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In chapter two, a method is proposed whereby the full state vector of a chaotic system can

be reconstructed and tracked using only the time series of a single observed scalar. Assuming

that an accurate mathematical description of the system is available, this nonlinear observer

is able to successfully track chaotic orbits in spite of noise and periodic perturbations. Then

in chapter three, using time delay coordinates and assuming no a priori knowledge of the

dynamical system, we introduce a method which stabilizes a desired periodic orbit embedded

in a chaotic attractor. Similar to the original control algorithm introduced by Ott, Grebogi,

and Yorke [Phys. Rev. Lett. 64 (1990)], the stabilization is done via small time dependent

perturbations of an accessible control parameter. Both the nonlinear observer and the control

method are numerically illustrated using both the Ikeda map, which describes the dynamics

of a nonlinear laser cavity and the double rotor map which describes a periodically kicked

dissipative mechanical system.

Lastly, in chapter four, we examine the quantum manifestations of classically chaotic sys-

tems. In particular, we are interested in the universal short wavelength behaviors of quantum

systems in relation to the classical solutions of Hamiltonians in the same symmetry class. It

has been predicted that in the semi-classical regime, the level statistic of a classically chaotic



system corresponds to that of the Gaussian Unitary Ensemble (GUE) of random matrices

when time reversal symmetry is broken. The system employed in our experiment is a mi-

crowave cavity containing a thin ferrite strip adjacent to one of the walls. When a sufficiently

large magnetic field is applied to the ferrite (thus breaking the time-reversal symmetry) good

agreement with GUE statistics is obtained. The transition from GOE (which applies in the

absence of the applied field) to GUE is also investigated.
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Chapter 1

Introduction

The secrets of the hoary Deep–a dark

Illimitable ocean, without bound,

Without dimension; where length, breadth, and height,

And time, and place, are lost; where eldest Night

And Chaos, ancestors of Nature, hold

Eternal anarchy, amidst the noise...

John Milton - Paradise Lost

The study of chaos has matured to a new stage. Both theoretical and experimental re-

searchers have come to accept that systems ranging from a simple periodically forced pendulum

to complex systems such as turbulence in a fluid system possess exponential sensitivity to ini-

tial conditions. However, most importantly, we realize that this “deterministic randomness”

from chaotic systems is not always uninviting, but it might actually be desirable. A large

body of work has been accumulated in the endeavor to apply what we have learned from chaos

theory to the utilization of experimental chaotic data1. With their broad application to the

analysis of time series from physical, biological, and economic systems, techniques in predicting

chaotic time series and methods of noise reduction using knowledge of the local linear dynam-

ics have gained considerable attention. At the same time, with encouragement from successful

physical experiments, control techniques utilizing the sensitive dependence of chaotic systems

have been shown to be more flexible than conventional schemes. In addition, the ability to

1A comprehensive collection of these results can be found in the book by Ott, et al.[1]

1



manipulate chaotic signals also opens the door for synchronism among chaotic systems and

the possible usage of chaotic signals for secure communication. The results presented in this

thesis represent my contributions to this growing body of work.

In the following chapter, I first introduce a new technique to track and to reconstruct the

full state of a chaotic system from the time series of an observed scalar. As a simple example,

consider a mechanical system with interconnected gears, levers, springs, etc. that is behaving

chaotically on an attractor of finite dimension. Can one deduce the positions of all the parts

of the system from the time series of the position of just one of the levers? This tracking

technique is commonly referred to as an observer. In linear control theory, a reconstructed

system state is directly feedback to the system with an appropriate gain matrix so as to steer

the system toward a desired equilibrium state. Thus, the nonlinear observer developed here is

a logical first step in designing a nonlinear direct-feedback control scheme for chaotic systems.

Furthermore, from a different point of view, one can consider the nonlinear observer and the

actual chaotic system as a pair of driven-response system. In this perspective, the nonlinear

observer technique can then be viewed as a tunable synchronizer between two chaotic systems.

Then, our discussion shifts to the development of a parametric control method using time

delay coordinates. Unlike direct-feedback control schemes which require a knowledge of the full

system state, our parameteric control method affects the chaotic system through an accessible

system parameter such as the kicking strength of a periodically kicked pendulum. We wish

to make only small controlling perturbations to the system. We do not envision creating new

orbits with very different properties from the already existing orbits. Thus we seek to exploit

the already existing unstable periodic orbits that are embedded in the chaotic attractor. The

use of time delay coordinates in a higher dimensional control scheme introduces additional

features which are lacking in the original control technique proposed by Ott et al.[11] In the

presence of parametric variations, delay coordinate embedding leads to a map which in general

depends on a history of past parametric variations as well as the current parameter value. As

noted by Dressler and Nitsche[12], these dependencies on past parametric variations if not

taken into consideration will lead to an instability of the control scheme.

The last topic of my thesis deals with the following question: what are the quantum

manifestations of a classically chaotic system in the situation when time reversal symmetry is
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absent. In particular, we are interested in the spectral statistics of classical chaotic systems

without time reversal symmetry in the semi-classical limit. It has been conjectured that in the

semi-classical regime, the spectral statistics of classically chaotic systems without time reversal

symmetry follows the “Gaussian Unitary Ensemble” (GUE) while the spectral statistics of

classically chaotic systems with time reversal symmetry follows the “Gaussian Orthogonal

Ensemble” (GOE). Experimental results showing the GUE statistics in the time irreversible

case are presented using a two dimensional microwave cavity with magnetized ferrite. Since

this formalism applies to a general wave equation as well as to the Schrödinger equation,

an understanding of these universal short wavelength behaviors might help to further our

understanding in other wave systems such as scattering problems in solid state devices, the

design of mesoscopic systems, acoustic systems, and electromagnetic wave in cavities and

waveguides.

Not chaos-like together crush’d and bruis’d

But, as the world, harmoniously confused:

Where order in variety we see,

And where, tho’all things differ, all agree.

Alexander Pope - Windsor Forest

3



Chapter 2

Observing Chaotic Systems

2.1 Introduction

Consider the situation where there is some experimental system behaving chaotically, and

one is able to accurately observe a single scalar measure of the system state. Formally, the

system state is given by some vector X which is a function of time. The observed scalar can

be expressed as some function of the system state, O = g(X). The question we ask is the

following: Assuming that an accurate mathematical description of the system is available,

how can we deduce the system state X from measurements of O?

One way of addressing this general problem is via the delay coordinate embedding tech-

nique. Takens [2] shows that, generically, a delay coordinate vector (On, On−1, ..., On−(N−1))

of sufficiently large N uniquely determines the system state Xn. Thus, by using a computer to

solve the known mathematical description of the system (assumed here to be a discrete time

system), one can build up a mapping at each point on the attractor from an N -dimensional

delay coordinate vector (On, On−1, ..., On−(N−1)) to the system state, Xn at time n. This pro-

cedure could require the generation, storing and searching of a large amount of data. Another

way to address this problem is by utilizing the so called “extended Kalman filter,” [3] which

is a generalization to nonlinear systems of the usual linear Kalman filter for linear systems

(see Sec. 2.6). By taking the statistics of noise into consideration, it can be shown that the

Kalman Filter for a linear system is optimal in the sense that the error variance between the

actual state and the estimated state is minimal. However, since the implementation of the

extended Kalman filter requires, at each iterate, the manipulation of matrix equations which
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have the same dimension as the full dynamical system, the calculation can get quite cum-

bersome when the dimension of the system is large. In addition, when the Kalman filter is

extended to a nonlinear system, the sense in which this method is optimal becomes unclear

(c.f. Sec. 2.6)1. Thus, while the embedding method and the extended Kalman filter may be

useful for the purpose we address, they have drawbacks that motivate us to investigate other

approaches2. Here, we propose a tracking technique for relatively high dimensional chaotic

systems but with low dimensional attractors. The stability of our technique to the addition

of small noise will also be investigated. Unlike the Kalman filter, which requires manipulation

of matrix equations whose dimension is the full dimensionality of the system, the number of

calculations in our method is of the order of the number of expanding directions, which may

be much smaller than the system dimensionality.

The organization of this chapter is as follows. In Sec. 2.2, we will briefly review the

construction of a linear observer in the standard feedback scheme. This provides the conceptual

foundation for our nonlinear observer developed in Sec. 2.3. In Sec. 2.3, we derive the full-

order observer for chaotic systems (full-order observer estimates all components of the state

vector from a given scalar time-series). In Sec. 2.4, we introduce the kicked double rotor map

example and use it to examine the characteristic convergence time and the basin of attraction

for a single observer. Then, in Sec. 2.5, we will introduce the reduced-order observer for

chaotic systems. As its name suggests, the reduced-order observer is a more efficient special

case of the full-order observer. We also apply this reduced-order observer to the kicked double

rotor map example to demonstrate the effect of the addition of noise to the system and/or to

the output function. Next, Sec. 2.6 will compare the performance of the extended Kalman

filter with our nonlinear observer technique. Section 2.7 will provide a summary of our chaotic

observer technique and a discussion of its advantages and drawbacks. The appendix in Sec.

2.8 provides some generalizations of the discussion in this chapter. Finally, we note that, since

we wish this chapter to be understandable to researchers in chaotic dynamics, we have not

1We will initially be interested in noiseless situations, and it should be noted that the Kalman filter procedure

also applies in these situations.

2Another common situation arises when the system is acted upon by external time-dependent inputs βn. In

that case, one seeks Xn given knowledge of βn and On. Now, the embedding technique becomes inapplicable,

but the alternative which we shall discuss still applies.
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assumed prior knowledge of control theory or signal processing. The reader possessing such

knowledge should skip the background material (e.g. Sec. 2.2) provided in these fields.

2.2 Linear Observers

In linear control theory, it is possible to estimate unmeasured state variables using a “state

observer”. To be specific, consider a linear time independent d-dimensional system,

Xn+1 = AXn,

On = GXn, (2.1)

where X is a d-dimensional column vector, A is a constant d× d matrix, and G is a constant

d dimensional row vector. The scalar function On is the observed physical output of the

system. This system is observable at time n if it is possible to determine the system state Xn

from the observation of outputs over a finite time interval. From a series of d measurements,

(On, · · · , On+(d+1)), one can determine all the d components of the state vector Xn by solving

the following matrix equation,













On

...

On+(d−1)













= J













X1
n

...

Xd
n













,

where

J =



















G

GA

...

GAn−1



















.

This equation has an unique solution if and only if the observability matrix J is of rank d.

This is the observability condition introduced by Kalman for a linear time invariant system.

Assuming the system to be observable, then one can reconstruct the actual state Xn of the

system from a time series of the scalar output On using a state observer, defined by

X̂n+1 = AX̂n + C[On+1 − Ôn+1],

Ôn+1 = GAX̂n. (2.2)
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The idea of this technique is to choose the control vector C such that the numerically generated

state X̂n will converge to the actual state Xn with increasing n. To derive the necessary

condition for this to happen, one can look at the dynamics of the error equation,

Xn+1 − X̂n+1 = [A − CGA](Xn − X̂n), (2.3)

obtained by subtracting Eq. (2.2) form Eq. (2.1). If the control vector C can be chosen so

that the magnitudes of the eigenvalues of [A − CGA] are all less than one, then the error

will exponentially decrease to zero as n approaches infinity. A standard technique exists for

choosing the control vector C to do this, and can be found in many control theory textbooks

(e.g., see Ref.[4] ).

2.3 Chaotic Observers - Full Order

The general procedure for our chaotic observer technique is similar in spirit to the design of an

observer in linear control theory. Conceptually, the observer is built upon a numerical copy of

the actual system but with an additional time dependent correction term which compares the

actual output of the chaotic system and the estimated output of the observer. Depending on

the difference between the actual and the estimated output, the time dependent parameters

in the correction term are adjusted so that the difference will exponentially decay to zero with

time (Kalman filters also have this structure; see Sec. 2.6). In this section, we shall present a

general procedure for doing this in the case of nonlinear chaotic systems.

We assume that the chaotic system that we want to observe is given by the following

equations:

Xn+1 = M(Xn), (2.4)

On = g(Xn).

Here M and g are nonlinear functions of the d-dimensional vector Xn. The corresponding

state observer is taken to be

X̂n+1 = M(X̂n) + Xn[On+1 − Ôn+1], (2.5)

where Ôn+1 = g(M(X̂n)) and Cn is a time dependent d-dimensional control column vector

which we need to adjust at each iterate. Subtracting the equations for Xn+1 and X̂n+1 yield

7



the error equation,

Xn+1 − X̂n+1 = M(Xn) − M(X̂n) − Cn[g(M(Xn)) − g(M(X̂n))]. (2.6)

Linearizing about X̂n gives

δXn+1 = [DM(X̂n) − CnDg(M(X̂n))DM(X̂n)]δXn, (2.7)

where δXn = Xn − X̂n is a differential, and DM(X̂n) and Dg(M(X̂n)) are the derivatives of

M(X̂n) and g(M(X̂n)), respectively, with DM a d by d matrix and Dg a d-dimensional row

vector. Looking back at our discussion of observers for linear time independent systems, the

matrix [A−CGA] was a constant, and the long term evolution of the observer error is deter-

mined by [A−CGA]n. This converges to zero with increasing n if the eigenvalues of [A−CGA]

have magnitudes less than one. In the chaotic case, however, the long term behavior of the

error is governed by the product of matrices of the form [DM(X̂n)−CnDg(M(X̂n))DM(X̂n)]

which change at each iterate,

δXn+1 =
n

∏

m=0

[DM(X̂m) − [CmDg(M(X̂m))DM(X̂m)]δX0. (2.8)

While one can adjust each individual matrix at each iterate to have eigenvalues with mag-

nitudes less than one, that does not guarantee that the product goes to zero as n goes to

infinity3. Below we give a procedure which yields convergence of our observer in the chaotic

case.

For specificity of the discussion, we will assume the chaotic attractor of our system to

be hyperbolic and to have two positive Lyapunov exponents with the rest negative. Thus,

the tangent space at each point on the attractor can be decomposed into the sum of a

two dimensional unstable subspace and a (d − 2) dimensional stable subspace. Noting that

DM(X̂n) maps the unstable subspace at X̂n into the unstable subspace at M(X̂n) and sim-

ilarly maps the stable subspace at X̂n into the stable subspace at DM(X̂n), we see that,

3As an example, the product of the following sequence of matrices:
[

1/2 2

0 1/2

][

1/2 0

2 1/2

][

1/2 2

0 1/2

]

· · ·

will be infinite while the eigenvalues of each individual matrix are less than one, i.e., 1/2.
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if Cn is chosen to lie in the unstable subspace at X̂n, then the matrix representation of

[DM(X̂n) − CnDg(M(X̂n))DM(X̂n)] can be put in the following block form:







Un Wn

0 Sn







In this representation, Un is a 2 × 2 submatrix acting on the unstable subspace, Sn is a

(d− 2)× (d− 2) submatrix acting on the stable subspace, and Wn is a 2× (d− 2) submatrix

taking vectors from the stable subspace into the unstable subspace. One should note that Un

and Wn are functions of the yet to be determined control vector Cn, and that Sn is known

[it is given by DM(X̂n) restricted to the stable subspace].

We now can analyze the convergence of Eq. (2.8) by examining the product of n of these

block matrices, which is given by the following formula:







UnUn−1 · · ·U1

∑n
i=1

[

∏n
j=i+1 UjWi

∏i−1
k=1 Sk

]

0 SnSn−1 · · ·S1






. (2.9)

Since the product SnSn−1 · · ·S1 goes to zero as n → ∞, the convergence of the product

matrix, Eq. (2.9), depends on the product UnUn−1 · · ·U1 and on the off diagonal term

∑n
i=1

[

∏n
j=i+1 UjWi

∏i−1
k=1 Sk

]

. It is demonstrated in Sec. (5.1) that if one chooses the control

vector Cn so that the product UnUn−1 · · ·U1 goes to zero as n → ∞, then the whole matrix,

Eq. (2.9), will go to zero as well.

To make the product UnUn−1 · · ·U1 → 0 as n → ∞, first consider each matrix Un to be

lower triangular (i.e., with Uij = 0 for i < j); then we have the following: (i) the product

of two or more such matrices will still be lower triangular; (ii) the eigenvalues are just the

diagonal elements; and most importantly, (iii) the eigenvalues of the product of such matrices

will be the product of their respective eigenvalues taken from their diagonals. Thus, if we

choose Cn so that Un is lower triangular with eigenvalues of magnitude less than one, then

the product of the Un’s will also be lower triangular with eigenvalues of magnitude less than

one. Most importantly, it can be shown that the product UnUn−1 · · ·U1 → 0 as n → ∞ (see

Sec. (5.1)). Thus, we want to choose a basis for the unstable subspace, such that each of the

Un will be lower triangular, while simultaneously choosing Cn, such that the eigenvalues of

Un will have magnitudes less than one.

9



The first step in our procedure is to define two numbers, λ
(1)
n and λ

(2)
n , and two basis

unit column vector, e
(1)
n and e

(2)
n , for the unstable subspace at X̂n according to the following

iterative procedure:

λ(1)
n e

(1)
n+1 =

[

DM(X̂n)
]

e(1)
n , (2.10)

λ(2)
n e

(2)
n+1 =

[

DM(X̂n) − {C(1)
n e

(1)
n+1}Dg(M(X̂n))DM(X̂n)

]

e(2)
n , (2.11)

with e
(1)
0 and e

(2)
0 initialized from any two linearly independent column vectors in the unstable

subspace of DM(X0). Here, λ
(1)
n and λ

(2)
n are the normalization factors associated with e

(1)
n+1

and e
(2)
n+1, respectively. We want to remind the reader that in this non orthogonal basis,

the components of Un are given by the “inner product,” (Un)ij = f
(i)
n+1Une

(j)
n , where the

contravariant row vectors f
(i)
n+1 are defined by f

(i)
n+1e

(j)
n+1 = δij . With this basis representation,

Un will be in a lower triangular form with two free parameters C
(1)
n and C

(2)
n :

Un =







λ
(1)
n − C

(1)
n Dh

(1)
n 0

−C
(2)
n Dh

(1)
n λ

(2)
n − C

(2)
n Dh

(2)
n






, (2.12)

where

Dh(i)
n = Dg(M(X̂n))DM(X̂n)e(i)

n

and C
(i)
n = f

(1)
n+1Cn. If we adjust C

(1)
n and C

(2)
n so that the eigenvalues (i.e., the diagonal

elements of Eq. (2.12)) of Un are less than one, then the product of the matrices in Eq. (2.9)

will converge to zero as n increases.

A possible concern with our method, as outlined above, is that, as time n increases, the

vectors e
(1)
n and e

(2)
n might tend to become more and more nearly parallel. (This would

invalidate our procedure since we assume that e
(1)
n and e

(2)
n span the two-dimensional unsta-

ble subspace.) We note, however, that we have the freedom of choosing the eigenvalues of

Un,Λ
(i)
n = λ

(i)
n − C

(i)
n Dh

(i)
n . If we choose Λn(1) to be zero, then the collapse of e

(1)
n and e

(2)
n

to a common direction can be prevented (see next paragraph), still leaving open one degree of

freedom in choosing Λ
(2)
n . For definiteness and faster convergence, we set Λ

(1)
n as well as Λ

(2)
n

to zero, in which case we have,

Cn = C(1)
n e

(1)
n+1 + C(2)

n e
(2)
n+1 (2.13)

= (λ(1)
n /Dh(1)

n )e
(1)
n+1 + (λ(2)

n /Dh(2)
n )e

(2)
n+1.
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The expression in Eq. (2.13) for the control vector Cn is valid as long as the denominators

Dh
(i)
n are not zero. In our numerical program, we set a minimum value such that whenever

Dh
(i)
n falls below that value, we set the control vector to zero. Thus, when Dh

(i)
n are small, we

do not attempt to bring X and X̂ together. But, if they were already close, they will still be

close one iterate later. Hence, little is lost by turning the control off for one iterate, provided

that this is done only infrequently.

To see that e
(1)
n and e

(2)
n do not typically approach a common direction as n increases, we

assume that they are nearly parallel at time n, and then demonstrate that Eqs. (2.10),(2.11)

and the expression for C
(1)
n in Eq. (2.13) imply that they are not nearly parallel at time n+1.

Setting e
(2)
n = e

(1)
n + δen with |δen| ≪ 1, Eqs. (2.10),(2.11) and (2.13) yield

λ(2)
n e

(2)
n+1 = DM(X̂n)δen − λ(1)

n e
(1)
n+1{

[

Dg(M(X̂n))DM(X̂n)δen

]

/Dh(1)
n }.

Thus e
(2)
n+1 consists of two terms which are both typically of order δen. The first term points

in the direction DM(X̂n)δen, which is different from the direction of e
(1)
n+1 because δen is

approximately perpendicular to e
(1)
n by assumption. The second term points in the direction

of e
(1)
n [which is the direction of DM(X̂n)e

(1)
n ]. Normally, since both terms are of order δen,

e
(2)
n+1 will in general point in a different direction than e

(1)
n+1. However, one can see a problem

in the rare cases when Dh
(1)
n is small. In these cases, the second term dominates the first

term and we will have e
(2)
n+1 nearly parallel to e

(1)
n+1, but we avoid these “glitches” anyway by

turning off the control vector, i.e., Cn ≡ 0.

Although the above discussion is in the context of a two dimensional unstable subspace,

we note that no essential change is produced in the case where the unstable subspace has an

arbitrary dimension du. In particular, Eqs. (2.10),(2.11) generalizes in a natural way to du

equations for the du basis vectors e(i). This generalization is given in the Sec. 5.2). Also

treated is the generalization to the case where the observation is a vector O = g(X) of

dimension 1 < d0 < d.

Since our method reconstructs the full state vector of the system, i.e., all d components of

the d-dimensional vector Xn, it is called the full-order observer. Computationally, since our

method requires the manipulation of only du equations for the du basis vectors e(i) at each

iterate, the calculation for the control vector is relatively simple when d ≪ du. In contrast,

the extended Kalman filter requires the manipulation of d × d matrices at each iterate. See

11



Sec. (2.6) for a comparison of our technique with a extended Kalman filter.

2.4 Convergence Characteristics and the Kicked Double

Rotor Example

To access the convergence characteristics of our chaotic observer technique, we will use a four

dimensional map which describes the time evolution of a mechanical system, called the kicked

double rotor[5, 6]. As shown in the illustration, Fig. (2.1), the kicked double rotor consists of

two massless rods of lengths L1 and L2 connected at the pivot p2 and with the other end of

rod 1 connected to a fixed pivot at p1. Point masses m1 and m2/2 are attached at the end

of rod 1 and the two ends of rod 2 as shown. At one of the ends of rod 2, an impulse force,

f(t) = f0

∑

n = 0,∞δ(t − nT )ŷ, is applied at times t = 0, T, 2T, .... The kicked double rotor

is governed by the following set of equations:

Xn+1 =







θn+1

θ̇n+1






=







Kθ̇n + θn

Lθ̇n + G(θn+1)






, (2.14)

where θ = (θ1, θ2)
†, θ̇ = (θ̇1, θ̇2)

†, and G(θ) = (a1sinθ1, a2sinθ2)
† (here †denotes transpose). θ1

and θ2 are angle variables giving the positions of the rotor arms, and θ̇1 and θ̇2 are the angular

velocities of the rotor arms at the instant immediately after the nth kick. a1,2 = (f0/I)L1,2

are constants proportional to the strength of the periodic kick f(t). The moments of inertia

about pivots 1 and 2 are chosen to be equal, I = (m1 +m2)L
2
1 = m2L

2
2. K and L are constant

matrices defined by

L =
2

∑

i=1

Wie
ζiT ,K =

2
∑

i=1

Wi
eζiT − 1

ζi
,

W1 =







α β

β σ






,W2 =







σ −β

−β α






,

α =
1

2

(

1 +
ν1

∆

)

, σ =
1

2

(

1 −
ν2

∆

)

, β = −
ν2

∆
,

ζ1,2 = −
1

2
(ν1 + 2ν2 ± ∆),∆ = (ν2

1 + 4ν2
2)1/2,

where ν1 and ν2 are the friction coefficients at the pivots (see Fig. (2.1) and Ref. [5, 6]). In

our numerical experiment, we used g(X) = θ2 and have chosen a particular set of values for
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Figure 2.1: The double rotor.
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the physical parameters4. The resulting chaotic attractor has one positive Lyapunov exponent

(Λ
(1)
L = 0.670,Λ

(2)
L = −0.4040,Λ

(3)
L = −1.192,Λ

(4)
L = −2.074). Hence Λ

(1)
L + Λ

(2)
L > 0 while

Λ
(1)
L + Λ

(2)
L + Λ

(3)
L < 0, and the Lyapunov dimension[8] of the attractor is thus given by

dL = 2 + (Λ
(1)
L + Λ

(2)
L )/Λ

(3)
L ,

which approximately yields 2.22. It is interesting to note that, although the attractor has

only one positive Lyapunov exponent, there exist periodic orbits on the attractor with two

dimensional unstable tangent spaces, and other periodic orbits on the attractor with one

dimensional unstable tangent spaces[9]. Thus, the kicked double rotor map is not globally

hyperbolic as assumed in the previous theoretical discussion. Nevertheless, we find that our

method still works , and the performance is better if we use two basis vectors [as in Eqs. (2.10)-

(2.13)].

First, we examine the behavior of the observer if the observer test orbit starts inside

the linear region of the true orbit. The characteristic time for this case will, in principle, be

dependent upon the chosen eigenvalues of Un. Ideally (i.e., if the dynamics were truly described

by Eq. (2.7)), if we choose the eigenvalues of Un to all be zero and neglect nonlinear effects,

then the observer error along the unstable direction should vanish in two steps5. However,

since the action of the U ’s is only a linear approximation of the true dynamics of the chaotic

system, the average number of iterates6 needed to bring the separation between the observer

orbit and the true orbit from 5.0× 10−3 down to 1.0× 10−7 in a normalized unit is about 10.

Furthermore, when we increase the magnitude of the eigenvalue7, Λ2
n, the number of iterates

needed to bring the separation down increases as expected. Figure 2.2 is a graph showing

4In terms of the notation used in Fig. (2.1) (see also Romeiras et al., the parameters used in our numerical

example are: L1 = 1, L2 = 1.1, m2 = (1.1)−2, m1 = 1 − m2, ν1 = ν2 = 1; the time interval between successive

kicks is T = 1; the impulse strength of a kick is f0 = 6 (which gives a1 = 6 and a2 = 6.6). For this case,

synchronism as defined by Pecora and Carroll[7] does not occur.

5In our numerical experiment, Un is in the following form,

[

0 0

X 0

]

. The product of two of these matrices

is identically zero. In general, when the dimension of Un is du (see Sec. (5.2)), if Un is lower triangular with

zeros on the diagonal, then the product of these U′s will go to zero in du iterates.

6The average is determined from 5000 randomly chosen initial observer test orbits within the linear region

of the true orbit.

7As mentioned earlier, we are only free to choose Λ
(2)
n because we need to keep the basis vectors in Eqs. (2.10)
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Figure 2.2: Averaged convergence time (in numbers of iteration steps n) vs. the magnitude

of the second eigenvalue of Un,Λ
(2)
n . The convergence time is defined to be the number of

iterates that the observer takes to reduce |Xn − X̂n| ten thousands times (from 5.0 × 10−3 to

1.0 × 10−7) and the average value is taken over five thousands randomly chosen observers.

the average converging time of this chaotic observer as a function of Λ2
n. For the fastest

convergence time, it is in principal desirable to choose all eigenvalues of Un to be zero as done

in Eq. (2.13).

We now discuss the convergence characteristics of our observer technique for observer initial

conditions outside the linear region. Typically, an observer orbit X̂n begins to track the true

orbit Xn when X̂n is located within the linear region of the map M(Xn). Furthermore, if we

wait long enough, an initially non tracking observer orbit X̂n will typically and eventually fall

within the linear region of M(Xn) at some future time n. In our numerical experiments, we

and (2.11) from collapsing by setting Λ
(1)
n = 0. Recall that in Eq. (2.13), we set Λ

(2)
n = 0 also for faster

convergence rate. (Also, we use Λ
(2)
n = 0 in our numerical experiments, Figs. (2.3)-(2.6).)
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found that the average transient time before tracking sets in could be quite long. To remedy

this problem, we use many observer test points with randomly chosen initial conditions on the

attractor, and we continuously test each one to see if it has locked onto the true orbit Xn.

We do this by calculating g(Xn) − g(X̂n) and declaring the orbits Xn and X̂n locked if this

quantity is small for several successive iterates. We then take the observer state as X̂n for

such a locked orbit. We can estimate the typical number of observer test orbits needed by

determining the average convergence time 〈τ〉 of a single observer. To determine this average

time 〈τ〉, we begin with a large number of randomly chosen observer test orbits. Then, a

semi-log plot of the number N̂ of orbits which are still not tracking the true orbit after a

time interval n is generated. Since the number of such orbits typically decays exponentially

with n, i.e., N̂(n) = N0e
−n/〈τ〉, the inverse of the slope of this graph defines an average time

〈τ〉 needed for an observer orbits to converge to the true orbit. In Figure 2.3, we used five

thousands randomly chosen observer test orbits and we estimated 〈τ〉 1500. This value also

gives a reasonable number of observer test orbits to be used so that at least one observer orbit

will be tracking the true orbit after the first few time steps.

2.5 Chaotic Observer - Reduced Order

A variant of our technique discussed in Sec. (2.3) can be formulated if there exists an invertible

coordinate transformation

T : X ≡ (X1, · · · ,Xd−1,Xd) → (Y|Z) ≡ (Y 1, · · · , Y d−1, Z),

where Z is the observed quantity g(Xn). In this case, the observer only needs to estimate a

(d− 1)-dimensional vector, Y, since Z is known from direct measurement. The state equation

Xn+1 = M(Xn) under this coordinate transformation T, can be written as

Yn+1 = MY (Yn, Zn)andZn+1 = MZ(Yn, Zn), (2.15)

where (MY (•),MZ(•)) is the representation of M(•) in the new coordinate system. The

reduced-order observer for the the unmeasured part of the state vector Yn can then be defined

as

Ŷn+1 = MY (Ŷn, Zn) + Cn

[

Zn+1 − MZ(Ŷn, Zn)
]

, (2.16)
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Figure 2.3: ln(N̂) vs. n with 5000 randomly chosen initial observer test points. An observer

test orbit is said to be tracking the true orbit when |Xn − X̂n| < 1.0 × 10−6.
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where Cn is the (d−1)-dimensional control vector corresponding to the reduced order observer.

Forming the error equation, we have

δYn+1 = [DMY (Yn, Zn) − CnDMZ(Yn, Zn)] δYn, (2.17)

which can be treated using exactly the same techniques as already discussed. A similar expres-

sion for the control vector Cn can be derived as before [Eq. (2.13)], but with Dg(M(X̂n))DM(X̂n)

replaced by DMZ(Yn, Zn). The main obvious advantage achieved by doing this is that the

dimensionality of the observer is reduced by one.

From a different viewpoint, the reduced-order observer and the actual system can be con-

sidered as a pair of coupled systems with the actual system providing the driving signal and

the observer as the response function. This pair of driven-response systems reduce to the one

studied by Pecora and Carroll[7] when the feedback control in our reduced-order observer is

turn off (Cn ≡ 0). The resultant observer in this case has also been called a “trivial reduced-

order observer.” The convergence of this trivial reduced-order observer will obviously depend

on the Lyapunov exponents of the system Yn+1 = MY (Yn, Zn). Since MY (•) is basically a

subsystem of the full dynamical system M(•), the number of positive Lyapunov exponents of

MY (•) cannot be larger than the number of positive Lyapunov exponents of M(•). Pecora and

Carroll[7] discuss the case where a physically constructed subsystem MY (•) has no positive

Lyapunov exponents, and it is then possible to synchronize MY (•) with the chaotic signal

generated by M(•).

Returning now to our discussion of our reduced-order observer and using the double rotor

map example (with the same set of parameters as in the full-order observer), we calculated

the Lyapunov spectrums for the four different choices of the observed quantity, g(Xn) =

θ1, θ2, θ̇1, andθ̇2. In all these cases, TY (X) will simply be a projection onto the unmeasured

components of X. The results are given in Table 2.5. For our numerical experiment, we have

chosen g(Xn) = θ2. In this case, the subsystem has one positive Lyapunov exponent so that

synchronism as defined by Pecora and Carroll does not apply. However, as mentioned earlier,

since the double rotor map is nonhyperbolic, we found the performance of the reduced order

observer is better if we used two basis vectors (rather than one) in our calculation for the

control vector Cn.

Noise arises naturally in any real physical systems. For example, the strength of the kick
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Table 2.1: Table of sub-Lyapunov exponents for the reduced rotor map with the observed

quantity g(Xn) = θ1, θ2, θ̇1, θ̇2. The sub-Lyapunov exponents are calculated from a single

orbit over 106 iterates.

Quantity λ
(1)
L λ

(2)
L λ

(3)
L

g(X) = θ1 0.6716 -0.3414 -1.4209

g(X) = θ2 0.5916 -0.4437 -1.4473

g(X) = θ̇1 0.6603 0.0000 -1.3258

g(X) = θ̇2 0.0000 -0.3036 -1.1176

in our double rotor might fluctuate because of nonuniformity of the motor output or there

might be imprecision in the measuring device for the scalar time series. The simplest way to

model noise into our system is to put an additive term εaϕn to the right hand side of the

double rotor map Eq. (2.4) to denote noise in the actual system and another additive term to

the output function On = g(Xn) + εbνn to denote noise in the measurement of the observed

quantity. Here, εa,b are the maximum magnitude of the noise. The components of ϕn and

νn are uncorrelated random variables with a given noise statistics. In our numerical example,

both of these random variables are chosen to have zero mean and uniform distribution in

|ν| < 1, |ϕ| < 1. In addition, we assume that the observer system has no knowledge of the

noise. We expect the method to work well when |εaϕn| and |εbνn| are less than the typical

radius of the linear region of the map. Since the chaotic system is nonlinear, the size of the

linear region at each point Xn varies. Near those points where the linear region is smaller,

the observer will be more sensitive to noise. In our numerical experiment, we found that

for a sufficiently small value of ε(< 10−4), the observer was able to track the actual state

continuously. However, as ε increases, the probability of the observer being kicked out of the

linear region of the map, M(Xn), increases. When this happens, the observer orbit might

temporary lose track of the true system state but we can quickly lock back onto the actual

orbit again by first going back a few iterates to a point where the observer and the actual state

are still close together. Then, we activate a set of N observer test points randomly chosen

within an neighborhood centered on that past iterate of the observer. When one of these N

observer test points begins to lock onto the actual state, we pick that particular observer test
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Figure 2.4: |Xn − X̂n| vs. n with N = 1500, ε = 2 × 10−2. Spikes with negative magnitude

indicate the moments when multiple observer test points were initiated. (a) Additive noise in

actual system. (b) Additive noise in output measurements.

point as our new observed orbit and drop the rest of the N test points. On the other hand, if

none of the N observer test points locks back onto the actual orbit within a given short time

limit, we reinitiate the procedure with another set of N randomly chosen observer test points.

Figure 2.4 shows a plot of |Xn − X̂n| versus n with N = 1500 and ε = 2× 10−2. (Figure 2.4a

is the result for additive noise to the actual system and Figure 2.4b is the result for additive

noise to the output function.) We see that our observer technique successfully tracks Xn even

when ε is relatively large (signal to noise ratio ≈ 150) provided that N is sufficiently large.

One should note that our chaotic observer technique has an advantage over delay coordinate

embedding in the situation where the system is driven by an observed time dependent variable
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input which may be temporally irregular. In the presence of a time dependent variable input,

delay coordinate embedding will not work simply because the correlation between the delayed

vector (On, On−1, · · · , On−(N−1)) and the system state vector Xn will be lost. However, since

the chaotic observer tracks the actual system in real time, the observer technique will still

work. In order to examine the behavior of the chaotic observer for a system driven by a

time dependent variable input, we replace the fixed strength of the kick to the double rotor

at time t = nT by fn = f0 + βn where βn defines the time dependent driving force to the

rotor. Since we compute the control vector Cn in real time, the time variation in fn will not

affect our calculation provided that we have knowledge of the function βn. In our numerical

experiment, we choose βn = εsin[(2π/T )n], where ε is the amplitude of the perturbation and

T is the period of the perturbation. When the observer orbit starts within the linear region

of the map, it converge readily to the actual orbit as in the previous examples without time-

dependent variable input [see Figure 2.5(a)]. However, when the observer orbit begins outside

the linear region, it typically takes a much long time to converge to the actual orbit [see

Figure 2.6(a)]. This behavior is similar to the previous situation when the kick strength is a

fixed value. In addition, we also varied the values of ε and T for a number of different trials

but there were no significant difference in the convergence characteristic of the observer in all

those cases [see Figure 2.5(b) and 2.6(b)].

2.6 Extended Kalman Filter

The Kalman filter and the extended Kalman filter basically have the same mathematical

structure as our nonlinear observer. This is to say that they all have the following form:

X̂n+1 = M(X̂n) + Cn

[

On+1 − g(M(X̂n))
]

, (2.18)

where X̂n is the estimated state of the system, On = g(Xn) is the observed output of the

system and Cn is the control vector which will be adjusted according to the methods used. As

we have stated earlier, the fundamental consideration in choosing Cn in our method is stability

while the fundamental consideration in choosing Cn in the Kalman filter is noise minimization.

To be concrete, let say we have a noisy system:

Xn+1 = M(Xn) + Hnwn, On = g(Xn) + νn, (2.19)
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Figure 2.5: log10|Xn − X̂n| vs. n with βn = εsin[(2π/T )n] and f0 = 6.0. The observer orbit

begins within the linear region of the actual orbit. (a) ε = 2;T = 5. (b) ε = 3;T = 20. Solid

squares denote log10|Xn − X̂n| and empty squares denote f0.
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with E[wnw†
m] = Rnδnm and E[νnν†

m] = Qnδnm (E[] denotes the expected value). We further

assume that the two random processes {Xn} and {On} are jointly distributed. Then, the

extended Kalman filter is defined by the following set of equations:

X̂n+1 = M(X̂n) + Cn[On+1 − g(M(X̂n))], (2.20)

Cn = ΓnDgn[Dg†nΓnDgn + Rn]−1, (2.21)

Σn+1 = Γn[1 − Dgn(Dg†nΓnDgn + Rn)−1Dg†nΓn], (2.22)

Γn = DMnΣnDM†
n + HnQnH†

n. (2.23)

These equations in general are initialized by setting X̂0 to the mean value of the initial orbit

X0 and setting Σ0 to the initial error covariance matrix E[(X0−X̂0)(X0−X̂0)
†]. In the special

case when the system is time invariant and linear, the corresponding linear Kalman filter can

be directly derived by considering the time evolution of the means and covariance of the jointly

distributed random variables {Xn} and {On}[10]. Actually, X̂n = E[Xn|On] is the conditional

mean and Σn = E[(X0 − X̂0)(X0 − X̂0)
†|On] is the conditional error covariance of the state

estimate. In the time invariant linear case, the control vector Cn and Σn are independent

of the observed variable {On} and there exist limiting values C̄ and Σ̄ for Eq. (2.21) and

Eq. (2.22) respectively if the system is completely observable (see Sec. 2.2). Furthermore, it

can be shown that the linear Kalman filter is optimal in the sense that Σ̄ for the linear Kalman

filter is a minimum with respect to all other estimators in the form described by Eq. (2.18).

It is important to note that the extended Kalman filter (Eqs. (2.20) and (2.21)) is a non-

linear filter and its construction is based on the natural extension of the Kalman filter for the

linearized system,

Xn+1 = DM(X̂n)Xn + Hnwn, On = Dg(X̂n)Xn + νn, (2.24)

at X̂n. Recall that the question of optimality in the linear case is well defined because

limn→∞Σn = Σ̄ exists and it is reasonable to say that Σ̄ obtained from the Kalman filter

is a minimum within a class of possible filters. However, when the extended Kalman filter is

applied to the actual nonlinear system [Eq. (2.19)], limn→∞Σn in general does not exist and

the question of optimality becomes less clear. Since the optimality of the extended Kalman

filter with respect to noise is not a well defined concept, we will try to compare the conver-

gence characteristic of the extended Kalman filter and our nonlinear observer technique in the
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noiseless case. It should be noted that although noise is an essential part in the construction

of the standard linear Kalman filter and the extended Kalman filter, they still function as

estimators in the noiseless case. Setting Rn and Qn to zero, Eqs. (2.20)-(2.23) reduces to the

following form,

X̂n+1 = M(X̂n) + Cn[On+1 − g(M(X̂n))], (2.25)

Cn = ΓnDgn[Dg†nΓnDgn + Rn]−1, (2.26)

Σn+1 = Γn[1 − Dgn(Dg†nΓnDgn)−1Dg†nΓn], (2.27)

Γn = DMnΣnDM†
n. (2.28)

A discussion of the convergence characteristic for the nonlinear full order observer can be

found in Sec. (2.3) (see Figs. (2.2) and (2.3)). We have determined the average convergence

time 〈τ〉 for the extended Kalman filter using the same method as in our nonlinear observer.

We begin with a large number of randomly chosen initial points for the extended Kalman

filter. Then, we determine the number N̂ of filters which are still not following the true orbit

after a time interval n. From the graph of ln(N̂) vs. n, we estimated 〈τ〉 to be approximately

500 (Fig. (2.7)). Comparatively, for this parameter set of the double rotor map, the extended

Kalman filter has a faster convergence rate than our nonlinear observer. However, the com-

putation for the control vector Cn in the extended Kalman filter requires the manipulation

of matrix equations with the same dimension as the full system while our nonlinear full order

observer technique requires only the manipulation of du basis vectors. In the case of the double

rotor map (du = 2), the number of computations required in our nonlinear observer technique

is about half the number of computations needed in the extended Kalman filter. Another fac-

tor of two in the number of computations can be saved if we use only one basis vector in our

reduced-order observer. While our example yields a factor of three in the average convergence

rate, the comparative saving in the number of computations using our method will in general

improve linearly with the ratio d/du. We can see this by comparing Eqs. (5.15) and (5.16)

for our nonlinear observer technique and Eqs. (2.25)-(2.28) for the extended Kalman filter.

Assuming that we are observing only a time series of scalar output (i.e., do = 1), there will be

du equations for the du basis vectors in Eq. (5.15). Since each basis vector is d dimensional, the

numbers of computations needed will roughly be proportional to d × du. On the other hand,
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26



the iteration equation for the error covariance matrix Σn in Eq. (2.27) and Eq. (2.28) involves

manipulations of d × d matrices and the number of computations needs will roughly be pro-

portional to d×d. Lastly, Eq. (5.16) and Eq. (2.26) for the control vector Cn in both methods

are comparable in complexity. Therefore, the overall ratio of computation time between the

two methods will roughly be d/du.

2.7 Conclusion

In this chapter, we have introduced a method for observing chaotic system from a time series

of a scalar function of the system state. Our observer technique will in general be more efficient

than delay coordinate embedding in terms of computation time. This is also true as compared

to an extended Kalman filter in cases where d ≫ du. The reduction of computational steps

further improves if a reduced order observer can be constructed for the system. We have

found in an example that the our observer technique can be effective in a noisy environment

(with signal to noise level 150) provided we used the multiple observer technique discussed

in Sec. (2.5). In addition, our observer technique still applies when the input to the system is

time dependent (this situation would in general prevent utilization of embedding). Although

our discussion is limited to discrete time systems, this method can be extended to continuous

time cases.

27



Chapter 3

Controlling Chaotic Systems Using Time Delay

Coordinates

3.1 Introduction

In experimental studies of chaotic dynamical systems, it is often the case that the only ac-

cessible information is a time series of some scalar function ξ(X(t)) = ξ(t) of a d-dimensional

state variable X(t). Using delay coordinate embedding technique, Takens[2] shows that a delay

coordinate vector,

Z(t) = (ξ(t), ξ(t − TD), ξ(t − 2TD), ..., ξ(t − MTD)), (3.1)

with a conveniently chosen delay time TD and a sufficiently large M , is generically a global one-

to-one representation of the system state X(t). Using a Poincarè surface of section, we obtain

a set of discrete state variables Zn = Z(tn), where t = tn denotes the time at the nth orbit

crossing of the surface of section. As pointed out by Dressler and Nitsche[12], in the presence

of parametric variation, delay coordinate embedding leads to a map which in general will

depend on all parametric changes that were in effect in the time interval tn ≤ t ≤ tn − MTD.

The question which we address is the following: Given a chaotic system reconstructed from

time delay coordinates, how can we incorporate dependencies of past parametric variations in a

control scheme so that a desired attracting time-periodic motion can be attained. This problem

was previously addressed by Dressler and Nitsche[12] for the case of a period one orbit of the

Poincarè map in which there was a one-dimensional stable manifold and a one-dimensional
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unstable manifold.

Similar to the control method originally purposed by Ott et al.[11], we wish to make only

small controlling perturbations to the system. We do not envision creating new orbits with

very different properties from the already existing orbits. Thus we seek to exploit the already

existing unstable periodic orbits that are embedded in the chaotic attractor. Controlled chaotic

systems offer an advantage in flexibility that any one of a number of different orbits can be

stabilized by the small control, and the choice can be switched from one periodic orbit to

another without drastically altering the system configuration. The present paper extends

previous work[5] to the case when the future system state of a chaotic system depends on the

current parametric variation as well as the previous parametric variations.

To numerically illustrate our method, we apply it to both a two dimensional example, the

Ikeda map and a four dimensional example, the double rotor map. Physically, the Ikeda map

describes the dynamics of a nonlinear optical cavity and the double rotor map describes a

periodically forced mechanical system, the kicked double rotor. In the case of the Ikeda map,

the stabilization is achieved by small variations of the amplitude of the light pulses entering the

optical cavity. To control the double rotor map, stabilization is achieved by small variations

of the strength of the periodic forcing.

3.2 Description of the Method

To be specific, we concentrate our discussion on a periodically forced system and use a stro-

boscopic surface of section, tn = nTF + t0, where TF is the forcing period. Assume that the

orbit of this periodically forced system pierces the experimental surface of section r times in

the time interval, tn < t ≤ tn − MTD, when the delay coordinate vector Zn is being formed.

Then, at the next piercing of the surface of section, the discrete state variable Zn+1 must

depend not only on the current value of the forcing pn, but also on the r previous forcings,

pn−1, ..., pn−r. (We assume that the time-dependent parameter p(t) is constant in each forcing

period, p(t) = pn for tn ≥ t > tn−1.) Thus, the relevant surface of section map will in general

be of the following form,

Zn+1 = G(Zn, pn, pn−1, ..., pn−r). (3.2)
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The most direct way to control a nontrivial period T orbit of the map is to take the T th

iterate of the map and apply the method developed in Sec. 2.6 of Ref.[5]. However, this method

will be overly sensitive to noise, especially when long period periodic orbits are involved. The

following is a method which we think in general will be better. Control is applied at each

iterate of the map instead of each period T. This reduces the chance of the orbit being kicked

out of the control region by noise while we are waiting for the orbit to cycle through the T

periodic points.

Given a period T periodic orbit Z∗
n with Z∗

n+T = Z∗
n, and with p(t) ≡ p̄ for all t, we can

define the following set of (d × d)-dimensional matrices, An and a collection of d-dimensional

column vectors, B1
n, ...,Br+1

n , to describe the effect of small control parameter perturbations

on the linear dynamics of the surface of section map Eq. (3.2) near the periodic orbit:

An = An+T = DZG(Z, pn, pn−1, ..., pn−r), (3.3)

B1
n = B1

n+T = Dpn
G(Z, pn, pn−1, ..., pn−r), (3.4)

B2
n = B2

n+T = Dpn−1
G(Z, pn, pn−1, ..., pn−r), (3.5)

...

Br+1
n = Br+1

n+T = Dpn−r
G(Z, pn, pn−1, ..., pn−r). (3.6)

The partial derivatives defined above are all evaluated at Z = Z∗
n(p̄) and pn = pn−1 = ... =

pn−r = p̄ which is the unperturbed parameter value of the system. For values of p close to p̄

and for Zn close to the periodic orbit Z∗
n(p̄), the surface of section map Eq. (3.2) can then be

approximated by its linearization,

Zn+1 − Z∗
n+1(p̄) = An[Zn − Z∗

n(p̄)]

+ B1
n(pn − p̄) + B2

n(pn−1 − p̄)

+ ... + Br+1
n (pn−r − p̄). (3.7)

We emphasize that the location of the periodic orbit and the partial derivatives Eq. (3.3)

can be obtained directly from experimental time series. In particular, the location of the

periodic orbit and the associated Jacobians, An, can be extracted from experimental time series

using standard method described in Ref.[13, 14, 15, 16, 17, 18]. The collection of matrices,

Bj
n, 1 ≤ j ≤ r + 1, which describes the variations of the map Eq. (3.2) with respect to the
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different past parametric perturbations can also be obtained experimentally from time series

generated by intermittently turning on the parametric perturbations, δp = p − p̄, at each

(r +1)th piercing of the surface of section, (i.e., δpn = δpmax 6= 0 for every n divisible by r +1

and δpn = 0 otherwise.) (We assume δpmax to be small enough that the linear approximation

is valid.) The next step in finding the matrices Bj
n is to extract sequences of data points {Zn}

which are in the neighborhood of the periodic orbit Z∗
n (see Ref.[13]). Since we are keeping

track of the history of the parametric perturbations, we can classify these sequence of data

points into r + 1 groups according to the time of the parametric perturbations with respect

to n. As an example, let us consider all pairs of points (Zn,Zn+1) with δpn 6= 0. (The other

r groups of data pairs corresponds to cases with δpn−1 6= 0, ..., or δpn−r 6= 0.) Since we have

chosen δpn−1 = ... = δpn−r = 0 for this data set, Eq. (3.7) reduces to the following form,

Zn+1 − Z∗
n+1(p̄) = An[Zn − Z∗

n(p̄)] + B1
nδpn.

Then, the d-dimensional column vector B1
n(Z∗

n, p̄) can be estimated by least-square fitting the

data pairs (Zn,Zn+1) to the above equation. The other Bj
n, 2 ≤ j ≤ r + 1, can be obtained in

a similar fashion using the other r groups of data pairs.

In order to take the dynamical dependence of past parametric variations in Eq. (3.2) into

consideration of the control law, we first incorporate both the delay coordinate vector Zn and

the r past parametric values into a new (d + r)-dimensional state vector Yn,

Yn =



























Zn

pn−1

pn−2

...

pn−r



























. (3.8)

With this new (d + r)-dimensional state vector Yn, we can utilize Eq. (3.7) to obtain the

following matrix equation for the linearized dynamics of the combined “state-plus-parameters”

system,

Yn+1 − Y∗
n+1(p̄) = Ãn[Yn − Y∗

n(p̄)] + B̃n(pn − p̄), (3.9)
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where

Y∗
n = Y∗

n+T =



















Z∗
n(p̄)

p̄

...

p̄



















.

Here, the set of (d + r) × (d + r)-dimensional matrices Ãn and the set of (d + r)-dimensional

column vectors B̃n are defined in terms of the partial derivatives given in Eq. (3.3):

Ãn =

































An B2
n B3

n · · · Br
n Br+1

n

0 0 0 · · · 0 0

0 1 0 · · · 0 0

0 0 1 · · · 0 0

...
...

...
...

...
...

0 0 0 · · · 1 0

































(3.10)

B̃n =



























B1
n

1

0

...

0



























(3.11)

where 0 is the d-dimensional row vector of zeros. Because of the periodicity of the partial

derivatives Eq. (3.3), the (d+r)×(d+r)-dimensional matrices Ãn and the (d+r)-dimensional

column vectors B̃n are also periodic with a period T . One should note that this new “state-

plus-parameters” dynamical equation reduces to the original linearized dynamics Eq. (3.7) if

we consider only the first d components of Eq. (3.9). In particular, say that the periodic orbit

Z∗
n is a saddle point with u unstable directions, s stable directions and d = u + s. Then,

in this “state-plus-parameters” representation, the u-dimensional linearized unstable subspace

Eu(Y∗
n) in ℜ(d+r) is equivalent to the u-dimensional linearized unstable subspace Eu(Z∗

n) in

ℜd, while the (s+r)-dimensional linearized stable subspace Es(Y
∗
n) in ℜ(d+r) is the direct sum

of the equivalent s-dimensional linearized stable subspace Es(Z
∗
n) in ℜd and the r-dimensional

null space of Ãn−1Ãn−2 · · · Ãn−T in ℜ(d+r).
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The basic idea of our control algorithm is as follows. Given a periodic orbit, Y∗
n = Y∗

n+T ,

with period T and u unstable directions, we either wait for the system trajectory to come

close to the control region (which we will define later) of the desired periodic orbit Y∗
n, or we

can use the various targeting techniques[19, 20, 21, 22] to bring the system trajectory near the

control region of Y∗
n. When the system state is in the control region, we will try to use u small

parametric perturbations, pn, pn+1, · · · , pn+(u−1), to control the u unstable directions of the

combined “state-plus-parameters” dynamics. In other words, with the u parametric controls in

u iterates, we attempt to bring the deviation, δYn+u = Yn+u −Y∗
n+u, to lie on the linearized

stable subspace, Es(Y
∗
n+u), of Ãn+u−1Ãn+u−2 · · · Ãn+u−T . After this is accomplished, the

control can be set to p̄ and the orbit will naturally approach the desired periodic orbit.

To get an explicit expression for the control parameters, let us consider u iterates of Eq.

(3.9),

Yn+u − Y∗
n+u = Φn,0[Yn − Y∗

n]

+ Φn,1B̃n(pn − p̄) + Φn,2B̃n+1(pn+1 − p̄)

+ · · · + B̃n+(u−1)(pn+(u−1) − p̄), (3.12)

where

Φn,j = Ãn+u−1Ãn+u−2 · · · Ãn+j+1Ãn+j , (3.13)

for j = 1, 2, · · · , (u − 1), and Φn,u ≡ I. We wish to place the deviation of the state vector,

δYn+u, on the linearized stable subspace Es(Y
∗
n+u) at Y∗

n+u. Assuming that this is accom-

plished, there exist (s + r) coefficients, α1, α2, · · · , αs+r, such that

Yn+u − Y∗
n+u = α1vn+u,1 + α2vn+u,2

+ · · · + αs+rvn+u,s+r (3.14)

where vn+u,1,vn+u,2, · · · ,vn+u,s+r is any set of linearly independent unit vectors in ℜd+r

which spans Es(Y
∗
n+u) (Recall that Es(Y

∗
n+u) is the sum of the linearized stable subspace of

Z∗
n+u and an r-dimensional null space.) Combining Eq. (3.12) and (3.14), we then have (d+r)

equations with (d + r) unknowns, pn, · · · , pn+(u−1), α1, · · · , αs+r. This can be solved to obtain

an expression for the required control parameter,

pn = p̄ − KT
n [Yn − Y∗

n] (3.15)
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where

KT
n = κC−1

n Φn,0, (3.16)

and κ denotes an (d + r)-dimensional row vector whose first entry is one and whose remaining

entries are all zeros. The (d + r) × (d + r) dimensional matrix,

Cn = (Φn,1B̃n

...Φn,2B̃n+1

... · · ·
...Φn,u−1B̃n+u−2

...B̃n+u−1

...vn+u,1

...vn+u,2

... · · ·
...vn+u,s+r) (3.17)

is the ”controllability” matrix with a similar meaning as in linear control theory such that the

invertiblity of Cn implies the controllability of the periodic point Y∗
n.

The construction of our control law Eq. (3.15) is based on the linearized Eq. (3.9) and in

general we expect it to apply in the local neighborhood, N(Y∗
n), near Y∗

n. On the other hand,

since we envision applying only small parametric perturbations, |pn− p̄| < δpmax in our control

algorithm, we shall define the control region to be the set of all points Yn within the slab,

∣

∣KT [Yn − Y∗
n]

∣

∣ < δpmax. (3.18)

For a given value of δpmax, the slab defined above intersects the local neighborhood N(Y∗
n)

and its pre-images. Points in the local neighborhood N(Y∗
n) will in general be controlled

by Eq. (3.15), and we expect that, under forward applications of the control law Eq. (3.15),

points in the pre-images of N(Y∗
n) will eventually fall into the local neighborhood N(Y∗

n)

and be controlled also. In our following numerical experiments, we have chosen to activate

control according to Eq. (3.15) only when the values of Yn are within the slab defined by Eq.

(3.18) and the control parameter is left at its nominal value p̄ otherwise. However, because of

nonlinearity not included in the linearized Eq. (3.9), the control might not be able to bring the

orbit to the desired periodic point for all points in the slab. In this case, the orbit will leave

the slab and continue to wander chaotically as if there was no control. Since the orbit on the

uncontrolled chaotic attractor is ergodic, after a chaotic transient[5], the orbit will once again

enter the slab and may also be sufficiently close to N(Y∗
n) so that control is achieved.

In our derivation of the control law Eq. (3.15), although we only gave an explicit ex-

pression for the required parametric perturbation pn at time n, we can, in principle, once

and for all, solve for all the control parameter values to be applied in the next u iterates,
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pn, pn+1, · · · , pn+u−1, from Eq. (3.12) and (3.14). In the presence of noise, however, this is not

a good idea (assuming u > 1), since it does not take advantage of the opportunity to correct

for the noise on each iterate. Therefore, we believe that, in the presence of noise, it is best to

perform the calculation of pn via Eq. (3.15) on each iterate.

In the paper by Dressler and Nitsche (see Ref.[12]), past parametric dependence (r = 1

in their work) in the dynamical equation using delay coordinates embedding introduces a

possible instability in their proposed control laws. For certain instances, it is possible that the

required perturbations δpn will grow in time even when the system state is arbitrary close to

the periodic orbit. This instability will eventually force the orbit to exit the control region.

Their solution is to apply controls only at every other steps instead of at every step so that δpn

can be reset to zero every other step. This is equivalent to eliminating the term in the control

law which depends on the previous parameter. By utilizing the stable subspace Es(Y
∗
n) of the

combined “state-plus-parameters” system, the required perturbations in our control law are

linearly related to the deviations of the system state Yn from the periodic orbit Y∗
n. Thus,

the instability related to the blowing up of δpn as in Dressler and Nitsche’s method will not

occur here.

3.3 Numerical Results

As a demonstration of our control method, we will use the Ikeda map as our first example. The

Ikeda map describes the dynamics of a nonlinear optical cavity and is given by the following

two dimensional map in state space,

Xn+1 =







un+1

vn+1






=







an + 0.9(un cos sn − vn sin sn)

0.9(un sin sn + vn cos sn)






, (3.19)

where sn = 0.4−6.0/(1+u2
n +v2

n). The magnitude and angle of the complex quantity un + ivn

defines the amplitude and phase of the nth light pulse inside the cavity and an is the amplitude

of the light pulse entering the cavity at time n. We will be using an as our control parameter

in this numerical example. (For a detailed physical description of this map, refer to Hammel

et al.[23].) At the nominal value of an = ā = 1, this dynamical system possesses a chaotic

attractor with a Lyapunov dimension of 1.71. Embedded in this attractor, we have chosen the

35



following three unstable periodic orbits for our numerical experiment[24],

X∗
p2 = (u∗

p2, v
∗
p2) =











(0.50984,−0.60837)

(0.62160, 0.60593)

X∗
p3 = (u∗

p3, v
∗
p3) =























(0.085797,−0.88323)

(0.77797, 0.76717)

(1.0140,−0.98324)

X∗
p5 = (u∗

p5, v
∗
p5) =















































(1.0447, 0.8002)

(1.4917,−1.0775)

(0.96244,−1.6557)

(0.39462,−1.6138)

(−0.22133,−0.86258)

.

As indicated by their subscripts, X∗
p2,X

∗
p3, and X∗

p5, are periodic points of Eq. (3.19) with

period 2, 3, and 5 respectively.

To generate our time series {ξn}, we have chosen

ξn = un. (3.20)

as our experimental output1. In this case, the dynamical equation in delay coordinates Eq. (3.2)

depends on an as well as on an−1 (r = 1 in this case). Since we know the exact map, Eq. (3.19),

and the scalar output function Eq. (3.20), we can directly calculate the matrices An,B1
n, and

B2
n, appearing in Eq. (3.7). (As we have mentioned earlier, we can also obtain these matrices

from time series using methods described in Ref. [13, 14, 15, 16, 17, 18]. There is a good

description in Ref. [12] to calculate the matrices B1
n, and B2

n, explicitly from experimental

time series.) Choosing the maximal allowed perturbation δamax to be 0.01, Fig. 3.1 and 3.2

summarize our main results for the Ikeda map.

We plot the values of the scale output ξn as a function of time n in Fig.3.1a and we plot the

applied parametric perturbations δpn as a function of time n in the accompanying Fig.3.1b. In

these figures, we turned on the control for the first periodic orbit X∗
p2 at n = 0. After a chaotic

transient (lasting until n ∼= 3700), the orbit X∗
p2 was stablized. Then, we successive switched

1Other linear combinations of un and vn, e.g., ξn = un + vn, were also considered. Results were similar as

long as the controllability matrix Cn is not too close to being singular.
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Figure 3.1: Ikeda map: successive control of periodic points X∗
p2,X

∗
p3, and X∗

p5. (a) ξ vs. n.

(b) δp vs. n. The arrows indicate the times of switching. [ā = 1 and δamax = 0.01]
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our control to the other two periodic orbits X∗
p3 and X∗

p5. The times at which the control was

switched so as to stablize X∗
p3 and X∗

p5 are indicated in the figure by arrows. In this figure,

one can clearly see the flexibility offered by this method in controlling different periodic orbits

embedded in a chaotic attractor reconstructed from time delay coordinates. Although the time

to achieve control varied from case to case, in all cases, the parametric control was able to

bring the orbit close to the desired periodic point within a couple thousands of iterations.

This brings us to the issue of chaotic transient between the time when control is activated

and the time when control is achieved. To study the time to achieve control, we begin with a

large number, M0 = 20000, of random initial orbits uniformly chosen on the attractor and we

calculate the number of orbits remaining uncontrolled, M(n), as a function of time n. An orbit

is considered to be under control when the required parametric perturbations δan remains

within the range [0, δamax] for at least ten consecutive iterations. We expect the quantity

M(n) to decrease according to an exponential law,

M(n) = M0e
n/<n>, (3.21)

where < n > is the average time to achieve control[5]. In Fig.3.2a, the periodic orbit being

controlled is X∗
p5 and we have plotted ln(M(n)/M0) (denoted by “+”) as a function of n.

From this graph, one can clearly see the expected exponential behavior for the time to achieve

control. The slope of this graph gives the expected average time to achieved control, < n >,

for a randomly chosen orbit on the attractor to be approximately 2500 iterations. To illustrate

the effect of noise on this average time to achieve control, we plot three additional graphs,

Fig.3.2b, 3.2c and 3.2d showing again ln(M(n)/M0) vs. n for the cases where the output

function Eq. (3.20) has an additional noise term,

ξn = un + ǫδn (3.22)

where δn is a random variable distributed uniformly between 0 and 1 and ǫ is the magnitude of

the noise. Fig.3.2b shows data (“⋄”) with ǫ = 10−5, Fig.3.2c shows data (“◦”) with ǫ = 10−4

and Fig.3.2d shows data (“△”) with ǫ = 10−3. In these graphs, we can see that except for

the case when ǫ = 10−3 (“△”), all other three data sets: ”+”, “⋄”, and “◦”, within expected

errors, gives the same average time to achieve control. The much slower convergence and

the non-exponential behavior exhibited in the case with ǫ = 10−3 indicates that the noise is
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large enough so that many probably controllable orbits are being kicked away from the control

region by noise.

To appreciate the importance of past parametric consideration in controlling systems using

delay time coordinates, we now blindly assume that the surface of section map Eq. (3.2)

depends only on the current parametric perturbation. Then, the required control parametric

perturbation δan, for the Ikeda map in delay time coordinates with the output function given

by ξn = un, would be

an − ā = −(1 0)[B1
n

... vs
n]−1An[Zn − Z∗

n], (3.23)

where the two dimensional column vector B1
n and the two dimensional matrix An are defined

as in Eq. (3.3), vs
n is the stable eigenvector of AnAn−1 · · ·An−(T−1), and the delay vector

Zn equals to (ξn, ξn−1) = (un, un−1). Figure 3.3 shows a section of the history of ξn for the

two control methods: (a) Eq. (3.15) and (b) Eq. (3.23). In both cases, all parameters in the

dynamical system were the same and we started the procedures with the same initial condition.

The initial condition was chosen such that the initial orbit was within a distance of 10−4 away

from the desired periodic orbit X∗
p5. While our control method was able to further decrease

the measured deviation ξn − ξ∗n down to the machine accuracy (≈ 10−15), the control method

without past parametric consideration was not able to stabilize the orbit. This result tells us

that in typical cases when delay time coordinates are involved, parametric control methods

must take past parametric dependencies into consideration.

To demonstrate our method in a high dimensional system, we will apply it to a periodically

kicked mechanical system known as the kicked double rotor[5]. On the “stroboscopic surface

of section,” this mechanical system can be represented in state space by a four dimensional

map in the following form,

Xn+1 =







Θn+1

Θ̇n+1






=







W1Θ̇n + Θn

W2Θ̇n + fnH(Θn+1)






, (3.24)

where Θ = (θ1, θ2)T are the two angular position coordinates, Θ̇ = (θ̇1, θ̇2)T are the corre-

sponding angular velocities, and H(Θ) is a nonlinear function. W1 and W2 are two constant

matrices defined by the friction coefficients and moments of inertia of the rotor. We take as

the control parameter of this system the strength of the kick fn. Setting the nominal value of
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Figure 3.2: Ikeda map: The natural logarithm of the fraction of uncontrolled orbits verse time.

A sample of 20000 initial orbits were chosen randomly over the attractor. An orbit is said to

be controlled if 0 < δan < δamax for at least 10 consecutive iterations. The periodic point

controlled is X∗
p5. (a) “+” denotes data calculated with ǫ = 0, (b) “⋄” denotes data calculated

with ǫ = 10−5, (c) “◦” denotes data calculated with ǫ = 10−4 (d) “△” denotes data calculated

with ǫ = 10−3.
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Figure 3.3: Ikeda map: log10|Yn −Y∗
n| vs. n. The periodic orbit being controlled is X∗

p5. Test

orbit was initialized within a radius of 10−4 away from the periodic point. (a) Control method

introduced in this paper. (b) Control method without past parametric consideration.
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fn to f̄ = 9 and the other parameters of the system to the ones in Ref.[5], the system processes

a chaotic attractor with a Laypunov dimension of 2.838. To generate a scalar time series {ξn},

we will use,

ξn = θ1
n. (3.25)

With the choice of this output function, the corresponding dynamical equation in delay time

coordinates Eq. (3.2) will depend on δfn as well as on the three past parametric perturbations:

δfn−1, δfn−2, and δfn−3 where δfn = fn − f̄ (r = 3 in this case). The unstable periodic orbit

X∗
R = (θ∗1 , θ∗2 , θ̇∗1 , θ̇∗2) =























(3.1402, 0.48105,−2.0364, 0.74249)

(2.3090, 0.56580, 4.4182, 4.6514)

(−0.83474,−1.5220,−2.3818,−5.3938)

(3.26)

which we are attempting to control, is a period 3 orbit embedded in the attractor and it has

two unstable directions and two stable directions. In our control algorithm, we have set the

maximum allowed parameter perturbation δfmax to be 1×10−4. Figure 3.4 shows a history of

the observed scalar output from the map as a function of time n. At time n = 0, the orbit first

enters a neighborhood of radius 10−4 around the periodic point X∗
R and parametric control is

activated at this time. One can see that the orbit quickly converges to the desired periodic

orbit as n increases. As indicated by the small size of the neighborhood within which the orbit

converges, we expected the average time to achieve control in this case to be quite large (on

the order of 1012 iterations). This decrease in the size of the controllable region is mainly the

consequence of using delay time embedding. In general, to uniquely determine a state of the

system, we need to wait at least d iterations (d is the dimension of the system) to form the delay

vector. Thus, even if the orbit is at a distance δ away from the periodic orbit at time n, the

orbit will be at a distance of Λdδ away from the periodic orbit when the orbit can be represented

uniquely by the delay vector. (Here, Λ is the largest multiplier of the periodic point.) Thus,

typically, we should expect the size of the controllable region in delay time coordinates to be a

factor of (1/Λ)d times smaller than the controllable region in regular state space coordinates.

This effect will become more evident in higher dimensional systems. With this long chaotic

transient time, we believe that some kind of targeting techniques [19, 20, 21, 22] will be essential

in controlling these high dimensional systems in delay time coordinates.
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3.4 Conclusion

In this paper, we have presented a method for control of chaotic systems using time delay

coordinates. To take the dynamical dependence of past parameters into consideration, our

parametric control law is constructed based on the combined dynamics of the “state-plus-

parameters” system. In our numerical example using delay time coordinates, we have found

that parametric control of unstable periodic points can only be achieved if we take past para-

metric perturbations into consideration (except the case when past parametric dependencies

are absent from the dynamical equation2). We found that our method is efficient in controlling

and flexible in switching among different unstable periodic points embedded in an attractor of

low dimension (Ikeda map). However, while the method is able to control unstable periodic

point embedded in a higher dimensional attractor (double rotor map), the chaotic transient

time required for the orbit to come near the control region will in general be unacceptably

long. While progress is being made in controlling high dimensional systems[25], we believe that

targeting and multivariant control[26] (using more than one control parameter) are two key

issues in developing control schemes for high dimensional systems with delay time coordinates.

2These include the numerous successful implementations of the original OGY method in controlling various

experimental time series (see Ref. [29, 30, 31, 32, 33, 34, 35, 36]). In these examples, the relevant dynamics can

in general be described by one dimensional return maps which are insensitive to past parametric variations.
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Chapter 4

Wave Chaos Statistics

4.1 Introduction

Given a wave equation, the study of wave chaos explores the relation between the behavior

of its short wavelength solutions and the solutions of its corresponding ray equations. The

corresponding physical system of the wave equation may be electromagnetic, acoustic, or

quantum. An example is the quantum wave equation. In this case, the short wavelength

behavior is described by solutions to the Schrödinger’s equation in the semi-classical limit

and the ray solutions are simply the corresponding classical orbits. In particular, we are

interested in the quantum manifestations of classically chaotic systems in the semi-classical

regime. For chaotic systems in the semi-classical limit, it has been conjectured that, the

spectral statistics of the Schrödinger equation correspond to that of random matrices with

the same symmetry[37, 38]. To be specific, when the system is time reversible, the statistical

fluctuations of the energy levels are conjectured to be the same as those for the “Gaussian

Orthogonal Ensemble” of random matrices (GOE). As a simple example of this class of systems,

consider a charged particle in a scalar potential. By reversing the direction of the momentum

of the particle, the classical particle will retrace it own path (see Fig. (4.1)). The wave equation

for this particle is real and the corresponding “Gaussian Orthogonal Ensemble” consists of real

random symmetric matrices. On the other hand, when a magnetic field B is applied, the time-

reversal symmetry is broken. A classical charged particle will no longer retrace its own path

when the direction of its momentum is reversed (see Fig. (4.1)). In this case, the Schrödinger

equation is complex, p → −ih̄∇ − qA(r), and (in the absence of special symmetries) the
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B

Without Magnetic Field With Magnetic Field

Figure 4.1: Trajectory of a charged particle in free space and in a static magnetic field B.

statistical fluctuations of the energy levels are conjectured to be the same as those for the

“Gaussian Unitary Ensemble” of random hermitian matrices (GUE)1. While the predictions

of GOE statistics in actual physical systems have been observed by others[39, 40, 41, 42], the

first experimental verification of the GUE predictions was not reported until So et al.[43]. Here,

we present an extended version of our findings using a two-dimensional microwave cavity with a

thin magnetized ferrite strip adjacent to one of the walls. As we will show later, this microwave

system is in the same universality class (GUE) as the corresponding quantum system without

time reversal symmetry.

1In addition to GOE and GUE statistics, there is a third type of ensemble called “Gaussian Symplectic

Ensemble” (GSE) which applies to systems with Kramers’ degeneracy and without geometric symmetries.
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Figure 4.2: The phase of the reflection coefficient for a incident plane wave on a ferrite with a

given angle of incidence θ is different for the two situations shown.

4.2 Two Dimensional Microwave Cavity with Magnetized

Ferrite

To see how a magnetized ferrite breaks the time reversal symmetry in the electromagnetic

wave equation, consider the situation (see Fig. (4.2)) when a plane wave with the electric

field E = Ez exp(ikxx+ikyy) ẑ perpendicular to the plane of incidence is incident from the

right (x > 0) on a slab of magnetized ferrite (0 > x > δ) which is placed adjacent to a perfect

conductor on the right (x = δ). In the presence of a static magnetic field B = Bẑ perpendicular

to the plane of incidence, the magnetic permeability matrix µ of the ferrite, in the absence of

losses, is
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µ =













µ‖ −iκ 0

iκ µ‖ 0

0 0 µz













, (4.1)

where µ‖, κ, and µz are real quantities and are functions of the static magnetic field B. At

the interface between the ferrite and the empty cavity, the boundary conditions require the

continuity of both Ez and the tangential component of H, which, in the ferrite, is proportional

to (µ‖
∂Ez

∂x +iκ∂Ez

∂y ). One can then calculate the reflection coefficient Γ = expiφ(B) of this plane

wave:

φ = 2kxδ +
α + iβ

α − iβ
, (4.2)

α =
kx

µ‖k
f
x cos(kf

xδ) − κky sin(kf
xδ)

,

β =
1

sin(kf
xδ)

,

where kf
x is the x-component of the wavenumber inside the ferrite and δ is the thickness of

the ferrite2. For simplicity, the B dependence of the phase φ is implicit in the two quantities

µ‖ and κ. One can see from Eq. (4.2) that upon reversal of the direction of the incident wave

(i.e., ky → −ky), because of the linear term in ky, the phase φ(B) is different. That is, unlike

the situation with B = 0, for the same magnitude of the angle of incidence, the phase shift

changes, φ(B, ky) 6= φ(B,−ky) if B 6= 0. Thus, time-reversal symmetry in this electromagnetic

system is broken by the static magnetic field B.

These experiments are pertinent to quantum chaos because the electromagnetic wave equa-

tion in a thin microwave cavity with magnetized ferrite is in the same universality class (GUE)

as the Schrödinger equation without time reversal symmetry. To be specific, in the presence of

a time independent applied magnetic field Bf = ∇× A with the coulomb gauge (∇ · A = 0),

the Schrödinger equation for a particle of mass m and charge q with wavefunction ψ(x, y) in

the xy-plane is

∇2ψ − 2(iq/h̄)A · ∇ψ + (2m/h̄2)[E − (q2/2m)A2]ψ = 0 (4.3)

with ψ = 0 on the boundary. (This Bf should not be confused with the static magnetic

field B used to magnetize the ferrite strip.) Eq. (4.3) should be compared with the following

2If we consider energy loss in the ferrite, α and β in Eq. 4.2 will be complex.
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electromagnetic wave equation in the microwave cavity with magnetized ferrite,

∇ ·
[

(1 + µ‖)∇Ez

]

− i(ẑ ×∇κ) · ∇Ez + k2Ez = 0 (4.4)

with Ez = 0 on the boundary and k2 = (2πf)2/c2. In the case, with ∇µ‖ = 0, Eq. (4.3) and

Eq. (4.4) give the same eigenvalue equation3 if one identifies Ez with ψ and, up to constant

factors, Bf with ẑ∇2κ. In our experiment, κ changes discontinuously from zero in the empty

region of the cavity to its value inside the ferrite strip. Thus, the magnetic field Bf in the

analogous Schrödinger problem is a “double layer” (i.e., the derivative of a delta function

on the surface of the ferrite). Even with this rather singular magnetic field, the analogy

to the Schrödinger equation is still not perfect in the experiment because µ‖ also changes

discontinuously crossing the ferrite boundary. Nevertheless, the relevant point is that the

magnetized ferrite problem and the magnetized Schrödinger problem are in the same (GUE)

universality class.

The geometry of our microwave cavity is shown in the inset of Fig. (4.3) where the curved

boundaries are circular arcs. In this geometry, all typical ray-trajectory orbits are chaotic and

all periodic orbits are isolated. (Thus, there are no “bouncing-ball modes” as in the stadium

billiard or the Sinai billiard. Previous work has shown that these bouncing-ball modes lead to

deviations from the Random Matrix predictions[41, 44, 45].)

The microwave signal is coupled to the cavity electrically through four very small holes

drilled in the top plate of the cavity. The coupling is chosen to be as weak as possible so that

shifting and broadening of the cavity frequency resonances due to the coupling is minimized.

The eigenmodes of the cavity are measured using an HP 8510C vector network analyzer by

locating resonance peaks in the transmission spectra between pairs chosen from the four small

holes. Since the thickness of our cavity is d = 0.3125 in, we could, in principle, perform our

frequency sweep up to fmax = c/(2d) ∼ 18.9 GHz while ensuring that the eigenmodes obtained

correspond only to the two-dimensional TM modes of the cavity. However, in practice, due

3In the absence of the ferrite strip, the microwave cavity system and the quantum mechanical billiard system

in two dimensions are both described by the same Helmholtz equation [i.e., (∇2 + k2)Ψ = 0, where Ψ = Ez

and k = 2πf/c in the electromagnetic case and Ψ = ψ and k2 = (2mE/h̄2) in the quantum mechanical case]

with Ψ = 0 on the boundary.
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to the finite Q of the cavity4 (on the order of several thousand), we found that we could

only reliably identify resonance peaks up to approximately 16 GHz. Furthermore, since we

are interested in the semi-classical behavior of the system, our experiment will examine the

spacing statistics of eigenmodes in the regime where the wavelength is small compared to the

cavity size. Correspondingly, in our experiment, we only consider frequencies above 7 GHz,

which corresponds to mode numbers above ∼200. Within this frequency range, we could

identify up to 800 eigenmodes. In studying the GUE statistics, however, it is necessary to

consider smaller frequency ranges since the ferrite properties are strongly frequency dependent,

and κ in Eq. (4.2) may not be sufficiently large to achieve full GUE statistics far from the

gyromagnetic resonant frequency of the ferrite. In general, we expect that the phase difference,

∆φ(B) = |φ(B, ky) − φ(B,−ky)|, between the forward going and backward going wave to be

large enough to yield GUE statistics when it is at least two orders of magnitude greater than

∆kλ, where ∆k is the average spacing between modes in k-space and λ is the wavelength of

a given eigenmode. (Note that, ∆kλ → 0 as the mode number goes to infinity. Thus, in this

limit, the transition from GOE to GUE occurs abruptly for any |B| > 0. On the other hand,

the transition is continuous when the mode number is finite[46, 47, 48, 49, 50].) Using the

values of the ferrite parameters supplied by the manufacturer[51], we plotted in Fig. (4.4) the

ratio between ∆φ and ∆kλ over the frequency range of interest and we found that only data

from the upper range (13.5 - 16 GHz) of our operating frequency span provides sufficiently

large phase difference ∆φ for GUE statistics. This poses a limit on the number of energy levels

(∼ 260) which we used in calculating the GUE statistics. Despite this limitation, we will show

below that the quantitative difference between GOE and GUE statistics for the cases with and

without magnetic field can still be unambiguously observed.

In our experiment, the magnetic field is provided by a series of Nd-Fe-B magnets placed on

both the top and the bottom plates of the cavity in an attracting position. These magnets are

able to produce a field of approximately 2500 Gauss in a one inch air gap. In general, the time-

irreversibility increases with the saturation magnetization of the ferrite. In our experiment,

4Although the ferrite is a lossy material compared to a good conductor like copper, its degradation of the

Q factor of the cavity near the gyromagnetic resonance remains relatively small because of the small volume

of ferrite employed.
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we have chosen a ferrite with a relatively high saturation magnetization (4πMs = 1850 Gauss)

and a comparatively small resonance absorption, which is characterized by its resonance line

width (∆H = 14 Oe). We note that the degree of time irreversibility can be adjusted by

controlling the amount of the ferrite in the cavity, by changing the magnitude of the applied

magnetic field, or by analyzing the data along different frequency windows of a fixed span.

In this chapter, we will emphasize our experimental results with pure GUE statistics and the

GOE-GUE transition using different frequency windows of a fixed span.

4.3 Wave Chaos Statistics

As the first step in examining the spectral statistics of a given set of energy levels {Ei}, we

construct the cumulative level density of states N(E), which gives the number of “energy

levels” with energy less than E (we identify E with k2 = (2πf)2/c2 where f is the cavity

resonant frequency). From a semi-classical calculation, this “staircase” function consists of a

smooth monotonic part and a fluctuating part,

N(E) = N0(E) + Nfluc(E). (4.5)

The smooth monotonic part, N0(E) is given by[52, 53],

N0(E) = C1E + C2E
1/2 + O(E0). (4.6)

In the case of the empty cavity without ferrite, C1 = A/4π where A is the cross-sectional area of

the cavity; C2 depends on the cavity boundary conditions: C2 = L/4π for Neumann boundary

conditions and C2 = −L/4π for Dirichlet boundary conditions, where L is the perimeter of

the cavity. In the semi-classical regime (N0(E) ≫ 1), one should note that the first term,

C1E, is large compared to the second term. Thus, for large E, N(E) is approximately linear

in E. Figure 4.3 is a graph of the experimental N(E) as a function of f in the range between

13 and 16 GHz for the case when the ferrite is magnetized by the applied magnetic field. We

have also plotted N0(E) as a solid curve in which we use C2 = −L/4π and an area A that is

5% larger than the physical area of the cavity. This area increase is meant to roughly account

for the increased wavenumber in the ferrite: in the relevant frequency range, kfδ/kb. Here,

kf is the wavenumber in the ferrite calculated using the parameter values provided by the
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manufacturer; k is the vacuum wavenumber; δ is the ferrite thickness (0.09 inches); and b is

the horizontal length of the cavity (17 inches; see inset of Fig. 4.3).

The fluctuating part, Nfluc(E), contains universal behavior which depends only on the

symmetry class of the system. To examine these universal features, one makes a change of

variables using e = N0(E), and defines the “unfolded” cumulative energy density as N̂(e) ≡

N(E). Random Matrix Theory provides statistical predictions of the fluctuations of a properly

unfolded energy spectrum. In particular, we consider the spectral rigidity ∆(L) and the level

spacing distribution P (s).

The spectral rigidity, ∆(L) is defined as follows[54, 55]. Within a given segment of the

unfolded spectrum of length L centered at e, one least square fits a straight line to this section

of the staircase function N̂(e). Then, the local spectral rigidity ∆(e;L) is defined as the mean

least squared deviation from this best fitted line over the range L. When the spectrum is

properly unfolded, ∆(e;L) is a function independent of the unfolded energy e. ∆(L) is then

evaluated by taking the average over many non-overlapping adjacent segments of length L of

the spectrum. Physically, one can interpret the spectral rigidity to be a measure of the long

range fluctuations in the energy spectrum. In functional form, the spectral rigidity is defined

as

∆(L) = 〈∆(e;L)〉 = 〈
1

L
min
A,B

∫ e+L

e

[

N̂(x) − Ax − B
]2

dx〉 (4.7)

where 〈.〉 indicates the average taken oven many non-overlapping adjacent segments of the

spectrum. While the spectral rigidity, ∆(L), tends to zero as L → 0 for all symmetry classes,

it has different logarithmic behavior for different symmetry classes for L ≫ 1:

∆GOE(L) =
1

π2
(ln(2πL) + γ −

5

4
−

π2

8
) + O(1/L), (4.8)

∆GUE(L) =
1

2π2
(ln(2πL) + γ −

5

4
+ O(1/L), (4.9)

where γ is the Euler’s constant. One can say that the spectrum of a time irreversible system

(GUE) is more rigid in the sense that its fluctuations about its average are smaller than those

for the time reversible case (GOE).

Now, we turn to the level spacing distribution P (s). By definition, P (s)ds is the frenquency

of finding a given energy separation, si = ei+1 − ei, in the range s ≤ si ≤ s + ds. In

two dimensions, depending on the system’s symmetry class, time reversible (GOE) or time
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irreversible (GUE), the level spacing distribution P (s) is given by the following equations

respectively,

PGOE(s) ≃ s
π

2
exp−s2 π

4 , (4.10)

PGUE(s) ≃ s2 32

π2
exp−s2 4

π . (4.11)

As the above equations suggested, the energy spectrum of a classically chaotic quantum system

shows the unique behavior of “level repulsion” (i.e., P (0) = 0). In contrast with integrable

systems, whose energy levels tend to cluster, the probability density for finding levels with zero

spacing is zero in chaotic systems, and the degrees of this level repulsion (i.e., the behavior of

P (s) as s → 0) depend on the symmetry class of the system. For the purposes of analysizing

our level spacing data, we avoid using a histogram (which, due to our small number of levels,

has large statistical fluctuations,) by considering the integral I(s) =
∫ s

0
P (s)ds rather than

P (s) itself. This allow us to estimate I(s) from our data by simply counting the number of

level spacings less than s, and dividing by the total number of spacings. The most interesting

range is for small s where the level repulsion phenomena are distinctly different for GOE and

GUE. In particular, the small s behavior is either quadratic or cubic: I(s) ≃ (π/4)s2 for GOE

and I(s) ≃ [32/(3π2)]s3 for GUE.

4.4 Spectral Statistics from the Experimental Microwave

Cavity with Magnetized Ferrite

Two sequences of markers indicating the location of the observed cavity resonant frequencies

from a section of our experimental transmission spectrum are shown in Figure 4.55. Both

sequences correspond to the same experimental setup. While the crosses on the top gives the

sequences of resonances with the magnetic field absent, the crosses on the bottom indicates

the sequences of resonances when the magnet field is on. Clearly, the presence of the magnetic

field grossly changes the location of the resonances.

5As a comparison to our experimental data, we have numerically solved the 2D quantum billiard eigenvalue

problem with GOE statistics with the same physical parameters as the analogous microwave cavity without

magnetized ferrite. As shown in the appendix (Sec. 5.4), the experimentally found eigenmodes corresponds

almost exactly with the numerically solved eigenmodes in the low frequency range (f ¹ 5 GHz).
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15.2 15.3 15.4
Freq (GHz)

Figure 4.5: Sequences of cavity resonant frequencies from a section of our transmission spectra

(a) with (diamonds on the bottom) and (b) without (diamonds on the top) the magnetic field

applied to the ferrite strip.
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Figure 4.6: Experimental ln(I(s)) vs. ln(s): circles and triangles correspond to data with and

without magnetic filed respectively. Data are from the range: 13.43 - 15.69 GHz. Theoretical

curves for the GOE (top solid curve) and the GUE (bottom solid curve) are superimposed.

Figure 4.6 shows experimental plots of ln(I(s)) vs. ln(s) for the case with no magnetic

field (triangles) and with magnetic field (circles) in the GUE regime (13.43-15.69 GHz). The

theoretical predictions, the natural logarithm of the integral of Eqs. (4.10) and (4.11) are

superposed on top. We note that the agreement between these experimental plots and the

theoretical curves is quite good. Moreover, for small s values (Fig. 4.6), the best fitted straight

lines to ln(I(s)) give a slope of 2.02 for the time reversible case (GOE), as compared to the

theoretical value of 2, and a slope of 2.88 for the time irreversible case (GUE), as compared

to the theoretical value of 3.

Better statistical evidence for the GOE/GUE transition is provided by the ∆(L) plots in
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Figure 4.7: Experimental ∆(L) vs. L: diamonds and crosses correspond to data with and

without magnetic filed respectively. Data are from the range: 13.43 - 15.69 GHz. Theoretical

curves for the GOE (top solid curve) and the GUE (bottom solid curve) are superimposed.

(These curves are from exact integral expressions for ∆(L), see Refs. [54] and [55])

Figure 4.7. Note that, since ∆(L) involves averaging over all the levels for each L, fluctuations

are reduced, and a clear distinction between the two cases is evident. The lower solid curve

of Figure 4.7 is the result of the random matrix GUE prediction for ∆(L) and the upper

solid curve is the GOE prediction. The diamonds show data for the frequency range 13.43-

15.69 GHz with the magnets in place. The crosses show data for the same frequency range

with the magnets removed. The main qualitative effect of the time-reversal symmetry breaking

(viz. a decrease in ∆(L)) is clearly evident in the data; and the agreement between the data

and the solid curves is good.
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Figure 4.8 gives a sense of the transition from GOE to GUE. The three ∆(L) plots in

Fig. (4.8) are calculated with the static magnetic field held fixed and with approximately the

same number of energy levels (∼260). The frequency range used for Fig. (4.8a) is 7-10.71 GHz.

In this frequency range, we estimate from our calculations that ∆φ(B, f) is not sufficiently

large to alter the GOE statistics. For the frequency range for Fig. (4.8c) (13.43-15.69 GHz),

we estimate that the difference ∆φ(B, f) is sufficiently large to yield GUE statistics. The

frequency range for Fig. (4.8b) (9.04-12.15 GHz) represents an intermediate case between

GOE and GUE.

4.5 Conclusion

In conclusion, by placing a piece of magnetized ferrite inside a two-dimensional microwave

cavity, we have successfully broken the time-reversal symmetry of the system and have shown

that the resultant energy spectrum agrees with the one predicted by the Gaussian Unitary

Ensemble of random matrices . Furthermore, by analyzing the data from different frequency

ranges, we have experimentally observed the transition from GOE to GUE statistics.
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Figure 4.8: Experimental ∆(L) vs. L for three different frequency ranges with the static

magnetic field held fixed. (a) 7 - 10.71 GHz, (b) 9.04 - 12.15 GHz, (c) 13.43 - 15.69 GHz.

Theoretical curves for the GOE (top solid curve) and the GUE (bottom solid curve) are

superimposed.
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Chapter 5

Appendices

5.1 Appendix I to Chapter 2: Proof of Convergence of

Observer’s Error Matrix

In this section, we will show that by choosing the magnitudes of all the eigenvalues of the

matrix Un to be less than 1 (recall Un is a lower triangular matrix), the product

Jn =

n
∏

i=1







Ui Wi

0 Si






=







∏n
i=1 Ui Kn

0
∏n

i=1 Si






, (5.1)

where

Kn =

n
∑

i=1





n
∏

j=i+1

Uj



Wi

(

i−1
∏

k=1

Sk

)

, (5.2)

will converge to zero with increasing n. To be specific, we will show that there exist positive

constants K < ∞ and 0 < µ < 1 such that

‖ Jn ‖≤ Kµn. (5.3)

(Here, we have used the following matrix norm: ‖ J ‖≡
∑

i,j=1 |Jij |.)

First, we note that, since Sn is assumed to be stable, then by definition these exist constants

CS < ∞ and 0 < µS < 1, such that

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

n
∏

i=1

Si

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

≤ CSµn
S . (5.4)
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In the following, we will show that there also exist positive constants CU < ∞, C∗ < ∞, 0 <

µU < 1, and 0 < ζ < 1, such that
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

n
∏

i=1

Ui

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

≤ CUµn
U (5.5)

and

‖ Kn ≤ C∗ζn, (5.6)

provided that we choose the magnitudes of all the eigenvalues of Ui to be less than 1. From

the definition of the matrix norm, we have from Eq. (5.1),

‖ Jn ‖=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

n
∏

i=1

Ui

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

+ ‖ Kn ‖ +

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

n
∏

i=1

Si

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

Now, utilizing Eqs. (5.4)-(5.6), we have

‖ Jn ≤ Kµn, (5.7)

where K = 3max{CU , CS , C∗} and µ = max{µU , µS , ζ}, which is the desired result. In what

follows, we derive Eqs. (5.5) and (5.6).

We derive Eq. (5.5) by using mathematical induction. First, we let Ωdu denote the set of

all bounded du-dimensional lower triangular matrices whose eigenvalues all have magnitudes

less than 1. For du = 1, the matrices in Eq. (5.5) are just scalars of magnitude less than 1.

Thus, Eq. (5.5) is trivially satisfied. Now assume that for a set of matrices {Zi : Zi ∈ Ωdu}

there exist Kβ < ∞ and 0 < β < 1 such that Eq. (5.5) is true,
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

n
∏

i=1

Zi

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

≤ Kββn. (5.8)

Then, we will use this assumption to show that there also exist C < ∞ and 0 < µ < 1 such

that Eq. (5.5) is true for {Ui : Ui ∈ Ωdu+1}. Let us consider a particular matrix Ui ∈ Ωdu+1.

We partition it into the following form:

Ui =







Zi 0

bi Λi






,

where Zi ∈ Ωdu and Λi is the (du + 1)th eigenvalue of Ui. With this notation, the product of

these Ui can be written as

n
∏

i=1

Ui =







∏n
i=1 Zi 0

Ln

∏n
i=1 Λi






,
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where

Ln =

n
∑

i=1





i−1
∏

j=1

Λj



bi

(

n−i
∏

k=1

Zk

)

.

Pick a value Λmax satisfying |Λi ≤ Λmax < 1. Then,

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

n
∏

i=1

Λi

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

≤ Λn
max. (5.9)

Now consider the norm of Ln:

‖ Ln ‖ =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

n
∑

i=1





i−1
∏

j=1

Λdu+1
j



bi

(

n−i
∏

k=1

Zk

)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

≤
n

∑

i=1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

n−i
∏

k=1

Zk

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

‖ bi ‖ (Λmax)i−1

≤
n

∑

i=1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

n−i
∏

k=1

Zk

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

‖ bmax ‖ (Λmax)i−1

≤
n

∑

i=1

Kββn−i ‖ bmax ‖ (Λmax)i−1

≤

n
∑

i=1

K
′

(max{β,Λmax})
n−1

= nK
′

(µ
′

)n−1,

where ‖ bmax ‖ is the largest of the ‖ bi ‖,K
′

= Kβ ‖ bmax ‖, and µ
′

= max{β,Λmax}. In

order to put the above inequality in the right form, we pick a γ such that µ
′

< γ < 1. We

then choose a constant K∗ such that

nK
′

(µ
′

)n−1 ≤ K∗γn,

for n ≥ 1 where the constant K∗ is any number bigger than the maximum over n of nK
′

(µ
′

)n−1γn−1,

(since γ > µ
′

, this maximum is finite). Thus,

‖ Ln ≤ K∗γn. (5.10)

With the bounds given by Eqs. (5.8)-(5.10), one can choose CU = 3max{Kβ ,K∗, 1}, and

µU = max{β,Λmax, γ} so that
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

n
∏

i=1

Ui

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

≤ CUµn
U .
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To complete our demonstration of Eq. (5.7), we now derive Eq. (5.6).

‖ Kn ‖ =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

n
∑

i=1





n
∏

j=i+1

Uj



Wi

(

i−1
∏

k=1

Sk

)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

≤
n

∑

i=1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

n
∏

k=i+1

Uk

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

‖ Wi ‖

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

i−1
∏

k=1

Sk

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

≤

n
∑

i=1

CUµn−i
U ‖ Wmax ‖ CSµi−1

S

≤

n
∑

i=1

C
′

ηn−1

= nC
′

ηn−1,

where ‖ Wmax ‖ is the largest of the ‖ Wi ‖, C
′

=‖ Wmax ‖ max{CU , CS}, and eta =

max{µU , µS} < 1. Choose η < ζ < 1 and C∗ such that

nC
′

ηn−1 ≤ C∗ζn,

for n ≥ 1, we then yield Eq. (5.6).

5.2 Appendix II to Chapter 2: Generalization of the Full-

Order Observer to Systems with Arbitrary Number

of Unstable Directions and with Vectoral Output Func-

tion

Consider a d-dimensional system,

Xn+1 = M(Xn),On = g(Xn), (5.11)

where the observed output On is a do-dimensional vector. Let us say that the unstable subspace

of this dynamical system is du dimensional. Then, the full-order nonlinear observer can be

defined as

X̂n+1 = M(X̂n) + Cn[On+1 − Ôn+1]. (5.12)
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Here, Cn is a d× do time-dependent control matrix. The error equation corresponding to this

observer and the true system is given by

δXn+1 =
[

DM(X̂n) − CnDg(M(X̂n))DM(X̂n)
]

δXn, (5.13)

where δXn = Xn − X̂n is a differential, and DM(X̂n) and Dg(M(X̂n)) are the derivatives of

M(X̂n) and g(M(X̂n)), respectively, with DM a d× d matrix and Dg a do × d matrix. Now,

we will restrict the action of Cn to the unstable subspace by the following construction:

Cn =

du
∑

i=1

β(i)
n (5.14)

with β(i)
n = C

(i)
1 e

(i)
n+1V1 + · · · + C

(i)
do

e
(i)
n+1Vdo

,

where {e
(i)
n } [defined in Eq. (5.15)] is a set of column vectors which spans the unstable subspace

at X̂n and {Vi} can be any complete set of row vectors which spans ℜdo . In this case,
[

DM(X̂n) − CnDg(M(X̂n))DM(X̂n)
]

can again be put in a block form:







Un Wn

0 Sn






,

with Un as a du × du submatrix acting on the unstable subspace, Sn as a (d − du) × (d −

du) submatrix acting on the stable subspace, and Wn as a du × (d − du) submatrix taking

vectors from the stable subspace into the unstable subspace. Then, we define du numbers:

λ
(1)
n , · · · , λ

(du)
n , and du basis column vector: e

(1)
n , · · · , e

(du)
n , for the unstable subspace at X̂n

according to the following procedure:

λ(1)
n e

(1)
n+1 = [DM(X̂n)]e(1)

n , (5.15)

λ(2)
n e

(2)
n+1 =

[

DM(X̂n) − β(1)
n Dg(M(X̂n))DM(X̂n)

]

e(2)
n ,

...

λ(du)
n e

(du)
n+1 =

[

DM(X̂n) −

du−1
∑

i=1

β(i)
n Dg(M(X̂n))DM(X̂n)

]

e(du)
n .
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In this set of basis, Un will be in lower triangular form with du × do free parameters, C
(i)
j , 1 ≤

i ≤ du, 1 ≤ j ≤ do [see Eq. (5.14)]:

Un =



















λ
(1)
n − f

(1)
n+1β

(1)
n Dh

(1)
n 0 · · · 0

−f
(2)
n+1β

(2)
n Dh

(1)
n λ

(2)
n − f

(2)
n+1β

(2)
n Dh

(2)
n · · · 0

...
...

...
...

−f
(du)
n+1 β(du)

n Dh
(1)
n −f

(du)
n+1 β(du)

n Dh
(2)
n · · · λ

(du)
n − f

(du)
n+1 β(du)

n Dh
(du)
n



















.

where Dh
(du)
n = Dg(M(X̂n))DM(X̂n)e

(du)
n is a do-dimensional column vector and {f

(i)
n+1} is

the corresponding set of dual vectors for {e
(i)
n+1}. We can adjust these du × do free parameters

C
(i)
j such that the eigenvalues of Un,Λ

(i)
n = λ

(i)
n −f

(i)
n+1β

(i)
n Dh(i) will all be less than 1. Since Un

is du-dimensional, by setting all its eigenvalues to be less than 1 will only provide du conditions.

In other words, we will have du×(do−1) parameters left for our disposal. This is an advantage

that is not possible in the case when the observed output is a scalar (i.e., do = 1). In the

simplest case, when we set all eigenvalues of Un and the rest of the du × (do − 1) parameters

(i.e., C
(i)
j = 0,∀j > 1) to be zero, the control matrix Un is given by the following equation:

Cn =

du
∑

i=1

λ
(i)
n

V1Dh
(i)
n

e
(i)
n+1V1. (5.16)

5.3 Appendix to Chapter 3: Empirical Proportional Feed-

back

An alternative route to stabilizing unstable periodic orbits is via empirical proportional feed-

back (see Ref.[27, 28]). In this method, one attempts to achieve stabilization by an ad hoc

feedback perturbation which is proportional to the difference between the state of the system

and its desired periodic state (the parameter of the system is assumed to be fixed at its nominal

value), i.e.,

Zn+1 = G(Zn, p̄) − K(Zn − Z∗
n), (5.17)

where K is an adjustable gain matrix and Z∗
n = Z∗

n+T is the desired periodic orbit. The

stability of the periodic point Z∗
n depends on the spectrum of eigenvalues of the following
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stability matrix1,

L(K) = [An−1 − K][An−2 − K] · · · [An−T − K], (5.18)

where An is the Jacobian of G(Z) (see Eq. (3.3)) evaluated at Z∗
n with p fixed at p̄. The

periodic orbit can be stabilized if the magnitude of the largest eigenvalue λmax(K) of L(K)

is less than one. In most experimental cases, K is simply a scalar factor K multiplied by a

projection operator P. To illustrate this proportional feedback control scheme, we will again

use the Ikeda map Eq. (3.19) and the output scalar function ξn = un to generate our time

delay vector Zn. In Fig. (5.1a,b), the projection operators which we have chosen for K are:

(a) Pa =







1 0

0 0






, (b) Pb =







0 0

0 1






and the periodic orbit being considered is X∗

p3. In

this graph, the logarithm of |λmax(K)| is plotted as a function of the scalar factor K.. The

periodic orbit X∗
p3 can be stabilized by the proportional feedback scheme depending on the

values of K. In particular, the proportional feedback scheme works for the values of K such

that |λmax(K)| < 1. In our first example, Fig. (5.1a), there exist two small ranges of values of

K such that the condition |λmax(K)| < 1 (or equivalently, ln|λmax(K)| ≤ 0) is satisfied, while

in our second example, Fig. (5.1b), the condition is never satisfied in the range of values of K

considered.

5.4 Appendix to Chapter 4: Numerical Method used in

Solving the Quantum Billiard Eigenvalue Problem

with GOE Statistics and Comparison with Experi-

ment

In the absence of the magnetic field Bf , Eq. (4.3) reduces to the Helmholtz equation,

(∇2 + k2)ψ = 0, k2 = 2mE/h̄2, (5.19)

1Since the periodic orbit Z∗

n is of period T, i.e., An = An+T , there will be a total of T different Lj ’s.

However, since the determinant of a product of matrices is the product of the determinant of the same matrices,

the spectrum of eigenvalues for all Lj with 1 ≤ j ≤ T are the same.
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Figure 5.1: Ikeda map: ln|λmax(K)| vs. K. (a) K = KPa, (b) K = KPb. The periodic orbit

being considered is X∗
p3 and it can be stabilized by the proportional feedback scheme for the

values of K such that ln|λmax(K)| ≤ 0.
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with ψ = 0 on the boundary. We solved for the eigenvalues kn’s of this boundary value problem

by applying the boundary element method[56]. This numerical method starts with the general

integral representation of the wavefunction ψ using an appropriate Green function,

ψ(x) =

∫

∂

(ψ(x′)∇n̂(x′)G(x,x′; k) − G(x,x′; k)∇n̂(x′)ψ(x′))dx′, (5.20)

where
∫

∂
is integrated over the boundary of the domain and ∇n̂(x′) is the normal deriva-

tive evaluated at the boundary point x′. This integral equation can be solved directly by

discretizing Eq. (5.20) along the boundary ∂. Then, by imposing the boundary condition,

ψ(xi) = 0,∀xi ∈ ∂, one arrives at the following matrix equation for all xi on the boundary,

N
∑

j=1

Gij(k)vj = 0, ∀xi ∈ ∂, (5.21)

where N is the resolution of discretization over the boundary and j is summed over all dis-

cretized points xj ∈ ∂. In this discretization, Gij(k) = G(xi,xj ; k) are the values of the free

space Green function evaluated on the boundary points, xi and xj , while vj = ∇n̂(xj)ψ(xj)

are the yet to be determined values of the normal derivative of ψ at the boundary point xj .

Eq. (5.21) has a nontrivial solution if the determinant of Gij(k) equals to zero2. Thus, the

numerical method in solving for the eigenvalues of Eq. (5.19) reduces simply to searching for

values of k which gives det(Gij(k)) = 0.

The above procedure is generally called the “direct” method. From our numerical trials,

we found that an alternative “indirect” method is able to produce more accurate results due

to its different method in handling the singularity in the Green function. As one can see from

Eq. (5.20), the integrand involves both the Green function and its normal derivative. It can

be shown that in the coincidence limit x′ → x, the normal derivative of the Green function is

better behaved than the Green function itself. As shown in Eq. (5.21), the “direct” method

with ψ = 0 on the boundary involves only the value of the Green function. The goal of the

“indirect” method is to utilize the normal derivative of the Green function in the calculation

instead. One can accomplish this by introducing an auxiliary exterior solution ψ̃ which is by

definition equaled to zero inside the domain boundary. By construction, ψ̃ satisfies the same

2After the eigenvalues kn are found, one can solve for the unknown vector vi from the matrix equation

Eq. (5.21) and the eigenfunctions ψn can then be evaluated using the set of vi and the discretized version of

Eq. (5.20), ψn(x) =
∑N

j=1
G(x,xj ; kn)vj .
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Eq. (5.19) as ψ and by subtracting the equations for ψ̃ from those for ψ, we have

∫

∂

{D(x′)[∇n̂(x′)G(x,x′; k) − 1] − P (x′)G(x,x′; k)}dx′ = 0, (5.22)

where D(x′) = ψ(x′) − ψ̃(x′) and P (x′) = ∇n̂(x′)ψ(x′) − ∇n̂(x′)ψ̃(x′)3. Now, we can set the

second term to zero by imposing the following boundary condition on the auxiliary exterior

solution ψ̃:

P (x) = ∇n̂(x)ψ(x) −∇n̂(x)ψ̃(x) = 0, ∀x ∈ ∂, (5.23)

Together with the original boundary condition on ψ, we again arrive at a matrix equation

involving the normal derivative of the Green function only,

N
∑

j=1

Hij(k)wj = 0, ∀xi ∈ ∂, (5.24)

where Hij(k) = ∇n̂(xj)G(xi,xj ; k) are the values of the normal derivative of the Green func-

tion evaluated on the boundary points, xi and xj , and wj = ψ(xj) − ψ̃(xj) are the yet to

be determined values of the discontinuities between the interior solution ψ and the exterior

solution ψ̃ on the boundary.

With the two dimensional domain given by the inset of Fig. (4.3), the set of eigenvalues

En = (knh̄)2

2m of Eq. (5.19) should follows the GOE statistics. Figure 5.2 shows the locations

of both the eigenvalues of Eq. (5.19) found using the above numerical technique and the

eigenmodes found experimentally from the microwave cavity without ferrite. One can see that

their agreement is good for low frequencies (∼ 3 GHz) and deviations between the numerical

and experiment spectra begin to grow as one moves to higher frequency range (¿ 5 GHz). We

believe that these deviations are due to the small discrepancies between the parameters in the

computer model and the actual experimental cavity.

The numerical data were also used to examine the sensitivity of the spectral statistical

measure ∆(L) with respective to the accuracy and completeness of the eigenvalue spectrum.

We performed three different types of perturbations on the section (7 - 15 GHz) of the numer-

ically calculated spectra corresponding to the same section obtained from microwave cavity

measurements. In the first case, we first calculate the spacings Si = Ei+1 −Ei between all the

3Inside the two dimensional domain, because ψ̃ is identically zero, Eq. (5.22) reduces to
∫

∂
(D(x′)∇n̂(x′)G(x,x′; k) − P (x′)G(x,x′; k))dx′ = ψ(x).
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Figure 5.2: Locations of eigenvalues calculated by solving Eq. (5.19) numerically (top dia-

monds) and eigenmodes found experimentally from the microwave cavity without magnetized

ferrite (bottom diamonds): (a) 3 - 4 GHz; (b) 4 - 5 GHz. The two analogous systems have the

same physical parameters (see Fig. (4.3)).
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eigenvalues and we identify 5% of the smallest spacings. Then, we delete this set of spacings

by taking out both eigenvalues on either sides of Si, namely, Ei+1 and Ei. We then substitute

the average value, (Ei+1 + Ei)/2, back into the spectrum. In the second case, we use the

deleted sequence from the former case and randomly add 5% new eigenvalues to the spectrum.

In the last case, we again start out with the unperturbed sequence and we randomly move

the eigenvalues forward or backward along the spectrum with a maximum magnitude given by

50% of the distance to its closest neighbor. (In this way, the ordering of the eigenvalues will

be preserved.) Figure 5.3 compares the spectral rigidities calculated from the three perturbed

spectra with the one calculated from the unperturbed one. As expected, the deletion of small-

est spacings lowers the spectral rigidity from its unperturbed value and the added randomness

in both case 2 and 3 moves the spectral rigidity higher. However, most importantly, the shifts

in the spectral rigidities from the three different perturbed spectra are all smaller than the

theoretical difference between the GOE and the GUE case. We conclude that even rather

large errors on the order of magnitude used in these tests, if present in our experimental data,

would not spoil our conclusions.
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Figure 5.3: Spectral Rigidity ∆(L) vs. L for the three different perturbed spectra and the

unperturbed spectrum. Crosses corresponds to case 1, triangles corresponds to case 2, squares

corresponds to case 3, circles corresponds to the unperturbed case. Theoretical curves for the

GOE (top solid curve) and the GUE (bottom solid curve) are superimposed.
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