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TRANSMISSION LINES - BASIC PRINCIPLES 

Dr R J Collier University of Cambridge 

1 Introduction 

The’.aim of this lecture is to revise the basic 
principles of transmission lines in preparation 
for many of the lectures, which follow in this 
course. Obviously this lecture cannot cover 
such a wide topic in any depth and at the end of 
these notes are listed some textbooks which 
may prove useful for those wishing to go 
further into the subject. 

Microwave measurements involve transmission 
lines because many of the circuits used are 
larger than the wavelength of the signals being 
measured. In such circuits, the propagation 
time for the signals is not negligible as it is at 
lower frequencies. So some knowledge of 
transmission lines is essential before sensible 
measurements can be made at microwave 
frequencies. 

For many of the transmission lines, like coaxial 
cable and twisted pair lines, there are two 
separate conductors separated by an insulating 
dielectric. These lines can described using 
voltages and currents in an equivalent circuit. 
However, another group of transmission lines, 
often called waveguides, like metallic 
waveguide and optical fibre, have no equivalent 
circuit and these are described in terms of their 
electric and magnetic fields. These notes will 
describe the two conductor transmission lines 
first, followed by a description of waveguides. 
The notes will end with some general 
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comments about attenuation, dispersion and 
power. A subsequent lecture will describe the 
properties of some of the transmission lines in 
common use today. 

Loss-less Two Conductor Transmission 
Lines - Equivalent Circuit and Velocity of 
Propagation 

All two-conductor transmission lines can be 
described using a distributed equivalent circuit. 
In order to simplify the treatment, the lines with 
no losses will be considered first. The lines 
have an inductance per meter, L, because the 
current going along one conductor and 
returning along the other produces a magnetic 
flux between the wires. Normally, at high 
frequencies the skin effect reduces the self- 
inductance of the wires to zero so that only this 
‘loop’ inductance is important. The wires will 
also have a capacitance per meter, C, because 
any charges on one conductor will induce equal 
and opposite charges on the other. This 
capacitance between the wires is the dominant 
term and is much larger than any self- 
capacitance. The equivalent circuit is shown in 
figure 1. 

dV I -CAX-  
dt 

Lhx 
V 

Ax 
4 b 

Figure 1: The equivalent circuit of a short length of transmission line with no losses. 
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If a voltage, V, is applied to the left hand side of 
the equivalent circuit, the voltage at the right 
hand side will be reduced by the voltage drop 
across the inductance. In mathematical terms: 

81 . 
V becomes v - Lhx- in a distance hx . So 

at 
the change AV in that distance is given by:- 

dI 
AV =-LAX- 

at 

ar = -L-  AV i3V 
hx ax at 

- --- and Lim 

AX+O 

In a very similar fashion the current, I, entering 
the circuit on the left hand side is reduced by 
the small current going through the capacitor. 
Again, in mathematical terms:- 

av 
at 

I becomes I - chx- in a 

distance Ax 

So the change in that distance is given by: - 

i?V hl=-cAx- 
at 

dV --e- Hence -- 
Ax at 

* A l  

dV C- bl ar 
A x a x  at 
-=-=- and Lim 

AX+O 

These equations are called the Telegraphists’ 
equations:- 

Differentiating these equations with respect to 
both x and t gives:- 

Given that x and t are independent variables 
then the order of the differentiation is not 
important, the equations can be reformed into 
wave equations. 

The equations have general solutions of the 

form of any function of the variable ( t  J ?). 
V 

So if any signal, which is a function of time, is 
introduced at one end of a loss-less transmission 
line then at a distance x down the line the 

function will be delayed by L. If the signal 

were travelling in the opposite direction the 
delay would be the same except x would be 
negative and the positive sign in the variable 
would be needed. 

V 

X 

V 
If the finction is f ( t  - -) substituting in the 

wave equation gives:-. 

1 X x 
- f” ( t  - -) = LCS” ( t  - -) 
v 2  V v 

This shows that for all types of signal - pulse, 
triangular, sinusoidal - there is a unique velocity 
on loss-less lines, v, given by 

1 v=- m 
This is the velocity of both the cwent and 
voltage waveforms since the same wave 
equation governs both parameters. 
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2.1 Characteristic Impedance 

The relationship between the voltage waveform 
and the current waveform is derived from the 
Telegraphists’ equations. 

If the voltage waveform is:- 

X 

V 
v = V , f ( t  - -) 

then 

Using the first Telegraphist equation:- 

Integrating with respect to time gives:- 

v o  x v  
I = - - f ( t  --) =-.- 

Lv v Lv 

This ratio is called the characteristic impedance 
2, and for loss-less lines. 

V 
I 
- = 2, 

This is for waves travelling in a positive x 
direction. If the wave was travelling in a 
negative x direction, i.e. a reverse or backward 
wave, then the ratio of V to I would be equal to 
-Zo. 

2.2 Reflection Coefficient 

A transmission line may have at its end an 
impedance, Z,, which is not equal to the 
characteristic impedance of the line 2,. Thus, 
a wave on the line faces the dilemma of obeying 
two difference Ohm’s laws. In order to achieve 
this a reflected wave is formed. Giving positive 
suffices to the incident waves and negative 
suffices to the reflected waves the Ohm’s law 
relationships become: 

V - + =z, 
1, 

where vL and 1, are the voltage and current 

in the terminating impedance 2,. 

A reflection coefficient, p or r, is defined as the 
ratio of the reflected to the incident wave. 
Thus: 

Since 2, for loss-less lines is real and ZL may 
be complex then in general will be complex. 
One of the main parts of microwave impedance 
measurement is to measure the value of r and 
hence ZL, 

3.2 Phase Velocity and Phase Constant for 
Sinusoidal Waves 

So far the treatment has been perfectly general 
for shapes of waves. In this section, just the 
sine waves will be considered. In figure 2, a 
sine wave is shown at one instant in time. Since 
the waves move down the line with a velocity 
of v, the phase of the waves further down the 
line will be delayed compared with the phase of 
the oscillator on the left hand side of figure 2. 
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2x radians of phase delay I 

Figure 2: Sine waves on transmission lines 

The phase delay €or -a whole wavelength is 
equal to 2x. The phase delay per metre is called 
p and is given by:- . 

2n p=-  a 
Multiplying top and bottom of the right hand 
side by frequency gives:- 

Where v is now the phase velocity, ie the 
velocity of a point of constant phase and is the 
same velocity that is given in Section 2 if the 
lines are lossless. 

2.4 Power Flow for Sinusoidal Waves 

If a transmission line is terminated in an 
impedance equal to z,, then all the power in the 
wave will be dissipated in the matching 
terminating impedance. For lossless lines a 
sinusoidal wave with an amplitude v, the power 
in the termination would be:- 

If a transmission line is not matched then part of 
the incident power is reflected (see Section 2.2) 
and if the amplitude of the reflected wave is V, 
then the reflected power is 

Then , 

2 Power reflected 
If' = Incident Power 

Clearly, for a good match the value of Irl 
should be near to zero. The return loss is often 
used to express the match:- 

1 
Return loss = 10 log,, - 

In microwave circuits a return loss of greater 
than 2OdB means that less than 1% of the 
incident power is reflected. 

Finally, the power transmitted into the load is 
equal to the incident power minus the reflected 
power. A transmission coefficient, z, is used as 
follows:- 

This is also the power in the wave arriving at 
the matched termination. 



Transmitted Power 2 2 =Jfl =i-\rI 
Incident Power 

2.5 Standing Waves resulting from Sinusoidal 
Waves 

When a sinusoidal wave is reflected by a 
terminating impedance which is not equal to 
z,, the incident and reflected waves form 
together a standing wave. 

If the incident wave is:- 

F+ = sin( cut - @) 

and the reflected wave is: 

where x=O at a distance D from the termination. 

Then at some points on the line the two waves 
will be in phase and the voltage will be:- 

where VMAx is the maximum of the standing 
wave pattern. At other points on the line the 
two waves will be out of phase and the voltage 
will be 

V,, is the minimum of the standing wave 
pattern. The Voltage Standing Wave Ratio or 
VSWR or S is defined as:- 

Now 

+ I? 
1 - Iri 

so s=- 

Measuring S is relatively easy and so a value for 
(r( can be obtained. From the position of the 
maxima and minima the argument or phase of 
r can be found. For instance, if a minimum of 
the standing wave pattem occurs a distance D 
from a termination then the phase difference 
between the incident and reflected waves at that 
point must be n r ( n  = 1,3,5 ...) . Now the 
phase delay as the incident wave goes from that 
point to the termination is PD. The' phase 
change on reflection is the argument of r. 
Finally, the further phase delay as the reflected 
wave travels back to D is also BD. So:- 

n a  = 2pR + arg(r) 

So, by a measurement of D and a knowledge of 
b-the phase of r can also be measured. 

3 Two Conductor Transmission .Lines with 
Losses. Equivalent Circuit and Low-loss 
Approximation. 

In many two-conductor transmission lines there 
are two sources of loss which cause the waves 
to be attenuated as they travel along the line. 
One source of loss is the ohmic resistance of the 
conductors. This can be added to the equivalent 
circuit by using a distributed resistance, R, 
whose units are ohms per metre. Another 
source of loss is the ohmic resistance of the 
dielectric between the lines. Since this i s  in 
parallel with the capacitance it is usually added 
to the equivalent circuit using a distributed 
conductance, G, whose units are Siemens per 
metre. The full equivalent circuit is shown in 
figure 3. 

s-1 or lrl= - 
S + l .  
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Figure 3: The equivalent circuit of a line with losses. 

The Telegraphists' equations become: 
or 

Again, wave equations can be found by 
differentiating with respect to both x and t .  

a2V dV -- - L C I  + (LG + RC)- + RGV a2v 
ax at at 

a2i  8I 
~ = LC- + (LG + RC)- + RGI 
d 2 1  
ax at a 

These equations are not easy to solve in the 
general case. However, for sinusoidal waves on 
lines with small losses, i.e. WL >> R ;  
WC >> G there is a solution of the form: - 

v = V, exp(- m ) ~  t - - [ 3 
m i '  the same as for loss- where v = ~ 

1 

JLC 
less lines: - 

R GZ, 
a=-+- nepers m" 

22, 2 

a=8.686 -+- I& G:] 
p = w&? radians m" as for loss-less lines 

as for loss-less lines 

3.1 Pulses on transmission lines with losses 

As well as attenuation a pulse on a 
transmission line with losses will also change 
its shape. This is caused by the fact that all the 
components of the transmission lines L, C, G 
and R are actually different functions of 
frequency. So, if the sinusoidal components of 
the pulse are considered separately they all 
travel at different velocities and with different 
attenuation. This frequency dependence is 
called dispersion. For a limited range of 
frequencies it is sometimes possible to describe 
a group velocity which is the velocity of the 
pulse rather that the velocity of the individual 
sine waves that make up the pulse. One effect 
of dispersion in pulses is the rise time is 
reduced and often the pulse width is increased. 
It is beyond the scope of these notes to include 
a more detailed treatment o f  this topic. 

3.2 Sinusoidal Waves on Transmission Lines 
with Losses 

For sinusoidal waves there is a solution of the 
wave equation and it is: - 

a + j p  = .\I@ + ~&L)(G + j w ~ )  
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and 

In general a, p and 2, are all functions of 

frequency. In particular, Zo at low frequencies 
can be complex and deviate considerably from 
its high frequency value. Since R; G, L and C 
also vary with frequency, a careful 
measurement of these properties at each 
frequency is required to characterise completely 
the frequency variation of 2, . 

4. Lossless Waveguides 

These transmission lines cannot be easily 
described in terms of voltage and current as 
they sometimes only have one conductor, e.g. 
metallic waveguide or no conductor, e.g. optical 
fibre. The only way to describe their electrical 
properties is in terms of the electromagnetic 
fields that exist in, and in some cases, around 
their structure. This section of the notes will 
begin with a revision of the properties of a 
plane or transverse electromagnetic (T.E.M.) 
wave. The characteristics of metallic 
waveguides will then be described using these 
waves. The properties of other waveguiding 
structures will be given in a later lecture. 

4.1 Plane (or Transverse) Electromagnetic 
Waves 

A Plane (or Transverse) Electromagnetic Wave 
has two fields which are perpendicular or 
transverse to the direction of propagation. One 
of the fields is the electric field and the 
direction of this field is usually called the 
direction of polarisation (e.g. vertical, 
horizontal, etc.). The other field which is at 
right angles to both the electric field and the 
direction of propagation is the magnetic field. 
These two fields together fonn the 
electromagnetic wave. The electromagnetic 
wave equations for waves propagating in the z 
direction are: - 

a2H d 2 E  
at2 

-- 
& 2  -PE- 

where p is the permeability of the rnedium. If 

pR is the relative permeability then 

p =pRpo and po  is the free space 

permeability and has a value of 4 ~ . 1 0 - ~  Hm-'. 
Similarly, E is the permittivity of the medium 
and if E~ is the relative permittivity then 

E = E,&, and E, is the free space permittivity 
and has a value of 8.854.10-'* Fm-'. These wave 
equations are analogous to those in section 2 of 
these notes. The variables V, I, L and C are 
replaced with the new variabies E, H, p and 
E and the same results follow. For a plane 
wave the velocity if the wave in the z direction 
is Y given by: - 

1 
(see Section 2 where v = - I v=-  

6 
If p = po and & = E , ,  then 

v0 = 2.99792458.10' ms-' 

The ratio of the amplitude of the electric field to 
the magnetic field is called the intrinsic 
impedance and has the symbol q ,  

(seeSection2 where 2, = 

If p = po and E = E,, then q, = 376.61Q 
or 120~52 

As in Section 2 fields propagating in the 
negative z direction are related by - 7. The 
only difference is the orthogonality of the fields, 
which comes from Maxwell's Equations. For 
an electric field polarised in the x direction: - 

If E ,  is a function of ( t  - t) as before 

then 
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If an E ,  field was chosen; the magnetic field 

would be in the negative x direction. For 
sinusoidal waves the phase constant is called 
the wave number and given symbol k. 

Inside all two conductor transmission lines are 
various shape of plane waves and it is possible 

to describe them completely in terms of fields 
rather than voltages and currents. The 
electromagnetic wave description is more 
fundamental but the equivalent circuit 
description is often easier to use. At high 
frequencies, two conductor transmission lines 
also have higher order modes and the equivalent 
circuit model for these becomes more awkward 
to use whereas the electromagnetic wave model 
is able to accommodate all such modes. 

4.2 Rectangular MetalLic Waveguides 

Figure 4 shows a rectangular metallic waveguide. 

Ela b 
/ a = 2 b  

Figure 4: A rectangular metallic waveguide 

If a plane wave enters the waveguide such that 
its electric field is in the y ( or vertical ) 
direction and its direction of propagation is not 
in the z direction it will be reflected back and 
forth by the metal walls in they direction. Each 
time the wave is reflected it will have the phase 
reversed so that the sum of the electric fields on 
the surfaces of the two walls in they direction is 
zero. This is consistent with the walls being 
metallic and therefore, good conductors and 
capable of short circuiting any electric fields. 

The walls in the x direction are also good 
conductors but are able to sustain these electric 
fields perpendicular to their surfaces. Now, if 
the wave after two reflections has its peaks and 
troughs in the same positions as the original 
wave then the waves will add together and form 
a mode. If there is a slight difference in the 
phase the vector addition after many reflections 
will be zero and no mode is formed. The 
condition for forming a mode is thus a phase 
condition and it can be found as follows. 

Metal 
Waveguide 
Wall , 

0' 
Direction of propagation 
or Wave Vector 

/ 

0" r /  Wall 

1 8 0  I 
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Figure 5: A plane'wave in a rectangular metallic waveguide 

Figure S shows a plane wave in a rectangular As this wave is incident on the right wall of the 
metallic waveguide with its electric field in the waveguide in figure 5, it .will give reflection 
y direction and the direction of propagation at according to the usual laws of reflection as 
an angle @ to the z direction. . shown in figure 6. 

The rate of change of phase in the direction of 
propagation is k, the free space. wave number. 

A 
90"-20 

Fields cancel 
J at metal walls 

B 

Fields add 
-at the 

centre 
TElo mode I 

Figure 6: Two plane waves in a rectangular metallic waveguide. The phases 0" and 180" refer to the lines 

On further reflection, to form a mode this'wave 
must 'rejoin' the original wave. So, figure 6 
also shows the sum of all the reflections The phase delay can be found from resolving 
forming two waves one incident on the right 
wall one on the left. The waves form the mode 
if they are linked together in phase. 

Consider the line AB. This is a line of constant 
phase for the wave moving to the right. Part of 
that wave at B reflects and moves along BA to 
A where it reflects again and rejoins the wave 
with the same phase. At the first reflection 
there is a phase shift of n. Then along BA 
there i s  a phase delay followed by another phase 
shift of ai the second reflection. The phase 
condition is: - 

below each figure. 

where m = 0 ,  1,2,3etc. 

the wave number along BA. 
This is : - 

k, sin 2 0  radians m" 

If the walls in the y direction are separated by a 
distance a, then: - 

a A B = -  
cos 0 

a 
cos 0 

So the phase delay is k,  sin 2 0  - or 
2~ + phase delay along BA for wave moving 
to the left = 2m9 2k, sin 0 
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Hence the phase condition is: 

k , u s i n @ = m x  where m=0 ,1 .2 ,3  .. 

The solutions to this phase condition give the 
various waveguide modes for waves with fields 
only in they direction, i.e. the TE,, modes. ‘nt’ 
is the number of half sine variations in the x 
direction. 

4.3 The Cut-off Condition 

w 
From the phase condition since k, = - then 

v o  

v p l r  
a 

u s i n 6  = - is the phase condition. 

The terms on the right hand side are-constant. 
For very high frequencies the value of @ tends 
to be zero and the two waves almosi propagate 
in the z direction. However, if # reduces in 
value the largest value of sin @ is 1 and at this 
point the mode is cut off and can no longer 
propagate. The cut-off frequency is a, and is 
given by:- 

vomn w, =- 
U 

or f, =- v0m where f, is the cut-off frequency. 
2u 

2a a =- where IC i s  the cut-off wavelength. 
m 

A simple rute for TE,, modes is that at cut-off, 
the wave just fits in ‘sideways’. -Indeed, 
since 0 = 90” at cut-off the two plane waves 
are propagating from side to side with a perfect 
standing wave between the walls. 

4.4 The Phase Velocity 

. All waveguide modes can be considered in 
terms of plane waves. Since the simpler modes, 
just considered consist of just two plane waves 
they form a standing wave pattern in the x 
direction and yet form a travelling wave in the z 
direction. Since the phase velocity in the z 
direction is reIated .to the rate of change of 
phase, i.e. the wave number then: - 

w Velocity in the z direction = 
wave number in the i: directir 

Using figure 5 or 6 the wave number in the t 
direction is 

k, cos 0 

??lE 
Now from the phase condition sin @ = - 

koa 

Where V, is the free space velocity 

Hence the velocity in the z direction 

w 
V I  = 

k,  c o s 0  

As can be seen from this condition when& is 
equal to the cut-off wavelength (see Section 
4.3) then v, is infinite. As & gets smaller 

than A, then the velocity approaches v, . The 

phase velocity is thus always greater than V o .  

Waveguides are not normally operated near cut- 
off as the high rate of change of velocity means 
impossible design criteria and high dispersion. 

4.5 The Wave Impedance 

The ratio of the electric to the magnetic field for 
a plane wave was discussed in Section 4.1 of 
these notes. Although the waveguide has two 
plane waves in it the wave impedance is defined 
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as the ratio of the transverse electric and 
magnetic fields. For TE modes this is given the 
symbol ZTE. 

where E,and Ho refer to the plane waves. 
The electric fields of the plane waves are in the 
y direction but the magnetic fields are at an 
angle 0 to the x direction. 

so 

4.6 

Thus, for the A, 5 A, the value of z, is 

always greater than 77, . A typical value might 

be 500R. 

The Group Velocity 

Since a plane wave in air has no frequency 
dependant parameters like those of the two 
conductor transmission lines, i.e. po and 6, 
are constant, then there is no dispersion and so 
the phase velocity is equal to the group velocity. 
A pulse in a waveguide.therefore, would travel 
at V ,  at an angle of @ to the z axis. The group 
velocity along the z axis is given by 

Group velocity, vg = V, COS @ 

z plane. This will involve the wave reflecting 
from all four walls. If the two walls in the x 
direction are separated by a distance b then the 
following are valid for all modes: - 

m = 0, 1,2, 

n = 0, 1,2, 

V 
Then the velocity v = 

A 

v 
A 

z, =- 

v, = A v o  

The modes with the magnetic field in the y 
direction - the. dual of TE - are called 
Transverse Magnetic Modes, or TM. They 
have a constraint that neither m or n can be 0 as 
the electric field for the8e modes has to be zero 
at all four walls. 

The relative cut-off frequencies are shown in 
figure 7. As can be seen in that diagram mono- 
mode propagation using the TElo mode is 
possible up to twice the cut-off frequency. 
However, the full octave bandwidth is not used 
as propagation near cut-off is difficult and just 
below the next mode can be hampered by 
energy coupling into that mode as well. 

The group velocity is always less than v, and is 
a function of frequency. 

For rectangular metallic waveguides: - 

Phase Velocity x Group Velocity = V: 

4.7 General Solution 

In order to obtain all the possible modes in a 
rectangular metallic waveguide the plane wave 
must also have an angle I+!/ to the z axis in they 
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TE4 I 
Figure 7: Relative cut-off frequencies for rectangular metallic waveguides 
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