving superconducting quantum computing [165].

Although the TRL calibration is less sensitive to the properties of the standards

than other calibration method, such as the Open-Short-Load calibration [154], the

TRL calibration is still limited by errors in its assumptions, such as irreproducibility

of the transmission lines in each measurement, differences in the reflection coeffi-

cients of the two reflectors, and irreproducibility of the connector interface [154, 166].

Researchers have tried different methods to reduce the calibration errors, such as

the development of precise dimensional characterization techniques for the trans-

mission lines [167], the minimization of the possible center-conductor-gap variation

[168], and modeling of the electrical properties combined with self-calibration ap-

proaches [154, 169]. In our cryogenic measurements, the temperature dependence

of the scattering matrices of all transmission lines and imperfect TRL standards

become additional sources of errors. These small errors are especially significant in

our extremely-low loss system because the calibrated |S11| and |S22| are very close

to 1 while the frequency is away from the resonance frequencies.

B.2 In-situ Broadband Cryogenic Calibration System

Figure B.2 shows the setup of our in-situ broadband cryogenic calibration

system. The term “in-situ” means the TRL calibration process can be applied at

low temperatures without spending a great deal of time changing standards. Here
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Figure B.2: Schematic experimental setup of the in-situ broadband cryo-

genic calibration system. The five pairs of phase-matched coaxial cables

have nearly identical length and are not shown to scale. For the phase-

matched coaxial cables and TRL standards, the male (or female) con-

nectors are illustrated. The microwave cavity has a female connector

and a male connector for its two ports, respectively.
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we utilize two cryogenic 6-position switches (Radiall coaxial subminiature latching

switches R591722605) to include one Thru, one Reflect, and two Line standards to-

gether with the cavity under measurement. Figure B.3 shows the cryogenic switches

[170] (left) and the copper clamp (right) used to mount and thermally anchor the

cryogenic switches on the cold plate (see photographs in Fig. B.4). The pink arrow

in Fig. B.3 points the position for tightening the clamp by a screw. Each switch con-

nects the transmission line from the VNA through the center connector (see the left

plot of Fig. B.3) to the outer connectors which are connected to different standards,

or to the cavity, by RF COAX phase-matched (13 inch long between interfaces,

electrical length deviations < 1 ps) SMA coaxial cables (S086MMHF-013-1). These

cables have male SMA (subminiature version A) microwave connectors in the both

ends. Therefore, for the Thru standard, we connect a pair of the coaxial cables

with a female-female adapter (Mini-Circuits adapter SF-SF50+). In order to make

sure the electrical paths are as identical as possible, the same type of industrially-

assembled cables, and adapters, have been used for the other 4 pairs of transmission

lines. In future experiments, we plan to replace half of the phase-matched coaxial

cables by cables terminated with one male connector and one female connector. In

this way we will not need the female-female adapters and can reduce the number

of connectors in each electrical path, so the number of error sources can also be

reduced. For the Reflect standard, we use two short circuits, one with a male con-

nector and the other with a female connector (Fairview Microwave models SC2136

and SC2141), to terminate the pair of coaxial cables. For the two Line standards,

we add two different SMA male-to-female adapters of electrical length 1.94 cm and
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Figure B.3: Left: The Radiall cryogenic switches R591722605. Right:

The copper clamp to mount the cryogenic switches on the cold plate.

The pink arrow points the position for tightening the clamp by a screw.

2.56 cm (Fairview Microwave models SM4971 and SM5291) to connect the two pairs

of coaxial cables, respectively. All of these standards and the cut-circle cavity are

at a uniform temperature in the cryostat, and the switches are controlled by voltage

pulses from a DC power supply (Hewlett-Packard E3610A) outside the cryostat.

The network analyzer is an Agilent Technologies E8364C.

One advantage of using cryogenic switches is to save a great deal of time for

the TRL calibration. One full thermal cycle of this cryostat takes about 3 days, so a

multiple-thermal-cycle TRL calibration for 4 standards would require an additional

12 days for calibration. However, with the in-situ calibration system, we only need

an additional 20 minutes for measuring the 4 standards within the same thermal

cycle for measuring the superconducting cavity. The cryogenic switches also make

the calibration process conveniently accessible each time the system environment is
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Figure B.4: Left: The front of the cryogenic switch in the copper clamp.

The coaxial cable in the center is connected to the network analyzer.

The other coaxial cables around the center one are connected to the

microwave cavity and TRL standards. Right: The back of the cryogenic

switch in the copper clamp. The black and red wires are connected to

the voltage controller to control the state of the switch.
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modified, for example, by changing the temperature, microwave power, or external

magnetic field. We can adjust the equilibrium temperature of the cavity and stan-

dards by tuning the applied DC current to heating resistors installed in the cryostat.

The applied microwave power can be controlled by the network analyzer. In addition

to increasing the efficiency of the experiment, avoiding opening/closing the cham-

ber for changing standards also reduces the uncertainties created by having different

temperatures or different layouts of transmission lines in each measurement.

On the other hand, the disadvantage of using cryogenic switches is that the

switches utilize 5 different pairs of transmission lines to connect to the standards or

the cavity. The differences of the scattering matrices of these electrical paths are

additional errors of the TRL calibration. We have measured the differences at room

temperature, and the deviations from the switches are |4S| < 0.01; the deviations

from the transmission lines are |4S| < 0.06. These errors can be reduced from

the calibrated results by the pseudo-Open standard, which I will introduce in the

following section.

The calibration system is also broadband because we install two Line stan-

dards. The TRL calibration is invalid for frequencies where the phase difference

between the Thru standard and the Line standard is too small (the phase differ-

ence should be greater than 20 degrees and less than 160 degrees)[107, 151]. To

solve this problem, one can use two Line standards with different lengths and make

sure that the problematic frequency bands do not overlap. In our experiment, one

Line standard has problematic frequency bands near 7.7 GHz and 15.3 GHz; the

other Line standard has problematic frequency bands near 5.9 GHz, 11.8 GHz, and
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17.6 GHz. Therefore, we use the cryogenic switches connected with two different

Line standards to achieve broadband calibration, for example, we can measure the

scattering matrix continuously from 3 to 18 GHz.

We use MATLAB to operate the TRL calibration according to Rytting’s algo-

rithm [171], and we combine the good frequency bands from the two Line standards

to create a broadband result. We then use the pseudo-Open standard to remove

the remaining errors in the TRL-calibrated data. One example of the result after

these procedures is shown in Fig. B.5 as the |S11| and |S21| of a single realization

from 3 to 18 GHz. We can see the resonance density increase with frequency. In low

frequency regions, the resonances are sharp and well-separated, and |S11| is close to

1 in the frequencies away from the resonant frequencies. In high frequency regions,

the resonance density increases, and the resonances start to overlap with each other.

For example, we do not see the off-resonance background close to 1 in |S11| near 18

GHz.

B.3 Pseudo-Open Standard

The scattering matrices calibrated by the TRL method (STRL) still have many

errors due to the fact that the practical standards and coaxial cables do not per-

fectly satisfy the assumptions of the TRL calibration. The remaining issues are: (1)

the irreproducibility of the transmission lines and connectors in each electrical path,

(2) the difference between the two reflectors in the Reflect standard, and (3) the

impedance-mismatch and the imperfection of the Thru and Line standards. These
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Figure B.5: The magnitude of (a) |S11| and (b) |S21| with high-quality-

factor resonances from 3 to 18 GHz of a single realization of the super-

conducting cut-circle cavity in the in-situ cryogenic calibration system.

The data have been calibrated with the TRL calibration and corrected

by the pseudo-Open method.
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errors are especially critical when |S11| and |S22| of the measured cavity are close

to 1. In our case, while the frequency is away from the resonant frequencies of the

superconducting cavity, |S11| and |S22| are very close to 1 (i.e. the transmission

coefficient |S21| is very close to 0, and there is almost no absorption in the cavity)

in the extremely low loss environment. Therefore, a small error can make |S11| or

|S22| larger than 1 and cause non-physical results. This small error is also critical

for analysis of the 2 × 2 impedance matrix Z, obtained by a bilinear transforma-

tion as Z = Z0
1/2(1 + S)(1 − S)−1Z0

1/2, where Z0 is the diagonal characteristic

impedance matrix of the transmission lines (50Ω). The denominator (1− S) makes

the impedance matrix sensitive to this small error when S11 or S22 are close to 1.

Figure B.6 shows two examples of the raw measured data (without calibra-

tion) of the magnitude of the scattering matrix elements versus frequency for the

superconducting cut-circle microwave cavity at 6.6 K. Because the loss parameter in

the superconducting cavity is very low (α ¿ 1, i.e. high Q), the curves of |Sraw,11|

and |Sraw,21| show sharp and well-separated resonances on a smoothly varying back-

ground. Note that all degeneracies are broken in wave-chaotic billiards, which means

the resonances occur at different frequencies [11]. The background feature shows the

influence of the transmission lines between the cavity and the network analyzer, and

this is what we want to remove by calibration. With the cryogenic TRL calibration,

we can eliminate most of the influence from the transmission lines. One example of

the TRL-calibrated result |STRL,11| of a single realization is shown as the black curve

in Fig. B.7. As we expect for a superconducting cavity, now |STRL,11| is close to 1 at

frequencies away from the resonant frequencies. However, there are still small vari-
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Figure B.6: The magnitude of raw measured scattering matrix element

Sraw,11 (black solid curves) and Sraw,21 (red dash curves) versus fre-

quency. (a) An example with the frequency band from 14.0 to 14.5

GHz plotted in linear scale; (b) another example with the frequency

band from 15.5 to 16.0 GHz plotted in semi-logarithmic scale.
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Figure B.7: The magnitude of TRL-calibrated STRL,11 (the black curve)

and the pseudo-Open standard (the thicker light-blue curve) versus fre-

quency.

ations in the background due to the systematic errors of the TRL calibration. Note

that at some frequencies (e.g. near 15.64 GHz), the small error makes |STRL,11| > 1.

To solve this problem, we introduce the pseudo-Open standard by taking ad-

vantage of the multiple measurements of the 72 ensemble realizations of the cavity.

In each realization, we only change the orientation of the Teflon perturber (see

the blue object in Fig. B.8), and all of the other features, including the transmis-

sion lines, cavity volume, coupling, etc., remain the same. Therefore, by compar-

ing the TRL-calibrated data of the 72 realizations, we see a systematically-varying
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Figure B.8: (a) The quasi-two-dimensional cut-circle microwave cavity

in a three-dimensional perspective, showing the cavity dimensions, ports,

and the perturber. (b) Projected two-dimensional view of the cut-circle

billiard.

background in the scattering matrices in all realizations, but the narrow and well-

separated resonances move to various frequencies. For illustration, Fig. B.9 shows

the quantity (|STRL,11|2+ |STRL,21|2)1/2 in 12 realizations (each for a perturber orien-

tation 30o apart). Note that the resonances occur at varied frequencies in different

realizations, but the off-resonance regions form a systematically-varying background.

We note that Σ1 ≡ (|STRL,11|2+|STRL,21|2)1/2 and Σ2 ≡ (|STRL,22|2+|STRL,12|2)1/2

are unity in a lossless system. For a very low loss system, RMT predicts that the

Σ1 and Σ2 of an ensemble of realizations have statistical distributions [21] where

most of the samples are close to 1. If the cavity is weakly coupled through the ports

to outside (i.e. |S21| and |S12| are closer to 0; |S11| and |S22| are closer to 1), the

distributions show that the samples of Σ1 or Σ2 are even closer to 1. Therefore, if
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Figure B.9: Shown are 12 examples of different realizations of Σ1 =

(|STRL,11|2 + |STRL,21|2)1/2 versus frequency in varied colors.
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one takes the maximum of many realizations of Σ1 or Σ2 under these conditions, it

should be very close to 1.

We have constructed a numerical model to analyze the systematically-varying

background. We use RMT and the RCM to numerically generate multiple-realization

data to represent a superconducting cavity, and the maxima of Σ1 or Σ2 over the

realization ensemble are very close to 1 for every frequency. However, if we com-

bine these numerical cavity data with the measured data of our TRL standards

and coaxial cables, and carrying out the same TRL calibration, we see a simi-

lar systematically-varying background. Therefore, this frequency-dependent feature

represents a combination of all errors of the TRL calibration. According to our

numerical test, the major error in our experiment is from the Line standards, and it

can cause errors for S11 and S22 of |4S| < 0.1 and an error for S21 of |4S| < 0.04.

The errors from the Thru standard and the Reflect standard are all smaller by a

factor of 2 to 3.

In order to utilize this feature, we take the maximum values of Σ1 and Σ2 of

the experimental data over the 72 realizations, and we define a frequency-dependent

diagonal matrix Op, where Op,11 (or Op,22) is the maximum of Σ1 (or Σ2) over the

72 realizations. In a very low loss system or a weakly coupled system, Op should be

close to the identity matrix if the TRL calibration has no error. Thus, the frequency-

dependent variations of Op represent the remaining errors in the experimental data

after the TRL calibration. We call Op the pseudo-Open standard because Op is like

an Open standard when we exclude all resonances (i.e. no energy is transmitted

through the two ports). Figure B.7 shows the pseudo-Open standard response Op,11
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Figure B.10: The magnitude of TRL-calibrated and pseudo-Open-

corrected SPO,11 (the black solid curve) and SPO,21 (the red dash curve)

versus frequency. The horizontal blue line shows |S| = 1.

as the thicker light-blue curve. By utilizing the information from multiple mea-

surements of the cavity in different realizations, the pseudo-Open standard helps

to calibrate out the errors due to the deviations between the transmission lines

connected to the TRL standards and the transmission lines connected to the cavity.

We simply remove the errors and obtain a TRL-calibrated and pseudo-Open-

corrected scattering matrix SPO by

SPO = STRL Op
−1. (B.1)

Figure B.10 shows the result of the pseudo-Open correction. The small systematic
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variations in the TRL-calibrated data |STRL,11| is removed after applying the pseudo-

Open standard. Therefore, by using the TRL calibration with the pseudo-Open

standard, we can have well-calibrated data of the scattering matrix, and we are able

to do further analysis of the statistics of the scattering matrices or the impedance

matrices for wave chaos research [41, 61].

We also use our numerical model to test how the pseudo-Open method resolves

the errors from the TRL calibration. Since the pseudo-Open standard is based on the

maximum values of (|STRL,11|2+ |STRL,21|2)1/2 and (|STRL,22|2+ |STRL,12|2)1/2, it con-

tains no information about the phase of the elements of the scattering matrix. There-

fore, it can only correct the magnitude of the scattering matrix, and the improvement

is better when |S11| and |S22| are closer to 1. Other limitations concern determi-

nation of the maxima of (|STRL,11|2 + |STRL,21|2)1/2 and (|STRL,22|2 + |STRL,12|2)1/2.

In order to get a sampled maximum value close to the true maximum value, one

needs to have a very low loss system or a weakly coupled system, or one needs to

have a large number of realizations. Our experiment satisfies these requirements for

the pseudo-Open standard, and according to the numerical test, the pseudo-Open

method can remove the errors of the TRL calibration as measured by the statistical

distributions of the magnitudes of the scattering matrix.

B.4 Test of RMT Predictions

With the well-calibrated data of the scattering matrix, we can now apply the

extended random coupling model [41, 61] to remove the system-specific features
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of the scattering matrix and reveal the universal statistics which are predicted by

random matrix theory [21, 61]. Figure B.11 shows a comparison of the universal

statistics predicted by RMT (thicker light-blue curves) and the experimental data

which are calibrated with cryogenic TRL calibration only (red dash curves) and

also with pseudo-Open correction (black curves) in terms of the distributions of

the RCM-normalized |S11| and |S21|. The probability density functions (PDFs)

of the experimental data are taken from all 72 realizations and in frequency from

14.0 to 16.0 GHz. The RMT predictions are the best-matched PDFs with a single

parameter (the loss parameter α), and α = 0.02 is the fit value. The results show

that the pseudo-Open correction makes significant improvement in the PDFs when

|S11| or |S21| are close to 1. The non-physical features (|S| > 1, seen in the TRL

calibrated data in Fig. B.7) are almost entirely eliminated with the correction of

the pseudo-Open standard. The PDFs of the experimental data are not as smooth

as the theoretical PDFs because we generate many more numerical samples to plot

the theoretical curves. One can generalize these results to other resonant systems in

which the modes can be perturbed by external means, such as strain, electric field,

temperature, magnetic field, etc, to generate an ensemble of multiple measurements

for the pseudo-Open method.

B.5 Conclusion

Applying the extended random coupling model for a multiple-port wave scat-

tering system requires measurement of the whole impedance matrix Z of the system,
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Figure B.11: The probability density of (a) |S11| and (b) |S21| of the

RMT predictions (thicker light-blue curves), the experimental data from

the superconducting cut-circle cavity at 6.6 K with TRL-calibration (red

dash curves), and the data with TRL-calibration and pseudo-Open cor-

rection (black curves).
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and therefore well-calibrated measurement of the scattering matrix S is important.

In this appendix we demonstrate the details of our in-situ broadband cryogenic cal-

ibration system where the calibration process is made dramatically more convenient

by installing two cryogenic switches for single-thermal-cycle TRL calibration. We

also introduce a pseudo-Open standard by taking advantage of the ensemble real-

izations of the superconducting cavity with a movable perturber and the feature of

well-separated resonances in an extremely low loss environment. Experimental data

verify that the pseudo-Open standard can significantly improve the TRL-calibrated

data. We have shown that the well-calibrated scattering matrices are beneficial for

wave chaos research in Fig. B.11. In additional to this application, this calibra-

tion method should broadly benefit various applications related to high-precision

cryogenic measurement.
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Appendix C

Error Analysis of Short-Orbit Correction

In Chapter 4, I have introduced experimental verification of the effect of short

orbits in the measured impedance of a wave scattering system, the 1/4-bowtie cavity.

We utilize microwave absorbers to cover specific walls in the metal cavity, and

therefore we can examine the effect of individual orbits in Sec. 4.1. The results

in Sec. 4.1 can be further analyzed in the length domain, and it can help to figure

out the major sources of error in the experiment.

We propose that there are two major sources of the deviations between the

theoretical results and the experimental results shown in Fig. 4.1. The first is that

the microwave absorbers do not fully suppress the effect of orbits; the second arises

from the ends of microwave absorbers that scatter energy back to the ports. To verify

this, we transform the frequency-dependent impedance corrections data zcor,n,m(f)

in Fig. 4.1 to the time domain (t) by the inverse Fourier transform and then multiply

the time by the speed of light c to the length domain l = ct. The results are shown

in Fig. C.1 as εdata(l) ≡ |IFT{zcor,n,m}| and εtheo(l) ≡ |IFT{ζ(LM )
n,m }|, where IFT{·}

is the inverse Fourier transform (f → t = l/c). Note that the frequency range of

the inverse Fourier transformation is from 6 to 18 GHz, and therefore the resolution

in length is 2.5 cm. Figs. C.1 (a) and (b) are the one-port cases, and the shown

data are zcor,11; Figs. C.1 (c) and (d) are the two-port cases, and the shown data
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are zcor,12.

In the length domain, the major peaks of the measured data εdata(l) (red)

match the peaks of the theoretical prediction εtheo(l) (blue and dashed), and this

verifies that the short-orbit correction can describe the major features of the mea-

sured impedance in the wave scattering system. For example, the matched peak in

the theory curve and the data curve in Fig. C.1(a) corresponds to the short orbit

from the port to wall B and returning, shown as the red (vertical) line in the inset

of C.1(a). However, there are several minor peaks in the measured data not present

in the theoretical curves. After further examination of the geometry, the positions

of these deviations in Fig. C.1 match the lengths of orbits which are related to

the ends of the microwave absorbers, or bounce off the microwave absorbers with

a large incident angle. When the microwave absorbers end at the corners, they

produce gaps and edges, and these defects create weak diffractive short orbits. For

example, the green lines E1 and E2 in the insets in Figs. C.1(a) and (b), E2 and

E3 in Fig. C.1(c), and E2 in Fig. C.1(d) represent the diffractive short orbits which

leave a port, bounce off the edge of the microwave absorber, and return to a port.

Their path lengths match the deviations between the measured data and the theory

as labeled in the figure. Furthermore, the blue line E3 in the inset in Fig. C.1(b)

represents the short orbit produced by the edge and bounced from one wall.

The other error source is imperfection of the microwave absorbers that reflect

∼ −20 dB of the incident signal for normal incidence, and more for oblique incidence.

Therefore, the short orbits shown as purple lines E1 in Figs. C.1(c) and (d) with

a large incident angle bring about deviations between the theory and experimental
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Figure C.1: Four examples of the magnitudes of the impedance correc-

tion in the length domain ε(l). The insets are the corresponding geome-

try of the labeled orbits and the corresponding error sources. The thick

black lines correspond to walls coated with microwave absorber.
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data. These sources of error due to the ends of absorbers or large incident angles on

absorbers were not included in the short-orbit correction. However, these microwave-

absorber-related errors will not concern us further in the experiments where all

microwave absorbers are removed. Therefore, the experiments in Secs. 4.2, 4.3, and

4.4 are free from these errors.

In addition to the errors discussed above, another source of error is the dif-

ficulty in reproducing the antenna geometry with each measurement as the cavity

is opened and re-sealed between the measurement of the radiation impedance and

exposed wall cases. This error remains in the experiments where the radiation im-

pedance matrix Zrad is used. Another concern is multiply-reflected trajectories that

bounce off of the antennas. However, because we describe trajectories in terms of

the impedance instead of the scattering matrix, the multiply-reflected trajectories

are incorporated in a single impedance term. This is an important advantage of

using impedance because it can take account of the multiple-reflected trajectories

in a simple compact form.
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Appendix D

Fading Model in the High Loss Regime

Fading is the time-dependent variations in signal strength measured at a re-

ceiver, due to temporally evolving multipath scattering and interference. In Chapter

5, we have introduced a statistical fading model for the time-reversal-invariant (TRI)

case and the time-reversal-invariance-broken (TRIB) case by applying the random

coupling model (RCM) to combine the predictions of random matrix theory (RMT)

and the system-specific features of a practical system. In the high-loss limit this

RMT fading model reduced to the most common fading models (the Rayleigh fad-

ing model and the Rice fading model) in the wireless communication field. In this

appendix we discuss the derivations of the RMT model in the high-loss limit in more

detail.

To model the fading amplitude, we use the scattering matrix S that describes a

linear relationship between the input and the output voltage waves on a network. We

consider the 2×2 S matrix, where the two ports of the network system correspond to

the transmitter and the receiver. The complicated wave scattering system is modeled

by the scattering matrix, and therefore the magnitude of the matrix element |S21|

corresponds to the fading amplitude. To apply the random matrix approach, we

start with an RMT description of the 2× 2 scattering matrix srmt of a wave chaotic

system, based on Brouwer and Beenakker’s work [21]. This scattering matrix srmt
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does not contain any system-specific information and is totally ergodic. The RMT

form of the scattering matrix can be written as [21]

srmt = U1




√
1− T1 0

0
√

1− T2


 U2. (D.1)

In this equation U1 and U2 are two 2 × 2 random unitary matrices that can be

written in the form [172],

U = eiβ




cos θeiψ sin θeiϕ

− sin θe−iϕ cos θe−iψ


 , (D.2)

where β, ψ, and ϕ are independent random variables uniformly distributing from

0 to 2π, and θ = arcsin(
√

ξ), where ξ is a random variable uniformly distributing

from 0 to 1. T1 and T2 are the absorption probabilities which govern the strength

of the absorption of the system [21]. For T1, T2 → 0, the matrix srmt is unitary, and

there is no absorption (lossless). Whereas for T1, T2 → 1, the matrix srmt vanishes,

and the loss parameter is α → ∞. T1 and T2 are random variables, and their joint

distributions for the TRI case and the TRIB case will be discussed in the following

sections.

D.1 Time-Reversal-Invariant Case

In the TRI case, U2 is the transpose of U1 (U2 = U1
T ) [21]. Also, the absorption

probabilities T1 and T2 in Eq. (D.1) are two random variables (0 ≤ T1 ≤ 1 and

0 ≤ T2 ≤ 1) whose joint distribution function depends on a scalar parameter γ,
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referred to as the “dephasing rate” [21],

P (T1, T2; γ) =
1

8

|T1 − T2|
T 4

1 T 4
2

exp
[
−γ

2

(
1

T1

+
1

T2

)]
[γ2(2− 2eγ + γ + γeγ)

−γ(T1 + T2)(6− 6eγ + 4γ + 2γeγ + γ2)

+T1T2(24− 24eγ + 18γ + 6γeγ + 6γ2 + γ3)].

(D.3)

From Eq. (D.1) and (D.2), the fluctuating fading amplitude is

|srmt,21| =
√

ξ(1− ξ)
[
2− T1 − T2 − 2 cos φ

√
(1− T1)(1− T2)

]
, (D.4)

where φ = 2(ψ − ϕ). Hemmady et al. [90] found that the dephasing rate γ in

Eq. (D.3) can be related to the loss parameter α of the corresponding closed system

as γ = 4πα. For an open fading system, we consider an equivalent closed system

in which uniform absorption accounts for wave energy lost from the system, and we

assume that we can define an equivalent loss parameter α for the open system.

From Eq. (D.4) we can tune the loss parameter α, which determines the joint

distribution function P (T1, T2; γ = 4πα), to generate different probability distribu-

tion functions of the fading amplitude [61], as shown in Fig. 5.1(a). In some special

cases we are able to derive the analytical form of the distribution of the fading

amplitude P (|srmt,21|). For a lossless system (α = 0), the absorption probabilities

T1 = T2 = 0, and thus

|srmt,21| =
√

2ξ(1− ξ)(1− cos φ). (D.5)

By the known distributions of ξ and φ, we can compute the nth moment 〈|srmt,21|n〉

and the moment-generating function of |srmt,21|. We find that the moment-generating

function [173, 174] of the fading amplitude is identical to the moment-generating
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function of the uniform distribution P (|srmt,21|) = 1, for 0 ≤ |srmt,21| ≤ 1. Therefore,

we conclude that the distribution of |srmt,21| is uniform in the zero-loss limit.

For high loss systems (γ À 1), the dominant term in Eq. (D.3) is γ3eγ, so

P (T1, T2; γ À 1) ' 1

8

|T1 − T2|
T 4

1 T 4
2

exp
[
−γ

2

(
1

T1

+
1

T2

)]
γ3eγ

=
γ3

8

|T1 − T2|
T 4

1 T 4
2

exp
[
−γ

2

(
1

T1

+
1

T2

− 2
)]

.

(D.6)

Because of 0 ≤ T1 ≤ 1 and 0 ≤ T2 ≤ 1, the term ( 1
T1

+ 1
T2
− 2) > 0, and the distrib-

ution P (T1, T2; γ À 1) is negligible except when T1 → 1 and T2 → 1. Therefore, we

use the approximation 1/T1 ' 2−T1 and 1/T2 ' 2−T2 in the exponential function

in Eq. (D.6), and we keep only the dominant term. The joint distribution function

P (T1, T2) becomes

P (T1, T2; γ À 1) ' γ3

8
|T1 − T2| exp

[
−γ

2
(2− T1 − T2)

]
. (D.7)

With this joint distribution and the formula of |srmt,21| [Eq. (D.4)], we derive the

nth moment of the high-loss-limit distribution of |srmt,21|,

〈|srmt,21|n〉 =
∫ 1

0
dξ

∫ 2π

0

dθ

2π

∫ 1

0
dT1

∫ 1

0
dT2|srmt,21|nP (T1, T2; γ À 1)

= γ
−n
2 Γ

(
n

2
+ 1

)
,

(D.8)

where Γ(·) is the Γ function. Then we can derive the moment-generating function,

and it is identical to the moment-generating function of the Rayleigh distribution

[173, 174]. Therefore, the distribution of |srmt,21| is

P (x = |srmt,21|; α À 1) = 8παx exp(−4παx2), (D.9)

which is a Rayleigh distribution P (x; σ) = (x/σ2) exp[−x2/(2σ2)] with the relation

α =
1

8πσ2
. (D.10)
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D.2 Time-Reversal-Invariance-Broken Case

For the time-reversal-invariance-broken (TRIB) case [21], we have a different

joint distribution function P̃ (T1, T2), and U1 and U2 in Eq. (D.1) are now indepen-

dent random unitary matrices with independent random variables ψ1, ϕ1, β1, ψ2,

ϕ2, and β2, which are all uniformly distributed from 0 to 2π. θ1 = arcsin(
√

ξ1) and

θ2 = arcsin(
√

ξ2) with independent random variables ξ1 and ξ2 uniformly distribut-

ing from 0 to 1. The fluctuating fading amplitude for the TRIB case is

|s̃rmt,21|2 = ξ1(1− ξ2)(1− T1) + ξ2(1− ξ1)(1− T2)

+2 cos φ̃
√

ξ1ξ2(1− ξ1)(1− ξ2)(1− T1)(1− T2),

(D.11)

where φ̃ = ψ1 + ψ2 + ϕ1 − ϕ2 has a uniform distribution on [0, 2π). We numerically

generate |s̃rmt,21| from Eq. (D.11) and plot the probability distributions P (|s̃rmt,21|)

with varying loss parameters in Fig. 5.1(b). The numerical results show that the

distribution P (|s̃rmt,21|) is a triangular distribution P (x) = 2x for 0 ≤ x = |s̃rmt,21| ≤

1 in the lossless case, different from the TRI case. However, in the high loss limit

the distribution P (|s̃rmt,21|) goes to a Rayleigh distribution with the relation α =

1/(8πσ2), as with the time-reversal-invariant case.

Since the phases of srmt,21 and s̃rmt,21 are uniformly distributed between 0

and 2π [57, 58], a Rayleigh-distributed magnitude means the real part and the

imaginary part of srmt,21 and s̃rmt,21 are independent and identically distributed

(i.i.d.) Gaussian distributions with zero mean and the variance σ2 = (8πα)−1.

Therefore, in the high loss limit, the loss eliminates the correlations in the random

matrix of the TRI case (GOE) [or the TRIB case (GUE)], and the real part and
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the imaginary part of the random variable srmt,21 (or s̃rmt,21) become i.i.d. normal

distributions, and the variances only depend on the loss parameter α. In practice,

note that time-reversal invariance for wave systems can be continuously broken

[26, 49, 53, 113], so in the partially broken case the statistical properties would be

in between the TRI case and the TRIB case.

D.3 Conclusion

We start from the RMT prediction of the universal scattering matrix and

combine it with the random coupling model to derive a statistical model for the

fading parameter. In this appendix I show the detailed derivations of the fading

amplitudes |srmt,21| for the time-reversal-invariant case and |s̃rmt,21| for the time-

reversal-invariance-broken case. In Chapter 5 these results are further combined

with the system-specific features in the wave scattering system by the extended

random coupling model. This is a new application of wave chaos theory in the field

of wireless communications, and this RMT fading model is more complete than

traditional models.
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