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Abstract 
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LNTRODUCTION 

Consider a simple two-conductor transmission line, 
such as a coaxial cable or parallel pair. These types of 
transmission lines support transverse electromagnetic 
(TEM) waves and therefore the wave transmission can 
be expressed purely in terms of the voltage between the 
conductors and the current flowing through the 
conductors. If the line is terminated by a load (Fig. l), 
that is not perfectly matched to the transmission line, 
then some of the incident signal will be reflected back 
from the load. In terms of the voltage and current along 
the line we have, at a point z, 

and 

where p is the phase constant (rads m-'), V'is the 
voltage amplitude of the forward propagating signal 
and V -  is that of the reverse. The e-jPz terms denote 
forward propagation (towards the load), the e+jPz 
terms denote reverse propagation (away from the load). 
Zo is the characteristic impedance of the transmission 
line and is dependent on the geometry and material of 
the structure. For simplicity, the time dependence has 
been omitted from equations (1) and (2). The actual 
voltage and current is given by Re{VeJo') and 

Re{le"'}, respectively. 

Suppose we choose a reference plane at z = 0. We 
define the reflection coefficient at this point by 

V -  r=- 
V +  

We firther define the impedance of the terminatip by 

(4) 

where the z dependence has been omitted. Note that we 
are free to set the reference plane anywhere along the 
line, this might be at the connector interface, at the load 
element or some distance along the line. 

Substituting equations ( 1 )  and (2) into equation (4) 
gives the well-known relationship between the 
reflection coefficient of the termination and its 
impedance at the reference plane: 

I 

Fig. 1. Transmission line terminated in a mismatched 
load. 

Similarly, the relationship between the admittance of 
the termination and its reflection coefficient is given by 

v+-v- 1-r 
v +v- i+r 

y = z - ' = y  o r = Y o -  

where Yo is the admittance of the transmission line, 
Yo=Zi'. Another useh1 expression is given by solving 
for in equation (5 ) :  

Clearly r is dependent on the impedance of the 
termination but we note that it is also dependent on the . 
characteristic impedance of the line. A knowledge of 
2, is therefore required to define r, 

Relationships for the power flow can also be defined. It 
is well known that, using phasor notation, the RMS 
power is given by 

1 
2 

P = -Re{VI*] 

where * denotes the complex conjugate. Substituting 
for K and I from equation (1) and ( 2 )  yields, for z = 0, 

which gives 

where we have made .use of the fact that 
V* * V -  - V+V- * is purely imaginary and 
V+V+* =I V +  1 2 .  We also assume that 2, is purely real. 
We notice that the power is dependent on the 
characteristic impedance. We can however define the 
network in terms of another set of amplitude constants 
such that the impedance is not required in power 
calculations. 
Let 
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and 

(9 )  

where a and b are defined as the wave amplitudes of 
the forward and backward propagating signal. With 
reference to equation (1) it is easy to show that 
a = V + / &  and b = Y - / & .  We findnow, that if 
Z, is purely real, that the power is simply given by 

I a 1' 12 is the power in the forward propagating wave 

and I b / 2  is the power in the backward propagating 
wave. Equation (10) is a very satisfying result since it 
allows propagation to be defined in terms of wave 
amplitudes that are directly related to the power in the 
wave. This is particularly useful for measurement 
purposes since power is more easy to measure than 
voltage or current. In fact we shall see that for many 
microwave networks, voltage and current cannot be 
measured or even defined. 

The analysis so far has dealt with one-port devices. 
These are completely specified by their impedance Z or 
reflection coefficient r (with respect to Z,). The more 
important case of the two-port, or multi-port device, 
requires a more complicated model. 

SCATTEFUNG PARAMETERS 

Consider the two-port network shown in Fig. 2. There 
will, in general, be waves propagating into and out of 
each of the ports. If the device is linear, the output 
signals can be defined in terms of the input signals. 
Thus, 

where bl and bz are the wave amplitudes of the signals 
flowing out of ports I and 2, respectively. Similarly, uI 
and a2 are the wave amplitudes of the signals flowing 
into ports 1 and 2, respectively. & I ,  S,,, $2 and S,, are 
the scattering coefficients or scattering parameters. 
Using the definition of wave amplitude the voltages at 
port 1 and port 2 are given by 

Fig. 2. Two-port device represented by S-parameter 
matrix. 

and 

respectively. Where it is assumed that the characteristic 
impedance is different at each port: Z,,, at port 1 and 
Zo2 at port 2. Similarly the currents entering port 1 and 
port 2 are 

and 

respectively. Equations (1 1) and (12) can be,  more 
neatly written in matrix notation: 

or b =Sa where 

S is the scattering matrix or S-parameter matrix of the 
two-port network. 

If port 2 is terminated by a perfect match of impedance 
202 ,  i.e. all of the incident energy is absorbed in the 
termination, we have the following properties 

Similarly, if port 1 is terminated by a perfect match of 
impedance Zol then 
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and SI, =-I 4 . 
a2 u,=D 

With the definitions above we can obtain some insight 
into the meaning of the individual S-parameters, Sii is 
the reflection coefficient at port 1 with port 2 
terminated in a matched load. It therefore gives a 
measure of the mismatch due to the network and not 
any other devices that may be connected to port 2. S,, 
is the transmission coefficient from port 1 to port 2 
with port 2 terminated in a perfect match. It gives a 
measure of the amount of signal that is transmitted 
from port 1 to port 2. S,, and SI2 are similarly defined 
with S2, giving the reflection from port 2 and Siz the 
transmission from port 2 to port 1. ..' 

The S-parameter representation equally applies to 
multi-port devices. For an n-port device, the 
S-parameter matrix is given by 

where b k  is the amplitude of the wave travelling away 
from the junction at port k. Similarly, a k  is the wave 
amplitude travelling into the junction at port k. The S- 
parameters are defined as 

IMPEDANCE AND ADMITTANCE 
PARAMETERS 

Similar expressions to equations (5) and (7) can be 
obtained for n-port devices. If we have an n-port 
device then the voltage and current at the reference 
plane of port k is given by 

and 

where Zok is the characteristic impedance of the 
transmission line connected to port k. Equations (14) 
and ( I  5) can be written in matrix notation as 

and 

I = Z,'(ZI - b), , (17) 

respectively. Where a and b are column' vectors 
containing the wave amplitudes and V and I are 
column vectors containing the port voltages and 
currents: 

Zo is a diagonal 
elements: 

z, = 

4 
V=[!] and I =  

bll 

matrix with ZOk as its 

Z$ denotes a diagonal matrix with & as its 
diagonal elements. OAen, tbe characteristic impedance 
of each of the ports is identical, in which case each of 
the diagonal elements.are equal. From (8) and (9) we 
have 

8 = 'z,"v + Z*I) (19) 2 

and 

Let V = ZI, where 2 is the impedance matrix; 
extensively used in electrical circuit theory: 

Also let I = W where Y is the admittance matrix: 
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U = - .  

We note that Z=Y- ' .  The individual elements of the 
ihpedance and admittance matrices are defined as 

1 0 .'. 0 

0 1 . * ' *  . 0 .]. . . * .  . .  . .  
0 0 ... 1 - 

That is 2, is the ratio of voltage at port i to that of the 
current at por t j  with all other port currents set to zero, 
i.e. short circuit. r, is defined as the ratio of current at 
port i to the voltage at portj  with all other port voltages 
set to zero, i.e. open circuit. Substituting V = ZI and 
b = Sa into equations (19) and (20) yields 

z = zg (U - s)-' (U + s)z8 = Y-' (21) 

or solving for S 

where U is the unit matrix: 

Examples of equations (21) and (22) for two-port 
networks are given in Appendix C. 

Z I  Z and Y parameters can be very useful in the analysis 
of microwave networks since they can be related 
directly to simple IC or T networks (refer to Table 1). 
These circuits are fundamental in lumped element 
circuits such as attenuators and are also important in 
equivalent circuits for waveguide junctions and 
discontinuities. 

Examples of S-parameter Matrices 

Table 1 shows some common examples of microwave 
networks and their network parameters. Parameters are 
only shown for the simplest form. The associated S, Z 
or Y parameters can be determined using equations 
(21) and (22). In each case it is assumed that the 
characteristic impedance is identical at each port and 
equal to Z, = ~i'. 

We notice from the table that the S-parameter matrices 
are symmetrical, i.e., S,,,, = Snm. This is a demonstration 
of reciprocity in microwave networks and applies to 
most networks (see Appendix A). A property of 
lossless scattering matrices is also seen for the line 

section. Here, STS* =U,  which applies to all lossless 
networks, refer to Appendix B. 

Circuit 

Loss less transmission line of 
length L, phase constant p 
and characteristic impedance 
Zn 

0 0 

Shunt admittance Y 

T 
Series impedance Z 

0 I 1 0 

Z 

0 0 

x network 

T network 

Network parameters 

s = L [  z 22, .] 
2z,+z 22, 
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Table 1. Network parameters for common microwave 
networks. 

CASCADE PARAMETERS 

Another useful transformation of the S-parameter 
matrix is the cascade matrix, The two-port cascade 
matrix is given by 

where we notice that now the wave amplitudes on port 
1 are given in terms of the wave amplitudes on port 2. 
Note that some textbooks interchange al with b, and bZ 
with u2. Comparing equation (23) with equation (13) 
gives the following relationships between the cascade 
matrix elements and the scattering coefficients: 

(24) 
Similarly, the reverse transform is given by 

Suppose we have two two-port devices cascaded 
together (refer to Fig. 3). The first network is given by 

and the second network, 

where, by inspection of Fig. 3 we see that 

[:] = [:I. 
Therefore. 

We see that in order to calculate the input wave 
amplitudes in terms of the output amplitudes we simply 
multiply the cascade matrices together. Often the 
cascaded two-port is converted back to an S-parameter 
matrix using equation (25). Any number of cascaded 

two-port networks can then be replaced by a single 
equivalent two-port network. 

Fig. 3. Two two-port networks cascaded together. 

CHARACTERISTIC IMPEDANCE 

We have seen that a microwave network can be 
characterised in terms of its S-parameters and that the 
S-parameters are defined with respect to the 
characteristic impedance at the ports of the network. A 
fundamental understanding of the nature of 2, is 
therefore essential in microwave circuit analysis and 
measurement. Unfortunately, the true nature of 
characteristic impedance is often overlooked by 
microwave engineers and Zo is usually considered to be 
a real valued constant such as 50 R. In many cases this 
is a very good assumption. However, the careel 
metrologist does not make assumptions and the true 
nature of the characteristic impedance is imperative in 
precision microwave measurements. In fact without a 
knowledge of the characteristic impedance, S -  
parameter measurements have little meaning and this 
lack of knowledge is so ofien the cause of poor 
measurements. This is particularly important in 
measured S-parameters from network analysers. S- 
parameters measured on a network analyser are with 
respect to the Zo of the calibration items used to 
calibrate the analyser. If this value is ill-defined then so 
are the measured S-parameters. 

Characteristic Impedance in Real Transmission 
Lines 

If a TEM or quasi-TEM line contains dielectric and 
conductive losses then equations (1) and (2) became 

and 

where the complex propagation constant is defined as 
y = a + j p  . Equations (26) and (27) are very similar to 
equations ( I )  and (2) however the attenuation constant 
Q adds an exponential decay to the wave's amplitude 
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as it propagates along the line. It is easy to show that in 
terms of the transmission line's per length series 
impedance Z and shunt admittance Y, that the 
propagation constant y and characteristic impedance 2, 
are given by [ii] 

In the loss less case Z =jwL and Y =joC, representing 
the series inductance of the conductors and the shunt 
capacitance between them. The complex propagation 
constant then reduces to the familiar phase constantjp 
and Zo degenerates to a real valued constant dependent 
onIy on L and C: 

y =  j e =  j w z  and Zo=g. 
In iossy lines there. is a series resistive component due 
to conduction losses and a shunt conductance due to 
dielectric losses. Hence, Z= R + j d  and Y =  FjwC 
and therefore, 

and 

where R,  L, G and C are oRen functions of w. Two 
very important facts 'about 2 0  are immediately evident 
from equation (29): 2, is complex and a function of 
frequency. Therefore, the assumption that Z, is a real 
valued constant that is independent of frequency is 
only an approximation. Fortunately, for many 
transmission lines the loss is small. In this case R<<wL 
and W<wC and an approximate expression for the 
propagation constant is obtained by using a first order 
binomial expansion. Thus, 

, p=& and 
2 L C  

To first order 2, is identical to the loss less expression 
and this is why the assumption that ZO is a real valued 
constant is so often used. There are many cases 
however when this approximation is far from valid. For 
example transmission lines and waveguides operating 
at millimetre-wave frequencies often have very large 
losses due to the increase of conduction and dielectric 
loss with frequency. In these cases, precision 
measurements must consider the complex nature of the 
transmission line. Furthermore, at low frequencies 
where o is small, we find that R>>wL and G>>oC. 

The complex nature of both y and Z, then plays a very 
important role. 

Fig. 4. Real part of characteristic impedance of CPW 
transmission line on GaAs. 

0 2 4 6 8 10 
f. GHz 

,Fig. 5. Imaginary part of characteristic impedance of 
CPW transmission line on GaAs. 

By way of example Figures 4 and 5 show how the real 
and imaginary parts of Zo vary with frequency for a 
coplanar waveguide (CPW). The parameters of the line 
are typical for a microwave monolithic integrated 
circuit (MMIC) with a 400 pm thick Gallium Arsenide 
(GaAs) substrate and gold conductors of 1.2 pm 
thickness. We see that above a few GHz the real 
component of Zo approaches the nominal 50 R of the 
design but with a small imaginary part of a few ohms. 
Below 2 GHz the picture is very different with a rapid 
increase in the real component of Zo and a large 
decrease in the imaginary component. Although the 
results are shown for CPW, similar results would be 
seen for microstrip, stripline and even coaxial cable. 

Characteristic Impedance in Non-TEM Waveguides 

The usual definition of characteristic impedance is the 
ratio of the forward voltage to forward current. These 
are easily determined for simple TEM transmission 
lines such as coaxial cable where the voltagg between 
the two conductors and the current flowing through 
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them is uniquely defined. However, it can be more 
difficult to define voltages and currents in quasi-TEM 
transmission lines such as microstrip and coplanar 
waveguide due to their hybrid nature. In fact, many 
waveguides used in microwave systems may only have 
a single conductor such as rectangular waveguide or no 
conductors at all as in a dielectric waveguide. In these 
cases it becomes impossible to define a unique voltage 
or current and guides of this type are better explained 
in terms of their electric and magnetic fields: 

E(x, y ,  z j = C+e+ (x, y)s-" + C-e, (x, y)e+" 

(30) 

H(x,y,zj = C+h,(r,yje-yz -C-h,(~,y)e+~' 

(3  11 

where e, and ht are the transverse electric and magnetic 
fields, respectively. C- and C+ are complex-valued 
constants. In general, all transmission lines are 
described by equations (30) and (31) and not equations 
( 1  j and (2). Equations (30) and (3 1 j can be expressed 
as [i] 

and 

(33) 

respectively. vo and io are normalisation constants such 
that 

Both V(z) and vo have units of voltage and I(z) and io 
have units of current. 

In order to extend the concept of voltage and current to 
the general waveguide structure, equations (34) and 
(35) must satisfy the same power relationships as 
equations (8) and (9). It can be shown that the power 

flow in a waveguide across a transverse surface S is 
given by [ii] 

(37) 

with modal power 

Therefore, in order to retain the analogy with equations 
(8) and (9) we require 

(39) 
P=-Re{V(z)Z(z)*) 1 

2 

and thus 

We see that the magnitude of 2 0  is not uniquely defined 
since we are free to choose any value of vo and io as 
long as equation (40) i s  satisfied. For example 1201 is 
often set to the wave impedance of the propagating 
mode. Another popular choice, used in network 
analysers, is lZol = 1. Note, however, that the phase of 
Z,  is set by equation (40) and is an inherent 
characteristic of the propagating mode. 

Since we cannot define a unique value ofZo we cannot 
define S-parameter measurements with respect to a 
nominal characteristic impedance. This is not really a 
problem for standard rectangular waveguide and 
coaxial cable which have set dimensions, since we can 
specify measurements with respect to WG-22 or APC7, 
etc, However, if we are using non-standard waveguides 
such as image or dielectric waveguide then all we can 
say is our S-parameters are with respect to the 
propagating mode on the structure. 

Another important difference is that in general a 
waveguide will support more than one mode. 
Multimode structures can be analysed using 
multimodal S-parameters [iii]. Fortunately, under usual 
operating conditions, only the fundamental mode 
propagates. However, at a discontinuity, evanescent 
modes will always be present. These exponentially 
decaying fields will exist in the vicinity of the 
discontinuity and are required to completely explain 
the waveguide fields and network parameters. 

It is important to remember that equations (34) and 
(35) are only equivaIent waveguide voltages and 
currents which do not have all the properties of 
equations ( 1 )  and (2). For example, 2, is dependent on 

r- 
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normalisation and therefore we could define W O  
different values of Z, for the same waveguide. 
Furthermore, even if we do use the same normalisation 
scheme it is possible for two different waveguides to 
have the same &. Clearly, a transition from one of 
these guides to the other will not result in a reflection- 
less transition, as conventional transmission theory 
would suggest. We also have to be very careful when 
converting to Z-parameters using equation (21) since Z 
is related to Z,,. Since Zo is undefined the absolute value 
of Z-parameters cannot be determined. This is not 
surprising since impedance is intrinsically linked to 
current and voltage. However, even though absolute 
values cannot be defined, they can be useful in the 
development of equivalent circuit models for 
waveguide devices and junctions. 

RENORMALlSATION OF S-PARAMETERS 

We have already seen that S-parameters are defined 
with respect to a reference characteristic impedance at 
each of the network's ports. Often we require that the 
S-parameters are renormalised to another set of port 
characteristic impedances. This is particularly 
important in measurement were the measured S- 
parameters are with respect to the transmission line 2, 
of the calibration items which will generally be a 
frequency dependent complex number, as in Figures 4 
and 5 .  To convert an S-parameter matrix S that is with 
respect to the port impedance matrix: 

we firstly transform S to an impedance matrix using 
equation (2 1): 

z = z? (U - s)-' (U + s)z$ 

Next the impedance matrix is transformed into the S- 
parameter matrix S' 

where now a reference impedance matrix of ZA is 
used: 

S' is then with respect to 2;. Often the renormalised 
S-parameters are with respect to 50 Iz in which case all 
the diagonal elements of 2; are equal to 50 Iz. 

Fig. 6. Two-port network with feeding transmission 
lines at each port. 

DE-EMBEDDING OF S-PARAMETERS 

Another very important operation on an S-parameter 
matrix is the de-embedding o f  a length of transmission 
line from each of the ports. This is extremely important 
in measurement since often the device under test is 
connected to the measurement instrument by a length 
of transmission line and therefore the actual measured 
value includes the phase and attenuation of the line. It 
can be shown that the measured n-port S-parameters 
S' are related to the network's actual S-parameters S 
by 

' 

S' = os0 

where 

It is assumed that all of the lines are matched to their 
respective ports. If we know the length of line Lk at 
each port and the propagation constant yk then we can 
de-embed the effect of the lines. Thus, 

Due to the diagonal nature of 0, the inverse operation 
W' simple changes the - "fk& terms to + YnLk.  

Fig. 6 shows a typical two-port network with lines 
connected to both ports. In this case the actual network 
parameters S are related to the un-embedded S -  
parameters S' by 



219 

In the lossless case yk would degenerate to j p ,  and only 
a phase shifi would be introduced by the lines. 

r 

Fig. 7. Signal flow graph for two-port network 

SIGNAL FLOW GRAPHS 

The analysis so far has relied on matrix algebra. 
However, another important technique can also be used 
to analyse microwave circuits, or indeed their IOW 
frequency counterparts. This technique is known as the 
signal flow graph. Signal flow graphs express the 
network pictorially, see Fig. 7. The wave amplitudes 
are denoted by nodes, with the S-parameters being the 
gain achieved by the paths between nodes. To analyse 
signal flow graphs the following rules can be applied 
[ iv] : 

Rule 1: Two series branches, joined by a common 
node, can be replaced by one branch with gain equal to 
the product of the individual branches. 

Rule 2: Two parallel branches joining two common 
nodes can be replaced with a single branch with gain 
equal to the sum of the two individual branches. 

Rule 3 :  A branch that begins and ends on a single node 
can be eliminated by dividing the gains of all branches 
entering the node by one minus the gain of the loop. 

Rule 4. Any node can be duplicated as long as all paths 
are retained. 

0 St'& - 
0 

Rule 3 S" 
~ 

1 -sb 
0 0 

Sb Rule 4 

0 n. S. 

Fig. 8. Kuhn's rules for signal flow graph analysis. 

Fig. 9 gives an example of applying the above rules to 
analyse a microwave circuit. The network is a simple 
two-port network terminated by an impedance with 
reflection coefficient r,. We wish to calculate the 
reflection coefficient at the input terminal, i.e., bl/ul.  
Firstly, we apply rule 4 to duplicate the a2 node. Then, 
using rule 1, we eliminate both of the az nodes. The 
closed loop, S22r~ is eliminated using rule 3. Next, rule 
1 is applied to eliminate node bZ. Finally, applying rule 
2, we obtain a value for bllai. 

Clearly, for larger networks, the signal flow graph 
technique can be very difficult to apply. However, it 
can otten be useful for analysing simple networks - 
giving a more intuitive approach to the problem. 

These four rules are illustrated in Fig. 8. 
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Rule 4 

Rule I 

Rule 3 

2 
b, 

Fig. 9. Example of the use of signal flow graphs to 
analyse a microwave network. 
APPENDIX 

A. Reciprocity 

Uskg the Lorentz reciprocity relation [VI it can be 
shown that, in general, Z,, = Znm. This is only true for 
networks that do not contain anisotropic media such as 
ferrites. Therefore, in matrix notation we have 

Z = Z T  

where ZT is the transpose of Z. From equation (21) it 
becomes apparent that if the characteristic impedance 
is identical at every port then 

(U - s)-'(U + s) = (U + s q u  - S T y  . 

Therefore, S = ST 'and provided the impedance 
matrices are symmetrical , S , ,  = Snm. 

B. Losslessness 

An n-port network can be described an by nxn S- 
parameter matrix: 

b = S a  

If the network is lossless, then the power entering the 
network must be equal to the power flowing out of the 
network. Therefore, from equation (1 0) we have 

i=l i=l 

2 -  But Ibil = bjbi * , therefore, 

We see that the column matrix in the above equation is 
given by the conjugate of the right hand side of 
equation (SI), i.e. S*a*. Similarly, the row matrix is 
given by the transpose of the right hand side of 
equation (Bl), i.e. (Sa)*, Therefore, we have 

n 

c l b i r  =(Sa)*S*a*= aTSTS*a* 033) 
j= l  . 

where we have used the fact that the transpose of the 
product of two matrices is equal to the product of the 
transposes in reverse. Substituting (B3) into equation 
(B2) yields 

where we have used the fact that 
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Clai l ’  = aTa * . 
i=l 
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